WorldWideScience

Sample records for plant nutrient mobilization

  1. Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought

    DEFF Research Database (Denmark)

    Andresen, Louise C.; Michelsen, Anders; Jonasson, Sven

    2010-01-01

    Temperate terrestrial ecosystems are currently exposed to increased atmospheric CO2 and progressive climatic changes with increased temperature and periodical drought. We here present results from a field experiment, where the effects of these three main climate change related factors...... decreased in response to drought. These complex changes in availability and release of nutrients from soil organic matter turnover and mineralization in response to elevated CO2 and climate change may influence the future plant carbon sequestration and species composition at temperate heathlands....... in Deschampsia soil, and microbial immobilization of N and P decreased in warmed Calluna soil. Warming tended to increase microbial N and P in Calluna but not in Deschampsia soil in fall, and more microbial C was accumulated under drought in Calluna soil. The effects of warming were often counteracted or erased...

  2. Regulating nutrient allocation in plants

    Science.gov (United States)

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  3. Tree root systems and nutrient mobilization

    DEFF Research Database (Denmark)

    Boyle, Jim; Rob, Harrison; Raulund-Rasmussen, Karsten

    sometimes stored at depth. Other recent studies on potential release of nutrients due to chemical weathering indicate the importance of root access to deep soil layers. Release profi les clearly indicate depletion in the top layers and a much higher potential in B and C horizons. Review of evaluations......Roots mobilize nutrients via deep penetration and rhizosphere processes inducing weathering of primary minerals. These contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long-term supplies...... of nutrient elements essential for forest growth and resilience. Research and techniques have signifi cantly advanced since Olof Tamm’s 1934 base mineral index for Swedish forest soils, and basic nutrient budget estimates for whole-tree harvesting systems of the 1970s. Recent research in areas that include...

  4. Nutrient supply of plants in aquaponic systems

    OpenAIRE

    Bittsánszky, András; Uzinger, Nikolett; Gyulai, Gábor; Mathis, Alex; Junge, Ranka; Villarroel, Morris; Kotzen, Benzion; Komives, Tamas

    2016-01-01

    In this preliminary article we present data on plant nutrient concentrations in aquaponic systems, and compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in aquaponic system are significantly lower for most nutrients, compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels than “standard” hydroponic solutions. This is especially true for green leafy...

  5. Nutrient supply of plants in aquaponic systems

    Directory of Open Access Journals (Sweden)

    Andras Bittsanszky

    2016-10-01

    Full Text Available In this preliminary article we present data on plant nutrient concentrations in aquaponics systems, and we compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in the aquaponics system are significantly lower for most nutrients compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels compared to “standard” hydroponic solutions. This is especially true for green leafy vegetables that rarely need additional nutritional supplementation. It is concluded that in the highly complex system of aquaponics, special care has to be taken, via continuous monitoring of the chemical composition of the circulating water, to provide adequate concentrations and ratios of nutrients, and especially for the potentially toxic component, ammonium. If certain plants require nutrient supplementation, we consider that one based on organic substances would be most beneficial. However, protocols for the application of such nutrient amendments still need to be developed.

  6. Phloem small RNAs, nutrient stress responses, and systemic mobility

    Directory of Open Access Journals (Sweden)

    Kehr Julia

    2010-04-01

    Full Text Available Abstract Background Nutrient availabilities and needs have to be tightly coordinated between organs to ensure a balance between uptake and consumption for metabolism, growth, and defense reactions. Since plants often have to grow in environments with sub-optimal nutrient availability, a fine tuning is vital. To achieve this, information has to flow cell-to-cell and over long-distance via xylem and phloem. Recently, specific miRNAs emerged as a new type of regulating molecules during stress and nutrient deficiency responses, and miR399 was suggested to be a phloem-mobile long-distance signal involved in the phosphate starvation response. Results We used miRNA microarrays containing all known plant miRNAs and a set of unknown small (s RNAs earlier cloned from Brassica phloem sap 1, to comprehensively analyze the phloem response to nutrient deficiency by removing sulfate, copper or iron, respectively, from the growth medium. We show that phloem sap contains a specific set of sRNAs that is distinct from leaves and roots, and that the phloem also responds specifically to stress. Upon S and Cu deficiencies phloem sap reacts with an increase of the same miRNAs that were earlier characterized in other tissues, while no clear positive response to -Fe was observed. However, -Fe led to a reduction of Cu- and P-responsive miRNAs. We further demonstrate that under nutrient starvation miR399 and miR395 can be translocated through graft unions from wild type scions to rootstocks of the miRNA processing hen1-1 mutant. In contrast, miR171 was not transported. Translocation of miR395 led to a down-regulation of one of its targets in rootstocks, suggesting that this transport is of functional relevance, and that miR395, in addition to the well characterized miR399, could potentially act as a long-distance information transmitter. Conclusions Phloem sap contains a specific set of sRNAs, of which some specifically accumulate in response to nutrient deprivation. From

  7. Biotechnology in plant nutrient management for agricultural ...

    African Journals Online (AJOL)

    Biotechnology in plant nutrient management for agricultural production in the tropics: ... and yields, marker assisted selection breeding, to develop new uses for agricultural products, to facilitate early maturation and to improve food and feed ...

  8. Mobile power plant units

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, R

    1979-10-05

    Diesel engines of the MaK line 282 AK/332 with a cylinder power up to 160 kW are used, either as 6-cylinder or 8-cylinder in-line engine or as 12-cylinder V engine. Fuel consumption is between 207 and 212 g/kW. The engine is mounted on a frame, together with a generator. The fuel reserve in the tank will last for 8 hours. The lubricating system, the cooling water and starting air system, the switchboard system, and the frame are described. The switchboard plant is mounted either on a skid undercarriage or on the undercarriage. The plant can be operated independently or parallel to the network. The unit can be remote-controlled via push buttons or control knobs. A picture is presented of a mobile diesel aggregate which is in service in Libya.

