WorldWideScience

Sample records for plant oils

  1. Oil from plants

    Science.gov (United States)

    Calvin, M.

    1983-01-01

    As a result of the exhaustion of our supplies of ancient photosynthesis (oil and gas) it is necessary to develop renewable fuels for the future. The most immediate source of renewable fuel is, of course, the annually growing green plants, some of which produce hydrocarbon(s) directly. New plant sources can be selected for this purpose, plants which have high potential for production of chemicals and liquid fuels. Suggestions are made for modification of both the product character and the productivity of the plants. Ultimately, a totally synthetic device will be developed for the conversion of solar quanta into useful chemical form completely independent of the need for arable land.

  2. Evaluating plant and plant oil repellency against the sweetpotato whitefly

    Science.gov (United States)

    The sweetpotato whitefly, Bemisia tabaci is a major insect pest of vegetables world-wide. We evaluated the effect of commercial plant oils – garlic oil, hot pepper wax, and mustard oil against B. tabaci. Cucumber plants served as the control. Additional treatments included no plants or oil (clear ai...

  3. Oils and rubber from arid land plants

    Science.gov (United States)

    Johnson, J. D.; Hinman, C. W.

    1980-05-01

    In this article the economic development potentials of Cucurbita species (buffalo gourd and others), Simmondsia chinensis (jojoba), Euphorbia lathyris (gopher plant), and Parthenium argentatum (guayule) are discussed. All of these plants may become important sources of oils or rubber.

  4. Oil-shale plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Suurkuusk, T. (Power Engineering Department, Tallinn Technical University, Tallinn, Estonia (SU))

    1991-08-01

    The specific feature of the Estonian energy system is the oil-shale based energy production. The total capacity of the Estonian energy system is 3311 MW, and from this 3104 MW is oil-shale based. There are four oil-shale based power plants in the North-East region of Estonia. (author).

  5. Quality Assessment of Effluent Discharges from Vegetable oil Plant ...

    African Journals Online (AJOL)

    Quality Assessment of Effluent Discharges from Vegetable oil Plant. ... oil processing company, located in Anambra State – South east Nigeria, was evaluated ... total hydrocarbon content (THC), oil and grease, total dissolved solids (TDS), pH, ...

  6. Optimization of Jatropha curcas pure plant oil production

    NARCIS (Netherlands)

    Subroto, Erna

    2015-01-01

    The use of pure plant oils as fuel, either directly or after conversion of the oil to bio-diesel, is considered to be one of the potential contributions to the transformation of the current fossil oil based economy to a sustainable bio-based one. The production of oil producing seeds using plants

  7. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A. [Modigen Oy, Helsinki (Finland)

    1995-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  8. Bio-oil fuelled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A. [Modigen Oy, Helsinki (Finland)

    1997-12-01

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 pyrolysis oil made of wood was tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  9. Genetically engineered plants with increased vegetative oil content

    Science.gov (United States)

    Benning, Christoph

    2017-05-23

    The invention relates to genetically modified agricultural plants with increased oil content in vegetative tissues, as well as to expression systems, plant cells, seeds and vegetative tissues related thereto.

  10. Characterization of Oxidative Stability of Fish Oil- and Plant Oil-Enriched Skimmed Milk

    DEFF Research Database (Denmark)

    Saga, Linda C.; Kristinova, Vera; Kirkhus, Bente

    2013-01-01

    The objective of this research was to determine the oxidative stability of fish oil blended with crude plant oils rich in naturally occurring antioxidants, camelina oil and oat oil, respectively, in bulk and after supplementation of 1 wt% of oil blends to skimmed milk emulsions. Ability of crude...... oat oil and camelina oil to protect fish oil in bulk and as fish oil-enriched skimmed milk emulsions was evaluated. Results of oxidative stability of bulk oils and blends assessed by the Schaal oven weight gain test and by the rancimat method showed significant increase in oxidative stability when oat......, skimmed milk supplemented with fish-oat oil blend gave the highest scores for off-flavors in the sensory evaluation, demonstrating that several methods, including sensory analysis, should be combined to illustrate the complete picture of lipid oxidation in emulsions....

  11. [Study on Raman Spectra of Some Animal and Plant Oils].

    Science.gov (United States)

    Wang, Xiang; Dai, Chang-jian

    2015-04-01

    The spectral characteristics of different kinds of oil, either from plant seeds or animal fat, were studied with Raman spectroscopy. The experimental data were processed with the adaptive iteratively reweighted penalized least squares method to realize baseline correction, and provide evident information about their microscopic world. The spectra were analyzed and compared with each other in three parts: the Raman spectra comparison among different samples of plant oils, the analysis of the animal fat and the comparison between plant oils and the animal fat. The differences among the oils were observed in the analysis, including Raman shift and Raman intensity differences. This study not only yields the spectral basis for distinguishing or recognizing the different edible oils, but also confirms that Raman spectroscopy is an effective tool for identifying different oils.

  12. Plan for addressing issues relating to oil shale plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  13. Modeling the kinetics of essential oil hydrodistillation from plant materials

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir Ž.

    2013-01-01

    Full Text Available The present work deals with modeling the kinetics of essential oils extraction from plant materials by water and steam distillation. The experimental data were obtained by studying the hydrodistillation kinetics of essential oil from juniper berries. The literature data on the kinetics of essential oils hydrodistillation from different plant materials were also included into the modeling. A physical model based on simultaneous washing and diffusion of essential oil from plant materials were developed to describe the kinetics of essential oils hydrodistillation, and two other simpler models were derived from this physical model assuming either instantaneous washing followed by diffusion or diffusion with no washing (i.e. the first-order kinetics. The main goal was to compare these models and suggest the optimum ones for water and steam distillation and for different plant materials. All three models described well the experimental kinetic data on water distillation irrespective of the type of distillation equipment and its scale, the type of plant materials and the operational conditions. The most applicable one is the model involving simultaneous washing and diffusion of the essential oil. However, this model was generally inapplicable for steam distillation of essential oils, except for juniper berries. For this hydrodistillation technique, the pseudo first-order model was shown to be the best one. In a few cases, a variation of the essential oil yield with time was observed to be sigmoidal and was modeled by the Boltzmann sigmoid function.

  14. Plant oils as feedstock alternatives to petroleum - A short survey of potential oil crop platforms.

    Science.gov (United States)

    Carlsson, Anders S

    2009-06-01

    Our society is highly depending on petroleum for its activities. About 90% is used as an energy source for transportation and for generation of heat and electricity and the remaining as feedstocks in the chemical industry. However, petroleum is a finite source as well as causing several environmental problems such as rising carbon dioxide levels in the atmosphere. Petroleum therefore needs to be replaced by alternative and sustainable sources. Plant oils and oleochemicals derived from them represent such alternative sources, which can deliver a substantial part of what is needed to replace the petroleum used as feedstocks. Plant derived feedstock oils can be provided by two types of oil qualities, multi-purpose and technical oils. Multi-purpose oils represent oil qualities that contain common fatty acids and that can be used for both food and feedstock applications. Technical oil qualities contain unusual fatty acids with special properties gained from their unique molecular structure and these types of oils should only be used for feedstock applications. As a risk mitigation strategy in the selection of crops, technical oil qualities should therefore preferably be produced by oil crop platforms dedicated for industrial usage. This review presents a short survey of oil crop platforms to be considered for either multi-purpose or technical oils production. Included among the former platforms are some of the major oil crops in cultivation such as oil palm, soybean and rapeseed. Among the later are those that could be developed into dedicated industrial platforms such as crambe, flax, cotton and Brassica carinata. The survey finishes off by highlighting the potential of substantial increase in plant oil production by developing metabolic flux platforms, which are starch crops converted into oil crops.

  15. Toxicities of oils, dispersants and dispersed oils to algae and aquatic plants: review and database value to resource sustainability

    Science.gov (United States)

    Published toxicity results are reviewed for oils, dispersants and dispersed oils and aquatic plants. The historical phytotoxicity database consists largely of results from a patchwork of research conducted after oil spills to marine waters. Toxicity information is available for ...

  16. Toxicities of oils, dispersants and dispersed oils to algae and aquatic plants: review and database value to resource sustainability

    Science.gov (United States)

    Published toxicity results are reviewed for oils, dispersants and dispersed oils and aquatic plants. The historical phytotoxicity database consists largely of results from a patchwork of research conducted after oil spills to marine waters. Toxicity information is available for ...

  17. Surface structure and properties of plant seed oil bodies.

    Science.gov (United States)

    Tzen, J T; Huang, A H

    1992-04-01

    Storage triacylglycerols (TAG) in plant seeds are present in small discrete intracellular organelles called oil bodies. An oil body has a matrix of TAG, which is surrounded by phospholipids (PL) and alkaline proteins, termed oleosins. Oil bodies isolated from mature maize (Zea mays) embryos maintained their discreteness, but coalesced after treatment with trypsin but not with phospholipase A2 or C. Phospholipase A2 or C exerted its activity on oil bodies only after the exposed portion of oleosins had been removed by trypsin. Attempts were made to reconstitute oil bodies from their constituents. TAG, either extracted from oil bodies or of a 1:2 molar mixture of triolein and trilinolein, in a dilute buffer were sonicated to produce droplets of sizes similar to those of oil bodies; these droplets were unstable and coalesced rapidly. Addition of oil body PL or dioleoyl phosphatidylcholine, with or without charged stearylamine/stearic acid, or oleosins, to the medium before sonication provided limited stabilization effects to the TAG droplets. High stability was achieved only when the TAG were sonicated with both oil body PL (or dioleoyl phosphatidylcholine) and oleosins of proportions similar to or higher than those in the native oil bodies. These stabilized droplets were similar to the isolated oil bodies in chemical properties, and can be considered as reconstituted oil bodies. Reconstituted oil bodies were also produced from TAG of a 1:2 molar mixture of triolein and trilinolein, dioleoyl phosphatidylcholine, and oleosins from rice (Oryza sativa), wheat (Triticum aestivum), rapeseed (Brassica napus), soybean (Glycine max), or jojoba (Simmondsia chinensis). It is concluded that both oleosins and PL are required to stabilize the oil bodies and that oleosins prevent oil bodies from coalescing by providing steric hindrance. A structural model of an oil body is presented. The current findings on seed oil bodies could be extended to the intracellular storage lipid

  18. Lightning protection of oil and gas industrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Bouquegneau, Christian [Polytechnical University of Mons (Belgium)

    2007-07-01

    The paper brings some cases and presents the general principles, what the IEC 62305 international standard says, the warning and avoidance and the conclusion about lightning protection of oil and gas industrial plants.

  19. Effect of selected essential oil plants on bacterial wilt disease ...

    African Journals Online (AJOL)

    SARAH

    2014-03-25

    Mar 25, 2014 ... Key words: Essential oil plants, Potatoes, Ralstonia solanacearum, Wilt incidence ... the soil level to collect stems, leaves, flowers and the side branches. Harvesting ..... to other factors such as pH, organic matter content and.

  20. Plant Oils and Cardiometabolic Risk Factors: The Role of Genetics.

    Science.gov (United States)

    Smith, Caren E

    2012-09-01

    More than 25 years have passed since Ancel Keys and others observed that high intake of monounsaturated fatty acids, especially as supplied by plants (eg, olive oil) was associated with lower cardiovascular and overall mortality. About 15 years later, advances in genotyping technologies began to facilitate widespread study of relationships between dietary fats and genetic variants, illuminating the role of genetic variation in modulating human responses to fatty acids. More recently, microarray technologies evaluate the ways in which minor, bioactive compounds in plant oils (including olive, thyme, lemongrass, clove, eucalyptus, and others) alter gene expression to mediate anti-inflammatory and antioxidant effects. Results from a range of diverse technologies and approaches are coalescing to improve understanding of the role of the genome in shaping our responses to plant oils, and to clarify the genetic mechanisms underlying the cardioprotective benefits we derive from a wide range of plant oil constituents.

  1. Encapsulation of plant oils in porous starch microspheres

    Science.gov (United States)

    Natural plant products such as essential oils have gained interest for use in pest control in place of synthetic pesticides because of their low environmental impact. Essential oils can be effective in controlling parasitic mites that infest honeybee colonies but effective encapsulants are needed to...

  2. Antimicrobial Effects of Several Essential Oil from Aromatic Plants

    Directory of Open Access Journals (Sweden)

    Felicia TUŢULESCU

    2016-12-01

    Full Text Available Essential oils (EOs have been long recognized for their antibacterial, antifungal, antiviral, insecticidal and antioxidant properties. The present research aimed to study the antimicrobial effects of some volatile oils from aromatic plants (sweet basil and dill against several microorganisms, namely Bacillus subtilis, Alternaria alternata and Penicillium expansum. The oils have been extracted through distillation procedures and the antimicrobial action of the oils was assessed through the disc diffusion method. The best effect against the Bacillus subtilis strain has occurred when the essential oil of dill was undiluted. Regarding the the Alternaria species, it was noted that dill volatile oil has acted in an efficient way only undiluted. As the oil's concentration decreased, the strain becomed resistant. The sweet basil oil has proven to be highly effective when acting against the Bacillus strain. By volatilization, the sweet basil oil produced a strong antimicrobial effect, even in control disc, in which it was noticed a small development of colonies comparing with the dill oil. The results indicated that the sweet basil essential oil exerted an antimicrobial effect both against the tested bacteria and moulds, while the dill oil had a great inhibitory action on Bacillus subtilis and Alternaria alternata, but was less efficient against Penicillium expansum.

  3. Plant Oils as Potential Sources of Vitamin D

    Directory of Open Access Journals (Sweden)

    Gabriele I Stangl

    2016-08-01

    Full Text Available To combat vitamin D insufficiency in a population, reliable diet sources of vitamin D are required. The recommendations to consume more oily fish and the use of UVB treated yeast are already applied strategies to address vitamin D insufficiency. This study aimed to elucidate the suitability of plant oils as an alternative vitamin D source. Therefore, plant oils that are commonly used in human nutrition were firstly analyzed for their content of vitamin D precursors and metabolites. Secondly, selected oils were exposed to a short-term UVB irradiation to stimulate the synthesis of vitamin D. Finally, to elucidate the efficacy of plant-derived vitamin D to improve the vitamin D status, we fed UVB-exposed wheat germ oil for 4 weeks to mice and compared them with mice that received non-exposed or vitamin D3 supplemented wheat germ oil. Sterol analysis revealed that the selected plant oils contained high amounts of ergosterol, but also 7-dehydrocholesterol (7-DHC, with the highest concentrations found in wheat germ oil. Exposure to UVB irradiation resulted in a partial conversion of ergosterol and 7-DHC to vitamin D2 and D3 in these oils. Mice fed the UVB-exposed wheat germ oil were able to improve their vitamin D status as shown by the rise in the plasma concentration of 25 hydroxyvitamin D (25(OHD and the liver content of vitamin D compared to mice fed the non-exposed oil. However, the plasma concentration of 25(OHD of mice fed the UVB-treated oil did not reach the values observed in the group fed the D3 supplemented oil. It was striking that the intake of the UVB-exposed oil resulted in distinct accumulation of vitamin D2 in the livers of these mice. In conclusion, plant oils, in particular wheat germ oil, contain considerable amounts of vitamin D precursors which can be converted to vitamin D via UVB exposure. However, the UVB-exposed wheat germ oil was less effective to improve the 25(OHD plasma concentration than a supplementation with vitamin D

  4. INSETICIDAL OILS FROM AMAZON PLANTS IN CONTROL OF FALL ARMYWORM

    Directory of Open Access Journals (Sweden)

    ANA CLÁUDIA VIEIRA DOS SANTOS

    2016-01-01

    Full Text Available The potential insecticidal of oils from southwestern Amazon plants against Spodoptera frugiperda (J. E. Smith, 1797 (Lepidoptera: Noctuidae was investigated. Initial bioassays were performed with undiluted oils from 11 plant species. The efficacy of the oils was evaluated against eggs and third-instar caterpillars of S. frugiperda. The oils of Copaifera sp. (Leguminosae, Orbignya phalerata (Arecaceae, and Carapa guianensis (Meliaceae displayed a high efficacy against the caterpillars and were used in subsequent concentration-response bioassays, at concentrations established through preliminary tests. The highest nonlethal concentrations of oils and the lowest lethal concentrations were calculated. A completely randomized design was adopted in both bioassays. The LC50 of the oils varied from 7.50 to 60.84% (v/v. Copaifera sp. oil had the highest toxicity and was 6.84-fold more toxic than O. phalerata oil and 8.11-fold more toxic than Carapa guianensis oil. In general, oils from Copaifera sp., O. phalerata, and Carapa guianensis were effective in controlling S. frugiperda caterpillars under laboratory conditions, and are good candidates for use in integrated management programs of corn pests.

  5. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    Science.gov (United States)

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  6. In vitro antibacterial activity of some plant essential oils

    Directory of Open Access Journals (Sweden)

    Ignacimuthu Savarimuthu

    2006-11-01

    Full Text Available Abstract Background: To evaluate the antibacterial activity of 21 plant essential oils against six bacterial species. Methods: The selected essential oils were screened against four gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris and two gram-positive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20 using disc diffusion method. The MIC of the active essential oils were tested using two fold agar dilution method at concentrations ranging from 0.2 to 25.6 mg/ml. Results: Out of 21 essential oils tested, 19 oils showed antibacterial activity against one or more strains. Cinnamon, clove, geranium, lemon, lime, orange and rosemary oils exhibited significant inhibitory effect. Cinnamon oil showed promising inhibitory activity even at low concentration, whereas aniseed, eucalyptus and camphor oils were least active against the tested bacteria. In general, B. subtilis was the most susceptible. On the other hand, K. pneumoniae exhibited low degree of sensitivity. Conclusion: Majority of the oils showed antibacterial activity against the tested strains. However Cinnamon, clove and lime oils were found to be inhibiting both gram-positive and gram-negative bacteria. Cinnamon oil can be a good source of antibacterial agents.

  7. Plant oil renewable resources as green alternatives in polymer science.

    Science.gov (United States)

    Meier, Michael A R; Metzger, Jürgen O; Schubert, Ulrich S

    2007-11-01

    The utilization of plant oil renewable resources as raw materials for monomers and polymers is discussed and reviewed. In an age of increasing oil prices, global warming and other environmental problems (e.g. waste) the change from fossil feedstock to renewable resources can considerably contribute to a sustainable development in the future. Especially plant derived fats and oils bear a large potential for the substitution of currently used petrochemicals, since monomers, fine chemicals and polymers can be derived from these resources in a straightforward fashion. The synthesis of monomers as well as polymers from plant fats and oils has already found some industrial application and recent developments in this field offer promising new opportunities, as is shown within this contribution. (138 references.)

  8. Hydrothermal liquefaction of aquatic plants to bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D.; Zhang, L.; Zhang, S.; Fu, H.; Chen, J. [Fudan Univ., Shanghai (China). Dept. of Environmental Science and Engineering

    2010-07-01

    This study investigated the feasibility of producing bio-oils from aquatic plants by hydrothermal liquefaction using 2 typical aquatic plants as feedstocks, notably Enteromorpha prolifera and water hyacinth which are typical aquatic plants found in seawater and freshwater. Bio-oil production from these 2 feedstocks was studied in a batch reactor at controlled temperatures under an initial partial pressure of 2.0 MPa N2. The effects of temperature and reaction time on the liquefaction products yields were also studied. GC-MS and elemental analysis were carried out to analyze the composition of bio-oils. The bio-oil produced from Enteromorpha prolifera contained mainly fatty acids, esters and quite a few heterocyclic compounds. Phenols and their derivatives were found to be the main compounds in bio-oils produced from water hyacinth. An elemental analysis revealed that bio-oils produced from the 2 aquatic plants have higher energy density. It was concluded that the use of aquatic plants as feedstock for liquid fuel can contribute to environmental protection and sustainable energy development by reducing greenhouse gas emissions associated with the burning of fossil fuels. 9 refs., 3 tabs.

  9. Toxicity of plant essential oils to Trialeurodes vaporariorum (Homoptera: Aleyrodidae).

    Science.gov (United States)

    Choi, Won-Il; Lee, Eun-Hee; Choi, Byeoung-Ryeol; Park, Hyung-Man; Ahn, Young-Joon

    2003-10-01

    A total of 53 plant essential oils were tested for their insecticidal activities against eggs, nymphs, and adults of Trialeurodes vaporariorum Westwood, using an impregnated filter paper bioassays without allowing direct contact. Responses varied according to oil type and dose, and developmental stage of the insect. Bay, caraway seed, clove leaf, lemon eucalyptus, lime dis 5 F, pennyroyal, peppermint, rosewood, spearmint, and tea tree oils were highly effective against T. vaporariorum adults, nymphs, and eggs at 0.0023, 0.0093, and 0.0047 microl/ml air, respectively. These results indicate that the mode of delivery of these essential oils was largely a result of action in the vapor phase. Significant correlations among adulticidal, nymphicidal, and ovicidal activities of the test oils were observed. The essential oils described herein merit further study as potential fumigants for T. vaporariorum control.

  10. Screening of plants for phytoremediation of oil-contaminated soil.

    Science.gov (United States)

    Ikeura, Hiromi; Kawasaki, Yu; Kaimi, Etsuko; Nishiwaki, Junko; Noborio, Kosuke; Tamaki, Masahiko

    2016-01-01

    Several species of ornamental flowering plants were evaluated regarding their phytoremediation ability for the cleanup of oil-contaminated soil in Japanese environmental conditions. Thirty-three species of plants were grown in oil-contaminated soil, and Mimosa, Zinnia, Gazania, and cypress vine were selected for further assessment on the basis of their favorable initial growth. No significant difference was observed in the above-ground and under-ground dry matter weight of Gazania 180 days after sowing between contaminated and non-contaminated plots. However, the other 3 species of plants died by the 180th day, indicating that Gazania has an especially strong tolerance for oil-contaminated soil. The total petroleum hydrocarbon concentration of the soils in which the 4 species of plants were grown decreased by 45-49% by the 180th day. Compared to an irrigated plot, the dehydrogenase activity of the contaminated soil also increased significantly, indicating a phytoremediation effect by the 4 tested plants. Mimosa, Zinnia, and cypress vine all died by the 180th day after seeding, but the roots themselves became a source of nutrients for the soil microorganisms, which led to a phytoremediation effect by increase in the oil degradation activity. It has been indicated that Gazania is most appropriate for phytoremediation of oil-contaminated soil.

  11. Alkene Metathesis and Renewable Materials: Selective Transformations of Plant Oils

    Science.gov (United States)

    Malacea, Raluca; Dixneuf, Pierre H.

    The olefin metathesis of natural oils and fats and their derivatives is the basis of clean catalytic reactions relevant to green chemistry processes and the production of generate useful chemicals from renewable raw materials. Three variants of alkene metathesis: self-metathesis, ethenolysis and cross-metathesis applied to plant oil derivatives will show new routes to fine chemicals, bifunctional products, polymer precursours and industry intermediates.

  12. [Peculicidal activity of plant essential oils and their based preparations].

    Science.gov (United States)

    Lopatina, Iu V; Eremina, O Iu

    2014-01-01

    The peculicidal activity of eight plant essential oils in 75% isopropyl alcohol was in vitro investigated. Of them, the substances that were most active against lice were tea tree (Melaleuca), eucalyptus, neem, citronella (Cymbopogon nardus), and clove (Syzygium aromaticum) oils; KT50 was not more than 3 minutes on average; KT95 was 4 minutes. After evaporating the solvent, only five (tea tree, cassia, clove, anise (Anisum vulgare), and Japanese star anise (Illicium anisatum) oils) of the eight test botanical substances were active against lice. At the same time, KT50 and KT95 showed 1.5-5-fold increases. Citronella and anise oils had incomplete ovicidal activity. Since the lice were permethrin-resistant, the efficacy of preparations based on essential oils was much higher than permethrin.

  13. Green Nanocomposites from Renewable Plant Oils and Polyhedral Oligomeric Silsesquioxanes

    Directory of Open Access Journals (Sweden)

    Takashi Tsujimoto

    2015-06-01

    Full Text Available Green nanocomposites based on renewable plant oils and polyhedral oligomeric silsesquioxanes (POSS have been developed. An acid-catalyzed curing of epoxidized plant oils with oxirane-containing POSS derivatives produced transparent nanocomposite coatings with high gloss surface, in which the organic and inorganic components were linked via covalent bonds. The hardness and mechanical strength were improved by the incorporation of the POSS unit into the organic polymer matrix. Nanostructural analyses of the nanocomposites showed the formation of homogeneous structures at the micrometer scale. On the other hand, such improvements of the coating and mechanical properties were not observed in the composite without covalent bonds between the plant oil-based polymer and POSS unit. The study demonstrates the correlation between the nanostructure of composites and macroscopic properties.

  14. Mosquito repellent activity of volatile oils from selected aromatic plants.

    Science.gov (United States)

    Lalthazuali; Mathew, Nisha

    2017-02-01

    Essential oils from fresh leaves of four aromatic plants viz., Ocimum sanctum, Mentha piperita, Eucalyptus globulus and Plectranthus amboinicus were extracted by hydrodistillation. The test solutions were prepared as 20% essential oil in ethanol and positive control as 20% DEET in ethanol. Essential oil blend was prepared as 5% concentration. Nulliparous, 3-5-day-old female adult Aedes aegypti mosquitoes were used for repellency screening as per ICMR protocol. The study showed that the repellency of 20% essential oil of O. sanctum, M. piperita and P. amboinicus were comparable with that of the standard DEET (20%) as no mosquito landing on the test was observed up to 6 h. The E. globulus oil exhibited mosquito repellency only upto 1½ h. Considerable mosquito landing and feeding was displayed in negative control. In the case of the oil blend, no landing of mosquitoes was seen up to 6 h as that of positive control. The results showed that the essential oil blend from O. sanctum, M. piperita, E. globulus and P. amboinicus could repel Ae. aegypti mosquitoes or prevent from feeding as in the case of DEET even at a lower concentration of 5%. This study demonstrates the potential of essential oils from O. sanctum, M. piperita, E. globulus and P. amboinicus and their blend as mosquito repellents against Ae. aegypti, the vector of dengue, chikungunya and yellow fever.

  15. Interaction hybrid × planting date for oil yield in sunflower

    Directory of Open Access Journals (Sweden)

    Balalić Igor M.

    2010-01-01

    Full Text Available The aim of the study was to assess the effects of hybrids and planting dates as well as their interaction on oil yield in sunflower for three-year experiment (2005, 2006, 2007. Three sunflower hybrids (Miro, Rimi and Pobednik and eight planting dates were included in the experiment. AMMI (Additive Main Effects and Multiplicative Interaction analysis is one of the mainly used multiplicative models, which evaluates main effects and also interaction. The interaction was detected by using AMMI1 biplot. Oil yield was predominantly influenced by the year of growing (58.9%, then by planting date (12.9% and by hybrid (10.7%. All interactions were significant as well. AMMI ANOVA showed high significance of both IPC1 and IPC2. The contribution of IPC1 was 77.5%. Hybrids Miro and Pobednik showed no significant differences in the mean values, which were higher than average. However, the hybrid Miro showed the highest stability for oil yield. Hybrid Rimi, with the lowest mean value, was the most unstable for the examined character. Oil yield was higher in earlier than in later planting dates. Graphical presentation of AMMI1 in the form of biplot could facilitate the choice of stable hybrids and planting dates for desired characters in sunflower.

  16. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    Science.gov (United States)

    Amini, Jahanshir; Farhang, Vahid; Javadi, Taimoor; Nazemi, Javad

    2016-01-01

    In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC50) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC50 values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean EC50 values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases. PMID:26889111

  17. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    Directory of Open Access Journals (Sweden)

    Jahanshir Amini

    2016-02-01

    Full Text Available In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC₅₀ values (ppm of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm. Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC₅₀ values for inhibition of the mycelial growth of P. capsici (31.473, P. melonis (33.097 and P. drechsleri (69.112, respectively. The mean EC₅₀ values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral (39.16% and z-citral (30.95% were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05. Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases.

  18. Effects of plants containing secondary compounds and plant oils on rumen fermentation and ecology.

    Science.gov (United States)

    Wanapat, Metha; Kongmun, Pongthon; Poungchompu, Onanong; Cherdthong, Anusorn; Khejornsart, Pichad; Pilajun, Ruangyote; Kaenpakdee, Sujittra

    2012-03-01

    A number of experiments have been conducted to investigate effects of tropical plants containing condensed tannins and/or saponins present in tropical plants and some plant oils on rumen fermentation and ecology in ruminants. Based on both in vitro and in vivo trials, the results revealed important effects on rumen microorganisms and fermentation including methane production. Incorporation and/or supplementation of these plants containing secondary metabolites have potential for improving rumen ecology and subsequently productivity in ruminants.

  19. Inhibition of cholinesterase by essential oil from food plant.

    Science.gov (United States)

    Chaiyana, Wantida; Okonogi, Siriporn

    2012-06-15

    Inhibition of cholinesterase has attracted much attention recently because of its potential for the treatment of Alzheimer's disease. In this work, the anticholinesterase activities of plant oils were investigated using Ellman's colorimetric method. The results indicate that essential oils obtained from Melissa officinalis leaf and Citrus aurantifolia leaf showed high acetylcholinesterase and butyrylcholinesterase co-inhibitory activities. C. aurantifolia leaf oil revealed in this study has an IC(50) value on acetylcholinesterase and butyrylcholinesterase of 139 ± 35 and 42 ± 5 μg/ml, respectively. GC/MS analysis revealed that the major constituents of C. aurantifolia leaf oil are monoterpenoids including limonene, l-camphor, citronellol, o-cymene and 1,8-cineole. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Preparation of biopolymers from plant oils in green media

    Science.gov (United States)

    Use of plant oils as starting materials to prepare polymers has attracted renewed attention in recent years to replace or augment the traditional petrochemical based polymers and resins. This is because of concern for the environment, waste disposal, and depletion of fossil and non renewable feedsto...

  1. Evaluating Sustainability: Soap versus Biodiesel Production from Plant Oils

    Science.gov (United States)

    Pohl, Nicola L. B.; Streff, Jennifer M.; Brokman, Steve

    2012-01-01

    Herein we describe a series of experiments for the undergraduate organic laboratory curriculum in which various plant oils (soybean, rapeseed, and olive) are subjected to saponification and transesterification reactions to create a set of compounds that can function as soaps or as fuels. The experiments introduce students to and asks them to…

  2. Margarine from organogels of plant wax and soybean oil

    Science.gov (United States)

    Organogels obtained from plant wax and soybean oil tested for suitability for incorporation into margarine. Sunflower wax, rice bran wax and candelilla wax were evaluated. Candelilla wax showed phase separation after making the emulsion with the formulation used in this study. Rice bran wax showe...

  3. Plant Oils and Cardiometabolic Risk Factors: The Role of Genetics

    OpenAIRE

    Smith, Caren E.

    2012-01-01

    More than 25 years have passed since Ancel Keys and others observed that high intake of monounsaturated fatty acids, especially as supplied by plants (eg, olive oil) was associated with lower cardiovascular and overall mortality. About 15 years later, advances in genotyping technologies began to facilitate widespread study of relationships between dietary fats and genetic variants, illuminating the role of genetic variation in modulating human responses to fatty acids. More recently, microarr...

  4. Pollution control in oil, gas and chemical plants

    CERN Document Server

    Bahadori, Alireza

    2014-01-01

    This unique book covers the fundamental requirements for air, soil, noise and water pollution control in oil and gas refineries, chemical plants, oil terminals, petrochemical plants, and related facilities. Coverage includes design and operational considerations relevant to critical systems such as monitoring of water pollution control, equipment, and engineering techniques as well as engineering/technological methods related to soil, noise and air pollution control. This book also: ·         Covers a diverse list of pollution control strategies important to practitioners, ranging from waste water gathering systems and oil/suspended solids removal to chemical flocculation units, biological treatment, and sludge handling and treatment ·         Provides numerous step-by-step tutorials that orient both entry level and veteran engineers to the essentials of pollution control methods in petroleum and chemical industries ·         Includes a comprehensive glossary providing readers with...

  5. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration.

    Science.gov (United States)

    Vietina, Michelangelo; Agrimonti, Caterina; Marmiroli, Nelson

    2013-12-15

    Extra virgin olive oil is frequently subjected to adulterations with addition of oils obtained from plants other than olive. DNA analysis is a fast and economic tool to identify plant components in oils. Extraction and amplification of DNA by PCR was tested in olives, in milled seeds and in oils, to investigate its use in olive oil traceability. DNA was extracted from different oils made of hazelnut, maize, sunflower, peanut, sesame, soybean, rice and pumpkin. Comparing the DNA melting profiles in reference plant materials and in the oils, it was possible to identify any plant components in oils and mixtures of oils. Real-Time PCR (RT-PCR) platform has been added of the new methodology of high resolution melting (HRM), both were used to analyse olive oils mixed with different percentage of other oils. Results showed HRM a cost effective method for efficient detection of adulterations in olive oils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  7. Allelopatic effects of some medicinal plant essential oils on plant seeds germination

    Directory of Open Access Journals (Sweden)

    ALI SHOKOUHIAN

    2016-04-01

    Full Text Available The effect of essential oils from some medicinal plants on seed germination was studied with the aim of assessing their potential use as bioherbicides. The experiment was conducted as factorial based on completely randomized design (CRD with three replications. Seeds of 3 summer crops including lettuce (Lactuca sativa, pepper (Piper longum and tomato (Solanum lycopersicum were exposed to essential oils of rosemary (Rosmarinus officinalis, thyme (Thymus vulgaris and anise (Pimpinella anisum at 3 different concentrations (25 and 50% diluted and undiluted. Treated seeds were grown in a growth chamber at 25°C for 5 days. The number of germinated seeds in each Petri dish was daily counted. After five days seed germination percentage (Ge was calculated. Biplot analysis was performed using genotype plus genotype environment interaction (GGE method. Results showed that the allelopathic effect on Ge was varied among studied plants, which was mainly due to i differences in the composition of the studied essential oils and ii different allelopathic effects of the studied essential oils on Ge. Accordingly, compared to the individual use, combining several essential oils would have a greater inhibitory effect on Ge of weeds.

  8. Effects of birch tar oils on soil organisms and plants

    Directory of Open Access Journals (Sweden)

    M. HAGNER

    2008-12-01

    Full Text Available The use of birch tar oil (BTO is a new innovation in plant and animal protection working against various weeds, harmful insects and rodents. Due to its novelty as a biocide/repellent/plant protection product, no comprehensive information on the effects of BTO on non-target soil organisms is available. In this study we examined the impact of BTO on non-target soil organisms (enchytraeids, nematodes and soil microbes and plants using laboratory toxicity tests and field experiments. In addition, we determined the LC50 value of BTO to the earthworm Aporrectodea caliginosa and the EC50 value of BTO to the offspring production of the collembolan Folsomia candida. The effects of BTO on soil fauna were mostly insignificant. BTO seemed to be detrimental to the growth of plants directly after application, but this effect was short-term; after a period of 2.5 months, the growth of most of the plant species recovered completely from the application. The LC50 for A. caliginosa was 6560 mg BTO kg-1 dry soil and EC50 for juvenile production of F. candida was 5100 mg BTO kg-1 dry soil. The results indicate that the risk caused by BTOs (concentration 500-1360 L ha-1 to the soil environment is insignificant and short-term as compared to the many chemical products applied for similar purposes.;

  9. Valorization of essential oils from Moroccan aromatic plants.

    Science.gov (United States)

    Santana, Omar; Fe Andrés, Maria; Sanz, Jesús; Errahmani, Naima; Abdeslam, Lamiri; González-Coloma, Azucena

    2014-08-01

    The chemical composition and biological activity of cultivated and wild medicinal and aromatic plants from Morocco (Artemisia herba-alba, Lippia citriodora, Mentha pulegium, M. spicata, Myrtus communis, Rosmarinus officinalis, and Thymus satureioides) are described. The essential oils (EOs) of these species have been analyzed by GC-MS. The antifeedant, nematicidal and phytotoxic activities of the EOs were tested on insect pests (Spodoptera littoralis, Myzus persicae and Rhopalosiphum padi), root-knot nematodes (Meloydogine javanica) and plants (Lactuca sativa, Lolium perenne and Lycopersicum esculentum). EOs from A. herba-alba, M. pulegium and R. officinalis were strong antifeedants against S. littoralis, M. persicae and R. padi. EOs from L. citriodora, M. spicata and T. satureioides showed high nematicidal activity. These biological effects are explained by the activity of the major EO components and/or synergistic effects.

  10. Dioxin emission from two oil shale fired power plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Schleicher, O.; Jensen, A.A. [FORCE Technology, Soborg (Denmark); Herrmann, T. [Estonian Environmental Research Centre (EERC), Tallinn (Estonia); Roots, O. [ERGO Forschungsgesellschaft GmbH, Hamburg (Germany); Tordik, A. [AS Narva Elektrijaamad, Narva (Estonia)

    2004-09-15

    In March 2003, dioxin emissions were measured from four oil shale fired boilers at two power plants located near the city of Narva in Estonia. The two power plants produce more than 90% of the electricity consumption in Estonia by combusting more than 10 million tons of oil shale per year, which is around 85% of the total consumption of oil shale in the country. These power plants are the world's largest thermal power stations burning low-grade oil shale. These measurements of dioxin air emission from oil shale fuelled plants are the first performed in Estonia. The aim of the measurements was to get background data for the estimation of the annual dioxin emission from oil shale power plants in Estonia, in order to improve or qualify the estimation based on emissions factors for large coal fired power stations given in the recent DANCEE Project: Survey of anthropogenic sources of dioxins in the Baltic Region.

  11. Toxicities of Oils, Dispersants and Dispersed Oils to Aquatic Plants: Summary and Database Value to Resource Sustainability

    Science.gov (United States)

    Understanding the phytotoxicities of crude and dispersed oils is important for near-shore ecosystem management, particularly post-oil spills. One source of information is toxicity data summaries which are scattered and outdated for aquatic plants and petrochemicals. As a resu...

  12. Toxicities of Oils, Dispersants and Dispersed Oils to Aquatic Plants: Summary and Database Value to Resource Sustainability

    Science.gov (United States)

    Understanding the phytotoxicities of crude and dispersed oils is important for near-shore ecosystem management, particularly post-oil spills. One source of information is toxicity data summaries which are scattered and outdated for aquatic plants and petrochemicals. As a resu...

  13. Application of Volatile Antifungal Plant Essential Oils for Controlling Pepper Fruit Anthracnose by Colletotrichum gloeosporioides

    Directory of Open Access Journals (Sweden)

    Jeum Kyu Hong

    2015-09-01

    Full Text Available Anthracnose caused by Colletotrichum gloeosporioides has been destructive during pepper fruit production in outdoor fields in Korea. In vitro antifungal activities of 15 different plant essential oils or its components were evaluated during conidial germination and mycelial growth of C. gloeosporioides. In vitro conidial germination was most drastically inhibited by vapour treatments with carvacrol, cinnamon oil, trans-cinnamaldehyde, citral, p-cymene and linalool. Inhibition of the mycelial growth by indirect vapour treatment with essential oils was also demonstrated compared with untreated control. Carvacrol, cinnamon oil, trans-cinnamaldehyde, citral and eugenol were among the most inhibitory plant essential oils by the indirect antifungal efficacies. Plant protection efficacies of the plant essential oils were demonstrated by reduced lesion diameter on the C. gloeosporioides-inoculated immature green pepper fruits compared to the inoculated control fruits without any plant essential oil treatment. In planta test showed that all plant essential oils tested in this study demonstrated plant protection efficacies against pepper fruit anthracnose with similar levels. Thus, application of different plant essential oils can be used for eco-friendly disease management of anthracnose during pepper fruit production.

  14. Application of Volatile Antifungal Plant Essential Oils for Controlling Pepper Fruit Anthracnose by Colletotrichum gloeosporioides.

    Science.gov (United States)

    Hong, Jeum Kyu; Yang, Hye Ji; Jung, Heesoo; Yoon, Dong June; Sang, Mee Kyung; Jeun, Yong-Chull

    2015-09-01

    Anthracnose caused by Colletotrichum gloeosporioides has been destructive during pepper fruit production in outdoor fields in Korea. In vitro antifungal activities of 15 different plant essential oils or its components were evaluated during conidial germination and mycelial growth of C. gloeosporioides. In vitro conidial germination was most drastically inhibited by vapour treatments with carvacrol, cinnamon oil, trans-cinnamaldehyde, citral, p-cymene and linalool. Inhibition of the mycelial growth by indirect vapour treatment with essential oils was also demonstrated compared with untreated control. Carvacrol, cinnamon oil, trans-cinnamaldehyde, citral and eugenol were among the most inhibitory plant essential oils by the indirect antifungal efficacies. Plant protection efficacies of the plant essential oils were demonstrated by reduced lesion diameter on the C. gloeosporioides-inoculated immature green pepper fruits compared to the inoculated control fruits without any plant essential oil treatment. In planta test showed that all plant essential oils tested in this study demonstrated plant protection efficacies against pepper fruit anthracnose with similar levels. Thus, application of different plant essential oils can be used for eco-friendly disease management of anthracnose during pepper fruit production.

  15. Effect of salt, drought and metal stress on essential oil yield and quality in plants.

    Science.gov (United States)

    Biswas, Shreyasee; Koul, Monika; Bhatnagar, Ashok Kumar

    2011-10-01

    Essential oil extracted from plants is of high commercial value in medicine, cosmetics and perfumery. Enhancing yield and maintaining the quality of oil is of significant commercial importance. Production of oil in plants is dependent on various biotic and abiotic factors to which the plants are subjected during their growth. Plants are exposed to various degrees of stress on account of natural and human-induced factors. Salinization, drought and presence of heavy metals in the substratum cause substantial effect on the yield and quality of bioactive constituents in the oil. In many plants, the level and kind of stress have detrimental effects on the growth and development. This review provides an account of the studies on some common abiotic stresses to which essential oil plants are exposed during their growth period and their influence on quality and quantity of oil. The yield and quality vary in different plants and so is the response. Enhancing essential oil productivity is an important challenge, and understanding the role played by stress may offer significant advantages to the essential oil farmers and processing industry. Scientific evaluation of the data on many important but unexplored essential oil plants will also help in mitigating, ameliorating and minimizing the harmful effects caused by stress.

  16. Early impact of oil palm planting density on vegetative and oil yield variables in West Africa

    Directory of Open Access Journals (Sweden)

    Bonneau Xavier

    2014-07-01

    Full Text Available A range of various different planting distances (from 7.5 to 9.5 m between oil palms were tested using an equilateral triangle design in a plantation density experiment which was settled in an oil palm commercial plantation in Nigeria. Climatic conditions were quite stable, with two seasons and around 2000 mm of annual rainfall. The soil was of desaturated ferralitic type, sandy on the surface, deep and without coarse elements. The early impact of plantation density was analysed at eight years after planting. Some early signs of depressive effect on yields were found for high planting densities (180 and 205 p/ha. Such a negative impact was not severe enough to counteract the effects of a higher number of palms per hectare. As a consequence, a gradient could be observed as yields (in tons of bunches per hectare increased with density. We can anticipate that the competition effect between palms will increase over time with high densities, so that the counteracting point ought to be reached in a few years. A thinning treatment has been included in the protocol. Thinning was carried out at the end of the eight-year period.

  17. ANTIMICROBIAL ACTIVITY OF ESSENTIAL OILS OF PLANTS BELONGING TO LAMIACEAE JUSS. FAMILY

    Directory of Open Access Journals (Sweden)

    Shanayda M.I.

    2015-12-01

    Full Text Available Introduction. One of the important sources of therapeutic and prophylactic agents of modern medicines are essential oils of medicinal plants. Essential oils are the main group of biologically active substances of a number of plants belonging to Lamiaceae Juss. Family. Antibacterial activity of medicinal plants belonging to Lamiaceae Family many scientists associated with containing of essential oils. In this regard, considerable interest presents the comparative analysis of the antimicrobial properties of essential oils of Lamiaceae Family representatives. Material and methods.The antimicrobial activity of essential oils of investigated plants was studied with using in vitro condition. The essential oils derived from the aerial parts of cultivated plants of Ocimum, Hyssopus, Dracocephalum, Lophanthus, Monarda and Satureja genus harvested during flowering period (in terms of Ternopil region. The antimicrobial activity of essential oils studied plants was studied by serial dilution method and disk diffusion assay. It has been applied on standard microorganism test strains: Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 9027 and Candida albicans ATCC 885-653. Results and discussion. It was conducted a comparative study of the influence of some essential oils of cultivated plants belonging to Lamiaceae family on microorganisms in conditions in vitro. It was found that essential oils of the studied plants were most effective in the maximum concentration (1:10. Gram-positive cocci S. aureus and yeast C. albicans were the most sensitive to influence of investigated essential oils. It was analyzed the relationship of the biological activity with the component composition of essential oils of plants. Essential oils of L. anisatus, M. fistulosa and S. hortensis characterized by the dominance of aromatic compounds and had shown stronger antimicrobial activity than essential oils of

  18. Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing

    Science.gov (United States)

    Emengini, Ebele Josephine; Blackburn, George Alan; Theobald, Julian Charles

    2013-01-01

    Remote sensing of plant stress holds promise for detecting environmental pollution by oil. However, in oil-rich delta regions, waterlogging is a frequent source of plant stress that has similar physiological effects to oil pollution. This study investigated the capabilities of remote sensing for discriminating between these two sources of plant stress. Bean plants were subjected to oil pollution, waterlogging, and combined oil and waterlogging treatments. Canopy physiological, hyperspectral, and thermal measurements were taken every two to three days after treatment to follow the stress responses. For plants treated with oil, spectral and thermal responses were evident six days before symptoms could be observed visually. In waterlogged plants, only spectral responses were observed, but these were present up to eight days before visual symptoms. A narrowband reflectance ratio was efficient in detecting stress caused by oil and waterlogging. Canopy temperature and a thermal index were good indicators of oil and combined oil and waterlogging stress, but insensitive to waterlogging alone. Hence, this study provides evidence that combined hyperspectral and thermal remote sensing of vegetation has potential for monitoring oil pollution in environments that are also subjected to waterlogging.

  19. First international congress on plant oil fuels. Proceedings; Erster Internationaler Kongress zu Pflanzenoel-Kraftstoffen. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The conference proceedings contain 31 contributions on the following topics: biofuels - status and perspectives; ecological evaluation; plant oils: engineering - production and quality; plant oils: international markets and economy; mobile applications - techniques and emissions; stationary applications: techniques and economy; the renewable energies law (EEG), the biofuel quoting law (BioKraftQuG) and the energy tax law (EnergieStG).

  20. Organogels of vegetable oil with plant wax – trans/saturated fat replacements

    Science.gov (United States)

    This featured article reviews recent advances on the development of trans fat-free, low saturated fat food products from organogels formed by a plant wax in a vegetable oil. Plant waxes are of great interest in this research area because they are obtained as by-products during the oil refining proce...

  1. Effects of plants and essential oils on ruminal in vitro batch culture methane production and fermentation

    Science.gov (United States)

    In this study, plants (14) and essential oils (EO; 88) from plants that are naturalized to, or can be successfully grown in North America were evaluated in a batch culture in vitro screening experiments with ruminal fluid as potential anti-methanogenic additives for ruminant diets. Essential oils we...

  2. Repellence and toxicity of plant essential oils to the potato aphid, Macrosiphum euphorbiae

    NARCIS (Netherlands)

    Munneke, M.E.; Bruin, de A.; Moskal, J.R.; Tol, van R.W.H.M.

    2004-01-01

    Several plant essential oils were tested for their effect on behaviour and mortality of M. euphorbiae. Olfactory and contact experiments were performed to study these effects. We found that host plant and formulation of the different oils have a strong influence on repellence and mortality of the

  3. Influence of phosphorus content of coconut oil on deposit and performance of plant oil pressure stoves

    Energy Technology Data Exchange (ETDEWEB)

    Kratzeisen, M.; Mueller, J. [Institut fuer Agrartechnik, Universitaet Hohenheim (440e), Garbenstrasse 9, D-70593 Stuttgart (Germany)

    2010-11-15

    Influence of phosphorus lipids on formation of deposits and performance of plant oil pressure stoves was investigated. Refined coconut oil with an original phosphorous content of 5.9 mg/kg was used as base for fuel blends by adding lecithin to adjust increased phosphorous concentrations of 32.2, 51.6 and 63.0 mg/kg. The fuel blends were analysed for acid value, iodine value, total contamination, ash content and Conradson carbon residue according to standard methods. In burning trials, the specific fuel consumption, the required frequency of nozzle cleaning and the amount of deposits in the vaporizer were measured. Results showed an exponential increase of deposits in the vaporizer when phosphorous content was increased: deposits amounted to 0.12 g/kg of consumed fuel for unblended coconut oil and 0.92 g/kg for the blend with the highest phosphorous content. Furthermore, increased phosphorous content caused higher fuel consumption of 0.375 kg/h compared to 0.316 kg/h for the control. (author)

  4. Toxicities of oils, dispersants and dispersed oils to algae and aquatic plants: review and database value to resource sustainability.

    Science.gov (United States)

    Lewis, Michael; Pryor, Rachel

    2013-09-01

    Phytotoxicity results are reviewed for oils, dispersants and dispersed oils. The phytotoxicity database consists largely of results from a patchwork of reactive research conducted after oil spills to marine waters. Toxicity information is available for at least 41 crude oils and 56 dispersants. As many as 107 response parameters have been monitored for 85 species of unicellular and multicellular algae, 28 wetland plants, 13 mangroves and 9 seagrasses. Effect concentrations have varied by as much as six orders of magnitude due to experimental diversity. This diversity restricts phytotoxicity predictions and identification of sensitive species, life stages and response parameters. As a result, evidence-based risk assessments for most aquatic plants and petrochemicals and dispersants are not supported by the current toxicity database. A proactive and experimentally-consistent approach is recommended to provide threshold toxic effect concentrations for sensitive life stages of aquatic plants inhabiting diverse ecosystems.

  5. Distillation Parameters for Pilot Plant Production of Laurus nobilis Essential oil

    OpenAIRE

    2012-01-01

    Essential oils have increasing importance in flavour and fragrance industries. They are obtained by distillation techniques. In order to produce an oil with market potential its optimum production parameters have to be well known prior to its commercial production. Determination of the steam distillation parameters of commercially available Laurel leaves oil in pilot plant scale is described. The effect of steam rate and processing time play a major role in distillation of essential oils. Dis...

  6. Dioxin and PAH emissions from a shale oil processing plant in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Schleicher, O.; Jensen, A.A. [FORCE Technology, Soborg (Denmark); Roots, O. [Estonian Environmental Research Centre (EERC), Tallinn (Estonia); Herrmann, T. [ERGO Forschungsgesellschaft GmbH, Hamburg (Germany); Tordik, A. [AS Narva Elektrijaamad, Narva (Estonia)

    2004-09-15

    In March 2003, dioxin emissions were measured from a shale oil producing plant located near the city of Narva in Estonia. The measurement was a part of a project on measuring the dioxin emission from four oil shale fired boilers at two power plants located near the city of Narva in Estonia. These power plants produce more than 90% of the electricity consumption in Estonia by combusting more than 10 million tons of oil shale per year, which is around 85 % of the total consumption of oil shale in the country. The oil plant is the second largest consumer of oil shale, with an annual consumption of around 800,000 ton. Two other smaller plants producing oil from oil shale is known to exist in Estonia, and one in Australia. These measurements of dioxin air emission from oil shale pyrolysis are the first performed in Estonia. The aim of the measurements was to get background data for the estimation of the annual dioxin emission from the use of oil shale in pyrolysis processes in Estonia, in order to improve or qualify the estimation based on emissions factors for large coal fired power stations given in the recent DANCEE Project: Survey of anthropogenic sources of dioxins in the Baltic Region. The Danish environmental assistance to Eastern Europe (DANCEE) has sponsored the project, and dk-TEKNIK ENERGY and ENVIRONMENT (now FORCE Technology) was responsible for the measurements, which where conducted in cooperation with EERC in Tallinn.

  7. Inhibitory effects of some plant essential oils against Arcobacter butzleri and potential for rosemary oil as a natural food preservative.

    Science.gov (United States)

    Irkin, Reyhan; Abay, Secil; Aydin, Fuat

    2011-03-01

    We investigated the inhibitory activity of commercially marketed essential oils of mint, rosemary, orange, sage, cinnamon, bay, clove, and cumin against Arcobacter butzleri and Arcobacter skirrowii and the effects of the essential oil of rosemary against A. butzleri in a cooked minced beef system. Using the disc diffusion method to determine the inhibitory activities of these plant essential oils against strains of Arcobacter, we found that those of rosemary, bay, cinnamon, and clove had strong inhibitory activity against these organisms, whereas the essential oils of cumin, mint, and sage failed to show inhibitory activity against most of the Arcobacter strains tested. The 0.5% (vol/wt) essential oil of rosemary was completely inhibitory against A. butzleri in the cooked minced beef system at 4°C. These essential oils may be further investigated as a natural solution to the food industry by creating an additional barrier (hurdle technology) to inhibit the growth of Arcobacter strains.

  8. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    Science.gov (United States)

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane.

  9. Microstructures of superhydrophobic plant leaves - inspiration for efficient oil spill cleanup materials.

    Science.gov (United States)

    Zeiger, Claudia; Rodrigues da Silva, Isabelle C; Mail, Matthias; Kavalenka, Maryna N; Barthlott, Wilhelm; Hölscher, Hendrik

    2016-08-16

    The cleanup of accidental oil spills in water is an enormous challenge; conventional oil sorbents absorb large amounts of water in addition to oil and other cleanup methods can cause secondary pollution. In contrast, fresh leaves of the aquatic ferns Salvinia are superhydrophobic and superoleophilic, and can selectively absorb oil while repelling water. These selective wetting properties are optimal for natural oil absorbent applications and bioinspired oil sorbent materials. In this paper we quantify the oil absorption capacity of four Salvinia species with different surface structures, water lettuce (Pistia stratiotes) and Lotus leaves (Nelumbo nucifera), and compare their absorption capacity to artificial oil sorbents. Interestingly, the oil absorption capacities of Salvinia molesta and Pistia stratiotes leaves are comparable to artificial oil sorbents. Therefore, these pantropical invasive plants, often considered pests, qualify as environmentally friendly materials for oil spill cleanup. Furthermore, we investigated the influence of oil density and viscosity on the oil absorption, and examine how the presence and morphology of trichomes affect the amount of oil absorbed by their surfaces. Specifically, the influence of hair length and shape is analyzed by comparing different hair types ranging from single trichomes of Salvinia cucullata to complex eggbeater-shaped trichomes of Salvinia molesta to establish a basis for improving artificial bioinspired oil absorbents.

  10. Effects of sowing time and plant density on yield and essential oil production of medicinal plant, peppermint (Mentha piperita L.

    Directory of Open Access Journals (Sweden)

    S. Jabarpour

    2016-05-01

    Full Text Available In order to investigate the effects of two sowing time (middle of May and early June and four plant density (8, 12, 16 and 20 plants.m-2 on yield and essential oil content of peppermint at two cutting stages, an experiment was conducted at the Research Farm of the Faculty of Agriculture, University of Tabriz during growing season of 2003-2004. These treatments were performed as factorial based of randomized complete block design with three replications. The result of the first cutting showed that plant sowing at the early June and eight plants.m-2densities had the highest leaf (4.47% and plant (2.92% essential oil percentage, but these factors and their interaction effects did not effect on the essential oil yield. In the second cutting, the highest plant essential oil was observed in plant sowing at early June and 12 plants/m2 densities. The highest essential oil yield in second cutting produced in middle of May sowing time. The results of two cutting stages showed that the fresh and dry yield decreased by delaying in sowing time.

  11. Comparison of essential oils from three plants for enhancement of antimicrobial activity of nitrofurantoin against enterobacteria.

    Science.gov (United States)

    Rafii, Fatemeh; Shahverdi, Ahmad R

    2007-01-01

    Piperitone from plant essential oils enhancesbactericidal activities of nitrofurantoin and furazolidone against bacteria from the family Enterobacteriaceae. In this study, the essential oils of spearmint (Mentha spicata L.), dill (Anethum graveolens L.) and peppermint (Mentha piperita L.)were screened for augmentation of nitrofurantoin activity and the most active components were determined. The effects of essential oils and their components on the bactericidal activity of nitrofurantoin against Enterobacter cloacae were studied using disk-diffusion and agar-dilution methods. The composition of essential oils was studied using gas chromatography-mass spectrometry. M. spicata and A. graveolens oils exhibited the highest effects. Gas chromatography-mass spectrometry analysis showed that the oils of these two plants contained 40.12 and 20.32% carvone, respectively. Pure carvone and piperitone equally increased the bactericidal activity of nitrofurantoin. Other ingredients of essential oils, including camphor, limonene and menthone, were less effective. Copyright 2007 S. Karger AG, Basel.

  12. Control of Aspergillus flavus in maize with plant essential oils and their components.

    Science.gov (United States)

    Montes-Belmont, R; Carvajal, M

    1998-05-01

    The effects of 11 plant essential oils for maize kernel protection against Aspergillus flavus were studied. Tests were conducted to determine optimal levels of dosages for maize protection, effects of combinations of essential oils, and residual effects and toxicity of essential oils to maize plants. Principal constituents of eight essential oils were tested for ability to protect maize kernels. Essential oils of Cinnamomum zeylanicum (cinnamon), Mentha piperita (peppermint), Ocimum basilicum (basil), Origanum vulgare (origanum), Teloxys ambrosioides (the flavoring herb epazote), Syzygium aromaticum (clove), and Thymus vulgaris (thyme) caused a total inhibition of fungal development on maize kernels. Thymol and o-methoxycinnamaldehyde significantly reduced maize grain contamination. The optimal dosage for protection of maize varied from 3 to 8%. Combinations of C. zeylanicum with the remaining oils gave efficient control. A residual effect of C. zeylanicum was detected after 4 weeks of kernel treatment. No phytotoxic effect on germination and corn growth was detected with any of these oils.

  13. Toxicity of twenty-two plant essential oils against pathogenic bacteria of vegetables and mushrooms.

    Science.gov (United States)

    Todorović, Biljana; Potočnik, Ivana; Rekanović, Emil; Stepanović, Miloš; Kostić, Miroslav; Ristić, Mihajlo; Milijašević-Marčić, Svetlana

    2016-12-01

    ASBTRACT Toxicity of twenty-two essential oils to three bacterial pathogens in different horticultural systems: Xanthomonas campestris pv. phaseoli (causing blight of bean), Clavibacter michiganensis subsp. michiganensis (bacterial wilt and canker of tomato), and Pseudomonas tolaasii (causal agent of bacterial brown blotch on cultivated mushrooms) was tested. Control of bacterial diseases is very difficult due to antibiotic resistance and ineffectiveness of chemical products, to that essential oils offer a promising alternative. Minimal inhibitory and bactericidal concentrations are determined by applying a single drop of oil onto the inner side of each plate cover in macrodilution assays. Among all tested substances, the strongest and broadest activity was shown by the oils of wintergreen (Gaultheria procumbens), oregano (Origanum vulgare), and lemongrass (Cymbopogon flexuosus. Carvacrol (64.0-75.8%) was the dominant component of oregano oils, while geranial (40.7%) and neral (26.7%) were the major constituents of lemongrass oil. Xanthomonas campestris pv. phaseoli was the most sensitive to plant essential oils, being susceptible to 19 oils, while 11 oils were bactericidal to the pathogen. Sixteen oils inhibited the growth of Clavibacter michiganensis subsp. michiganensis and seven oils showed bactericidal effects to the pathogen. The least sensitive species was Pseudomonas tolaasii as five oils inhibited bacterial growth and two oils were bactericidal. Wintergreen, oregano, and lemongrass oils should be formulated as potential biochemical bactericides against different horticultural pathogens.

  14. Non-Edible Plant Oils as New Sources for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    M. Rafiqul Islam

    2008-02-01

    Full Text Available Due to the concern on the availability of recoverable fossil fuel reserves and the environmental problems caused by the use those fossil fuels, considerable attention has been given to biodiesel production as an alternative to petrodiesel. However, as the biodiesel is produced from vegetable oils and animal fats, there are concerns that biodiesel feedstock may compete with food supply in the long-term. Hence, the recent focus is to find oil bearing plants that produce non-edible oils as the feedstock for biodiesel production. In this paper, two plant species, soapnut (Sapindus mukorossi and jatropha (jatropha curcas, L. are discussed as newer sources of oil for biodiesel production. Experimental analysis showed that both oils have great potential to be used as feedstock for biodiesel production. Fatty acid methyl ester (FAME from cold pressed soapnut seed oil was envisaged as biodiesel source for the first time. Soapnut oil was found to have average of 9.1% free FA, 84.43% triglycerides, 4.88% sterol and 1.59% others. Jatropha oil contains approximately 14% free FA, approximately 5% higher than soapnut oil. Soapnut oil biodiesel contains approximately 85% unsaturated FA while jatropha oil biodiesel was found to have approximately 80% unsaturated FA. Oleic acid was found to be the dominant FA in both soapnut and jatropha biodiesel. Over 97% conversion to FAME was achieved for both soapnut and jatropha oil.

  15. Geospatial estimation of the impact of Deepwater Horizon oil spill on plant oiling along the Louisiana shorelines.

    Science.gov (United States)

    Goovaerts, Pierre; Wobus, Cameron; Jones, Russell; Rissing, Matthew

    2016-09-15

    Stranded oil covering soil and plant stems in fragile Louisiana marshes was one of the most visible impacts of the 2010 Deepwater Horizon (DWH) oil spill. As part of the assessment of marsh injury after the DWH spill, plant stem oiling was broken into five categories (0%, 0-10%, 10-50%, 50-90%, 90-100%) and used as the independent variable for estimating death of vegetation, accelerated erosion, and other metrics of injury. The length of shoreline falling into each of these stem oiling categories was therefore a key measure of the total extent of marsh injury, and its accurate estimation is the focus of this paper. First, we used geographically-weighted logistic regression (GWR) to explore and model spatially varying relationships between stem oiling field data and secondary information (oiling exposure category) collected during shoreline surveys. We then combined GWR probability estimates with field data using indicator cokriging to predict the probability of exceeding four stem oiling thresholds (0, 10, 50, and 90%) at 50 m intervals along the Louisiana shoreline. Cross-validation using Receiver Operating Characteristic (ROC) Curves demonstrate the greater prediction accuracy of the multivariate geostatistical approach relative to either aspatial regression or indicator kriging that ignores secondary information.

  16. Natural attenuation of weathered oil using aquatic plants in a farm in Southeast Mexico.

    Science.gov (United States)

    Rivera-Cruz, María Del Carmen; Trujillo-Narcía, Antonio; Trujillo-Rivera, Eduardo A; Arias-Trinidad, Alfredo; Mendoza-López, María Remedios

    2016-09-01

    An experiment was conducted in field for three years to assess the sustainability of aquatic plants Leersia hexandra, Cyperus articulatus, and Eleocharis palustris for use in the removal of total hydrocarbons of weathered oil in four areas contaminated with 60916-119373 mg/kg of hydrocarbons. The variables evaluated were coverage of plant, dry matter, density of plant growth-promoting rhizobacteria, and the removal of total weathered oil. The variables showed statistical differences (p = 0.05) due to the effects of time and the amount of oil in the soil. The three aquatic plants survived on the farm during the 36-month evaluation. The grass L. hexandra yielded the greatest coverage of plant but was inhibited by the toxicity of the oil, which, in contrast, stimulated the coverage of C. articulatus. The rhizosphere of L. hexandra in control soil was more densely colonized by N-fixing bacteria, while the density of phosphate and potassium solubilizing rhizobacteria was stimulated by exposure to oil. C. articulatus coverage showed positive relationship with the removal of weathered oil; positive effect between rhizosphere and L. hexandra grass coverage was also identified. These results contributed to the removal of weathered oil in Gleysols flooded and affected by chronic discharges of crude oil.

  17. Bacterial Structure and Characterization of Plant Growth Promoting and Oil Degrading Bacteria from the Rhizospheres of Mangrove Plants

    NARCIS (Netherlands)

    do Carmo, Flavia Lima; dos Santos, Henrique Fragoso; Martins, Edir Ferreira; van Elsas, Jan Dirk; Rosado, Alexandre Soares; Peixoto, Raquel Silva

    2011-01-01

    Most oil from oceanic spills converges on coastal ecosystems, such as mangrove forests, which are threatened with worldwide disappearance. Particular bacteria that inhabit the rhizosphere of local plant species can stimulate plant development through various mechanisms; it would be advantageous if t

  18. Bacterial Structure and Characterization of Plant Growth Promoting and Oil Degrading Bacteria from the Rhizospheres of Mangrove Plants

    NARCIS (Netherlands)

    do Carmo, Flavia Lima; dos Santos, Henrique Fragoso; Martins, Edir Ferreira; van Elsas, Jan Dirk; Rosado, Alexandre Soares; Peixoto, Raquel Silva

    Most oil from oceanic spills converges on coastal ecosystems, such as mangrove forests, which are threatened with worldwide disappearance. Particular bacteria that inhabit the rhizosphere of local plant species can stimulate plant development through various mechanisms; it would be advantageous if

  19. Oil extraction from plant seeds for biodiesel production

    Directory of Open Access Journals (Sweden)

    Yadessa Gonfa Keneni

    2017-04-01

    Full Text Available Energy is basic for development and its demand increases due to rapid population growth, urbanization and improved living standards. Fossil fuels will continue to dominate other sources of energy although it is non-renewable and harm global climate. Problems associated with fossil fuels have driven the search for alternative energy sources of which biodiesel is one option. Biodiesel is renewable, non-toxic, environmental-friendly and an economically feasible options to tackle the depleting fossil fuels and its negative environmental impact. It can be produced from vegetable oils, animal fats, waste oils and algae. However, nowadays, the major feedstocks of biodiesel are edible oils and this has created food vs fuel debate. Therefore, the future prospect is to use non-edible oils, animal fats, waste oils and algae as feedstock for biodiesel. Selection of non-expensive feedstock and the extraction and preparation of oil for biodiesel production is a crucial step due to its relevance on the overall technology. There are three main conventional oil extraction methods: mechanical, chemical/solvent and enzymatic extraction methods. There are also some newly developed oil extraction methods that can be used separately or in combination with the conventional ones, to overcome some disadvantages of the conventional oil extraction methods. This review paper presents, compare and discusses different potential biofuel feedstocks, various oil extraction methods, advantages and disadvantages of different oil extraction methods, and propose future prospective for the improvement of oil extraction methods and sustainability of biodiesel production and utilization.