  9. Plant nutrient transporter regulation in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen; Bechmann, I.E.

    2002-01-01

    of nutrition. Their down-regulation in mycorrhizal roots, therefore, would be predicted as a result of symbiotic function. A variety of studies on Pi- Zn- and ammonium- or nitrate-transporter genes from two plant species indirectly support this model. For example, one study showed that the expression...... of the high-affinity Pi-transporter MtPT2 within mycorrhizal roots of Medicago truncatula was inversely correlated with the concentration of P within the shoots, which suggested that P supply from the fungus influenced this gene's expression. However, there is some evidence that these plant nutrient...

  10. Leaf life span and the mobility of "non-mobile" mineral nutrients - the case of boron in conifers

    Science.gov (United States)

    Pedro J. Aphalo; Anna W. Schoettle; Tarja Lehto

    2002-01-01

    Nutrient conservation is considered important for the adaptation of plants to infertile environments. The importance of leaf life spans in controlling mean residence time of nutrients in plants has usually been analyzed in relation to nutrients that can be retranslocated within the plant. Longer leaf life spans increase the mean residence time of all mineral...

  11. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2002-01-01

    Roč. 155, - (2002), s. 89-100 ISSN 0028-646X R&D Projects: GA AV ČR IAA6005905 Institutional research plan: CEZ:AV0Z6005908 Keywords : terrestrial carnivorous plant s * utilization of prey * mineral nutrient re-utilization * leaf nutrient supply Subject RIV: EF - Botanics Impact factor: 2.945, year: 2002

  12. Nutrient allocation among stem, leaf and inflorescence of jatropha plants

    Directory of Open Access Journals (Sweden)

    Rosiane L. S. de Lima

    2015-08-01

    Full Text Available ABSTRACTInformation on the partitioning of nutrients among various organs in jatropha plants, as a complementary tool for the recommendation of fertilization, is still not available. This study aimed to evaluate the contents of macro and micronutrients in stems, leaves and inflorescences of jatropha branches at the beginning of flowering. At the beginning of flowering, adult jatropha plants were sampled and divided into five compartments: inflorescences, leaves from vegetative branches, leaves from flowering branches, stems from vegetative branches and stems from flowering branches. Jatropha inflorescences are a drain of nutrients. Leaves are important sources of nutrients demanded by the inflorescences at the beginning of flowering. The higher allocation of nutrients in the inflorescences suggests the need for preventive/corrective fertilizations, which must be performed at least 30 days before flowering, providing plants with nutrients in adequate amounts for a good yield.

  13. Comparison of plant nutrient levels between compost from Sky loo ...

    African Journals Online (AJOL)

    Recent scholars have highlighted the benefit of harvesting compost from eco-san toilets for application as plant nutrients. However, levels of nutrients in eco-san compost may vary depending on the type of toilet and also the type of top soil in a particular geographical region. This study compared levels of nitrogen, ...

  14. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms.

    Science.gov (United States)

    Ohkama-Ohtsu, Naoko; Wasaki, Jun

    2010-08-01

    Mineral nutrients taken up from the soil become incorporated into a variety of important compounds with structural and physiological roles in plants. We summarize how plant nutrients are linked to many metabolic pathways, plant hormones and other biological processes. We also focus on nutrient uptake, describing plant-microbe interactions, plant exudates, root architecture, transporters and their applications. Plants need to survive in soils with mineral concentrations that vary widely. Describing the relationships between nutrients and biological processes will enable us to understand the molecular basis for signaling, physiological damage and responses to mineral stresses.

  15. Performance test of nutrient control equipment for hydroponic plants

    Science.gov (United States)

    Rahman, Nurhaidar; Kuala, S. I.; Tribowo, R. I.; Anggara, C. E. W.; Susanti, N. D.

    2017-11-01

    Automatic control equipment has been made for the nutrient content in irrigation water for hydroponic plants. Automatic control equipment with CCT53200E conductivity controller to nutrient content in irrigation water for hydroponic plants, can be used to control the amount of TDS of nutrient solution in the range of TDS numbers that can be set according to the range of TDS requirements for the growth of hydroponically cultivated crops. This equipment can minimize the work time of hydroponic crop cultivators. The equipment measurement range is set between 1260 ppm up to 1610 ppm for spinach plants. Caisim plants were included in this experiment along with spinach plants with a spinach plants TDS range. The average of TDS device is 1450 ppm, while manual (conventional) is 1610 ppm. Nutrient solution in TDS controller has pH 5,5 and temperature 29,2 °C, while manual is pH 5,6 and temperature 31,3 °C. Manually treatment to hydroponic plant crop, yields in an average of 39.6 grams/plant, greater than the yield of spinach plants with TDS control equipment, which is in an average of 24.6 grams / plant. The yield of caisim plants by manual treatment is in an average of 32.3 grams/crop, less than caisim crop yields with TDS control equipment, which is in an average of 49.4 grams/plant.

  16. Plant response to nutrient availability across variable bedrock geologies

    Science.gov (United States)

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  17. Herbivores and nutrients control grassland plant diversity via light limitation

    Science.gov (United States)

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  18. Roots, plant production and nutrient use efficiency

    NARCIS (Netherlands)

    Willigen, de P.; Noordwijk, van M.

    1987-01-01

    The role of roots in obtaining high crop production levels as well as a high nutrient use efficiency is discussed. Mathematical models of diffusion and massflow of solutes towards roots are developed for a constant daily uptake requirement. Analytical solutions are given for simple and more

  19. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    Science.gov (United States)

    Bell, Colin; Mancini, Lauren M.; Lee, Melanie N.; Conant, Richard T.; Wallenstein, Matthew D.

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity. PMID:27326379

  20. Nutrient leaching when soil is part of plant growth media

    Science.gov (United States)

    Soils can serve as sorbents for phosphorus (P) within plant growth media, negating the need for artificial sorbents. The purpose of this study was to compare soils with different properties, as part of plant growth media, for their effect on nutrient levels in effluent. Four soils were mixed with sa...

  1. Effect of salinity stress on plant fresh weight and nutrient ...

    African Journals Online (AJOL)

    Effect of salinity stress on plant fresh weight and nutrient composition of some Canola ( Brassica napus L.) cultivars. ... K+, Ca2+ and K+/Na+ contents in plants decreased by salt stress, but Na+ and Cl- content in the roots, ... from 32 Countries:.

  2. How do Plants Absorb Nutrients from the Soil? - Study of Nutrient ...

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences. Home · About ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 7. How do Plants Absorb Nutrients from the ... Author Affiliations. G Sivakumar Swamy1. Department of Botany, Karnatak University, Dharwad 580 003, India.

  3. Absorção de nutrientes pelo trigo Absorption of nutrients by wheat plants

    Directory of Open Access Journals (Sweden)

    Hermano Gargantini

    1973-01-01

    Full Text Available Estudou-se a absorção dos nutrientes essenciais das variedades de trigo (Triticum aestivum L. BH 1146 e IAS 3795, cultivadas em vasos de Mitscherlich em casa de vegetação, empregaudo-se Latossolo Vermelho-Escuro fase arenosa, proveniente do município de Capão Bonito. Durante todo o ciclo vegetativo da cultura, a cada 10 dias, colheram-se plantas, para serem analisados os elementos N, P, K, Ca, Mg e S. Verificou-se sensível diferença na entração dos nutrientes, entre ambas as variedades. Assim, enquanto na BH o nitrogênio e, a seguir, o potássio foram os nutrientes absorvidos em maiores quantidades, seguindo-se, em quantidades menores, o fósforo, o cálcio, o ennofre e o magnésio, na variedade IAS o potássio foi absorvido em muito maior quantidade que o nitrogênio, e depois dele, na ordem, o cálcio, o fósforo, o ennofre e o magnésio.In this paper the nutrient absorption by wheat plants is presented. Two varieties of wheat, BH 1146 and IAS 3795, were grown in Mitscherlich pots under greenhouse conditions and supplied with all nutrients, including micronutrients. Plant samples, obtained at 10-day intervals, were analysed for N, P, K, Ca, Mg and S. The amounts of nutrients absorbed were diferent between the two varieties. Furthermore, the BH variety absorbed more nitrogen than other nutrients, while for the IAS variety potassium was the element absorbed in larger amounts. Absorption of P, S, Ca, Mg was small for both varieties.

  4. Supplementing the energy and plant nutrient requirements through organic recycling

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, S. S.; Misra, R. V.

    1980-03-15

    In context of dwindling non-renewable energy resources and increasing health hazards because of environmental pollution, recycling of organic residues obtained through various sources like crops, animals, and human beings is becoming increasingly important. The organic residues obtained as wastes through these sources can be recycled effectively to meet scarce resources of energy and the plant nutrients, so vitally needed for our day-to-day activities and for raising agricultural production. Agriculture is the main stay of the Indian economy. Considerable quantities of crop residues available from agriculture can be utilized to serve as a source of organic fertilizers which not only provide plant nutrients but also improve soil health. The country has a large animal and human population. The animal and human wastes can be successfully used for production of energy and organic fertilizer by routing through biogas system. There is a need to develop an integrated energy and nutrient supply program. An action program is outlined.

  5. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  6. Effects of nutrient omission in Caesalpinia echinata plants

    Directory of Open Access Journals (Sweden)

    Sergio Valiengo Valeri

    2014-03-01

    Full Text Available The objective of this study was to evaluate the growth, the morphological alterations and the mineral composition of brazilwood (Caesalpinia echinata plants caused by mineral nutrients omission in a green house experiment. The experimental units were distributed in the green house according to a completely random design. The treatments, each repeated five times, were the following : check (natural soil, complete (N, P, K, Ca, Mg, S, B, Cu, Mn, and Zn and a complete solution but for the omission of one of the nutrients in parenthesis. Each plot was represented by a plant growing in a 7 dm3 vase filled with Quartzarenic Neosol. The analyzed variables were the following: visual nutritional deficiency symptoms, plant height, stem diameter, shoot dry matter, stem, branches and leaves included, and leaf nutrients level. The omission of nitrogen limited plant growth in height and shoot biomass production. The first visual deficiency symptoms were those due to N omission followed by those caused by P, Ca, Mg, S, Cu, and Mn omissions. Later on the K and B deficiency symptoms became visible. The omission of a nutrient always caused its level in the leaves to be significantly lower than that found when it was not omitted.

  7. Plant community development is affected by nutrients and soil biota

    NARCIS (Netherlands)

    De Deyn, G.B.; Raaijmakers, C.E.; Van der Putten, W.H.

    2004-01-01

    1 Plant community development depends to a great extent on the availability of soil nutrients, but recent studies underline the role of symbiotic, herbivorous and pathogenic soil biota. We tested for interactions between these biotic and abiotic factors by studying the effects of additional

  8. Modelling of the Nutrient Medium for Plants Cultivation in Spaceflight

    Science.gov (United States)

    Nechitailo, Galina S.