  20. Plant essential oils potency as natural antibiotic in Indonesian medicinal herb of “jamu”

    Science.gov (United States)

    Soetjipto, H.; Martono, Y.

    2017-02-01

    The main purposes of this study are to compile antibacterial activity data of essential oils from Indonesian’s plants in order which can be used as a natural antibiotic in “jamu” to increase potential Indonesian medicinal herb. By using Agar Diffusing method, Bioautography and Gas Chromatography Mass Spectrum, respectively, antibacterial activity and chemical compounds of 12 plants essential oils were studied in the Natural Product Chemistry Laboratory, Department of Chemistry, Faculty of Science and Mathematics, Satya Wacana Christian University, Salatiga since 2007 until 2015. The results of this studies showed that all of the essential oils have a medium to a strong antibacterial activity which are in the range of 30 – 2,500 μg and 80-5,000 μg. Further on, the essential oils analyzed by GCMS showed that each essential oils have different dominant compounds. These data can be used as basic doses in the usage of essential oils as natural antibiotics.

  1. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems

    Directory of Open Access Journals (Sweden)

    Javad Sharifi-Rad

    2017-01-01

    Full Text Available Essential oils are complex mixtures of hydrocarbons and their oxygenated derivatives arising from two different isoprenoid pathways. Essential oils are produced by glandular trichomes and other secretory structures, specialized secretory tissues mainly diffused onto the surface of plant organs, particularly flowers and leaves, thus exerting a pivotal ecological role in plant. In addition, essential oils have been used, since ancient times, in many different traditional healing systems all over the world, because of their biological activities. Many preclinical studies have documented antimicrobial, antioxidant, anti-inflammatory and anticancer activities of essential oils in a number of cell and animal models, also elucidating their mechanism of action and pharmacological targets, though the paucity of in human studies limits the potential of essential oils as effective and safe phytotherapeutic agents. More well-designed clinical trials are needed in order to ascertain the real efficacy and safety of these plant products.

  2. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems.

    Science.gov (United States)

    Sharifi-Rad, Javad; Sureda, Antoni; Tenore, Gian Carlo; Daglia, Maria; Sharifi-Rad, Mehdi; Valussi, Marco; Tundis, Rosa; Sharifi-Rad, Marzieh; Loizzo, Monica R; Ademiluyi, Adedayo Oluwaseun; Sharifi-Rad, Razieh; Ayatollahi, Seyed Abdulmajid; Iriti, Marcello

    2017-01-01

    Essential oils are complex mixtures of hydrocarbons and their oxygenated derivatives arising from two different isoprenoid pathways. Essential oils are produced by glandular trichomes and other secretory structures, specialized secretory tissues mainly diffused onto the surface of plant organs, particularly flowers and leaves, thus exerting a pivotal ecological role in plant. In addition, essential oils have been used, since ancient times, in many different traditional healing systems all over the world, because of their biological activities. Many preclinical studies have documented antimicrobial, antioxidant, anti-inflammatory and anticancer activities of essential oils in a number of cell and animal models, also elucidating their mechanism of action and pharmacological targets, though the paucity of in human studies limits the potential of essential oils as effective and safe phytotherapeutic agents. More well-designed clinical trials are needed in order to ascertain the real efficacy and safety of these plant products.

  3. Development of New Elastomers and Elastic Nanocomposites from Plant Oils

    Science.gov (United States)

    Zhu, Lin; Wool, Richard

    2006-03-01

    Economic and environmental concerns lead to the development of new polymers from renewable resources. In this research, new elastomers were synthesized from plant oil based resins. Acrylated oleic methyl ester (AOME), synthesized from high oleic triglycerides, can readily undergo free radical polymerization and form a linear polymer. To achieve the elastic properties, different strategies have been developed to generate an elastic network and control the crosslink density. The elastomers are reinforced by nanoclays. The intercalated state has a network structure similar to thermoplastic elastomers in which the hard segments aggregate to give ordered crystalline domains. The selected organically modified clay and AOME matrix have similar solubility parameters, therefore intercalation of the monomer/polymer into the clay layers occurs and the nano-scale multilayered structure is stable. In situ intercalation and solution intercalation were used to prepare the elastic nanocomposites. Dramatic improvement in mechanical properties was observed. Changes of tensile strength, strain, Young's modulus and fracture energy were related to the clay concentration. The fracture surface was studied to further understand clay effects on the mechanical properties. Self-Healing of the intercalated nanobeams, thermal stability, biocompatibility and biodegradability of this new elastomer were also explored.

  4. Short communication: an in vitro assessment of the antibacterial activity of plant-derived oils.

    Science.gov (United States)

    Mullen, K A E; Lee, A R; Lyman, R L; Mason, S E; Washburn, S P; Anderson, K L

    2014-09-01

    Nonantibiotic treatments for mastitis are needed in organic dairy herds. Plant-derived oils may be useful but efficacy and potential mechanisms of action of such oils in mastitis therapy have not been well documented. The objective of the current study was to evaluate the antibacterial activity of the plant-derived oil components of Phyto-Mast (Bovinity Health LLC, Narvon, PA), an herbal intramammary product, against 3 mastitis-causing pathogens: Staphylococcus aureus, Staphylococcus chromogenes, and Streptococcus uberis. Plant-derived oils evaluated were Thymus vulgaris (thyme), Gaultheria procumbens (wintergreen), Glycyrrhiza uralensis (Chinese licorice), Angelica sinensis, and Angelica dahurica. Broth dilution testing according to standard protocol was performed using ultrapasteurized whole milk instead of broth. Controls included milk only (negative control), milk + bacteria (positive control), and milk + bacteria + penicillin-streptomycin (antibiotic control, at 1 and 5% concentrations). Essential oil of thyme was tested by itself and not in combination with other oils because of its known antibacterial activity. The other plant-derived oils were tested alone and in combination for a total of 15 treatments, each replicated 3 times and tested at 0.5, 1, 2, and 4% to simulate concentrations potentially achievable in the milk within the pre-dry-off udder quarter. Thyme oil at concentrations ≥2% completely inhibited bacterial growth in all replications. Other plant-derived oils tested alone or in various combinations were not consistently antibacterial and did not show typical dose-response effects. Only thyme essential oil had consistent antibacterial activity against the 3 mastitis-causing organisms tested in vitro. Further evaluation of physiological effects of thyme oil in various preparations on mammary tissue is recommended to determine potential suitability for mastitis therapy. Copyright © 2014 American Dairy Science Association. Published by Elsevier

  5. In vitro antibacterial activity of some plant essential oils

    OpenAIRE

    Ignacimuthu Savarimuthu; Jayakumar Manickkam; Prabuseenivasan Seenivasan

    2006-01-01

    Abstract Background: To evaluate the antibacterial activity of 21 plant essential oils against six bacterial species. Methods: The selected essential oils were screened against four gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris) and two gram-positive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20) using disc diffusion method. The MIC of the active essential oils were tes...

  6. Effect of essential oil of Origanum rotundifolium on some plant pathogenic bacteria, seed germination and plant growth of tomato

    Science.gov (United States)

    Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan

    2016-04-01

    The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.

  7. Behavioral effects of plant essential oils on Ceratitis capitata males – risk versus reward

    Science.gov (United States)

    Plant essential oils have a number of roles in insect pest management. For male Ceratitis capitata, these roles include male-targeted attractants for traps and aromatherapy exposure for increased mating success. Essential oils that affect C. capitata behavior may be from either host or non-host pl...

  8. Antifungal efficacy of plant essential oils against stored grain fungi of Fusarium spp.

    Science.gov (United States)

    Kumar, Peeyush; Mishra, Sapna; Kumar, Atul; Sharma, Amit Kumar

    2016-10-01

    The control potential of seven plant essential oils was evaluated against Fusarium proliferatum (Matsushima) Nirenberg and Fusarium verticillioides Sheldon. The fungicidal activity was assessed through microtiter plate assay to determine the minimum inhibitory and fungicidal concentration of essential oils. The essential oil of Mentha arvensis was adjudged as best for inhibiting the fungal growth, while oil of Thymus vulgaris and Anethum graveolens showed high efficacy in terms of fungicidal activity. The oil of M. arvensis and T. vulgaris also showed good inhibition activity in agar disc diffusion assay. M. arvensis essential oil was analysed for its composition using gas chromatography/mass spectrometry revealing menthol (63.18 %), menthone (15.08 %), isomenthyl acetate (5.50 %) and limonene (4.31 %) as major components. Significant activity of M. arvensis essential oil against F. proliferatum and F. verticillioides isolates obtained, pave the way for its use as antifungal control agents.

  9. Adult repellency and larvicidal activity of five plant essential oils against mosquitoes.

    Science.gov (United States)

    Zhu, Junwei; Zeng, Xiaopeng; Yanma; Liu, Ting; Qian, Kuen; Han, Yuhua; Xue, Suqin; Tucker, Brad; Schultz, Gretchen; Coats, Joel; Rowley, Wayne; Zhang, Aijun

    2006-09-01

    The larvicidal activity and repellency of 5 plant essential oils--thyme oil, catnip oil, amyris oil, eucalyptus oil, and cinnamon oil--were tested against 3 mosquito species: Aedes albopictus, Ae. aegypti, and Culex pipiens pallens. Larvicidal activity of these essentials oils was evaluated in the laboratory against 4th instars of each of the 3 mosquito species, and amyris oil demonstrated the greatest inhibitory effect with LC50 values in 24 h of 58 microg/ml (LC90 = 72 microg/ml) for Ae. aegypti, 78 microg/ml (LC90 = 130 microg/ml) for Ae. albopictus, and 77 microg/ml (LC90 = 123 microg/ml) for Cx. p. pallens. The topical repellency of these selected essential oils and deet against laboratory-reared female blood-starved Ae. albopictus was examined. Catnip oil seemed to be the most effective and provided 6-h protection at both concentrations tested (23 and 468 microg/ cm2). Thyme oil had the highest effectiveness in repelling this species, but the repellency duration was only 2 h. The applications using these natural product essential oils in mosquito control are discussed.

  10. Short range attraction of Ceratitis capitata (Diptera: Tephritidae) sterile males to six commercially available plant essential oils

    Science.gov (United States)

    Plant essential oils have a number of roles in insect pest management. For male Ceratitis capitata, this includes use of angelica seed oil as long range attractants and ginger root oil as aromatherapy, which is exposure to sterile males to increase mating success. Neither of these plants are hosts f...

  11. Rapid Analytical Method for the Determination of Aflatoxins in Plant-Derived Dietary Supplement and Cosmetic Oils

    Science.gov (United States)

    Consumption of edible oils derived from conventional crop plants is increasing because they are generally regarded as more healthy alternatives to animal based fats and oils. More recently there has been increased interest in the use of alternative specialty plant-derived oils, including those from...

  12. Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Stigkær, Jens Peter; Løhndorf, Bo

    2013-01-01

    This paper discusses the application of plant-wide control philosophy to enhance the performance and capacity of the Produced Water Treatment (PWT) in offshore oil & gas production processes. Different from most existing facility- or material-based PWT innovation methods, the objective of this work...

  13. Effect of Light Spectral Quality on Essential Oil Components in Ocimum Basilicum and Salvia Officinalis Plants

    Directory of Open Access Journals (Sweden)

    A. S. IVANITSKIKH

    2014-07-01

    Full Text Available In plants grown with artificial lighting, variations in light spectral composition can be used for the directed biosynthesis of the target substances including essential oils, e.g. in plant factories. We studied the effect of light spectral quality on the essential oil composition in Ocimum basilicum and Salvia officinalis plants grown in controlled environment. The variable-spectrum light modules were designed using three types of high-power light-emitting diodes (LEDs with emission peaked in red, blue and red light, white LEDs, and high-pressure sodium lamps as reference. Qualitative and quantitative essential oil determinations were conducted using gas chromatography with mass selective detection and internal standard method.Sweet basil plant leaves contain essential oils (са. 1 % including linalool, pinene, eugenol, camphor, cineole, and other components. And within the genetic diversity of the species, several cultivar groups can be identified according to the flavor (aroma perceived by humans: eugenol, clove, camphor, vanilla basil. Essential oil components produce particular flavor of the basil leaves. In our studies, we are using two sweet basil varieties differing in the essential oil qualitative composition – “Johnsons Dwarf” (camphor as a major component of essential oils and “Johnsons Lemon Flavor” (contains large amount of citral defining its lemon flavor.In sage, essential oil composition is also very variable. As for the plant responses to the light environment, the highest amount of the essential oils was observed at the regimes with white and red + blue LED light. And it was three times less with red light LEDs alone. In the first two environments, thujone accumulation was higher in comparison with camphor, while red LED light and sodium lamp light favored camphor biosynthesis (three times more than thujone. The highest amount of eucalyptol was determined in plants grown with red LEDs.

  14. The flocculants applied in the oil refining plant wastewater treatment

    Science.gov (United States)

    Chesnokova, M. G.; Shalay, V. V.; Kriga, A. S.; Shaporenko, A. P.

    2017-08-01

    Flocculation methods for the oil refinery wastewater treatment are necessary, effective and economic, and are used, as a rule, for the demulsification of petroleum products from wastewater. In addition, flocculants can be used to remove other pollutants, not only oil products. The research purpose was to analyze the separate indicators level, measured on the oil refinery wastewater treatment facilities. Oil refinery wastewater purification rate was studied, indicating a different level of indicators considered. An influence of cationic and anionic flocculants working efficiency showed that the flocculants allows to increase the flotation technological indicators and to increase the solids content in water.

  15. Localization and movement of mineral oil in plants by fluorescence and confocal microscopy.

    Science.gov (United States)

    Tan, B L; Sarafis, V; Beattie, G A C; White, R; Darley, E M; Spooner-Hart, R

    2005-10-01

    Fluorescence and confocal laser scanning microscopy were explored to investigate the movement and localization of mineral oils in citrus. In a laboratory experiment, fluorescence microscopy observation indicated that when a 'narrow' distillation fraction of an nC23 horticultural mineral oil was applied to adaxial and opposing abaxial leaf surfaces of potted orange [Citrus x aurantium L. (Sapindales: Rutaceae)] trees, oil penetrated steadily into treated leaves and, subsequently, moved to untreated petioles of the leaves and adjacent untreated stems. In another experiment, confocal laser scanning microscopy was used to visualize the penetration into, and the subsequent cellular distribution of, an nC24 agricultural mineral oil in C. trifoliata L. seedlings. Oil droplets penetrated or diffused into plants via both stomata and the cuticle of leaves and stems, and then moved within intercellular spaces and into various cells including phloem and xylem. Oil accumulated in droplets in intercellular spaces and within cells near the cell membrane. Oil entered cells without visibly damaging membranes or causing cell death. In a field experiment with mature orange trees, droplets of an nC23 horticultural mineral oil were observed, by fluorescence microscopy, in phloem sieve elements in spring flush growth produced 4-5 months and 16-17 months after the trees were sprayed with oil. These results suggest that movement of mineral oil in plants is both apoplastic via intercellular spaces and symplastic via plasmodesmata. The putative pattern of the translocation of mineral oil in plants and its relevance to oil-induced chronic phytotoxicity are discussed.

  16. Aromatic Medicinal Plants of the Lamiaceae Family from Uzbekistan: Ethnopharmacology, Essential Oils Composition, and Biological Activities

    Directory of Open Access Journals (Sweden)

    Nilufar Z. Mamadalieva

    2017-02-01

    Full Text Available Plants of the Lamiaceae family are important ornamental, medicinal, and aromatic plants, many of which produce essential oils that are used in traditional and modern medicine, and in the food, cosmetics, and pharmaceutical industry. Various species of the genera Hyssopus, Leonurus, Mentha, Nepeta, Origanum, Perovskia, Phlomis, Salvia, Scutellaria, and Ziziphora are widespread throughout the world, are the most popular plants in Uzbek traditional remedies, and are often used for the treatment of wounds, gastritis, infections, dermatitis, bronchitis, and inflammation. Extensive studies of the chemical components of these plants have led to the identification of many compounds, as well as essentials oils, with medicinal and other commercial values. The purpose of this review is to provide a critical overview of the literature surrounding the traditional uses, ethnopharmacology, biological activities, and essential oils composition of aromatic plants of the family Lamiaceae, from the Uzbek flora.

  17. Is the plant-associated microbiota of Thymus spp. adapted to plant essential oil?

    Science.gov (United States)

    Checcucci, Alice; Maida, Isabel; Bacci, Giovanni; Ninno, Cristina; Bilia, Anna Rita; Biffi, Sauro; Firenzuoli, Fabio; Flamini, Guido; Fani, Renato; Mengoni, Alessio

    2016-11-21

    We examined whether the microbiota of two related aromatic thyme species, Thymus vulgaris and Thymus citriodorus, differs in relation to the composition of the respective essential oil (EO). A total of 576 bacterial isolates were obtained from three districts (leaves, roots and rhizospheric soil). They were taxonomically characterized and inspected for tolerance to the EO from the two thyme species. A district-related taxonomic pattern was found. In particular, high taxonomic diversity among the isolates from leaves was detected. Moreover, data obtained revealed a differential pattern of resistance of the isolates to EOs extracted from T. vulgaris and T. citriodorus, which was interpreted in terms of differing chemical composition of the EO of their respective host plants. In conclusion, we suggest that bacterial colonization of leaves in Thymus spp. is influenced by the EO present in leaf glandular tissue as one of the selective forces shaping endophytic community composition.

  18. Quality Evaluation of Oil from Seeds of Wild Plant Tylosema fassoglensis in Kenya

    Directory of Open Access Journals (Sweden)

    Ojwang D. Otieno

    2015-01-01

    Full Text Available Tylosema fassoglensis is a plant species that is native to Sub-Saharan Africa. The aim of this study was to evaluate the physicochemical properties of oil from T. fassoglensis in Kenya. Seeds of T. fassoglensis were collected from Mombasa, Taita Taveta, Homa Bay, and Siaya regions. Counts of T. fassoglensis in each region were recorded during the entire survey period. The highest distribution was recorded in Homa Bay followed by Siaya region. Distribution was the least in Taita Taveta and Mombasa regions. The analysis of the physicochemical characteristics of the oil was performed according to the official methods of analysis and the recommended practices of the American Oil Chemists Society. Oil content of 36.4% was obtained. The oil had refractive index 1.47 at 40°C, peroxide value 6.34 meq O2/kg, iodine value 94.06 g of I2/100 g, saponification value 145.93 mg KOH/g of oil, acid value 2.49 ± 0.56 mg KOH/g of oil, and unsaponifiable matter 5.87 g/kg. The oil had Lovibond color index of 2.0Y+28.0R. Oil content of T. fassoglensis is comparable with those of most oil crop under commercial production. The physicochemical properties of oil from T. fassoglensis are within the range recommended by FAO/WHO and hence suitable for human consumption.

  19. Larvicidal Activity of Essential Oils of Apiaceae Plants Against Malaria Vector, Anopheles Stephensi

    Directory of Open Access Journals (Sweden)

    Y Salim Abadi

    2011-12-01

    Full Text Available Background: Plant extracts and oils may act as alternatives to conventional pesticides for malaria vector control. The aim of this study was to evaluate the larvicidal activity of essential oils of three plants of Apiaceae family against Anophe­les stephensi, the main malaria vector in Iran. Methods: Essential oils from Heracleum persicum, Foeniculum vulgare and Coriandrum sativum seeds were hydro distil­lated, then their larvicidal activity were evaluated against laboratory-reared larvae of An. stephensi according to stan­dard method of WHO. After susceptibility test, results were analysis using Probit program.Results: Essential oils were separated from H. persicum, F. vulgare and C. sativum plants and their larvicidal activi­ties were tested. Result of this study showed that F. vulgare oil was the most effective against An. stephensi with LC50 and LC90 values of 20.10 and 44.51 ppm, respectively.Conclusion: All three plants essential oil can serve as a natural larvicide against An. stephensi. F. vulgare oil exhib­ited more larvicidal properties.

  20. Variation of essential oil composition of Melissa officinalis L. leaves during different stages of plant growth

    Institute of Scientific and Technical Information of China (English)

    Keivan Saeb; Sara Gholamrezaee

    2012-01-01

    Objective: To determine the best time of harvest for Melissa officinalis (M. officinalis) L. to gain highest amounts essential oil.Methods: M. officinalis leaves were harvested in three different stages (before flowering stage, flowering stage and after of flowering stage) and were dried. The essential oils were isolated by hydro- distillation and analyzed by GC/MS.Results: It showed that most essential oils of plants were in before flowering stage. In before flowering stage 37 compounds were identified in leaves oil of M.officinalis. The major components before flowering stage were decadienal (29.38%), geraniol (25.3%), caryophyllene oxide (8.75%), geranyl acetate (5.41%). In the flowering stage 36 compounds were identified as the major components of plant essential oils: decadienal (28.04%), geraniol (24.97%), caryophyllene oxide (7.55%), caryophyllene E (4.65%) and 16 components in the after flowering stage of plant were identified as the major components carvacrol (37.62%), methyl citronellate (32.34%), geranyl acetate (5.82%), caryophyllene (5.50%).Conclusions: The essential oils yields vary considerably from month-to-month and is also influenced by the micro-environment (sun or shade) in which the plant is growing. We found that the essential oil content of M. officinalis L. of leaves is significantly affected by harvesting stages.

  1. Essential Oils from Ugandan Aromatic Medicinal Plants: Chemical Composition and Growth Inhibitory Effects on Oral Pathogens.

    Science.gov (United States)

    Ocheng, Francis; Bwanga, Freddie; Joloba, Moses; Softrata, Abier; Azeem, Muhammad; Pütsep, Katrin; Borg-Karlson, Anna-Karin; Obua, Celestino; Gustafsson, Anders

    2015-01-01

    The study assessed the growth inhibitory effects of essential oils extracted from ten Ugandan medicinal plants (Bidens pilosa, Helichrysum odoratissimum, Vernonia amygdalina, Hoslundia opposita, Ocimum gratissimum, Cymbopogon citratus, Cymbopogon nardus, Teclea nobilis, Zanthoxylum chalybeum, and Lantana trifolia) used traditionally in the management of oral diseases against oral pathogens. Chemical compositions of the oils were explored by GC-MS. Inhibitory effects of the oils were assessed on periodontopathic Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and cariogenic Streptococcus mutans and Lactobacillus acidophilus using broth dilution methods at concentrations of 1%, 0.1%, and 0.01%. The most sensitive organism was A. actinomycetemcomitans. Its growth was markedly inhibited by six of the oils at all the concentrations tested. Essential oil from C. nardus exhibited the highest activity with complete growth inhibition of A. actinomycetemcomitans and P. gingivalis at all the three concentrations tested, the major constituents in the oil being mainly oxygenated sesquiterpenes. Most of the oils exhibited limited effects on L. acidophilus. We conclude that essential oils from the studied plants show marked growth inhibitory effects on periodontopathic A. actinomycetemcomitans and P. gingivalis, moderate effects on cariogenic S. mutans, and the least effect on L. acidophilus. The present study constitutes a basis for further investigations and development of certain oils into alternative antiplaque agents.

  2. Essential Oils from Ugandan Aromatic Medicinal Plants: Chemical Composition and Growth Inhibitory Effects on Oral Pathogens

    Directory of Open Access Journals (Sweden)

    Francis Ocheng

    2015-01-01

    Full Text Available The study assessed the growth inhibitory effects of essential oils extracted from ten Ugandan medicinal plants (Bidens pilosa, Helichrysum odoratissimum, Vernonia amygdalina, Hoslundia opposita, Ocimum gratissimum, Cymbopogon citratus, Cymbopogon nardus, Teclea nobilis, Zanthoxylum chalybeum, and Lantana trifolia used traditionally in the management of oral diseases against oral pathogens. Chemical compositions of the oils were explored by GC-MS. Inhibitory effects of the oils were assessed on periodontopathic Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and cariogenic Streptococcus mutans and Lactobacillus acidophilus using broth dilution methods at concentrations of 1%, 0.1%, and 0.01%. The most sensitive organism was A. actinomycetemcomitans. Its growth was markedly inhibited by six of the oils at all the concentrations tested. Essential oil from C. nardus exhibited the highest activity with complete growth inhibition of A. actinomycetemcomitans and P. gingivalis at all the three concentrations tested, the major constituents in the oil being mainly oxygenated sesquiterpenes. Most of the oils exhibited limited effects on L. acidophilus. We conclude that essential oils from the studied plants show marked growth inhibitory effects on periodontopathic A. actinomycetemcomitans and P. gingivalis, moderate effects on cariogenic S. mutans, and the least effect on L. acidophilus. The present study constitutes a basis for further investigations and development of certain oils into alternative antiplaque agents.

  3. Durability testing modified compression ignition engines fueled with straight plant oil

    Energy Technology Data Exchange (ETDEWEB)

    Basinger, M.; Lackner, K.S. [Earth and Environmental Engineering, Columbia University, New York City 10027 (United States); Reding, T. [Mechanical Engineering, Manhattan College, New York City (United States); Rodriguez-Sanchez, F.S. [Mali Biocarburant, Bamako (Mali); Modi, V. [Mechanical Engineering, Columbia University, New York City 10027 (United States)

    2010-08-15

    Many short-run studies point to the potential for direct fueling of compression ignition engines with plant oil fuels. There is a much smaller body of work that examines the potential for these fuels in long-run tests that illuminate engine endurance and longevity issues. Generally, longevity studies involving direct fueling of engines with straight plant oils have shown significant impact to the life of the engine, though test results vary widely depending on the oil, engine type, test conditions, and measurement approach. This study utilizes a previously designed modification kit to investigate the longevity implications of directly fueling straight plant oil in an indirect injection (IDI) listeroid type, slow speed stationary engine common in agro-processing applications in developing countries. Specifically this study focuses on the lubrication oil by developing a model to characterize the engine wear and estimate lube oil change frequency. The model is extended to an analysis of the piston rings. Cylinder liner wear, emissions, engine performance, and a visual investigation of several critical engine components are also studied. The 500 hour test with waste vegetable oil fuel resulted in several important findings. The engine break-in period was identified as taking between 200 and 300 h. Emissions analysis supported the break-in definition as smoke opacity and carbon monoxide values fell from 9% and 600 ppm (respectively) during the first few hundred hours, to 5% and 400 ppm in the final 200 h. Lubrication oil viscosity was found to be the limiting degradation factor in the lube oil, requiring oil to be changed every 110 h. Piston ring mass loss was found to correlate very closely with chromium buildup in the lubrication oil and the mathematical model that was developed was used to estimate that piston ring inspection and replacement should occur after 1000 h. Cylinder ovalisation was found to be most sever at top dead center (TDC) at 53 microns of averaged

  4. Antifungal activity of six plant essential oils from Serbia against Trichoderma aggressivum f. europaeum

    Directory of Open Access Journals (Sweden)

    Rada Đurović-Pejčev

    2014-12-01

    Full Text Available Six essential oils (EOs extracted from plants originating in Serbia were assayed for inhibitory and fungicidal activity against a major fungal pathogen of button mushroom causing green mould disease, Trichoderma agressivum f. europaeum. The strongest activity was demonstrated by the oils of basil (Ocimum basilicum L. and peppermint (Mentha piperita L.. Medium antifungal activity of St. John's wort (Hypericum perforatum L. and walnut [Juglans regia (F] oils was also recorded. Oils extracted from yarrow (Achillea millepholium L. and juniper (Juniperus communis L. exhibited the lowest activity. Peppermint oil showed fungicidal effect on the pathogen, having a minimum fungicidal concentration of 0.64 μl ml-1. The main components of peppermint essential oil were menthone (37.02%, menthol (29.57% and isomenthone (9.06%.

  5. Distillation Parameters for Pilot Plant Production of Laurus nobilis Essential oil

    Directory of Open Access Journals (Sweden)

    Temel Özek

    2012-01-01

    Full Text Available Essential oils have increasing importance in flavour and fragrance industries. They are obtained by distillation techniques. In order to produce an oil with market potential its optimum production parameters have to be well known prior to its commercial production. Determination of the steam distillation parameters of commercially available Laurel leaves oil in pilot plant scale is described. The effect of steam rate and processing time play a major role in distillation of essential oils. Distillation speed was high in the beginning of the process, then gradually reduced as the distillation proceeded. The main component of the oil of Laurel leaf oil was 1,8-cineole accumulating significantly in the early fractions.

  6. Insecticidal effects of essential oils from various plants against larvae of pine processionary moth (Thaumetopoea pityocampa Schiff) (Lepidoptera: Thaumetopoeidae).

    Science.gov (United States)

    Kanat, Mehmet; Alma, M Hakki

    2004-02-01

    Along with sulfate turpentine, the essential oils obtained by steam distillation from nine plant species naturally grown in Turkish forests were tested at three different concentrations to evaluate their effectiveness against the larvae of pine processionary moth (Thaumetopoea pityocampa Schiff). The results indicated that the essential oils from the nine species and sulfate turpentine were effective against the larvae of T pityocampa. The most effective essential oil in the control of the larvae was steam-distilled wood turpentine, followed by thyme herb oil, juniper berry oil, laurel leaf oil, lavender flower oil, eucalyptus leaf oil, lavender leaf oil, cypress berry oil, essential oil of styrax and sulfate turpentine, respectively, in terms of mean mortality time. It is therefore feasible to use these essential oils as environment-friendly insecticides in the control of T pityocampa.

  7. Essential oil of Croton flavens L. (Welensali), a medicinal plant from Curacao

    NARCIS (Netherlands)

    Woerdenbag, HJ; Bos, R; van Meeteren, HE; Baarslag, JJJ; de Jong-van den Berg, LTW; Pras, N; do Rego Kuster, G; Petronia, RRL

    2000-01-01

    The volatile constituents from aerial and underground parts of Croton flavens L., a medicinal plant from Curacao, were investigated by GC and GC/MS (EI) analysis. The various plant parts yielded 0.27-0.50%, (v/w) essential oil on a dry weight basis. There were only small differences in the qualitati

  8. Microbial Inoculation Improves Growth of Oil Palm Plants (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Om, Azlin Che; Ghazali, Amir Hamzah Ahmad; Keng, Chan Lai; Ishak, Zamzuri

    2009-12-01

    Introduction of diazotrophic rhizobacteria to oil palm tissues during the in vitro micropropagation process establishes an early associative interaction between the plant cells and bacteria. In the association, the diazotrophs provide the host plants with phytohormones and fixed nitrogen. This study was conducted to observe growth of bacterised tissue cultured oil palm plants under ex vitro conditions after 280 days of growth. Root dry weight, shoot dry weight, root volume, bacterial colonisation, leaf protein and chlorophyll content of the host plants were observed. The results revealed that the inocula successfully colonised roots of the host plants. Plants inoculated with Acetobacter diazotrophicus (R12) had more root dry weight and volume than plants inoculated with Azospirillum brasilense (Sp7). Leaf protein and chlorophyll content were higher in the bacterised plants compared to Control 2 plants (inoculated with killed Sp7). These results suggest that the diazotrophs successfully improved the growth of the host plant (oil palm) and minimised the amount of N fertiliser necessary for growth.

  9. Toxic effects of essential plant oils in adult Sitophilus oryzae (Linnaeus (Coleoptera, Curculionidae

    Directory of Open Access Journals (Sweden)

    Andréa Roveré Franz

    2011-03-01

    Full Text Available Toxic effects of essential plant oils in adult Sitophilus oryzae (Linnaeus (Coleoptera, Curculionidae. Stored grains are subject to losses in quality nutritional value and in sanitation from the time they are stored to the time they are consumed. Botanical insecticides may offer an alternative solution for pest control. The objective was to test the insecticidal properties of the essential oils of Cymbopogon citratus (leaf, Zingiber officinale (root and Mentha sp. (leaf. The efficacy of these oils was tested to control the rice weevil, S. oryzae, using hydrodistillation. Chemical analysis of the essential oils was carried out by gas chromatography. Major components of C. citratus were geranial (48% and neral (31%, of Z. officinale were α-zingibereno (13%, geranial (16%, neral (10% and α-farneseno (5% and of Mentha sp. was menthol (92%. Bioassays were carried out by fumigation and topical application. In topical application assays, the essential oil of C. citratus had greater toxicity (LC50 0.027 µL mL-1 and shorter exposure time than the oils of the other two plants. After 24 h and 48 h, 70% and 100% mortality of S. oryzae occurred, respectively. In fumigation assays, essential oil of Z. officinale had a lower LC50 (1.18 µL cm-2 and 70% mortality after 24 h exposure. Therefore, we recommend the use of essential oils of C. citratus and Z. officinale to control the rice weevil S. oryzae.

  10. Effect of essential oils in control of plant diseases.

    Science.gov (United States)

    Peighami-Ashnaei, S; Farzaneh, M; Sharifi-Tehrani, A; Behboudi, K

    2009-01-01

    In this study, antifungal activity of some essential oils, extracted from Syzygium aromoticum, Foeniculum vulgare, Cuminum cyminum and Mentha piperita were investigated against grey mould of apple. The essential oils of S. aromaticum and F. vulgare showed considerable antifungal activities on PDA medium against Botrytis cinerea. Results indicated that the increasing of dosage of the essential oils caused to the more antifungal activity against B. cinerea in vitro condition. After 10 days, results showed that the essential oil of F. vulgare in both of the concentrations (750 and 1000 microL/L) was more effective than the essential oil of S. aromaticum against grey mould of apple and decrease the disease up to 15.5% in comparison with the check treatment (100%). After 20 days, biocontrol potential of the essential oils of S. aromaticum and F. vulgare at 1000 microL/L were more effective than the other treatments and the percentage of disease was evaluated 41.6% and 50.8%, respectively, in comparison with the check treatment (100%).

  11. Cultivation of Herbs and Medicinal Plants in Norway - Essential Oil Production and Quality Control

    OpenAIRE

    Rohloff, Jens

    2003-01-01

    Essential oils (EO) are plant secondary metabolites that are known for their fragrance and food flavour properties. They consist of a complex mixture of mono- and sesquiterpenes, phenyl propanoids and oxygenated compounds. EOs can be present in different plant organs and materials, and their storage is related to specialised secretory structures. The yield of EOs from plant raw materials by distillation or pressing may on average vary from 0.1 – 1%, thus restricting the major EO production to...

  12. A continuum of research projects to improve extraction of oil and proteins in oilseed plants

    Directory of Open Access Journals (Sweden)

    Miquel Martine

    2011-05-01

    Full Text Available A key challenge in the actual context of fossil sources rarefaction, global warming, and of increase of the world global population, is to promote the use of molecules derived from renewable sources such as plants. Among these molecules, lipids and proteins are targets of interest. Plant lipids from oilseeds are attractive substitutes to the use of fossil oil. Till the beginning of the 20th century, numerous products used in the daily life were derived from natural renewable products. For instance, plant oil was commonly used as fuel for vehicles and was entering in the composition of paintings, lubricants etc. Unfortunately, natural oils have been progressively replaced by cheaper fossil oil in the fabrication of these products. Nowadays, fossil oils are becoming increasingly expensive being a finite comodity. It is thus important to reduce our dependence from fossil oil and develop substitution industries. Oilseeds contain important amounts of proteins which are mainly used in feed. As several kilograms of plant protein are needed to obtain one kilogram of animal protein, the interest toward using plant protein in food is reinforced. The developments of the use of plant lipids, as well as proteins are a major stakes for the competitiveness of European agriculture and industry, as well as for sustainable development. Extraction of oil and proteins from rapeseed has a significant cost, in term of energy and solvent uses, and finally affects the ultimate quality of the products (protein digestibility. In order to quantitatively extract seed reserves under mild conditions, it will be necessary to limit the amount of energy needed, and avoid any use of solvents. Ideally, seeds should be processed in a bio refinery. In this paper, we will describe how oilseeds store their reserves, and roadblocks for improving actual oilseed extraction processes. A continuum of research projects aimed at answering targeted questions will be presented, with selected

  13. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Renkema, Justin M; Wright, Derek; Buitenhuis, Rose; Hallett, Rebecca H

    2016-02-19

    Spotted wing drosophila, Drosophila suzukii, is a globally invasive pest of soft-skinned fruit. Females oviposit into ripening fruit and larvae cause direct destruction of tissues. As many plant essential oils are permitted food additives, they may provide a safe means of protecting fruit from D. suzukii infestation in both conventional and organic production systems. Twelve oils and potassium metabisulfite (KMS) were screened in the laboratory as repellents for D. suzukii flies. Most essential oils deterred D. suzukii flies from cotton wicks containing attractive raspberry juice. Peppermint oil was particularly effective, preventing almost all flies from contacting treated wicks and remaining 100% repellent for 6 d post-application. Thyme oil was unique because it caused high male mortality and reduced the number of responding flies compared to other oils. KMS was not found to be repellent to D. suzukii, but may have fumigant properties, particularly at high concentrations. Peppermint oil appears to be the best candidate for field testing to determine the effectiveness and feasibility of using essential oils as part of a push-pull management strategy against D. suzukii. This is the first time that essential oils have been evaluated and proven effective in preventing fruit-infesting flies from contacting attractive stimuli.

  14. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae)

    Science.gov (United States)

    Renkema, Justin M.; Wright, Derek; Buitenhuis, Rose; Hallett, Rebecca H.

    2016-01-01

    Spotted wing drosophila, Drosophila suzukii, is a globally invasive pest of soft-skinned fruit. Females oviposit into ripening fruit and larvae cause direct destruction of tissues. As many plant essential oils are permitted food additives, they may provide a safe means of protecting fruit from D. suzukii infestation in both conventional and organic production systems. Twelve oils and potassium metabisulfite (KMS) were screened in the laboratory as repellents for D. suzukii flies. Most essential oils deterred D. suzukii flies from cotton wicks containing attractive raspberry juice. Peppermint oil was particularly effective, preventing almost all flies from contacting treated wicks and remaining 100% repellent for 6 d post-application. Thyme oil was unique because it caused high male mortality and reduced the number of responding flies compared to other oils. KMS was not found to be repellent to D. suzukii, but may have fumigant properties, particularly at high concentrations. Peppermint oil appears to be the best candidate for field testing to determine the effectiveness and feasibility of using essential oils as part of a push-pull management strategy against D. suzukii. This is the first time that essential oils have been evaluated and proven effective in preventing fruit-infesting flies from contacting attractive stimuli. PMID:26893197

  15. Chemical Composition and Antimicrobial Activities of Essential Oils of Some Coniferous Plants Cultivated in Egypt.

    Science.gov (United States)

    Ibrahim, Taghreed A; El-Hela, Atef A; El-Hefnawy, Hala M; Al-Taweel, Areej M; Perveen, Shagufta

    2017-01-01

    Family Cupressaceae is the largest coniferous plant family. Essential oils of many species belonging to family Cupressaceae are known to have several biological activities specially antimicrobial activity. The essential oils from aerial parts of Calocedrus decurrens Torr., Cupressus sempervirens stricta L. and Tetraclinis articulata (Vahl) Mast. were prepared by hydrodistillation. The chemical composition of the essential oils has been elucidated by gas chromatography-mass spectroscopy analysis. The prepared essential oils were examined against selected species of Gram-positive, Gram-negative bacteria and Candida species. Broth dilution methods were used to detect minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC). Sixteen compounds were identified in the essential oils of both Calocedrus decurrens and Cupressus sempervirens L. and fifteen compounds were identified in the essential oil of Tetraclinis articulata. δ-3-Carene (43.10%), (+)-Cedrol (74.03%) and Camphor (21.23%) were the major constituents in the essential oils of Calocedrus decurrens, Cupressus sempervirens L. and Tetraclinis articulata, respectively. The essential oils showed strong antimicrobial activities against the selected microorganisms in concentration range 0.02 3- 3.03 µL/mL. This study could contribute to the chemotaxonomic characterization of family Cupressaceae. In addition, it proved that the essential oils under investigation possess potential antimicrobial properties.

  16. Essential Oils from the Malaysian Citrus (Rutaceae) Medicinal Plants.

    Science.gov (United States)

    Md Othman, Siti Nur Atiqah; Hassan, Muhammad Aizam; Nahar, Lutfun; Basar, Norazah; Jamil, Shajarahtunnur; Sarker, Satyajit D

    2016-06-03

    This review article appraises the extraction methods, compositions, and bioactivities of the essential oils from the Citrus species (family: Rutaceae) endemic to Malaysia including C. aurantifolia, C. grandis, C. hystrix, and C. microcarpa. Generally, the fresh peels and leaves of the Citrus species were extracted using different methods such as steam and water distillation, Likens-Nikerson extraction, solvent extraction, and headspace solid-phase micro-extraction (HS-SPME). Most of the Citrus oils were found to be rich in monoterpene hydrocarbons with limonene (1) as the major component identified in the peels of C. aurantifolia (39.3%), C. grandis (81.6%-96.9%), and C. microcarpa (94.0%), while sabinene (19) was the major component in the peels of C. hystrix (36.4%-48.5%). In addition, citronellal (20) (61.7%-72.5%), linalool (18) (56.5%), and hedycaryol (23) (19.0%) were identified as the major components in the oil of C. hystrix leaves, C. grandis blossom and C. microcarpa leaves, respectively. The C. hystrix essential oil has been experimentally shown to have antimicrobial and antifeedant activities, while no bioactivity study has been reported on the essential oils of other Malaysian Citrus species.

  17. Essential Oils from the Malaysian Citrus (Rutaceae Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Siti Nur Atiqah Md Othman

    2016-06-01

    Full Text Available This review article appraises the extraction methods, compositions, and bioactivities of the essential oils from the Citrus species (family: Rutaceae endemic to Malaysia including C. aurantifolia, C. grandis, C. hystrix, and C. microcarpa. Generally, the fresh peels and leaves of the Citrus species were extracted using different methods such as steam and water distillation, Likens-Nikerson extraction, solvent extraction, and headspace solid-phase micro-extraction (HS-SPME. Most of the Citrus oils were found to be rich in monoterpene hydrocarbons with limonene (1 as the major component identified in the peels of C. aurantifolia (39.3%, C. grandis (81.6%–96.9%, and C. microcarpa (94.0%, while sabinene (19 was the major component in the peels of C. hystrix (36.4%–48.5%. In addition, citronellal (20 (61.7%–72.5%, linalool (18 (56.5%, and hedycaryol (23 (19.0% were identified as the major components in the oil of C. hystrix leaves, C. grandis blossom and C. microcarpa leaves, respectively. The C. hystrix essential oil has been experimentally shown to have antimicrobial and antifeedant activities, while no bioactivity study has been reported on the essential oils of other Malaysian Citrus species.

  18. The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering

    Directory of Open Access Journals (Sweden)

    Philip David Bates

    2012-07-01

    Full Text Available The unique properties of vegetable oils from different plants utilized for food, industrial feedstocks, and fuel is dependent on the fatty acid (FA composition of triacylglycerol (TAG. Plants can use two main pathways to produce diacylglycerol (DAG, the immediate precursor molecule to TAG synthesis: 1 De novo DAG synthesis, and 2 conversion of the membrane lipid phosphatidylcholine (PC to DAG. The FA esterified to PC are also the substrate for FA modification (e.g. desaturation, hydroxylation, etc., such that the FA composition of PC-derived DAG can be substantially different than that of de novo DAG. Since DAG provides two of the three FA in TAG, the relative flux of TAG synthesis from de novo DAG or PC-derived DAG can greatly affect the final oil FA composition. Here we review how the fluxes through these two alternate pathways of DAG/TAG synthesis are determined and present evidence that suggests which pathway is utilized in different plants. Additionally, we present examples of how the endogenous DAG synthesis pathway in a transgenic host plant can produce bottlenecks for engineering of plant oil FA composition, and discuss alternative strategies to overcome these bottlenecks to produce crop plants with designer vegetable oil compositions.

  19. Oil shale plant siting methodology: A guide to permits and approvals

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, J.S.; Hill, S.; Barker, F.; Renk, R.; Dean, J.

    1988-09-01

    This report is a guide to the permits and approvals required to develop an oil shale resource. The permitting requirements of the federal government, six states (Colorado, Utah, Wyoming, Indiana, Kentucky, and Ohio), and selected county or local governments are reviewed. The permits and approvals are organized into nine categories: (1) mineral leases and rights-of-way, (2) acquisition of a water supply, (3) environmental impact statement, (4) environmental quality (air quality, water quality, waste disposal, and wildlife values), (5) historical and cultural protection, (6) land use and socioeconomics, (7) prospecting and mining, (8) safety and health, and (9) transportation and communication. This report also contains examples of the permitting process required for the startup of two hypothetical oil shale plants. The first example is for a hypothetical 50,000 barrel-per-day oil shale plant located near Rio Blanco, Colorado. This plant uses conventional open pit mining and surface (Lurgi) processing of the shale. The permitting costs for this plant, including baseline data acquisition and monitoring, exceed $2 million. The second example, a 5,000 barrel-per-day demonstration plant in eastern Montgomery County, Kentucky, is based on open pit mining and surface (Hytort) processing of the shale. Permitting costs for the demonstration plant, including an environmental impact statement, could approach $500,000. Several potential impediments to the development of an oil shale resource are identified and discussed. 33 refs., 11 figs., 10 tabs.

  20. Uptake of Organic Contaminants by Plants from Oil Sands Fine Tailings

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The objectives of this experiment were to evaluate the performance of different plant species growing in different kinds of oil sands fine tailings,and to estimate the uptake of organic contaminants by plants from the oil sands fine tailings.In general,total hydrocarbon in the plant could be ranked(beginning with the highest)as:unweathered plant 4 tailings (UWT),Freeze-Thawtailings(FT),weathered plant 4 tailings(WT),and consolidated tailings(CT) for the willow,poplar and cattails.For grass,CT amended with tailings sand and muskeg had the highest hydrocarbon level in the field treatment,however,other three kinds of tailings(FT,WT and UWT) had lower but similar to each other hydrocarbon levels.

  1. Insecticidal Activity of Plant Essential Oils Against the Vine Mealybug, Planococcus ficus

    Science.gov (United States)

    Karamaouna, Filitsa; Kimbaris, Athanasios; Michaelakis, Αntonios; Papachristos, Dimitrios; Polissiou, Moschos

    2013-01-01

    The vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), is a pest in grape vine growing areas worldwide. The essential oils from the following aromatic plants were tested for their insecticidal activity against P. ficus: peppermint, Mentha piperita L. (Lamiales: Lamiaceae), thyme-leaved savory, Satureja thymbra L., lavender, Lavandula angustifolia Mill, and basil, Ocimum basilicum L. Essential oils from peels of the following fruits were also tested: lemon, Citrus limon L. (Sapindales: Rutaceae), and orange, C. sinensis L. The reference product was paraffin oil. Bioassays were conducted in the laboratory by using spray applications on grape leaves bearing clusters of P. ficus of one size class, which mainly represented either 3rd instar nymphs or pre-ovipositing adult females. The LC50 values for each essential oil varied depending on the P. ficus life stage but did not significantly differ between 3rd instar nymphs and adult females. The LC50 values of the citrus, peppermint, and thyme-leaved savory essential oils ranged from 2.7 to 8.1 mg/mL, and the LC50 values of lavender and basil oil ranged from 19.8 to 22.5 and 44.1 to 46.8 mg/mL, respectively. The essential oils from citrus, peppermint and thymeleaved savory were more or equally toxic compared to the reference product, whereas the lavender and basil essential oils were less toxic than the paraffin oil. No phytotoxic symptoms were observed on grape leaves treated with the citrus essential oils, and low phytotoxicity was caused by the essential oils of lavender, thyme-leaved savory, and mint, whereas the highest phytotoxicity was observed when basil oil was used. PMID:24766523

  2. Insecticidal activity of plant essential oils against the vine mealybug, Planococcus ficus.

    Science.gov (United States)

    Karamaouna, Filitsa; Kimbaris, Athanasios; Michaelakis, Alphantonios; Papachristos, Dimitrios; Polissiou, Moschos; Papatsakona, Panagiota; Tsora, Eleanna

    2013-01-01

    The vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), is a pest in grape vine growing areas worldwide. The essential oils from the following aromatic plants were tested for their insecticidal activity against P. ficus: peppermint, Mentha piperita L. (Lamiales: Lamiaceae), thyme-leaved savory, Satureja thymbra L., lavender, Lavandula angustifolia Mill, and basil, Ocimum basilicum L. Essential oils from peels of the following fruits were also tested: lemon, Citrus limon L. (Sapindales: Rutaceae), and orange, C. sinensis L. The reference product was paraffin oil. Bioassays were conducted in the laboratory by using spray applications on grape leaves bearing clusters of P. ficus of one size class, which mainly represented either 3rd instar nymphs or pre-ovipositing adult females. The LC50 values for each essential oil varied depending on the P. ficus life stage but did not significantly differ between 3(rd) instar nymphs and adult females. The LC50 values of the citrus, peppermint, and thyme-leaved savory essential oils ranged from 2.7 to 8.1 mg/mL, and the LC50 values of lavender and basil oil ranged from 19.8 to 22.5 and 44.1 to 46.8 mg/mL, respectively. The essential oils from citrus, peppermint and thymeleaved savory were more or equally toxic compared to the reference product, whereas the lavender and basil essential oils were less toxic than the paraffin oil. No phytotoxic symptoms were observed on grape leaves treated with the citrus essential oils, and low phytotoxicity was caused by the essential oils of lavender, thyme-leaved savory, and mint, whereas the highest phytotoxicity was observed when basil oil was used.

  3. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.

    Science.gov (United States)

    Bates, Philip D

    2016-09-01

    Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.

  4. Characterization of lipid oxidation in plant oils by micro-calorimetry.

    Science.gov (United States)

    Dridi, Wafa; Toutain, Jean; Sommier, Alain; Essafi, Wafa; Gargouri, Mohamed; Leal-Calderon, Fernando; Cansell, Maud

    2016-04-15

    A new experimental device was developed, based on the measurement of the heat flux dissipated during chemical reactions. The technique was exploited for real time monitoring of lipid oxidation in plant oils. The thermopiles were used in adiabatic configuration in order to measure the entire heat flux and improve sensitivity. Measurements were operated with a resolution of few μW as required to follow low exothermic reactions like oxidation. The validation of the device was performed by correlating conjugated diene concentrations measured by spectrophotometry and the heat flux dissipated by oxidation reactions. Our experimental approach involved several plant oils analyzed in isothermal conditions. This novel technique provides a versatile, sensitive, solvent-free and yet low-cost method to assess lipid oxidation stability, particularly suitable for the fast screening of plant oils.

  5. Effect of Plant Oils upon Lipase and Citric Acid Production in Yarrowia lipolytica Yeast

    Directory of Open Access Journals (Sweden)

    Farshad Darvishi

    2009-01-01

    Full Text Available The nonconventional yeast Yarrowia lipolytica degrades very efficiently hydrophobic substrates to produce organic acids, single-cell oil, lipases, and so forth. The aim of this study was to investigate the biochemical behavior and simultaneous production of valuable metabolites such as lipase, citric acid (CA, and single-cell protein (SCP by Yarrowia lipolytica DSM 3286 grown on various plant oils as sole carbon source. Among tested plant oils, olive oil proved to be the best medium for lipase and CA production. The Y. lipolytica DSM 3286 produced 34.6 ± 0.1 U/mL of lipase and also CA and SCP as by-product on olive oil medium supplemented with yeast extract. Urea, as organic nitrogen, was the best nitrogen source for CA production. The results of this study suggest that the two biotechnologically valuable products, lipase and CA, could be produced simultaneously by this strain using renewable low-cost substrates such as plant oils in one procedure.

  6. Aromatic plant-derived essential oil: an alternative larvicide for mosquito control.

    Science.gov (United States)

    Pitasawat, B; Champakaew, D; Choochote, W; Jitpakdi, A; Chaithong, U; Kanjanapothi, D; Rattanachanpichai, E; Tippawangkosol, P; Riyong, D; Tuetun, B; Chaiyasit, D

    2007-04-01

    Five aromatic plants, Carum carvi (caraway), Apium graveolens (celery), Foeniculum vulgare (fennel), Zanthoxylum limonella (mullilam) and Curcuma zedoaria (zedoary) were selected for investigating larvicidal potential against mosquito vectors. Two laboratory-reared mosquito species, Anopheles dirus, the major malaria vector in Thailand, and Aedes aegypti, the main vector of dengue and dengue hemorrhagic fever in urban areas, were used. All of the volatile oils exerted significant larvicidal activity against the two mosquito species after 24-h exposure. Essential oil from mullilam was the most effective against the larvae of A. aegypti, while A. dirus larvae showed the highest susceptibility to zedoary oil.

  7. Environmental interactions with the toxicity of plant essential oils to the poultry red mite Dermanyssus gallinae.

    Science.gov (United States)

    George, D R; Sparagano, O A E; Port, G; Okello, E; Shiel, R S; Guy, J H

    2010-03-01

    The toxicity of a range of plant essential oils to the poultry red mite, Dermanyssus gallinae (De Geer) (Acari: Dermanyssidae), a serious ectoparasitic pest of laying hens throughout Europe and elsewhere, was assessed in the laboratory. Dermanyssus gallinae may cause losses in egg production, anaemia and, in extreme cases, death of hens. With changes in legislation and consumer demand, alternatives to synthetic acaricides are needed to manage this pest. Fifty plant essential oils were selected for their toxicity to arthropods reported in the literature. Twenty-four of these essential oils were found to kill > 75% of adult D. gallinae in contact toxicity tests over a 24-h period at a rate of 0.21 mg/cm(2). Subsequent testing at lower rates showed that the essential oils of cade, manuka and thyme were especially toxic to adult D. gallinae. The toxicity of the seven most acaricidal essential oils was found to be stable at different temperatures likely to be encountered in commercial poultry housing (15 degrees C, 22 degrees C and 29 degrees C), although results suggest that humidity and dust might influence the toxicity of some of the oils tested. The toxicity of clove bud essential oil to D. gallinae, for example, was increased at high humidity and dust levels compared with ambient levels. The results suggest that certain essential oils may make effective botanical pesticides for use against D. gallinae, although it is likely that issues relating to the consistency of the toxic effect of some oils will determine which oils will be most effective in practice.

  8. Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA).

    Science.gov (United States)

    Tohidpour, A; Sattari, M; Omidbaigi, R; Yadegar, A; Nazemi, J

    2010-02-01

    Antimicrobial properties of plants essential oils (EOs) have been investigated through several observations and clinical studies which purpose them as potential tools to overcome the microbial drug resistance problem. The aim of this research is to study the antibacterial effect of two traditional plants essential oils, Thymus vulgaris and Eucalyptus globulus against clinical isolates of Methicillin resistant Staphylococcus aureus (MRSA) and other standard bacterial strains through disk diffusion and agar dilution methods. Gas Chromatography (GC) and Gas Chromatography/Mass Spectrometry (GC/MS) analysis examined the chemical composition of the oils. Results revealed both of oils to possess degrees of antibacterial activity against Gram (+) and Gram (-) bacteria. T. vulgaris EO showed better inhibitory effects than E. globulus essential oil. GC analysis of T. vulgaris resulted in thymol as the oil major compound whereas GC/MS assay exhibited eucalyptol as the most abundant constitute of E. globulus EO. These results support previous studies on these oils and suggest an additional option to treat MRSA infections. Clinical and further analytical trials of these data are necessary to confirm the obtained outcomes. Copyright 2009. Published by Elsevier GmbH.

  9. Essential Oils of Plants as Biocides against Microorganisms Isolated from Cuban and Argentine Documentary Heritage.

    Science.gov (United States)

    Borrego, Sofía; Valdés, Oderlaise; Vivar, Isbel; Lavin, Paola; Guiamet, Patricia; Battistoni, Patricia; Gómez de Saravia, Sandra; Borges, Pedro

    2012-01-01

    Natural products obtained from plants with biocidal activity represent an alternative and useful source in the control of biodeterioration of documentary heritage, without negative environmental and human impacts. In this work, we studied the antimicrobial activity of seven essential oils against microorganisms associated with the biodeterioration of documentary heritage. The essential oils were obtained by steam distillation. The antimicrobial activity was analyzed using the agar diffusion method against 4 strains of fungi and 6 bacterial strains isolated from repositories air and documents of the National Archive of the Republic of Cuba and the Historical Archive of the Museum of La Plata, Argentina. Anise and garlic oils showed the best antifungal activity at all concentrations studied, while oregano oil not only was effective against fungi tested but also prevented sporulation of them all. Orange sweet and laurel oils were ineffective against fungi. Clove, garlic, and oregano oils showed the highest antibacterial activity at 25% against Enterobacter agglomerans and Streptomyces sp., while only clove and oregano oils were effective against Bacillus sp. at all concentrations studied. This study has an important implication for the possible use of the natural products from plants in the control of biodeterioration of documentary heritage.

  10. Study of Growth, Essential Oil Percentage and Essential Oil Component of Achilleaspp Under Shoushtar Climatic Condition in Fall Planting

    Directory of Open Access Journals (Sweden)

    R. Farhodi

    2016-02-01

    Full Text Available Introduction: Spices and herbs are part of daily food intake in many regions of the world. They have been used as natural sources of flavorings and preservatives. Yarrow (Achillea spp. belongs to Asteraceae family and more than 100 species have been recognized in this genus. This plantis reportedto be a diaphoretic, astringent, tonic, stimulant and mild aromatic plant. It contains isovaleric acid, salicylic acid, asparagin, sterols, flavonoids, bitters, tannins, and coumarins. The plant also has a long history as a powerful 'healing herb' used topically for wounds, cuts and abrasions. The genus name Achillea is derived from the mythical Greek character, Achilles. Action is also reflected in some of the common names mentioned below, such as staunchweed and soldier's woundwort. The genus Achillea is a well-known medicinal plant, widely used in folk medicine against gastrointestinal disorders such as lack of appetite. This plant is native to Europe and Western Asia but isalso found in Australia, New Zealand and North America. Nineteen species of Achillea have been recognized in Iran distributed in different geographical and ecological regions. Achillea spp. are diaphoretic, astringent, tonic, stimulant and mild aromatic. Major components in Achillea spp. essential oil are sabinene, 1,8-cineole, camphor, α-pinene, β-pinene, borneol and bornyl acetate. The aim of this work is to investigate growth, essential oil yield and chemical composition of essential oils of A. eriophora, A. millefolium, A. biebersteinii and A. tenuifolia. Material and Methods: This study investigated the growth and essential oil yield of four Achillea species in the North of Khuzestan situation,Shoushtar, in2008-2010. An experiment was conducted in combined analysis based on complete block design with 4 replicates. Achillea species examined concluded Achillea eriophora, A. millefolium, A. biebersteinii and A. nobilis. Seedling establishment, essential oil percentage andyield

  11. Influence of Plant Growth Regulators (PGRs and Planting Method on Growth and Yield in Oil Pumpkin (Cucurbita pepo var. styriaca

    Directory of Open Access Journals (Sweden)

    Shirzad SURE

    2012-05-01

    Full Text Available The effect of plant growth regulators IBA (indole butyric acid, GA3 (gibberellin and ethylene (as ethephon in two methods of planting was investigated (each method was considered as a separate experiment on morphological characters and yield of medicinal pumpkin. The experiments were carried out in a factorial trial based on completely randomized block design, with four replicates. The treatments were combined with priming and spraying with the above PGRs. The first seed priming with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm, and when seedling developed to 4 leaf stage sprayed there with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm for three times. In both planting methods, there were all of these treatments. The result showed that PGRs and planting method had significant effects on vegetative, flowering and yield characteristics including: leaf area %DM plant, number of male and female flowers per plant, number of fruit/plant, fruits fresh weight, seeds length and width, number of seed per fruit, seed yield, % seeds oil and oil yield. Hence spraying with GA3 25 ppm in four leaf stage at trellis method could be a suitable treatment for enhancing growth and yield of medicinal pumpkin.

  12. Influence of Plant Growth Regulators (PGRs and Planting Method on Growth and Yield in Oil Pumpkin (Cucurbita pepo var. styriaca

    Directory of Open Access Journals (Sweden)

    Shirzad SURE

    2012-05-01

    Full Text Available The effect of plant growth regulators IBA (indole butyric acid, GA3 (gibberellin and ethylene (as ethephon in two methods of planting was investigated (each method was considered as a separate experiment on morphological characters and yield of medicinal pumpkin. The experiments were carried out in a factorial trial based on completely randomized block design, with four replicates. The treatments were combined with priming and spraying with the above PGRs. The first seed priming with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm, and when seedling developed to 4 leaf stage sprayed there with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm for three times. In both planting methods, there were all of these treatments. The result showed that PGRs and planting method had significant effects on vegetative, flowering and yield characteristics including: leaf area %DM plant, number of male and female flowers per plant, number of fruit/plant, fruits fresh weight, seeds length and width, number of seed per fruit, seed yield, % seeds oil and oil yield. Hence spraying with GA3 25 ppm in four leaf stage at trellis method could be a suitable treatment for enhancing growth and yield of medicinal pumpkin.

  13. In vitro efficacies of oils, silicas and plant preparations against the poultry red mite Dermanyssus gallinae.

    Science.gov (United States)

    Maurer, Veronika; Perler, Erika; Heckendorn, Felix

    2009-06-01

    The aim of this study was to test the effectiveness of physically acting substances (oils and silicas) and plant preparations for the control of the poultry red mite Dermanyssus gallinae (De Geer 1778). Reproduction and survival of fed D. gallinae females were evaluated in vitro for a total of 168 h using the "area under the survival curve" (AUC) to compare survival of the mites between treatments. Four oils (two plant oils, one petroleum spray oil and diesel), one soap, three silicas (one synthetic amorphous silica, one diatomaceous earth (DE) and one DE with 2% pyrethrum extract) and seven plant preparations (derived from Chrysanthemum cineariaefolium, Allium sativum, Tanacetum vulgare, Yucca schidigera, Quillaja saponaria, Dryopteris filix-mas, and Thuja occidentalis) were tested at various concentrations. All the oils, diesel and soap significantly reduced D. gallinae survival. All silicas tested inhibited reproduction. DE significantly reduced mite survival, but amorphous silica was less effective in vitro. Except for pure A. sativum juice and the highest concentration of C. cineariaefolium extract, the plant preparations tested resulted in statistically insignificant control of D. gallinae.

  14. Margarine from organogel of healthy vegetable oils and plant wax

    Science.gov (United States)

    Organogelator that can turn vegetable oil into a gel with a small quantity has drawn a lot of interests as a potential alternative for saturated fats and trans fat-containing solid fats in margarine and spread products. However, it is not practically used in those products yet. This research shows...

  15. Mass spectrometry of oil sands naphthenic acids : degradation in OSPW and wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Headley, J. [Environment Canada, Saskatoon, SK (Canada). Water Science and Technology Directorate

    2009-07-01

    This presentation discussed mass spectrometry of oil sands naphthenic acids and the degradation in OSPW and wetland plants. It presented background information on the Athabasca oil sands and naphthenic acids which involve a mixture of alkanes and cycloalkane carboxylic acids with aliphatic side chains. The presentation also discussed mass spectrometry with electrospray operating in negative ion modes. Loop injection, external standard methods and solid phase extraction were reviewed along with improved analysis by removing background ions. Other topics that were presented included hydroponic test systems and wetland plant toxicity, growth and transpiration. It was concluded that dissipation included species containing oxygen, ozone, O{sub 4}, and O{sub 5}. tabs., figs.

  16. JOJOBA: an oil plant for arid or semi-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    Marull, J.E.

    1978-01-01

    Jojoba (Simmondsia chinesis) grows in regions with a rainfall of 250 to 450 mm, producing 4.5 kg seeds/tree after 36 months and attaining an average production of 13.8 kg seeds/tree when full grown. Productivity can be maintained for up to 100 years. Planting density is about 1600 plants/ha, at distances of 1.50 x 3.00 m. The seeds contain 50% edible oil, and the press-cake 35% proteins. The characteristics of the oil are listed.

  17. Jojoba, an oil plant for arid or semi-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    Marull, J.E.

    1978-01-01

    Jojoba (Simmondsia chinensis) grows in regions with a rainfall of 250-450 mm, producing 4.5 kg seeds/tree after 36 months and attaining an average production of 13.8 kg seeds/tree when full grown. Productivity can be maintained for up to 100 years. Planting density is about 1600 plants/ha, at distances of 1.50 x 3.00 m. The seeds contain 50% edible oil, and the press-cake 35% proteins. The characteristics of the oil are listed.

  18. Effects of organic plant oils and role of oxidation on nutrient utilization in juvenile rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Lund, Ivar; Dalsgaard, Anne Johanne Tang; Jacobsen, Charlotte

    2013-01-01

    digestibility was furthermore examined. Four organic oils with either a relatively high or low content of polyunsaturated fatty acids were considered: linseed oil, rapeseed oil, sunflower oil and grapeseed oil. Substituting FO with organic oils did not affect feed intake (P.0.05), FCR or SGR (P.0.05) despite......Producing organic fish diets requires that the use of both fishmeal and fish oil (FO) be minimized and replaced by sustainable, organic sources. The purpose of the present study was to replace FO with organic oils and evaluate the effects on feed intake, feed conversion ratio (FCR), daily specific...... growth rate (SGR) and nutrient digestibility in diets in which fishmeal protein was partly substituted by organic plant protein concentrates. It is prohibited to add antioxidants to organic oils, and therefore the effects of force-oxidizing the oils (including FO) on feed intake and nutrient...

  19. Trypanocidal and cytotoxic activities of essential oils from medicinal plants of Northeast of Brazil.

    Science.gov (United States)

    Borges, Andrezza Raposo; Aires, Juliana Ramos de Albuquerque; Higino, Taciana Mirely Maciel; de Medeiros, Maria das Graças Freire; Citó, Antonia Maria das Graças Lopes; Lopes, José Arimatéia Dantas; de Figueiredo, Regina Celia Bressan Queiroz

    2012-10-01

    Chagas disease, caused by Trypanosoma cruzi, is an important cause of mortality and morbidity in Latin America. There are no vaccines available, the chemotherapy used to treat this illness has serious side effects and its efficacy on the chronic phase of disease is still a matter of debate. In a search for alternative treatment for Chagas disease, essential oils extracted from traditional medicinal plants Lippia sidoides, Lippia origanoides, Chenopodium ambrosioides, Ocimum gratissimum, Justicia pectorales and Vitex agnus-castus were investigated in vitro for trypanocidal and cytotoxic activities. Essential Oils were extracted by hydrodistillation and submitted to chemical analysis by gas chromatography/mass spectrometry. The concentration of essential oils necessary to inhibit 50% of the epimastigotes or amastigotes growth (IC(50)) and to kill 50% of trypomastigote forms (LC(50)) was estimated. The most prevalent chemical constituents of these essential oils were monoterpenes and sesquiterpenes. All essential oils tested demonstrated an inhibitory effect on the parasite growth and survival. L. sidoides and L. origanoides essential oils were the most effective against trypomastigote and amastigote forms respectively. No significant cytotoxic effects were observed in mouse peritoneal macrophages incubated with essential oils which were more selective against the parasites than mammalian cells. Taken together, our results point towards the use of these essential oils as potential chemotherapeutic agent against T. cruzi. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Repellent effectiveness of seven plant essential oils, sunflower oil and natural insecticides against horn flies on pastured dairy cows and heifers.