    2016-07-01

    MODELLING OF THE NUTRIENT MEDIUM FOR PLANTS CULTIVATION IN SPACEFLIGHT Nechitajlo G.S.*, Rakhmetova A.A.**, Bogoslovskaja O.A.**, Ol'hovskay I.P.**, Glushchenko N.N.** *Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru **V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru The valuable life and fruitful activity of cosmonauts and researchers in conditions of spaceflights and prolonged work at space stations are only possible with creating life area providing fresh air, natural food, comfortable psychological conditions, etc. The solution of that problem under space conditions seems impossible without use of high nano- and biotechnologies for plants growth. A priority should be given not only to choose species of growth plants in space, but also to improve conditions for their growth which includes optimal nourishing components for plants, preparation of nutrient mediums, illumination and temperature. We are deeply convinced that just manipulations with growing conditions for cultivated plants, but not genes changes, is a guarantee of success in the decision of this problem. For improving the method of plants growing on the artificial nutrient medium with balanced content of components, being necessary for growth and development of plants, we added essential metal elements: Fe, Zn, Cu - in an electroneutral state in the form of nanoparticles instead of sulfates or other easily dissolving salts. Nanoparticulated metals are known to have a number of advantages in comparison with salts: metals in an electroneutral form are characterized with the prolonged and multifunctional action, low toxicity per se and appearing to be much below the toxicity of the same metals in the ionic forms, accumulation as a reserve being used in biotic dozes, active distribution in bodies and organs of plants and stimulation of vital processes. A high reactivity

  9. Plant species occurrence patterns in Eurasian grasslands reflect adaptation to nutrient ratios

    NARCIS (Netherlands)

    Roeling, Ineke S.; Ozinga, Wim A.; van Dijk, Jerry; Eppinga, Maarten B.; Wassen, Martin J.

    2018-01-01

    Previous studies of Eurasian grasslands have suggested that nutrient ratios, rather than absolute nutrient availabilities and associated productivity, may be driving plant species richness patterns. However, the underlying assumption that species occupy distinct niches along nutrient ratio gradients

  10. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without...... that plants with return sludge Side-Stream Hydrolysis (SSH) instead of the normal anaerobic process tank tended to have significantly fewer unwanted GAOs in contrast to many plants with traditional mainstream anaerobic tank and thus it was proposed that this system might be an effective strategy of control...

  11. Mobile Transcripts and Intercellular Communication in Plants.

    Science.gov (United States)

    Saplaoura, E; Kragler, F

    2016-01-01

    Phloem serves as a highway for mobile signals in plants. Apart from sugars and hormones, proteins and RNAs are transported via the phloem and contribute to the intercellular communication coordinating growth and development. Different classes of RNAs have been found mobile and in the phloem exudate such as viral RNAs, small interfering RNAs (siRNAs), microRNAs, transfer RNAs, and messenger RNAs (mRNAs). Their transport is considered to be mediated via ribonucleoprotein complexes formed between phloem RNA-binding proteins and mobile RNA molecules. Recent advances in the analysis of the mobile transcriptome indicate that thousands of transcripts move along the plant axis. Although potential RNA mobility motifs were identified, research is still in progress on the factors triggering siRNA and mRNA mobility. In this review, we discuss the approaches used to identify putative mobile mRNAs, the transport mechanism, and the significance of mRNA trafficking. © 2016 Elsevier Inc. All rights reserved.

  12. Chlorophyll Meters Aid Plant Nutrient Management

    Science.gov (United States)

    2009-01-01

    On December 7, 1972, roughly 5 hours and 6 minutes after launch, the crew of Apollo 17 took one of history s most famous photographs. The brilliant image of the fully illuminated Earth, the African and Antarctic continents peering out from behind swirling clouds, came to be known as the Blue Marble. Today, Earth still sometimes goes by the Blue Marble nickname, but as the satellites comprising NASA s Earth Observing System (EOS) scan the planet daily in ever greater resolutions, it is often the amount of green on the planet that is a focus of researchers attention. Earth s over 400,000 known plant species play essential roles in the planet s health: They absorb carbon dioxide and release the oxygen we breathe, help manage the Earth s temperature by absorbing and reflecting sunlight, provide food and habitats for animals, and offer building materials, medication, and sustenance for humans. As part of NASA s efforts to study our own planet along with the universe around it, the Agency s EOS satellites have been accumulating years of valuable data about Earth s vegetation (not to mention its land features, oceans, and atmosphere) since the first EOS satellite launched in 1997. Among the powerful sensors used is the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the NASA Terra and Aqua satellites. MODIS sweeps the entire Earth every few days, beaming back information gathered across 36 bands of visible and infrared light, yielding images that let scientists track how much of Earth is green over the course of seasons and years. Monitoring the density and distribution of vegetation on Earth provides a means of determining everything from the impact of natural and human-induced climate change to the potential outbreak of disease. (Goddard Space Flight Center and U.S. Department of Defense researchers have determined, for example, that vegetation density can be used to pinpoint regions of heavy rainfall in Africa regions ripe for outbreaks of rainfall

  13. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Mandy Velthuis

    2017-05-01

    Full Text Available Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus. In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition

  14. Plant growth nutrient (nitrobenzene poisoning with multiple complications

    Directory of Open Access Journals (Sweden)

    Yatendra Singh

    2015-01-01

    Full Text Available Nitrobenzene, a pale yellow oily liquid with an odor of bitter almonds, is used in the synthesis of Aniline dyes, flavoring agent, and also in rubber industry. Recently it is also used as a plant growth nutrient. It causes methemoglobinemia with symptoms including headache, nausea, dizziness, fatigue, shortness of breath, cyanosis, and convulsions. Severe acute exposure to nitrobenzene can cause jaundice, renal failure, and coma, and it may be fatal. We report a case of Plant growth nutrient (nitrobenzene poisoning with multiple complications like hemolytic anemia, renal failure, seizures, and pneumonia. Patient was managed with intravenous methylene blue along with other supportive therapy and survived. So, early aggressive management and a watch on complications might be helpful in saving patient′s life from this poisoning.

  15. Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Harrison, Robert; Stupak, Inge

    2016-01-01

    studies on potential release of nutrients due to chemical weathering indicate the importance of root access to deep soil layers. Nutrient release profiles clearly indicate depletion in the top layers and a much higher potential in B and C horizons. Reviewing potential sustainability of nutrient supplies......Roots mobilize nutrients via deep soil penetration and rhizosphere processes inducing weathering of primary minerals. These processes contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long......-term supplies of nutrient elements essential for forest growth and resilience. Research and techniques have significantly advanced since Olof Tamm’s 1934 “base mineral index” for Swedish forest soils, and the basic nutrient budget estimates for whole-tree harvesting systems of the 1970s. Recent research...

  16. Plants may alter competition by modifying nutrient bioavailability in rhizosphere: a modeling approach.

    Science.gov (United States)

    Raynaud, Xavier; Jaillard, Benoît; Leadley, Paul W

    2008-01-01

    Plants modify nutrient availability by releasing chemicals in the rhizosphere. This change in availability induced by roots (bioavailability) is known to improve nutrient uptake by individual plants releasing such compounds. Can this bioavailability alter plant competition for nutrients and under what conditions? To address these questions, we have developed a model of nutrient competition between plant species based on mechanistic descriptions of nutrient diffusion, plant exudation, and plant uptake. The model was parameterized using data of the effects of root citrate exudation on phosphorus availability. We performed a sensitivity analysis for key parameters to test the generality of these effects. Our simulations suggest the following. (1) Nutrient uptake depends on the number of roots when nutrients and exudates diffuse little, because individual roots are nearly independent in terms of nutrient supply. In this case, bioavailability profits only species with exudates. (2) Competition for nutrients depends on the spatial arrangement of roots when nutrients diffuse little but exudates diffuse widely. (3) Competition for nutrients depends on the nutrient uptake capacity of roots when nutrients and exudates diffuse widely. In this case, bioavailability profits all species. Mechanisms controlling competition for bioavailable nutrients appear to be diverse and strongly depend on soil, nutrient, and plant properties.

  17. Growing plants on oily, nutrient-poor soil using a native symbiotic fungus.

    Directory of Open Access Journals (Sweden)

    Timothy S Repas

    Full Text Available The roots of land plants associate with microbes, including fungal symbionts that can confer abiotic stress tolerance. Bitumen extraction following oil-sand surface mining in the Athabasca region of Alberta, Canada removes plant nutrients but leaves a petrochemical residue, making the coarse tailings (CT hostile to both plants and microbes. We isolated an endophyte strain of the Ascomycete Trichoderma harzianum we call TSTh20-1 (hereafter, TSTh from a dandelion that was naturally growing on CT. TSTh colonization allowed tomato, wheat, and remediation seed mixtures to germinate and their seedlings to flourish on CT without the use of fertilizer. Compared to control plants, TSTh increased germination speed, percent germination, and biomass accumulation. TSTh also improved plant water use efficiency and drought recovery. TSTh-colonized plants secreted twice the level of peroxidase into CT as did plants alone. Over two months, plants colonized with TSTh doubled the petrochemical mobilization from CT over plants alone, suggesting a peroxide-mediated mechanism for petrochemical degradation. TSTh grew on autoclaved CT, bitumen, and other petrochemicals as sole carbon sources. Further, TSTh is a micro-aerobe that could metabolize 13C-phenanthrene to 13CO2 in 0.5% oxygen. TSTh has excellent potential for contributing to revegetating and remediating petrochemical contamination.

  18. [Mobile genetic elements in plant sex evolution].

    Science.gov (United States)

    Gerashchenkov, G A; Rozhnova, N A

    2010-11-01

    The most significant theories of the appearance and maintenance of sex are presented. However, in the overwhelming majority of existing theories, the problem of sex, which is the central problem of evolutionary biology, is considered primarily through the prism of reproductive features of living organisms, whereas the issue of molecular driving forces of sexual reproduction id restricted to the possible role of mobile genetic elements (MGEs) in the appearance of sexual reproduction. The structural and functional significance of MGEs in the genomic organization of plants is illustrated. It is shown that MGEs could act as important molecular drivers of sex evolution in plants. The involvement of MGEs in the formation of sex chromosomes and possible participation in seeds-without-sex reproduction (apomixis) is discussed. Thus, the hypothesis on the active MGE participation in sex evolution is in good agreement with the modern views on pathways and directions of sex evolution in plants.