    Science.gov (United States)

    Lachance, S; Grange, G

    2014-06-01

    Plant essential oils (basil, geranium, balsam fir, lavender, lemongrass, peppermint, pine and tea tree), mixed with either sunflower oil or ethyl alcohol, were applied at 5% concentrations to the sides of Holstein cattle. Pastured cattle treated with essential oils diluted in sunflower oil had less flies than the untreated control for a 24-h period. However, the essential oil treatments were not significantly different than the carrier oil alone. Barn-held heifers treated with essential oils and sunflower oil alone had significantly less flies than the untreated control for up to 8 h after treatment. Basil, geranium, lavender, lemongrass and peppermint repelled more flies than sunflower oil alone for a period ranging from 1.5 to 4 h after treatments applied to heifers. All essential oils repelled > 75% of the flies on the treated area for 6 and 8 h on pastured cows and indoor heifers, respectively. Geranium, lemongrass and peppermint stayed effective for a longer duration. Essential oils mixed with ethyl alcohol demonstrated less repellence than when mixed with the carrier oil. Safer's soap, natural pyrethrins without piperonyl butoxide and ethyl alcohol alone were not efficient at repelling flies. Essential oils could be formulated for use as fly repellents in livestock production.

  1. In Vitro Antibacterial Activity of Several Plant Extracts and Oils against Some Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Ayman Al-Mariri

    2014-01-01

    Full Text Available Background: Medicinal plants are considered new resources for producing agents that could act as alternatives to antibiotics in the treatment of antibiotic-resistant bacteria. The aim of this study was to evaluate the antibacterial activity of 28 plant extracts and oils against four Gram-negative bacterial species. Methods: Experimental, in vitro, evaluation of the activities of 28 plant extracts and oils as well as some antibiotics against E. coli O157:H7, Yersinia enterocolitica O9, Proteus spp., and Klebsiella pneumoniae was performed. The activity against 15 isolates of each bacterium was determined by disc diffusion method at a concentration of 5%. Microdilution susceptibility assay was used in order to determine the minimal inhibitory concentrations (MICs of the plant extracts, oils, and antibiotics. Results: Among the evaluated herbs, only Origanum syriacum L., Thymus syriacus Boiss., Syzygium aromaticum L., Juniperus foetidissima Wild, Allium sativum L., Myristica fragrans Houtt, and Cinnamomum zeylanicum L. essential oils and Laurus nobilis L. plant extract showed anti-bacterial activity. The MIC50 values of these products against the Gram-negative organisms varied from 1.5 (Proteus spp. and K. pneumoniae( and 6.25 µl/ml (Yersinia enterocolitica O9 to 12.5 µl/ml (E. coli O:157. Conclusion: Among the studied essential oils, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. essential oils were the most effective. Moreover, Cephalosporin and Ciprofloxacin were the most effective antibiotics against almost all the studied bacteria. Therefore, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. could act as bactericidal agents against Gram-negative bacteria.

  2. Plant Essential Oils from Apiaceae Family as Alternatives to Conventional Insecticides

    Directory of Open Access Journals (Sweden)

    Asgar Ebadollahi

    2013-06-01

    Full Text Available Main method to control insect pest is using synthetic insecticides, but the development of insect resistance to this products, the high operational cost, environmental pollution, toxicity to humans and harmful effect on non-target organisms have created the need for developing alternative approaches to control insect pest. Furthermore, the demand for organic crops, especially vegetables for the fresh market, has greatly increased worldwide. The ideal insecticide should control target pests adequately and should be target-specific, rapidly degradable, and low in toxicity to humans and other mammals. Plant essential oils could be an alternative source for insect pest control because they constitute a rich source of bioactive chemicals and are commonly used as flavoring agents in foods. These materials may be applied to food crops shortly before harvest without leaving excessive residues. Moreover, medically safe of these plant derivatives has emphasized also. For these reasons, much effort has been focused on plant essential oils or their constituents as potential sources of insect control agents. In this context, Apiaceae (Umbelliferae family would rank among the most important families of plants. In the last few years more and more studies on the insecticidal properties of essential oils from Apiaceae family have been published and it seemed worthwhile to compile them. The focus of this review lies on the lethal (ovicidal, larvicidal, pupicidal and adulticidal and sublethal (antifeedant, repellent, oviposition deterrent, Growth inhibitory and progeny production activities of plant essential oils and theirmain components from Apiaceae family. These features indicate that pesticides based on Apiaceae essential oils could be used in a variety of ways to control a large number of pests. It can be concluded that essential oils and phytochemicals isolated from Apiaceae family may be efficacious and safe replacements for conventional synthetic

  3. Nematicidal Activity of Plant Essential Oils and Components From Ajowan (Trachyspermum ammi), Allspice (Pimenta dioica) and Litsea (Litsea cubeba) Essential Oils Against Pine Wood Nematode (Bursaphelenchus Xylophilus).

    Science.gov (United States)

    Park, Il-Kwon; Kim, Junheon; Lee, Sang-Gil; Shin, Sang-Chul

    2007-09-01

    Commercial plant essential oils from 26 plant species were tested for their nematicidal activities against the pinewood nematode, Bursaphelenchus xylophilus. Good nematicidal activity against B. xylophilus was achieved with essential oils of ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba). Analysis by gas chromatography-mass spectrometry led to identification of 12, 6 and 16 major compounds from ajowan, allspice and litsea oils, respectively. These compounds from three plant essential oils were tested individually for their nematicidal activities against the pinewood nematode. LC(50) values of geranial, isoeugenol, methyl isoeugenol, eugenol, methyl eugenol and neral against pine wood nematodes were 0.120, 0.200, 0.210, 0.480, 0.517 and 0.525 mg/ml, respectively. The essential oils described herein merit further study as potential nematicides against the pinewood nematode.

  4. Essential Oils from the Malaysian Citrus (Rutaceae) Medicinal Plants

    OpenAIRE

    Siti Nur Atiqah Md Othman; Muhammad Aizam Hassan; Lutfun Nahar; Norazah Basar; Shajarahtunnur Jamil; Sarker,Satyajit D.

    2016-01-01

    This review article appraises the extraction methods, compositions, and bioactivities of the essential oils from the Citrus species (family: Rutaceae) endemic to Malaysia including C. aurantifolia, C. grandis, C. hystrix, and C. microcarpa. Generally, the fresh peels and leaves of the Citrus species were extracted using different methods such as steam and water distillation, Likens-Nikerson extraction, solvent extraction, and headspace solid-phase micro-extraction (HS-SPME). Most of the Citru...

  5. Removal of Dye from Textile Wastewater Using Plant Oils Under Different pH and Temperature Conditions

    OpenAIRE

    A. S. Mahmoud; Abdel E. Ghaly; M. S. Brooks

    2007-01-01

    The effectiveness of five plant oils (cottonseed, olive, canola sunflower and used cooking oil) for the removal of dye from textile wastewater was evaluated. The study revealed that the dye removal efficiency increased as the temperature was increased. Under low pH, both the oil and dye split into two components each. Neither one of the oil components joined with either one of the dye components. However, the observed reduction in the absorbance under acidic conditions can be attributed to th...

  6. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae.

    Directory of Open Access Journals (Sweden)

    Nicoletta Faraone

    Full Text Available Plant-derived products can play an important role in pest management programs. Essential oils from Lavandula angustifolia (lavender and Thymus vulgaris (thyme and their main constituents, linalool and thymol, respectively, were evaluated for insecticidal activity and synergistic action in combination with insecticides against green peach aphid, Myzus persicae (Sulzer (Hemiptera: Aphididae. The essential oils and their main constituents exerted similar insecticidal activity when aphids were exposed by direct sprays, but were non-toxic by exposure to treated leaf discs. In synergism experiments, the toxicity of imidacloprid was synergized 16- to 20-fold by L. angustifolia and T. vulgaris essential oils, but far less synergism occurred with linalool and thymol, indicating that secondary constituents of the oils were probably responsible for the observed synergism. In contrast to results with imidacloprid, the insecticidal activity of spirotetramat was antagonized by L. angustifolia and T. vulgaris essential oils, and linalool and thymol. Our results demonstrate the potential of plant essential oils as synergists of insecticides, but show that antagonistic action against certain insecticides may occur.

  7. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae).

    Science.gov (United States)

    Faraone, Nicoletta; Hillier, N Kirk; Cutler, G Christopher

    2015-01-01

    Plant-derived products can play an important role in pest management programs. Essential oils from Lavandula angustifolia (lavender) and Thymus vulgaris (thyme) and their main constituents, linalool and thymol, respectively, were evaluated for insecticidal activity and synergistic action in combination with insecticides against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). The essential oils and their main constituents exerted similar insecticidal activity when aphids were exposed by direct sprays, but were non-toxic by exposure to treated leaf discs. In synergism experiments, the toxicity of imidacloprid was synergized 16- to 20-fold by L. angustifolia and T. vulgaris essential oils, but far less synergism occurred with linalool and thymol, indicating that secondary constituents of the oils were probably responsible for the observed synergism. In contrast to results with imidacloprid, the insecticidal activity of spirotetramat was antagonized by L. angustifolia and T. vulgaris essential oils, and linalool and thymol. Our results demonstrate the potential of plant essential oils as synergists of insecticides, but show that antagonistic action against certain insecticides may occur.

  8. Biodiesel production from vegetable oil and waste animal fats in a pilot plant.

    Science.gov (United States)

    Alptekin, Ertan; Canakci, Mustafa; Sanli, Huseyin

    2014-11-01

    In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards.

  9. Effects of mycorrhiza on growth and essential oil production in selected aromatic plants

    Directory of Open Access Journals (Sweden)

    Waed Tarraf

    2015-09-01

    Full Text Available Arbuscular mycorrhizal (AM symbiosis is widely investigated in aromatic herbs. Several studies have shown different effects on secondary metabolites, biomass production, as well as oil quantitative and qualitative aspects. The seeking to increase the yield of plants and their oils is an interesting topic in the world of medicinal and aromatic plant production. In tune with that, this study evaluated the effectiveness of two mycorrhiza fungi, Funneliformis mosseae (syn. Glomus mosseae and Septoglomus viscosum (syn. Glomus viscosum, on three species from Lamiaceae family: Salvia officinalis L., Origanum vulgare L., and Thymus vulgaris L. besides untreated control. It was found that the effect of symbiosis on growth was more favourable with S. viscosum than other AM fungus. The S. viscosum inoculation raised the yield of essential oil in oregano. Analysis of gas chromatography/mass spectrometry showed that manool obtained the highest abundance in leaf essential oil of inoculated sage; thymol was the major component whatever the treatment in thyme and lower relative content of carvacrol was reported with arbuscular mycorrhizal fungi inoculation in oregano. The results suggest the mycorrhizal inoculation as a promising technology in sustainable agricultural system to improve the plant productivity performance. Specific inocula are strategic to enhance the chemical profile of essential oils.

  10. Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Winayanuwattikun, Pakorn; Kaewpiboon, Chutima; Piriyakananon, Kingkaew; Tantong, Supalak; Thakernkarnkit, Weerasak; Yongvanich, Tikamporn [Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Biofuel Production by Biocatalyst Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Chulalaksananukul, Warawut [Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Biofuel Production by Biocatalyst Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2008-12-15

    Twenty-seven types of plants found to contain more than 25% of oil (w/w) were selectively examined from 44 species. Saponification number (SN), iodine value (IV), cetane number (CN) and viscosity ({eta}) of fatty acid methyl esters (FAMEs) of oils were empirically determined, and they varied from 182 to 262, 3.60 to 142.70, 39.32 to 65.80 and 2.29 to 3.95, respectively. Fatty acid compositions, IV, CN and {eta} were used to predict the quality of FAMEs for use as biodiesel. FAMEs of plant oils of 15 species were found to be most suitable for use as biodiesel by meeting the major specification of biodiesel standards of Thailand, USA and European Standard Organization. The oils from these 15 species were further investigated for the conversion efficiency of biodiesel in lipase-catalyzed transesterification reaction with Novozyme 435 and Lipozyme RM IM. Oils of four species, palm (Elaeis guineensis), physic nut (Jatropha curcas), papaya (Carica papaya) and rambutan (Nephelium lappaceum), can be highly converted to biodiesel by transesterification using Novozyme 435- or Lipozyme RM IM-immobilized lipase as catalyst. Therefore, these selected plants would be economically considered as the feedstock for biodiesel production by biocatalyst. (author)

  11. Toxicity of some essential oils and plant extracts against Sitophilus oryzea, Aconthocelides obtectus and Rhizoperta dominica

    Science.gov (United States)

    Şimşek, Şeyda; Yaman, Cennet; Yarımoǧlu, Berkan; Yılmaz, Ayşegül

    2017-04-01

    In the present study, experiments were conducted to investigate fumigant toxicity of the essential oil from Myrtus sp plants for adult Aconthocelides obtectus, Sitophilus oryzea and Rhizoperta dominica in vitro conditions. The essential oils were isolated with the water distillation method by Neo-Clevenger apparatus. During the study 10% (v/v) doses of oils in 20 cc of compressed rubber-capped glass tubes were used. After 24 hours mortality rates of the essential oil were compared. Myrtus sp essential oil showed the highest fumigant toxicity on A. obtectus (46.66%). The lowest fumigant toxicity on S. oryzea (8.88%). The contact toxicity plant extracts (Prangos ferulacea, Alkanna orientalis, Myrtus communis) were tested against S. oryzea under laboratory conditions. Single dose contact toxicity effects of plant extracts were tested on S. oryzea adults via applying 1 µl extract suspension (10% w/v) to individual insect. The greatest contact toxicity to S. oryzea adults was observed with M. communis (43.33%) and A. orientalis (41.11%) extracts. P. ferulacea (34.44%) extracts produced moderate toxicity to S. oryzea adults.

  12. Repellent Activity of Apiaceae Plant Essential Oils and their Constituents Against Adult German Cockroaches.

    Science.gov (United States)

    Lee, Hyo-Rim; Kim, Gil-Hah; Choi, Won-Sil; Park, Il-Kwon

    2017-04-01

    We evaluated the repellent activity of 12 Apiaceae plant essential oils and their components against male and female adult German cockroaches, Blattella germanica L., to find new natural repellents. Of all the plant essential oils tested, ajowan (Trachyspermum ammi Sprague) and dill (Anethum graveolens L.) essential oils showed the most potent repellent activity against male and female adult German cockroaches. Repellent activities of chemicals already identified in active oils were also investigated. Of the compounds identified, carvacrol, thymol, and R-(-)-carvone showed >80% repellent activity against male and female adult German cockroaches at 2.5 µg/cm2. S-(+)-Carvone, (+)-dihydrocarvone, and terpinen-4-ol showed >70% repellent activity against male and female adult German cockroaches at 10 µg/cm2. Our results indicated that Apiaceae plant essential oils and their constituents have good potential as natural repellents against adult German cockroaches. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Comparison of the Insecticidal Characteristics of Commercially Available Plant Essential Oils Against Aedes aegypti and Anopheles gambiae (Diptera: Culicidae).

    Science.gov (United States)

    Norris, Edmund J; Gross, Aaron D; Dunphy, Brendan M; Bessette, Steven; Bartholomay, Lyric; Coats, Joel R

    2015-09-01

    Aedes aegypti and Anopheles gambiae are two mosquito species that represent significant threats to global public health as vectors of Dengue virus and malaria parasites, respectively. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide-resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. For these studies, Ae. aegypti and An. gambiae were treated with commercially available plant essential oils via topical application. The relative toxicity of each essential oil was determined, as measured by the 24-h LD(50) and percentage knockdown at 1 h, as compared with a variety of synthetic pyrethroids. For Ae. aegypti, the most toxic essential oil (patchouli oil) was ∼1,700-times less toxic than the least toxic synthetic pyrethroid, bifenthrin. For An. gambiae, the most toxic essential oil (patchouli oil) was ∼685-times less toxic than the least toxic synthetic pyrethroid. A wide variety of toxicities were observed among the essential oils screened. Also, plant essential oils were analyzed via gas chromatography/mass spectrometry (GC/MS) to identify the major components in each of the samples screened in this study. While the toxicities of these plant essential oils were demonstrated to be lower than those of the synthetic pyrethroids tested, the large amount of GC/MS data and bioactivity data for each essential oil presented in this study will serve as a valuable resource for future studies exploring the insecticidal quality of plant essential oils.

  14. Genetic selection of elite plants of oil palm using SELEGEN REML / BLUP software

    Directory of Open Access Journals (Sweden)

    Carlos Oliva

    2014-12-01

    Full Text Available Oil palm cultivation is one of the Peruvian Amazon, which generates more interest among investors, which has allowed to install at least 70 thousand of ha. When Peru has entered oil palm seeds of high genetic value, resistance to disease, pests and high performance, but over time has experienced variability in different ecosystems of the country. This study aimed to computerized genetic selection for selection of elite plants of high performance fresh fruit bunches (FFB of oil palm. For the computerized genetic analysis were available from SELEGEN Rml/Bloop software program that is designed for the analysis and selection. Benin and Ivory Coast are the ones with the best average, the minimum value is 22.1 kg/plant and the maximum value corresponds to 375.9 kg/plant. The 2301 hybrid has the best average performance, followed by the hybrid 2401, the maximum yield extreme values exceeding 340 kg/plant. The first year, the average yield was 46.62 kg/plant and for the third year of production, the average rose to 142.82 kg/pl. Individual performance repeatability for RFF kg/plant in both groups 2007 and 2008 was 0.10 and the repeatability of the average crop was 0.87 and 0.82 for groups 2007 and 2008, respectively. This led to a selective accuracy of 0.93 for 2007 and 0.90 for the group 2008.

  15. Bioassay screening of the essential oil and various extracts from 4 spices medicinal plants.

    Science.gov (United States)

    Sharififar, Fariba; Moshafi, Mohammad Hassan; Dehghan-Nudehe, Gholamreza; Ameri, Alieh; Alishahi, Fahimeh; Pourhemati, Amin

    2009-07-01

    Four commonly used spices plants in Iran were evaluated for cytotoxicity effect using Brine Shrimp Lethality (BSL) assay. Essential oils and various extracts of Heracleum persicum, Nigella arvensis, Cinnamomum zeylanicum and Zingiber officinale were assessed by two methods of disk and solution of BSL. Data were processed in probit-analysis program to estimate LC50 values. All of the tested fractions have exhibited more cytotoxicity in the solution method. Essential oils of H. persicum and C. zeylanicum have shown the most cytotoxicity with LC50 values 0.007 and 0.03 microg/ml respectively. None of aqueous extracts showed significant cytotoxicity. The analysis of the essential oil of H. persicum showed the hexyl butyrate and octyl acetate as the main compounds. These results suggest some limitation for using of these spices in diet. Furthermore, these plants could be considered as a source of cytotoxic compounds which might be studied in more details.

  16. Research Concerning Antimicrobial Activities of Some Essential Oils Extracted from Plants

    Directory of Open Access Journals (Sweden)

    ADRIANA DALILA CRISTE

    2014-11-01

    Full Text Available The principal components of some essential oils extracted from plants have been found to have microbial activity. Depending on the concentration, the members of this class are known to be bactericide or bacteriostatic. Their action mechanism is unclear, but some studies suggest that the compounds penetrate the cell, where they interfere with cellular metabolism. The purpose of this study was to evaluate the antimicrobial activity of 5 essential oils extracted from plants on Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus and Bacillus cereus and to determinate how different amount of the used oils can influence the results of inhibition tests. These results showed that mainly all the natural extracts presented an antimicrobial effect. Thereby, some extracts were more efficient than another and the order is: Eucalyptus globulus (eucalyptus, Mentha piperita (mint, Lavandula angustifolia (lavender, Matricaria chamomilla (chamomile, Calendula officinalis (calendula.

  17. The modification of plant oil composition via metabolic engineering--better nutrition by design.

    Science.gov (United States)

    Haslam, Richard P; Ruiz-Lopez, Noemi; Eastmond, Peter; Moloney, Maurice; Sayanova, Olga; Napier, Johnathan A

    2013-02-01

    This article will focus on the modification of plant seed oils to enhance their nutritional composition. Such modifications will include C18 Δ6-desaturated fatty acids such as γ-linolenic and stearidonic acid, omega-6 long-chain polyunsaturated fatty acids such as arachidonic acid, as well as the omega-3 long-chain polyunsaturated fatty acids (often named 'fish oils') such as eicosapentaenoic acid and docosahexaenoic acid. We will consider how new technologies (such as synthetic biology, next-generation sequencing and lipidomics) can help speed up and direct the development of desired traits in transgenic oilseeds. We will also discuss how manipulating triacylglycerol structure can further enhance the nutritional value of 'designer' oils. We will also consider how advances in model systems have translated into crops and the potential end-users for such novel oils (e.g. aquaculture, animal feed, human nutrition).

  18. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    Science.gov (United States)

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks. © 2012 CSIRO Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  19. Using Soxhlet Ethanol Extraction to Produce and Test Plant Material (Essential Oils for Their Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    James Redfern

    2013-11-01

    Full Text Available As the issue of antimicrobial resistance continues to grow, there is a renewed interest in deriving antimicrobial products from natural compounds, particularly extracts from plant materials. This paper describes how essential oil can be extracted from the common herb, thyme (Thymus vulgaris in the classroom. Subsequently, the extract can be tested for its antimicrobial activity. A number of variables are suggested.

  20. Effects of plant sterols and olive oil phenols on serum lipoproteins in humans

    NARCIS (Netherlands)

    Vissers, M.N.

    2001-01-01

    The studies described in this thesis investigated whether minor components from vegetable oils can improve health by decreasing cholesterol concentrations or oxidative modification of low-density-lipoprotein (LDL) particles.

    The plant sterolsβ-sitosterol and sitostanol are

  1. Organic Chemistry and the Native Plants of the Sonoran Desert: Conversion of Jojoba Oil to Biodiesel

    Science.gov (United States)

    Daconta, Lisa V.; Minger, Timothy; Nedelkova, Valentina; Zikopoulos, John N.

    2015-01-01

    A new, general approach to the organic chemistry laboratory is introduced that is based on learning about organic chemistry techniques and research methods by exploring the natural products found in local native plants. As an example of this approach for the Sonoran desert region, the extraction of jojoba oil and its transesterification to…

  2. Influence of Production Process Parameters on Fish Oil Quality in a Pilot Plant

    NARCIS (Netherlands)

    Aidos, I.M.; Kreb, N.; Boonman, M.; Luten, J.B.; Boom, R.M.; Padt, van der A.

    2003-01-01

    A pilot plant used for upgrading herring byproducts into fish oil was analyzed on its operational efficiency and product quality. The temperature of the heat exchanger and the speeds of the pump and the 3-phase decanter were varied according to a 23 fractional factorial design. The initial amount of

  3. Organic Chemistry and the Native Plants of the Sonoran Desert: Conversion of Jojoba Oil to Biodiesel

    Science.gov (United States)

    Daconta, Lisa V.; Minger, Timothy; Nedelkova, Valentina; Zikopoulos, John N.

    2015-01-01

    A new, general approach to the organic chemistry laboratory is introduced that is based on learning about organic chemistry techniques and research methods by exploring the natural products found in local native plants. As an example of this approach for the Sonoran desert region, the extraction of jojoba oil and its transesterification to…

  4. Isolation of essential oil from different plants and herbs by supercritical fluid extraction.

    Science.gov (United States)

    Fornari, Tiziana; Vicente, Gonzalo; Vázquez, Erika; García-Risco, Mónica R; Reglero, Guillermo

    2012-08-10

    Supercritical fluid extraction (SFE) is an innovative, clean and environmental friendly technology with particular interest for the extraction of essential oil from plants and herbs. Supercritical CO(2) is selective, there is no associated waste treatment of a toxic solvent, and extraction times are moderate. Further, supercritical extracts were often recognized of superior quality when compared with those produced by hydro-distillation or liquid-solid extraction. This review provides a comprehensive and updated discussion of the developments and applications of SFE in the isolation of essential oils from plant matrices. SFE is normally performed with pure CO(2) or using a cosolvent; fractionation of the extract is commonly accomplished in order to isolate the volatile oil compounds from other co-extracted substances. In this review the effect of pressure, temperature and cosolvent on the extraction and fractionation procedure is discussed. Additionally, a comparison of the extraction yield and composition of the essential oil of several plants and herbs from Lamiaceae family, namely oregano, sage, thyme, rosemary, basil, marjoram and marigold, which were produced in our supercritical pilot-plant device, is presented and discussed.

  5. Effects of plant sterols and olive oil phenols on serum lipoproteins in humans

    NARCIS (Netherlands)

    Vissers, M.N.

    2001-01-01

    The studies described in this thesis investigated whether minor components from vegetable oils can improve health by decreasing cholesterol concentrations or oxidative modification of low-density-lipoprotein (LDL) particles.The plant sterolsβ-sitosterol and sitostanol are known to decrease cholester

  6. An attempt of postharvest orange fruit rot control using essential oils from Mediterranean plants.

    Science.gov (United States)

    Camele, Ippolito; De Feo, Vincenzo; Altieri, Luciana; Mancini, Emilia; De Martino, Laura; Luigi Rana, Gian

    2010-12-01

    Twelve essential oils from Mediterranean aromatic plants were tested at different doses against four fungi known as causal agents of post-harvest orange fruit rot: Botrytis cinerea, Penicillium italicum, Phytophthora citrophthora, and Rhizopus stolonifer. Essential oils were obtained from Hyssopus officinalis, Lavandula angustifolia, Majorana hortensis, Melissa officinalis, Ocimum basilicum, Origanum vulgare, Salvia officinalis, and Thymus vulgaris (Family Lamiaceae), Verbena officinalis (Family Verbenaceae), and Pimpinella anisum, Foeniculum vulgare, and Carum carvi (Family Apiaceae). Because preliminary in vitro experiments showed that only the oils from V. officinalis, T. vulgaris, and O. vulgare exhibited some fungistatic activity against the above-named fungi, these three essential oils were used in successive in vivo tests carried out to protect healthy "Washington navel" orange fruits from artificial infection by the same micromycetes. The essential oil of T. vulgaris, at a 2,000 ppm dose, controlled fruit rot by B. cinerea, P. citrophthora, and R. stolonifer but was ineffective against P. italicum. Essential oils of V. officinalis and O. vulgare inhibited infection by the first two fungi and only by P. citrophthora, respectively. This finding represents an important result, with the goal of using the essential oils as natural preservatives for food products, due to their positive effect on their safety and shelf life.

  7. Options for reducing oil content of sludge from a petroleum wastewater treatment plant.

    Science.gov (United States)

    Kwon, Tae-Soon; Lee, Jae-Young

    2015-10-01

    Wastewater treatment plants at petroleum refineries often produce substantial quantities of sludge with relatively high concentrations of oil. Disposal of this waste is costly, in part because the high oil content requires use of secure disposal methods akin to handling of hazardous wastes. This article examines the properties of oily sludge and evaluates optional methods for reducing the oil content of this sludge to enable use of lower cost disposal methods. To reduce the oil content or break the structure of oily sludge, preliminary lab-scale experiments involving mechanical treatment, surfactant extraction, and oxidation are conducted. By applying surfactants, approximately 36% to 45% of oils are extracted from oily sludge. Of this, about 33% of oils are rapidly oxidised via radiation by an electron beam within 10 s of exposure. The Fenton reaction is effective for destruction of oily sludge. It is also found that 56% of oils were removed by reacting oily sludge with water containing ozone of 0.5 mg l(-1) over a period of 24 h. Oxidation using ozone thus can also be effectively used as a pretreatment for oily sludge.

  8. Antifungal Activity of Essential Oils from Some Medicinal Plants of Iran against Alternaria alternate

    Directory of Open Access Journals (Sweden)

    I. Hadizadeh

    2009-01-01

    Full Text Available Problem statement: Increasing public concern over the level of pesticide residues in food especially fresh produce has built up adequate pressure for scientists to look for less hazardous and environmentally safer compounds for controlling post harvest diseases. Essential oils as registered food grade materials have the potential to be applied as alternative anti-fungal treatments for fresh fruits and vegetables. Approach: We present in this study, the identification of the essential oils with antifungal activity from some medicinal plants of Iran (nettle (Urtica dioica L., thyme (Thymus vulgaris L., eucalyptus (Eucalyptus spp., Rue (Ruta graveolens L. and common yarrow (Achillea millefolium L., and their potential application as "generally regarded as safe" antifungal compounds against Alternaria alternate on tomato as a model pathosystem. Results: Both the nettle and the thyme oils exhibited antifungal activity against A. alternata. The thyme oil exhibited a lower degree of inhibition 68.5 and 74.8% at 1500 and 2000 ppm, respectively. Spore germination and germ tube elongation of the pathogens in potato dextrose broth was strongly reduced in the presence of 1500 ppm of the nettle oil. The same concentration of this oil reduced the percentage of decayed tomatoes. The experiments on reducing the development of natural tomato rot gave similar results. Conclusions: Application of essential oils for postharvest disease control of fresh produce, as a novel emerging alternative to hazardous anti-fungal treatments will allow a safer and environmentally more acceptable management of postharvest diseases.

  9. Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria.

    Science.gov (United States)

    Silva, Nuno; Alves, Sofia; Gonçalves, Alexandre; Amaral, Joana S; Poeta, Patrícia

    2013-12-01

    The antimicrobial activity of essential oils extracted from a variety of aromatic plants, often used in the Portuguese gastronomy was studied in vitro by the agar diffusion method. The essential oils of thyme, oregano, rosemary, verbena, basil, peppermint, pennyroyal and mint were tested against Gram-positive (Listeria monocytogenes, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Staphylococcus epidermidis) and Gram-negative strains (Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa). For most essential oils examined, S. aureus, was the most susceptible bacteria, while P. aeruginosa showed, in general, least susceptibility. Among the eight essential oils evaluated, thyme, oregano and pennyroyal oils showed the greatest antimicrobial activity, followed by rosemary, peppermint and verbena, while basil and mint showed the weakest antimicrobial activity. Most of the essential oils considered in this study exhibited a significant inhibitory effect. Thyme oil showed a promising inhibitory activity even at low concentration, thus revealing its potential as a natural preservative in food products against several causal agents of foodborne diseases and food spoilage. In general, the results demonstrate that, besides flavoring the food, the use of aromatic herbs in gastronomy can also contribute to a bacteriostatic effect against pathogens.

  10. Mosquito (Diptera: Culicidae) repellency field tests of essential oils from plants traditionally used in Laos.

    Science.gov (United States)

    Vongsombath, Chanda; Pålsson, Katinka; Björk, Lars; Borg-Karlson, Anna-Karin; Jaenson, Thomas G T

    2012-11-01

    Essential oils of Hyptis suaveolens (Lamiaceae), Croton roxburghii (Euphorbiaceae), and Litsea cubeba (Lauraceae) were tested in the field near Vientiane city, Lao PDR, on humans for repellent activity against mosquitoes. Landing mosquitoes were collected and later identified. The most abundant mosquitoes captured belonged to the genera Armigeres, Culex, and Aedes. All the plant oils tested at concentrations of 1.7 microg/cm(2), 3.3 microg/cm(2), and 6.3 microg/cm(2) were significantly more mosquito repellent than the negative control. Croton oil was significantly repellent against mosquitoes of the three genera at the highest (6.3 microg/cm(2)) concentration tested. Litsea oil was significantly repellent against Armigeres at all (1.7 microg/cm(2), 3.3 microg/cm(2), and 6.3 microg/cm(2)) concentrations tested. Hyptis oil was significantly repellent against Armigeres at 3.3 microg/cm(2) and 6.3 microg/cm(2) and against Culex at 1.7 microg/cm(2) and 6.3 microg/cm(2). The oils were analyzed for chemical content of volatiles, mainly terpenes. Main constituents were beta-pinene, sabinene, and 1,8-cineol from oils of the green parts of H. suaveolens; alpha-pinene, beta-pinene, and alpha-phellandrene from fresh bark of C. roxburghii; and alpha-pinene, beta-phellandrene, sabinene, and 1,8-cineol from fresh fruits of L. cubeba.

  11. Chemical composition and antimicrobial activity of the essential oil from the edible aromatic plant Aristolochia delavayi.

    Science.gov (United States)

    Li, Zhi-Jian; Njateng, Guy S S; He, Wen-Jia; Zhang, Hong-Xia; Gu, Jian-Long; Chen, Shan-Na; Du, Zhi-Zhi

    2013-11-01

    The essential oil obtained by hydrodistillation from the aerial parts of Aristolochia delavayi Franch. (Aristolochiaceae), a unique edible aromatic plant consumed by the Nakhi (Naxi) people in Yunnan, China, was investigated using GC/MS analysis. In total, 95 components, representing more than 95% of the oil composition, were identified, and the main constituents found were (E)-dec-2-enal (52.0%), (E)-dodec-2-enal (6.8%), dodecanal (3.35%), heptanal (2.88%), and decanal (2.63%). The essential oil showed strong inhibitory activity (96% reduction) of the production of bacterial volatile sulfide compounds (VSC) by Klebsiella pneumoniae, an effect that was comparable with that of the reference compound citral (91% reduction). Moreover, the antimicrobial activity of the essential oil and the isolated major compound against eight bacterial and six fungal strains were evaluated. The essential oil showed significant antibacterial activity against Providencia stuartii and Escherichia coli, with minimal inhibitory concentrations (MIC) ranging from 3.9 to 62.5 μg/ml. The oil also showed strong inhibitory activity against the fungal strains Trichophyton ajelloi, Trichophyton terrestre, Candida glabrata, Candida guilliermondii, and Cryptococcus neoformans, with MIC values ranging from 3.9 to 31.25 μg/ml, while (E)-dec-2-enal presented a lower antifungal activity than the essential oil.

  12. Essential plant oils in reducing the intensity of soft rot in Chinese cabbage

    Directory of Open Access Journals (Sweden)

    Myrzânia de Lira Guerra

    Full Text Available The action of essential oils in reducing soft rot in Chinese cabbage, and their influence on the colorimetry and physicochemical characteristics of the vegetable were evaluated. In the greenhouse, plants of the cultivar Natsume were sprayed with 11 oils selected in preliminary tests for phytotoxicity: bergamot, lemongrass, copaiba, Eucalyptus citriodora, blue gum, fennel, ginger, spearmint, sweet orange, lemon and clary sage (0.5% and also the antibiotic Mycoshield® (3 g L-1. After 72 hours the plants were inoculated with Pectobacterium carotovorum subsp. carotovorum (Pcc-c. The oils and the Mycoshield® significantly reduced (P<0.05 the severity (SEV and the area under the disease progress curve (AUDPC. The oils of bergamot, copaiba, E. citriodora, spearmint and sweet orange were then tested for the stability of their effectiveness in the control of three isolates of P. carotovora subsp. carotovorum. These oils reduced the SEV (30.5 to 38.6% and the AUDPC (23.1 to 26.6% with no differences between them or the Mycoshield® (SEV 45.2 and AUDPC 32.8%, except for the copaiba (20.3% which was less effective than the antibiotic in the reduction of the AUDPC. In vitro, only Mycoshield® inhibited the pathogen. None of the treatments altered the colorimetry, levels of ascorbic acid or pH of the leaves of the Chinese cabbage. The spearmint oil increased the total titratable acidity in the same way as the oils of sweet orange, E. citriodora and bergamot increased the total soluble solids. Therefore, spraying with the oils of bergamot, copaiba, E. citriodora, spearmint and sweet orange has potential in the control of this disease.

  13. Activity of Six Essential Oils Extracted from Tunisian Plants against Legionella pneumophila.

    Science.gov (United States)

    Chaftar, Naouel; Girardot, Marion; Quellard, Nathalie; Labanowski, Jérôme; Ghrairi, Tawfik; Hani, Khaled; Frère, Jacques; Imbert, Christine

    2015-10-01

    The aim of this study was to investigate the composition of six essential oils extracted from Tunisian plants, i.e., Artemisia herba-alba Asso, Citrus sinensis (L.) Osbeck, Juniperus phoenicea L., Rosmarinus officinalis L., Ruta graveolens L., and Thymus vulgaris L., and to evaluate their activity against Legionella pneumophila (microdilution assays). Eight Legionella pneumophila strains were studied, including the two well-known serogroup 1 Lens and Paris strains as controls and six environmental strains isolated from Tunisian spas belonging to serogroups 1, 4, 5, 6, and 8. The essential oils were generally active against L. pneumophila. The activities of the A. herba-alba, C. sinensis, and R. officinalis essential oils were strain-dependent, whereas those of the J. phoenicea and T. vulgaris oils, showing the highest anti-Legionella activities, with minimum inhibitory concentrations (MICs) lower than 0.03 and lower than or equal to 0.07 mg/ml, respectively, were independent of the strains' serogroup. Moreover, the microorganisms treated with T. vulgaris essential oil were shorter, swollen, and less electron-dense compared to the untreated controls. Isoborneol (20.91%), (1S)-α-pinene (18.30%) β-phellandrene (8.08%), α-campholenal (7.91%), and α-phellandrene (7.58%) were the major components isolated from the J. phoenicea oil, while carvacrol (88.50%) was the main compound of the T. vulgaris oil, followed by p-cymene (7.86%). This study highlighted the potential interest of some essential oils extracted from Tunisian plants as biocides to prevent the Legionella risk.

  14. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    Science.gov (United States)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.

  15. The Growth Condition and Oil Production of Microalgae with Several Kinds of Plant Hormones

    Institute of Scientific and Technical Information of China (English)

    QIU Chen

    2016-01-01

    Microalgae as an important marine resources, rich in high content of polysaccharide, protein, fatty acids. The fatty acid content of microalgae is high, and its propagation speed is faster than herbaceous plants. It also has a high use value. The experiment tried on the basis of the screening of high yield oil microalgae, add different commonly used plant hormone, using growth monitoring, analysis of product components. Select several plant hormones to improve microalgae products production, provides guidance on the deep research and commercial production.

  16. Who lives near coke plants and oil refineries An exploration of the environmental inequity hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J.D.; Beaulieu, N.D.; Sussman, D.; Sadowitz, M.; Li, Y.C. (Harvard Center for Risk Analysis, Boston, MA (United States))

    1999-04-01

    Facility-specific information on pollution was obtained for 36 coke plants and 46 oil refineries in the US and matched with information on populations surrounding these 82 facilities. These data were analyzed to determine whether environmental inequities were present, whether they were more economic or racial in nature, and whether the racial composition of nearby communities has changed significantly since plants began operations. The Census tracts near coke plants have a disproportionate share of poor and nonwhite residents. Multivariate analyses suggest that existing inequities are primarily economic in nature. The findings for oil refineries are not strongly supportive of the environmental inequity hypothesis. Rank ordering of facilities by race, poverty, and pollution produces limited (although not consistent) evidence that the more risky facilities tend to be operating in communities with above-median proportions of nonwhite residents (near coke plants) and Hispanic residents (near oil refineries). Over time, the radical makeup of many communities near facilities has changed significantly, particularly in the case of coke plants sited in the early 1900s. Further risk-oriented studies of multiple manufacturing facilities in various industrial sectors of the economy are recommended.

  17. Protective effect of some plant oils on diazinon induced hepatorenal toxicity in male rats

    Directory of Open Access Journals (Sweden)

    Atef M. Al-Attar

    2017-09-01

    Full Text Available Environmental pollution and exposure to environmental pollutants are still some of the major global health issues. Pesticides have been linked to a wide range of health hazards. The toxicity of pesticides depends on several factors such as its chemical properties, doses, exposure period, exposure methods, gender, genetics, age, nutritional status and physiological case of exposed individuals. Medicinal plants, natural products and nutrition continue to play a central role in the healthcare system of large proportions of the world’s population. Alternative medicine plays an important role in health services around the world. The aim of this study was to investigate the effect of olive, sesame and black seed oils on hepatorenal toxicity induced by diazinon (DZN in male rats. The experimental animals were divided into nine groups. The first group served as control. The second group was exposed to DZN. The third group was treated with olive oil and DZN. Rats of the fourth group were subjected to sesame oil and DZN. Rats of the fifth group were exposed to black seed oil and DZN. The sixth, seventh and eighth groups were supplemented with olive, sesame and black seed oils respectively. Rats of the ninth group were treated with corn oil. Levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transferase, total bilirubin, creatinine, blood urea nitrogen and malondialdehyde were significantly increased in rats exposed to DZN. Moreover, levels of serum glutathione and superoxide dismutase were significantly decreased. Several histopathological changes were observed in the structures of liver and kidney due to DZN exposure. This study showed that these oils attenuated the physiological disturbances and histopathological alterations induced by DZN intoxication. Moreover, the antioxidant properties of these oils support the bioactive roles of its protective effects on DZN toxicity. This study therefore

  18. Life cycle assessment (LCA) of an energy recovery plant in the olive oil industries

    Energy Technology Data Exchange (ETDEWEB)

    Intini, Francesca; Kuhtz, Silvana [Dep. Engineering and Environmental Physics, Faculty of Engineering, University of Basilicata (Italy); Gianluca Rospi, [Dep. Engineering and Environmental Physics, Faculty of Architecture, University of Basilicata (Italy)

    2012-07-01

    To reduce the GHG emissions in the UE and to increase the produced energy it is important to spread out decentralized technologies for renewable energy production. In this paper a power plant fed with biomass is studied, in particular the biomass considered is the waste of the olive oil industries. This study focuses on the possibility of using the de-oiled pomace and waste wood as fuel. A life cycle assessment (LCA) of a biomass power plant located in the South of Italy was performed. The global warming potential has been calculated and compared with that of a plant for energy production that uses refuse derived fuel (RDF) and that of one that uses coal. The LCA shows the important environmental advantages of biomass utilization in terms of greenhouse gas emissions reduction. An improved impact assessment methodology may better underline the advantages due to the biomass utilization.

  19. Life cycle assessment (LCA of an energy recovery plant in the olive oil industries

    Directory of Open Access Journals (Sweden)

    Francesca Intini, Silvana Kühtz, Gianluca Rospi

    2012-01-01

    Full Text Available To reduce the GHG emissions in the UE and to increase the produced energy it is important to spread out decentralized technologies for renewable energy production. In this paper a power plant fed with biomass is studied, in particular the biomass considered is the waste of the olive oil industries. This study focuses on the possibility of using the de-oiled pomace and waste wood as fuel. A life cycle assessment (LCA of a biomass power plant located in the South of Italy was performed. The global warming potential has been calculated and compared with that of a plant for energy production that uses refuse derived fuel (RDF and that of one that uses coal. The LCA shows the important environmental advantages of biomass utilization in terms of greenhouse gas emissions reduction. An improved impact assessment methodology may better underline the advantages due to the biomass utilization.

  20. Antibacterial activity chemical composition relationship of the essential oils from cultivated plants from Serbia

    Directory of Open Access Journals (Sweden)

    Stanković Nemanja S.

    2011-01-01

    Full Text Available The antibacterial effects of essential oils from Serbian cultivated plants, Thymus vulgaris L. (Lamiace and Lavandula angustifolia L. (Lamiace on different bacteria were investigated, with an emphasis on an antibacterial activity-chemical composition relationship. Essential oil was obtained from airdried aerial parts of the plants by hydrodistillation for 3 h using a Clevenger-type apparatus. The essential oil analyses were performed simultaneously by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS systems. The main constituents of thyme oil were thymol (59.95% and p-cymene (18.34%. Linalyl acetate (38.23% and linalool (35.01% were main compounds in lavender oil. The antibacterial activity of the essential oils samples was tested towards 5 different bacteria: laboratory control strain obtained from the American Type Culture Collection and clinical isolates from different pathogenic media. Gram negative bacteria were represented by Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 43895 and Salmonella enteretidis ATCC 9027 while researched Gram positive strains were Bacillus cereus ATCC 8739 and Staphylococcus aureus ATCC 25923. A broth microdilution method was used to determine the minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC. Essential oils from thyme have been found to have antimicrobial activity against all microorganisms tested, with a range of MIC values from 0.025 to 0.10 l/ml and MBC values from 0.05 to 0.78 l/ml. Lavender oils demonstrated MIC values from 0.025 to 0.20 l/ml and MBC values from 0.05 and 0.78 l/ml. Reference antibiotic tetracycline was active in concentrations between 0.025 and 0.05 l/ml. The Gram-positive bacteria were more sensitive to the essential oil of thyme, while Gram-negative bacteria were more sensitive to the essential oil of lavender. Essential oils from thyme and lavender may be used at low concentrations for prevention and treatment of

  1. Acaricidal properties of the formulations based on essential oils from Cymbopogon winterianus and Syzygium aromaticum plants.

    Science.gov (United States)

    de Mello, Valéria; Prata, Márcia Cristina de Azevedo; da Silva, Márcio Roberto; Daemon, Erik; da Silva, Luciane Santos; Guimarães, Flávia del Gaudio; de Mendonça, Alessandra Esther; Folly, Evelize; Vilela, Fernanda Maria Pinto; do Amaral, Lilian Henriques; Cabral, Lucio Mendes; do Amaral, Maria da Penha Henriques

    2014-12-01

    The cattle tick, Rhipicephalus (Boophilus) microplus, has caused serious harm to livestock raising in Brazil, considering the costs of controlling it, loss of revenue due to smaller production of milk and meat, and damage to leather, in addition to transmitting diseases. The use of medicinal plants is considered an alternative to the recurring resistance to chemicals. Due to the need for efficient alternatives with less environmental impact, this study aimed to develop contact formulations with essential oils from the Java citronella (Cymbopogon winterianus) and clove (Syzygium aromaticum) plants and to assess in vitro the effects in different stages of the tick cycle. In the present study, concentrations from 0.5-15.0% of the essential oils incorporated in the formulations were used. The ticks from different geographical areas were treated with those formulations, and their effects on the production levels of eggs, on the larvae hatching, and their efficiency on ticks were assessed. The obtained results were compared with other commercial acaricidal products. After the 20th day of treatment, the formulations with citronella essential oil had 2.09-55.51% efficiency, depending on the concentration of the oil incorporated. The efficiency of the treatment with formulations containing clove essential oil was higher, from 92.47-100%. The results showed the acaricidal effects of the formulations tested when compared to commercial chemical products. In vivo studies should be performed in order to assess the efficiency of those formulations in the fields, aiming to use these products as an alternative for controlling cattle ticks.

  2. Plant oils thymol and eugenol affect cattle and swine waste emissions differently.

    Science.gov (United States)

    Varel, V H; Miller, D N; Lindsay, A D

    2004-01-01

    Wastes generated from the production of cattle and swine in confined facilities create the potential for surface and groundwater pollution, emission of greenhouse gases, transmission of pathogens to food and water sources, and odor. It is our hypothesis that something which inhibits microbial fermentation in livestock wastes will be beneficial to solving some of the environmental problems. Our work has concentrated on the use of antimicrobial plant oils, thymol, thyme oil, carvacrol, eugenol and clove oil. Anaerobic one-litre flasks with a working volume of 0.5 L cattle or swine manure were used to evaluate the effect of thymol and eugenol on production of fermentation gas, short-chain volatile fatty acids, lactate, and bacterial populations. Either oil at 0.2% in both wastes essentially stopped all production of gas and volatile fatty acids, and eliminated all fecal coliform bacteria. In cattle but not swine waste, thymol prevented the accumulation of lactate. However, eugenol stimulated lactate formation in cattle and swine wastes. Thus, eugenol may offer a distinct advantage over thymol, because lactate accumulation in the wastes causes the pH to drop more rapidly, further inhibiting microbial activity and nutrient emissions. We conclude that plant oils may offer solutions to controlling various environmental problems associated with livestock wastes, assuming that they are cost-effective.

  3. Mild separation system for olive oil: quality evaluation and pilot plant design

    Directory of Open Access Journals (Sweden)

    Francesco Genovese

    2013-09-01

    Full Text Available The entire process of olive oil extraction involves the breakage of olive fruits to obtain a paste, the kneading of the paste, a centrifugation, and a further cleaning, performed by a disc stack centrifuge, to separate the residual water. In this research, in order to evaluate the effect of final centrifugal separation on olive oil quality and to both define and design the settings of a innovative separation system, olive oil was separated off from water using an accelerated separation process, tested in comparison with a disc centrifuge. The laboratory plant used for the trials was constituted by a twin cylindrical separator equipped with 4 variable frequency inverters, in order to regulate the fluid flow rates in the plant. Oil samples were collected during the trials to evaluate the influence of the proposed innovative process on oil quality; measuring some parameters as free acidity, peroxides (PV, specific extinction coefficients K232 and K270, chlorophylls , carotenoids, total polyphenols (POL and turbidity. Results showed statistically significant differences (p-values<0.05 in some parameters as POL, PV, and ultraviolet absorption K232 and K270.

  4. Oil-bearing plants of Zaire. III. Botanical families providing oils of relatively high unsaturation

    Energy Technology Data Exchange (ETDEWEB)

    Ngiefu, C.K.; Paquot, C.; Vieux, A.

    1977-01-01

    Data are tabulated on the seed oil composition of 16 species of Leguminosae (including Albizia lebbeck, Caesalpinia pulcherrima, and Delonix regia), 6 species of Euphorbiaceae (including Aleurites moluccana, Hevea brasiliensis and Jatropha curcas) and 1 species (Kigelia africana) of Bignoniaceae. The most interesting for food and industrial purposes appear to be Afzelia bella, Adenanthera pavonina and Pentaclethra macrophylla, in addition to A. moluccana and H. brasiliensis.

  5. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus).

    Science.gov (United States)

    Kim, Junheon; Seo, Sun-Mi; Lee, Sang-Gil; Shin, Sang-Chul; Park, Il-Kwon

    2008-08-27

    Commercial essential oils from 28 plant species were tested for their nematicidal activities against the pine wood nematode, Bursaphelenchus xylophilus. Good nematicidal activity against B. xylophilus was achieved with essential oils of coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii). Analysis by gas chromatography-mass spectrometry led to the identification of 26, 11, and 4 major compounds from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) oils, respectively. Compounds from each plant essential oil were tested individually for their nematicidal activities against the pine wood nematode. Among the compounds, benzaldehyde, trans-cinnamyl alcohol, cis-asarone, octanal, nonanal, decanal, trans-2-decenal, undecanal, dodecanal, decanol, and trans-2-decen-1-ol showed strong nematicidal activity. The essential oils described herein merit further study as potential nematicides against the pine wood nematode.

  6. How to Adjust XPCC’s Planting Structure of Grain,Cotton,Oil and Sugar?

    Institute of Scientific and Technical Information of China (English)

    Xin; ZHANG; Gang; WANG; Guodong; WANG; Fei; LIANG

    2015-01-01

    XPCC has long shouldered the mission of exploitation of virgin land in border area,but the special geographic distribution leads to regional segmentation and administrative division in the planting structure of grain,cotton,oil and sugar for XPCC. Since 1980,XPCC’s total planting area of grain,cotton,oil and sugar has increased steadily year by year. The yield levels show a unimodal trend; the total yield of cotton has been showing a geometric growth trend; the total yield of oil crops and sugar beet shows a fluctuating growth trend,but the total yield of grain crops shows a bimodal growth trend. XPCC’s grain crops are mainly in the farms of Division 4 in Ili Valley and Division 6 in Changji;cotton production in South and North Xinjiang is basically the same,and the yield in South Xinjiang is slightly higher than in North Xinjiang,but cotton can not be planted in most farms of Division 9 and Division 10; oil crops are grown mainly in cold regions; sugar beet is mainly in the farms of Division 2,Division 4,Division 7 and Division 9. Some factors are limiting XPCC’s farming development such as unreasonable agricultural structure,quite different regional production levels and great grain crop yield fluctuations. Therefore,it is recommended to optimize regional distribution,increase efforts to promote new technologies,and strengthen brand building to help XPCC to give play to the agricultural resource advantages.

  7. Using modern plant breeding to improve the nutritional and technological qualities of oil crops

    Directory of Open Access Journals (Sweden)

    Murphy Denis J.

    2014-11-01

    Full Text Available The last few decades have seen huge advances in our understanding of plant biology and in the development of new technologies for the manipulation of crop plants. The application of relatively straightforward breeding and selection methods made possible the “Green Revolution” of the 1960s and 1970s that effectively doubled or trebled cereal production in much of the world and averted mass famine in Asia. During the 2000s, much attention has been focused on genomic approaches to plant breeding with the deployment of a new generation of technologies, such as marker-assisted selection, next-generation sequencing, transgenesis (genetic engineering or GM and automatic mutagenesis/selection (TILLING, TargetIng Local Lesions IN Genomes. These methods are now being applied to a wide range of crops and have particularly good potential for oil crop improvement in terms of both overall food and non-food yield and nutritional and technical quality of the oils. Key targets include increasing overall oil yield and stability on a per seed or per fruit basis and very high oleic acid content in seed and fruit oils for both premium edible and oleochemical applications. Other more specialised targets include oils enriched in nutritionally desirable “fish oil”-like fatty acids, especially very long chain !-3 acids such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, or increased levels of lipidic vitamins such as carotenoids, tocopherols and tocotrienes. Progress in producing such oils in commercial crops has been good in recent years with several varieties being released or at advanced stages of development.

  8. Bioefficacy of essential oils of medicinal plants against housefly, Musca domestica L.

    Science.gov (United States)

    Morey, Rashmi A; Khandagle, Abhay J

    2012-10-01

    The housefly Musca domestica L. is recognized as a public health pest causing a serious threat to human and livestock by vectoring many infectious diseases. Chemical control method commonly used against this pest, though effective, has some major disadvantages, such as development of insect resistance and bioaccumulation. Pest management strategies for populations of houseflies are needed. Presently, bioinsecticides, especially those derived from plant origin, have been increasingly evaluated in controlling insects of medical importance. In order to search for effective and ecofriendly control agents, the essential oils of Mentha piperita, Zingiber officinalis, Emblica officinalis, and Cinnamomum verum were evaluated for their larvicidal, attractant/repellent, and oviposition attractant/deterrent activity against M. domestica. The highest larvicidal activity, i.e., C(50) = 104 ppm was shown by M. piperita. This oil also exhibited 96.8% repellency at the concentration of 1%. The highest oviposition deterrence activity of 98.1% was also exhibited by M. piperita oil at the concentration of 1%. Among the remaining plants, the essential oil of Z. officinalis exhibited significant bioactivities against M. domestica with larvicidal activity, i.e., lethal concentration (LC)(50) = 137 ppm, repellency of 84.9 and 98.1% oviposition deterrence both at 1% concentration. The other two plant oils, viz., C. verum and E. officinalis, showed relatively moderate bioefficacy with larvicidal activity, i.e., LC(50) = 159 and 259 ppm, repellency of 77.9 and 63.0% while oviposition deterrence of 60.0 and 42.6%, respectively. The result revealed that the essential oils of M. piperita have control potential against M. domestica and should be further explored as a component of integrated vector management program.

  9. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    Science.gov (United States)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides

  10. Walnut Staminate Flowers Can Be Explored as a Supplementary Plant Oil Source

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Fossil fuel is currently the major energy source driving global socio-economy, but its stock is being heavily depleted due to increasing anthropogenic activities worldwide. There are also concerns regarding the burning of fossil fuels, which contributes to global climate warming and air pollution. As such, the development of biodiesel as a non-toxic, biodegradable, and renewable alternative energy source using oil crops such as soybean and rapeseed has quickly emerged in the West countries. However, the production of oil crops in China is far from sufficient to meet the demands of the country's population of 1.3 billion, and increasing oil crop production is inhibited by a severe shortage of agricultural land, which currently averages 0.2 acre per person and, as such, is less than half the world average. The current national policy in China regarding land use is more towards revering cultivated lands in ravins and hills to forestry, which presents an ideal opportunity to further develop plantations of walnut (Juglans regia L.) trees, a plant that is tolerant to drought and infertile soils and has a high oil content. Study in this paper shows that one ament of walnut staminate flowers produces about 0.168 g dry pollen, and the dry pollen contained 49.67% oil. Based on this discovery, oil yield obtained from staminate flowers is estimated to reach 6.95% of that from walnut nuts. Thus walnut staminate flower is suggested to explore as supplementary plant oil source, and has a great opportunity to utilize as a biodiesel feedstock.

  11. Lubricants for wind power plants. Gear oils. Requirements and properties; Schmierstoffe fuer Windenergieanlagen. Getriebeoele. Anforderungen und Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Wolfgang [Fuchs Europe Schmierstoffe GmbH, Mannheim (Germany)

    2012-11-01

    Alternative energy supply is in the focus and in the discussion world-wide. Electrical energy coming from wind power plants is an important part in the energy supply chain. The lubricants used in wind power plants are often special lubricants, developed for the specific requirements of the application. The range of lubricants included adhesive lubricants, greases, pastes, hydraulic fluids, gear and lubricating oils as well as other specialities. Besides the greases and the hydraulic oils, the gear oil is the most important lubricant in wind power plants. The gear oil is used in the main gear of a wind power plant or in the Azimut gear sets. The lubricant has to be developed to match the requirements of the gear set, the tooth sets, the bearings, the seals, paints, etc. The gear oil has to fulfil the requirements according to DIN 51517, part 3 - CLP / CKC industrial gear oils, and in addition the specific requirements of gear and bearing manufacturers according to wind power plant specifications have to be fulfilled. The presentation ''Lubricants for Wind Power Plants - Requirements and Properties'' gives an overview of the industrial gear oils market, the classification of gear oils according to German and international standards is presented, and it describes the properties of a fully synthetic industrial gear oil based on polyalphaolefin which was especially developed for the main gear unit in wind power plants. The mechanical-dynamic tests for gear oils used in wind power plants (anti-scuffing properties, roller bearing wear protection, micro-pitting protection) are presented, together with the specific tests required by world-wide known bearing manufacturers. In addition the presentation shows test results of low speed wear tests. Compatibility tests with elastomers and sealing materials and the low temperature properties of fully synthetic gear oils based on polyalphaolefin are also discussed. The industrial gear oils for wind power plants

  12. Effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame (Sesamum indicum

    Directory of Open Access Journals (Sweden)

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame, an experiment was conducted at experimental station, college of agriculture, Ferdowsi University of Mashhad. Four different irrigation intervals (one, two, three and four weeks with four plant densities (20, 30, 40 and 50 plants/m2 were compared in a spilt plot arrangement based on randomized complete block design with four replications. Irrigation intervals and plant densities allocated in main plots and subplots, respectively. Different characteristics such as plant height, distance of first capsule from soil surface, number of branches per plant, number of grains per capsule, number of capsules per plant, grain yield, 1000-seed weight, harvest index and oil yield were recorded. The results showed that there were no significant difference between different irrigation intervals in terms of distance of first capsule from soil surface, number of grains per capsule, 1000-seed weight and harvest index. Different irrigation intervals had significant effects on plant height, number of branches per plant, number of capsules per plant, grain yield and oil yield. There were significant differences between different plant densities in terms of distance of first capsule from soil surface, number of branches per plant, number of graines per capsule, number of capsules per plant, grain yield, harvest index and oil yield. The highest grain yield (798/7 kg/ha and oil yield (412/8 kg/ha were obtained at one week and four weeks irrigation intervals, respectively. Between all treatments, 50 plants/m2 and one week irrigation interval produced the highest grain yield (914/7 kg/ha and oil yield (478/6 kg/ha. Because of shortage of water in Mashhad condition, the results recommended that, 50 plants/m2 and two weeks irrigation interval produced rather acceptable grain yield, with less water consumption.

  13. Allelopathic activity of medicinal plant essential oils on seed germination and vigor of lettuce achenes

    Directory of Open Access Journals (Sweden)

    Cíntia Alvarenga Santos Fraga de Miranda

    2015-07-01

    Full Text Available In recent years, essential oils have gained commercial interest in the agricultural area, mainly for their allelopathic, insecticidal, antifungal, antimicrobial and antioxidant properties, and, also for their natural compounds, which have generally displayed low toxicity, relatively low cost and rapid degradation in the environment. Medicinal plants have emerged as potential suppliers of essential oils because of their ethnopharmacological utility. The aim of this study was to evaluate the allelopathic potential of essential oils extracted from fresh leaves of lemon grass (Cymbopogon citratus, wild basil (Ocimum gratissimum L. and sweet basil (Ocimum basilicum L. with regard to their major constituents (citral, eugenol and cineol, respectively in different application forms (direct contact and the effect of volatile constituents on the germination and vigor of lettuce seeds (cultivar Regina SF 3500. The effects of the oils and their major components were evaluated with regard to the variables: first germination count, total germination, GVI (germination velocity index, seedling dry weight and average lengths of shoots and lettuce roots. The essential oils from lemon grass and basil displayed allelopathic potentials on seed germination and vigor of lettuce achenes that can be assigned to their respective major constituents citral and eugenol. On the other hand, the allelopathic effect of the essential oil from basil was a consequence of the combined effect of all the components, regardless the application method.

  14. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan

    Science.gov (United States)

    Sharopov, Farukh; Braun, Markus Santhosh; Gulmurodov, Isomiddin; Khalifaev, Davlat; Isupov, Salomiddin; Wink, Michael

    2015-01-01

    Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia) were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 312.5 µg/mL for E. coli, 625 µg/mL (MIC) and 1250 µg/mL (MBC) for MRSA (methicillin-resistant Staphylococcus aureus), respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC50 values of 0.12 mg/mL for ABTS (2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl). Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC50 values of 5-lipoxygenase (5-LOX) inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy.

  15. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan

    Directory of Open Access Journals (Sweden)

    Farukh Sharopov

    2015-11-01

    Full Text Available Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC values of 312.5 µg/mL for E. coli, 625 µg/mL (MIC and 1250 µg/mL (MBC for MRSA (methicillin-resistant Staphylococcus aureus, respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC50 values of 0.12 mg/mL for ABTS (2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl. Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC50 values of 5-lipoxygenase (5-LOX inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy.

  16. LD50 and repellent effects of essential oils from Argentinian wild plant species on Varroa destructor.

    Science.gov (United States)

    Ruffinengo, Sergio; Eguaras, Martin; Floris, Ignazio; Faverin, Claudia; Bailac, Pedro; Ponzi, Marta

    2005-06-01

    The repellent and acaricidal effects of some essential oils from the most typical wild plant species of northern Patagonia, Argentina, on Varroa destructor Anderson & Trueman were evaluated using a complete exposure test. Honey bees, Apis mellifera L., and mites (five specimens of each per dish) were introduced in petri dishes having different oil concentrations (from 0.1 to 25 micro per cage). Survival of bees and mites was registered after 24, 48, and 72 h. An attraction/repellence test was performed using a wax tube impregnated with essential oil and another tube containing wax only. The lowest LD50 values for mites were registered for Acantholippia seriphioides (A. Gray) Mold. (1.27 microl per cage) and Schinus molle L. (2.65 microl per cage) after 24 h, and for Wedelia glauca (Ortega) O. Hoffm. ex Hicken (0.59 microl per cage) and A. seriphioides (1.09 microl per cage) after 72 h of treatment. The oil with the highest selectivity ratio (A. mellifera LD50/V. destructor LD50) was the one extracted from S. molle (>16). Oils of Lippia junelliana (Mold.) Troncoso, Minthostachys mollis (HBK) Grieseb., and Lippia turbinata Grieseb. mixed with wax had repellent properties. None of the oils tested had attractive effects on Varroa mites.

  17. Allelopathic effect of essential oils of medicinal plants in Bidens pilosa L.

    Directory of Open Access Journals (Sweden)

    M.C.S. Alves

    2014-01-01

    Full Text Available We determined the inhibitory allelopathic effects of the volatile extracts of Cinnamomum zeylanicum Ness, Lippia sidoides Cham. and Cymbopogum nardus L. on seed germination and root growth of seedlings of Bidens pilosa. The experiment was conducted at the Seed Analysis Laboratory of the Department of Plant Science, Federal University of Ceará. For this end, we used oils at the concentrations of 0.01, 0.02, 0.04 and 0.08% (v/v. Five treatments were used for each of the oils arranged in a completely randomized design with four replications of 25 seeds. The seeds were sown in Petri dishes lined with filter paper moistened with distilled water and, aiming at the indirect contact with each oil, two sheets of filter paper were placed on top of the lid, in which three (3 mL of each oil solution were added. Then, the dishes were incubated in a germination chamber at 25°C. The pH did not contribute to alter the results; the volatile extracts of essential oils of C. zeylanicum, L. sidoides and C. nardus inhibited seed germination and root growth of seedlings of B. pilosa, which shows allelopathic potential; and the concentration of 0.08% of oils caused the overall deterioration of the roots and death of seedlings of B. pilosa.

  18. Activity of essential oils from Brazilian medicinal plants on Escherichia coli.

    Science.gov (United States)

    Duarte, Marta Cristina Teixeira; Leme, Ewerton Eduardo; Delarmelina, Camila; Soares, Andressa Almeida; Figueira, Glyn Mara; Sartoratto, Adilson

    2007-05-04

    Essential oils obtained from leaves of 29 medicinal plants commonly used in Brazil were screened against 13 different Escherichia coli serotypes. The oils were obtained by water-distillation using a Clevenger-type system and their minimal inhibitory concentration (MIC) were determined by microdilution method. Essential oil from Cymbopogon martinii exhibited a broad inhibition spectrum, presenting strong activity (MIC between 100 and 500 microg/mL) against 10 out of 13 Escherichia coli serotypes: three enterotoxigenic, two enteropathogenic, three enteroinvasive and two shiga-toxin producers. C. winterianus inhibited strongly two enterotoxigenic, one enteropathogenic, one enteroinvasive and one shiga-toxin producer serotypes. Aloysia triphylla also shows good potential to kill Escherichia coli with moderate to strong inhibition. Other essential oils showed antimicrobial properties, however with a more restricted action against the serotypes studied. Chemical analysis of Cymbopogon martinii essential oil performed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS) showed the presence of compounds with known antimicrobial activity, including geraniol, geranyl acetate and trans-cariophyllene, which tested separately, indicated geraniol as antimicrobial active compound. The significant antibacterial activity of Cymbopogon martinii oil suggests that they could serve as a source for compounds with therapeutic potential.