  19. Plant nutrient supply and movement. Report of a panel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-11-01

    Despite the emphasis given by the Agency to the more practical field experimentation in agriculture like soil fertility and fertilizer utilization, it is obvious that any long-term programme of soil fertility research must also take into account the fundamentals of plant nutrient supply and movement. Thus a large gap exists between the present methods used for predicting the response of a crop to fertilizer on any given soil and fundamental knowledge in soil physics, chemistry and biology. Only when precise determinations can be made of the quantity of ions in the soil solution, the adsorption complex, and the rate at which the exchange processes occur, will it be possible to develop a scientific basis for the evaluation of the nutrient status of soils and to make efficient fertilizer recommendations. Study of these processes, and others, such as ion movement as affected by water flow and diffusion phenomena, have been carried out on a very limited scale by individual scientists in widely separated institutes. Comparative lack of progress in this field is, at least in part, due to the absence of co-ordinated planning and exchange of information among scientists working on these problems, and it is for this reason that this meeting has been organized by the Agency. From the research point of view a co-ordinated research contract programme on plant nutrient supply and movement has already been initiated and at present there are six contractors. An essential feature of the programme is co-ordination, and this Panel partly represents the second planning meeting of these contractors. The discussions will, however, have wider scope, as other acknowledged specialists in the subject are participating in this Panel.

  20. Nutrient Leaching When Soil Is Part of Plant Growth Media

    Directory of Open Access Journals (Sweden)

    Sally D. Logsdon

    2017-07-01

    Full Text Available Soils can serve as sorbents for phosphorus (P, negating the need for artificial sorbents. The purpose of this study was to compare soils with different properties for their effect on nutrient levels in effluent. Four soils were mixed with sand and packed into columns 0.5 m long, with or without compost on the surface. Infiltration and effluent concentrations were measured before and after growing plants [Buffalograss (Buchloe dactyloides (Nutt. Engelm. and bluegrama grasses (Bouteloua gracilis H.B.K. and red clover (Trifolium pratense L.]. The growth media with compost at the surface had higher nutrient levels than the media without the compost, but the final effluent nitrate concentrations post-harvest were significantly lower for columns with the compost blanket (59 vs. 86 mg L−1. All of the nitrate concentrations were high (many >100 mg L−1 due to mineralization and nitrogen fixation. The final effluent P concentrations before planting were significantly higher in the soil with the most sand (0.71 mg L−1, and after harvest in the mixture that contained the high soil P levels (0.58 mg L−1. Some soils (high in aluminum or calcium were adequate sorbents for P without additions of other sorbents, but soils often generated too much nitrate in effluent.

  1. A REVIEW ON DIAGNOSIS OF NUTRIENT DEFICIENCY SYMPTOMS IN PLANT LEAF IMAGE USING DIGITAL IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    S Jeyalakshmi

    2017-05-01

    Full Text Available Plants, for their growth and survival, need 13 mineral nutrients. Toxicity or deficiency in any one or more of these nutrients affects the growth of plant and may even cause the destruction of the plant. Hence, a constant monitoring system for tracking the nutrient status in plants becomes essential for increase in production as well as quality of yield. A diagnostic system using digital image processing would diagnose the deficiency symptoms much earlier than human eyes could recognize. This will enable the farmers to adopt appropriate remedial action in time. This paper focuses on the review of work using image processing techniques for diagnosing nutrient deficiency in plants.

  2. 32P assessed phosphate uptake by tomato plants Hebros in relation to soil nutrient substance supplies

    International Nuclear Information System (INIS)

    Stoyanova, I.; Rankov, V.; Dimitrov, G.

    1978-01-01

    The uptake of phosphates by tomato plants, cv.Hebros, was assessed by 32 P in a vegetation pot experiment. Leached meadow-cinnamon soil was used, taken from a stationary field experiment to which, for a period of eight years, various rates of NPK were applied. As a result of that significant changes occurred in the soil nutrient substance supplies (concerning total and mobile forms of nitrogen, phosphorus, potassium, pH and salts concentration). It was established that the coefficient of phasphate utilization by tomato plants was the highest (19.15%) on soil receiving a N 210 P 210 K 210 fertilizer application. Long-term fertilization with higher rates at a 1:1:1 NPK ratio increased the content of nutrient substances in the soil, but the coefficient of utilization of available phosphate diminished and was lowest (11.40%) in the case when a N 960 P 960 K 720 mineral fertilizer rate was applied. Following prolonged mineral fertilization with growing N rates (from 240 up to 720 kg/ha) at a background of P 720 K 210 , the coefficient of phosphate utilization by tomato plants also diminished from 16.16 to 12.26%. (author)

  3. Interspecific nutrient transfer in a tallgrass prairie plant community

    International Nuclear Information System (INIS)

    Walter, L.E.F.; Hartnett, D.C.; Hetrick, B.A.D.; Schwab, A.P.

    1996-01-01

    Interplant nutrient transfer may be an important ecological process in grasslands, and may significantly influence plant neighborhood interactions. We investigated the potential for phosphorus transfer between the dominant grass Andropogon gerardii and several neighboring plant species in tallgrass prairie via a field 32PO4 labelling experiment. The mean amount of 32P received from donor shoots differed significantly among neighboring species and decreased with increasing distance from the donor. In general, forbs and cool-season C3 grasses received more labelled 32P than warm-season C4 grasses. Phosphorus transfer occurred over distances up to 0.5 m. The effects of species and distance on movement of phosphorus changed with increasing time after labelling. The relative mass of receiver and donor shoots did not affect amounts of 32P transfer. A benomyl fungicide treatment, applied to suppress mycorrhizal activity, likely did not affect existing vegetative hyphae and did not affect the amount of 32P transferred. These studies demonstrate that: (1) phosphorus is transferred among neighboring species in tallgrass prairie plant communities, (2) phosphorus may be transferred over significantly greater distances than reported in other grasslands, and (3) there is differential transfer among co-occurring species. Hypothesized mechanisms accounting for these patterns in tallgrass prairie include mycorrhizal hyphal interconnections and/or extensive and differential root and rhizosphere overlap among neighboring species

  4. The filter feeder Dreissena polymorpha affects nutrient, silicon, and metal(loid) mobilization from freshwater sediments.