  19. Design and preparation of plant oil-based polymers and their applications

    Science.gov (United States)

    Ahn, Byung-Jun Kollbe

    Renewable materials are desirable for many applications due to the finite fossil resources and environmental issues. Plant oil is one of the most promising renewable feedstocks. Plant oils and functionalized oleo-chemicals including functionalized soybean oils have become attractive sustainable chemicals for industrial applications. Especially, epoxidized oleo-chemicals such as epoxidized soybean oil (ESO) are one of the most well-known readily available inexpensive functionalized plant oils. In this study, novel polymers and nanocomposites for sustainable materials applications were designed and prepared via ring-opening of epoxide in plant oils, and their chemical and physical properties were characterized. The novel transparent elastomers derived from functionalized plant oils have a great potential as flexible electronic and biological applications with their inherent low toxicity. Especially, their rheological properties showed a potential for pressure sensitive adhesives (PSAs). The dominant thermal stability and transparency were obtained via green processing: one pot, single step, fast reactions in moderate conditions, or solvent-free UV curing conditions. These oleo-based elastomers presented excellent end-use properties for PSAs application comparable to commercial PSA tapes. Based on the principal chemical studies, the roles of the each component have been identified: polymer derived from the ring-opening of epoxides as an elastomer, and dihydroxylated triglycerides as a tackifier. Their interaction was also elucidated with an element label analysis. The mechanical and rheological properties of the oleo-polymer as PSAs were able to be improved with a rosin ester tackifier. In addition, biogreases and bio-thermoplastics were developed via the environmentally benign process, which will contribute to further application on the production of new bio-based materials. Further, this study essays a novel acid functionalized iron/iron oxide nanoparticles catalyst

  20. Rapid analytical method for the determination of aflatoxins in plant-derived dietary supplement and cosmetic oils.

    Science.gov (United States)

    Mahoney, Noreen; Molyneux, Russell J

    2010-04-14

    Consumption of edible oils derived from conventional crop plants is increasing because they are generally regarded as healthier alternatives to animal-based fats and oils. More recently, there has been increased interest in the use of alternative specialty plant-derived oils, including those from tree nuts (almonds, pistachios, and walnuts) and botanicals (borage, evening primrose, and perilla) both for direct human consumption (e.g., as salad dressings) and for the preparation of cosmetics, soaps, and fragrance oils. This has raised the issue as to whether or not exposure to aflatoxins can result from such oils. Although most crops are subject to analysis and control, it has generally been assumed that plant oils do not retain aflatoxins due to the high polarity and lipophobicity of these compounds. There is virtually no scientific evidence to support this supposition, and available information is conflicting. To improve the safety and consistency of botanicals and dietary supplements, research is needed to establish whether or not oils used directly, or in the formulation of products, contain aflatoxins. A validated analytical method for the analysis of aflatoxins in plant-derived oils is essential to establish the safety of dietary supplements for consumption or cosmetic use that contain such oils. The aim of this research was therefore to develop an HPLC method applicable to a wide variety of oils from different plant sources spiked with aflatoxins, thereby providing a basis for a comprehensive project to establish an intra- and interlaboratory validated analytical method for the analysis of aflatoxins in dietary supplements and cosmetics formulated with plant oils.

  1. 植物精油的研究进展%Recent Advance of the Plant Essential Oil

    Institute of Scientific and Technical Information of China (English)

    刘猛; 李绍钰

    2011-01-01

    植物精油作为抗生素添加剂的替代产品具有很多优势,但是植物精油的化学成分非常复杂,作者就植物精油的主要成分及生物学功能的研究进展进行了综述.%Plant essential oils as an alternative antibiotics additive products have many advantages. But plant essential oil composition is very complicated. This article reviewed main composition and biological function of the plant essential oil.

  2. Larvicidal activity of Brazilian plant essential oils against Coenagrionidae larvae.

    Science.gov (United States)

    Silva, D T; Silva, L L; Amaral, L P; Pinheiro, C G; Pires, M M; Schindler, B; Garlet, Q I; Benovit, S C; Baldisserotto, B; Longhi, S J; Kotzian, C B; Heinzmann, B M

    2014-08-01

    Odonate larvae can be serious pests that attack fish larvae, postlarvae, and fingerlings in fish culture tanks, causing significant loss in the supply and production of juveniles. This study reports a screen of the essential oils (EOs) of Nectandra megapotamica (Sprengel) Mez, Nectandra grandiflora Nees, Hesperozygis ringens (Bentham) Epling, Ocimum gratissimum L., Aloysia gratissima (Gillies & Hooker) Troncoso, and Lippia sidoides Chamisso against Coenagrionidae larvae. In addition, the most effective EO and its 50% lethal concentration (LC50) and chemical analysis are described. The larvae of Acanthagrion Selys, Homeoura Kennedy, Ischnura Charpentier, and Oxyagrion Selys were used to assess the EO effects. EO obtained from H. ringens, O. gratissimum, and L. sidoides showed the highest larvicidal effects at 19 h of treatment. The major constituents of the EO of H. ringens include pulegone and limonene, while eugenol and Z-beta-ocimene predominate in the EO of O. gratissimum, and carvacrol and rho-cymene were the major compounds of the EO of L. sidoides. Leaf EOs from H. ringens, O. gratissimum, and L. sidoides showed activity against Coenagrionidae larvae at similar concentrations with LC50s of 62.92, 75.05, and 51.65 microl liter(-1), respectively, and these were considered the most promising treatments.

  3. Antimicrobial Effect of Escherichia Coli on Essential Oils Derived from Romanian Aromatic Plants

    Directory of Open Access Journals (Sweden)

    Şandru Daniela Maria

    2015-07-01

    Full Text Available This paper investigates the antimicrobial action of Escherichia coli ATCCR CRM-8739TM on the following essential oils: Teucrium marum, Pinus sylwestris, Thymus vulgaris, Salviae aethedaroleum, Cinnamomum aromaticum, Hippophae rhamnoides, Lavandula angustifolia, Abies alba, Zingiber officinale, Anethum graveolens, Coriandrum sativum, Origanum vulgare, extracted industrialy from romanian plants, using the diffusion disc method. The most intense activity was observed at the essential oil of Cinnamomum aromaticum (cinnamon and the mildest activity was observed at Zingiber officinale (ginger. Many of the essential oils tested exhibited moderate antimicrobial activity, as Teucrium marum, Thymus vulgaris, Hippophae rhamnoides, Lavandula angustifolia,Coriandrum sativum. The lowest antibacterial activity was exhibited on Pinus sylwestris, Salviae aethedaroleum, Zingiber officinale and Anethum graveolens.

  4. Influence of ethereal oils extracted from Lamiaceae family plants on some pathogen microorganisms

    Directory of Open Access Journals (Sweden)

    Klaus Anita S.

    2008-01-01

    Full Text Available As pathogen microorganisms can be found in different kinds of food, using of natural antimicrobial compounds, like ethereal oils, could be important in the preservation of different groceries. To evaluate antimicrobial activity of ethereal oils extracted from Lamiaceae family plants - Rosmarinus officinalis L., Thymus vulgaris L., Majorana hortensis M o e n c h, and Salvia officinalis L screening of their effects against food borne bacteria Staphylococcus aureus, Enterococcus faecalis, Proteus mirabilis, Salmonella enteritidis, Pseudomonas aeruginosa, Bacillus cereus, Bacillus subtilis, Escherichia coli, Escherichia coli O157:H7, Listeria monocytogenes and yeasts Candida albicans and Saccharomyces cerevisiae were applied. All investigated concentrations and pure Majorana hortensis and Thymus vulgaris ethereal oils showed microbicidal effect on majority of tested microorganisms.

  5. Cleaning the Produced Water in Offshore Oil Production by Using Plant-wide Optimal Control Strategy

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Pedersen, Simon; Løhndorf, Petar Durdevic

    2014-01-01

    To clean the produced water is always a challenging critical issue in the offshore oil & gas industry. By employing the plant-wide control technology, this paper discussed the opportunity to optimize the most popular hydrocyclone-based Produced Water Treatment (PWT) system. The optimizations...... of the efficiency control of the de-oiling hydrocyclone and the water level control of the upstream separator, are discussed and formulated. Some of our latest research results on the analysis and control of slugging flows in production well-pipeline-riser systems are also presented. The ultimate objective...... of this research is to promote a technical breakthrough in the PWT control design, which can lead to the best environmental protection in the oil & gas production, without sacrificing the production capability and production costs....

  6. A review on palm oil mill biogas plant wastewater treatment using coagulation-ozonation

    Science.gov (United States)

    Dexter, Z. D.; Joseph, C. G.; Zahrim, A. Y.

    2016-06-01

    Palm oil mill effluent (POME) generated from the palm oil industry is highly polluted and requires urgent attention for treatment due to its high organic content. Biogas plant containing anaerobic digester is capable to treat the high organic content of the POME while generating valuable biogas at the same time. This green energy from POME is environmental-friendly but the wastewater produced is still highly polluted and blackish in colour. Therefore a novel concept of combining coagulation with ozonation treatment is proposed to treat pollution of this nature. Several parameters should be taken under consideration in order to ensure the effectiveness of the hybrid treatment including ozone dosage, ozone contact time, pH of the water or wastewater, coagulant dosage, and mixing and settling time. This review paper will elucidate the importance of hybrid coagulation-ozonation treatment in producing a clear treated wastewater which is known as the main challenge in palm oil industry

  7. Virucidal activity of essential oils from aromatic plants of San Luis, Argentina.

    Science.gov (United States)

    García, C C; Talarico, L; Almeida, N; Colombres, S; Duschatzky, C; Damonte, E B

    2003-11-01

    Essential oils obtained from eight aromatic plants of San Luis Province, Argentina, were screened for virucidal activity against herpes simplex virus type 1 (HSV-1), Junin virus (JUNV) and dengue virus type 2 (DEN-2). The most potent inhibition was observed with the essential oil of Lippia junelliana and Lippia turbinata against JUNV with virucidal concentration 50% (VC(50)) values in the range 14-20 ppm, whereas Aloysia gratissima, Heterotheca latifolia and Tessaria absinthioides inhibited JUNV in the range 52-90 ppm. The virucidal activity was time- and temperature-dependent. The essential oils of A. gratissima, Artemisia douglasiana, Eupatorium patens and T. absinthioides inactivated HSV-1 at 65-125 ppm. However, only A. douglasiana and E. patens had any discernible effect on DEN-2 infectivity with VC(50) values of 60 and 150 ppm, respectively.

  8. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles).

    Science.gov (United States)

    Bossou, Annick D; Mangelinckx, Sven; Yedomonhan, Hounnankpon; Boko, Pelagie M; Akogbeto, Martin C; De Kimpe, Norbert; Avlessi, Félicien; Sohounhloue, Dominique C K

    2013-12-03

    Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated. Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible "kisumu" and resistant "ladji-Cotonou" strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was highly susceptible to all the other

  9. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    Science.gov (United States)

    2013-01-01

    Background Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated. Methods Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible “kisumu” and resistant “ladji-Cotonou” strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Results Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was

  10. Morphology and photoelectrochemical properties of TiO{sub 2} electrodes prepared using functionalized plant oil binders

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Hee [Department of Electrical Engineering, Chonnam National University, Gwangju 500-757 (Korea); Hong, Chang Kook [Center for Functional Nano Fine Chemicals, Chonnam National University, Yongbong-Dong 300, Buk-Gu, Gwangju 500-757 (Korea)

    2008-08-15

    Chemically functionalized plant oils, viz. acrylated epoxidized soybean oil (AESO) and maleinized acrylated epoxidized soybean oil (MAESO), were used as bio-based binders for the TiO{sub 2} electrodes of dye-sensitized solar cells (DSSC). The surface roughness and number of appropriate pores were increased in the TiO{sub 2} films prepared using the plant oil binders in comparison with the film prepared using polyethylene glycol (PEG), due to the larger number of functionalities. The short circuit photocurrent (I{sub SC}) and open circuit photovoltage (V{sub OC}) were increased, and the conversion efficiency was significantly improved, in the cell using the plant oil binders. (author)

  11. Modeling of biobasins of an oil refinery wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    RADOSTIN K. KUTSAROV

    2015-04-01

    Full Text Available The biobasins of the largest wastewater treatment plant (WWTP on the Balkans has been examined. Samples were taken four times from the inlet and outlet flow. The concentration of the total hydrocarbons, benzene, toluene, ethylbenzene, p-xylene, m-xylene, o-xylene and styrene in the wastewater has been obtained by gas chromatography. The average experimental concentrations were used when the mass balance was made. The results indicate that about 60% of pollutants are emitted in the air, about 22% are assimilated through biodegradation, and nearly 18% leave WWTP with the purified water. The measured concentrations were also modeled by Water 9.3 program. Comparison between the measured amounts of pollution concentrations and those forecasted by the Water 9.3 program has been made.

  12. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays

    Directory of Open Access Journals (Sweden)

    Fernando Postalli Rodrigues

    2010-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus hepatoma cells (HTC were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa and mammal (HTC cells, for more accurately assessing genotoxicity in environmental samples.

  13. Metal biomonitoring with mosses in the surroundings of an oil-fired power plant in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Genoni, P.; Parco, V. [Presidio Multizonale di Igiene e Prevenzione, Parabiago, MI (Italy); Santagostino, A. [Unversita degli Studi di Milano-Bicocca, Milan (Italy). Dip. di Scienze dell' Ambiente e del Territorio

    2000-09-01

    Levels of 12 trace elements were measured in samples of the bryophyte Hypnum cupressiforme Hedw. and in soil collected in the surroundings of an oil-fired power plant in Northern Italy. Metal bioaccumulation in moss was estimated after soil correction in order to obtain deposition patterns and individuate potentially toxic metals emitted from the plant. V and Ni, occurring together in fuel oil, showed highest bioaccumulation values near the stacks. Mean contamination of the study area for these elements is 5.5 (V) and 3.3 (Ni) times the background levels of the reference site. Other elements showed only limited alterations of bioaccumulation values, in relation to agricultural and industrial activity in the study area. (Author)

  14. Changes in the Essential Oil Components during the Development of Fennel Plants from Somatic Embryoids.

    Science.gov (United States)

    Miura, Y; Ogawa, K; Fukui, H; Tabata, M

    1987-02-01

    Quantitative and qualitative changes of essential oils during the development of clonal plants of fennel propagated through somatic embryogenesis were investigated. Although no essential oil could be detected either in cultured cells or in somatic embryoids, monoter-penes such as alpha-phellandrene and alpha-pinene were found in radical leaves of regenerated plantlets cultured on a hormone-free agar medium. The regenerated plants cultivated in the field for about one month accumulated phenylpropanoids such as estragole, anethole, and fenchone in addition to the two monoterpenes described above in radical leaves. Rich accumulations of phenylpropanoids and monoterpenes were observed in the fruits; especially the contents of estragole and anethole were much higher than in radical leaves.

  15. Oil Palm Physical and Optical Characteristics from Two Different Planting Materials

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Mohd Hazir

    2011-09-01

    Full Text Available This study discovers the uniqueness of physical and optical characteristics of the oil palm Fresh Fruit Bunches (FFB and is based on two different tenera planting materials namely PORIM SERIES 1 (PS 1 and PORIM SERIES 2 (PS 2. Three methods have been done to determine the characteristics which are as follows; 1 manual approach by measuring the weight, length, width and circumference of oil palm FFB, 2 machine vision technique for color information extraction and 3 multi-band portable, active optical sensor system to determine the chlorophyll and anthocyanin content. A total of thirty bunches were standardized into a ripe grade and have been used as samples in this study. The results showed that each planting material produces different physical and optical characteristics. The correlation between the weight and linear dimensions of oil palm FFB was found to be 80%. This study gives very important information in helping researchers on the development of future non-contact and non-destruction oil palm FFB grading equipment and system.

  16. Emerging sustainable technology for epoxidation directed toward plant oil-based plasticizers

    DEFF Research Database (Denmark)

    Chua, Seong-Chea; Xu, Xuebing; Guo, Zheng

    2012-01-01

    The chemical industry is increasingly looking toward sustainable technology to reduce the environmental impact and minimize the footprint of a chemical process. This work, which presents emerging technologies in academia and industry, discusses the development of advanced processes...... for the production of epoxidized plant oil-based plasticizers. The effects of the substrate structure, oxygen-donor properties, catalysts and biocatalysts on the specificity of the epoxidation reaction are intensively discussed. The progress in enzymatic epoxidation and the application of neoteric media...

  17. Oil producing plants of the wildflora as potential crop plants supplying industrial raw material

    Energy Technology Data Exchange (ETDEWEB)

    Radatz, W.; Hondelmann, W.

    1981-01-01

    The wildflora exhibits a continuously renewing potential for the production of chemical constituents suitable for industrial uses. Among them seed oil producing species assume a preferred position. Forty-two indigenous as well as adaptable taxa along with their botanical, agronomical and biochemical data are presented. Furthermore an approach to their domestication and agronomic improvement is given. (Refs. 158).

  18. Essential-oil polymorphism in the 'resurrection plant' Myrothamnus moschatus and associated ethnobotanical knowledge.

    Science.gov (United States)

    Randrianarivo, Emmanuel; Rasoanaivo, Philippe; Nicoletti, Marcello; Razafimahefa, Solofoniaina; Lefebvre, Manon; Papa, Fabrizio; Vittori, Sauro; Maggi, Filippo

    2013-11-01

    Gas chromatography/mass spectroscopy analysis (GC/MS) of essential oils obtained from populations of the resurrection plant Myrothamnus moschatus, growing in different areas of Madagascar, allowed identification of three main chemotypes in the species. The first one was provided by plants with a high content of trans-pinocarveol and pinocarvone; the second one involved plants with high percentages of limonene, cis- and trans-p-mentha-1(7),8-dien-2-ol, and β-selinene; and the third chemotype was characterized by plants with high levels of oxygenated sesquiterpenes such as caryophyllene oxide and α- and β-isomers of caryophylla-4(12),8(13)-dien-5-ol. Chemical data were supported by chemometric technique as the principal component analysis. Furthermore, the relationship between the dioecy and phytochemistry within one population was also considered. Finally, correlations between chemical variations and ethnobotanical data were assessed. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Occupational exposure to asbestos during renovation of oil-shale fuelled power plants in Estonia.

    Science.gov (United States)

    Kangur, Maie

    2007-01-01

    Many thousands of tonnes of asbestos were used in buildings in the past, especially for thermal insulation of pipes and boilers in power plants. Occupational exposure to asbestos dust now mainly occurs during demolition, renovation and routine maintenance activities. The objective of this study was to evaluate occupational exposure to airborne asbestos during renovation of solid oil-shale fuelled power plants carried out in 2001-2003. Air monitoring inside and outside of the renovation area was performed. The concentration of airborne fibres in the working environment increased during renovation but the valid limit value (0.1 fibres/cm(3)) was not exceeded.

  20. Extraction of volatile oil from aromatic plants with supercritical carbon dioxide: experiments and modeling.

    Science.gov (United States)

    Coelho, Jose P; Cristino, Ana F; Matos, Patrícia G; Rauter, Amélia P; Nobre, Beatriz P; Mendes, Rui L; Barroso, João G; Mainar, Ana; Urieta, Jose S; Fareleira, João M N A; Sovová, Helena; Palavra, António F

    2012-09-05

    An overview of the studies carried out in our laboratories on supercritical fluid extraction (SFE) of volatile oils from seven aromatic plants: pennyroyal (Mentha pulegium L.), fennel seeds (Foeniculum vulgare Mill.), coriander (Coriandrum sativum L.), savory (Satureja fruticosa Béguinot), winter savory (Satureja montana L.), cotton lavender (Santolina chamaecyparisus) and thyme (Thymus vulgaris), is presented. A flow apparatus with a 1 L extractor and two 0.27 L separators was built to perform studies at temperatures ranging from 298 to 353 K and pressures up to 30.0 MPa. The best compromise between yield and composition compared with hydrodistillation (HD) was achieved selecting the optimum experimental conditions of extraction and fractionation. The major differences between HD and SFE oils is the presence of a small percentage of cuticular waxes and the relative amount of thymoquinone, an oxygenated monoterpene with important biological properties, which is present in the oils from thyme and winter savory. On the other hand, the modeling of our data on supercritical extraction of volatile oil from pennyroyal is discussed using Sovová's models. These models have been applied successfully to the other volatile oil extractions. Furthermore, other experimental studies involving supercritical CO(2) carried out in our laboratories are also mentioned.

  1. Extraction of Volatile Oil from Aromatic Plants with Supercritical Carbon Dioxide: Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Helena Sovová

    2012-09-01

    Full Text Available An overview of the studies carried out in our laboratories on supercritical fluid extraction (SFE of volatile oils from seven aromatic plants: pennyroyal (Mentha pulegium L., fennel seeds (Foeniculum vulgare Mill., coriander (Coriandrum sativum L., savory (Satureja fruticosa Béguinot, winter savory (Satureja montana L., cotton lavender (Santolina chamaecyparisus and thyme (Thymus vulgaris, is presented. A flow apparatus with a 1 L extractor and two 0.27 L separators was built to perform studies at temperatures ranging from 298 to 353 K and pressures up to 30.0 MPa. The best compromise between yield and composition compared with hydrodistillation (HD was achieved selecting the optimum experimental conditions of extraction and fractionation. The major differences between HD and SFE oils is the presence of a small percentage of cuticular waxes and the relative amount of thymoquinone, an oxygenated monoterpene with important biological properties, which is present in the oils from thyme and winter savory. On the other hand, the modeling of our data on supercritical extraction of volatile oil from pennyroyal is discussed using Sovová’s models. These models have been applied successfully to the other volatile oil extractions. Furthermore, other experimental studies involving supercritical CO2 carried out in our laboratories are also mentioned.

  2. Repellent Activities of Essential Oils of Some Plants Used Traditionally to Control the Brown Ear Tick, Rhipicephalus appendiculatus

    NARCIS (Netherlands)

    Wanzala, W.W.; Hassanali, A.; Mukabana, W.R.; Takken, W.

    2014-01-01

    Essential oils of eight plants, selected after an ethnobotanical survey conducted in Bukusu community in Bungoma County, western Kenya (Tagetes minuta, Tithonia diversifolia, Juniperus procera, Solanecio mannii, Senna didymobotrya, Lantana camara, Securidaca longepedunculata, and Hoslundia opposita)

  3. Pilot plant for the radioactive decontamination of spent oils; Planta piloto para la descontaminacion radiactiva de aceites gastados

    Energy Technology Data Exchange (ETDEWEB)

    Flores E, R.M.; Ortiz O, H.V.; Cisneros L, L.; Lopez G, R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work the operation parameters obtained in the laboratory of oil storage are presented, as well as the operations which shape the pilot plant, the design criteria and the basic design of the core equipment of the developed process. Finally, the comparative results obtained the decontamination process of oil are given as well as laboratory scale. (Author)

  4. Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research

    Science.gov (United States)

    Plant oils represent renewable sources of long-chain hydrocarbons that can be used as both fuel and chemical feedstocks, and genetic engineering offers an opportunity to create further high-value specialty oils for specific industrial uses. While many genes have been identified for the production of...

  5. Quality and Trace Element Profile of Tunisian Olive Oils Obtained from Plants Irrigated with Treated Wastewater

    Directory of Open Access Journals (Sweden)

    Cinzia Benincasa

    2012-01-01

    Full Text Available In the present work the use of treated wastewater (TWW to irrigate olive plants was monitored. This type of water is characterized by high salinity and retains a substantial amount of trace elements, organic and metallic compounds that can be transferred into the soil and into the plants and fruits. In order to evaluate the impact of TWW on the overall quality of the oils, the time of contact of the olives with the soil has been taken into account. Multi-element data were obtained using ICP-MS. Nineteen elements (Li, B, Na, Mg, Al, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ba and La were submitted for statistical analysis. Using analysis of variance, linear discriminant analysis and principal component analysis it was possible to differentiate between oils produced from different batches of olives whose plants received different types of water. Also, the results showed that there was correlation between the elemental and mineral composition of the water used to irrigate the olive plots and the elemental and mineral composition of the oils.

  6. Quality and trace element profile of Tunisian olive oils obtained from plants irrigated with treated wastewater.

    Science.gov (United States)

    Benincasa, Cinzia; Gharsallaoui, Mariem; Perri, Enzo; Briccoli Bati, Caterina; Ayadi, Mohamed; Khlif, Moncen; Gabsi, Slimane

    2012-01-01

    In the present work the use of treated wastewater (TWW) to irrigate olive plants was monitored. This type of water is characterized by high salinity and retains a substantial amount of trace elements, organic and metallic compounds that can be transferred into the soil and into the plants and fruits. In order to evaluate the impact of TWW on the overall quality of the oils, the time of contact of the olives with the soil has been taken into account. Multi-element data were obtained using ICP-MS. Nineteen elements (Li, B, Na, Mg, Al, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ba and La) were submitted for statistical analysis. Using analysis of variance, linear discriminant analysis and principal component analysis it was possible to differentiate between oils produced from different batches of olives whose plants received different types of water. Also, the results showed that there was correlation between the elemental and mineral composition of the water used to irrigate the olive plots and the elemental and mineral composition of the oils.

  7. Characterization and discrimination of evolving mineral and plant oil slicks based on L-band synthetic aperture radar (SAR)

    Science.gov (United States)

    Jones, Cathleen E.; Espeseth, Martine M.; Holt, Benjamin; Brekke, Camilla; Skrunes, Stine

    2016-10-01

    Evolution of the damping ratio for Bragg wavenumbers in the range 32-43 rad/m is evaluated for oil slicks of different composition released in the open ocean and allowed to develop naturally. The study uses quad-polarimetric L-band airborne synthetic aperture radar data acquired over three mineral oil emulsion releases of different, known oil-to-water ratio, and a near-coincident release of 2-ethylhexyl oleate that served as a biogenic look-alike. The experiment occurred during the 2015 Norwegian oil-on-water exercise in the North Sea during a period of relatively high winds ( 12 m/s). NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was used to repeatedly image the slicks over a period of eight hours, capturing the slicks' early development and providing a time series from which to track the evolution of the slicks' size, position, and radiometric characteristics. Particular emphasis is given in this analysis to identification of zones of higher damping ratio within the slicks (zoning) as potential indicators of thicker oil, and to comparison of the evolution of emulsion and plant oil damping ratios. It was found that all mineral oil slicks initially exhibited zoning apparent in VV, HH, and HV intensities, and that the areas of higher damping ratio persisted the longest for the highest oil content emulsion (80% oil by volume). In contrast, zoning was not unambiguously evident for plant oil at any time from 44 minutes to 8.5 hours after release.

  8. Natural Plant Essential Oils for Controlling the Grasshopper (Heteracris littoralis and their Pathological Effects on the Alimentary Canal

    Directory of Open Access Journals (Sweden)

    Aziza Sharaby

    2012-07-01

    Full Text Available In the present study, the toxic effect of three different natural essential oils of medicinal plants, namely Garlic (Allium sativum, Mint (Mintha pipereta and Eucalyptus (Eucalyptus globulus were tested on 1st nymphal instar of the grasshopper (Heteracris littoralis. The LC50 values of the tested oils were estimated after 14 days from feeding on treated diet mixed with different concentrations of the oil. The LC50 of the tested oils were arranged as follows: 0.067, 0.075 and 0.084ml. /100ml. diet for Garlic, Eucalyptus and Mint respectively. The effect of LC50 concentration of the oils on the biological aspects and histological changes that observed on the alimentary canal and fat bodies were recorded. The normal development of the grasshopper was exhibited. Results cleared that there was statistical variable numbers of increased the nymphal periods, life cycle, adults longevity and life span comparing with the control test. Garlic oil inhibited egg lying by the resulting females offspring of the treated1st instar nymphs. High reduction in the deposited eggs and egg fertility caused by Eucalyptus or Mint oil and marked malformation were observed. Histological changes on the alimentary canal and fat bodies of the remaining nymphs after treatment with Garlic oil (the most effective oil were detected by the light microscope have been recorded. The results suggest that the natural plant essential oils of Garlic, Eucalyptus and Mint may be used in IPM control program against H. littoralis grasshopper.

  9. Development of oil and cake products of woody oil plants%木本油料油脂和饼粕产品开发

    Institute of Scientific and Technical Information of China (English)

    金青哲; 王丽蓉; 王兴国; 李碧霞

    2015-01-01

    简要介绍了我国28种重要木本油料内含的油脂与脂肪酸、蛋白质与氨基酸、微量成分的组成、含量、特点与利用价值以及其油脂和饼粕产品的开发现状,既包括传统的木本油料如油茶籽、核桃、扁桃、花椒籽、椰子、杜仲籽、文冠果、翅果,也有新兴的木本油料如牡丹籽、茶叶籽、美藤果、盐肤木、光皮梾木等,旨在为木本油料油脂与饼粕产品的开发与质量标准的制修订工作提供依据。%The compositions,contents,characteristics and utility values of oil and fatty acids,protein and amino acid,trace elements of twenty-eight kinds of important woody oil plants in China and development situation of their oil and cake products were briefly introduced,including the traditional woody oil plants such as oil-tea camellia seed,walnut,almond( Amygdalus communis) ,prickly ash seed,coconut,Eucom-mia seed, Xanthoceras sorbifolia Bunge. and Elacagnus mollis Diels. , as well as innovative woody oil plants such as peony seed,tea seed,sacha inchi,Rhus chinensis Mill. and Cornus wilsoniana Wanger. so as to provide a basis for the development of oil and cake products of woody oil plants as well as dictation and revision of their quality standards.

  10. The Effect of Nitrogen and Plant Density on Some Growth Characteristics, Yield and Essential Oil in Peppermint (Mentha piperita L.

    Directory of Open Access Journals (Sweden)

    z Izadi

    2011-02-01

    Full Text Available Abstract In order to study the effect of different amounts of nitrogen and plant density on growth, yield, the percentage of essential oil in leaf and essential oil yield of peppermint (Mentha piperita L., an experiment was conducted in 2008 at the Experimental Field of the Agricultural Faculty of Bu-Ali Sina University. The experiment was split plot based on randomized complete block design with three replications over two cuts. The main plots included the amounts of 100, 150 and 200 kg nitrogen/ha in which half of fertilizer were used for the first cut and another half for the second. The sub-plots were consisted of plant densities as 8, 12 and 16 plants/m2. Morphophysiological characteristics including plant height, node and leaf number per plant, leaf area index, fresh and dry yield, essential oil percentage in leaf and essential oil yield over two cuts, and also the growth of dry matter, leaf area index and crop growth rate in the first cut were measured. The results showed that, nitrogen treatment significantly affected the properties measured, so that, their highest rates were obtained with the application of 100 and 200 kg nitrogen/ha from the first and the second cut, respectively. In addition, total dry matter, leaf area index and crop growth rate increased with increasing the amounts of nitrogen. Plant density also affected the plant height; node number, leaf number and leaf area index, essential oil percentage in leaf and essential oil yield in the first cut significantly, and in the second cut, plant density effect on leaf number and leaf area index was significant as well. Keywords: Peppermint, Nitrogen, Plant density, Yield, Growth indices, Essential oil

  11. Fumigant activity of plant essential oils and components from horseradish (Armoracia rusticana), anise (Pimpinella anisum) and garlic (Allium sativum) oils against Lycoriella ingenua (Diptera: Sciaridae).

    Science.gov (United States)

    Park, Ii-Kwon; Choi, Kwang-Sik; Kim, Do-Hyung; Choi, In-Ho; Kim, Lee-Sun; Bak, Won-Chull; Choi, Joon-Weon; Shin, Sang-Chul

    2006-08-01

    Plant essential oils from 40 plant species were tested for their insecticidal activities against larvae of Lycoriella ingénue (Dufour) using a fumigation bioassay. Good insecticidal activity against larvae of L. ingenua was achieved with essential oils of Chenopodium ambrosioides L., Eucalyptus globulus Labill, Eucalyptus smithii RT Baker, horseradish, anise and garlic at 10 and 5 microL L(-1) air. Horseradish, anise and garlic oils showed the most potent insecticidal activities among the plant essential oils. At 1.25 microL L(-1), horseradish, anise and garlic oils caused 100, 93.3 and 13.3% mortality, but at 0.625 microL L(-1) air this decreased to 3.3, 0 and 0% respectively. Analysis by gas chromatography-mass spectrometry led to the identification of one major compound from horseradish, and three each from anise and garlic oils. These seven compounds and m-anisaldehyde and o-anisaldehyde, two positional isomers of p-anisaldehyde, were tested individually for their insecticidal activities against larvae of L. ingenua. Allyl isothiocyanate was the most toxic, followed by trans-anethole, diallyl disulfide and p-anisaldehyde with LC(50) values of 0.15, 0.20, 0.87 and 1.47 microL L(-1) respectively.

  12. Pelargonium oil and methyl hexaneamine (MHA): analytical approaches supporting the absence of MHA in authenticated Pelargonium graveolens plant material and oil.

    Science.gov (United States)

    Elsohly, Mahmoud A; Gul, Waseem; Elsohly, Kareem M; Murphy, Timothy P; Weerasooriya, Aroona; Chittiboyina, Amar G; Avula, Bharathi; Khan, Ikhlas; Eichner, Amy; Bowers, Larry D

    2012-09-01

    Methylhexaneamine (MHA) has been marketed in dietary supplements based on arguments that it is a constituent of geranium (Pelargonium graveolens) leaves, stems, roots or oil, and therefore qualifies as a dietary ingredient. The purpose of this study is to determine whether P. graveolens plant material (authenticated) or its oil contains detectable quantities of MHA. Two analytical methods were developed for the analysis of MHA in P. graveolens using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. The results were further confirmed using liquid chromatography-high-resolution mass spectrometry. Twenty commercial volatile oils, three authenticated volatile oils and authenticated P. graveolens leaves and stems (young and mature, and fresh and dried) were analyzed for MHA content. In addition, three dietary supplements containing MHA that alleged P. graveolens as the source are analyzed for their MHA content. The data show that none of the authenticated P. graveolens essential oils or plant material, nor any commercial volatile oil of Pelargonium (geranium oil) contain MHA at detectable levels (limit of detection: 10 ppb). The dietary supplements that contained MHA as one of their ingredients (allegedly from geranium or geranium stems) contained large amounts of MHA. The amounts of MHA measured are incompatible with the use of reasonable amounts of P. graveolens extract or concentrate, suggesting that MHA was of synthetic origin.

  13. Peanut Oil

    Science.gov (United States)

    ... and baby care products. Sometimes the less expensive soya oil is added to peanut oil. ... are pregnant or breast-feeding. Allergy to peanuts, soybeans, and related plants: Peanut oil can cause serious ...

  14. Treatment of Oily Wastewater Produced From Old Processing Plant of North Oil Company

    Directory of Open Access Journals (Sweden)

    Dr. Faris Hammoodi Al-Ani

    2012-03-01

    Full Text Available The main objectives of this research were to study and analyses oily wastewater characteristics originating from old-processing plant of North Oil Company and to find a suitable and simple method to treat the waste so it can be disposed off safely. The work consists of two stages; the first was the study of oily wastewater characteristics and its negative impacts. The results indicated that oil and grease were the most dominant pollutant with concentration range between 1069 – 3269.3 mg/l that must be removed; other pollutants were found to be within Iraqi and EPA standards. The next stage was the use of these characteristics to choose the proper technology to treat that wastewater. This stage was divided into two stages: the first stage was a jar tests to find the optimum doses of alum, lime and powdered activated carbon (PAC. The second stage was the treatment by a batch pilot plant constructed for this purpose employing the optimum doses as determined from the first stage to treat the waste using a flotation unit followed by a filtration-adsorption unit. The removal efficiencies of flotation unit for oil and grease, COD, and T.S.S found to be 0.9789, 0.974, and 0.9933, respectively, while the removal efficiency for T.D.S was very low 0.0293. From filtration – adsorption column the removal efficiencies of oil and grease, T.D.S, COD, and T.S.S were found to be 0.9486, 0.8908, 0.6870, and 0.7815, respectively. The overall removal efficiencies of pilot plant were 0.9986, 0.8939, 0.9921, and 0.9950, respectively. The results indicated that this type of treatment was the simplest and most effective method that can be used to treat produced oily wastewater before disposal

  15. Genotoxic studies of selected plant oil extracts on Rhyzopertha dominica (Coleoptera: Bostrichidae

    Directory of Open Access Journals (Sweden)

    Sameer H. Qari

    2017-05-01

    Full Text Available This study was conducted to compare the genotoxic effects of various concentrations of plant oils from Eruca sativa (Brassicaceae, Zingiber officinale (Zingiberaceae and Origanum majorana (Lamiaceae to the conventional organophosphate insecticide (Chlorpyrifos against Rhyzopertha dominica Fabricius. The R. dominica population was reared for several generations without exposure to any insecticide. Wheat grains were sterilized at 55 °C for 6 h in order to eliminate any hidden infestation, treated with serial dilutions of Chlorpyrifos and plant oil extracts, and subsequently fed to R. dominica for 1, 2, 3, 6 and 8 days. The results indicated that the LC50 values of oils from E. sativa, Z. officinale and O. Majorana were 0.14, 0.23 and 0.32%, respectively, after 2 days. Genetic variations in DNA fragments after treatment with LC50 and LC25 concentrations of E. sativa, Z. officinale and O. majorana were detected by RAPD-PCR analysis using five primers. The results exhibited distinct DNA polymorphisms or alterations in DNA bands. These alterations varied depending on the substance being examined. Chlorpyrifos causes the highest level of DNA alterations (based on the appearance and disappearance DNA bands followed by E. sativa, Z. officinale and O. majorana. These results were in direct correlation with the differences in mortality rates between extracts. It could be concluded that the plant oil extracts can be used as one of the integrated pest management tools to control R. dominica in stored products, as they are safer than chemical insecticides.

  16. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination

    Directory of Open Access Journals (Sweden)

    Rhea eLumactud

    2016-05-01

    Full Text Available The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except Solidago canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  17. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination.

    Science.gov (United States)

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  18. EVALUATION OF MEDICINAL PLANT VALERIAN (VALERIANA OFFICINALIS L. ESSENTIAL OIL COMPOSITIONS CULTIVATED AT GARMSAR ZONE IN IRAN

    Directory of Open Access Journals (Sweden)

    Elham Morteza

    2012-06-01

    Full Text Available This study was conducted on experimental field at Garmsar zone in Iran during 2010 – 2011 in order to Evaluation of medicinal plant valerian (Valeriana officinalis L. essential oil compositions cultivated at Garmsar zone in Iran. Sowing date was 20 September and planting densitiy was 80000 plant ha–1. The volatile constituents of the root part of cultivated Valeriana officinalis were isolated by steam distillation and analysed by GC and GC-MS systems that were identified the 69 compositions. The results showed that oil percentage was 1.65%. The basic oil components among the identified 69 compounds were α-Fenchene (6.1%, Camphene (11%, Borneol (6.6%, Bornyl acetate (10.1% and Valerenal (12.9%. and Our finding may give applicable advice to commercial and medicinal and aromatic plants researches for management for increase of quantity and quality yields in medicinal and aromatic plants farming.

  19. Oil adsorption ability of three-dimensional epicuticular wax coverages in plants

    Science.gov (United States)

    Gorb, Elena V.; Hofmann, Philipp; Filippov, Alexander E.; Gorb, Stanislav N.

    2017-04-01

    Primary aerial surfaces of terrestrial plants are very often covered with three-dimensional epicuticular waxes. Such wax coverages play an important role in insect-plant interactions. Wax blooms have been experimentally shown in numerous previous studies to be impeding locomotion and reducing attachment of insects. Among the mechanisms responsible for these effects, a possible adsorption of insect adhesive fluid by highly porous wax coverage has been proposed (adsorption hypothesis). Recently, a great decrease in insect attachment force on artificial adsorbing materials was revealed in a few studies. However, adsorption ability of plant wax blooms was still not tested. Using a cryo scanning electron microscopy approach and high-speed video recordings of fluid drops behavior, followed by numerical analysis of experimental data, we show here that the three-dimensional epicuticular wax coverage in the waxy zone of Nepenthes alata pitcher adsorbs oil: we detected changes in the base, height, and volume of the oil drops. The wax layer thickness, differing in samples with untreated two-layered wax coverage and treated one-layered wax, did not significantly affect the drop behavior. These results provide strong evidence that three-dimensional plant wax coverages due to their adsorption capability are in general anti-adhesive for insects, which rely on wet adhesion.

  20. Oil adsorption ability of three-dimensional epicuticular wax coverages in plants

    Science.gov (United States)

    Gorb, Elena V.; Hofmann, Philipp; Filippov, Alexander E.; Gorb, Stanislav N.

    2017-01-01

    Primary aerial surfaces of terrestrial plants are very often covered with three-dimensional epicuticular waxes. Such wax coverages play an important role in insect-plant interactions. Wax blooms have been experimentally shown in numerous previous studies to be impeding locomotion and reducing attachment of insects. Among the mechanisms responsible for these effects, a possible adsorption of insect adhesive fluid by highly porous wax coverage has been proposed (adsorption hypothesis). Recently, a great decrease in insect attachment force on artificial adsorbing materials was revealed in a few studies. However, adsorption ability of plant wax blooms was still not tested. Using a cryo scanning electron microscopy approach and high-speed video recordings of fluid drops behavior, followed by numerical analysis of experimental data, we show here that the three-dimensional epicuticular wax coverage in the waxy zone of Nepenthes alata pitcher adsorbs oil: we detected changes in the base, height, and volume of the oil drops. The wax layer thickness, differing in samples with untreated two-layered wax coverage and treated one-layered wax, did not significantly affect the drop behavior. These results provide strong evidence that three-dimensional plant wax coverages due to their adsorption capability are in general anti-adhesive for insects, which rely on wet adhesion. PMID:28367985

  1. Fumigant toxicity of plant essential oils against Camptomyia corticalis (Diptera: Cecidomyiidae).

    Science.gov (United States)

    Kim, Jun-Ran; Haribalan, Perumalsamy; Son, Bong-Ki; Ahn, Young-Joon

    2012-08-01

    The toxicity of 98 plant essential oils against third instars of cecidomyiid gall midge Camptomyia corticalis (Loew) (Diptera: Cecidomyiidae) was examined using a vapor-phase mortality bioassay. Results were compared with that of a conventional insecticide dichlorvos. Based on 24-h LC50 values, all essential oils were less toxic than dichlorvos (LC50, 0.027 mg/cm3). The LC50 of caraway (Carum carvi L.) seed, armoise (Artemisia vulgaris L.), clary sage (Salvia sclarea L.), oregano (Origanum vulgare L.), lemongrass [Cymbopogon citratus (DC.) Stapf], niaouli (Melaleuca viridiflora Gaertner), spearmint (Mentha spicata L.), cassia especial (Cinnamomum cassia Nees ex Blume), Dalmatian sage (Salvia offcinalis L.), red thyme (Thymus vulgaris L.), bay [Pimenta racemosa (P. Mill.) J.W. Moore], garlic (Allium sativum L.), and pennyroyal (Mentha pulegium L.) oils is between 0.55 and 0.60 mg/cm3. The LC50 of cassia (C. cassia, pure and redistilled), white thyme (T. vulgaris), star anise (Illicium verum Hook.f.), peppermint (Mentha X piperita L.), wintergreen (Gaultheria procumbens L.), cinnamon (Cinnamomum zeylanicum Blume) bark, sweet marjoram (Origanum majorana L.), Roman chamomile [Chamaemelum nobile (L.) All.], eucalyptus (Eucalyptus globulus Labill.), rosemary (Rosmarinus officinalis L.),Virginian cedarwood (Juniperus virginiana L.), pimento berry [Pimenta dioica (L.) Merr.], summer savory (Satureja hortensis L.), lavender (Lavandula angustifolia Mill.), and coriander (Coriandrum sativum L.) oils is between 0.61 and 0.99 mg/cm3. All other essential oils tested exhibited low toxicity to the cecidomyiid larvae (LC50, >0.99 mg/cm3). Global efforts to reduce the level of highly toxic synthetic insecticides in the agricultural environment justify further studies on the active essential oils as potential larvicides for the control of C. corticalis populations as fumigants with contact action.

  2. In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants.

    Science.gov (United States)

    Sharma, Arti; Chauhan, Rajinder Singh

    2012-01-01

    Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs) which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  3. In Silico Identification and Comparative Genomics of Candidate Genes Involved in Biosynthesis and Accumulation of Seed Oil in Plants

    Directory of Open Access Journals (Sweden)

    Arti Sharma

    2012-01-01

    Full Text Available Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  4. Potential of biologically active plant oils to control mosquito larvae (Culex pipiens, Diptera: Culicidae) from an Egyptian locality.

    Science.gov (United States)

    Khater, Hanem Fathy; Shalaby, Afaf Abdel-Salam

    2008-01-01

    The insecticidal effect of six commercially available plant oils was tested against 4th larval instars of Culex pipiens. Larvae were originally collected from Meit El-Attar, Qalyubia Governorate, Egypt, and then reared in the laboratory until F1 generation. The LC50 values were 32.42, 47.17, 71.37, 83.36, 86.06, and 152.94 ppm for fenugreek (Trigonella foenum-grecum), earth almond (Cyperus esculentus), mustard (Brassica compestris), olibanum (Boswellia serrata), rocket (Eruca sativa), and parsley (Carum ptroselinum), respectively. The tested oils altered some biological aspects of C. pipiens, for instance, developmental periods, pupation rates, and adult emergences. The lowest concentrations of olibanum and fenugreek oils caused remarkable prolongation of larval and pupal durations. Data also showed that the increase of concentrations was directly proportional to reduction in pupation rates and adult emergences. Remarkable decrease in pupation rate was achieved by mustard oil at 1000 ppm. Adult emergence was suppressed by earth almond and fenugreek oils at 25 ppm. In addition, the tested plant oils exhibited various morphological abnormalities on larvae, pupae, and adult stages. Consequently, fenugreek was the most potent oil and the major cause of malformation of both larval and pupal stages. Potency of the applied plant oils provided an excellent potential for controlling C. pipiens.

  5. Chromatographic and mass spectrometric characterization of essential oils and extracts from Lippia (Verbenaceae) aromatic plants.

    Science.gov (United States)

    Stashenko, Elena E; Martínez, Jairo R; Cala, Mónica P; Durán, Diego C; Caballero, Deyanira

    2013-01-01

    Analytical methodologies based on GC and HPLC were developed for the separation and quantification of carnosic acid, ursolic acid, caffeic acid, p-coumaric acid, rosmarinic acid, apigenin, luteolin, quercetin, kaempferol, naringenin, and pinocembrin. These methods were used to characterize essential oils and extracts obtained by solvent (methanol) and by supercritical fluid (CO(2)) extraction from stems and leaves of Lippia (Verbenaceae family) aromatic plants (Lippia alba, Lippia origanoides, Lippia micromera, Lippia americana, Lippia graveolens, and Lippia citriodora). Supercritical CO(2) extraction isolated solely pinocembrin and narigenin from three L. origanoides chemotypes. Solvent extracts possessed a more varied composition that additionally included apigenin, quercetin, and luteolin. Solvent extraction afforded higher overall flavonoid yields from all species in comparison with supercritical CO(2) extraction. Pinocembrin was determined in L. origanoides extract at a concentration of 30 mg/g of plant material, which is more than ten times higher than the amount at which polyphenols are regularly found in aromatic plant extracts.

  6. Rhynchophorus ferrugineus midgut cell line to evaluate insecticidal potency of different plant essential oils.

    Science.gov (United States)

    Rizwan-ul-Haq, Muhammad; Aljabr, Ahmed Mohammed

    2015-03-01

    Cell cultures can be a potent and strong tool to evaluate the insecticidal efficiency of natural products. Plant essential oils have long been used as the fragrance or curative products around the world which means that they are safer to be used in close proximity of humans and mammals. In this study, a midgut cell line, developed from Rhynchophorus ferrugineus (RPW-1), was used for screening essential oils from nine different plants. Assays revealed that higher cell mortality was observed at 500 ppm which reached to 86, 65, 60, 59, 56, 54, 54, 53, and 53%, whereas lowest cell mortality at 1 ppm remained at 41, 23, 20, 17, 16, 15, 14, 13, and 10%, for Azadirachta indica, Piper nigrum, Mentha spicata, Cammiphora myrrha, Elettaria cardamomum, Zingiber officinale, Curcuma longa, Schinus molle, and Rosmarinus officinalis, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay revealed the percentage of cell growth inhibition was highest at 500 ppm and remained at 48, 45, 42, 37, 34, 29, 24, 22, and 18% against A. indica, P. nigrum, M. spicata, C. myrrha, E. cardamomum, Z. officinale, C. longa, S. molle, and R. officinalis, respectively. Lowest LC50 value (7.98 ppm) was found for A. indica, whereas the highest LC50 (483.11 ppm) was against R. officinalis. Thus, in this study, essential oils of A. indica exhibited the highest levels of toxicity, whereas those from R. officinalis exhibited the lowest levels of toxicity toward RPW-1 cells.

  7. Effects of the planting density on virgin olive oil quality of "Chemlali" olive trees (Olea europaea L.).

    Science.gov (United States)

    Guerfel, Mokhtar; Zaghdoud, Chokri; Jebahi, Khaled; Boujnah, Dalenda; Zarrouk, Mokhtar

    2010-12-08

    Here, we report the characterization of virgin olive oil samples obtained from fruits of the main Tunisian olive cultivar (Chemlali) grown in four planting densities (156, 100, 69, and 51 trees ha(-1)). Olive oil samples obtained from fruits of trees grown at 100 trees ha(-1) had a higher content of oleic acid (65.5%), a higher content of chlorophyll and carotenoids, and a higher content in total phenols (1059.08 mg/kg). Interestingly, olives grown at the two highest planting densities yielded more stable oils than olives grown at the two lowest ones. Thus planting density is found to be a key factor for the quality of olive oils in arid regions.

  8. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus.

    Science.gov (United States)

    Fraňková, Adéla; Marounek, Milan; Mozrová, Věra; Weber, Jaroslav; Klouček, Pavel; Lukešová, Daniela

    2014-10-01

    Cronobacter sakazakii and C. malonaticus are opportunistic pathogens that cause infections in children and immunocompromised adults. In the present study, the antibacterial activity of 19 plant-derived compounds, 5 essential oils, and an extract of propolis were assessed against C. sakazakii and C. malonaticus. The effects of most of these antimicrobials have not been reported previously. Both strains were susceptible to thymol, carvacrol, thymoquinone, p-cymene, linalool, camphor, citral, eugenol, and trans-cinnamaldehyde as well as cinnamon, lemongrass, oregano, clove, and laurel essential oils; their minimum inhibitory concentrations varied between 0.1 and 2.0 mg/mL. As an alternative treatment method, vapors of the volatiles were tested as an indirect treatment. Vapors of trans-cinnamaldehyde, eugenol, oregano, and cinnamon essential oils inhibited both tested strains, while vapors of linalool were only active against C. sakazakii. To our knowledge, this study is the first time that the inhibitory activity of the vapors of these compounds and essential oils has been reported against Cronobacter spp.

  9. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-01-01

    Full Text Available Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF; average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  10. Bio-Based Nano Composites from Plant Oil and Nano Clay

    Science.gov (United States)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  11. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  12. Comparing terpenes from plant essential oils as pesticides for the poultry red mite (Dermanyssus gallinae).

    Science.gov (United States)

    Sparagano, O; Khallaayoune, K; Duvallet, G; Nayak, S; George, D

    2013-11-01

    Resistance to conventional synthetic pesticides has been widely reported in ticks, parasitic mites and other pests of veterinary and medical significance. New and novel approaches to manage these pests are therefore needed to ensure efficient control programmes that can be implemented now and in the future. Recent research in this area has focused on the pesticidal potential of plant essential oils. These products are attractive as pesticide candidates on the grounds of low mammalian toxicity, short environmental persistence and complex chemistries (limiting the development of pest resistance against them). Although issues may exist concerning reliability in efficacy of essential oils, these may be overcome by identifying and developing bioactive oil components for use in pest management. In the current work, three such components (terpenes) found in essential oils (eugenol, geraniol and citral) were tested against the poultry red mite Dermanyssus gallinae. All provided 100% mortality in toxicity tests when undiluted. Even at 1% of this dose, eugenol was 20% effective against experimental pest populations, although the remaining terpenes were largely ineffective at this concentration.

  13. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Science.gov (United States)

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  14. Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal.

    Science.gov (United States)

    Yang, Xunan; Chen, Shanshan; Zhang, Renduo

    2014-01-01

    Free-floating aquatic plants Pistia stratiotes and Eichhornia crassipes are well-known invasive species in the tropics and subtropics. The aim of this study was to utilize the plants as cost-effective and environmentally friendly oil sorbents. Multilevel wrinkle structure of P. stratiotes leaf (PL), rough surface of E. crassipes leaf (EL), and box structure of E. crassipes stalk (ES) were observed using the scanning electron microscope. The natural hydrophobic structures and capillary rise tests supported the idea to use P. stratiotes and E. crassipes as oil sorbents. Experiments indicated that the oil sorption by the plants was a fast process. The maximum sorption capacities for different oils reached 5.1-7.6, 3.1-4.8, and 10.6-11.7 g of oil per gram of sorbent for PL, EL, and ES, respectively. In the range of 5-35 °C, the sorption capacities of the plants were not significantly different. These results suggest that the plants can be used as efficient oil sorbents.

  15. Plants' use of different nitrogen forms in response to crude oil contamination

    Energy Technology Data Exchange (ETDEWEB)

    Nie Ming [Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433 (China); Centre for Watershed Ecology, Institute of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031 (China); Lu Meng; Yang Qiang; Zhang Xiaodong [Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433 (China); Xiao Ming [College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234 (China); Jiang Lifen; Yang Ji; Fang Changming [Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433 (China); Chen Jiakuan [Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433 (China); Centre for Watershed Ecology, Institute of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031 (China); Li Bo, E-mail: bool@fudan.edu.c [Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433 (China); Centre for Watershed Ecology, Institute of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031 (China)

    2011-01-15

    In this study, we investigated Phragmites australis' use of different forms of nitrogen (N) and associated soil N transformations in response to petroleum contamination. {sup 15}N tracer studies indicated that the total amount of inorganic and organic N assimilated by P. australis was low in petroleum-contaminated soil, while the rates of inorganic and organic N uptake on a per-unit-biomass basis were higher in petroleum-contaminated soil than those in un-contaminated soil. The percentage of organic N in total plant-assimilated N increased with petroleum concentration. In addition, high gross N immobilization and nitrification rates relative to gross N mineralization rate might reduce inorganic-N availability to the plants. Therefore, the enhanced rate of N uptake and increased importance of organic N in plant N assimilation might be of great significance to plants growing in petroleum-contaminated soils. Our results suggest that plants might regulate N capture under petroleum contamination. - Plant strategies of utilizing nitrogen in crude oil-contaminated soils.

  16. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.

    Science.gov (United States)

    Pattiya, Adisak

    2011-01-01

    Biomass residues from cassava plants, namely cassava stalk and cassava rhizome, were pyrolysed in a fluidised-bed reactor for production of bio-oil. The aims of this work were to investigate the yields and properties of pyrolysis products produced from both feedstocks as well as to identify the optimum pyrolysis temperature for obtaining the highest organic bio-oil yields. Results showed that the maximum yields of the liquid bio-oils derived from the stalk and rhizome were 62 wt.% and 65 wt.% on dry basis, respectively. The pyrolysis temperatures that gave highest bio-oil yields for both feedstocks were in the range of 475-510 °C. According to the analysis of the bio-oils properties, the bio-oil derived from cassava rhizome showed better quality than that derived from cassava stalk as the former had lower oxygen content, higher heating value and better storage stability.

  17. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil.

    Science.gov (United States)

    Fatima, K; Imran, A; Amin, I; Khan, Q M; Afzal, M

    2016-04-01

    Plants coupled with endophytic bacteria hold great potential for the remediation of polluted environment. The colonization patterns and activity of inoculated endophytes in rhizosphere and endosphere of host plant are among the primary factors that may influence the phytoremediation process. However, these colonization patterns and metabolic activity of the inoculated endophytes are in turn controlled by none other than the host plant itself. The present study aims to determine such an interaction specifically for plant-endophyte systems remediating crude oil-contaminated soil. A consortium (AP) of two oil-degrading endophytic bacteria (Acinetobacter sp. strain BRSI56 and Pseudomonas aeruginosa strain BRRI54) was inoculated to two grasses, Brachiaria mutica and Leptochloa fusca, vegetated in crude oil-contaminated soil. Colonization patterns and metabolic activity of the endophytes were monitored in the rhizosphere and endosphere of the plants. Bacterial augmentation enhanced plant growth and crude oil degradation. Maximum crude oil degradation (78%) was achieved with B. mutica plants inoculated with AP consortium. This degradation was significantly higher than those treatments, where plants and bacteria were used individually or L. fusca and endophytes were used in combination. Moreover, colonization and metabolic activity of the endophytes were higher in the rhizosphere and endosphere of B. mutica than L. fusca. The plant species affected not only colonization pattern and biofilm formation of the inoculated bacteria in the rhizosphere and endosphere of the host plant but also affected the expression of alkane hydroxylase gene, alkB. Hence, the investigation revealed that plant species can affect colonization patterns and metabolic activity of inoculated endophytic bacteria and ultimately the phytoremediation process.

  18. Antibacterial activity of commercially available plant-derived essential oils against oral pathogenic bacteria.

    Science.gov (United States)

    Bardají, D K R; Reis, E B; Medeiros, T C T; Lucarini, R; Crotti, A E M; Martins, C H G

    2016-01-01

    This work investigated the antibacterial activity of 15 commercially available plant-derived essential oils (EOs) against a panel of oral pathogens. The broth microdilution method afforded the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of the assayed EOs. The EO obtained from Cinnamomum zeylanicum (Lauraceae) (CZ-EO) displayed moderate activity against Fusobacterium nucleatum (MIC and MBC = 125 μg/mL), Actinomyces naeslundii (MIC and MBC = 125 μg/mL), Prevotella nigrescens (MIC and MBC = 125 μg/mL) and Streptococcus mutans (MIC = 200 μg/mL; MBC = 400 μg/mL). (Z)-isosafrole (85.3%) was the main chemical component of this oil. We did not detect cinnamaldehyde, previously described as the major constituent of CZ-EO, in specimens collected in other countries.

  19. Hydrotreating of used oil; Prediction of industrial trickle-bed operation from pilot-plant data

    Energy Technology Data Exchange (ETDEWEB)

    Skala, D.U.; Saban, M.D.; Orlovie, M. (Belgrade Univ. (Yugoslavia). Tehnolosko-Metalurski Fakultet); Meyn, V.W.; Severin, D.K.; Rahimian, I.G.H. (German Inst. for Petroleum Research, 3392 Clausthal-Zellerfeld (DE)); Marjanovic, M.V. (Refinery Beograd, Pancevacki put 83, 11001 Beograd (YU))

    1991-09-01

    This paper reports on oil hydrotreating that was investigated in a pilot trickle-bed reactor (TBR) at 270-350{degrees} C, 5-7 MPa, and 1.1-4.6 liquid hourly space velocity (LHSV) and with different hydrogen/oil ratios using a commercial Co-Mo/Al{sub 2}O{sub 3} catalyst. Hydrodesulfurization (HDS), hydrodeoxygenation (HDO), and metals removal were investigated by using a modified power- law kinetic model with a power term for LHSV. It was found that the HDS and HDO reactions can be described by pseudo- first-order kinetics. The removal of metals was found to be primarily due to the physical process of deposition on the catalyst bed. With the use of the kinetic data from a pilot plant, the simulation of an industrial TBR was performed. Simulated HDS and HDO, removal of metals, and prediction of catalyst deactivation agreed well with the industrial data for three charges of catalyst.

  20. Fuel-oil cogeneration plant for textile Industry. Central de cogeneracion a fueloleo para industria textil

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Larrauri, M.; Diez Hernandez, J.; Villasante Diaz, A. (IDOM, Ingenieria y Consultoria, S.A. (Spain))

    1993-10-01

    Aznar S.A. is a textile factory especially sensitive to electricity distribution failures. They produce the subsequent shut down at the manufacturing process and several hours of maintenance tasks. A cogeneration plant has been installed to provide electricity and thermal energy to the process. Since the location is far from Natural Gas pipelines the system includes fuel-oil as energy source. Annual electricity production will be 23.300 MWh and 6.400 MWh of them will be exported into the grid. Fuel-oil consumption at the heat exchanger is reduced by 47%, but the whole factory consumption increases a 247% due to the high consumption of the engine. This increase is compensated by revenues from selling electricity and electricity savings. These facts, together with maintenance cost saving leads to a pay back time of 3.3. years. (Author)

  1. Production of wax esters in plant seed oils by oleosomal cotargeting of biosynthetic enzymes[S

    Science.gov (United States)

    Heilmann, Mareike; Iven, Tim; Ahmann, Katharina; Hornung, Ellen; Stymne, Sten; Feussner, Ivo

    2012-01-01

    Wax esters are neutral lipids exhibiting desirable properties for lubrication. Natural sources have traditionally been whales. Additionally some plants produce wax esters in their seed oil. Currently there is no biological source available for long chain length monounsaturated wax esters that are most suited for industrial applications. This study aimed to identify enzymatic requirements enabling their production in oilseed plants. Wax esters are generated by the action of fatty acyl-CoA reductase (FAR), generating fatty alcohols and wax synthases (WS) that esterify fatty alcohols and acyl-CoAs to wax esters. Based on their substrate preference, a FAR and a WS from Mus musculus were selected for this study (MmFAR1 and MmWS). MmWS resides in the endoplasmic reticulum (ER), whereas MmFAR1 associates with peroxisomes. The elimination of a targeting signal and the fusion to an oil body protein yielded variants of MmFAR1 and MmWS that were cotargeted and enabled wax ester production when coexpressed in yeast or Arabidopsis. In the fae1 fad2 double mutant, rich in oleate, the cotargeted variants of MmFAR1 and MmWS enabled formation of wax esters containing >65% oleyl-oleate. The data suggest that cotargeting of unusual biosynthetic enzymes can result in functional interplay of heterologous partners in transgenic plants. PMID:22878160

  2. Oil refinery hazardous effluents minimization by membrane filtration: An on-site pilot plant study.

    Science.gov (United States)

    Santos, Bruno; Crespo, João G; Santos, Maria António; Velizarov, Svetlozar

    2016-10-01

    Experiments for treating two different types of hazardous oil refinery effluents were performed in order to avoid/minimize their adverse impacts on the environment. First, refinery wastewater was subjected to ultrafiltration using a ceramic membrane, treatment, which did not provide an adequate reduction of the polar oil and grease content below the maximal contaminant level allowed. Therefore the option of reducing the polar oil and grease contamination at its main emission source point in the refinery - the spent caustic originating from the refinery kerosene caustic washing unit - using an alkaline-resistant nanofiltration polymeric membrane treatment was tested. It was found that at a constant operating pressure and temperature, 99.9% of the oil and grease and 97.7% of the COD content were rejected at this emission point. Moreover, no noticeable membrane fouling or permeate flux decrease were registered until a spent caustic volume concentration factor of 3. These results allow for a reuse of the purified permeate in the refinery operations, instead of a fresh caustic solution, which besides the improved safety and environmentally related benefits, can result in significant savings of 1.5 M€ per year at the current prices for the biggest Portuguese oil refinery. The capital investment needed for nanofiltration treatment of the spent caustic is estimated to be less than 10% of that associated with the conventional wet air oxidation treatment of the spent caustic that is greater than 9 M€. The payback period was estimated to be 1.1 years. The operating costs for the two treatment options are similar, but the reuse of the nanofiltration spent caustic concentrate for refinery pH control applications can further reduce the operating expenditures. Overall, the pilot plant results obtained and the process economics evaluation data indicate a safer, environmentally friendly and highly competitive solution offered by the proposed nanofiltration treatment, thus

  3. "Singing in the Tube"--audiovisual assay of plant oil repellent activity against mosquitoes (Culex pipiens).

    Science.gov (United States)

    Adams, Temitope F; Wongchai, Chatchawal; Chaidee, Anchalee; Pfeiffer, Wolfgang

    2016-01-01

    Plant essential oils have been suggested as a promising alternative to the established mosquito repellent DEET (N,N-diethyl-meta-toluamide). Searching for an assay with generally available equipment, we designed a new audiovisual assay of repellent activity against mosquitoes "Singing in the Tube," testing single mosquitoes in Drosophila cultivation tubes. Statistics with regression analysis should compensate for limitations of simple hardware. The assay was established with female Culex pipiens mosquitoes in 60 experiments, 120-h audio recording, and 2580 estimations of the distance between mosquito sitting position and the chemical. Correlations between parameters of sitting position, flight activity pattern, and flight tone spectrum were analyzed. Regression analysis of psycho-acoustic data of audio files (dB[A]) used a squared and modified sinus function determining wing beat frequency WBF ± SD (357 ± 47 Hz). Application of logistic regression defined the repelling velocity constant. The repelling velocity constant showed a decreasing order of efficiency of plant essential oils: rosemary (Rosmarinus officinalis), eucalyptus (Eucalyptus globulus), lavender (Lavandula angustifolia), citronella (Cymbopogon nardus), tea tree (Melaleuca alternifolia), clove (Syzygium aromaticum), lemon (Citrus limon), patchouli (Pogostemon cablin), DEET, cedar wood (Cedrus atlantica). In conclusion, we suggest (1) disease vector control (e.g., impregnation of bed nets) by eight plant essential oils with repelling velocity superior to DEET, (2) simple mosquito repellency testing in Drosophila cultivation tubes, (3) automated approaches and room surveillance by generally available audio equipment (dB[A]: ISO standard 226), and (4) quantification of repellent activity by parameters of the audiovisual assay defined by correlation and regression analyses.

  4. Physicochemical properties of apple puree-alginate films containing plant essential oils and oil compounds active against Escherichia coli 0157:H7

    Science.gov (United States)

    The use of edible films as carriers of antimicrobial plant essential oils and other phytochemicals constitutes an approach for external protection of food systems to reduce surface microbial populations and to enhance oxygen-barrier properties, thus enhancing food safety as well as shelf life. To de...