    Science.gov (United States)

    Schaller, Jörg; Planer-Friedrich, Britta

    2017-05-01

    Organic sediments in aquatic ecosystems are well known sinks for nutrients, silicon, and metal(loid)s. Organic matter-consuming organisms like invertebrate shredders, grazers, and bioturbators significantly affect element fixation or remobilization by changing redox conditions or binding properties of organic sediments. Little is known about the effect of filter feeders, like the zebra mussel Dreissena polymorpha, an invasive organism in North American and European freshwater ecosystems. A laboratory batch experiment exposing D. polymorpha (∼1200 organisms per m 2 ) to organic sediment from a site contaminated with arsenic, copper, lead, and uranium revealed a significant uptake and accumulation of arsenic, copper, iron, and especially uranium both into the soft body tissues and the seashell. This is in line with previous observations of metal(loid) accumulation from biomonitoring studies. Regarding its environmental impact, D. polymorpha significantly contributed to mobilization of silicon, iron, phosphorus, arsenic, and copper and to immobilization of uranium (p < 0.001), probably driven by redox conditions, microbial activity within the gut system, or active control of element homeostasis. No net mobilization or immobilization was observed for zinc and lead, because of their low mobility at the prevailing pH of 7.5-8.5. The present results suggest that D. polymorpha can both ameliorate (nutrient mobilization, immobilization of toxicants mobile under oxic conditions) or aggravate negative effects (mobilization of toxicants mobile under reducing conditions) in ecosystems. Relating the results of the present study to observed population densities in natural freshwater ecosystems suggests a significant influence of D. polymorpha on element cycling and needs to be considered in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Growth and nutrient uptake of maize plants as affected by elemental ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... and Cu, thus characterized as deficient in these micro nutrients. Nitrogen, phosphorus (P) and ... play an important role in the protection of plants against nutrient stress and pests and synthesis of vitamins ..... Brassica oleracea is controlled by the expression and the activity of sulphate transporter. Plant Biol.

  6. Out of the shadows : multiple nutrient limitations drive relationships among biomass, light and plant diversity

    NARCIS (Netherlands)

    Harpole, W. Stanley; Sullivan, Lauren L.; Lind, Eric M.; Firn, Jennifer; Adler, Peter B.; Borer, Elizabeth T.; Chase, Jonathan; Fay Jennifer Firn, Philip A.; Hautier, Yann; Hillebrand, Helmut; MacDougall, Andrew S.; Seabloom, Eric W.; Bakker, Jonathan D.; Cadotte, Marc W; Chaneton, Enrique J; Chu, Chengjin; Hagenah, Nicole; Kirkman, Kevin; La Pierre, Kimberly J.; Moore, Joslin L.; Morgan, John W.; Prober, Suzanne M.; Risch, Anita C.; Schuetz, Martin; Stevens, Carly J.

    2017-01-01

    The paradigmatic hypothesis for the effect of fertilisation on plant diversity represents a one-dimensional trade-off for plants competing for below-ground nutrients (generically) and above-ground light: fertilisation reduces competition for nutrients while increasing biomass and thereby shifts

  7. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient

    Science.gov (United States)

    Anderson, T. Michael; Griffith, Daniel M.; Grace, James B.; Lind, Eric M.; Adler, Peter B.; Biederman, Lori A.; Blumenthal, Dana M.; Daleo, Pedro; Firn, Jennifer; Hagenah, Nicole; Harpole, W. Stanley; MacDougall, Andrew S.; McCulley, Rebecca L.; Prober, Suzanne M.; Risch, Anita C.; Sankaran, Mahesh; Schütz, Martin; Seabloom, Eric W.; Stevens, Carly J.; Sullivan, Lauren; Wragg, Peter; Borer, Elizabeth T.

    2018-01-01

    Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites.

  8. Microbial controls on metal mobility under the low nutrient fluxes found throughout the subsurface

    International Nuclear Information System (INIS)

    Boult, Stephen; Hand, Victoria L.; Vaughan, David J.

    2006-01-01

    Laboratory simulations and field studies of the shallow subsurface have shown that microbes and their extracellular products can influence the mobility of toxic metals from waste disposal sites. Modelling the transport of contaminants in groundwater may, therefore, require the input of microbial ecology data in addition to geochemical data, thus increasing the costs and the uncertainty of predictions. However, whether microbial effects on contaminant mobility occur extensively in the natural subsurface is unknown because the conditions under which they have been observed hitherto are generally unrepresentative of the average subsurface environment. Here, we show that microbial activity affects the mobility of a toxic trace metal (Cu) under the relatively low nutrient fluxes that dominate subsurface systems. More particularly, we show that under these low nutrient conditions, microbes and microbial products can immobilize metal but may themselves be subject to subsequent mobilization, thus complicating the pattern of metal storage and release. Our results show that the capability of microbes in the subsurface to change both the capacity of porous media to store metal, and the behaviour of metal that is released, is not restricted to the well researched environments close to sites of waste disposal. We anticipate our simulations will be a starting point for generating input data for transport models, and specifying the mechanism of metal remobilisation in environments more representative of the subsurface generally

  9. Probiotics for Plants? Growth Promotion by the Entomopathogenic Fungus Beauveria bassiana Depends on Nutrient Availability.