  5. In vitro antimicrobial properties of plant essential oils thymus vulgaris, cymbopogon citratus and laurus nobilis against five important foodborne pathogens

    Directory of Open Access Journals (Sweden)

    Alessandra Farias Millezi

    2012-03-01

    Full Text Available Several essential oils of condiment and medicinal plants possess proven antimicrobial activity and are of important interest for the food industry. Therefore, the Minimum Inhibitory Concentrations (MIC of those oils should be determined for various bacteria. MIC varies according to the oil used, the major compounds, and the physiology of the bacterium under study. In the present study, the essential oils of the plants Thymus vulgaris (time, Cymbopogon citratus (lemongrass and Laurus nobilis (bay were chemically quantified, and the MIC was determined on the bacteria Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 19117, Salmonella enterica Enteritidis S64, and Pseudomonas aeruginosa ATCC 27853. The essential oil of C. citratus demonstrated bacterial activity at all concentrations tested and against all of the bacteria tested. The majority of essential oil compounds were geranial and neral. The major constituent of T. vulgaris was 1.8-cineol and of L. nobilis was linalool, which presented lower antibacterial activity, followed by 1.8-cineol. The Gram-negative bacteria demonstrated higher resistance to the use of the essential oils tested in this study. E. coli was the least sensitive and was inhibited only by the oils of C. citratus and L. nobilis.

  6. Natural Plant Oils and Terpenes as Protector for the Potato Tubers against Phthorimaea operculella Infestation by Different Application Methods

    Directory of Open Access Journals (Sweden)

    Aziza Sharaby

    2014-06-01

    Full Text Available For protecting potato tubers from the potato tuber moth (PTM infestation during storage, different concentrations of ten natural plant oils and three commercial monoterpnes were tested, some as fumigants or dusts against adults or dusts against neonate larvae, while others as sprays on the gunny sacks in which potato tubers were stored. Tuber damage indices as well as persistence indices for tested materials were assessed. Vapors of Cymbopogon citratus, Myristica fragrans (nutmag, Mentha citrata and a-Ionone (monoterpene caused a highly significant reductions in the life span of exposed moths as well as in new adult offsprings. Other tested oils as Cinnamonium zeylanicum, Myristica. fragrans (Mace and Pelargonium graveolens caused a insignificant effect. There was no significant effect of the tested vapors on egg hatchability, except in case of oils of C. citratus, M. fragrans (nutmag and M. tragrans(Mace oil which caused high reduction in egg hatchability. According to the values of damage indices, the most effective oil vapors were arranged ascendingly as follows: Myristica (nutmag < Cymbopogon < Mentha < a - Ionone. Dusting potato tubers with 1% conc., (mixed with talcum powder of Myristica, Mentha, Cymbopogons oils and a-Ionone (monoterpene caused high reduction in egg deposition, adult emergence as well as percentage of penetrated larvae of PTM. According to their damage indices, Cymbopogon and ά-Ionone were the most protective oils, followed by Myristica and Mentha. Spraying gunnysacks with 1% conc., of the aforementioned natural oils separately elicited high reduction in PTM progeny; while their combinations did not elicit any significant synergistic effect. According to their tuber damage indices, it was found that Cymbopogon oil alone or mixed with Myristica oil showed the best protective effect, followed by Myristica oil alone and Mentha oil mixed with Cymbopogon oil. Assessment of the persistence index of various tested materials

  7. Effects of wild plants essential oils on the growth of Phytophthra cinnamomi and Castanea sativa

    OpenAIRE

    Sousa, Maria João; Martins,Fátima; Belo, Hélio; Choupina, Altino; Martins, Anabela

    2010-01-01

    Wild plant essential oil effects on the growth control of Phytophthora cinnamomi and Castanea sativa M. João Sousa1, Fátima Martins1, Hélio Belo1, Altino Choupina1, 2 and Anabela Martins1 1Instituto Politécnico de Bragança, Escola Superior Agrária, Campus de Santa Apolónia, Apartado 1172, 5301-854 Bragança, Portugal 2CIMO- Centro de Investigação de Montanha, Campus de Santa Apolónia, Apartado 1172, 5301-854 Bragança, Portugal Corresponding author: In regions that...

  8. Assessment of microbial respiratory activity of a manufactured gas plant soil after remediation using sunflower oil.

    Science.gov (United States)

    Gong, Zongqiang; Alef, Kassem; Wilke, Berndt-Michael; Mai, Maike; Li, Peijun

    2005-09-30

    Microbial activity of a manufactured gas plant (MGP) soil, as well as remaining oil degradability, before and after remediation using sunflower oil was assessed. A sandy soil contaminated with polycyclic aromatic hydrocarbons (PAHs) was collected from an MGP site in Berlin, Germany. Column solubilizations of PAHs from the field-moist soil and air-dried soil using sunflower oil as an extractant at an oil/soil ratio of 2:1 (v/m) were carried out to compare PAH removals from the soil under these two conditions. After column solubilizations, portions of untreated soil (UTS), solubilized field-moist soil (SFMS), and solubilized air-dried soil (SADS) were amended with nutrients. Both nutrient amended and unamended soil samples were subjected to soil respiratory measurement. Soil respiration parameters, such as basal respiration rate, nutrient-induced respiration rate, lag time, exponential growth rate, respiratory activation quotient, peak maximum time, and cumulative CO2 evolution were calculated from the soil respiration curves. The parameters were compared using analysis of variance (ANOVA) and least-significance difference (LSD). Results showed that the impact of soil moisture on the PAH removals was quite significant, with the SADS showing higher PAH removals and the SFMS showing lower ones. There were significant differences between the respiration parameters with respect to the UTS, SFMS, and SADS. Basal respiration rate, nutrient-induced respiration rate, and exponential growth rate were lower for the SFMS and SADS relative to the UTS. Lag time and peak maximum time were higher for the SFMS and SADS relative to the UTS. Exponential growth rate was higher for the SFMS relative to the SADS. These parameters demonstrated that soil microbial activity was reduced at the onset of the test, because a lot of bioavailable materials for microbial growth were removed by sunflower oil. On the other hand, cumulative CO2 evolutions in the SFMS and SADS were higher than that in

  9. 植物油基塑料的研究进展%Progress on Plant Oil based Plastics

    Institute of Scientific and Technical Information of China (English)

    魏薇; 张星; 王朝; 张立群

    2013-01-01

    利用植物油为原料,通过各种方法制备得到了许多具有应用价值的植物油基塑料,这些植物油基塑料部分可替代石油基塑料,缓解石油危机,符合可持续发展的要求;同时,由于植物油来源广泛,且其产物具有内在的生物可降解性能,在日常生活和医学领域中有着广阔的应用潜力.通过对不同合成方法制备植物油基塑料的工作进行综述,并对部分材料的适用范围、局限以及可行性进行简单的分析,对今后在植物油基塑料上的研究具有一定的意义.%Plant oil has become to be one of the most important bio-feedstock,and many plant-oil-based plastics with wide applications are synthesized via various methods.These plant-oil-based plastics can partly replace petroleum-based plastics,ease the oil crisis,and meet the demand for sustainable development;meanwhile,plant oil has plentiful resources,and its products are inherently biodegradable,so it has a broad potential application in daily life and the medical field.Through the review of the synthesis of plant-oil-based plastics,and several simple analyses of scope,limitations and the feasibility of the materials,those will contribute to the research of plant-oil-based plastics in the future.

  10. In vivo and in vitro control activity of plant essential oils against three strains of Aspergillus niger.

    Science.gov (United States)

    Kumar, Peeyush; Mishra, Sapna; Kumar, Atul; Kumar, Sanjeev; Prasad, Chandra Shekhar

    2017-08-07

    Contamination of environment and food from the prevalent spores and mycotoxins of Aspergillus niger has led to several diseases in humans and other animals. The present study investigated the control activity of plant essential oils against three strains of A. niger. In the elaborate assays done through microdilution plate assay and agar disk diffusion assay in the lab condition and in vivo assay on the stored wheat grains, the essential oil of Thymus vulgaris depicted overall superior efficacy. In microdilution plate assay, the oil of Anethum graveolens showed best fungistatic activity, while best fungicidal activity was depicted by Syzygium aromaticum oil. The oil of T. vulgaris showed moderate control efficacy against A. niger strains with its antifungal activity resulting mainly due to killing of microorganism rather than growth inhibition. In agar disk diffusion assay, T. vulgaris oil with a zone of inhibition (ZOI) of 23.3-61.1% was the most effective fungicide. The in vivo assay to evaluate the protection efficacy of oils for stored wheat grains against A. niger (AN1) revealed T. vulgaris (90.5-100%) to be the best control agent, followed by the oil of S. aromaticum (61.9-100%). The GC-MS analysis of T. vulgaris oil indicated the presence of thymol (39.11%), γ-terpinene (19.73%), o-cymene (17.21%), and β-pinene (5.38%) as major oil components. Phytotoxic effects of the oils on wheat seeds showed no significant phytotoxic effect of oils in terms of seed germination or seedling growth. The results of the study demonstrated control potentiality of essential oils for the protection of stored wheat against A. niger with prospect for development of eco-friendly antifungal products.

  11. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth.

    Science.gov (United States)

    Gong, Zongqiang; Li, Peijun; Wilke, B M; Alef, Kassem

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soil, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth of A. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oil addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oil in the soils was proved by the soil organic carbon content.

  12. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina.

    Science.gov (United States)

    Gillij, Y G; Gleiser, R M; Zygadlo, J A

    2008-05-01

    Mosquitoes are important vectors of diseases and nuisance pests. Repellents minimize contact with mosquitoes. Repellents based on essential oils (EO) are being developed as an alternative to DEET (N,N-diethyl-m-methylbenzamide), an effective compound that has disadvantages including toxic reactions, and damage to plastic and synthetic fabric. This work evaluated the repellency against Aedes aegypti of EO from aromatic plants that grow in Argentina: Acantholippia seriphioides, Achyrocline satureioides, Aloysia citriodora, Anemia tomentosa, Baccharis spartioides, Chenopodium ambrosioides, Eucalyptus saligna, Hyptis mutabilis, Minthostachys mollis, Rosmarinus officinalis, Tagetes minuta and Tagetes pusilla. Most EO were effective. Variations depending on geographic origin of the plant were detected. At a 90% EO concentration, A. satureoides and T. pusilla were the least repellent. At concentrations of 12.5% B. spartioides, R. officinalis and A. citriodora showed the longest repellency times. Comparisons of the principal components of each EO suggest that limonene and camphor were the main components responsible for the repellent effects.

  13. Evaluation of antibacterial activity and synergistic effect between antibiotic and the essential oils of some medicinal plants

    Institute of Scientific and Technical Information of China (English)

    Fadila Moussaoui; Tajelmolk Alaoui

    2016-01-01

    Objective:To demonstrate the in vitro antibacterial properties of five essential oils against ten bacterial strains and study the synergistic effect of the combination of essential oils with standard antibiotics.Methods:Origanum compactum,Chrysanthemum coronarium,Thymus willdenowii Boiss,Melissa officinalis and Origanum majorana L.were used alone and combined used with standard antibiotics to evaluate their antimicrobial activities.The disk diffusion method was employed.Results:The results showed that the combined application of the essential oils of the plants with antibiotics led to a synergistic effect in some cases,but antagonistic effect was also observed in some bacteria.Conclusions:This study shows that the combination of essential oils of the five plants with antibiotics may be useful in the fight against emerging microbial drug resistance.

  14. Evaluation of antibacterial activity and synergistic effect between antibiotic and the essential oils of some medicinal plants

    Institute of Scientific and Technical Information of China (English)

    Fadila Moussaoui; Tajelmolk Alaoui

    2016-01-01

    Objective: To demonstrate the in vitro antibacterial properties of five essential oils against ten bacterial strains and study the synergistic effect of the combination of essential oils with standard antibiotics. Methods: Origanum compactum, Chrysanthemum coronarium, Thymus willdenowii Boiss, Melissa officinalis and Origanum majorana L. were used alone and combined used with standard antibiotics to evaluate their antimicrobial activities. The disk diffusion method was employed. Results: The results showed that the combined application of the essential oils of the plants with antibiotics led to a synergistic effect in some cases, but antagonistic effect was also observed in some bacteria. Conclusions: This study shows that the combination of essential oils of the five plants with antibiotics may be useful in the fight against emerging microbial drug resistance.

  15. Chemical constituents in the essential oil of the endemic plant Cotula cinerea (Del.) from the southwest of Algeria简

    Institute of Scientific and Technical Information of China (English)

    Mohammed; Djellouli; Houcine; Benmehdi; Siham; Mammeri; Abdellah; Moussaoui; Laid; Ziane; Noureddine; Hamidi

    2015-01-01

    Objective: To extract and identify the main constituents of the essential oil of Cotula cinerea(Del.)(Asteraceae family) from southwest of Algeria.Methods: The essential oils obtained by hydrodistillation, from the aerial parts of the endemic plant Cotula cinerea which was collected in the region of Sahara from southwest of Algeria, were analyzed by gas chromatography-mass spectrometry.Results: A total of 33 compounds were identified representing 98.66% of the oil. The main compounds were(E)-citral(24.01%), limonene epoxide cis-(18.26%), thymol methyl ether(15.04%), carvacrol(15.03%), trans-carveol(13.79%), carvone(3.06%) and trans-piperitol(2.54%).Conclusions: The main constituents in essential oil of the aerial part of the plant from southwest of Algeria were different from that collected from southeast of Algeria or in Morocco.

  16. Chemical constituents in the essential oil of the endemic plantCotula cinerea (Del.) from the southwest of Algeria

    Institute of Scientific and Technical Information of China (English)

    Mohammed Djellouli; Houcine Benmehdi; Siham Mammeri; Abdellah Moussaoui; Laid Ziane; Noureddine Hamidi

    2015-01-01

    Objective:To extract and identify the main constituents of the essential oil ofCotula cinerea (Del.) (Asteraceae family) from southwest of Algeria. Methods: The essential oils obtained by hydrodistillation, from the aerial parts of the endemic plantCotula cinerea which was collected in the region of Sahara fromsouthwest of Algeria, were analyzed by gas chromatography-mass spectrometry. Results: A total of 33 compounds were identified representing 98.66% of the oil. The main compounds were (E)-citral (24.01%), limonene epoxide cis- (18.26%), thymol methyl ether (15.04%), carvacrol (15.03%), trans-carveol (13.79%), carvone (3.06%) and trans-piperitol (2.54%). Conclusions: The main constituents in essential oil of the aerial part of the plant from southwest of Algeria were different from that collected from southeast of Algeria or in Morocco.

  17. Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry.

    Science.gov (United States)

    Waseem, Rabia; Low, Kah Hin

    2015-02-01

    In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health.

  18. Oil shale fueled FBC power plant - ash deposits and fouling problems

    Energy Technology Data Exchange (ETDEWEB)

    O. Yoffe; A. Wohlfarth; Y. Nathan; S. Cohen; T. Minster [Geological Survey of Israel, Jerusalem (Israel)

    2007-12-15

    41 MWth oil shale fired demonstration power plant was built in 1989 by PAMA in Mishor Rotem, Negev, Israel. The raw material for the plant is the local 'oil shale', which is in fact organic-rich marl. Since then, and until today, the unit is operated at high reliability and availability. At first, heavy soft fouling occurred due to the Circulating Fluidized Bed Combustion (CFBC) mode of operation, which caused a considerable reduction in the heat transfer coefficient of the heat exchangers. By going over to the Fluidized Bed Combustion (FBC) mode of operation the soft fouling phenomenon stopped at once, the heat transfer coefficient improved, and the power plant could be operated at its designed values. After five months of operation at the FBC mode the boiler had to be shut down because Hard Deposits (HD) blocked physically the passes in the boiler. These deposits could be removed only with the help of mechanical devices. During the first two years the boiler had to be stopped, at least, three times a year for deposit cleaning purposes. Research conducted at the plant and in the laboratories of the Geological Survey of Israel enabled us to understand the mechanism of formation of these deposits. The results showed that the HD are formed in two stages: (1) Deposition of very fine ash particles on the pipes of the boiler, as a result of the impact of larger particles on the pipes. The fine particles adhere to the pipes and to each other, and step by step build the deposit. The growth of the deposit on the pipe surface is always perpendicular to the particles flow direction. (2) The deposits harden due to chemical reactions. 17 refs., 14 figs., 5 tabs.

  19. Diagnostics of the power oil-filled transformer equipment of thermal power plants

    Science.gov (United States)

    Eltyshev, D. K.; Khoroshev, N. I.

    2016-08-01

    Problems concerning improvement of the diagnostics efficiency of the electrical facilities and functioning of the generation and distribution systems through the examples of the power oil-filled transformers, as the responsible elements referring to the electrical part of thermal power plants (TPP), were considered. Research activity is based on the fuzzy logic system allowing working both with statistical and expert information presented in the form of knowledge accumulated during operation of the power oil-filled transformer facilities. The diagnostic algorithm for various types of transformers, with the use of the intellectual estimation model of its thermal state on the basis of the key diagnostic parameters and fuzzy inference hierarchy, was developed. Criteria for taking measures allowing preventing emergencies in the electric power systems were developed. The fuzzy hierarchical model for the state assessment of the power oil-filled transformers of 110 kV, possessing high degree of credibility and setting quite strict requirements to the limits of variables of the equipment diagnostic parameters, was developed. The most frequent defects of the transformer standard elements, related with the disturbance of the isolation properties and instrumentation operation, were revealed after model testing on the real object. Presented results may be used both for the express diagnostics of the transformers state without disconnection from the power line and for more detailed analysis of the defects causes on the basis of the advanced list of the diagnostic parameters; information on those parameters may be received only after complete or partial disconnection.

  20. Chemical Composition and Biological Activity of Essential Oils from Wild Growing Aromatic Plant Species of Skimmia laureola and Juniperus macropoda from Western Himalaya.

    Science.gov (United States)

    Stappen, Iris; Tabanca, Nurhayat; Ali, Abbas; Wedge, David E; Wanner, Jürgen; Kaul, Vijay K; Lal, Brij; Jaitak, Vikas; Gochev, Velizar K; Schmidt, Erich; Jirovetz, Leopold

    2015-06-01

    The Himalayan region is very rich in a great variety of medicinal plants. In this investigation the essential oils of two selected species are described for their antimicrobial and larvicidal as well as biting deterrent activities. Additionally, the odors are characterized. Analyzed by simultaneous GC-MS and GC-FID, the essential oils' chemical compositions are given. The main components of Skimmia laureola oil were linalool and linalyl acetate whereas sabinene was found as the main compound for Juniperus macropoda essential oil. Antibacterial testing by agar dilution assay revealed highest activity of S. laureola oil against all tested bacteria, followed by J. macropoda oil. Antifungal activity was evaluated against the strawberry anthracnose causing plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Juniperus macropoda essential oil indicated higher antifungal activity against all three pathogens than S. laureola oil. Both essential oils showed biting deterrent activity above solvent control but low larvicidal activity.

  1. Preliminary study of the molluscicidal and larvicidal properties of some essential oils and phytochemicals from medicinal plants

    OpenAIRE

    Leite,Aristides M.; Lima, Edeltrudes de O.; Evandro L. de Souza; Margareth de F. F. M. Diniz; Leite, Sônia Pereira; Aline L. Xavier; Medeiros,Isac A. de

    2009-01-01

    This study aimed to evaluate the molluscicidal and larvicidal activity of some essential oils and phytochemicals from medicinal plants. Molluscicide and larvicidal activity were determined by, respectively, the lethality bioassays using Artemia salina Leach. Artemiidae and Aedes aegypti L. Culicidae larvae. Essential oils from Eugenia uniflora L. Myrtaceae, Laurus nobilis L. Lauraceae, Origanum vulgare L. Lamiaceae and the phytochemicals α-pinene and eugenol presented citotoxicity toward...

  2. The potential application of plant essential oils as natural preservatives against Escherichia coli O157:H7.

    Science.gov (United States)

    Fazlara, A; Najafzadeh, H; Lak, E

    2008-09-01

    Investigation were carried out to compare the efficiency of three plant essential oils; Zataria multiflora, Carum carvi and Mentha piperita as natural food preservatives. The effect of these plant essential oils at concentrations of 0.0, 0.3, 0.6 and 1% was studied against inoculated Escherichia coli O157:H7 (10(5) cfu mL(-1)) in prepared commercial chicken soup stored at 8 and 35 degrees C over seven (168 h) and three (72 h) days, respectively by plate count technique on CT-SMAC agar. Zataria multiflora was the most effective essential oil against the bacterium in all concentrations, followed by Mentha piperita and Carum carvi. The maximum inhibitory effects of all essential oils were seen at 1% concentration. The inhibitory effects were affected by the incubation temperature as well as by the type and concentrations of essential oils. The 1% concentration of Mentha piperita and 0.6 and 1% concentrations of Zataria multiflora essential oil showed bacteriostatic effect on growth of Escherichia coli O157:H7 at 35 degrees C. Also 1% concentration of Carum carvi, 0.6 and 1% concentrations of Mentha piperita and 0.6% concentration of Zataria multiflora essential oil had bacteriostatic effect while 1% concentration of Zataria multiflora essential oil showed bactericidal effect on the bacteria during the incubation period at 8 degrees C. It is concluded that selected plant essential oils have promising inhibitory effects on Escherichia coli O157:H7 in chicken soup and could be considered as natural food preservatives. This is especially relevant at a time when there is an increasing interest in finding more natural alternatives to many existing preservatives.

  3. Alkene Metathesis Catalysis: A Key for Transformations of Unsaturated Plant Oils and Renewable Derivatives

    Directory of Open Access Journals (Sweden)

    Dixneuf Pierre H.

    2016-03-01

    Full Text Available This account presents the importance of ruthenium-catalysed alkene cross-metathesis for the catalytic transformations of biomass derivatives into useful intermediates, especially those developed by the authors in the Rennes (France catalysis team in cooperation with chemical industry. The cross-metathesis of a variety of functional alkenes arising from plant oils, with acrylonitrile and fumaronitrile and followed by catalytic tandem hydrogenation, will be shown to afford linear amino acid derivatives, the precursors of polyamides. The exploration of cross-metathesis of bio-sourced unsaturated nitriles with acrylate with further catalytic hydrogenation has led to offer an excellent route to α,ω-amino acid derivatives. That of fatty aldehydes has led to bifunctional long chain aldehydes and saturated diols. Two ways of access to functional dienes by ruthenium-catalyzed ene-yne cross-metathesis of plant oil alkene derivatives with alkynes and by cross-metathesis of bio-sourced alkenes with allylic chloride followed by catalytic dehydrohalogenation, are reported. Ricinoleate derivatives offer a direct access to chiral dihydropyrans and tetrahydropyrans via ring closing metathesis. Cross-metathesis giving value to terpenes and eugenol for the straightforward synthesis of artificial terpenes and functional eugenol derivatives without C=C bond isomerization are described.

  4. Life time analysis of thermal oil used as heat transfer fluid in CSP power plant

    Science.gov (United States)

    Grirate, H.; Zari, N.; Elmchaouri, A.; Molina, S.; Couturier, R.

    2016-05-01

    The present work describes stability testing of hydrogenated terphenyl (HT), thermal oil available in the market and considered as a potential HTF for CSP power plants. Before ageing tests, hydrogenated terphenyl was compared to Biphenyl/diphenyl oxide (DPO) at the initial state, which is the most commonly used HTF in CSP plants (SEGS VI and ANDASOL I) and included as a comparison material in the NREL HTF requirements. The (HT) stability tests were performed in sealed ampoules (stainless steel) under inert gas blanket in the range of temperature between 250°C and 350°C (max temperature of HT) for 500 hrs. After ageing, many investigations were made to track the thermal oil behavior after extended time over a range of temperature, such as chemical composition, flash point, viscosity, acid value…. Laboratory testing indicated that the hydrogenated terphenyl (HT) is stable after ageing process at a temperature of about 250°C. Nevertheless, it has shown signs of serious thermal cracking at elevated temperature which is reflected by low flash point temperature. Therefore, the system must be purged effectively to purge the volatile decomposition products.

  5. Effects of Plant Density on the Number of Glandular Trichomes and on Yield and Quality of Essential Oils from Oregano.

    Science.gov (United States)

    Tuttolomondo, Teresa; La Bella, Salvatore; Leto, Claudio; Bonsangue, Giuseppe; Leone, Raffaele; Gennaro, Maria Cristina; Virga, Giuseppe; Inguanta, Rosalinda; Licata, Mario

    2016-06-01

    Plants yields are influenced by agronomic techniques. Plant density is a complex issue and extremely important when maximizing both crop quality, and biomass and essential oil yields. Plants belonging to the Origanum vulgare subspecies hirtum (Link) Ietswaart were grown adopting four types of plant density and were characterized in biometric and chemical terms. The samples were analyzed using the ANOVA (Principal Component Analysis) statistical method regarding biometric aspects, EO yield and peltate hair density. Essential oil (EO) was extracted by hydrodistillation and analyzed using GC-FID and GC-MS. GC-FID and GC-MS analysis led to the identification of 45 compounds from the EO. Plant density affected production both in terms of biomass and EO. However, it was not found to have affected peltate glandular trichome density or EO quality.

  6. Influence of Tunisian aromatic plants on the prevention of oxidation in soybean oil under heating and frying conditions.

    Science.gov (United States)

    Saoudi, Salma; Chammem, Nadia; Sifaoui, Ines; Bouassida-Beji, Maha; Jiménez, Ignacio A; Bazzocchi, Isabel L; Silva, Sandra Diniz; Hamdi, Moktar; Bronze, Maria Rosário

    2016-12-01

    The aim of this study was to improve the oxidative stability of soybean oil by using aromatic plants. Soybean oil flavored with rosemary (ROS) and soybean oil flavored with thyme (THY) were subjected to heating for 24h at 180°C. The samples were analyzed every 6h for their total polar compounds, anisidine values, oxidative stability and polyphenols content. The tocopherols content was determined and volatile compounds were also analyzed. After 24h of heating, the incorporation of these plants using a maceration process reduced the polar compounds by 69% and 71% respectively, in ROS and THY compared to the control. Until 6h of heating, the ROS kept the greatest oxidative stability. The use of the two extracts preserves approximately 50% of the total tocopherols content until 18h for the rosemary and 24h for the thyme flavored oils. Volatile compounds known for their antioxidant activity were also detected in the formulated oils. Aromatic plants added to the soybean oil improved the overall acceptability of potato crisps (p<0.05) until the fifteenth frying.

  7. Antifungal activity of essential oils from Iranian plants against fluconazole-resistant and fluconazole-susceptible Candida albicans

    Science.gov (United States)

    Sharifzadeh, Aghil; Shokri, Hojjatollah

    2016-01-01

    Objective: The purpose of this study was to assay the antifungal activity of selected essential oils obtained from plants against both fluconazole (FLU)-resistant and FLU-susceptible C. albicans strains isolated from HIV positive patients with oropharyngeal candidiasis (OPC). Materials and Methods: The essential oils were obtained by hydrodistillation method from Myrtus communis (My. communis), Zingiber officinale roscoe (Z. officinale roscoe), Matricaria chamomilla (Ma. chamomilla), Trachyspermum ammi (T. ammi) and Origanum vulgare (O. vulgare). The susceptibility test was based on the M27-A2 methodology. The chemical compositions of the essential oils were obtained by gas chromatography- mass spectroscopy (GC-MS). Results: In GC-MS analysis, thymol (63.40%), linalool (42%), α-pinene (27.87%), α-pinene (22.10%), and zingiberene (31.79%) were found to be the major components of T. ammi, O. vulgare, My. communis, Ma. chamomilla and Z. officinale roscoe, respectively. The results showed that essential oils have different levels of antifungal activity. O. vulgare and T. ammi essential oils were found to be the most efficient (Pessential oils were higher than those of the FLU-susceptible yeasts. Conclusion: Results of this study indicated that the oils from medicinal plants could be used as potential anti FLU-resistant C. albicans agents. PMID:27222835

  8. Repellent activities of some Labiatae plant essential oils against the saltmarsh mosquito Ochlerotatus caspius (Pallas, 1771) (Diptera: Culicidae).

    Science.gov (United States)

    Koc, Samed; Oz, Emre; Cetin, Huseyin

    2012-06-01

    The repellent activities of the essential oils of two Thymus (Thymus sipyleus Boiss. subsp. sipyleus and Thymus revolutus Celak) and two Mentha (Mentha spicata L. subsp. spicata and Mentha longifolia L.) species against Ochlerotatus caspius (Pallas, 1771) (Diptera: Culicidae) are presented. The essential oils were obtained by hydrodistillation of the aerial parts of the plants in flowering period and repellency tests were done with a Y-tube olfactometer. All essential oils showed repellency in varying degrees and exhibited no significant time-dependent repellent activities. When all test oils compared for repellent activities there was no significant activity detected within 15 min exposure period. Mentha essential oils had better activity than Thymus essential oils, producing high repellency (73.8-84.2%) at 30th min on Oc. caspius. Mentha longifolia has the best mosquito repellent activity among the plants tested at the 25th min. Th. sipyleus subsp. sipyleus essential oil produced >85% repellent activity at the 15th min, but the effect decreased noticeably to 63.1% and 68% at 25th and 30th min, respectively.

  9. Repellence of plant essential oils to Dermanyssus gallinae and toxicity to the non-target invertebrate Tenebrio molitor.

    Science.gov (United States)

    George, D R; Sparagano, O A E; Port, G; Okello, E; Shiel, R S; Guy, J H

    2009-05-26

    With changes in legislation and consumer demand, alternatives to synthetic acaricides to manage the poultry red mite Dermanyssus gallinae (De Geer) in laying hen flocks are increasingly needed. These mites may cause losses in egg production, anaemia and even death of hens. It may be possible to use plant-derived products as D. gallinae repellents, especially if such products have a minimal impact on non-target organisms. An experiment was conducted with D. gallinae to assess the repellence of a range of plant essential oils, previously found to be of varying toxicity (relatively highly toxic to non-toxic) to this pest. Experiments were also undertaken to assess the toxicity of these products to mealworm beetles (Tenebrio molitor L.), a non-target invertebrate typical of poultry production systems. Results showed that all seven essential oils tested (manuka, thyme, palmarosa, caraway, spearmint, black pepper and juniper leaf) were repellent to D. gallinae at 0.14mg oil/cm(3) (initial concentration) during the first 2 days of study. Thyme essential oil appeared to be the most effective, where repellence lasted until the end of the study period (13 days). At the same concentration toxicity to T. molitor differed, with essential oils of palmarosa and manuka being no more toxic to adult beetles than the control. There was neither a significant association between the rank toxicity and repellence of oils to D. gallinae, nor the toxicity of oils to D. gallinae (as previously determined) and T. molitor.

  10. Engineering plant oils as high-value industrial feedstocks for biorefining - the need for underpinning cell biology research

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J.M. (US Arid-Land Agricultural Research Center, United States Dept. of Agriculture, Maricopa (US)); Mullen, R.T. (University of Guelph, Dept. of Molecular and Cellular Biology, Ontario (CA))

    2008-01-15

    Plant oils represent renewable sources of long-chain hydrocarbons that can be used as both fuel and chemical feedstocks, and genetic engineering offers an opportunity to create further high-value specialty oils for specific industrial uses. While many genes have been identified for the production of industrially important fatty acids, expression of these genes in transgenic plants has routinely resulted in a low accumulation of the desired fatty acids, indicating that significantly more knowledge of seed oil production is required before any future rational engineering designs are attempted. Here, we provide an overview of the cellular features of fatty acid desaturases, the so-called diverged desaturases, and diacylglycerol acyltransferases, three sets of enzymes that play a central role in determining the types and amounts of fatty acids that are present in seed oil, and as such, the final application and value of the oil. Recent studies of the intracellular trafficking, assembly and regulation of these enzymes have provided new insights to the mechanisms of storage oil production, and suggest that the compartmentalization of enzyme activities within specific regions or subdomains of the ER may be essential for both the synthesis of novel fatty acid structures and the channeling of these important fatty acids into seed storage oils. (au)

  11. Triacylglycerols Composition and Volatile Compounds of Virgin Olive Oil from Chemlali Cultivar: Comparison among Different Planting Densities

    Science.gov (United States)

    Guerfel, Mokhtar; Ben Mansour, Mohamed; Ouni, Youssef; Guido, Flamini; Boujnah, Dalenda; Zarrouk, Mokhtar

    2012-01-01

    The present study focused on the comparison the chemical composition of virgin olive oil samples obtained from fruits of the main Tunisian olive cultivar (Chemlali) grown in four planting densities (156, 100, 69, and 51 trees ha−1). Despite the variability in the triacylglycerols and volatile compounds composition, the quality indices (free fatty acids, peroxide value, and spectrophotometric indices K232 and K270) all of the virgin olive oils samples studied met the commercial standards. Decanal was the major constituent, accounting for about 30% of the whole volatiles. Moreover, the chemical composition of the volatile fraction of the oil from fruits of trees grown at the planting density of 156, 100, and 51 trees ha−1 was also characterised by the preeminence of 1-hexanol, while oils from fruits of trees grown at the planting density of 69 trees ha−1 had higher content of (E)-2-hexenal (20.3%). Our results confirm that planting density is a crucial parameter that may influence the quality of olive oils. PMID:22629139

  12. Triacylglycerols Composition and Volatile Compounds of Virgin Olive Oil from Chemlali Cultivar: Comparison among Different Planting Densities

    Directory of Open Access Journals (Sweden)

    Mokhtar Guerfel

    2012-01-01

    Full Text Available The present study focused on the comparison the chemical composition of virgin olive oil samples obtained from fruits of the main Tunisian olive cultivar (Chemlali grown in four planting densities (156, 100, 69, and 51 trees ha−1. Despite the variability in the triacylglycerols and volatile compounds composition, the quality indices (free fatty acids, peroxide value, and spectrophotometric indices K232 and K270 all of the virgin olive oils samples studied met the commercial standards. Decanal was the major constituent, accounting for about 30% of the whole volatiles. Moreover, the chemical composition of the volatile fraction of the oil from fruits of trees grown at the planting density of 156, 100, and 51 trees ha−1 was also characterised by the preeminence of 1-hexanol, while oils from fruits of trees grown at the planting density of 69 trees ha−1 had higher content of (E-2-hexenal (20.3%. Our results confirm that planting density is a crucial parameter that may influence the quality of olive oils.

  13. Nitrogen, potassium and plant growth retardant effects on oil content and quality of cotton seed

    Directory of Open Access Journals (Sweden)

    Alkassas, A. R.

    2007-09-01

    Full Text Available The aim of this field experiment was to investigate the effect of nitrogen, potassium and a plant growth retardant (PGR on seed yield and protein and oil content of an Egyptian cotton cultivar (Gossypium barbadense Giza 86. Treatments consisted of: soil application of N (95 and 143 kg N ha-1 in the form ammonium nitrate, foliar application of potassium (0, 319, 638 or 957 g K ha-1 as potassium sulfate and foliar application of mepiquat chloride (MC (0 and 48 + 24 g active ingredient ha-1 on seed, protein and oil yields and oil properties of Egyptian cotton cultivar “Giza 86” (Gossypium barbadense. After applying the higher N-rate, foliar application of potassium and plant growth retardant MC significantly increased seed yield and the content of seed protein and oil, seed oil refractive index, unsaponifiable matter and total unsaturated fatty acids (oleic and linoleic. In contrast, oil acid and saponification value as well as total saturated fatty acids were decreased by foliar application of potassium and MC. The seed oil content was decreased with soil application of N.El objetivo de los experimentos de campo fue investigar el efecto del nitrogeno, potasio y retardantes del crecimiento de plantas sobre el contenido en proteínas y aceite de una semilla de algodón cultivada en Egipto (Gossypium barbadense Giza 86. Los tratamientos consistieron en la aplicación en suelo de N (95 and 143 kg N ha-1 en forma de nitrato amónico, aplicación foliar de K (0, 319, 638 or 957 g K ha-1 como sulfato potásico y aplicación foliar de cloruro de m mepiquat (MC (0 and 48 + 24 g de ingrediente activo ha-1 sobre un cultivar de algodón «Giza 86» (Gossypium barbadense. La aplicación de la cantidad más elevada de N, unida a la aplicación de potasio y del retardador MC, aumentó significativamente el rendimiento en semilla, así como el contenido en proteinas y en aceite. Respecto al aceite, aumentó el índice de refracción, la fracci

  14. Disinfection of vegetable seed by treatment with essential oils, organic acids and plant extract

    NARCIS (Netherlands)

    Wolf, van der J.M.; Birnbaum, Y.E.; Zouwen, van der P.S.; Groot, S.P.C.

    2008-01-01

    Various essential oils, organic acids, Biosept, (grapefruit extract), Tillecur and extracts of stinging nettle and golden rod were tested for their antimicrobial properties in order to disinfect vegetable seed. In in vitro assays, thyme oil, oregano oil, cinnamon oil, clove oil and Biosept had the h

  15. Nitrogen, Phosphor, and Potassium Level in Soil and Oil Palm Tree at various Composition of plant species mixtures grown

    Science.gov (United States)

    Hanum, C.; Rauf, A.; Fazrin, D. A.; Habibi, A. R.

    2016-08-01

    In productive oil palm plantation areas, poor vegetation is generally caused by low light intensity. This condition causes excessive erosion and decreases soil fertility. One of the efforts for soil and water conservation at oil palm plantations is through increased vegetation diversity. The changes of soil and plant nitrogen, phosporus, and potassium content, observed by planting two types of herbs under oil palm tree, with different compositions. Vegetation composition was set as: Arachis glabrata 100%; Stenotaprum secundatum 100%; Arachis glabrata 50% + Stenotaprum secundatum 50%; Arachis glabrata 75% + Stenotaprum secundatum 25%; Arachis glabrata 25% + Stenotaprum secundatum 75%. The shoot and root fresh/dry weight, nutrient content (nitrogen, phosphor, and potassium) of each cutting were measured at the end of the experiment. Ten of treatment plant were harvested and divided shoots and roots after washing out of soil. Biomass samples were dried at 70 °C for 48 h and weighed. The total N and its proportional concentration (N%) were analyzed with the micro- Kjeldahl method. Potasium analyzing with flamephotometry, and phosphor and from samples was determined by analyzing with spectrophotometry method. The results showed the highest shoot growth of A.glabarata if planting was mixed with S. secundatum, but the result was different with S.secundatum being superior if planted with monoculture system. Combination of interrow cultivation is more recommended for soil conservation and nutrient maintenance in palm oil trees were A. Glabarata 75% + S.secundatum 25%.

  16. Mode of action and variability in efficacy of plant essential oils showing toxicity against the poultry red mite, Dermanyssus gallinae.

    Science.gov (United States)

    George, D R; Smith, T J; Shiel, R S; Sparagano, O A E; Guy, J H

    2009-05-12

    This paper describes a series of experiments to examine the mode of action and toxicity of three plant essential oils (thyme, manuka and pennyroyal) to the poultry red mite, Dermanyssus gallinae (De Geer), a serious ectoparasitic pest of laying hens. All three oils were found to be toxic to D. gallinae in laboratory tests with LC(50), LC(90) and LC(99) values below 0.05, 0.20 and 0.30mg/cm(3), respectively, suggesting that these products may make for effective acaricides against this pest. Further experiments demonstrated that when mites were exposed to only the vapour phase of the essential oil without contact with the oil itself, mortality was consistently higher in closed arenas than in arenas open to the surrounding environment, or in control arenas. This suggests that all three essential oils were toxic to D. gallinae by fumigant action. In addition, in an experiment where mites were allowed contact with the essential oil in either open or closed arenas, mortality was always reduced in the open arenas where this was comparable to control mortality for thyme and pennyroyal essential oil treatments. This supports the findings of the previous experiment and also suggests that, with the possible exception of manuka, the selected essential oils were not toxic to D. gallinae on contact. Statistical comparisons were made between the toxicity of the selected essential oils to D. gallinae in the current work and in a previous study conducted in the same laboratory. The results demonstrated considerable variation in LC(50), LC(90) and LC(99) values. Since both the essential oils and the mites were obtained from identical sources in the two studies, it is hypothesized that this variation resulted from the use of different 'batches' of essential oil, which could have varied in chemistry and hence acaricidal activity.

  17. Repellent Activities of Essential Oils of Some Plants Used Traditionally to Control the Brown Ear Tick, Rhipicephalus appendiculatus

    Directory of Open Access Journals (Sweden)

    Wycliffe Wanzala

    2014-01-01

    Full Text Available Essential oils of eight plants, selected after an ethnobotanical survey conducted in Bukusu community in Bungoma County, western Kenya (Tagetes minuta, Tithonia diversifolia, Juniperus procera, Solanecio mannii, Senna didymobotrya, Lantana camara, Securidaca longepedunculata, and Hoslundia opposita, were initially screened (at two doses for their repellence against brown ear tick, Rhipicephalus appendiculatus, using a dual-choice climbing assay. The oils of T. minuta and T. diversifolia were then selected for more detailed study. Dose-response evaluations of these oils showed that T. minuta oil was more repellent (RD50 = 0.0021 mg than that of T. diversifolia (RD50 = 0.263 mg. Gas chromatography-linked mass spectrometric (GC-MS analyses showed different compositions of the two oils. T. minuta oil is comprised mainly of cis-ocimene (43.78%, dihydrotagetone (16.71%, piperitenone (10.15%, trans-tagetone (8.67%, 3,9-epoxy-p-mentha-1,8(10diene (6.47%, β-ocimene (3.25%, and cis-tagetone (1.95%, whereas T. diversifolia oil is comprised mainly of α-pinene (63.64%, β-pinene (15.00%, isocaryophyllene (7.62%, nerolidol (3.70%, 1-tridecanol (1.75%, limonene (1.52%, and sabinene (1.00%. The results provide scientific rationale for traditional use of raw products of these plants in controlling livestock ticks by the Bukusu community and lay down some groundwork for exploiting partially refined products such as essential oils of these plants in protecting cattle against infestations with R. appendiculatus.

  18. Biological Control Against the Cowpea Weevil (Callosobruchus Chinensis L., Coleoptera: Bruchidae Using Essential Oils of Some Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Fatiha Righi Assia

    2014-07-01

    Full Text Available Chickpea (Cicer arietinum L. is a valuable foodstuff but unfortunately this legume is prone to insect attacks from the chick pea weevil (Callosobruchus chinensis L.. This serious pest damages the chickpea and causes decreases in the yield and in the nutritional quality. Biological control is being used to deal with this problem. We tried different doses of the essential oils of three new medicinal plants, namely Salvia verbenaca L., Scilla maritima L., and Artemisia herba-alba Asso to limit the damage of the chick pea weevil pest, and to protect consumer’s health. To determine the effect and efficiency of the oil, the tests were conducted using the different biological parameters of fertility, longevity, and fecundity, under controlled temperature and relative humidity (28°C and 75%. The effectiveness of organic oils was demonstrated. We tested these oils on the germination of seeds. The obtained results showed that the tested plant oils have a real organic insecticide effect. The essential oil of Artemisia proved most effective as a biocide; achieving a mortality rate of 100%. A significant reduction in longevity was observed under the effect of 30 μl of S. maritima (1.3 days and S. verbenaca (2.8, 4.6 days, respectively, for males and females compared to 8 and 15 days for the control. For fecundity, an inhibition of oviposition was obtained using 30 μl of Salvia and Scilla essential oils. The test on the seed germination using different essential oils, showed no damage to the germinating seeds. The germination rate was 99%. These findings suggest that the tested plants can be used as a bioinsecticide for control of the C. chinensis pest of stored products.

  19. Root growth, mycorrhization and physiological effects of plants growing on oil tailing sands

    Science.gov (United States)

    Boldt-Burisch, Katja M.; Naeth, Anne M.; Schneider, Bernd Uwe; Hüttl, Reinhard F.

    2015-04-01

    Surface mining creates large, intense disturbances of soils and produces large volumes of by-products and waste materials. After mining processes these materials often provide the basis for land reclamation and ecosystem restoration. In the present study, tailing sands (TS) and processed mature fine tailings (pMFT) from Fort McMurray (Alberta, Canada) were used. They represent challenging material for ecosystem rebuilding because of very low nutrient contents of TS and oil residuals, high density of MFT material. In this context, little is known about the interactions of pure TS, respectively mixtures of TS and MFT and root growth, mycorrhization and plant physiological effects. Four herbaceous plant species (Elymus trachycaulus, Koeleria macrantha, Deschampsia cespitosa, Lotus corniculatus) were chosen to investigate root development, chlorophyll fluorescence and mycorrhization intensity with and without application of Glomus mosseae (arbuscular mycorrhizae) on mainly tailing sands. Surprisingly both, plants growing on pure TS and plants growing on TS with additional AM-application showed mycorrhization of roots. In general, the mycorrhization intensity was lower for plants growing on pure tailings sands, but it is an interesting fact that there is a potential for mycorrhization available in tailing sands. The mycorrhizal intensity strongly increased with application of G. mosseae for K. macrantha and L. corniculatus and even more for E. trachycaulus. For D. cespitosa similar high mycorrhiza infection frequency was found for both variants, with and without AM-application. By the application of G. mosseae, root growth of E. trachycaulus and K. macrantha was significantly positively influenced. Analysis of leaf chlorophyll fluorescence showed no significant differences for E. trachycaulus but significant positive influence of mycorrhizal application on the physiological status of L. corniculatus. However, this effect could not be detected when TS was mixed with MFT

  20. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Maheshwar; Bhardwaj, Sunil; Jaybhaye, Sandesh [Nanotechnology Research Center, Birla College, Kalyan 421304 (India); Soga, T.; Afre, Rakesh [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya (Japan); Sathiyamoorthy, D.; Dasgupta, K. [Powder Metallurgy Division, BARC, Trombay 400 085 (India); Sharon, Madhuri [Monad Nanotech Pvt. Ltd., A702 Bhawani Tower, Powai, Mumbai 400 076 (India)

    2007-12-15

    Carbon materials of various morphologies have been synthesized by pyrolysis of various oil-seeds and plant's fibrous materials. These materials are characterized by SEM and Raman. Surface areas of these materials are determined by methylene blue method. These carbon porous materials are used for hydrogen storage. Carbon fibers with channel type structure are obtained from baggas and coconut fibers. It is reported that amongst the different plant based precursors studied, carbon from soyabean (1.09 wt%) and baggas (2.05 wt%) gave the better capacity to store hydrogen at 11kg/m{sup 2} pressure of hydrogen at room temperature. Efforts are made to correlate the hydrogen adsorption capacity with intensities and peak positions of G- and D-band obtained with carbon materials synthesized from plant based precursors. It is suggested that carbon materials whose G-band is around 1575cm{sup -1} and the intensity of D-band is less compared to G-band, may be useful material for hydrogen adsorption study. (author)

  1. A cross-cultural study of organizational factors on safety: Japanese vs. Taiwanese oil refinery plants.

    Science.gov (United States)

    Hsu, Shang Hwa; Lee, Chun-Chia; Wu, Muh-Cherng; Takano, Kenichi

    2008-01-01

    This study attempts to identify idiosyncrasies of organizational factors on safety and their influence mechanisms in Taiwan and Japan. Data were collected from employees of Taiwanese and Japanese oil refinery plants. Results show that organizational factors on safety differ in the two countries. Organizational characteristics in Taiwanese plants are highlighted as: higher level of management commitment to safety, harmonious interpersonal relationship, more emphasis on safety activities, higher devotion to supervision, and higher safety self-efficacy, as well as high quality of safety performance. Organizational characteristics in Japanese plants are highlighted as: higher level of employee empowerment and attitude towards continuous improvement, more emphasis on systematic safety management approach, efficient reporting system and teamwork, and high quality of safety performance. The casual relationships between organizational factors and workers' safety performance were investigated using structural equation modeling (SEM). Results indicate that the influence mechanisms of organizational factors in Taiwan and Japan are different. These findings provide insights into areas of safety improvement in emerging countries and developed countries respectively.

  2. Comparative Analysis of Chemical Components of Purified Essential Oil from Nilam Plants using Gas Chromatography

    OpenAIRE

    Emas Agus Prastyo Wibowo; Utami Nofitasari; Atik Setyani; Nuni Widiarti

    2017-01-01

    T This study aimed to determine the chemical components of the patchouli oil. Patchouli oil is one of the export commodities that have high economic value for Indonesia. In general, patchouli oil obtained from the hydrodistillation of patchouli leaves. Most industries are still using patchouli oil refiners made by ferrous metal. The rust will dissolve in patchouli oil obtained and led to the resulting of dark oil and patchouli aroma becomes lower. The main purpose of this research is to ...

  3. Effects of Fe(3+) and Antioxidants on Glycidyl Ester Formation in Plant Oil at High Temperature and Their Influencing Mechanisms.

    Science.gov (United States)

    Cheng, Weiwei; Liu, Guoqin; Liu, Xinqi

    2017-05-24

    This research investigated the effects of Fe(3+) and antioxidants on the formation of glycidyl esters (GEs) and the free radical mediated mechanisms involving the recognition of cyclic acyloxonium free radical intermediate (CAFRI) for GE formation in both the plant oil model (palm oil, camellia oil, soybean oil, and linseed oil) system and the chemical model (dipalmitin and methyl linoleate) system heated at 200 °C. Results show that Fe(3+) can promote the formation of GEs, which can be inhibited by antioxidants in plant oil during high-temperature exposure. Based on the monitoring of cyclic acyloxonium and ester carbonyl group by Fourier transform infrared spectroscopy, the promotion of Fe(3+) and the inhibition of antioxidants (tert-butylhydroquinone and α-tocopherol) for GE formation occurred not only through lipid oxidation but also through directly affecting the formation of cyclic acyloxonium intermediate. Additionally, a quadrupole time-of-flight tandem mass spectrometry measurement was conducted to identify the presence of radical adduct captured by 5,5-dimethylpyrroline N-oxide, which provided strong evidence for the formation of CAFRI. Thus, one possible influencing mechanism can be that free radical generated in lipid oxidation may be transferred to dipalmitin and promote CAFRI formation. Fe(3+) can catalyze free radical generation while antioxidants can scavenge free radical, and therefore they also can directly affect CAFRI formation.

  4. Overexpression of patatin-related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina.

    Science.gov (United States)

    Li, Maoyin; Wei, Fang; Tawfall, Amanda; Tang, Michelle; Saettele, Allison; Wang, Xuemin

    2015-08-01

    Camelina sativa is a Brassicaceae oilseed species being explored as a biofuel and industrial oil crop. A growing number of studies have indicated that the turnover of phosphatidylcholine plays an important role in the synthesis and modification of triacylglycerols. This study manipulated the expression of a patatin-related phospholipase AIIIδ (pPLAIIIδ) in camelina to determine its effect on seed oil content and plant growth. Constitutive overexpression of pPLAIIIδ under the control of the constitutive cauliflower mosaic 35S promoter resulted in a significant increase in seed oil content and a decrease in cellulose content. In addition, the content of major membrane phospholipids, phosphatidylcholine and phosphatidylethanolamine, in 35S::pPLAIIIδ plants was increased. However, these changes in 35S::pPLAIIIδ camelina were associated with shorter cell length, leaves, stems, and seed pods and a decrease in overall seed production. When pPLAIIIδ was expressed under the control of the seed specific, β-conglycinin promoter, the seed oil content was increased without compromising plant growth. The results suggest that pPLAIIIδ alters the carbon partitioning by decreasing cellulose content and increasing oil content in camelina. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Numerical investigation of the flow inside the combustion chamber of a plant oil stove

    Science.gov (United States)

    Pritz, B.; Werler, M.; Wirbser, H.; Gabi, M.

    2013-10-01

    Recently a low cost cooking device for developing and emerging countries was developed at KIT in cooperation with the company Bosch und Siemens Hausgeräte GmbH. After constructing an innovative basic design further development was required. Numerical investigations were conducted in order to investigate the flow inside the combustion chamber of the stove under variation of different geometrical parameters. Beyond the performance improvement a further reason of the investigations was to rate the effects of manufacturing tolerance problems. In this paper the numerical investigation of a plant oil stove by means of RANS simulation will be presented. In order to reduce the computational costs different model reduction steps were necessary. The simulation results of the basic configuration compare very well with experimental measurements and problematic behaviors of the actual stove design could be explained by the investigation.

  6. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants.

    Science.gov (United States)

    Silva, N C C; Barbosa, L; Seito, L N; Fernandes, A

    2012-01-01

    We aimed to establish a phytochemical analysis of the crude extracts and performed GC-MS of the essential oils (EOs) of Eugenia uniflora L. (Myrtaceae) and Asteraceae species Baccharis dracunculifolia DC, Matricaria chamomilla L. and Vernonia polyanthes Less, as well as determining their antimicrobial activity. Establishment of the minimal inhibitory concentrations of the crude extracts and EOs against 16 Staphylococcus aureus and 16 Escherichia coli strains from human specimens was carried out using the dilution method in Mueller-Hinton agar. Some phenolic compounds with antimicrobial properties were established, and all EOs had a higher antimicrobial activity than the extracts. Matricaria chamomilla extract and E. uniflora EO were efficient against S. aureus strains, while E. uniflora and V. polyanthes extracts and V. polyanthes EO showed the best antimicrobial activity against E. coli strains. Staphylococcus aureus strains were more susceptible to the tested plant products than E. coli, but all natural products promoted antimicrobial growth inhibition.

  7. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro

    Directory of Open Access Journals (Sweden)

    Martínez Jairo R

    2009-03-01

    Full Text Available Abstract Background An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. Aim In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV replication was investigated. Methods The cytotoxicity (CC50 on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC was determined by virus yield reduction assay. YFV was incubated 24 h at 4°C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37°C before the adsorption of untreated-virus. Results The CC50 values were less than 100 μg/mL and the MIC values were 3.7 and 11.1 μg/mL. The CC50/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 μg/mLproduced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at100 μg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. Conclusion The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation.

  8. GC-MS analysis of allergens in plant oils meant to cosmetics

    Directory of Open Access Journals (Sweden)

    Kaloustian Jacques

    2007-03-01

    Full Text Available Cutaneous allergy occurs mainly as a result of the use of domestic products and cosmetics. Some fragrances, present in these products, may contain compounds that are responsible for allergy (allergens. The European Council offered a Directive limiting the level of 26 allergens found in cosmetics. GC-MS technique was used to determine the retention times of 25 allergens, determine detection and quantification limits and make calibration with standard solution of each allergen in concentrations ranging from 10 to 200 mgL–1 (21 allergens and 50 to 200 mgL–1 (4 allergens. Quantification was performed by the use of 2 internal standards (tetradecane and hexadecane. Seven oils issued from plants were studied by GC-MS. For all of them, the concentration of potential allergens was lower than their minimum detectable level. The alcoholic solution of extracts issued from different samples of oil did not demonstrate the presence of any quantifiable allergen, even when was concentrated 25 times. GC-MS could be a useful technique in the identification and, if necessary, quantification of allergen in ingredients meant to cosmetics.

  9. In vitro control of post-harvest fruit rot fungi by some plant essential oil components.

    Science.gov (United States)

    Camele, Ippolito; Altieri, Luciana; De Martino, Laura; De Feo, Vincenzo; Mancini, Emilia; Rana, Gian Luigi

    2012-01-01

    Eight substances that are main components of the essential oils from three Mediterranean aromatic plants (Verbena officinalis, Thymus vulgaris and Origanum vulgare), previously found active against some phytopathogenic Fungi and Stramenopila, have been tested in vitro against five etiological agents of post-harvest fruit decay, Botrytis cinerea, Penicillium italicum, P. expansum, Phytophthora citrophthora and Rhizopus stolonifer. The tested compounds were β-fellandrene, β-pinene, camphene, carvacrol, citral, o-cymene, γ-terpinene and thymol. Citral exhibited a fungicidal action against P. citrophthora; carvacrol and thymol showed a fungistatic activity against P. citrophthora and R. stolonifer. Citral and carvacrol at 250 ppm, and thymol at 150 and 250 ppm stopped the growth of B. cinerea. Moreover, thymol showed fungistatic and fungicidal action against P. italicum. Finally, the mycelium growth of P. expansum was inhibited in the presence of 250 ppm of thymol and carvacrol. These results represent an important step toward the goal to use some essential oils or their components as natural preservatives for fruits and foodstuffs, due to their safety for consumer healthy and positive effect on shelf life extension of agricultural fresh products.

  10. Releases of natural radionuclides from oil-shale-fired power plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Realo, E.; Realo, K.; Jogi, J. [AN Ehstonskoj SSR, Tartu (Estonia). Inst. Fiziki

    1996-11-01

    In the vicinity of two large oil-shale-fired power plants in northeast Estonia, depth-dependent activity concentrations of natural radionuclides in soil were determined by gamma spectrometry. In the surface soil considerably higher (or lower) concentrations of {sup 40}k, {sup 226}Ra and {sup 232}Th were found than in deeper soil layers. The observed increase or decrease of the enrichment of radionuclides for different sampling sites was dependent on the relative concentrations of radionuclides in fly-ash and in deep soil layers. The fraction of the radionuclides deposited onto the ground was characterized by a mean {sup 226}Ra/{sup 232}Th activity concentration ratio of 2.2, approximately equal to the one (2.1) found for oil-shale filter ash. The atmospheric deposition rates of fly-ash radionuclides onto the ground were estimated and compared to other relevant published data. The migration of the deposited fly-ash radionuclides into soil was satisfactorily described assuming an exponential depth distribution with the relaxation length value, {alpha}{sup -1} = 2.9 {+-} 0.6 cm, for both {sup 226}Ra and {sup 232}Th. (Author).

  11. In Vitro Control of Post-Harvest Fruit Rot Fungi by Some Plant Essential Oil Components

    Directory of Open Access Journals (Sweden)

    Gian Luigi Rana

    2012-02-01

    Full Text Available Eight substances that are main components of the essential oils from three Mediterranean aromatic plants (Verbena officinalis, Thymus vulgaris and Origanum vulgare, previously found active against some phytopathogenic Fungi and Stramenopila, have been tested in vitro against five etiological agents of post-harvest fruit decay, Botrytis cinerea, Penicillium italicum, P. expansum, Phytophthora citrophthora and Rhizopus stolonifer. The tested compounds were β-fellandrene, β-pinene, camphene, carvacrol, citral, o-cymene, γ-terpinene and thymol. Citral exhibited a fungicidal action against P. citrophthora; carvacrol and thymol showed a fungistatic activity against P. citrophthora and R. stolonifer. Citral and carvacrol at 250 ppm, and thymol at 150 and 250 ppm stopped the growth of B. cinerea. Moreover, thymol showed fungistatic and fungicidal action against P. italicum. Finally, the mycelium growth of P. expansum was inhibited in the presence of 250 ppm of thymol and carvacrol. These results represent an important step toward the goal to use some essential oils or their components as natural preservatives for fruits and foodstuffs, due to their safety for consumer healthy and positive effect on shelf life extension of agricultural fresh products.

  12. Mixtures of wine, essential oils, and plant polyphenolics do not act synergistically against Escherichia coli O157 and Salmonella enterica

    Science.gov (United States)

    Red wine or fortified red wine formulations containing some various essential oils from oregano or thyme or their pure active components, and a mixture of plant extract powders from apple skin, green tea, and olive, were evaluated for inhibitory activity against the foodborne pathogens Escherichia c...

  13. The effect of plant sterols and different low doses of omega-3 fatty acids from fish oil on lipoprotein subclasses

    NARCIS (Netherlands)

    Jacobs, D.M.; Mihaleva, V.V.; Schalkwijk, D.B. van; Graaf, A.A. de; Vervoort, J.; Dorsten, F.A. van; Ras, R.T.; Demonty, I.; Trautwein, E.A.; Duynhoven, J. van

    2015-01-01

    Scope: Consumption of a low-fat spread enriched with plant sterols (PS) and different low doses (<2 g/day) of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil reduces serum triglycerides (TGs) and low-density lipoprotein-cholesterol (LDL-Chol) and thus beneficially affects

  14. Integrating Plant Essential Oils and Kaolin for the Sustainable Management of Thrips and Tomato Spotted Wilt on Tomato

    Science.gov (United States)

    Thrips-vectored Tomato spotted wilt virus is one of the most devastating pest complexes affecting tomato in the southern USA and elsewhere. Field trials were conducted over two years to determine the effects of volatile plant essential oils and kaolin based particle films on the incidence of Tomato...

  15. A Survey on the Removal Efficiency of Fat, Oil and Grease in Shiraz Municipal Wastewater Treatment Plant

    OpenAIRE

    Dehghani; Sadatjo; Maleknia; Shamsedini

    2014-01-01

    Background Fat, oil and grease (FOG) in municipal wastewater treatment plant (MWWTP) caused many problems. Objectives This study aimed to determine the removal efficiency of FOG in Shiraz MWWTP. Materials and Methods The removal efficiencies of FOG in the MWWTP were studied from June 2011 to September 2011 in Shiraz (Iran). The influent and effluent wastewater samples were collecte...

  16. Intraspecific variation in essential oil composition of the medicinal plant Lippia integrifolia (Verbenaceae). Evidence for five chemotypes.

    Science.gov (United States)

    Marcial, Guillermo; de Lampasona, Marina P; Vega, Marta I; Lizarraga, Emilio; Viturro, Carmen I; Slanis, Alberto; Juárez, Miguel A; Elechosa, Miguel A; Catalán, César A N

    2016-02-01

    The aerial parts of Lippia integrifolia (incayuyo) are widely used in northwestern and central Argentina for their medicinal and aromatic properties. The essential oil composition of thirty-one wild populations of L. integrifolia covering most of its natural range was analyzed by GC and GC-MS. A total of one hundred and fifty two terpenoids were identified in the essential oils. Sesquiterpenoids were the dominant components in all but one of the collections analyzed, the only exception being a sample collected in San Juan province where monoterpenoids amounted to 51%. Five clearly defined chemotypes were observed. One possessed an exquisite and delicate sweet aroma with trans-davanone as dominant component (usually above 80%). Another with an exotic floral odour was rich in oxygenated sesquiterpenoids based on the rare lippifoliane and africanane skeletons. The trans-davanone chemotype is the first report of an essential oil containing that sesquiterpene ketone as the main constituent. The absolute configuration of trans-davanone from L. integrifolia was established as 6S, 7S, 10S, the enantiomer of trans-davanone from 'davana oil' (Artemisia pallens). Wild plants belonging to trans-davanone and lippifolienone chemotypes were propagated and cultivated in the same parcel of land in Santa Maria, Catamarca. The essential oil compositions of the cultivated plants were essentially identical to the original plants in the wild, indicating that the essential oil composition is largely under genetic control. Specimens collected near the Bolivian border that initially were identified as L. boliviana Rusby yielded an essential oil practically identical to the trans-davanone chemotype of L. integrifolia supporting the recent view that L. integrifolia (Gris.) Hieron. and L. boliviana Rusby are synonymous.

  17. All About Oils

    Science.gov (United States)

    ... in monounsaturated or polyunsaturated fats, and low in saturated fats. Oils from plant sources (vegetable and nut oils) ... oil, and palm kernel oil, are high in saturated fats and for nutritional purposes should be considered to ...

  18. 海南岛油脂植物种质资源%Oil Plant Germplasm Resources in Hainan Island

    Institute of Scientific and Technical Information of China (English)

    邓必玉; 王建荣; 王茂媛; 晏小霞; 王祝年

    2009-01-01

    能源危机成为当今世界重大的热点问题,能源植物是缓解能源危机的重要突破口.通过查阅相关文献,概述了海南岛主要含油部位含油量≥30%的油脂植物50科116属163种,引种栽培74种,野生资源89种,油脂植物种质资源丰富,分布集中,热带特征明显,且多为木本.全国有53种木本油料的种子油可作为发展生物柴油最适合原料,其中31种海南有分布.列举了含油量高、适合在海南气候条件下生长、具有开发潜力的油脂植物18种并对海南岛油脂植物资源的开发利用提出建议.%Energy Crisis is a hot issue in the world, and energy plants are Breakthrough to alleviate the energy crisis. Consulting the related literature and data, there are 50 families 116 genera 163 species of oil plants (with≥ 30% oil content in the main oil contain part) in Hainan Island. Among them 74 cultivated, 89 wild. These plants have some evident characteristic features richness in species diversity, centralized distribution, majority in tropical components, and mainly woody plants.53 woody oil plants are found most suitable for us to produce biodiesel in china, 31 grow in Hainan. This paper enumerates 18 oil plants which have a high oil con-tent, grow well under the climate condition in Hainan, have good economic prospect, also give some suggestion according to exploiting oil plant resources in Hainan.

  19. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth

    Institute of Scientific and Technical Information of China (English)

    GONG Zongqiang; LI Peijun; B.M.Wilke; Kassem Alef

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soft for a remediation purpose, with some of the oft remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soft was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soft properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soft, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth ofA. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oft addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oft in the soils was proved by the soft organic carbon content.

  20. Patent literature on mosquito repellent inventions which contain plant essential oils--a review.

    Science.gov (United States)

    Pohlit, Adrian Martin; Lopes, Norberto Peporine; Gama, Renata Antonaci; Tadei, Wanderli Pedro; Neto, Valter Ferreira de Andrade

    2011-04-01

    Bites Bites of mosquitoes belonging to the genera Anopheles Meigen, Aedes Meigen, Culex L. and Haemagogus L. are a general nuisance and are responsible for the transmission of important tropical diseases such as malaria, hemorrhagic dengue and yellow fevers and filariasis (elephantiasis). Plants are traditional sources of mosquito repelling essential oils (EOs), glyceridic oils and repellent and synergistic chemicals. A Chemical Abstracts search on mosquito repellent inventions containing plant-derived EOs revealed 144 active patents mostly from Asia. Chinese, Japanese and Korean language patents and those of India (in English) accounted for roughly 3/4 of all patents. Since 1998 patents on EO-containing mosquito repellent inventions have almost doubled about every 4 years. In general, these patents describe repellent compositions for use in topical agents, cosmetic products, incense, fumigants, indoor and outdoor sprays, fibers, textiles among other applications. 67 EOs and 9 glyceridic oils were individually cited in at least 2 patents. Over 1/2 of all patents named just one EO. Citronella [Cymbopogon nardus (L.) Rendle, C.winterianus Jowitt ex Bor] and eucalyptus (Eucalyptus LʼHér. spp.) EOs were each cited in approximately 1/3 of all patents. Camphor [Cinnamomum camphora (L.) J. Presl], cinnamon (Cinnamomum zeylanicum Blume), clove [Syzygium aromaticum (L.) Merr. & L.M. Perry], geranium (Pelargonium graveolens LʼHér.), lavender (Lavandula angustifolia Mill.), lemon [Citrus × limon (L.) Osbeck], lemongrass [Cymbopogon citratus (DC.) Stapf] and peppermint (Mentha × piperita L.) EOs were each cited in > 10% of patents. Repellent chemicals present in EO compositions or added as pure “natural” ingredients such as geraniol, limonene, p-menthane-3,8-diol, nepetalactone and vanillin were described in approximately 40% of all patents. About 25% of EO-containing inventions included or were made to be used with synthetic insect control agents having mosquito

  1. Lipase-catalyzed interesterification of egg-yolk phosphatidylcholine and plant oils

    Directory of Open Access Journals (Sweden)

    Chojnacka, A.

    2014-12-01

    Full Text Available The incorporation of polyunsaturated fatty acids into the sn-1 position of egg-yolk phosphatidylcholine (PC in the process of lipase-catalyzed interesterification was investigated. For this purpose plant oils containing these acids in the triacylglycerol (TAG form were used as acyl donors and three commercially available immobilized lipases were examined as biocatalysts. In all the experiments the best results were obtained using Novozym 435. After 72 h of the reaction of PC with linseed oil the maximum incorporation of α-linolenic acid into PC was 34%. The result of this reaction was also a reduction in the n-6/n-3 ratio in egg-yolk PC from 24.5 to 0.7. The highest incorporation n-6 PUFAs into PC were obtained with evening primrose oil as the acyl donor, and in this case, 50.7% of n-6 PUFA as the sum of linoleic and γ-linolenic was achieved. The highest content of γ-linolenic acid in modified PC (7.3% was achieved in the reaction of PC with borage oil.Se ha investigado la incorporación de ácidos grasos poliinsaturados en la posición sn-1 de fosfatidilcolina de yema de huevo (PC en el proceso de interesterificación catalizado por lipasas. Para lograr este propósito, fueron examinados aceites vegetales que contienen estos ácidos en la forma de triacilgliceroles (TAG como donadores de acilo y tres lipasas inmovilizadas disponibles comercialmente. En todos los experimentos los mejores resultados se obtuvieron para Novozym 435. La incorporación máxima de ácido α-linolénico en PC fue del 34% después de 72h de la reacción de PC con aceite de linaza. El resultado de esta reacción fue también la reducción de la relación de n-6/n-3 en PC de yema de huevo de 24.5 a 0.7. La incorporación más alta de n-6 PUFAs en PC se logró para el aceite de onagra como donador de acilo, en este caso se alcanzó el 50.7% de n-6 PUFA, como suma de los ácidos linoleico y γ-linolénico. El mayor contenido de ácido γ-linolénico en PC modificado (7

  2. Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: correlation with antimicrobial activity.

    Science.gov (United States)

    Medina, Eduardo; de Castro, Antonio; Romero, Concepcion; Brenes, Manuel

    2006-07-12

    The antimicrobial activity of different edible vegetable oils was studied. In vitro results revealed that the oils from olive fruits had a strong bactericidal action against a broad spectrum of microorganisms, this effect being higher in general against Gram-positive than Gram-negative bacteria. Thus, olive oils showed bactericidal activity not only against harmful bacteria of the intestinal microbiota (Clostridium perfringens and Escherichia coli) also against beneficial microorganisms such as Lactobacillus acidophilus and Bifidobacterium bifidum. Otherwise, most of the foodborne pathogens tested (Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, Yersinia sp., and Shigella sonnei) did not survive after 1 h of contact with olive oils. The dialdehydic form of decarboxymethyl oleuropein and ligstroside aglycons, hydroxytyrosol and tyrosol, were the phenolic compounds that statistically correlated with bacterial survival. These findings were confirmed by testing each individual phenolic compound, isolated by HPLC, against L. monocytogenes. In particular, the dialdehydic form of decarboxymethyl ligstroside aglycon showed a potent antimicrobial activity. These results indicate that not all oils classified as "olive oil" had similar bactericidal effects and that this bioactivity depended on their content of certain phenolic compounds.

  3. Fats, oils, and grease : options for plant-level treatment of a national problem

    Energy Technology Data Exchange (ETDEWEB)

    Miles, E.; Scherffius, B. [EcoPlus Inc. Charlotte, NC (United States)

    2007-09-15

    Fats, oils, and grease from restaurants and homes can congeal in sewers and result in damaging runoff into rivers and streams. A growing number of food service establishments are now producing increasing amounts of a specific grease product called brown grease, which is sticky and difficult to remove. Regulations now require haulers to remove the waste and dispose of it. However, many local treatment plants cannot accept or dispose of the amounts of grease currently being produced. A total of volume of 3 to 10 billion gallons per year of contaminated water have been accidentally discharged from sanitary sewers as a result of brown grease accumulations. This paper provided details of the EcoPlus Final Treatment Facility, which can be set up at waste water treatment plants and is able to process brown grease and discharge supernatant water from its process back into city sewers. The EcoPlus process produces 2 waste streams: (1) a low strength aqueous solution that can be disposed of in a sanitary sewer tap; and (2) a granular material that can be disposed of in a landfill for use as a soil conditioner. It was concluded that the granular material can also be used facilitate the incineration of sewage sludge, or burned as an alternative green fuel for power generation. 4 figs.

  4. Evaluation of protein structural changes and water mobility in chicken liver paste batters prepared with plant oil substituting pork back-fat combined with pre-emulsification.

    Science.gov (United States)

    Xiong, Guoyuan; Han, Minyi; Kang, Zhuangli; Zhao, Yingying; Xu, Xinglian; Zhu, Yingying

    2016-04-01

    Protein structural changes and water mobility properties in chicken liver paste batters prepared with plant oil (sunflower and canola oil combinations) substituting 0-40% pork back-fat combined with pre-emulsification were studied by Raman spectroscopy and low-field nuclear magnetic resonance (NMR). Results showed that pre-emulsifying back-fat and plant oil, including substituting higher than 20% back-fat with plant oil increased the water- and fat-binding (pproperties, formed more even and fine microstructures, and gradually decreased the NMR relaxation times (T21a, T21b and T22), which was related to the lower fluid losses in chicken liver paste batters. Raman spectroscopy revealed that compared with a control, there was a decrease (poil combined with pre-emulsification. Pre-emulsification and plant oil substitution changed tryptophan and tyrosine doublet hydrophobic residues in chicken liver paste batters.

  5. Empirical prediction and validation of antibacterial inhibitory effects of various plant essential oils on common pathogenic bacteria.

    Science.gov (United States)

    Akdemir Evrendilek, Gulsun

    2015-06-02

    In this study, fractional compound composition, antioxidant capacity, and phenolic substance content of 14 plant essential oils-anise (Pimpinella anisum), bay leaves (Laurus nobilis), cinnamon bark (Cinnamomum verum), clove (Eugenia caryophyllata), fennel (Foeniculum vulgare), hop (Humulus lupulus), Istanbul oregano (Origanum vulgare subsp. hirtum), Izmir oregano (Origanum onites), mint (Mentha piperita), myrtus (Myrtus communis), orange peel (Citrus sinensis), sage (Salvia officinalis), thyme (Thymbra spicata), and Turkish oregano (Origanum minutiflorum)--were related to inhibition of 10 bacteria through multiple linear or non-linear (M(N)LR) models-four Gram-positive bacteria of Listeria innocua, coagulase-negative staphylococci, Staphylococcus aureus, and Bacillus subtilis, and six Gram-negative bacteria of Yersinia enterocolitica, Salmonella Enteritidis, Salmonella Typhimurium, Proteus mirabilis, Escherichia coli O157:H7, and Klebsiella oxytoca. A total of 65 compounds with different antioxidant capacity, phenolic substance content and antibacterial properties were detected with 14 plant essential oils. The best-fit M(N)LR models indicated that relative to anise essential oil, the essential oils of oreganos, cinnamon, and thyme had consistently high inhibitory effects, while orange peel essential oil had consistently a low inhibitory effect. Regression analysis indicated that beta-bisabolene (Turkish and Istanbul oreganos), and terpinolene (thyme) were found to be the most inhibitory compounds regardless of the bacteria type tested. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Changes in growth, hormones levels and essential oil content of Ammi visnaga L. plants treated with some bioregulators.

    Science.gov (United States)

    Talaat, Iman M; Khattab, Hemmat I; Ahmed, Aisha M

    2014-09-01

    The effects of foliar application of different concentrations of amino acids (tyrosine and phenylalanine) and phenolic acids (trans-cinnamic acid, benzoic acid and salicylic acid) on growth, pigment content, hormones levels and essential oil content of Ammi visnaga L were carried out during two successive seasons. It is clear that foliar application of either amino acids or phenolics significantly promoted the growth parameters in terms of shoot height, fresh and dry biomass, number of branches and number of umbels per plant. The increment of growth parameter was associated with elevated levels of growth promoters (IAA, GA3, total cytokinins) and low level of ABA. The greatest increase in the previously mentioned parameters was measured in plants exposed to different concentrations of phenols particularly in benzoic acid-treated plants. Such effect was concentration dependent. All treatments led to significant increments in yield seeds and oil content. Moreover, gas liquid chromatographic analysis revealed that the main identified components of essential oil were 2,2-dimethyl butanoic acid, isobutyl isobutyrate, α-isophorone, thymol, fenchyl acetate and linalool. Phenolics and amino acid treatments resulted in qualitative differences in these components of essential oil.

  7. Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay.

    Science.gov (United States)

    Lixandru, Brînduşa-Elena; Drăcea, Nicoleta Olguţa; Dragomirescu, Cristiana Cerasella; Drăgulescu, Elena Carmina; Coldea, Ileana Luminiţa; Anton, Liliana; Dobre, Elena; Rovinaru, Camelia; Codiţă, Irina

    2010-01-01

    The currative properties of aromatic and medicinal plants have been recognized since ancient times and, more recently, the antimicrobial activity of plant essential oils has been used in several applications, including food preservation. The purpose of this study was to create directly comparable, quantitative data on the antimicrobial activity of some plant essential oils prepared in the National Institute of Research-Development for Chemistry and Petrochemistry, Bucharest to be used for the further development of food packaging technology, based on their antibacterial and antifungal activity. The essential oils extracted from thyme (Thymus vulgaris L.), basil (Ocimum basilicum L.), coriander (Coriandrum sativum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), fennel (Foeniculum vulgare L.), spearmint (Mentha spicata L.) and carraway (Carum carvi L.) were investigated for their antimicrobial activity against eleven different bacterial and three fungal strains belonging to species reported to be involved in food poisoning and/or food decay: S. aureus ATCC 25923, S. aureus ATCC 6538, S. aureus ATCC 25913, E. coli ATCC 25922, E. coli ATCC 35218, Salmonella enterica serovar Enteritidis Cantacuzino Institute Culture Collection (CICC) 10878, Listeria monocytogenes ATCC 19112, Bacillus cereus CIP 5127, Bacillus cereus ATCC 11778, Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, Penicillium spp. CICC 251 and two E. coli and Salmonella enterica serovar Enteritidis clinical isolates. The majority of the tested essential oils exibited considerable inhibitory capacity against all the organisms tested, as supported by growth inhibition zone diameters, MICs and MBC's. Thyme, coriander and basil oils proved the best antibacterial activity, while thyme and spearmint oils better inhibited the fungal species.

  8. Assessment of hydrocarbon degradation potentials in plant-microbe interaction system with oil sludge contamination: A sustainable solution.

    Science.gov (United States)

    Dhote, Monika; Kumar, Anil; Jajoo, Anjana; Juwarkar, Asha

    2017-05-25

    A pot culture experiment was conducted for 90 days for evaluation of oil and total petroleum hydrocarbon (TPH) degradation in vegetated and non-vegetated treatments of real field oil sludge contaminated soil. Five different treatments include, (T1) control, 2% oil sludge contaminated soil; (T2), augmentation of microbial consortium; (T3), Vertiver zizanioide; (T4), bio-augmentation along with Vertiver zizanioide and (T5), bio-augmentation with Vertiver zizanioide and bulking agent. During the study, oil reduction, TPH and degradation of its fractions was determined. Physic-chemical and microbiological parameters of soil were also monitored simultaneously. At the end of the experimental period, oil content (85%) was reduced maximally in bio-augmented rhizospheric treatments (T4 and T5) as compared to control (27%). TPH reduction was observed to be 88% and 89% in bio-augmented rhizospheric soil (T4 and T5 treatments), whereas in non-rhizospheric and control (T2 and T1) TPH reduction was 78% and 37% respectively. Degradation of aromatic fraction after 90 days in bio-augmented rhizosphere of treatment T4 and T5 was found to 91% and 92%. In microbial (T2) and Vertiver treatment (T3) degradation of aromatic fraction was 83% and 68% respectively. A threefold increase in soil dehydrogenase activity and noticeable changes in organic carbon content, water holding capacity were also observed which indicated maximum degradation of oil and its fractions in combined treatment of plants and microbes. It is concluded that plant-microbe-soil system helps to restore soil quality and can be used as an effective tool for remediation of oil sludge contaminated sites.

  9. Extraction of essential oils from native plants and algae from the coast of Peniche (Portugal: antimicrobial and antioxidant activity.

    Directory of Open Access Journals (Sweden)

    Clélia Neves Afonso

    2014-06-01

    Full Text Available Coastal areas are highly complex and dynamic ecosystem of interface between land, sea and atmosphere, which also suffer biotic influences. These areas play several important ecological functions, and here we can find an enormous biodiversity. The coastline of Portugal features a high number of endemic flora and vegetation with the potential to provide functional compounds that may provide physiological benefits at nutritional and therapeutic levels, as sources of bioactive substances with antimicrobial, antioxidant, antifungal, antitumalr and anti-inflammatory activity. Among these compounds, we find essential oils, also known as volatile oils, which are a result of secondary metabolism of aromatic plants, containing a large number of substances with varied chemical composition that can be obtained by different methods of extraction. The aim of this study was to extract essential oils of native plants and seaweeds from the coast of Peniche by hydrodistillation in Clevenger apparatus, with optimization of the purification process. Extracted essential oils were tested as to their ability as antibacterial and antifungal agents, and also as antioxidants. The plants studied for this purpose were Inula chritmoides L., Juniperus phoenicea subsp. turbinata (Guss. Nyman, Daucus carota spp. halophilus and the seaweeds Fucus spiralis L., Codium tomentosum Stackhouse, Stypocaulon scoparium (Linnaeus Kützing and Plocamium cartilagineum (Linnaeus P.S.Dixon. The antimicrobial ability was tested in two bacteria species, Bacillus subtilis and Escherichia coli and in the yeast Saccharomyces cerevisiae, using standard procedures. The antioxidant potential was evaluated and from the results obtained, we can conclude that the essential oils extracted by the hydrodistillation method of plants and algae contain bioactive compounds present in its constitution with interesting bio-activity that can offer significant benefits and biotechnological relevance.

  10. The influence of purge times on the yields of essential oil components extracted from plants by pressurized liquid extraction.

    Science.gov (United States)

    Wianowska, Dorota

    2014-01-01

    The influence of different purge times on the yield of the main essential oil constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and chamomile (Chamomilla recutita L.) was investigated. The pressurized liquid extraction process was performed by applying different extraction temperatures and solvents. The results presented in the paper show that the estimated yield of essential oil components extracted from the plants in the pressurized liquid extraction process is purge time-dependent. The differences in the estimated yields are mainly connected with the evaporation of individual essential oil components and the applied solvent during the purge; the more volatile an essential oil constituent is, the greater is its loss during purge time, and the faster the evaporation of the solvent during the purge process is, the higher the concentration of less volatile essential oil components in the pressurized liquid extraction receptacle. The effect of purge time on the estimated yield of individual essential oil constituents is additionally differentiated by the extraction temperature and the extraction ability of the applied solvent.

  11. Chemical Composition and Larvicidal Activity of Essential Oils Extracted from Brazilian Legal Amazon Plants against Aedes aegypti L. (Diptera: Culicidae)

    Science.gov (United States)

    Dias, Clarice Noleto; Alves, Luciana Patrícia Lima; Rodrigues, Klinger Antonio da Franca; Brito, Maria Cristiane Aranha; Rosa, Carliane dos Santos; do Amaral, Flavia Maria Mendonça; Monteiro, Odair dos Santos; Andrade, Eloisa Helena de Aguiar; Maia, José Guilherme Soares; Moraes, Denise Fernandes Coutinho

    2015-01-01

    The mosquito Aedes aegypti L. (Diptera: Culicidae) is the major vector of dengue and chikungunya fever. The lack of effective therapies and vaccines for these diseases highlights the need for alternative strategies to control the spread of virus. Therefore, this study investigated the larvicidal potential of essential oils from common plant species obtained from the Chapada das Mesas National Park, Brazil, against third instar A. aegypti larvae. The chemical composition of these oils was determined by gas chromatography coupled to mass spectrometry. The essential oils of Eugenia piauhiensis Vellaff., Myrcia erythroxylon O. Berg, Psidium myrsinites DC., and Siparuna camporum (Tul.) A. DC. were observed to be mainly composed of sesquiterpene hydrocarbons. The essential oil of Lippia gracilis Schauer was composed of oxygenated monoterpenes. Four of the five tested oils were effective against the A. aegypti larvae, with the lethal concentration (LC50) ranging from 230 to 292 mg/L after 24 h of exposure. Overall, this work demonstrated the possibility of developing larvicidal products against A. aegypti by using essential oils from the flora of the Brazilian Legal Amazon. This in turn demonstrates the potential of using natural resources for the control of disease vectors. PMID:25949264

  12. Essential Oils from Leaves of Medicinal Plants of Brazilian Flora: Chemical Composition and Activity against Candida Species

    Directory of Open Access Journals (Sweden)

    Maria da Conceição Mendes Ferreira da Costa

    2017-05-01

    Full Text Available Background: The biotechnological potential of medicinal plants from Brazilian Caatinga and the Atlantic Forest has not been extensively studied. Thus, screening programs are important in prospecting for compounds for developing new drugs. The purpose of this study was to determine the chemical composition and to evaluate the anti-Candida activity of essential oils from leaves of Hymenaea courbaril var. courbaril, Myroxylon peruiferum, and Vismia guianensis. Methods: The oils were extracted through hydrodistillation and their chemical compositions were analyzed by gas chromatography coupled with mass spectrometry. Antifungal activity against C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, and C. krusei was evaluated by determining the minimal inhibitory (MIC and fungicidal (MFC concentrations. Results: The major compounds of the oils were caryophyllene oxide and trans-caryophyllene for H. courbaril; spathulenol, α-pinene, and caryophyllene oxide for M. peruiferum; and caryophyllene oxide and humulene epoxide II for V. guianensis oil. The oils showed antifungal activity against all the strains tested, and the MIC values ranged between 0.625 and 1.25 μL/mL and MFC from 0.625 to 2.5 μL/mL. Conclusion: The essential oils from the species studied have the potential to be evaluated as clinical applications in the treatment of candidiasis.

  13. Effects of an oil spill on the leaf anatomical characteristics of a beach plant (Terminalia catappa L.).

    Science.gov (United States)

    Punwong, Paramita; Juprasong, Yotin; Traiperm, Paweena

    2017-08-03

    This study investigated the short-term impacts of an oil spill on the leaf anatomical structures of Terminalia catappa L. from crude oil leakage in Rayong province, Thailand, in 2013. Approximately 3 weeks after the oil spill, leaves of T. catappa were collected along the coastline of Rayong from one affected site, five adjacent sites, and a control site. Slides of the leaf epidermis were prepared by the peeling method, while leaf and petiole transverse sections were prepared by paraffin embedding. Cell walls of adaxial epidermal cell on leaves in the affected site were straight instead of the jigsaw shape found in leaves from the adjacent and control sites. In addition, the stomatal index of the abaxial leaf surface was significantly lower in the affected site. Leaf and petiole transverse sections collected from the affected site showed increased cuticle thickness, epidermal cell diameter on both sides, and palisade mesophyll thickness; in contrast, vessel diameter and spongy mesophyll thickness were reduced. These significant changes in the leaf anatomy of T. catappa correspond with previous research and demonstrate the negative effects of oil spill pollution on plants. The anatomical changes of T. catappa in response to crude oil pollution are discussed as a possible indicator of pollution and may be used in monitoring crude oil pollution.

  14. Oil use of the effluent plant ETEO (Effluent Station of Oil Treatment) as combustible for generation of energy in the power plant UG-50Hz; Utulizacao de oleo da ETEO (Estacao de Tratamento de Efluentes Oleosos) para geracao de energia na UG-50Hz

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Francisco de; Nascimento, Jose Maria do; Silva, Luiz Antonio da; Salazar, Marcos Vinicios; Baptista, Reinaldo Lopes; Barros, Sueli Aguiar [Companhia Siderurgica Nacional (CSN), Volta Redonda, RJ (Brazil)

    2009-11-01

    The areas of finishing products of CSN Steel Plant generate contaminated effluents with oil and grease , that are treated in ETEO (Effluent Station of Oil Treatment). In this plant, the oil is processed to be sold for the consuming market. However, some seasons of the year, the market does not absorb the oil, and CSN is obliged to defray the burning of this oil, to not interrupt the productive process and cause an environmental impact. Because of this situation, we search alternatives for the viable use of this oil inside CSN steel plant, taking care for the security of the processes and the impact to the environment. This paper describes the details of the work and the implantation of the burning of this oil of the ETEO with BPF oil (type of petrochemical oil) as combustible in the boiler 7 of the power plant UG 50 Hz. For the implantation of this project, operational contingencies of security for equipment was prepared . Moreover, the work included chemical analyses of the oil and the conditions of the boiler using this mixing of oils. The reached results demonstrate the total viability of this project and it was proved another alternative of the use of this residue, with reduction of the fuel costs , steam costs and the electric energy generated in the power plant of CSN. (author)

  15. VOC emission from oil refinery and petrochemical wastewater treatment plant estimation

    Directory of Open Access Journals (Sweden)

    Mihajlović Marina A.

    2013-01-01

    Full Text Available The introduction of environmental legislation improvement for industrial producers in Serbia, notably the Integrated Pollution Prevention Control (IPPC license, will oblige the industrial producers to provide annual report on the pollutant emissions into the environment, as well as to pay certain environment fee. Wastewater treatment plant can be a significant source of volatile organic compounds (VOCs diffuse emissions, which are difficult to measure directly. In the near future reporting obligations might expend to benzene and other VOCs. This paper deals with gaseous emissions calculations from API separator based on the emission factors and the adequate software applications. The analyzed results show that the estimated emission values differ depending on the applied method. The VOC emissions have been estimated using US EPA and CONCAWE emissions factors. The calculated emissions range from 40 to 4500 tons/year for oil refinery WWTP of 2,000,000 m3/year. The calculations of benzene and toluene emissions have been performed using three methods: US EPA emission factors, WATER9, and Toxchem+ software. The calculated benzene and toluene emissions range from 5.5-60 and 0.7-20 tons/year, respectively. The highest emission values were obtained by the US EPA emission factors, while the lowest values were the result of Toxchem+ analysis. The sensitivity analysis of obtained results included the following parameters: flow, temperature, oil content, and the concentration of benzene and toluene in the effluent. Wide range of results indicates the need for their official interpretation for the conditions typical for Serbia, thus establishing adequate national emission factors for future utilization of the “polluter pays principle” on the VOC and benzene emissions.

  16. Assessing the Methane Emissions from Natural Gas-Fired Power Plants and Oil Refineries.

    Science.gov (United States)

    Lavoie, Tegan N; Shepson, Paul B; Gore, Chloe A; Stirm, Brian H; Kaeser, Robert; Wulle, Bernard; Lyon, David; Rudek, Joseph

    2017-03-21

    Presently, there is high uncertainty in estimates of methane (CH4) emissions from natural gas-fired power plants (NGPP) and oil refineries, two major end users of natural gas. Therefore, we measured CH4 and CO2 emissions at three NGPPs and three refineries using an aircraft-based mass balance technique. Average CH4 emission rates (NGPPs: 140 ± 70 kg/h; refineries: 580 ± 220 kg/h, 95% CL) were larger than facility-reported estimates by factors of 21-120 (NGPPs) and 11-90 (refineries). At NGPPs, the percentage of unburned CH4 emitted from stacks (0.01-0.14%) was much lower than respective facility-scale losses (0.10-0.42%), and CH4 emissions from both NGPPs and refineries were more strongly correlated with enhanced H2O concentrations (R(2)avg = 0.65) than with CO2 (R(2)avg = 0.21), suggesting noncombustion-related equipment as potential CH4 sources. Additionally, calculated throughput-based emission factors (EF) derived from the NGPP measurements made in this study were, on average, a factor of 4.4 (stacks) and 42 (facility-scale) larger than industry-used EFs. Subsequently, throughput-based EFs for both the NGPPs and refineries were used to estimate total U.S. emissions from these facility-types. Results indicate that NGPPs and oil refineries may be large sources of CH4 emissions and could contribute significantly (0.61 ± 0.18 Tg CH4/yr, 95% CL) to U.S. emissions.

  17. Yield estimation comparison of oil palm based on plant density coefficient variation index using spot-6 imagery in part of Riau

    Science.gov (United States)

    Setyowati, H. A.; S, S. H. Murti B.; Widyatmanti, W.

    2016-06-01

    Oil palm plantations consist of diverse plant density level that influence the appearance of soil surface or commonly in remote sensing terms called as soil background. Choosing the right density coefficient of vegetation transformation can decrease the noise of soil background for estimating oil palm yield. This research aims 1) to examine the accuracy of SPOT-6 to identify the oil palm l plant growth level and to estimate their yield 2) to know the variation of oil palm yield based on SAVI index vegetation using different density coefficient; and 3) to determine the best density coefficient to estimate the yield of oil palm. This research was held in part of Air Molek, Indragiri Hulu Regency, Riau, one of the largest oil palm plantations in Indonesia. This research method utilises SAVI transformation with density coefficient L-0, L-0.5, and L-1, and regression statistics analysis. The land-cover primary data is derived from SPOT-6 imagery archived in 13rd June 2013. The field survey was conducted in the same month of image's acquisition time and 120 sample areas were taken during that time. Two steps of regression analyses were applied to see the correlation between, first, vegetation index value and oil palm plant; and second, oil palm plant, vegetation index values, and oil palm yield from field observation. These steps produced a model to estimate the oil palm yield based on the index values of yield and vegetation, and the productivity estimation. The result shows that SPOT-6 imagery has 96% accuracy level which is considered high for identifying the oil palm variation. The R value for L-0 density coefficient is 0.8, for L-5 is 0.81 whereas for L-1 is 0.82. The best plant's density coefficient for estimating oil palm yield/yield is L-0 with yield estimation accuracy of 83.33%.

  18. Effect of Cultivars and Planting Date on Yield, Oil Content, and Fatty Acid Profile of Flax Varieties (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Maricel Andrea Gallardo

    2014-01-01

    Full Text Available In order to determine the effect of cultivars and planting date on flax fatty acid profile, seed yield, and oil content, an assay with seven cultivars (Baikal, Prointa Lucero, Prointa Ceibal, Panambí INTA, Curundú INTA, Carapé INTA, and Tape INTA was carried out at Parana Agricultural Experimental Station, Argentina. Significant differences among cultivars were found for content of palmitic (5–7 g/100 g, stearic (5–8 g/100 g, linoleic (13–19 g/100 g, saturated (11–15 g/100 g, and unsaturated acids (92–96 g/100 g within the seven cultivars. The best seed yields were observed in Prointa Lucero and Carapé INTA varieties (2091.50 kg·ha−1 and 2183.34 kg·ha−1, respectively in the first planting date and in Carapé INTA and Prointa Lucero (1667 kg·ha−1 and 1886 kg·ha−1, respectively in the second planting date. A delayed planting date had a negative effect on seed yield (1950 kg·ha−1 and 1516 kg·ha−1 and oil content (845 kg·ha−1 and 644 kg·ha−1 but did not affect oil composition.

  19. Profiling of triacylglycerols in plant oils by high-performance liquid chromatography-atmosphere pressure chemical ionization mass spectrometry using a novel mixed-mode column.

    Science.gov (United States)

    Hu, Na; Wei, Fang; Lv, Xin; Wu, Lin; Dong, Xu-Yan; Chen, Hong

    2014-12-01

    In this investigation, a rapid and high-throughput method for profiling of TAGs in plant oils by liquid chromatography using a single column coupled with atmospheric pressure chemical ionization (APCI) mass spectrometry was reported. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this separation system. The phenyl-hexyl column could provide hydrophobic interactions as well as π-π interactions. Compared with two traditionally columns used in TAG separation - the C18 column and silver-ion column, this column exhibited much higher selectivity for the separation of TAGs with great efficiency and rapid speed. By comparison with a novel mix-mode column (Ag-HiSep OTS column), which can also provide both hydrophobic interactions as well as π-π interactions for the separation of TAGs, phenyl-hexyl column exhibited excellent stability. LC method using phenyl-hexyl column coupled with APCI-MS was successfully applied for the profiling of TAGs in soybean oils, peanut oils, corn oils, and sesame oils. 29 TAGs in peanut oils, 22 TAGs in soybean oils, 19 TAGs in corn oils, and 19 TAGs in sesame oils were determined and quantified. The LC-MS data was analyzed by barcodes and principal component analysis (PCA). The resulting barcodes constitute a simple tool to display differences between different plant oils. Results of PCA also enabled a clear identification of different plant oils. This method provided an efficient and convenient chromatographic technology for the fast characterization and quantification of complex TAGs in plant oils at high selectivity. It has great potential as a routine analytical method for analysis of edible oil quality and authenticity control.

  20. Role of compost, bentonite and calcium oxide in restricting the effect of soil contamination with petrol and diesel oil on plants.

    Science.gov (United States)

    Wyszkowski, Mirosław; Ziólkowska, Agnieszka

    2009-02-01

    The studies have been initiated to find a way to use compost, bentonite and calcium oxide in order to reduce the effect of contaminated soil with a small amount of petrol or diesel oil on the yield and nitrogen content in crop plants--spring rape and oats cultivated as the main and aftercrop. Petrol and diesel oil had a toxic effect on the growth of the plants and modified nitrogen content, with the intensity of the effect depending upon their type and dose and on the type of applied substance reducing the effect of oil derivatives. Spring rape (main crop), was more sensitive, and oats (aftercrop) was less so. Petroleum-derived substances reduced the yield of spring rape by a maximum of 73% for petrol and by as much as 99% for diesel oil. Nitrogen content was higher for spring rape than for oats and larger for petrol than for diesel oil. Adding bentonite, calcium oxide or compost to the soil contaminated with oil derivatives usually reduced the negative effect of petrol and diesel oil on plant growth and reduced the protein nitrogen content and increased the total nitrogen content in plants. Bentonite proved to be the most effective, with calcium oxide and compost slightly less so. The most positive results were obtained for spring rape as the main crop. An addition of compost, bentonite and calcium oxide to soil had a stronger modifying effect on nitrogen content in plants on soils contaminated by diesel oil than petrol.

  1. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability.

    Science.gov (United States)

    Lin, Qianxin; Mendelssohn, Irving A; Graham, Sean A; Hou, Aixin; Fleeger, John W; Deis, Donald R

    2016-07-01

    We investigated the initial impacts and post spill recovery of salt marshes over a 3.5-year period along northern Barataria Bay, LA, USA exposed to varying degrees of Deepwater Horizon oiling to determine the effects on shoreline-stabilizing vegetation and soil processes. In moderately oiled marshes, surface soil total petroleum hydrocarbon concentrations were ~70mgg(-1) nine months after the spill. Though initial impacts of moderate oiling were evident, Spartina alterniflora and Juncus roemerianus aboveground biomass and total live belowground biomass were equivalent to reference marshes within 24-30months post spill. In contrast, heavily oiled marsh plants did not fully recover from oiling with surface soil total petroleum hydrocarbon concentrations that exceeded 500mgg(-1) nine months after oiling. Initially, heavy oiling resulted in near complete plant mortality, and subsequent recovery of live aboveground biomass was only 50% of reference marshes 42months after the spill. Heavy oiling also changed the vegetation structure of shoreline marshes from a mixed Spartina-Juncus community to predominantly Spartina; live Spartina aboveground biomass recovered within 2-3years, however, Juncus showed no recovery. In addition, live belowground biomass (0-12cm) in heavily oiled marshes was reduced by 76% three and a half years after the spill. Detrimental effects of heavy oiling on marsh plants also corresponded with significantly lower soil shear strength, lower sedimentation rates, and higher vertical soil-surface erosion rates, thus potentially affecting shoreline salt marsh stability.

  2. Assessment of soil contamination by (210)Po and (210)Pb around heavy oil and natural gas fired power plants.

    Science.gov (United States)

    Al-Masri, M S; Haddad, Kh; Doubal, A W; Awad, I; Al-Khatib, Y

    2014-06-01

    Soil contamination by (210)Pb and (210)Po around heavy oil and natural gas power plants has been investigated; fly and bottom ash containing enhanced levels of (210)Pb and (210)Po were found to be the main source of surface soil contamination. The results showed that (210)Pb and (210)Po in fly-ash (economizer, superheater) is highly enriched with (210)Pb and (210)Po, while bottom-ash (boiler) is depleted. The highest (210)Pb and (210)Po activity concentrations were found to be in economizer ash, whereas the lowest activity concentration was in the recirculator ash. On the other hand, (210)Pb and (210)Po activity concentrations in soil samples were found to be higher inside the plant site area than those samples collected from surrounding areas. The highest levels were found in the vicinity of Mhardeh and Tishreen power plants; both plants are operated by heavy oil and natural fuels, while the lowest values were found to be in those samples collected from Nasrieh power plant, which is only operated by one type of fuel, viz. natural gas. In addition, the levels of surface soil contamination have decreased as the distance from the power plant site center increased.

  3. Antibacterial Activity of Daucus crinitus Essential Oils along the Vegetative Life of the Plant

    OpenAIRE

    Bendiabdellah, Amel; DIB, Mohammed El Amine; Meliani, Nawel; Muselli, Alain; Nassim, Djabou; Tabti, Boufeldja; Costa, Jean

    2013-01-01

    The essential oils from the aerial parts of Daucus crinitus Desf. were analyzed at three developmental stages (early vegetative, early flowering, and full flowering). Oil yield was found to vary depending on the stage of development, and the highest content of oil (0.15% w/w) was obtained at full flowering. The chemical composition of essential oils studied by GC and GC-MS showed a total of 71 compounds: 27 aliphatic compounds, 18 sesquiterpene hydrocarbons, 9 hydrocarbons monoterpene, 5 oxyg...

  4. Physico-chemical attributes of seed oil from drought stressed sunflower (Helianthus annuus L. plants

    Directory of Open Access Journals (Sweden)

    Anwar, Farooq

    2009-12-01

    Full Text Available The effects of water deficit conditions on the qualitative and quantitative characteristics of sunflower seed and seed oils were assessed. Two sunflower cultivars (Gulshan-98 and Suncross were sown in the field. The water stress treatment was applied at the vegetative or the reproductive stage. Analysis of the sunflower seed showed that the oil content decreased (a decline of 10.52% relative to the control significantly (p ≤ 0.05 due to water stress when imposed at either of the growth stages. Both of the sunflower cultivars studied showed differential responses to water stress with respect to oil oleic and linoleic acid contents. A significant negative correlation in oil oleic and linoleic acid was observed in cv. Gulshan-98 under water deficit conditions as compared to Suncross in which no such effect of water stress on oleic and linoleic acid was observed. Water deficit conditions caused a reduction in linolenic acid in Gulshan-98, whereas it remained unaffected in Suncross. The stearic acid content increased in cv. Gulshan-98 due to drought, whereas no effect due to water stress was observed on oil palmitic acid content in either sunflower cultivar. Overall, oil unsaturated fatty acids remained unchanged in the drought stressed or normally irrigated plants of both cultivars but saturated fatty acid increased in Gulshan-98. Individual (α, γ, and δ and total tocopherol contents in the seed oil increased significantly with the application of water stress in both cultivars. An assessment of the physical and chemical characteristics of the oils of both sunflower cultivars revealed that drought stress caused a marked increase in the content of un-saponifiable matter (18.75% with respect to the control and a decrease in iodine value (5.87% with respect to the control, but saponifcation value, density, specific gravity and refractive index remained unchanged.El efecto de las condiciones de déficit de agua sobre las caracter

  5. How tests of lubricating and transformer oils became part of power plant chemistry in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H. [I/S Nordjyllandsvaerket, Vodskov (Denmark)

    1996-12-01

    Lubricating, hydraulic and transformer oils based on refined crude oil are used in nearly all power station components, such as gear, turbines, hydraulic stations, feed pumps and transformers. The function of these components totally depends on the condition of the oils and their properties. Seen from this point one may wonder why examination and evaluation of oils did not become part of the power station chemistry within the ELSAM utility area until during the middle of the eighties. We started to examine the properties of lubricating oils at the time when several steam turbines experienced serious problems with formation of deposits in their hydraulic control circuits. This work was intensified in connection with the significant number of CHPs and wind turbines erected within the Danish electricity sector during the past 10 years or so. The majority of the CHPs are natural gas fired turbines or motors, equipment which severely stresses the lubricating oil. In collaboration with KEMA, the Netherlands, we have carried through with a large examination of lubricating oils in gas turbines and we have found suitable oil types. The objectives of our work with lubricating and transformer oils have been to link together the laboratory measurements with operational experience. Only by doing this is it possible to utilize the laboratory measurements in a correct way. It must be remembered that the main part of all oil specifications concerns the properties of new oils. Only very little is published about the requirements concerning used oils. (EG)

  6. Implications of crude oil pollution on natural regeneration of plant spe-cies in an oil-producing community in the Niger Delta Region of Nigeria

    Institute of Scientific and Technical Information of China (English)

    U.D Chima; G. Vure

    2014-01-01

    The study evaluated the impact of crude oil pollution on natu-ral regeneration of plant species in a major oil-producing community in the Niger Delta region of Nigeria. Three sites-unpolluted site (US), polluted and untreated site (PUS), and polluted and treated site (PTS)-were purposively chosen for the study. The seedling emergence method was used to evaluate soil seed banks in the various sites at two depths, 0 to 10 cm and 10 to 20 cm. Woody-plant species richness, abundance, and diversity were higher in the US seed bank than in the PUS and PTS seed banks. The highest number of non-woody plants was observed in the US, followed by the PTS, and then the PUS. Both species richness and diversity of non-woody plants were highest at the US, followed by the PUS, and lowest in the PTS. Woody species in the US seed bank were 87.5% and 80% dissimilar with those of the PUS and PTS at 0-10 cm and 10-20 cm respectively. No variation was observed between woody species in the PUS and PTS seed banks. Non-woody species at 0-10 cm US seed bank were 73.08% dissimilar with those of PUS at the two soil depths and 81.48/88.46%dissimilar with those of the 0-10/10-20 cm of the PTS respectively. At 10-20 cm, non-woody species of the US were 69.66% dissimilar with those from each of the two soil depths in PUS;and 73.91/81.82% dissimilar with those of 0-10/10-20 cm of the PTS respectively. Non-woody species variation between the PUS and PTS was higher at 10-20 cm than 0-10 cm. The poor seed bank attributes at the polluted sites demonstrates that crude oil pollution negatively af-fected the natural regeneration potential of the native flora because soil seed banks serve as the building blocks for plant succession. Thorough remediation and enrichment planting are recommended to support the recovery process of vegetation in the polluted areas.

  7. Myrtaceae Plant Essential Oils and their β-Triketone Components as Insecticides against Drosophila suzukii

    Directory of Open Access Journals (Sweden)

    Chung Gyoo Park

    2017-06-01

    Full Text Available Spotted wing drosophila (SWD, Drosophila suzukii (Matsumura, Diptera: Drosophilidae is recognized as an economically important pest in North America and Europe as well as in Asia. Assessments were made for fumigant and contact toxicities of six Myrtaceae plant essential oils (EOs and their components to find new alternative types of insecticides active against SWD. Among the EOs tested, Leptospermum citratum EO, consisting mainly of geranial and neral, exhibited effective fumigant activity. Median lethal dose (LD50; mg/L values of L. citratum were 2.39 and 3.24 for males and females, respectively. All tested EOs except Kunzea ambigua EO exhibited effective contact toxicity. LD50 (µg/fly values for contact toxicity of manuka and kanuka were 0.60 and 0.71, respectively, for males and 1.10 and 1.23, respectively, for females. The LD50 values of the other 3 EOs-L. citratum, allspice and clove bud were 2.11–3.31 and 3.53–5.22 for males and females, respectively. The non-polar fraction of manuka and kanuka did not show significant contact toxicity, whereas the polar and triketone fractions, composed of flavesone, isoleptospermone and leptospermone, exhibited efficient activity with the LD50 values of 0.13–0.37 and 0.22–0.57 µg/fly for males and females, respectively. Our results indicate that Myrtaceae plant EOs and their triketone components can be used as alternatives to conventional insecticides.

  8. Antioxidant activity of various plant extracts under ambient and accelerated storage of sunflower oil

    Directory of Open Access Journals (Sweden)

    Sheikh, Munir A.

    2006-06-01

    Full Text Available The present study was conducted to investigate the antioxidant potential of 11 medicinally or economically important plant materials indigenous to Pakistan. The materials were extracted with 80% methanol and examined  for their antioxidant activity under different storage conditions using sunflower and soybean oils as oxidation substrates. Preliminary antioxidant activity assessment among the extracts was conducted with the TLC-test and by measuring percent inhibition of linoleic acid peroxidation. The rhizome of Iris germanica, leaves of Lawsonia alba, and M. oleifera, coffee (Coffee arabica beans, rice (Oryza sativa bran, wheat bran and oats (Avenis sativa groats and hull, which showed higher antioxidant activity among the extracts, were further evaluated using soybean and sunflower oils as oxidation substrates. The vegetable oils were stabilized with extracts at a dosage of 0.12% (w/w, and individually subjected to accelerated (65 oC, 15 days and ambient (6 months storage. The oxidative deterioration level was monitored for the measurement of antioxidant activity index (AI, peroxide value (PV, conjugated dienes and trienes contents. Overall, the extracts of coffee beans, oat groats and hull, Iris germanica and M. oleifera leaves were found to be the most effective in extending oxidative stability, and retarding PV, primary and secondary oxidation products of soybean and sunflower oils. The order of efficiency of the plant extracts for stabilization of the subject oils was as follows: oat groats and hull > coffee beans > M. oleifera leaves > Lawsonia alba > Iris germanica > rice bran > wheat bran. Significant differences in the antioxidant potential of some of the extracts for stabilization of substrate oils were observed under ambient and accelerated storage conditions and thus demonstrated a variable antioxidant prospective of the extracts under different analytical protocols.El presente trabajo se ha realizado para investigar la capacidad

  9. Exergy destruction and losses on four North Sea offshore platforms: A comparative study of the oil and gas processing plants

    DEFF Research Database (Denmark)

    Voldsund, Mari; Nguyen, Tuong-Van; Elmegaard, Brian

    2014-01-01

    differs across offshore platforms. However, the results indicate that the largest rooms for improvement lie in (i) gas compression systems where large amounts of gas may be compressed and recycled to prevent surge, (ii) production manifolds where well-streams are depressurised and mixed, and (iii......The oil and gas processing plants of four North Sea offshore platforms are analysed and compared, based on the exergy analysis method. Sources of exergy destruction and losses are identified and the findings for the different platforms are compared. Different platforms have different working...... conditions, which implies that some platforms need less heat and power than others. Reservoir properties and composition vary over the lifetime of an oil field, and therefore maintaining a high efficiency of the processing plant is challenging. The results of the analysis show that 27%-57% of the exergy...

  10. Effect of essential oil of Satureja hortensis against Bacillus pumilus, which cause of soft rot on some plants

    Science.gov (United States)

    Dadaşoǧlu, Fatih

    2017-04-01

    In this study, it is aimmed to be determined the antimicrobial effects of the essential oil in vitro conditions, extracted from wild forms of plant which is known as Satureja hortensis around the world and grows naturally at Erzurum province of Turkey against Bacillus pumilus isolates, which are the agent of Soft Rot for some fruits and vegetables. For this purpose, 18 isolates of B. pumilus which have been determined as the agent of Soft Rot in previous studies performed in plants such as potatos, onions, strawberries, melons and watermelons. As the positive control, Streptomycin antibiotics sold as ready produce were used. According to the obtained results, the essential oil have the antibactericidal effect of 19-29 mm against 18 isolates of B. pumilus. It has been observed that the antibiotics used as the positive control has the antibacterial effect of 16-22 mm. In conclusion, the essential oil has the lethal effect against 18 B. pumilus isolates which are agents of Soft Rot. It is assesed that these essential oil extracted from Satureja hortensis can be used against these Soft Rot pathogens.

  11. Growth, essential oil content, and content of coumarin in young plants of guaco (Mikania glomerata Sprengel cultivated under colored nets

    Directory of Open Access Journals (Sweden)

    Girlene Santos Souza

    2011-09-01

    Full Text Available Mikania glomerata Sprengel is a medicinal plant widely used in folk medicine, mainly to treat respiratory disorders, which acts by dilating the bronchi, being coumarin one of the substances associated with this effect. Therefore, understanding the physiological behavior of this species and its responses to the environmental conditions is necessary to improve the cultivation methods. In this context, the aim of this work was to evaluate the effect of light spectrum control on growth, the essential oil content, and the content of coumarin in Mikania glomerata Sprengel. Plants were grown for four months under nets with 50% shading in gray, red, blue, and exposed to full sunlight (0%. The essential oil was extracted from fresh leaves through hydrodistillation in a modified Clevenger apparatus. The identification and quantification of coumarin were performed through high performance liquid chromatography (HPLC. The results showed the blue fabric allowed an increase in total dry matter accumulation and leaf area, as plants under red shading presented higher dry matter allocation to the roots. The smallest quantity of dry leaves was observed in plants grown under full sun exposure. Changes were not observed, however, in leaf weight ratio and in root/shoot proportion. The essential oil content of plants grown under blue net was 0.14%, which corresponded to an increase of 142% over the level found in plants grown under full sun exposure, as the coumarin content was not influenced by the net color. These results show that light can be modulated during cultivation, in order to obtain desirable morphological characteristics and maximize the production of active principles in this species.

  12. Insecticidal and Repellent Activity of Several Plant-Derived Essential Oils Against Aedes aegypti.

    Science.gov (United States)

    Castillo, Ruth M; Stashenko, Elena; Duque, Jonny E

    2017-03-01

    We examined the pupicidal, adulticidal, repellent, and oviposition-deterrent activities of essential oils (EOs) from Lippia alba, L. origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis , Cananga odorata , Swinglea glutinosa, and Tagetes lucida plants against Aedes aegypti under laboratory conditions. Pupicidal and adulticidal activities were assessed at exploratory concentrations of 250, 310, and 390 parts per million (ppm); and 30, 300, and 1,000 ppm, respectively. The greatest pupicidal activity was exhibited at 390 ppm with a 24-h exposure by L. origanoides, and 390 ppm with a 48-h exposure by Citrus sinensis . Lippia origanoides killed all adult mosquitoes at 300 ppm after 120 min of exposure. Only L. origanoides and E. citriodora EOs, applied at 1,000 ppm to human skin, produced the greatest repellency (100%) to host-seeking Ae. aegypti after 2 min of exposure; the repellency decreased between 12% and 10% after 15 min. Complete oviposition deterrence by gravid Ae. aegypti was observed for E. citriodora EOs at 200 ppm with an oviposition activity index of -1.00. These results confirm that the EOs assessed in this study have insecticidal, repellent, and oviposition-deterrent activities against the dengue vector, Ae. aegypti.

  13. Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Muhammad Ayaz

    2017-05-01

    Full Text Available The use of essential oils (EOs and their components is known since long in traditional medicine and aromatherapy for the management of various diseases, and is further increased in the recent times. The neuroprotective and anti-aging potentials of EOs and their possible mechanism of actions were evaluated by numerous researchers around the globe. Several clinically important EOs and their components from Nigella sativa, Acorus gramineus, Lavandula angustifolia, Eucalyptus globulus, Mentha piperita, Rosmarinus officinalis, Jasminum sambac, Piper nigrum and so many other plants are reported for neuroprotective effects. This review article was aimed to summarize the current finding on EOs tested against neurodegenerative disorders like Alzheimer disease (AD and dementia. The effects of EOs on pathological targets of AD and dementia including amyloid deposition (Aβ, neurofibrillary tangles (NFTs, cholinergic hypofunction, oxidative stress and glutamatergic abnormalities were focused. Furthermore, effects of EOs on other neurological disorders including anxiety, depression, cognitive hypofunction epilepsy and convulsions were also evaluated in detail. In conclusion, EOs were effective on several pathological targets and have improved cognitive performance in animal models and human subjects. Thus, EOs can be developed as multi-potent agents against neurological disorders with better efficacy, safety and cost effectiveness.

  14. Comparative Analysis of Chemical Components of Purified Essential Oil from Nilam Plants using Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Emas Agus Prastyo Wibowo

    2017-01-01

    Full Text Available T This study aimed to determine the chemical components of the patchouli oil. Patchouli oil is one of the export commodities that have high economic value for Indonesia. In general, patchouli oil obtained from the hydrodistillation of patchouli leaves. Most industries are still using patchouli oil refiners made by ferrous metal. The rust will dissolve in patchouli oil obtained and led to the resulting of dark oil and patchouli aroma becomes lower. The main purpose of this research is to improve the quality of patchouli oil by the purification process technologies after oil refining process. In this research the purification of the impure and crude oil can be carried out using adsorption process with bentonite. Purification results with UV-VIS spectrophotometer showed that the activation energy at a wavelength of 510 nm-550 nm with 3.9 x 10-19 Joules. GC (Gas Chromatography analysis showed that there are 13 components from patchouli oil, the 6 dominant peaks were compounds of patchouli alcohol (29.64%, delta-guanine (23.26%, alpha-guanine (21.9%, alpha-patchouline (4.24%, pogostol (4.15%, palustrol (4.00%, beta-pinene (3.9%. Based on the physical properties, the main constituent component content, and the Fe2+ content, refined patchouli oil meets the requirements of the Indonesian National Standards.

  15. Sulfur Dioxide (SO2 Accumulation in Soil and Plant's Leaves around an Oil Refinery: A Case Study from Saudi Arabia

    Directory of Open Access Journals (Sweden)

    M. O. Al-Jahdali

    2008-01-01

    Full Text Available The accumulative levels of SO2 in soil and plant's leaves around an oil refinery were monitored. Four different sites around the refinery area were chosen; west, south east, north east and the northern side. The refinery southern side was not accessible. In addition to the soil samples, leaves samples of the dominant plants species Myoporum pictum were randomly collected from all sites. Highly significant levels of sulfate were found in soil and plant leaves samples at all sites compared to the control. The highest level of sulfate in soil (9,000 ± 1200 µg g-1 and plant's leaves (65,774 ± 320 µg g-1 were found in the southern east side. This high content of sulfate indicates high levels of air contamination with SO2 around the refinery which negatively effects the environment and public health at this populated area.

  16. First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses.

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    Full Text Available A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV, Rice stripe virus (RSV and Southern rice black streaked dwarf virus (SRBSDV. Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future.

  17. First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses.

    Science.gov (United States)

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future.

  18. Bench-scale development of coal/oil co-processing technology conceptual commercial plant design and economics

    Energy Technology Data Exchange (ETDEWEB)

    Duddy, J.E.; Pramanik, M.S.; Popper, G.A.

    1990-09-01

    The goal of this project is to expand the data base for Hydrocarbon Research, Inc. Coal/Oil Co-Processing Technology and to allow for process optimization. The specific objectives are to: define process performance at commerically viable catalyst cost and activity levels; determine the dependence of process performance on changes in feedstock characteristics; improve effectiveness of catalyst system; expand data base to include other coals and petroleum feedstocks; update economic assessments. This topical report describes work performed by HRI on a conceptual commercial plant designed for a co-processing unit and economic screening studies based on this conceptual plant design. 21 figs., 39 tabs.

  19. Accelerated separation of GC-amenable lipid classes in plant oils by countercurrent chromatography in the co-current mode.

    Science.gov (United States)

    Hammann, Simon; Englert, Michael; Müller, Marco; Vetter, Walter

    2015-12-01

    Triacylglycerols represent the major part (>90%) in most plant oils and have to be eliminated, when the minor compounds such as phytosterols or tocopherols should be analyzed. Here, we used an all liquid-liquid chromatographic technique, countercurrent chromatography (CCC), to fractionate the minor lipids before gas chromatography (GC) analysis. To cover the wide range of polarity of the minor compounds, we used the co-current mode, in which both mobile and stationary phase are pumped through the system. This allowed to elute substances which partitioned almost exclusively in the stationary phase within 90 min. After testing with standard compounds, the method was applied to the separation of sesame oil and sunflower oil samples. The abundant triacylglycerols could be effectively separated from tocopherols, phytosterols, diacylglycerols, and free fatty acids in the samples, and these compounds could be analyzed (after trimethylsilylation) by GC coupled with mass spectrometry. After the enrichment caused by the CCC fractionation, we were also able to identify the tocopherol derivative α-tocomonoenol, which had not been described in sunflower oil before. Also, separation of sesame oil yielded a mixture of the polar compounds sesamin and sesamolin without further impurities.

  20. Antifungal activity of essential oils from Iranian plants against fluconazole-resistant and fluconazole-susceptible Candida albicans

    Directory of Open Access Journals (Sweden)

    Aghil Sharifzadeh

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to assay the antifungal activity of selected essential oils obtained from plants against both fluconazole (FLU-resistant and FLU-susceptible C. albicans strains isolated from HIV positive patients with oropharyngeal candidiasis (OPC. Materials and Methods: The essential oils were obtained by hydrodistillation method from Myrtus communis (My. communis, Zingiber officinale roscoe (Z. officinale roscoe, Matricaria chamomilla (Ma. chamomilla, Trachyspermum ammi (T. ammi and Origanum vulgare (O. vulgare. The susceptibility test was based on the M27-A2 methodology. The chemical compositions of the essential oils were obtained by gas chromatography- mass spectroscopy (GC-MS. Results: In GC-MS analysis, thymol (63.40%, linalool (42%, α-pinene (27.87%, α-pinene (22.10%, and zingiberene (31.79% were found to be the major components of T. ammi, O. vulgare, My. communis, Ma. chamomilla and Z. officinale roscoe, respectively. The results showed that essential oils have different levels of antifungal activity. O. vulgare and T. ammi essential oils were found to be the most efficient (P

  1. Barium and sodium in sunflower plants cultivated in soil treated with wastes of drilling of oil well

    Directory of Open Access Journals (Sweden)

    Jésus Sampaio Junior

    2015-11-01

    Full Text Available ABSTRACTThis study aimed to evaluate the effects of the application of two types of oil drilling wastes on the development and absorption of barium (Ba and sodium (Na by sunflower plants. The waste materials were generated during the drilling of the 7-MGP-98D-BA oil well, located in the state of Bahia, Brazil. The treatments consisted of: Control – without Ba application, comprising only its natural levels in the soil; Corrected control – with fertilization and without wastes; and the Ba doses of 300, 3000 and 6000 mg kg-1, which were equivalent to the applications of 16.6, 165.9 and 331.8 Mg ha-1 of waste from the dryer, and 2.6, 25.7 and 51.3 Mg ha-1 of waste from the centrifugal. Plants cultivated using the first dose of dryer waste and the second dose of centrifugal waste showed growth and dry matter accumulation equal to those of plants under ideal conditions of cultivation (corrected control. The highest doses of dryer and centrifugal wastes affected the development of the plants. The absorption of Ba by sunflower plants was not affected by the increase in the doses. Na proved to be the most critical element present in the residues, interfering with sunflower development.

  2. Regeneration of viable oil palm plants from protoplasts by optimizing media components, growth regulators and cultivation procedures.

    Science.gov (United States)

    Masani, Mat Yunus Abdul; Noll, Gundula; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2013-09-01

    Oil palm protoplasts are suitable as a starting material for the production of oil palm plants with new traits using approaches such as somatic hybridization, but attempts to regenerate viable plants from protoplasts have failed thus far. Here we demonstrate, for the first time, the regeneration of viable plants from protoplasts isolated from cell suspension cultures. We achieved a protoplast yield of 1.14×10(6) per gram fresh weight with a viability of 82% by incubating the callus in a digestion solution comprising 2% cellulase, 1% pectinase, 0.5% cellulase onuzuka R10, 0.1% pectolyase Y23, 3% KCl, 0.5% CaCl2 and 3.6% mannitol. The regeneration of protoplasts into viable plants required media optimization, the inclusion of plant growth regulators and the correct culture technique. Microcalli derived from protoplasts were obtained by establishing agarose bead cultures using Y3A medium supplemented with 10μM naphthalene acetic acid, 2μM 2,4-dichlorophenoxyacetic acid, 2μM indole-3-butyric acid, 2μM gibberellic acid and 2μM 2-γ-dimethylallylaminopurine. Small plantlets were regenerated from microcalli by somatic embryogenesis after successive subculturing steps in medium with limiting amounts of growth regulators supplemented with 200mg/l ascorbic acid.

  3. Developing a sector by creating community-owned enterprises based on the cultivation and processing of essential oils and medicinal plants in South Africa

    CSIR Research Space (South Africa)

    Brown, B

    2008-11-01

    Full Text Available The production of essential oils and medicinal plant products by communities with access to arable land represents a promising new sector in the agroprocessing industry. The Enterprise Creation for Development (ECD) unit of the CSIR transfers...

  4. Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway.

    Science.gov (United States)

    Ebrahimi, Mortaza; Abdullah, Siti Nor Akmar; Abdul Aziz, Maheran; Namasivayam, Parameswari

    2016-09-01

    CBF/DREB1 is a group of transcription factors that are mainly involved in abiotic stress tolerance in plants. They belong to the AP2/ERF superfamily of plant-specific transcription factors. A gene encoding a new member of this group was isolated from ripening oil palm fruit and designated as EgCBF3. The oil palm fruit demonstrates the characteristics of a climacteric fruit like tomato, in which ethylene has a major impact on the ripening process. A transgenic approach was used for functional characterization of the EgCBF3, using tomato as the model plant. The effects of ectopic expression of EgCBF3 were analyzed based on expression profiling of the ethylene biosynthesis-related genes, anti-freeze proteins (AFPs), abiotic stress tolerance and plant growth and development. The EgCBF3 tomatoes demonstrated altered phenotypes compared to the wild type tomatoes. Delayed leaf senescence and flowering, increased chlorophyll content and abnormal flowering were the consequences of overexpression of EgCBF3 in the transgenic tomatoes. The EgCBF3 tomatoes demonstrated enhanced abiotic stress tolerance under in vitro conditions. Further, transcript levels of ethylene biosynthesis-related genes, including three SlACSs and two SlACOs, were altered in the transgenic plants' leaves and roots compared to that in the wild type tomato plant. Among the eight AFPs studied in the wounded leaves of the EgCBF3 tomato plants, transcript levels of SlOSM-L, SlNP24, SlPR5L and SlTSRF1 decreased, while expression of the other four, SlCHI3, SlPR1, SlPR-P2 and SlLAP2, were up-regulated. These findings indicate the possible functions of EgCBF3 in plant growth and development as a regulator of ethylene biosynthesis-related and AFP genes, and as a stimulator of abiotic stress tolerance.

  5. 四种植物挥发油对食用油脂抗氧化作用的研究%STUDY ON ANTIOXIDATIVE ACTIVITIES OF FOUR KINDS OF PLANT ESSENTIAL OIL TO EDIBLE VEGETABLE OIL

    Institute of Scientific and Technical Information of China (English)

    江琰; 陈训

    2006-01-01

    本文采用硫氰酸铁法,以没食子酸丙脂为对照,研究4种植物挥发油对食用植物油脂的抗氧化活性.结果表明,姜黄、生姜、木姜子、桔皮挥发油对黄豆油、芝麻油、油菜籽油、花生仁油等食用植物油脂均具有较强的抗氧化作用.%Antioxidative activities of some kinds of plant essential oil in the four kinds of edible vegetable oil, including soybean oil, rapeseed oil, peanut oil and gingili oil, were investigated in comparison with GP by the thiocyanate method. Those plant essential oil are gained from curcuma, ginger, litsea pugers, and orange peel. The antioxidative activities of the essential oil of curcuma, ginger, litsea pugers, and orange peel in edible oil are quite strong.

  6. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Ewa Skała

    2016-01-01

    Full Text Available The essential oils were isolated by hydrodistillation from the hairy roots (HR and roots of soil-grown plants (SGR of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55–62% dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5,11(12-diene, and cadalene while aplotaxene, nardosina-1(10,11-diene, and dauca-4(11,8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212 and Pseudomonas aeruginosa (ATCC 27853 (MIC value = 125 µg/mL. HR and SGR essential oils also decreased the expression of IL-1β, IL-6, and TNF-α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants.

  7. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities

    Science.gov (United States)

    Rijo, Patrícia; Garcia, Catarina; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Śliwiński, Tomasz

    2016-01-01

    The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55–62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125 µg/mL). HR and SGR essential oils also decreased the expression of IL-1β, IL-6, and TNF-α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants. PMID:28074117

  8. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities.

    Science.gov (United States)

    Skała, Ewa; Rijo, Patrícia; Garcia, Catarina; Sitarek, Przemysław; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Wysokińska, Halina; Śliwiński, Tomasz

    2016-01-01

    The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55-62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125 µg/mL). HR and SGR essential oils also decreased the expression of IL-1β, IL-6, and TNF-α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants.

  9. Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan.

    Science.gov (United States)

    Mikolasch, Annett; Omirbekova, Anel; Schumann, Peter; Reinhard, Anne; Sheikhany, Halah; Berzhanova, Ramza; Mukasheva, Togzhan; Schauer, Frieder

    2015-05-01

    Three microbial strains were isolated from the rhizosphere of alfalfa (Medicago sativa), grass mixture (Festuca rubra, 75 %; Lolium perenne, 20 %; Poa pratensis, 10 %), and rape (Brassica napus) on the basis of their high capacity to use crude oil as the sole carbon and energy source. These isolates used an unusually wide spectrum of hydrocarbons as substrates (more than 80), including n-alkanes with chain lengths ranging from C12 to C32, monomethyl- and monoethyl-substituted alkanes (C12-C23), n-alkylcyclo alkanes with alkyl chain lengths from 4 to 18 carbon atoms, as well as substituted monoaromatic and diaromatic hydrocarbons. These three strains were identified as Gordonia rubripertincta and Rhodococcus sp. SBUG 1968. During their transformation of this wide range of hydrocarbon substrates, a very large number of aliphatic, alicyclic, and aromatic acids was detected, 44 of them were identified by GC/MS analyses, and 4 of them are described as metabolites for the first time. Inoculation of plant seeds with these highly potent bacteria had a beneficial effect on shoot and root development of plants which were grown on oil-contaminated sand.

  10. Effect of the Date of Planting on Morphological Characteristics, Yield and Essential Oil Content of Achillea millefolium sub sp millefolium.L in Mashhad Climatic Conditions

    Directory of Open Access Journals (Sweden)

    A. Ghani

    2012-04-01

    Full Text Available To study the effect of planting date on morphological characteristic, yield and essential oil content of Achillea millefolium sub sp millefolium.L., an experiment in a randomized complete blocks design (RCBD with four treatments including four planting date (6 July, 1 August, 7 September and 7 October in four replications was conducted. During the growing stage and at the end of experiment period, following factors were measured: time and growth degree day (GDD to bolting and flowering, plant height, shoot number, lateral inflorescence numbers, inflorescence diameter and height, inflorescence yield, essential oil percentage and yield and total biomass. Our results indicated that planting date affects all of the measured factors. In the first planting date, the plants were tall (116 cm and had big inflorescence (9.97 and 8.72 cm for inflorescence diameter and height respectively. Most measured traits (shoot and lateral inflorescence number, inflorescence dry weight and total biomass had highest value in the August 1st planting date and lowest value in forth planting date (7 October 7th. Essential oil percentage was affected by planting date and the highest essential oil percentage (0.17 was produced in 7 October and the lowest (0.13 was obtained in August 1st planting date but the maximum and minimum essential oil yield (1.77 and 0.87 ml relation with 1 August and 7 September planting date respectively. In conclusion, 1 August is the best date for sowing of the plant. In general, The first of August was the best planting date for this Achillea species in Mashhad climate.

  11. Changes in the essential oil content and terpene composition of rosemary (Rosmarinus officinalis L. by using plant biostimulants

    Directory of Open Access Journals (Sweden)

    Amir FOROUTAN NIA

    2016-04-01

    Full Text Available Plant biostimulants can stimulate the increase of growth, metabolism and the biosynthesis of metabolites in plants. This study investigated the changes of rosemary essential oil and its components composition under use of biostimulants for the possible reduction in use of chemical fertilizers. Treatments included biostimulants based on amino acids in four formulations, Aminolforte, Kadostim, Humiforte, and Fosnutren (each of them at 0.75 and 1.5 L ha-1, and application of N.P.K fertilizer as a control treatment (by applied complete fertilizer at 100 kg per hectar with proportion of 15:8:15 percentage of N:P:K in the fertilizer. Results showed that the essential oil content and its components were significantly affected by biostimulants application. The maximum content of essential oil was obtained at 1.5 L ha-1 Humiforte and both concentrations of Aminolforte. While, the highest content of α-pinene, 1,8-cineole, and camphor as major components of rosemary essential oil were obtained at 1.5 L ha-1 Fosnutren. In addition, the maximum content of linalool, z-pinocamphone, bornyl acetate, and caryophyllene oxide were observed at 1.5 L ha-1 Fosnutren.Although, the highest content of myrcene and verbenone was obtained in the treatment with N.P.K fertilizer, but the maximum contents of β-pinene, camphene, borneol, and α-terpineol were related to the both concentrations of Aminolforte.We can conclude that biostimulants based on amino acids can be an effective alternative in reducing the use of chemical fertilizer and increasing the quantity and quality of rosemary essential oil.

  12. Antibacterial Activity of Daucus crinitus Essential Oils along the Vegetative Life of the Plant

    OpenAIRE

    Bendiabdellah, Amel; DIB, Mohammed El Amine; Meliani, Nawel; Muselli, Alain; Nassim, Djabou; Tabti, Boufeldja; Costa, Jean

    2013-01-01

    The essential oils from the aerial parts of Daucus crinitus Desf. were analyzed at three developmental stages (early vegetative, early flowering, and full flowering). Oil yield was found to vary depending on the stage of development, and the highest content of oil (0.15% w/w) was obtained at full flowering. The chemical composition of essential oils studied by GC and GC-MS showed a total of 71 compounds: 27 aliphatic compounds, 18 sesquiterpene hydrocarbons, 9 hydrocarbons monoterpene, 5 oxyg...

  13. A review of characterization of tocotrienols from plant oils and foods.

    Science.gov (United States)

    Ahsan, Haseeb; Ahad, Amjid; Siddiqui, Waseem A

    2015-04-01

    Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley and certain types of nuts and grains. Vegetable oils provide the best sources of these vitamin E forms, particularly palm oil and rice bran oil contain higher amounts of tocotrienols. Other sources of tocotrienols include grape fruit seed oil, oats, hazelnuts, maize, olive oil, buckthorn berry, rye, flax seed oil, poppy seed oil and sunflower oil. Tocotrienols are of four types, viz. alpha (α), beta (β), gamma (γ) and delta (δ). Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. A number of researchers have developed methods for the extraction, analysis, identification and quantification of different types of vitamin E compounds. This article constitutes an in-depth review of the chemistry and extraction of the unsaturated vitamin E derivatives, tocotrienols, from various sources using different methods. This review article lists the different techniques that are used in the characterization and purification of tocotrienols such as soxhlet and solid-liquid extractions, saponification method, chromatography (thin layer, column chromatography, gas chromatography, supercritical fluid, high performance), capillary electrochromatography and mass spectrometry. Some of the methods described were able to identify one form or type while others could analyse all the analogues of tocotrienol molecules. Hence, this article will be helpful in understanding the various methods used in the characterization of this lesser known vitamin E variant.

  14. Molecular interactions of plant oil components with stratum corneum lipids correlate with clinical measures of skin barrier function.

    Science.gov (United States)

    Mack Correa, Mary Catherine; Mao, Guangru; Saad, Peter; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M

    2014-01-01

    Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34 ). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions. © 2013. Johnson & Johnson Consumer Companies Inc.. Experimental Dermatology published by John Wiley & Sons Ltd.

  15. Analysis to foliate of mamoneira with emphasis in macronutrientes using organic garbage it is crooked of castor oil plant

    Directory of Open Access Journals (Sweden)

    Fabiana Xavier Costa

    2009-12-01

    Full Text Available Aimed with this work to evaluate the present macronutrientes in the leaves of the castor beans, in accomplished rehearsal being used the organic manuring front to three witness. The rehearsal was developed in the year of 2006, in house-of-vegetation of Embrapa Algodão, in Campina Grande PB. The treatments were constituted of the addition of the castor oil plant pie to the soil in the dosagens of 1, 2, 3, and 4 t. have-1 and I sand organic in the dosagens of 11,2; 22,4; 33,6 and 44,8 t. have-1 compared with three witness: the absolute (soil without addition of fertilizers; b he/she testifies relative 1 with the addition of NPK, in the dosagens of 180 kg N have-1, 64 kg P N have-1, 52 kg K have-1, he/she testifies relative 2, with addition of the micronutrients: boron (B, copper (Cu, iron (Fe, manganese (Mg and zinc (Zn , The used variable was her it analyzes to foliate to the 130 days after the emergency of the plântulas. An experimental design was used in blocks randomized with 11 treatments and four repetitions and the results of the macronutrientes were submitted to the variance analysis and of regression. The tenor of macronutrientes of the leaf of the castor beans had positive effect, when it was just used the castor oil plant pie in the variables. The composed of organic garbage didn't influence in the studied variables. Being, like this, the castor oil plant pie is constituted in a very interesting organic fertilizer for the growth, development, productivity and tenor of oil of the castor beans.

  16. Studies regarding the effects of Rosmarinus officinalis oil treatments in healthy and potato virus Y (PVY infected plants Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Carmen Liliana BĂDĂRĂU

    2010-11-01

    Full Text Available The potato virus Y cause loss in yield and quality of tubers. Hydrogen peroxide, ascorbic acid and antioxidants such as rosmarinic acid present in oils extracted from Rosmarinus officinalis plants are implicated in signaling against stress. The effects of these chemicals on tuber yield and pigments content were evaluated in plants testing positive after virus mechanical infection. Without chemical treatment, positive plants showed significant reductions in leaf pigments content and tuber weights compared to uninfected controls. Hydrogen peroxide, ascorbic acid and oil treatments of PVY infected plants significantly reduced the number of minitubers, enhancing their weights, while leaf pigment content also increased. This research demonstrates potential benefits of treatments with oils extracted from Rosmarinus officinalis plants and hydrogen peroxide or ascorbic acid in enhancing the yield and quality of tubers.

  17. In vitro study of anti-coccidial activity of essential oils from indigenous plants against Eimeria tenella.

    Science.gov (United States)

    Jitviriyanon, Surapan; Phanthong, Phanida; Lomarat, Pattamapan; Bunyapraphatsara, Nuntavan; Porntrakulpipat, Sarthorn; Paraksa, Nuanchan

    2016-09-15

    This study was designed to evaluate the in vitro anticoccidial properties against Eimeria tenella of different essential oils and their major active components. Efficacy of ten essential oils from different Thai indigenous plants were preliminarily screened and only those with potential were further tested for effective concentrations and identifying their active compounds. Oocysticidal property was evaluated in term of sporulation inhibition of oocysts and the percentage of unsporulated, sporulated and degenerated oocysts, after treatment with 125μg/ml of the selected essential oil, the sample was enumerated by haemocytometer, while coccidiocidal activity was assessed by the inhibition of sporozoite invasion in MDBK cell lines. Results showed that only Boesenbergia pandurata and Ocimum basilicum essential oils had strong sporulation inhibition activity by providing a higher ratio of degenerated oocysts and their IC50 were 0.134 and 0.101mg/ml, respectively. GC-MS analysis of B. pandurata essential oil found trans-b-ocimene, camphor, 1,8-cineole, geraniol, camphene, methyl cinnamate, l-limonene and linalool as the major components, while methyl chavicol, α-bergamotene, 1,8-cineole and trans-β-ocimene were the main compounds of O. basilicum essential oil. Methyl cinnamate and camphor were the active components of B. pandurata oil, whereas methyl chavicol was the active component of O. basilicum oil by exhibiting the oocysticidal effect against E. tenella with IC50 values of 0.008, 0.023 and 0.054mg/ml, respectively. Furthermore, B. pandurata and O. basilicum oils also showed a strong cytotoxic property against coccidia with more than 70% inhibition of sporozoite invasion in MDBK cell lines, and their IC50 were 0.004 and 0.004mg/ml, respectively. Methyl cinnamate as well as camphor from B. pandurata and methyl chavicol from O. basilicum were also effective with IC50 values of 0.029, 0.023, and 0.022mg/ml, respectively. Copyright © 2016 Elsevier B.V. All rights

  18. Insecticidal effect of essential oils from mediterranean plants uponAcanthoscelides Obtectus Say (Coleoptera, Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Regnault-Roger, C; Hamraoui, A; Holeman, M; Theron, E; Pinel, R

    1993-06-01

    The bioactivity of 22 essential oils from aromatic and medicinal plants was tested uponAcanthoscelides obtectus Say (Coleoptera, Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.). The insecticidal effect was evaluated by determination of 24- and 48-hr LC50 and LC50 (from 1.50 mg/ dm(3) to more than 1000 mg/dm(3)). Isoprenoids and phenylpropanoids were identified by gas chromatography. The most efficient essential oils were extracted from plants belonging to Labiatae.Origanum marjorana andThymus serpyllum essential oils were the most toxic.

  19. [Correlation between the output and composition of essential oil and the level of salicylic acid in mint plants at different ontogenetic stages].

    Science.gov (United States)

    Shelepova, O V; Kondrat'eva, V V; Voronkova, T V; Olekhnovich, L S

    2013-01-01

    Dynamic changes in the content of acetylsalicylic acid and the output and qualitative composition of essential oil have been studied in mint plants (Mentha spicata L. and cultivar Medichka) during their ontogenesis with allowance for changes in weather conditions. Ontogenetic changes in the level of acetylsalicylic acid in leaf tissues are found to be similar in both cv. Medichka and M. spicata. In the case of cv. Medichka, this change is connected with the dynamics of the production and the qualitative composition of essential oil; in the case of M. spicata, this connection is less expressed. The role of acetylsalicylic acid and essential oil in plant adaptation to the environment is discussed.

  20. OPTIMASI PROSES DEASIDIFIKASI DALAM PEMURNIAN MINYAK SAWIT MERAH SKALA PILOT PLANT [Optimization of Deacidification Process in Red Palm Oil Purification on Pilot Plant Scale

    Directory of Open Access Journals (Sweden)

    I Wayan Rai Widarta1*

    2012-06-01

    Full Text Available Deacidification is one of the steps in palm oil refining process which aims to separate free fatty acids formed during post-harvest handling. It is carried out using alkali solution such as NaOH (sodium hydroxide. Carotenoids in palm oil are affected by this step. Therefore, deacidification has to be controlled to minimize the destruction of carotenoids during processing. The objective of this research was to improve deacidification process in pilot plant scale so that the process can produce lower level of free fatty acids (FFA and higher recovery of carotene in high yield neutralized red palm oil (NRPO. Characterization of physical and chemical properties of crude palm oil (CPO such as moisture content, FFA and carotene contents, saponification number, iodine value, peroxide value, and color were determined before processing. Degumming was performed before deacidification process. The 17.5% excess of NaOH was obtained from the pilot plant scale deacidification trial. The optimization of deacidification time and temperature was carried out by using central composite design (CCD. Response surface method (RSM was used to observe the influence of treatments on the FFA level reduction, carotene recovery, and NRPO yield. The result showed that the optimum deacidification condition was at 61 ± 2°C in 26 minutes, and at the 16°Be NaOH strength with 17.5% excess of NaOH. In this optimum condition, the process achieved 96.35% of FFA reduction, 87.30% of carotene recovery, and 90.16% of NRPO yield.

  1. Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner

    OpenAIRE

    Norwazan Abdul Rahim; Mohammad Nazri Mohd Jaafar; Syazwan Sapee; Hazir Farouk Elraheem

    2016-01-01

    This paper focuses on the combustion performance of various blends of biodiesel fuels and diesel fuel from lean to rich mixtures. The biodiesel blend fuel combustion experiments were carried out using a liquid fuel burner and biodiesel fuel made from various plant oil feedstocks, including jatropha, palm and coconut oils. The results show that jatropha oil methyl ester blend 25 (JOME B25) and coconut oil methyl ester blend 25 (COME B25) blended at 25% by volume in diesel fuel produced lower c...

  2. Aromatic plants essential oils activity on Fusarium verticillioides Fumonisin B(1) production in corn grain.

    Science.gov (United States)

    López, A G; Theumer, M G; Zygadlo, J A; Rubinstein, H R

    2004-10-01

    The minimum inhibitory concentration (MIC) of Origanum vulgare, Aloysia triphylla, Aloysia polystachya and Mentha piperita essential oils (EOs) against Fusarium verticillioides M 7075 (F. moniliforme, Sheldon) were assessed, using the semisolid agar antifungal susceptibility (SAAS) technique. O. vulgare, A. triphylla, A. polystachya and M. piperita EOs were evaluated at final concentrations of 10, 20, 40, 50, 100, 200, 250, 500, 1000 and 1500 epsilonl per litre (epsilonl/l) of culture medium. A. triphylla and O. vulgare EOs showed the highest inhibitory effects on F. verticillioides mycelial development. This inhibition was observed at 250 and 500 epsilonl/l for EOs coming from Aloysia triphylla and O. vulgare, respectively. Thus, the effects of EOs on FB(1) production were evaluated using corn grain (Zea mays) as substrate. The EOs were inserted on the 5th, 10th, 15th and 20th day of maize postinoculation with a conidia suspension of F. verticillioides. O. vulgare and A. triphylla were applied to give final concentrations of 30 ppm and 45 ppm, respectively. Different effects were observed in the toxicogenicity at the 20th day treatment. The O. vulgare EO decreased the production level of FB(1) (P < 0.01) while A. triphyla EO increased it (P < 0.001) with respect to those obtained in the inoculated maize, not EOs treated. Results obtained in the present work indicate that fumonisin production could be inhibited or stimulated by some constituents of EOs coming from aromatic plants. Further studies should be performed to identify the components of EOs with modulatory activity on the growth and fumonisins production of Fusarium verticillioides.

  3. Antioxidant, Anti-5-lipoxygenase and Antiacetylcholinesterase Activities of Essential Oils and Decoction Waters of Some Aromatic Plants

    Directory of Open Access Journals (Sweden)

    Sílvia M. Albano

    2012-01-01

    Full Text Available The scavenging of free radicals and superoxide anion, the inhibition of 5-lipoxygenase and the antiacetylcholinesterase activities of essential oils and decoction waters of eight aromatic plants (Dittrichia viscosa , Foeniculum vulgare, Origanum vulgare, Salvia officinalis, Thymbra capitata , Thymus camphoratus, Thymus carnosus and Thymus mastichina were studied. The essential oils were dominated by 1,8-cineole in S. officinalis (59%, T. mastichina (49% and T. camphoratus (21%; borneol (20% in T. carnosus; carvacrol in Thymbra capitata (68%; γ -terpinene (49% in O. vulgare; α -pinene (26% in F. vulgare; and trans-nerolidol (8% + β -oplopenone (7% in D. viscosa. O. vulgare decoction waters had the highest amount of phenols (4 5 ± 3 mg GAE/mL while F. vulgare only had 5 ± 0 mg GAE/mL. The decoction waters showed higher radical scavenging activity than the essential oils. O. vulgare decoction water showed the best antioxidant activity (IC 50= 3 ± 0 m g/mL, while the most effective essential oils were those of Thymbra capitata (IC 50=61 ± 2 m g/mL and O. vulgare (IC 50=15 6 ± 5 m g/mL. Thymbra capitata (IC 50= 6 ± 0 m g/mL decoction water showed the best superoxide anion scavenging activity. F. vulgare decoction water and essential oil revealed the best 5-lipoxygenase inhibition capacity (IC 50=2 7 ± 1 m g/mL and IC 50=6 8 ± 2 m g/mL, respectively. T. mastichina (IC 50=4 6 ± 4 m g/mL, S. officinalis (IC 50=5 1 ± 4 m g/mL, Thymbra capitata (IC 50=5 2 ± 1 m g/mL and T. camphoratus (IC 50=13 7 ± 2 m g/mL essential oils showed the best antiacetylcholinesterase activity.

  4. Mosquito larvicidal properties of volatile oil from salt marsh mangrove plant of Sesuvium portulacastrum against Anopheles stephensi and Aedes aegypti

    Institute of Scientific and Technical Information of China (English)

    Mohamed Yacoob Syed Ali; Venkatraman Anuradha; SyedAbudhair Sirajudeen; Prathasarathy Vijaya; Nagarajan Yogananth; Ramachandran Rajan; Peer Mohamed Kalitha Parveen

    2013-01-01

    Objective: To identify the larvicidal activity of the volatile oil from Sesuvium portulacastrum (S.portulacastrum ) against Anopheles stephensi and Aedes aegypti. Methods: Volatile oil extract of S. portulacastrum was prepared in a graded series of concentration. The test for the larvicidal effect of volatile oil against mosquitos larvae was conducted in accordance with the WHO standard method. Batches of 25 early 4th instar larvae of two mosquitoes were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts. Each experiment was conducted with triplicate with concurrent a control group.Results:Volatile oil extract of S. portulacastrum showed toxicity against 4th instar larvae of Aedes aegypti and Anopheles stephensi with equivalent LC50 value [(63±7.8) µL/mL, LCL-UCL=55.2-64.0] and LC90 value [(94.2±3.9) µL/mL)] in maximum activity with minimum concentration (200 µL/mL) of volatile oil and followed by maximum activity of 250 µL concentration showed LC50 value=(68.0±8.2) µL/mL, LCL-UCL=66.26-69.2 and LC50 value of (55.2±2.8) µL/mL, LCL-UCL=53.7-56.9, LC90=(95.2±1.25) µL/mL and followed by 250 µL of oil extract against 4th instar larvae of Aedes aegypti respectively.Conclusions:It is inferred from the present study that, the extracts from salt marsh mangrove plan of S. portulacastum are identified as a potential source of safe and efficacious mosquito control agents for the management of vector borne diseases of malaria and dengue.

  5. Comparative chemical and antimicrobial study of nine essential oils obtained from medicinal plants growing in Egypt

    Directory of Open Access Journals (Sweden)

    Nashwa Tarek

    2014-06-01

    Full Text Available Essential oils are one of interesting natural products group that are used in different aspects of life due to their various biological activities. This study investigate the antimicrobial activities of 9 herbal essential oils on survival and growth of selected pathogenic and spoilage microorganisms. Essential oils were obtained by hydrodistillation method and were analyzed using GC/MS technique. The oils were tested for their antimicrobial activity against 2 Gram +ve, Staphylococcus aureus (S. aureus and Listeria innocua (L. innocua, 2 Gram −ve, Pseudomonas aeruginosa (P. aeruginosa and Salmonella Typhi (S. Typhi as well as 2 Fungi, Aspergillus niger (A. niger and Candida albicans (C. albicans, using agar dilution method. Minimum inhibitory concentration (MIC was determined. The antibiotic susceptibility test was performed against the test organisms by disc diffusion method. Results showed that Cinnamon oil was found effective against all the tested strains (MIC ≤ 1 μl/ml. Peppermint, lemon grass, caraway, anise, fennel and clove showed activity at (MIC ≤ 1 μl/ml with all the tested organisms except for P. aeruginosa. Lavender oil exhibited antimicrobial activities against 4 strains (S. aureus, L. innocua, A. niger and C. albicans with MIC (≤1 μl/ml while geranium oil was inhibitory at (MIC ≤ 1 μl/ml against S. aureus, S. Typhi, A. niger and C. albicans and with MIC ∼ 2 μl/ml against L. innocua. Although Gram −ve organisms had shown high resistance toward different essential oils, they were found to be susceptible to cinnamon oil even at lower concentration. Cinnamon oil is effective against drug resistant organisms. It can be suggested to use essential oils/constituents as potential natural preservatives and would be helpful in the treatment of various infections.

  6. Innovation in olive oil processing plants to produce an excellent olive oil and to reduce environmental impact

    Directory of Open Access Journals (Sweden)

    Paolo Amirante

    Full Text Available The focus of technological innovations in agro-industrial plants has been more and more on promoting of quality aspects of the final product with the environment in mind. The consumer demand, in fact, indicates an increasing interest towards a product with high hedonistic, nutritional and health value. The reasons for this phenomenon are mostly due to the fact that medical science has demonstrated the benefits of a healthy diet, especially those benefits from a diet from Mediterranean countries. Thereby, particular attention is given to both the typical aspects of the production line and the health and authenticity requirements which must, above all, conform to the pedo-climactic and agronomical conditions of the production area in order to differentiate the product, even from those found in the same production area. This, to assure the authenticity of the final product and therefore preference is given to the short production line where the whole production line can be carried out in the agricultural farm itself. The production system guarantees the elements necessary for high quality, with high value added, as well as assuring that the production line is traceable, even in relatively large extended areas. The research activities therefore must be in contact with other academic fields, collaborate with similar sectors and with plant manufacturers. Thereby concentrating on the one hand on the characteristics of the product, on the other hand on innovative plants and introducing new production systems that respect the environment. The research must therefore interface with the territory, in as much as, the developing of a plant must consider a series of matters such as: the environment, safety of the workers, hygiene standards of the product, process technology, plant technology, ergonomics, management techniques, town planning, building aspects, marketing and the financial aspects of the production line. The many laws that apply are partly non

  7. Innovation in olive oil processing plants to produce an excellent olive oil and to reduce environmental impact

    Directory of Open Access Journals (Sweden)

    Antonia Tamborrino

    2011-02-01

    Full Text Available The focus of technological innovations in agro-industrial plants has been more and more on promoting of quality aspects of the final product with the environment in mind. The consumer demand, in fact, indicates an increasing interest towards a product with high hedonistic, nutritional and health value. The reasons for this phenomenon are mostly due to the fact that medical science has demonstrated the benefits of a healthy diet, especially those benefits from a diet from Mediterranean countries. Thereby, particular attention is given to both the typical aspects of the production line and the health and authenticity requirements which must, above all, conform to the pedo-climactic and agronomical conditions of the production area in order to differentiate the product, even from those found in the same production area. This, to assure the authenticity of the final product and therefore preference is given to the short production line where the whole production line can be carried out in the agricultural farm itself. The production system guarantees the elements necessary for high quality, with high value added, as well as assuring that the production line is traceable, even in relatively large extended areas. The research activities therefore must be in contact with other academic fields, collaborate with similar sectors and with plant manufacturers. Thereby concentrating on the one hand on the characteristics of the product, on the other hand on innovative plants and introducing new production systems that respect the environment. The research must therefore interface with the territory, in as much as, the developing of a plant must consider a series of matters such as: the environment, safety of the workers, hygiene standards of the product, process technology, plant technology, ergonomics, management techniques, town planning, building aspects, marketing and the financial aspects of the production line. The many laws that apply are partly non

  8. Essential Oils from Ugandan Medicinal Plants: In Vitro Cytotoxicity and Effects on IL-1β-Induced Proinflammatory Mediators by Human Gingival Fibroblasts

    Science.gov (United States)

    Bwanga, Freddie; Joloba, Moses; Borg-Karlson, Anna-Karin; Yucel-Lindberg, Tülay; Obua, Celestino

    2016-01-01

    The study investigated cytotoxicity of essential oils from four medicinal plants (Bidens pilosa, Ocimum gratissimum, Cymbopogon nardus, and Zanthoxylum chalybeum) on human gingival fibroblasts and their effects on proinflammatory mediators' secretion. Cytotoxicity of essential oils was investigated using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Effects of essential oils at subcytotoxicity concentrations on interleukin- (IL-) 6, IL-8, and prostaglandin E2 (PGE2) secretions by gingival fibroblasts treated with IL-1β (300 pg/mL) were evaluated by ELISA and EIA. IC50 values of the essential oils ranged from 26 μg/mL to 50 μg/mL. Baseline and IL-1β-induced secretion of PGE2 was inhibited by treatment with essential oil from O. gratissimum. Essential oils from B. pilosa and C. nardus had synergistic effects with IL-1β on PGE2 seceretion. In conclusion, the study suggests that essential oil from O. gratissimum decreases gingival fibroblasts secretion of PGE2, while essential oils from B. pilosa and C. nardus increase PGE2 secretion. Essential oil from Z. chalybeum was the most cytotoxic, while oil from C. nardus was the least cytotoxic. Although the clinical significance of these findings remains to be determined, it may be suggested that essential oil from O. gratissimum, applied at subcytotoxicity concentrations, could reduce the participation of gingival fibroblasts in the gingival inflammation and tissue destruction associated with periodontitis. PMID:27807462

  9. Essential Oils from Ugandan Medicinal Plants: In Vitro Cytotoxicity and Effects on IL-1β-Induced Proinflammatory Mediators by Human Gingival Fibroblasts

    Directory of Open Access Journals (Sweden)

    Francis Ocheng

    2016-01-01

    Full Text Available The study investigated cytotoxicity of essential oils from four medicinal plants (Bidens pilosa, Ocimum gratissimum, Cymbopogon nardus, and Zanthoxylum chalybeum on human gingival fibroblasts and their effects on proinflammatory mediators’ secretion. Cytotoxicity of essential oils was investigated using 3-(4, 5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide assay. Effects of essential oils at subcytotoxicity concentrations on interleukin- (IL- 6, IL-8, and prostaglandin E2 (PGE2 secretions by gingival fibroblasts treated with IL-1β (300 pg/mL were evaluated by ELISA and EIA. IC50 values of the essential oils ranged from 26 μg/mL to 50 μg/mL. Baseline and IL-1β-induced secretion of PGE2 was inhibited by treatment with essential oil from O. gratissimum. Essential oils from B. pilosa and C. nardus had synergistic effects with IL-1β on PGE2 seceretion. In conclusion, the study suggests that essential oil from O. gratissimum decreases gingival fibroblasts secretion of PGE2, while essential oils from B. pilosa and C. nardus increase PGE2 secretion. Essential oil from Z. chalybeum was the most cytotoxic, while oil from C. nardus was the least cytotoxic. Although the clinical significance of these findings remains to be determined, it may be suggested that essential oil from O. gratissimum, applied at subcytotoxicity concentrations, could reduce the participation of gingival fibroblasts in the gingival inflammation and tissue destruction associated with periodontitis.

  10. Essential Oils from Ugandan Medicinal Plants: In Vitro Cytotoxicity and Effects on IL-1β-Induced Proinflammatory Mediators by Human Gingival Fibroblasts.

    Science.gov (United States)

    Ocheng, Francis; Bwanga, Freddie; Almer Boström, Elisabeth; Joloba, Moses; Borg-Karlson, Anna-Karin; Yucel-Lindberg, Tülay; Obua, Celestino; Gustafsson, Anders

    2016-01-01

    The study investigated cytotoxicity of essential oils from four medicinal plants (Bidens pilosa, Ocimum gratissimum, Cymbopogon nardus, and Zanthoxylum chalybeum) on human gingival fibroblasts and their effects on proinflammatory mediators' secretion. Cytotoxicity of essential oils was investigated using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Effects of essential oils at subcytotoxicity concentrations on interleukin- (IL-) 6, IL-8, and prostaglandin E2 (PGE2) secretions by gingival fibroblasts treated with IL-1β (300 pg/mL) were evaluated by ELISA and EIA. IC50 values of the essential oils ranged from 26 μg/mL to 50 μg/mL. Baseline and IL-1β-induced secretion of PGE2 was inhibited by treatment with essential oil from O. gratissimum. Essential oils from B. pilosa and C. nardus had synergistic effects with IL-1β on PGE2 seceretion. In conclusion, the study suggests that essential oil from O. gratissimum decreases gingival fibroblasts secretion of PGE2, while essential oils from B. pilosa and C. nardus increase PGE2 secretion. Essential oil from Z. chalybeum was the most cytotoxic, while oil from C. nardus was the least cytotoxic. Although the clinical significance of these findings remains to be determined, it may be suggested that essential oil from O. gratissimum, applied at subcytotoxicity concentrations, could reduce the participation of gingival fibroblasts in the gingival inflammation and tissue destruction associated with periodontitis.

  11. Effects of pH on protein components of extracted oil bodies from diverse plant seeds and endogenous protease-induced oleosin hydrolysis.

    Science.gov (United States)

    Zhao, Luping; Chen, Yeming; Chen, Yajing; Kong, Xiangzhen; Hua, Yufei

    2016-06-01

    Plant seeds are used to extract oil bodies for diverse applications, but oil bodies extracted at different pH values exhibit different properties. Jicama, sunflower, peanut, castor bean, rapeseed, and sesame were selected to examine the effects of pH (6.5-11.0) on the protein components of oil bodies and the oleosin hydrolysis in pH 6.5-extracted oil bodies. In addition to oleosins, many extrinsic proteins (globulins, 2S albumin, and enzymes) were present in pH 6.5-extracted oil bodies. Globulins were mostly removed at pH 8.0, whereas 2S albumins were removed at pH 11.0. At pH 11.0, highly purified oil bodies were obtained from jicama, sunflower, peanut, and sesame, whereas lipase remained in the castor bean oil bodies and many enzymes in the rapeseed oil bodies. Endogenous protease-induced hydrolysis of oleosins occurred in all selected plant seeds. Oleosins with larger sizes were hydrolysed more quickly than oleosins with smaller sizes in each plant seed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Production of rapeseed oil fuel in decentralized oil extraction plants. Handbook. 2. new rev. and enl. ed.; Herstellung von Rapsoelkraftstoff in dezentralen Oelgewinnungsanlagen. Handbuch

    Energy Technology Data Exchange (ETDEWEB)

    Remmele, Edgar [Technologie- und Foerderzentrum (TFZ) im Kompetenzzentrum fuer Nachwachsende Rohstoffe, Straubing (Germany)

    2009-11-15

    Increasing oil prices, the dependence on petroleum imports and the desire to reduce the CO{sub 2} emissions, are arguments to accelerate the production and utilization of biofuels. In 2007, 3.3 million tons of biodiesel and 772,000 tons of vegetable oil were used as fuel. The technically and economically successful production of rapeseed oil fuel in decentralized oil mills requires a quality assurance. Specifically, the brochure under consideration reports on the following: (1) Oilseed processing; (2) Centralized oil production in Germany; (3) Design of a decentralized oil mill; (4) Production of rapeseed oil fuel in decentralized systems; (5) Quality assurance for rapeseed oil fuel in decentralized oil mills; (6) Properties of rapeseed oil fuel; (7) Quality of rapeseed oil fuel from decentralized oil mills; (8) Economic aspects of decentralized oil extraction; (9) Legal framework conditions.

  13. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea.

    Science.gov (United States)

    Soylu, Emine Mine; Kurt, Sener; Soylu, Soner

    2010-10-15

    The aim of this study was to find an alternative to synthetic fungicides currently used in the control of devastating fungal pathogen Botrytis cinerea, the causal agent of grey mould disease of tomato. Antifungal activities of essential oils obtained from aerial parts of aromatic plants, which belong to the Lamiacea family such as origanum (Origanum syriacum L. var. bevanii), lavender (Lavandula stoechas L. var. stoechas) and rosemary (Rosmarinus officinalis L.), were investigated against B. cinerea. Contact and volatile phase effects of different concentrations of the essential oils were found to inhibit the growth of B. cinerea in a dose-dependent manner. Volatile phase effects of essential oils were consistently found to be more effective on fungal growth than contact phase effect. A volatile vapour of origanum oil at 0.2 μg/ml air was found to completely inhibit the growth of B. cinerea. Complete growth inhibition of pathogen by essential oil of lavender and rosemary was, however, observed at 1.6 μg/ml air concentrations. For the determination of the contact phase effects of the tested essential oils, origanum oil at 12.8 μg/ml was found to inhibit the growth of B. cinerea completely. Essential oils of rosemary and lavender were inhibitory at relatively higher concentrations (25.6 μg/ml). Spore germination and germ tube elongation were also inhibited by the essential oils tested. Light and scanning electron microscopic (SEM) observations revealed that the essential oils cause considerable morphological degenerations of the fungal hyphae such as cytoplasmic coagulation, vacuolations, hyphal shrivelling and protoplast leakage and loss of conidiation. In vivo assays with the origanum essential oil, being the most efficient essential oil, under greenhouse conditions using susceptible tomato plants resulted in good protection against grey mould severity especially as a curative treatment. This study has demonstrated that the essential oils are potential and

  14. Essential oil of some seasonal flowering plants grown in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    S.A. Al-Mazroa

    2015-03-01

    Full Text Available The constituents of the essential oils of Rumex vesicarius, Erucaria hispanica, Schimpera arabica, Savignya parviflora, Horwoodia dicksoniae, Sisymbrium irio, Plantago amplexicaulis, Plantago boissieri, Arnebia linearifolia, Foeniculum vulgare, Trigonella hamosa, Lotus halophilus, Reseda muricata, Cenchrus ciliaris is reported. These oils were analyzed by GC/MS and most of them are being studied for the first time.

  15. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism.

    Directory of Open Access Journals (Sweden)

    En-Hua Xia

    Full Text Available Rapidly driven by the need for developing sustainable sources of nutritionally important fatty acids and the rising concerns about environmental impacts after using fossil oil, oil-plants have received increasing awareness nowadays. As an important oil-rich plant in China, Camellia oleifera has played a vital role in providing nutritional applications, biofuel productions and chemical feedstocks. However, the lack of C. oleifera genome sequences and little genetic information have largely hampered the urgent needs for efficient utilization of the abundant germplasms towards modern breeding efforts of this woody oil-plant.Here, using the 454 GS-FLX sequencing platform, we generated approximately 600,000 RNA-Seq reads from four tissues of C. oleifera. These reads were trimmed and assembled into 104,842 non-redundant putative transcripts with a total length of ∼38.9 Mb, representing more than 218-fold of all the C. oleifera sequences currently deposited in the GenBank (as of March 2014. Based on the BLAST similarity searches, nearly 42.6% transcripts could be annotated with known genes, conserved domains, or Gene Ontology (GO terms. Comparisons with the cultivated tea tree, C. sinensis, identified 3,022 pairs of orthologs, of which 211 exhibited the evidence under positive selection. Pathway analysis detected the majority of genes potentially related to lipid metabolism. Evolutionary analysis of omega-6 fatty acid desaturase (FAD2 genes among 20 oil-plants unexpectedly suggests that a parallel evolution may occur between C. oleifera and Olea oleifera. Additionally, more than 2,300 simple sequence repeats (SSRs and 20,200 single-nucleotide polymorphisms (SNPs were detected in the C. oleifera transcriptome.The generated transcriptome represents a considerable increase in the number of sequences deposited in the public databases, providing an unprecedented opportunity to discover all related-genes associated with lipid metabolic pathway in C

  16. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni

    Science.gov (United States)

    Tak, Jun-Hyung; Isman, Murray B.

    2017-02-01

    Many plant essential oils and their terpenoid constituents possess bioactivities including insecticidal activity, and they sometimes act synergistically when mixed. Although several hypotheses for this have been proposed, the underlying mechanism has not been fully elucidated thus far. In the present study, we report that in larvae of the cabbage looper, Trichoplusia ni, most synergistic or antagonistic insecticidal activities among mixtures of plant essential oil constituents are pharmacokinetic effects, owing to changes in solubility as well as spreadability on a wax layer. Among the major constituents of rosemary (Rosmarinus officinalis) oil, in vitro analysis revealed up to a 19-fold increase in penetration of camphor in a binary mixture with 1,8-cineole through the larval integument, suggesting increased penetration as the major mechanism for synergy. A total of 138 synergistic or antagonistic interactions among 39 compounds were identified in binary mixtures via topical application, and these were highly correlated to changes in surface tension as measured by contact angle of the mixtures on a beeswax layer. Among compounds tested, trans-anethole alone showed evidence of internal synergy, whereas most of remaining synergistic or antagonistic combinations among the three most active compounds were identified as penetration-related interactions, confirmed via a divided-application bioassay.

  17. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni

    Science.gov (United States)

    Tak, Jun-Hyung; Isman, Murray B.

    2017-01-01

    Many plant essential oils and their terpenoid constituents possess bioactivities including insecticidal activity, and they sometimes act synergistically when mixed. Although several hypotheses for this have been proposed, the underlying mechanism has not been fully elucidated thus far. In the present study, we report that in larvae of the cabbage looper, Trichoplusia ni, most synergistic or antagonistic insecticidal activities among mixtures of plant essential oil constituents are pharmacokinetic effects, owing to changes in solubility as well as spreadability on a wax layer. Among the major constituents of rosemary (Rosmarinus officinalis) oil, in vitro analysis revealed up to a 19-fold increase in penetration of camphor in a binary mixture with 1,8-cineole through the larval integument, suggesting increased penetration as the major mechanism for synergy. A total of 138 synergistic or antagonistic interactions among 39 compounds were identified in binary mixtures via topical application, and these were highly correlated to changes in surface tension as measured by contact angle of the mixtures on a beeswax layer. Among compounds tested, trans-anethole alone showed evidence of internal synergy, whereas most of remaining synergistic or antagonistic combinations among the three most active compounds were identified as penetration-related interactions, confirmed via a divided-application bioassay. PMID:28181580

  18. Laboratory evaluation of aromatic essential oils from thirteen plant species as candidate repellents against Leptotrombidium chiggers (Acari: Trombiculidae), the vector of scrub typhus.

    Science.gov (United States)

    Eamsobhana, Praphathip; Yoolek, Adisak; Kongkaew, Wittaya; Lerdthusnee, Kriangkrai; Khlaimanee, Nittaya; Parsartvit, Anchana; Malainual, Nat; Yong, Hoi-Sen

    2009-03-01

    Scrub typhus, a rickettsial disease transmitted by several species of Leptotrombidium chiggers (larvae), is endemic in many areas of Asia. The disease is best prevented by the use of personal protective measures, including repellents. In this study commercially produced aromatic, essential oils of 13 plant species and ethanol (control) were tested in the laboratory for repellency against host-seeking chiggers of Leptotrombidium imphalum Vercammen-Grandjean and Langston (Acari: Trombiculidae). A rapid, simple and economic in vitro test method was used by exposing the chigger for up to 5 min. Repellency was based on relative percentages of chiggers attracted to test and control substances. Four of the 13 essential oils showed promise as effective repellent against L. imphalum chiggers. Syzygium aromaticum (clove) oil exhibited 100% repellency at 5% concentration (dilution with absolute ethanol), whereas Melaleuca alternifolia (tea tree) oil exhibited 100% repellency at 40% concentration. Undiluted oils of Zingiber cassamunar (plai) and Eucalyptus globules (blue gum) exhibited 100% repellency. Of the remaining nine essential oils, only 100% Pelargonium graveolens (geranium) exhibited >50% repellency (viz. 57%). Styrax torkinensis (benzoin) oil did not exhibit any repellency. These findings show that several aromatic, essential oils of plants may be useful as chigger repellent for the prevention of scrub typhus. Syzygium aromaticum oil may be safer and more economical to prevent chigger attacks than commercially available synthetic chemicals, such as DEET that may have harmful side effects.

  19. Antibacterial activity of aromatic plants essential oils from Serbia against the Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Klaus Anita

    2009-01-01

    Full Text Available The purpose of this study was to examine the effectiveness of selected essential oils for the control of the growth and survival of pathogenic bacteria Listeria monocytogenes ATCC 19112 and Listeria monocytogenes ATCC 19115, which are of significant importance in food hygiene. Essential oils extracted from Salvia officinalis L., Rosmarinus officinalis L., Majorana hortensis Moench., Thymus vulgaris L., Carum carvi L., Pimpinella anisum L. and Coriandrum sativum L. were evaluated. Antibacterial activity was done by the disk diffusion method in the presence of pure essential oils and four suspensions in alcohol. The best results obtained with Thymus vulgaris and Majorana hortensis essential oils, which were acting microbicidaly on both observed strains of Listeria monocytogenes, even in the small concentration. Because some of the essential oils were highly inhibitory even in small quantities to selected pathogenic bacteria, they may provide alternatives to conventional antimicrobial additives in foods. .

  20. Chemical composition and biological effects of Artemisia maritima and Artemisia nilagirica essential oils from wild plants of western Himalaya.

    Science.gov (United States)

    Stappen, Iris; Wanner, Jürgen; Tabanca, Nurhayat; Wedge, David E; Ali, Abbas; Khan, Ikhlas A; Kaul, Vijay K; Lal, Brij; Jaitak, Vikas; Gochev, Velizar; Girova, Tania; Stoyanova, Albena; Schmidt, Erich; Jirovetz, Leopold

    2014-08-01

    Artemisia species possess pharmacological properties that are used for medical purposes worldwide. In this paper, the essential oils from the aerial parts of Artemisia nilagirica and Artemisia maritima from the western Indian Himalaya region are described. The main compounds analyzed by simultaneous GC/MS and GC/FID were camphor and 1,8-cineole from A. maritima, and camphor and artemisia ketone from A. nilagirica. Additionally, the oils were evaluated for their antibacterial, antifungal, mosquito biting deterrent, and larvicidal activities. A. nilagirica essential oil demonstrated nonselective antifungal activity against plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides, whereas A. maritima did not show antifungal activity. Both Artemisia spp. exhibited considerable mosquito biting deterrence, whereas only A. nilagirica showed larvicidal activity against Aedes aegypti. Antibacterial effects assessed by an agar dilution assay demonstrated greater activity of A. maritima essential oil against Staphylococcus aureus and Pseudomonas aeruginosa compared to A. nilagirica.

  1. Natural control of corn postharvest fungi Aspergillus flavus and Penicillium sp. using essential oils from plants grown in Argentina.

    Science.gov (United States)

    Camiletti, Boris X; Asensio, Claudia M; Pecci, María de la Paz Giménez; Lucini, Enrique I

    2014-12-01

    The objective in this study was to evaluate the antifungal activity of essential oils from native and commercial aromatic plants grown in Argentina against corn postharvest fungi and to link the essential oil bioactivity with lipid oxidation and morphological changes in fungus cell membrane. Essential oil (EO) of oregano variety Mendocino (OMen), Cordobes (OCor), and Compacto (OCom), mint variety Inglesa (Mi), and Pehaujo (Mp), Suico (Sui); rosemary (Ro), and Aguaribay (Ag) were tested in vitro against 4 corn fungi: A. flavus (CCC116-83 and BXC01), P. oxalicum (083296), and P. minioluteum (BXC03). The minimum fungicidal concentration (MFC) and the minimum inhibitory concentration (MIC) were determined. The chemical profiles of the EOs were analyzed by GC-MS. Lipid oxidation in cell membrane of fungi was determined by hydroperoxides and related with essential oil antifungal activity. The major compounds were Thymol in OCor (18.66%), Omen (12.18%), and OCom (9.44%); menthol in Mi and Mp; verbenone in Sui; dehydroxy-isocalamendiol in Ag; and eucaliptol in Ro. OCor, Omen, and OCom showed the best antifungal activity. No antifungal activity was observed in Ag and Ro EO. The hydroperoxide value depended on the fungi (P fungi that produce mycotoxin in maize.

  2. Plant essential oils and allied volatile fractions as multifunctional additives in meat and fish-based food products: a review.

    Science.gov (United States)

    Patel, Seema

    2015-01-01

    Essential oils are concentrated aromatic volatile compounds derived from botanicals by distillation or mechanical pressing. They play multiple, crucial roles as antioxidants, food pathogen inhibitors, shelf-life enhancers, texture promoters, organoleptic agents and toxicity-reducing agents. For their versatility, they appear promising as food preservatives. Several research findings in recent times have validated their potential as functional ingredients in meat and fish processing. Among the assortment of bioactive compounds in the essential oils, p-cymene, thymol, eugenol, carvacrol, isothiocyanate, cinnamaldehyde, cuminaldehyde, linalool, 1,8-cineol, α-pinene, α-terpineol, γ-terpinene, citral and methyl chavicol are most familiar. These terpenes (monoterpenes and sesquiterpenes) and phenolics (alcohols, esters, aldehydes and ketones) have been extracted from culinary herbs such as oregano, rosemary, basil, coriander, cumin, cinnamon, mint, sage and lavender as well as from trees such as myrtle, fir and eucalyptus. This review presents essential oils as alternatives to conventional chemical additives. Their synergistic actions with modified air packaging, irradiation, edible films, bacteriocins and plant byproducts are discussed. The decisive roles of metabolic engineering, microwave technology and metabolomics in quality and quantity augmentation of essential oil are briefly mooted. The limitations encountered and strategies to overcome them have been illuminated to pave way for their enhanced popularisation. The literature has been mined from scientific databases such as Pubmed, Pubchem, Scopus and SciFinder.

  3. The chemistry and beneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices

    Science.gov (United States)

    Aromatic plants produce organic compounds that may be involved in the defense of plants against phytopathogenic insects, bacteria, fungi, and viruses. One of these compounds called carvacrol that is found in high concentrations in essential oils such as oregano has been reported to exhibit numerous...

  4. Correlations among hydrocarbon microseepage, soil chemistry, and uptake of micronutrients by plants, Bell Creek oil field, Montana

    Science.gov (United States)

    Roeming, S.S.; Donovan, T.J.

    1985-01-01

    Chelate-extractable iron and manganese concentrations in soils over and around the Bell Creek oil field suggest that compared to low average background values, there are moderate amounts of these elements directly over the production area and higher concentrations distributed in an aureole pattern around the periphery of the field. Adsorbed and organically bound iron and manganese appear to be readily taken up by plants resulting in anomalously high levels of these elements in leaves and needles over the oil field and suggesting correlation with corresponding low concentrations in soils. Iron and manganese appear to have bypassed the soil formation process where, under normal oxidizing conditions, they would have ultimately precipitated as insoluble oxides and hydroxides. ?? 1985.

  5. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production.

    Science.gov (United States)

    Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S

    2017-06-25

    As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  6. Chemical composition and efficacy of some selected plant oils against Pediculus humanus capitis in vitro.

    Science.gov (United States)

    Yones, Doaa A; Bakir, Hanaa Y; Bayoumi, Soad A L

    2016-08-01

    Natural compounds have been suggested as alternative sources for pediculosis capitis control. We aimed to investigate the chemical composition and evaluate the pediculicidal activity of spearmint, clove, cassia, thyme, eucalyptus, and anise essential oils in addition to sesame oil against human head lice in vitro. A filter paper contact bioassay method was used by applying 0.25 and 0.5 mg/cm(2) of each tested oil to filter paper in Petri dishes with 15 females head lice and another with ten nits. The lice mortalities were reported every 5 min for 180 min. The percentage of inhibition of hatch (PIH) was used to calculate ovicidal activity by daily microscopic inspections 5 days after the hatching of controls. Comparison with the widely used pediculicide (malathion) was performed. The most effective essential oil was spearmint followed by cassia and clove with KT50 values of 4.06, 7.62, and 12.12 at 0.5 mg/cm(2) and 8.84, 11.38, and 19.73 at 0.25 mg/cm(2), respectively. Thyme, eucalyptus, and anise were also effective adulticides with KT50 values of 18.61, 32.65, and 37.34 at 0.5 mg/cm(2) and 29.92, 43.16, and 45.37 at 0.25 mg/cm(2), respectively. Essential oils were also successful in inhibiting nymph emergence. Spearmint oil was the most effective, with a complete inhibition of emergence at 0.5 mg/cm(2). Sesame fixed oil did not show any adulticidal or ovicidal activity against head lice in vitro. The observed insecticidal activity was comparable to malathion. The results herein described the effectiveness of these essential oils as potential pediculicides for head lice control. Incorporation of essential oils in pediculicide formulations needs proper formulation and clinical trials.

  7. A Survey of the Effect of Some Heavy Metals in Plant on the Composition Of The Essential Oils Close to Veshnaveh-Qom Mining Area

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Givianrad

    2014-06-01

    Full Text Available The purpose of this study was to evaluate the effect of copper and silver in the plants on the mining area and the ingredients of essential oils. Plants collected from the same family, but they were collected randomly from various regions. The concentration of heavy metal in plant samples collected from Veshnave, Qom, Iran have been determined by Flame Atomic Absorption Spectrometry (FAAS. The chemical composition of essential oil isolated by hydrodistillation from Tanacetum polycephalum and was determined using Gas Chromatography/Mass Spectrometry (GC- MS. Results obtained from unidirectional variance analysis suggest that there is a meaningful statistical difference between various regions.

  8. Comparison of ruminal lipid metabolism in dairy cows and goats fed diets supplemented with starch, plant oil, or fish oil.

    Science.gov (United States)

    Toral, P G; Bernard, L; Belenguer, A; Rouel, J; Hervás, G; Chilliard, Y; Frutos, P

    2016-01-01

    Direct comparison of cow and goat performance and milk fatty acid responses to diets known to induce milk fat depression (MFD) in the bovine reveals relevant species-by-diet interactions in ruminal lipid metabolism. Thus, this study was conducted to infer potential mechanisms responsible for differences in the rumen microbial biohydrogenation (BH) due to diet and ruminant species. To meet this objective, 12 cows and 15 goats were fed a basal diet (control), a similar diet supplemented with 2.2% fish oil (FO), or a diet containing 5.3% sunflower oil and additional starch (+38%; SOS) according to a 3 × 3 Latin square design with 25-d experimental periods. On the last day of each period, fatty acid composition (by gas chromatography) and bacterial community (by terminal-RFLP), as well as fermentation characteristics, were measured in rumen fluid samples. Results showed significant differences in the response of cows and goats to dietary treatments, although variations in some fermentation parameters (e.g., decreases in the acetate-to-propionate ratio due to FO or SOS) were similar in both species. Main alterations in ruminal BH pathways potentially responsible for MFD on the SOS diet (i.e., the shift from trans-11 to trans-10 18:1 and related increases in trans-10,cis-12 18:2) tended to be more pronounced in cows, which is consistent with an associated MFD only in this species. However, changes linked to FO-induced MFD (e.g., decreases in 18:0 and increases in total trans-18:1) were stronger in caprine rumen fluid, which may explain their unexpected susceptibility (although less marked than in bovine) to the negative effect of FO on milk fat content. Altogether, these results suggest that distinct ruminal mechanisms lead to each type of diet-induced MFD and confirm a pronounced interaction with species. With regard to microbiota, differences between cows and goats in the composition of the rumen bacterial community might be behind the disparity in the microorganisms

  9. Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil.

    Science.gov (United States)

    Horvathova, Eva; Navarova, Jana; Galova, Eliska; Sevcovicova, Andrea; Chodakova, Lenka; Snahnicanova, Zuzana; Melusova, Martina; Kozics, Katarina; Slamenova, Darina

    2014-07-16

    Selected components of plant essential oils and intact Rosmarinus officinalis oil (RO) were investigated for their antioxidant, iron-chelating, and DNA-protective effects. Antioxidant activities were assessed using four different techniques. DNA-protective effects on human hepatoma HepG2 cells and plasmid DNA were evaluated with the help of the comet assay and the DNA topology test, respectively. It was observed that whereas eugenol, carvacrol, and thymol showed high antioxidative effectiveness in all assays used, RO manifested only antiradical effect and borneol and eucalyptol did not express antioxidant activity at all. DNA-protective ability against hydrogen peroxide (H2O2)-induced DNA lesions was manifested by two antioxidants (carvacrol and thymol) and two compounds that do not show antioxidant effects (RO and borneol). Borneol was able to preserve not only DNA of HepG2 cells but also plasmid DNA against Fe(2+)-induced damage. This paper evaluates the results in the light of experiences of other scientists.

  10. Evidence for synergistic activity of plant-derived volatile essential oils against fungal pathogens of food

    Science.gov (United States)

    The antifungal activities of eight essential oils (EOs) namely basil, cinnamon, eucalyptus, mandarin, oregano, peppermint, tea tree and thyme were evaluated for their ability to inhibit growth of Aspergillus niger, Aspergillus flavus, Aspergillus paraciticus and Penicillium chrysogenum. The antifung...

  11. Pilot plant evaluation of hydrotreating catalysts for heavy gas oil conversion

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y.; Chen, S.; Chen, J. [CanmetENERGY, Natural Resources Canada (Canada)

    2011-07-01

    As world reserves of oil are depleted, most of the oil remaining is heavy and sour and improvements in the technology are thus required to process it and produce transportation fuels. In terms of catalysts, alumina supported hydrotreating catalysts are commonly used; but activated carbon (AC) could also be a catalyst support option with its high microporosity and surface area combined with its thermal stability and resistance to coke deposition. This paper aims at determining the effect of the catalyst support on heavy crude oil processing. Experiments were conducted using two AC based catalysts, an alumina supported catalyst and two hydrotreating catalysts; results were then analyzed by scanning electron microscopy and transmission electron microscope. Results demonstrated that the AC based catalysts provide a better hydrotreating performance than the other catalysts. This study finds that the use of activated carbon based catalysts can provide better heavy oil conversion than others.

  12. Synthesis and characterization of SMC resins and nanocomposites from plant oils

    Science.gov (United States)

    Lu, Jue

    Sheet molding compounds (SMCs) are widely used in automotive parts, appliances, furniture, and construction. These materials heavily depend on the petroleum supply, which is depleting fast. The use of plant oils as alternative sources for SMC resins presents economic and environmental advantages over petroleum. Two synthetic methods have been used to develop new resins from triglycerides. The double bonds presented on the fatty acid chains are first converted to epoxy or hydroxyl functionality, the hydroxyl groups are maleinized, while the epoxies are acrylated and then further maleinized. These monomers, when combined with 33.3 wt % styrene, exhibit adequate thickening with MgO paste. The resulting polymers show storage moduli in the range of 1.9 to 2.5 GPa, and the glass transition temperatures range from 99 to 118°C. The cross-link densities show a linear increase with increasing number of functionality on the triglycerides. The prediction of cross-link density by the Miller and Macosko model matches the trend of experimental data, although it over predicts the cross-link density. The flexural strengths of these polymers vary in the range of 61--100 MPa, and flexural moduli are in the range of 1.90--2.79 GPa. The tensile strengths and moduli vary from 27 to 44 MPa and 1.6 to 2.5 GPa, respectively. The strengths of these polymers are following the prediction by vector percolation. The mechanical properties of these new polymers are comparable to those of commercial unsaturated polyesters. To further improve the physical and mechanical properties of these polymers, clay nanocomposites have been successfully synthesized by in situ polymerization. The morphology of nanocomposites can be described as a mix of intercalated and partially exfoliated sheets. The flexural modulus increases 30% at only 4 vol % clay content, but there is no significant effect on flexural strength, glass transition temperature and thermal stability. Property enhancement is related to the

  13. Chemical composition and insecticidal activity of essential oils of two aromatic plants from Ivory Coast against Bemisia tabaci G. (Hemiptera: Aleyrodidae).

    Science.gov (United States)

    Tia, Etienne V; Adima, Augustin A; Niamké, Sébastien L; Jean, Gnago A; Martin, Thibaud; Lozano, Paul; Menut, Chantal

    2011-08-01

    Essential oils of aromatic plants with insecticidal properties are nowadays considered as alternative insecticides to protect cultures from attack by insect pest. The aims of the present work were to evaluate the toxicity of the essential oils vapors of two aromatic plants (Lippia multiflora Mold. and Aframomum latifolium K. Schum) against Bemisia tabaci and to characterize their chemical composition. The highest fumigant toxicity against B. tabaci adults was observed with the L. multiflora oil: by exposure to 0.4 microL/L air, the lethal time inducing 90% mortality (LT90) was below 2 hours for this essential oil whereas it reached 15 h in the case of the A. latifolium oil. Both oils were analyzed by GC-FID and GC-MS on two capillary columns. The oil of L. multiflora contained a majority of oxygenated terpenoids mainly represented by the two acyclic components linalool (46.6%) and (E)-nerolidol (16.5%); the oil of A. latifolium was dominated by hydrocarbonated terpenoids among them beta-pinene (51.6%) and beta-caryophyllene (12.3%) were the two major components.

  14. Essential oil of Aegle marmelos as a safe plant-based antimicrobial against postharvest microbial infestations and aflatoxin contamination of food commodities.

    Science.gov (United States)

    Singh, Priyanka; Kumar, Ashok; Dubey, Nawal K; Gupta, Rajesh

    2009-08-01

    The essential oil of Aegle marmelos L. Correa (Rutaceae) showed strong fungitoxicity against some storage fungi-causing contamination of foodstuffs. The oil also showed efficacy as aflatoxin suppressor at 500 microL/L as it completely arrested the aflatoxin B(1) production by the toxigenic strains (Navjot 4NSt and Saktiman 3NSt) of Aspergillus flavus Link. Keeping in view the side effects of synthetic fungicides, A. marmelos oil may be recommended as an antimicrobial of plant origin to enhance the shelf life of stored food commodities by controlling the fungal growth as well as aflatoxin secretion. This is the 1st report on aflatoxin B(1) inhibitory nature of this oil. A. marmelos oil may be recommended as a novel plant-based antimicrobial in food protection over synthetic preservatives, most of which are reported to incite environmental problems because of their nonbiodegradable nature and side effects on mammals. The LD(50) of Aegle oil was found to be 23659.93 mg/kg body weight in mice (Mus musculus L.) when administered for acute oral toxicity showing nonmammalian toxicity of the oil. GC-MS analysis of the oil found DL-Limonene to be major component.

  15. Chemical variation of leaf essential oil at different stages of plant growth and in vitro antibacterial activity of Thymus vulgaris Lamiaceae, from Iran

    Directory of Open Access Journals (Sweden)

    Azizollah Nezhadali

    2014-06-01

    Full Text Available The essential oil components of the leaves were isolated by hydrodistillation from Thymus vulgaris (T. Lamiaceae, at different stages of plant growth. The essential oils from T. Lamiaceae leaves were obtained in yields of 0.83–1.39% (w/w. The oils were studied by gas chromatography mass spectrometry (GC/MS and thirty-six components were identified in the oil. The major components in the leaf oils were: thymol (38.23–63.01%, o-cymene (5.56–15.47%, γ-terpinene (4.43–7.17%, borneol (1.72–6.65%, 4-terpineol (1.24–5.16% and 1,8-cineole (0.09–1.54%. The results showed that the oil yield and the major constituents' percentage of the leaf were different at different stages of plant growth. The essential oils of T. Lamiaceae leaves were tested against five strains of Gram positive bacteria (g+ and five strains of Gram negative bacteria (g−. The average minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC of essential oils were determined using agar dilution method against the organisms by agar dilution method.

  16. Online profiling of triacylglycerols in plant oils by two-dimensional liquid chromatography using a single column coupled with atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Wei, Fang; Ji, Shu-Xian; Hu, Na; Lv, Xin; Dong, Xu-Yan; Feng, Yu-Qi; Chen, Hong

    2013-10-18

    The complexity of natural triacylglycerols (TAGs) in various edible oils is high because of the hundreds of TAG compositions, which makes the profiling of TAGs quite difficult. In this investigation, a rapid and high-throughput method for online profiling of TAGs in plant oils by two-dimensional (2D) liquid chromatography using a single column coupled with atmospheric pressure chemical ionization (APCI) mass spectrometry was reported. A novel mixed-mode 2D chromatographic column packed with silver-ion-modified octyl and sulfonic co-bonded silica was employed in this online 2D separation system. This novel 2D column combined the features of C8 column and silver-ion. In comparison with the traditional C18 column and silver-ion column, which are the two main columns used for the separation of complex TAGs in natural oil samples, this novel 2D column, could provide hydrophobic interactions as well as π-complexation interactions. It exhibited much higher selectivity for the separation of TAGs, and the separation was rapid. This online 2D separation system was successful in the separation of a large number of TAG solutes, and the TAG structures were evaluated by analyzing their APCI mass spectra information. This system was applied for the profiling of TAGs in peanut oils, corn oils, and soybean oils. 30 TAGs in peanut oils, 18 TAGs in corn oils, and 21 TAGs in soybean oils were determined and quantified. The highest relative content of TAGs was LLL, which was found in corn oil with the relative content up to 45.43 (%, w/w), and the lowest relative content of TAGs was LLS and OSS, which was found in soybean oil and corn oil respectively, with the relative content only 0.01 (%, w/w). In addition, the TAG data were analyzed by principal component analysis (PCA). Results of PCA enabled a clear identification of different plant oils. This method provided an efficient and convenient chromatographic technology for the fast characterization and quantification of complex TAGs

  17. Microemulsion with plant oils. Systematic investigations on preparation and temperature-induced splitting

    Energy Technology Data Exchange (ETDEWEB)

    Moenig, K. [Inst. fuer Angewandte Physkalische Chemie, Forschungszentrum Juelich (Germany); Haegel, F.H. [Inst. fuer Angewandte Physkalische Chemie, Forschungszentrum Juelich (Germany); Schwuger, M.J. [Inst. fuer Angewandte Physkalische Chemie, Forschungszentrum Juelich (Germany)

    1996-05-01

    The phase behaviour of ternary mixtures of water, natural oils or rape oil methyl ester and pure alkyl polyethoxylates was examined. Comparing the temperature range of the three-phase regions with alkane-containing systems, the effective chain length of rape oil, castor oil and rape oil methyl ester was determined. Using this data, suitable technical nonionic surfactants were chosen to form microemulsions with easily biodegradable oils for the extraction of contaminated soils. Besides excellent extraction results for very hydrophorbic contaminants the use of bicontinuous microemulsions makes the partial separation of the toxic substances and the recycling of the surfactants possible, because of their temperature-dependent phase behaviour. Systematic investigations of microemulsions with different compositions enable these systems to be optimized. (orig.) [Deutsch] Das Phasenverhalten ternaerer Mischungen aus Wasser, nativen Oelen oder Rapsoelmethylester und reinen Alkylpolyethoxylaten wurde untersucht. Durch Vergleich des Temperaturbereichs der Dreiphasengebiete mit alkanhaltigen Systemen konnte die effektive Kettenlaenge von Rapsoel, Rizinusoel und Rapsoelmethylester bestimmt werden. Auf Grundlage dieser Daten wurden geeignete technische nichtionische Tenside zur Bildung von Mikroemulsionen mit gut biologisch abbaubaren Oelen fuer die Bodensanierung ausgewaehlt. Neben ausgezeichneten Extraktionsergebnissen fuer sehr hydrophobe Schadstoffe ermoeglicht die Anwendung bikontinuierlicher Mikroemulsionen auf Grund ihres temperaturabhaengigen Phasenverhaltens die teilweise Abtrennung der Schadstoffe und die Rueckgewinnung der Tenside. Systematische Untersuchungen von Mikroemulsionen verschiedener Zusammensetzung erlauben die Optimierung solcher Systeme. (orig.)

  18. Physicochemical Properties of Diacetylenic Light Fuel Oil from Congolese Oleaginous Plant Ongokea gore (Hua Pierre

    Directory of Open Access Journals (Sweden)

    J. K. Ntumba

    2017-01-01

    Full Text Available Vegetable oil-based fuels are promising alternative fuels for diesel and light fuel engines because of their environmental and economic strategic advantages. In this study, Ongokea gore oil (OGO and its fully hydrogenated oil were transesterified by means of ethanol in the presence of sodium ethoxide. Fatty acid ethyl esters (FAEE products were confirmed by 1H NMR and characterized by physical-chemical methods in accordance with the ASTM D 6751 and AFNOR M 15-009 specifications for biodiesels and light biofuels. These methods concern determination of color, density, viscosity, flash and pour points, ash, water and sulfur contents, and corrosion on copper. It was found that pure fatty acid ethyl esters of Ongokea gore oil (B100 and its hydrogenated oil (B100-H meet standard requirements for most of the biodiesel characteristics studied. Only the kinematic viscosity and density values were outside recommended biodiesel standard limits which makes them unsuitable for use in diesel engines. In accordance with the AFNOR M 15-009 specifications of light fuels, they can be used in light fuel engines. Physical-chemical properties of B20, a FAEE blend in petrodiesel, are within the limits prescribed for petrodiesel standards. In brief, Ongokea gore seeds, a nonedible and high-oil-producing feedstock, are suitable starting material for production of light biofuel. The latter blends in petrodiesel can be used as fuel in diesel engines.

  19. Antibacterial Activity of Daucus crinitus Essential Oils along the Vegetative Life of the Plant

    Directory of Open Access Journals (Sweden)

    Amel Bendiabdellah

    2013-01-01

    Full Text Available The essential oils from the aerial parts of Daucus crinitus Desf. were analyzed at three developmental stages (early vegetative, early flowering, and full flowering. Oil yield was found to vary depending on the stage of development, and the highest content of oil (0.15% w/w was obtained at full flowering. The chemical composition of essential oils studied by GC and GC-MS showed a total of 71 compounds: 27 aliphatic compounds, 18 sesquiterpene hydrocarbons, 9 hydrocarbons monoterpene, 5 oxygenated monoterpenes, 5 phenolic compounds, 4 oxygenated sesquiterpenes, 2 oxygenated diterpenes, and 01 diterpene hydrocarbons. Whatever the analyzed stage, phenolic compounds were the most abundant group. Their level significantly increased during ripening and varied from 36.4 to 82.1%. Antimicrobial activities of oils were tested on four different microorganisms. The oils of various phenological stages showed high activity against Candida albicans (30 mm and Staphylococcus aureus (11–28 mm bacteria strains which are deemed very dangerous and very difficult to eliminate. Thus, they represent an inexpensive source of natural antibacterial substances that may potentially be used in pathogenic systems.

  20. QTL mapping of soybean oil content for marker-assisted selection in plant breeding program.

    Science.gov (United States)

    Leite, D C; Pinheiro, J B; Campos, J B; Di Mauro, A O; Unêda-Trevisoli, S H

    2016-03-18

    The present study was undertaken to detect and map the quantitative trait loci (QTL) related to soybean oil content. We used 244 progenies derived from a bi-parental cross of the Lineage 69 (from Universidade Estadual Paulista "Júlio de Mesquita Filho"/Faculdade de Ciências Agrárias e Veterinárias - Breeding Program) and Tucunaré cultivar. A total of 358 simple sequence repeat (SSR; microsatellite) markers were used to investigate the polymorphism between the parental lines, and for the polymorphic lines all the F2 individuals were tested. Evaluation of the oil content and phenotype was performed with the aid of a Tango equipment by near infra-red reflectance spectroscopy, using single F2 seeds and F2:3 progenies, in triplicate. The data were analyzed by QTL Cartographer program for 56 SSR polymorphic markers. Two oil-content related QTLs were detected on K and H linkage groups. The total phenotypic variation explained by QTLs ranged from 7.8 to 46.75% for oil content. New QTLs were identified for the oil content in addition to those previously identified in other studies. The results reported in this study show that regions different from those already known could be involved in the genetic control of soybean oil content.

  1. Studies regarding the effects of Rosmarinus officinalis oil treatments in healthy and potato virus Y (PVY) infected plants Solanum tuberosum L.

    OpenAIRE

    Carmen Liliana BĂDĂRĂU; Angela MĂRCULESCU; Nicoleta CHIRU; Florentina DAMŞA; Andreea NISTOR

    2010-01-01

    The potato virus Y cause loss in yield and quality of tubers. Hydrogen peroxide, ascorbic acid and antioxidants such as rosmarinic acid present in oils extracted from Rosmarinus officinalis plants are implicated in signaling against stress. The effects of these chemicals on tuber yield and pigments content were evaluated in plants testing positive after virus mechanical infection. Without chemical treatment, positive plants showed significant reductions in leaf pigments content and tuber weig...

  2. Trace element geochemical characteristics of plants and their influence on the remote-sensing spectral properties in the North Jiangsu oil field

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents the contents of 17 kinds of trace elements in plant leaf samples collected from 4 sections in the North Jiangsu oil field, and the dada on their visible-near infrared spectra. By comparing the results of the inner and outer oil-gas remote-sensing anomaly areas, the plant trace element composition, and the enrichment characteristics and their influence on the plant spectral properties are described. The results indicated that the plant leaves had very strong enrichment ability toward some elements such as Mg, Ca, K, Na, Fe, Al, Mn, V, Zn and Cr. The plant leaves from the oil-gas abnormal areas were enriched in trace elements of the Fe-series, but depleted in alkali and alkali-earth metal elements. The plant trace elements had a strong influence on the "blue-shift' strength and the reflectance of visible bands. And the ratios between Fe, Co and K, Na, Cd, Cu, Ba are the effective remote-sensing oil-indicating factors of plant trace elements.

  3. Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L.

    Science.gov (United States)

    Bose, Subir K; Yadav, Ritesh Kumar; Mishra, Smrati; Sangwan, Rajender S; Singh, A K; Mishra, B; Srivastava, A K; Sangwan, Neelam S

    2013-05-01

    Extensive research is going on throughout the world to find out new molecules from natural sources to be used as plant growth promoter. Mentha arvensis L. is the main source of menthol rich essential oil used commercially in various food, pharmaceutical and other preparations. Experiments were conducted on field grown plants for understanding the effect of calliterpenone (CA), a stereo-isomer of abbeokutone, in comparison to gibberellic acid (GA3) on growth attributes, trichomes, essential oil biosynthesis and expression of some oil biosynthetic pathway genes. The exogenous application of CA (1 μM, 10 μM and 100 μM) was found to be better in improving plant biomass and stolon yield, leaf area, branching and leaf stem ratio than with counterpart GA3 at the same concentrations. CA treated plants showed higher glandular trichome number, density and diameter and also correlated with enhanced oil biogenetic capacity as revealed by feeding labeled (14)C-sucrose for 72 h to excised shoots. Semi-quantitative PCR analysis of key pathway genes revealed differential up regulation under CA treatments. Transcript level of menthol dehydrogenase/menthone reductase was found highly up regulated in CA treated plants with increased content of menthone and menthol in oil. These findings demonstrate that CA positively regulated the yields by enhanced branching and higher density of trichomes resulting into higher accumulation of essential oil. The results suggest CA as a novel plant derived diterpenoid with growth promoting action and opens up new possibilities for improving the crop yields and essential oil biosynthesis in qualitative and quantitative manner.

  4. Proposition to use 'in natura' vegetable oil and biodiesel from castor oil in thermal power plants; Proposicao de uso de oleo vegetal in natura e biodiesel de mamona em termeletricas

    Energy Technology Data Exchange (ETDEWEB)

    Soares, B.F.; Tahan, C.M.V.; Pelegrini, M.A.; Polizel, L.H. [Universidade de Sao Paulo (ENERQ/USP), SP (Brazil). Centro de Estudo em Regulacao e Qualidade de Energia; Vandelli, M.V.M. [Termocabo Ltda., Recife, PE (Brazil); Takeno, H.K. [Companhia Energetica de Petrolina (CEP), PE (Brazil)

    2006-07-01

    This paper proposes the adoption of renewable fuels on thermal power plants using diesel or high sulfur fuel oil generator sets. The renewable fuels proposed to partially or fully replace the fossil fuels are castor oil in natura or transesterified (biodiesel). Physical and chemical analyses were carried out on laboratory, establishing the energetic performance of each sample. The results showed that mixtures of bio diesel-fossil fuel offers similar performance when compared to the conventional fuels, allowing its use on thermal power plants in a satisfactory basis. (author)

  5. HISTOLOGICAL MODIFICATION AT THE JEJUNUM LEVEL GENERATED BY INTRODUCING MEDICINAL PLANTS AND ESSENTIAL OILS IN BROILERS FEED

    Directory of Open Access Journals (Sweden)

    LAVINIA ŞTEF

    2013-12-01

    Full Text Available Medicinal plants and extracts including in monogastric animals feeding represents a current practice because phyto-additives can represent an alternative to antibiotics using. In this way, in Nutrition and animals feeding discipline was been performed an experiment on 6 weeks, respectively from hatching to 42 days of age, on 120 broiler chickens, divided on three experimental variants (LEU, LEP and LM with 40 individuals each of them. The used hybrid was Ross 308. In LEU group were incorporated essential oils of Coriandri fructus, Satureja hortensis, Hipophae rhamnoides, 250 mg at 1 kg combined fodder. In LEP group were included in combined fodder structure a plants premix (Mentha piperita, Salvia officinalis, Melissa officinalis in 2% proportion.. Microscopic studies showed, in the case of experimental groups, a hypertropic process of intestinal mucous membrane, emphasized by villousities and glandular apparatus development, through capilar system extending and leucocytar infiltrate development on all mucous chorion thickness.

  6. The Investigation of Decontamination Effects of Ozone Gas on Microbial Load and Essential Oil of Several Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Razieh VALI ASILL

    2013-02-01

    Full Text Available Today, Ozone as a disinfectant method, without putting on the harmful effects on human and plant products, it is alternative common methods for disinfection of plant material. The research as a factorial experiment was conducted on the basis of randomized complete block design with three replications and the effects of Ozone gas on decreasing the microbial load of some important medicinal plants include: Peppermint (Mentha piperita, Summer savory (Satureja hortensis, Indian valerian(Valeriana wallichii, Meliss (Melissa officinalis and Iranian thyme (Zataria multiflora were investigated. Medicinal plants leaves were treated with Ozone gas concentration 0.3, 0.6 and 0.9 ml/L at times of 10 and 30 then total count, coliform and mold and yeast of the samples were studied. The result showed that Ozone gas decreases microbial load of medicinal plants samples. But Ozone gas and Ozone gas in medicinal plants interaction effect had no effect on essential oil content. The lowest and the highest of microbial load were detected in samples treated with concentration of 0.9 ml/L of Ozone gas and control respectively. The highest and the lowest of microbial load were observed in Iranian thyme and Indian valerian respectively. Also result showed that Ozone gas treatment for 30 min had the greatest of effect in reducing the microbial load and 0.9 ml/L Ozone gas concentration had the lowest of microbial load. Results of this survey reflect that the use of Ozone as a method of disinfection for medicinal plants is a decontamination.

  7. In vitro activity of essential oils extracted from plants used as spices against fluconazole-resistant and fluconazole-susceptible Candida spp.

    Science.gov (United States)

    Pozzatti, Patrícia; Scheid, Liliane Alves; Spader, Tatiana Borba; Atayde, Margareth Linde; Santurio, Janio Morais; Alves, Sydney Hartz

    2008-11-01

    In the present study, the antifungal activity of selected essential oils obtained from plants used as spices was evaluated against both fluconazole-resistant and fluconazole-susceptible Candida spp. The Candida species studied were Candida albicans, Candida dubliniensis, Candida tropicalis, Candida glabrata, and Candida krusei. For comparison purposes, they were arranged in groups as C. albicans, C. dubliniensis, and Candida non-albicans. The essential oils were obtained from Cinnamomum zeylanicum Breyn, Lippia graveolens HBK, Ocimum basilicum L., Origanum vulgare L., Rosmarinus officinalis L., Salvia officinalis L., Thymus vulgaris L., and Zingiber officinale. The susceptibility tests were based on the M27-A2 methodology. The chemical composition of the essential oils was obtained by gas chromatography-mass spectroscopy and by retention indices. The results showed that cinnamon, Mexican oregano, oregano, thyme, and ginger essential oils have different levels of antifungal activity. Oregano and ginger essential oils were found to be the most and the least efficient, respectively. The main finding was that the susceptibilities of fluconazole-resistant C. albicans, C. dubliniensis, and Candida non-albicans to Mexican oregano, oregano, thyme, and ginger essential oils were higher than those of the fluconazole-susceptible yeasts (Pessential oil than their fluconazole-susceptible counterparts (Pessential oils studied was apparent when these 2 parameters were compared. Finally, basil, rosemary, and sage essential oils did not show antifungal activity against Candida isolates at the tested concentrations.

  8. Sesamin and sesamolin as unexpected contaminants in various cold-pressed plant oils: NP-HPLC/FLD/DAD and RP-UPLC-ESI/MS(n) study.

    Science.gov (United States)

    Górnaś, Paweł; Siger, Aleksander; Pugajeva, Iveta; Segliņa, Dalija

    2014-04-01

    Thirteen cold-pressed oils (Japanese quince seed, black caraway, flaxseed, rapeseed, hemp, peanut, sunflower, pumpkin, hazelnut, poppy, walnut, almond and sesame oil) manufactured by the same company over a 2-year period (2011-12) were assessed for lipophilic compounds. The presence of sesamin and sesamolin, two characteristic lignans of sesame oil, were detected in all tested plant oils. Both lignans were identified by NP-HPLC/FLD/DAD and confirmed by a RP-UPLC-ESI/MS(n) method. The lowest amount of sesamin and sesamolin was found for Japanese quince seed oil (0.10 and 0.27 mg/100 g), and the highest, excluding sesame oil, for almond oil (36.21 and 105.42 mg/100 g, respectively). The highly significant correlation between sesamolin and sesamin concentrations was found in all samples tested (r = 0.9999; p < 0.00001). These results indicate contamination of cold-pressed oils from the same source. This investigation highlights the fact that increasing the range of products manufactured by the same company can contribute to a lesser regard for the quality of the final product. Moreover, less attention paid to the quality of final product can be related to the health risks of consumers especially sensitive to allergens. Therefore, proper cleaning of processing equipment is needed to prevent cross-contact of cold-pressed oils.

  9. Research of Brazilian crude in pilot plant for base oil production; Pesquisa em planta piloto visando valorizar o cru nacional na producao de oleos lubrificantes

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Anita E.F.; Nogueira, Wlamir S.; Ximenes, Lelia M. de O. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Santos, Claudio A.P. dos [Fundacao Gorceix, Ouro Preto, MG (Brazil)

    2004-07-01

    One of the biggest challenges for PETROBRAS is to find alternative crude oils to produce base oil and wax in its refinery. Duque de Caxias refinery has been using imported crude oil for 31 years living with constants threats to continuity because of the Persian Gulf conflicts. If we analyze the profitability of this business, we can verify that the lubes complex had contributed for the profitability by about 41,9% in 2002, even using imported crude oil. So, if we can incorporate a national crude oil in the actual refinery scheme, we would produce besides strategic gains better profitability for the base oil and wax unit. This paper describes a series of tests performed in the pilot plant, in which we produced base oils and wax using a mixture of imported crude with Brazilian crude oil. The base oils produced were classified as Group I with lower aromatic, Sulphur and basic Nitrogen content. Another great advantage of this alternative is that the light fractions obtained from distillation step can be used as feed to make fuels of better quality, due to the lower sulphur content, thus also reducing the environmental impact. (author)

  10. Chemical composition and larvicidal activity of edible plant-derived essential oils against the pyrethroid-susceptible and -resistant strains of Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Sutthanont, Nataya; Choochote, Wej; Tuetun, Benjawan; Junkum, Anuluck; Jitpakdi, Atchariya; Chaithong, Udom; Riyong, Doungrat; Pitasawat, Benjawan

    2010-06-01

    The chemical compositions and larvicidal potential against mosquito vectors of selected essential oils obtained from five edible plants were investigated in this study. Using a GC/MS, 24, 17, 20, 21, and 12 compounds were determined from essential oils of Citrus hystrix, Citrus reticulata, Zingiber zerumbet, Kaempferia galanga, and Syzygium aromaticum, respectively. The principal constituents found in peel oil of C. hystrix were beta-pinene (22.54%) and d-limonene (22.03%), followed by terpinene-4-ol (17.37%). Compounds in C. reticulata peel oil consisted mostly of d-limonene (62.39%) and gamma-terpinene (14.06%). The oils obtained from Z. zerumbet rhizome had alpha-humulene (31.93%) and zerumbone (31.67%) as major components. The most abundant compounds in K. galanga rhizome oil were 2-propeonic acid (35.54%), pentadecane (26.08%), and ethyl-p-methoxycinnamate (25.96%). The main component of S. aromaticum bud oil was eugenol (77.37%), with minor amounts of trans-caryophyllene (13.66%). Assessment of larvicidal efficacy demonstrated that all essential oils were toxic against both pyrethroid-susceptible and resistant Ae. aegypti laboratory strains at LC50, LC95, and LC99 levels. In conclusion, we have documented the promising larvicidal potential of essential oils from edible herbs, which could be considered as a potentially alternative source for developing novel larvicides to be used in controlling vectors of mosquito-borne disease.

  11. Antimicrobial activity of Rosmarinus eriocalyx essential oil and polyphenols: An endemic medicinal plant from Algeria

    Directory of Open Access Journals (Sweden)

    Fethi Benbelaïd

    2016-01-01

    Full Text Available Objective: To evaluate the antimicrobial potency of Rosmarinus eriocalyx (R. eriocalyx essential oil and total polyphenols against pathogenic microorganisms. Methods: Antimicrobial activity of R. eriocalyx extracts was assessed by disc diffusion method and minimum inhibitory concentrations determination. Essential oil obtained from endemic rosemary by hydrodistillation was analysed by gas chromatograph/retention index and gas chromatograph-mass spectrometer. Results: An interesting antimicrobial activity was shown by R. eriocalyx extracts. Polyphenols, constituted mainly by flavonoids, were the most effective extract with very low minimum inhibitory concentrations values, ranged between 0.06 and 8.00 mg/mL, while essential oil was less efficient. It should be noted that antimicrobial activities of both R. eriocalyx extracts were more directed against fungi and Gram-positive bacteria than Gram-negative ones, in which Staphylococcus aureus, Enterococcus faecalis, and Candida albicans were the most sensitive strains. Concerning chemical composition of R. eriocalyx essential oil, camphor (37.8%, 1,8- cineole (17.4%, camphene (13.3%, and α-pinene (10.9% were the major compounds. Conclusions: The findings of the present study indicate that R. eriocalyx extracts possess significant bactericidal and fungicidal activities. Because of its richness in essential oil, and especially flavonoids, R. eriocalyx may be a source for effective and safe antimicrobial agents.

  12. Synergistic repellent activity of plant essential oils against Aedes aegypti on rabbit Skin

    Directory of Open Access Journals (Sweden)

    Koech Peter Kiplang'at

    2014-12-01

    Full Text Available Mosquito-borne diseases are the major causes of mortality particularly in tropics. Due to drug and insecticide resistance, personal protection by use of skin repellents has become a common approach of control. The purpose of the study is to determine if synergy exists between Ocimum basilicum, Azadirachta indica and Eucalyptus citriodora oils. Kinga Mosquito repelling Wax® and Vaseline Pure Petroleum Jelly® were included as positive and negative test control respectively. The results showed that Chrysanthemum cinerariefolium extract had no paralytic effect at 0.002% and 0.005% with mean repellency of 81.58 and 85.94 respectively. Similar observation was shown by 10% Azadirachta indica oil and Kinga with a mean repellency 85.79 and 80.53 respectively. Azadirachta indica oil was then reinforced by addition of Sweet basil oil and Lemon eucalyptus oil. A combination that provides complete protection and displayed mosquito paralysis was obtained. The developed formulation can replace Kinga® and alternative to Chrysanthemum cinerariefolium extract.

  13. Interactive Role of Fungicides and Plant Growth Regulator (Trinexapac on Seed Yield and Oil Quality of Winter Rapeseed

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz

    2015-09-01

    Full Text Available This study was designed to evaluate the role of growth regulator trinexapac and fungicides on growth, yield, and quality of winter rapeseed (Brassica napus L.. The experiment was conducted simultaneously at different locations in Germany using two cultivars of rapeseed. Five different fungicides belonging to the triazole and strobilurin groups, as well as a growth regulator trinexapac, were tested in this study. A total of seven combinations of these fungicides and growth regulator trinexapac were applied at two growth stages of rapeseed. These two stages include green floral bud stage (BBCH 53 and the course of pod development stage (BBCH 65. The results showed that plant height and leaf area index were affected significantly by the application of fungicides. Treatments exhibited induced photosynthetic ability and delayed senescence, which improved the morphological characters and yield components of rape plants at both locations. Triazole, in combination with strobilurin, led to the highest seed yield over other treatments at both experimental locations. Significant effects of fungicides on unsaturated fatty acids of rapeseed oil were observed. Fungicides did not cause any apparent variation in the values of free fatty acids and peroxide of rapeseed oil. Results of our study demonstrate that judicious use of fungicides in rapeseed may help to achieve sustainable farming to obtain higher yield and better quality of rapeseed.

  14. Optimization of supercritical carbon dioxide extraction of essential oil from Dracocephalum kotschyi Boiss: An endangered medicinal plant in Iran.

    Science.gov (United States)

    Nejad-Sadeghi, Masoud; Taji, Saeed; Goodarznia, Iraj

    2015-11-27

    Extraction of the essential oil from a medicinal plant called Dracocephalum kotschyi Boiss was performed by green technology of supercritical carbon dioxide (SC-CO2) extraction. A Taguchi orthogonal array design with an OA16 (4(5)) matrix was used to evaluate the effects of five extraction variables: pressure of 150-310bar, temperature of 40-60°C, average particle size of 250-1000μm, CO2 flow rate of 2-10ml/s and dynamic extraction time of 30-100min. The optimal conditions to obtain the maximum extraction yield were at 240bar, 60°C, 500μm, 10ml/s and 100min. The extraction yield under the above conditions was 2.72% (w/w) which is more than two times the maximum extraction yield that has been reported for this plant in the literature using traditional extraction techniques. Results from analysis of variance (ANOVA) indicated that the CO2 flow rate and the extraction time were the most significant factors on the extraction yield by percentage contribution of 44.27 and 28.86, respectively. Finally, the chemical composition of the essential oil was evaluated by using gas chromatography-mass spectroscopy (GC-MS). Citral, p-mentha-1,3,8-triene, D-3-carene and methyl geranate were the major components identified.

  15. Performance of a domestic cooking wick stove using fatty acid methyl esters (FAME) from oil plants in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Wagutu, Agatha W.; Chhabra, Sumesh C.; Lang' at-Thoruwa, Caroline C. [Department of Chemistry, Kenyatta University, P.O. Box 43844-0100, Nairobi (Kenya); Thoruwa, Thomas F.N. [Department of Energy Engineering, Kenyatta University, P.O. Box 43844, Nairobi (Kenya); Mahunnah, R.L.A. [University of Dar-es Salaam, Muhimbili College of Medicine, P.O. Box 53486, Dar-es Salaam (Tanzania)

    2010-08-15

    With depletion of solid biomass fuels and their rising costs in recent years, there has been a shift towards using kerosene and liquefied petroleum gas (LPG) for domestic cooking in Kenya. However, the use of kerosene is associated with health and safety problems. Therefore, it is necessary to develop a clean, safe and sustainable liquid bio-fuel. Plant oil derivatives fatty acid methyl esters (FAME) present such a promising solution. This paper presents the performance of a wick stove using FAME fuels derived from oil plants: Jatropha curcus L. (Physic nut), Croton megalocarpus Hutch, Calodendrum capense (L.f.) Thunb., Cocos nucifera L. (coconut), soyabeans and sunflower. The FAME performance tests were based on the standard water-boiling tests (WBT) and compared with kerosene. Unlike kerosene all FAME fuels burned with odorless and non-pungent smell generating an average firepower of 1095 W with specific fuel consumption of 44.6 g L{sup -1} (55% higher than kerosene). The flash points of the FAME fuels obtained were typically much higher (2.3-3.3 times) than kerosene implying that they are much safer to use than kerosene. From the results obtained, it was concluded that the FAME fuels have potential to provide safe and sustainable cooking liquid fuel in developing countries. (author)

  16. The effect of magnesium-based additives on particulate emissions from oil-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L.S.; Galeano, V.C.; Pena, E.S.; Caballero, P.G.

    1986-02-01

    To improve present knowledge of characteristics of particulate emissions from large-size boilers, in particular the role played by magnesium-oxide slurries, research was carried out with the following main objectives in mind: To identify the elementary chemical composition of emissions from a large boiler burning heavy fuel-oil; To define the differences caused by the use of MgO slurries regarding both quantity and characteristics of emissions; To study the boiler's transient response to sudden changes in additive dosage. The use of different fuel-oil during the experiments has given cause to discuss the following aspects: The joint presence of carbon and sulfur in particulate matter; The influence of certain characteristics of fuel-oil in emissions.

  17. Comparative studies of antifugal potentialities for some natural plant oils against different fungi isolated from poultry

    Directory of Open Access Journals (Sweden)

    Ahmed, F. H.

    1994-08-01

    Full Text Available The inhibitory effect of eight natural oils on ten pathogenic fungi isolated from the digestive and respiratory tracts of dead chickens in Kena Governorate showed that crude peppermint oil only has a highest effect against some isolated fungi and a low response against others. While its 10% and 2% oil concentrations failed to give any effect against all the tested fungi. Crude chamomile and pelargonium oils showed moderate effect against all isolated fungi. The effect of different dilutions of chamomile, cumin and celery oils appeared that the 10% concentration showed more effective than the crude oil. Lemongrass and basil oils have almost the same behaviour towards the isolated fungi as the crude oils and the 10% concentration affected them greatly. On the other hand 2% basil oil gave no effect at all. Critical concentrations of the efficient oils against isolated fungi were calculated. The most efficient oils were lemongrass against Aspergillus flavipes, chamomile against A. fumigatus and cumin against A. nidulans, while cumin against A. glaucus, clove against A. flavus were chamomile against A. flavus and clove against A. flavipes were the lowest efficient oils.

    El efecto inhibidor de ocho aceites naturales sobre diez aislados de hongos patógenos de los tractos digestivo y respiratorio de pollos muertos en "Kena Governorate" mostró que el aceite de menta crudo tiene un mayor efecto frente a algunos aislados y una repuesta menor frente a otros. Aunque sus concentraciones en aceite al 10% y 2% consiguieron dar algún efecto frente a todos los hongos ensayados. Aceites de geranio y manzanilla crudo mostraron efecto moderado frente a todos los aislados de hongos. El efecto de disoluciones diferentes de aceites de manzanilla, comino y apio dieron como resultado que la concentración al 10% era más efectiva que el aceite crudo. Aceites de lemongras y albahaca tienen casi el mismo

  18. Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Gleiser, Raquel M; Bonino, Maria A; Zygadlo, Julio A

    2011-01-01

    Mosquitoes are vectors of pathogens to humans and domestic animals and may also have economical impacts. One approach to prevent mosquito-borne diseases is bite deterrence through the application of repellents. Currently, there is an interest to search for alternative bioactive products to the synthetic active ingredients most widely used in insect repellents. Repellence against Aedes aegypti of essential oils extracted from Acantholippia salsoloides, Aloysia catamarcensis, Aloysia polystachya, Lippia integrifolia, Lippia junelliana (Verbenaceae), Baccharis salicifolia, Euphatorium buniifolium, and Tagetes filifolia (Asteraceae) were assessed. Tests were conducted by alternatively exposing untreated and treated forehand to the mosquitoes and counting probing attempts. All essential oils tested were significantly repellent against A. aegypti when compared to untreated controls; L. junelliana was the most repellent and T. filifolia was the least based on the response of the mosquitoes to different concentrations of the essential oils (EO). Repellence may be attributed to the respective main components of each EO.

  19. Evaluation of Some Plant Essential Oils against the Brown-Banded Cockroach, Supella longipalpa (Blattaria: Ectobiidae): A Mechanical Vector of Human Pathogens

    Science.gov (United States)

    Sharififard, Mona; Safdari, Farhad; Siahpoush, Amir; Kassiri, Hamid

    2016-01-01

    Background: Essential oils, as secondary plant compounds, present a safer alternative to conventional insecticides in insect control programs. So five essential oils including eucalyptus, mint, yarrow, oregano and rosemary oils were evaluated against the brown-banded cockroach Supella longipalpa. Methods: Evaluation was done against the 3rd and 4th instar nymphs using three bioassay methods; continuous contact toxicity, fumigant toxicity and repellent activity. The study was done in the laboratory of medical entomology, during April 2012 to September 2013. Results: Mortality rates by the lowest concentration (2.5%) of rosemary, oregano, yarrow, eucalyptus and mint oils were 100%, 62.2%, 45 %, 36.2% and 5.2% at 24 h after exposure respectively. Rosemary oil was determined as the most toxic oil because of 100 % mortality rate at the concentration range of 2.5% to 30%. The lowest fumigation effect using 50 μl/L air was recorded from mint oil with 97.2 % mortality after 24 h, while the other oils caused 100% mortality. The most repel activity was related to oregano oil which showed 96.5–99.1% repellency at the concentration range of 2.5–30% with a residual effect lasting at least a week after treatment. Conclusion: Oregano oil could be used as a potential repellent against S. longipalpa. Also, all five essential oils could be used as the safe compounds for surface treating or fumigation in cockroach control programs while rosmary and oregano oils exhibited the most toxicity. PMID:28032105

  20. Evaluation of Some Plant Essential Oils against the Brown-banded Cock-roach, Supella longipalpa (Blattaria: Ectobiidae, A Mechanical Vector of Human Pathogens

    Directory of Open Access Journals (Sweden)

    Mona Sharififard

    2016-10-01

    Full Text Available Background: Essential oils, as secondary plant compounds, present a safer alternative to conventional insecticides in insect control programs. So five essential oils including eucalyptus, mint, yarrow, oregano and rosemary oils were evaluated against the brown-banded cockroach Supella longipalpa.Methods: Evaluation was done against the 3rd and 4th instar nymphs using three bioassay methods; continuous con­tact toxicity, fumigant toxicity and repellent activity. The study was done in the laboratory of medical entomology, during April 2012 to September 2013.Results: Mortality rates by the lowest concentration (2.5% of rosemary, oregano, yarrow, eucalyptus and mint oils were 100%, 62.2%, 45 %, 36.2% and 5.2% at 24 h after exposure respectively. Rosemary oil was determined as the most toxic oil because of 100 % mortality rate at the concentration range of 2.5% to 30%. The lowest fumigation effect using 50 µl /L air was recorded from mint oil with 97.2 % mortality after 24 h, while the other oils caused 100% mortality. The most repel activity was related to oregano oil which showed 96.5–99.1% repellency at the con­centration range of 2.5–30% with a residual effect lasting at least a week after treatment.Conclusion: Oregano oil could be used as a potential repellent against S. longipalpa. Also, all five essential oils could be used as the safe compounds for surface treating or fumigation in cockroach control programs while rosmary and oregano oils exhibited the most toxicity.

  1. In vitro antibacterial and chemical properties of essential oils including native plants from Brazil against pathogenic and resistant bacteria.

    Science.gov (United States)

    Barbosa, Lidiane Nunes; Probst, Isabella da Silva; Andrade, Bruna Fernanda Murbach Teles; Alves, Fernanda Cristina Bérgamo; Albano, Mariana; da Cunha, Maria de Lourdes Ribeiro de Souza; Doyama, Julio Toshimi; Rall, Vera Lúcia Mores; Fernandes Júnior, Ary

    2015-01-01

    The antimicrobials products from plants have increased in importance due to the therapeutic potential in the treatment of infectious diseases. Therefore, we aimed to examine the chemical characterisation (GC-MS) of essential oils (EO) from seven plants and measure antibacterial activities against bacterial strains isolated from clinical human specimens (methicillin-resistant Staphylococcus aureus (MRSA) and sensitive (MSSA), Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium) and foods (Salmonella Enteritidis). Assays were performed using the minimal inhibitory concentration (MIC and MIC90%) (mg/mL) by agar dilution and time kill curve methods (log CFU/mL) to aiming synergism between EO. EO chemical analysis showed a predominance of terpenes and its derivatives. The highest antibacterial activities were with Cinnamomun zeylanicum (0.25 mg/mL on almost bacteria tested) and Caryophyllus aromaticus EO (2.40 mg/mL on Salmonella Enteritidis), and the lowest activity was with Eugenia uniflora (from 50.80 mg/mL against MSSA to 92.40 mg/mL against both Salmonella sources and P. aeruginosa) EO. The time kill curve assays revealed the occurrence of bactericide synergism in combinations of C. aromaticus and C. zeylanicum with Rosmarinus. officinalis. Thus, the antibacterial activities of the EO were large and this can also be explained by complex chemical composition of the oils tested in this study and the synergistic effect of these EO, yet requires further investigation because these interactions between the various chemical compounds can increase or reduce (antagonism effect) the inhibitory effect of essential oils against bacterial strains.

  2. Effects of plant extracts and essential oils as feed supplements on quality and microbial traits of rabbit meat

    Directory of Open Access Journals (Sweden)

    A. P. Kone

    2016-06-01

    Full Text Available The effects of dietary supplementation of onion, cranberry,  strawberry and essentials oils on meat quality were analysed. Five groups of 48 Grimaud female weaned rabbits received the supplemented or the control ration; the experimental unit was a cage of 6 rabbits. Each experimental diet contained 10 ppm of added active ingredients.  Rabbits were fed with the experimental diets for 4 wk before determining slaughter and carcass traits and determining the pH at 1 and 24 h post mortem (pHu of the Longissimus dorsi (LD and the Biceps femoris (BF muscle, left and right, respectively. Cooking loss, drip loss and L*, a* and b* color parameters were obtained of the right LD and for ground meat and antioxidant status (TBARS, DNPH, Folin Ciocalteu. Only the pHu of the LD muscle for the strawberry supplemented group was significantly lower when compared to the control group (P=0.04. However, we note that for the pH of the LD, the average was less than 6 for the meat of animals who received a diet enriched in polyphenols, compared to the control group. Plant extract supplementation did not influence meat quality traits, growth performance or oxidative stability. But under aerobic and anaerobic conditions, our results indicate that diet supplementation with extracts rich in polyphenols, especially with essential oils, had a small bot sporadic positive effect in reducing bacterial microflora compared to the control group (P<0.05. In conclusion, plant extracts and essential oils can be used in a rabbit diet without adverse effects on performance and meat quality traits. This effect could be optimized by investigating higher doses.

  3. Thermal stability of plant sterols and formation of their oxidation products in vegetable oils and margarines upon controlled heating.

    Science.gov (United States)

    Lin, Yuguang; Knol, Diny; Valk, Iris; van Andel, Vincent; Friedrichs, Silvia; Lütjohann, Dieter; Hrncirik, Karel; Trautwein, Elke A

    2017-02-02

    Fat-based products like vegetable oils and margarines are commonly used for cooking, which may enhance oxidation of plant sterols (PS) present therein, leading to the formation of PS oxidation products (POP). The present study aims to assess the kinetics of POP formation in six different fat-based products. Vegetable oils and margarines without and with added PS (7.5-7.6% w/w) in esterified form were heated in a Petri-dish at temperatures of 150, 180 and 210°C for 8, 12 and 16min. PS and POP were analysed using GC-FID and GC-MS-SIM, respectively. Increasing PS content, temperature and heating time led to higher POP formation in all tested fat-based products. PS (either naturally occurring or added) in margarines were less susceptible to oxidation as compared to PS in vegetable oils. The susceptibility of sitosterol to oxidation was about 20% lower than that of campesterol under all the applied experimental conditions. During heating, the relative abundance of 7-keto-PS (expressed as% of total POP) decreased in all the fat-based products regardless of their PS contents, which was accompanied by an increase in the relative abundance of 7-OH-PS and 5,6-epoxy-PS, while PS-triols were fairly unchanged. In conclusion, heating time, temperature, initial PS content and the matrix of the fat-based products (vegetable oil vs. margarine) showed distinct effects on POP formation and composition of individual POP formed. Copyright © 2017. Published by Elsevier B.V.

  4. Headspace single drop microextraction coupled with microwave extraction of essential oil from plant materials.

    Science.gov (United States)

    Zhai, Yujuan; Sun, Shuo; Wang, Ziming; Zhang, Yupu; Liu, He; Sun, Ye; Zhang, Hanqi; Yu, Aimin

    2011-05-01

    Headspace single drop microextraction (HS-SDME) coupled with microwave extraction (ME) was developed and applied to the extraction of the essential oil from dried Syzygium aromaticum (L.) Merr. et Perry and Cuminum cyminum L. The operational parameters, such as microdrop volume, microwave absorption medium (MAM), extraction time, and microwave power were optimized. Ten microliters of decane was used as the microextraction solvent. Ionic liquid and carbonyl iron powder were used as MAM. The extraction time was less than 7 min at the microwave power of 440 W. The proposed method was compared with hydrodistillation (HD). There were no obvious differences in the constituents of essential oils obtained by the two methods.

  5. Persistency of larvicidal effects of plant oil extracts under different storage conditions.

    Science.gov (United States)

    Amer, Abdelkrim; Mehlhorn, Heinz

    2006-09-01

    The persistency of larvicidal effects of 13 oils (camphor, thyme, amyris, lemon, cedarwood, frankincense, dill, myrtle, juniper, black pepper, verbena, helichrysum, and sandalwood) was examined by storage of 50-ppm solutions under different conditions (open, closed, in the light, and in the dark) for 1 month after the preparation of the solutions. The stored solutions were tested against Aedes aegypti larvae for four times during the storage period. Some oils under some conditions stayed effective until the last test, while some solutions had lost their toxicity during a short time after preparation. Thus, the mode of storage is absolutely important for the larvicidal effects. The fresh preparations were always the best.

  6. Effect of plant oils in the diet on performance and milk fatty acid composition in goats fed diets based on grass hay or maize silage.

    Science.gov (United States)

    Bernard, Laurence; Shingfield, Kevin J; Rouel, Jacques; Ferlay, Anne; Chilliard, Yves

    2009-01-01

    Based on the potential benefits to long-term human health there is interest in developing sustainable nutritional strategies for reducing saturated and increasing specific unsaturated fatty acids in ruminant milk. The impact of plant oil supplements to diets containing different forages on caprine milk fatty acid composition was examined in two experiments using twenty-seven Alpine goats in replicated 3 x 3 Latin squares with 28 d experimental periods. Treatments comprised of no oil (control) or 130 g/d of sunflower-seed oil (SO) or linseed oil (LO) supplements added to diets based on grass hay (H; experiment 1) or maize silage (M; experiment 2). Milk fat content was enhanced (Pdiets, resulting in 17, 15 and 14% increases in milk fat secretion, respectively. For both experiments, plant oils decreased (Pdiet. In conclusion, plant oils represent an effective strategy for altering the fatty acid composition of caprine milk, with evidence that the basal diet is an important determinant of ruminal unsaturated fatty acid metabolism in the goat.

  7. Economics derived from detailed and definitive design of Superior's Circlar Grate Retort for an 18,000 BPD oil shale demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, D.F.; Fishback, J.W.

    1983-04-01

    Superior Oil Company has continued efforts to reduce to practice the Superior retorting technology as applied to oil shale. From February 1981 to October 1982, Superior has participated in a cost sharing agreement with the Department of Energy for detailed design of the Superior Circular Grate Retort, definitive design of retort ancillaries, auxiliaries and offsites, and mining, and for capital and operating cost estimates for a nominal 18,000 BPD oil shale plant. The terms, detailed design and definitive design, are defined. The design documents are described in sufficient detail to render an overview to the reader of the basis used for project cost estimates and economic analysis.

  8. Bioactivity of Rosmarinus officinalis essential oils against Apis mellifera, Varroa destructor and Paenibacillus larvae related to the drying treatment of the plant material.

    Science.gov (United States)

    Maggi, M; Gende, L; Russo, K; Fritz, R; Eguaras, M

    2011-02-01

    In this study, chemical composition, physicochemical properties and bioactivity of two essential oils of Rosmarinus officinalis extracted from plant material with different drying treatments against Apis mellifera, Varroa destructor and Paenibacillus larvae were assessed. The lethal concentration 50 (LC50) for mites and bees was estimated using a complete exposure method test. The broth microdilution method was followed in order to determine the minimum inhibitory concentrations (MICs) of the essential oils against P. larvae. Physicochemical properties were similar in both the essential oils, but the percentage of components showed certain differences according to their drying treatment. β-Myrcene and 1,8-cineole were the main constituents in the oils. The LC50 for complete exposure method at 24, 48 and 72 h was minor for mites exposed to R. officinalis essential oil dried in oven conditions. MIC values were 700-800 µg mL(-1) and 1200 µg mL(-1) for R. officinalis dried in air and oven conditions, respectively. The results reported in this research show that oil toxicity against V. destructor and P. larvae differed depending on the drying treatment of the plant material before the distillation of essential oil.

  9. Biogeochemical anomaly above oil-containing structures in an arid zone. [Growth stimulation of plants by sodium naphthenate used for prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, O.M.

    1983-01-01

    Visual biological anomalies above the oil-containing structures are characterized by bright green coloring of the vegetation cover, gigantism of the plants, extended vegetation period of the plants, deformity of the plants, etc. Biological anomalies are associated with geological features and are observed only above the zone of fault disorders of the earth's crust, above deep faults. A conclusion is drawn about the presence above the oil-bearing structures in the arid zone of a biogeochemical anomaly whose origin is explained by the biological activity of oil and its derivatives. The petroleum growth matter is the sodium salt of naphthene acid, a growth stimulator of plants and animals. The oils of the USSR contain 0.8-4.8% naphthene acids, which effuse through the faults into the root area levels of the soil. As a result of stimulation of growth and development by the petroleum growth matter, the vegetation period of the plants is prolonged. Under the influence of natural petroleum growth substances, the height and productivity of the anomalous plants increases 2-3-fold. Formation and manifestation of signs of biogeochemical anomalies above the oil-bearing structures in the arid zone predetermine the following conditions: presence of fault disorders of the earth's crust; salinity of the root area of the soil layer necessary for neutralization of the naphthene acids with subsequent formation of the biologically active naphthenates; aridity of the desert landscape; plain relief excluding color diversity in vegetation cover because of nonuniform wetting, etc. The established biogeochemical anomaly can be used in prospecting and exploration of oil, gas and bitumen, and also in determining the fault disorders of the earth's crust.

  10. Essential oils for rust control on coffee plants Óleos essenciais no controle da ferrugem em cafeeiro

    Directory of Open Access Journals (Sweden)

    Ricardo Borges Pereira

    2012-02-01

    Full Text Available Rust is considered the most important disease in coffee because it causes severe defoliation in plants and, consequently, reduction in productivity. This study evaluated the in vitro effect of essential oils of cinnamon, citronella, lemongrass, clove, tea tree, thyme, neem and eucalyptus on the germination of urediniospores of Hemileia vastatrix; the effectiveness of these oils to control rust on seedlings of coffee cultivars Catucaí 2SL, Catuaí IAC 62 and Mundo Novo 379/19 in the greenhouse; and the effect of more promising oils on urediniospores of H. vastatrix by transmission electron microscopy (TEM. All the essential oils inhibited the germination of urediniospores with increasing concentrations. All oils promoted partial control of the disease in the greenhouse. However, the oils of thyme, clove and citronella, at a concentration of 1000 µL L-1, were most effective in controlling the disease on cultivars Catucaí 2SL, Catuaí IAC 62 and Mundo Novo 379/19, respectively. The images generated in TEM showed that urediniospores exposed to oils of clove, citronella and thyme promoted cellular disorganization and cytoplasmic vacuolization, which was more pronounced in urediniospores exposed to citronella oil. The oils of thyme, clove and citronella are promising for the control of rust in coffee.A ferrugem é considerada a doença de maior importância no cafeeiro, pois causa acentuada desfolha nas plantas e, consequentemente, redução na produtividade. Este trabalho avaliou o efeito in vitro de óleos essenciais de canela, citronela, capim-limão, cravo-da-índia, árvore-de-chá, tomilho, nim e eucalipto na germinação de urediniósporos de Hemileia vastatrix; a eficácia desses óleos no controle da ferrugem em mudas de cafeeiro das cultivares Catucaí 2SL, Catuaí IAC 62 e Mundo Novo 379/19 em casa de vegetação; e o efeito dos óleos mais promissores sobre urediniósporos de H. vastatrix por meio de microscopia eletrônica de transmiss

  11. Comparative study on the effect of symbiotic interaction between plants and non-indigenous isolates on crude oil remediaton

    Directory of Open Access Journals (Sweden)

    Toochukwu Ekwutosi OGBULIE

    2011-05-01

    Full Text Available Effect of the symbiotic interaction between plants and non-indigenous isolates in remediation of crude oil contaminated soil was studied. Three organisms including Bacillus subtilis, Pseudomonas putida and Candida albicans obtained from Nigerian Institute of Medical Research (NIMR were used. The plants used for this study were four annual indigenous crops including two annual forage leguminous crop, vegetable cowpea (Vigna unguiculata var unguiculata and velvet bean Mucuna pruriens; a cereal- maize (Zea mays and a vegetable crop- fluted pumpkin (Telfaira occidentalis. Gas chromatographic (GC analysis revealed the total petroleum hydrocarbon (TPH of sample comprising of sterilized soil seeded with Bacillus subtilis, sterilized soil with Pseudomonas putida and sterilized soil with Candida albicans to be 1.721 mg/kg, 5,791mg/kg and 4.987mg/kg respectively. Treated soil seeded with B. subtilis recorded the least value followed by treated soil with C. albicans and treated soil with P. putida in that order. However, for Z. mays sample that was coated with B. subtilis recorded the least value of 2,339mg/kg. By contrast though, amongst all the plant samples V. unguiculata coated with C. albicans recorded the lowest TPH value of 1,902mg/kg whereas T. occidentalis coated with P. putida had the lowest TPH value of 2.285mg/kg. Different alkane groups degraded during these remediation processes were also highlighted. C alkanes ranging from C8 – C12 were removed though some plants were not able to degrade C8 and/or C9 whereas C40 was generally degraded by all set ups. Statistical analysis depicting the effect of individual plant samples and non- indigenous microorganisms and different plants per individual non- indigenous microorganisms in degrading different concentration of crude oil at 5% significant difference and 95% confident limit was analysed using SPSS software. It showed that the performance of B. subtilis was more acceptable. Generally, the TPH

  12. Effect of plant essential oils on Ralstonia solanacearum race 4 causing bacterial wilt of edible ginger

    Science.gov (United States)

    Palmarosa (Cymbopogon martini), lemongrass (C. citratus) and eucalyptus (Eucalyptus globulus) oils were investigated for their effects on Ralstonia solanacearum race 4, and their potential use as bio-fumigants for treating pathogen- infested edible ginger (Zingiber officinale R.) fields. Three conce...

  13. INFLUENCE OF PLANT ESSENTIAL OILS ON SELECTED PARAMETERS OF THE PERFORMANCE OF LAYING HENS

    Directory of Open Access Journals (Sweden)

    Henrieta ARPÁŠOVÁ

    2010-10-01

    Full Text Available The experiment was designed to investigate the effects of feed supplementation with essential oils on egg weight and body mass of laying hens. Hens of the laying breed Isa Brown were randomly divided at the day of hatching into 3 groups (n=26 and fed for 45 weeks on diets which differed in kind of essential oil supplemented. Hens were fed from day 1 by the standard feed mixture. Laying hens accepted fodder ad libitum. In the control group hens took feed mixture without additions, in the first experimental group the feed mixture was supplemented with 0.25 ml/kg thyme essential oil and in the second one hens got hyssop essential oil in the same dose of 0.25 ml/kg. The housing system satisfied enriched cage requirements specified by the Directive 1999/74 EC. The useful area provided for one laying hen presented 943.2 cm2. The equipment of cage consisted of roosts, place for rooting in ashes – synthetic grass, nest and equipment for shortening of clutches. The results showed that the average body weight for a rearing period was in order groups: 736.15±523.49; 747.20±541.6 and 721.95±522.57 (g±SD. Differences between groups were not significant (P>0.05. The average body weight during the laying period was 1763.85±171.46; 1786.08±192.09 and 1729.73±129.12 g for control, thyme oil and hyssop oil supplementation respectively. During the laying period there were significant differences in body weight between control and experimental group with hyssop essential oil supplementation (P<0.05 and between both experimental groups (P<0.01. No significant differences were found out between control group and experimental groups (P>0.05 in egg weight (58.36±4.91; 58.82±4.95 and 58.26±5.33 g respectively.

  14. Metabolic engineering plant seeds with fish oil-like levels of DHA.

    Directory of Open Access Journals (Sweden)

    James R Petrie

    Full Text Available BACKGROUND: Omega-3 long-chain (≥C(20 polyunsaturated fatty acids (ω3 LC-PUFA have critical roles in human health and development with studies indicating that deficiencies in these fatty acids can increase the risk or severity of cardiovascular and inflammatory diseases in particular. These fatty acids are predominantly sourced from fish and algal oils, but it is widely recognised that there is an urgent need for an alternative and sustainable source of EPA and DHA. Since the earliest demonstrations of ω3 LC-PUFA engineering there has been good progress in engineering the C(20 EPA with seed fatty acid levels similar to that observed in bulk fish oil (∼18%, although undesirable ω6 PUFA levels have also remained high. METHODOLOGY/PRINCIPAL FINDINGS: The transgenic seed production of the particularly important C(22 DHA has been problematic with many attempts resulting in the accumulation of EPA/DPA, but only a few percent of DHA. This study describes the production of up to 15% of the C(22 fatty acid DHA in Arabidopsis thaliana seed oil with a high ω3/ω6 ratio. This was achieved using a transgenic pathway to increase the C(18 ALA which was then converted to DHA by a microalgal Δ6-desaturase pathway. CONCLUSIONS/SIGNIFICANCE: The amount of DHA described in this study exceeds the 12% level at which DHA is generally found in bulk fish oil. This is a breakthrough in the development of sustainable alternative sources of DHA as this technology should be applicable in oilseed crops. One hectare of a Brassica napus crop containing 12% DHA in seed oil would produce as much DHA as approximately 10,000 fish.

  15. An overview of emerging techniques in virgin olive oil extraction process: strategies in the development of innovative plants

    Directory of Open Access Journals (Sweden)

    Maria Lisa Clodoveo

    2013-09-01

    Full Text Available Currently the systems for mechanically extracting virgin oils from olives are basically of two types: discontinuous-type systems (obsolete and dying out and continuous-type systems. Systems defined as “continuous- type” are generally comprised of a mechanical crusher, a malaxer and a horizontal-axis centrifugal separator (decanter. The “continuous” appellation refers to the fact that two (mechanical crusher and decanter out of the three machines making up the system operate continuously; the malaxer, which actually is a machine working in batches, is located between these two continuous apparatuses. Consequently the malaxation represents the bottleneck of the continuous extraction process. The entire virgin olive oil (VOO process has changed very little over the last 20 years. One of the essential challenges of VOO industrial plant manufacturing sector is to design and build advanced machines in order to transform the discontinuous malaxing step in a continuous phase and improve the working capacity of the industrial plants. In recent years, rapid progress in the application of emerging technologies in food processing has been made, also in VOO extraction process. Ultrasounds (US, microwaves (MW, and pulsed electric fields (PEF are emerging technologies that have already found application in the VOO extraction process on pilot scale plants. This paper aims to describe the basic principles of these technologies as well as the results concerning their impact on VOO yields and quality. Current and potential applications will be discussed, taking into account the relationship between the processing, the olive paste behavior and the characteristics of the resultant VOO, as well as recent advances in the process development.

  16. Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Ramadan, M. M.

    2015-06-01

    Full Text Available Inhibitors of tumor growth using extracts from aromatic plants are rapidly emerging as important new drug candidates for cancer therapy. The cytotoxicity and in vitro anticancer evaluation of the essential oils from thyme, juniper and clove has been assessed against five different human cancer cell lines (liver HepG2, breast MCF-7, prostate PC3, colon HCT116 and lung A549. A GC/MS analysis revealed that α-pinene, thymol and eugenol are the major components of Egyptian juniper, thyme and clove oils with concentrations of 31.19%, 79.15% and 82.71%, respectively. Strong antioxidant profiles of all the oils are revealed in vitro by DPPH and β-carotene bleaching assays. The results showed that clove oil was similarly potent to the reference drug, doxorubicin in prostate, colon and lung cell lines. Thyme oil was more effective than the doxorubicin in breast and lung cell lines while juniper oil was more effective than the doxorubicin in all the tested cancer cell lines except prostate cancer. In conclusion, the essential oils from Egyptian aromatic plants can be used as good candidates for novel therapeutic strategies for cancer as they possess significant anticancer activity.Los inhibidores de crecimiento de tumores usando extractos de plantas aromáticas están emergiendo con rapidez como nuevos e importantes medicamentos para el tratamiento del cáncer. La citotoxicidad y la acción anticancerígena in vitro de aceites esenciales de tomillo, enebro y clavo han sido evaluadas en cinco líneas celulares de cáncer humano (hígado HepG2, mama MCF-7, próstata PC3, colon HCT116 y pulmón A549. Los análisis de GC/MS mostraron que α-pineno, timol y eugenol son los principales componentes de los aceites egipcios de enebro, tomillo y clavo, con concentraciones de 31,19%, 79,15% y 82,71%, respectivamente. Se demuestra, mediante ensayos in vitro de blanqueo de DPPH y β-caroteno, el enérgico perfil antioxidante de todos los aceites. Los resultados

  17. In vitro antibacterial effect of exotic plants essential oils on the honeybee pathogen Paenibacillus larvae, causal agent of American foul brood

    Energy Technology Data Exchange (ETDEWEB)

    Fuselli, S. R.; Garcia de la Rosa, S. B.; Eguaras, M. J.; Fritz, R.

    2010-07-01

    Chemical composition and antimicrobial activity of exotic plants essential oils to potentially control Paenibacillus larvae, the causal agent of American foul brood disease (AFB) were determined. AFB represents one of the main plagues that affect the colonies of honeybees Apis mellifera L. with high negative impact on beekeepers worldwide. Essential oils tested were niaouli (Melaleuca viridiflora) and tea tree (Melaleuca alternifolia) from Myrtaceae, and citronella grass (Cymbopogon nardus) and palmarosa (Cymbopogon martinii) from Gramineae. The components of the essential oils were identified by SPME-GC/MS analysis. The antimicrobial activity of the oils against P. larvae was determined by the broth micro dilution method. In vitro assays of M. viridiflora and C. nardus oils showed the inhibition of the bacterial strains at the lowest concentrations tested, with minimal inhibitory concentration (MIC) mean value about 320 mg L{sup -}1 for both oils, respectively. This property could be attributed to the kind and percentage of the components of the oils. Terpinen-4-ol (29.09%), {alpha}-pinene (21.63%) and limonene (17.4%) were predominant in M. viridiflora, while limonene (24.74%), citronelal (24.61%) and geraniol (15.79%) were the bulk of C. nardus. The use of these essential oils contributes to the screening of alternative natural compounds to control AFB in the apiaries; toxicological risks and other undesirable effects would be avoided as resistance factors, developed by the indiscriminate use of antibiotics. (Author) 40 refs.

  18. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Bagora Bayala

    Full Text Available This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. Major constituents were α-terpineol (59.78% and β-caryophyllene (10.54% for Ocimum basilicum; 1, 8-cineol (31.22%, camphor (12.730%, α-pinene (6.87% and trans α-bergamotene (5.32% for Ocimum americanum; β-caryophyllene (21%, α-pinene (20.11%, sabinene (10.26%, β-pinene (9.22% and α-phellandrene (7.03% for Hyptis spicigera; p-cymene (25.27%, β-caryophyllene (12.70%, thymol (11.88, γ-terpinene (9.17% and thymyle acetate (7.64% for Lippia multiflora; precocene (82.10%for Ageratum conyzoides; eucalyptol (59.55%, α-pinene (9.17% and limonene (8.76% for Eucalyptus camaldulensis; arcurcumene (16.67%, camphene (12.70%, zingiberene (8.40%, β-bisabolene (7.83% and β-sesquiphellandrène (5.34% for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides showed the

  19. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso.

    Science.gov (United States)

    Bayala, Bagora; Bassole, Imaël Henri Nestor; Gnoula, Charlemagne; Nebie, Roger; Yonli, Albert; Morel, Laurent; Figueredo, Gilles; Nikiema, Jean-Baptiste; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. Major constituents were α-terpineol (59.78%) and β-caryophyllene (10.54%) for Ocimum basilicum; 1, 8-cineol (31.22%), camphor (12.730%), α-pinene (6.87%) and trans α-bergamotene (5.32%) for Ocimum americanum; β-caryophyllene (21%), α-pinene (20.11%), sabinene (10.26%), β-pinene (9.22%) and α-phellandrene (7.03%) for Hyptis spicigera; p-cymene (25.27%), β-caryophyllene (12.70%), thymol (11.88), γ-terpinene (9.17%) and thymyle acetate (7.64%) for Lippia multiflora; precocene (82.10%)for Ageratum conyzoides; eucalyptol (59.55%), α-pinene (9.17%) and limonene (8.76%) for Eucalyptus camaldulensis; arcurcumene (16.67%), camphene (12.70%), zingiberene (8.40%), β-bisabolene (7.83%) and β-sesquiphellandrène (5.34%) for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides

  20. Anti-plasmodial and insecticidal activities of the essential oils of aromatic plants growing in the Mediterranean area

    Directory of Open Access Journals (Sweden)

    Dell’Agli Mario

    2012-07-01

    Full Text Available Abstract Background Sardinia is a Mediterranean area endemic for malaria up to the last century. During a screening study to evaluate the anti-plasmodial activity of some aromatic plants traditionally used in Sardinia, Myrtus communis (myrtle, Myrtaceae, Satureja thymbra (savory, Lamiaceae, and Thymus herba-barona (caraway thyme, Lamiaceae were collected in three vegetative periods: before, during and after flowering. Methods The essential oils were obtained by steam distillation, fractionated by silica gel column chromatography and analysed by GC-FID-MS. Total oil and three main fractions were tested on D10 and W2 strains of Plasmodium falciparum in vitro. Larvicidal and adulticidal activities were tested on Anopheles gambiae susceptible strains. Results The essential oil of savory, rich in thymol, was the most effective against P. falciparum with an inhibitory activity independent from the time of collection (IC50 17–26 μg/ml on D10 and 9–11 μg/ml on W2. Upon fractionation, fraction 1 was enriched in mono-sesquiterpenoid hydrocarbons; fraction 2 in thymol (73-83%; and fraction 3 contained thymol, carvacrol and terpinen-4-ol, with a different composition depending on the time of collection. Thymol-enriched fractions were the most active on both strains (IC50 20–22 μg/ml on D10 and 8–10 μg/ml on W2 and thymol was confirmed as mainly responsible for this activity (IC50 19.7± 3.0 and 10.6 ± 2.0 μg/ml on D10 and W2, respectively. The essential oil of S. thymbra L. showed also larvicidal and adulticidal activities. The larvicidal activity, expressed as LC50, was 0.15 ± 0.002; 0.21 ± 0.13; and 0.15 ± 0.09 μg/ml (mean ± sd depending on the time of collection: before, during and after flowering, respectively. Conclusions This study provides evidence for the use of essential oils for treating malaria and fighting the vector at both the larval and adult stages. These findings open the possibility for further

  1. Chemical Composition, Antioxidant, Anti-Inflammatory and Anti-Proliferative Activities of Essential Oils of Plants from Burkina Faso

    Science.gov (United States)

    Bayala, Bagora; Bassole, Imaël Henri Nestor; Gnoula, Charlemagne; Nebie, Roger; Yonli, Albert; Morel, Laurent; Figueredo, Gilles; Nikiema, Jean-Baptiste; Lobaccaro, Jean-Marc A.; Simpore, Jacques

    2014-01-01

    This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography–mass spectrometry and gas chromatography–flame ionization detector. Major constituents were α-terpineol (59.78%) and β-caryophyllene (10.54%) for Ocimum basilicum; 1, 8-cineol (31.22%), camphor (12.730%), α-pinene (6.87%) and trans α-bergamotene (5.32%) for Ocimum americanum; β-caryophyllene (21%), α-pinene (20.11%), sabinene (10.26%), β-pinene (9.22%) and α-phellandrene (7.03%) for Hyptis spicigera; p-cymene (25.27%), β-caryophyllene (12.70%), thymol (11.88), γ-terpinene (9.17%) and thymyle acetate (7.64%) for Lippia multiflora; precocene (82.10%)for Ageratum conyzoides; eucalyptol (59.55%), α-pinene (9.17%) and limonene (8.76%) for Eucalyptus camaldulensis; arcurcumene (16.67%), camphene (12.70%), zingiberene (8.40%), β-bisabolene (7.83%) and β-sesquiphellandrène (5.34%) for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides

  2. Heat transfer in fuel oil storage tank at thermal power plants with local fuel heating

    Directory of Open Access Journals (Sweden)

    Kuznetsova Svetlana A.

    2015-01-01

    Full Text Available Results of mathematical modeling of the thermal control system in fuel oil storage, in the presence of heat source at the lower boundary of the region, in the framework of models of incompressible viscous fluid are presented. Solved the system of differential equations of non-stationary Navier-Stokes equations, the energy equation and the heat equation with appropriate initial and boundary conditions. Takes into account the processes of heat exchange region considered with the environment. A comparative analysis of the dependence of average temperatures of oil in the volume of the tank on the time calculated by the simplified (balanced method and obtained as a result of numerical simulation are performed.

  3. Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil.

    Science.gov (United States)

    Kaisangsri, Nattapon; Kerdchoechuen, Orapin; Laohakunjit, Natta

    2014-09-22

    Cassava starch foam (CSF) trays blended with zein, gluten, soy protein, kraft fiber, and palm oil at various concentrations: 0, 5, 10 and 15% by weight of starch, were characterized. The addition of zein and gluten into CSF resulted in consolidated and homogeneous structural foams compared to its controls. Moreover, the flexural and compressive strength increased with increasing kraft, zein and gluten. CSF containing 15% kraft gave the highest flexural and compressive strength. However, the addition of palm oil into CSF gave the lowest flexural strength and compressive strength. The observed water absorption and water solubility index of CSFs blended with 15% zein and 15% gluten protein was lowest. Although kraft, zein and gluten could improve mechanical properties, water absorption and water solubility were greater than the expanded polystyrene foam (EPS). The CSF trays in this study might be an alternative for packing low water content foods.

  4. Antibacterial activities of essential oils from Iranian medicinal plants on extended-spectrum β-lactamase-producing Escherichia coli.

    Science.gov (United States)

    Sharifi-Rad, J; Mnayer, D; Roointan, A; Shahri, F; Ayatollahi, S A M; Sharifi-Rad, M; Molaee, N; Sharifi-Rad, M

    2016-09-19

    The extended-spectrum beta-lactamase (ESBL) -producing Escherichia coli strains can lead to various infections particularly urinary tract infections. The main objective of this investigation was to evaluate the antibacterial activities of essential oils (EOs) from different Iranian medicinal plants against TEM gene positive ESBL-producing E. coli strains isolated from urine samples of patients with urinary tract infections. EOs were extracted using hydrodistillation method. E. coli strains were isolated by different specific Medias. ESBL-producing E. coli strains were isolated from urine samples of patients with urinary tract infections in Shiraz hospital, Iran. Then, ESBL- producing strains were identified using double disk synergy test, phenotypic disc confirmatory test and polymerase chain reaction (PCR) for TEM gene detection. The antibacterial activity of the EOs from different plants (Achillea wilhelmsii C. Koch, Echinophora platyloba DC., Lallemantia royleana, Nepeta persica Boiss., Pulicaria vulgaris Gaertn., Salvia nemorosa, and Satureja intermedia C.A.Mey) and antibiotics against ESBL-producing strains was studied using the microdilution method for the evaluation of the minimum inhibitory concentration (MIC). The 103 out of 295 E. coli strains with 97 (90.65%) TEM gene distributions were identified as ESBL-producing strains. All of the EOs derived from different plants displayed high inhibitory effects against ESBL-producing E. coli strains. The results of our investigations may propose a good treatment option against resistant infectious bacteria.

  5. Oil/gas pre-treatment plants and air quality hazards: PM1 measurements in Agri Valley (southern Italy

    Directory of Open Access Journals (Sweden)

    S. Trippetta

    2014-04-01

    Full Text Available A PM1 (i.e., aerosol particles with aerodynamic diameter less 1.0 μm short term monitoring campaign was carried out in Agri Valley (southern Italy in September 2012. This area is of international concern since it houses the largest European on-shore reservoir and the largest oil/gas pre-treatment plant (i.e., Centro Olio Val d'Agri – COVA within an anthropized context. PM1 measurements were performed in Viggiano, the nearest town to the COVA plant and one of the most populated town of the Agri Valley. During the study period, the PM1 daily concentrations ranged from 1.2 to 8.4 μg m−3 with a mean value of 4.6 μg m−3. Regarding the PM1 chemical composition, it can be observed that S and typical crustal elements were the most abundant constituents of the PM1 collected. By applying the Principal Component Analysis, it was pointed out that crustal soil, biomass and wood burning, secondary atmospheric reactions involving COVA plant emissions and local soil particles, and traffic were the main sources contributing to the PM1 measured in the area under study. Moreover, a possible contribution of the long-range transport of African dust was observed.

  6. LC-MS/MS methods for absolute quantification and identification of proteins associated with chimeric plant oil bodies.

    Science.gov (United States)

    Capuano, Floriana; Bond, Nicholas J; Gatto, Laurent; Beaudoin, Frédéric; Napier, Johnathan A; Benvenuto, Eugenio; Lilley, Kathryn S; Baschieri, Selene

    2011-12-15

    Oil bodies (OBs) are plant cell organelles that consist of a lipid core surrounded by a phospholipid monolayer embedded with specialized proteins such as oleosins. Recombinant proteins expressed in plants can be targeted to OBs as fusions with oleosin. This expression strategy is attractive because OBs are easily enriched and purified from other cellular components, based on their unique physicochemical properties. For recombinant OBs to be a potential therapeutic agent in biomedical applications, it is necessary to comprehensively analyze and quantify both endogenous and heterologously expressed OB proteins. In this study, a mass spectrometry (MS)-based method was developed to accurately quantify an OB-targeted heterologously expressed fusion protein that has potential as a therapeutic agent. The effect of the chimeric oleosin expression upon the OB proteome in transgenic plants was also investigated, and the identification of new potential OB residents was pursued through a variety of liquid chromatography (LC)-MS/MS approaches. The results showed that the accumulation of the fusion protein on OBs was low. Moreover, no significant differences in the accumulation of OB proteins were revealed between transgenic and wild-type seeds. The identification of five new putative components of OB proteome was also reported.

  7. OPTIMAL SYSNTHESIS PROCESSES OF LOW-TEMPERATURE CONDENSATION ASSOCIATED OIL GAS PLANT REFRIGERATION SYSTEM

    OpenAIRE

    O. Ostapenko; O. Yakovleva; M. Khmelniuk; Zimin, A.

    2015-01-01

    Design of modern high-efficient systems is a key priority for the Energy Sector of Ukraine. The cooling technological streams of gas and oil refineries, including air coolers, water cooling and refrigeration systems for specific refrigerants are the objectives of the present study. Improvement of the refrigeration unit with refrigerant separation into fractions is mandatory in order to increase cooling capacity, lowering the boiling point of coolant and increasing the coefficient of target hy...

  8. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

    OpenAIRE

    2016-01-01

    Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker disease in kiwifruit. Antibacterial activity of plant essential oils (PEOs) originating from 49 plant species were tested against Psa by a vapor diffusion and a liquid culture assays. The five PEOs from Pimenta racemosa, P. dioica, Melaleuca linariifolia, M. cajuputii, and Cinnamomum cassia efficiently inhibited Psa growth by either assays. Among their major components, estragole, eugenol, and methyl eugenol showed significant ...

  9. Trypanosoma brucei Inhibition by Essential Oils from Medicinal and Aromatic Plants Traditionally Used in Cameroon (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea and Echinops giganteus

    Directory of Open Access Journals (Sweden)

    Stephane L. Ngahang Kamte

    2017-07-01

    Full Text Available Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT has not been fully explored. In the present work, we have selected six medicinal and aromatic plants (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea, and Echinops giganteus traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line cells as a reference. The results showed that the essential oils from A. indica, A. daniellii, and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC50 values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils.

  10. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe).

    Science.gov (United States)

    Seo, Seon-Mi; Kim, Junheon; Kang, Jaesoon; Koh, Sang-Hyun; Ahn, Young-Joon; Kang, Kyu-Suk; Park, Il-Kwon

    2014-07-01

    This study investigated the fumigant toxicity of 4 Asteraceae plant essential oils and their constituents against the Japanese termite Reticulitermes speratus Kolbe. Fumigant toxicity varied with plant essential oils or constituents, exposure time, and concentration. Among the tested essential oils, those from Chamaemelum nobile exhibited the strongest fumigant toxicity, followed by those from Santolina chamaecyparissus, Ormenis multicaulis, and Eriocephalus punctulatus at 2 days after treatment. In all, 15, 24, 19, and 9 compounds were identified in the essential oils from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus, respectively, by using gas chromatography, gas chromatography-mass spectrometry, or open-column chromatography. The identified compounds were tested individually for their fumigant toxicity against Japanese termites. Among the test compounds, trans-pinocarveol, caryophyllene oxide, sabinene hydrate, and santolina alcohol showed strong fumigant toxicity against Japanese termites. Acetylcholinesterase (AChE) inhibition activity of the identified compounds from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus essential oils were tested to determine the mode of their action. The IC50 values of (+)-α-pinene, (-)-limonene, (-)-α-pinene, β-pinene, and β-phellandrene against Japanese termite AChE were 0.03, 0.13, 0.41, 0.42, and 0.67mg/mL, respectively. Further studies are warranted to determine the potential of these essential oils and their constituents as fumigants for termite control. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants.

    Science.gov (United States)

    Athar, Habib-Ur-Rehman; Ambreen, Sarah; Javed, Muhammad; Hina, Mehwish; Rasul, Sumaira; Zafar, Zafar Ullah; Manzoor, Hamid; Ogbaga, Chukwuma C; Afzal, Muhammad; Al-Qurainy, Fahad; Ashraf, Muhammad

    2016-09-01

    Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and 5.0 % v/w basis). Crude oil contamination reduced soil microflora which may be beneficial to plant growth. It was observed that oil pollution caused a remarkable decrease in biomass, leaf water potential, turgor potential, photosynthetic pigments, quantum yield of photosystem II (PSII) (Fv/Fm), net CO2 assimilation rate, leaf nitrogen and total free amino acids. Gas exchange characteristics suggested that reduction in photosynthetic rate was mainly due to metabolic limitations. Fast chlorophyll a kinetic analysis suggested that crude oil damaged PSII donor and acceptor sides and downregulated electron transport as well as PSI end electron acceptors thereby resulting in lower PSII efficiency in converting harvested light energy into biochemical energy. However, maize plants tried to acclimate to moderate level of oil pollution by increasing root diameter and root length relative to its shoot biomass, to uptake more water and mineral nutrients.

  12. Antioxidant activity, phenolic content, and peroxide value of essential