    Science.gov (United States)

    Tall, Susanna; Meyling, Nicolai V

    2018-03-28

    Cultivation of crops requires nutrient supplements which are costly and impact the environment. Furthermore, global demands for increased crop production call for sustainable solutions to increase yield and utilize resources such as nutrients more effectively. Some entomopathogenic fungi are able to promote plant growth, but studies over such effects have been conducted under optimal conditions where nutrients are abundantly available. We studied the effects of Beauveria bassiana (strain GHA) seed treatment on the growth of maize (Zea mays) at high and low nutrient conditions during 6 weeks in greenhouse. As expected, B. bassiana seed treatment increased plant growth, but only at high nutrient conditions. In contrast, the seed treatment did not benefit plant growth at low nutrient conditions where the fungus potentially constituted a sink and tended to reduce plant growth. The occurrence of endophytic B. bassiana in experimental plant tissues was evaluated by PCR after 6 weeks, but B. bassiana was not documented in any of the above-ground plant tissues indicating that the fungus-plant interaction was independent of endophytic establishment. Our results suggest that B. bassiana seed treatment could be used as a growth promoter of maize when nutrients are abundantly available, while the fungus does not provide any growth benefits when nutrients are scarce.

  10. Safe decommissioning of mobile nuclear power plant

    International Nuclear Information System (INIS)

    Paliukhovich, V.M.

    2002-01-01

    The paper addresses some issues for ensuring radiation safety during the process of decommissioning the 630 kW 'Pamir-630D' mobile nuclear power plant (MNPP). That nuclear power plant consisted of a gas cooled reactor (weight of 76.5t), gas turbine-driven set (76t), two control units (2'20t), and an auxiliary unit (20t). The reactor and turbine-driven set were supposed to be put on transport platforms and carried by tractors. The control and auxiliary units were set on track beds. The 'Pamir-630D' was constructed and tested in an appropriate building. The set-up time was no greater than six hours after all units of the MNPP had reached the site. The 'Pamir-630D' was ready to be moved to another site in 30 hours after the shut down. Service lifetime of 'Pamir-630D' was 10 years: 7 years of storage and 3 years of operation. Operational lifetime was no less than 10000 hours (non-stop operational period was no longer than 2000 hours). Dose rate at the boundary of the restrictive area was no more than 6.5 mR/h at the time of reactor operation and no greater than 300 mR/h on the side surface and 1000 mR/h on the end surface of the biological shielding of the reactor, 24 hours after shut down. (author)

  11. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    Science.gov (United States)

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-07-13

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.

  12. Plant Biomass Leaching for Nutrient Recovery in Closed Loop Systems Project

    Science.gov (United States)

    Zeitlin, Nancy P.; Wheeler, Raymond (Compiler); Lunn, Griffin

    2015-01-01

    Plants will be important for food and O2 production during long term human habitation in space. Recycling of nutrients (e.g., from waste materials) could reduce the resupply costs of fertilizers for growing these plants. Work at NASA's Kennedy Space Center has shown that ion exchange resins can extract fertilizer (plant essential nutrients) from human waste water, after which the residual brine could be treated with electrodialysis to recover more water and produce high value chemicals (e.g., acids and bases). In habitats with significant plant production, inedible biomass becomes a major source of solid waste. To "close the loop" we also need to recover useful nutrients and fertilizer from inedible biomass. We are investigating different approaches to retrieve nutrients from inedible plant biomass, including physical leaching with water, processing the biomass in bioreactors, changing the pH of leaching processing, and/or conducting multiple leaches of biomass residues.

  13. Nutrient Mass Balance for the Mobile River Basin in Alabama, Georgia, and Mississippi

    Science.gov (United States)

    Harned, D. A.; Harvill, J. S.; McMahon, G.

    2001-12-01

    The source and fate of nutrients in the Mobile River drainage basin are important water-quality concerns in Alabama, Georgia, and Mississippi. Land cover in the basin is 74 percent forested, 16 percent agricultural, 2.5 percent developed, and 4 percent wetland. A nutrient mass balance calculated for 18 watersheds in the Mobile River Basin indicates that agricultural non-point nitrogen and phosphorus sources and urban non-point nitrogen sources are the most important factors associated with nutrients in the streams. Nitrogen and phosphorus inputs from atmospheric deposition, crop fertilizer, biological nitrogen fixation, animal waste, and point sources were estimated for each of the 18 drainage basins. Total basin nitrogen inputs ranged from 27 to 93 percent from atmospheric deposition (56 percent mean), 4 to 45 percent from crop fertilizer (25 percent mean), animal waste (8 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Total basin phosphorus inputs ranged from 10 to 39 percent from atmospheric deposition (26 percent mean), 7 to 51 percent from crop fertilizer (28 percent mean), 20 to 64 percent from animal waste (41 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Nutrient outputs for the watersheds were estimated by calculating instream loads and estimating nutrient uptake, or withdrawal, by crops. The difference between the total basin inputs and outputs represents nutrients that are retained or processed within the basin while moving from the point of use to the stream, or in the stream. Nitrogen output, as a percentage of the total basin nitrogen inputs, ranged from 19 to 79 percent for instream loads (35 percent mean) and from 0.01 to 32 percent for crop harvest (10 percent mean). From 53 to 87 percent (75 percent mean) of nitrogen inputs were retained within the 18 basins. Phosphorus output ranged from 9 to 29 percent for instream loads (18 percent mean) and from 0.01 to 23 percent for crop harvest (7

  14. Effects of soil nutrient heterogeneity on intraspecific competition in the invasive, clonal plant Alternanthera philoxeroides.

    Science.gov (United States)

    Zhou, Jian; Dong, Bi-Cheng; Alpert, Peter; Li, Hong-Li; Zhang, Ming-Xiang; Lei, Guang-Chun; Yu, Fei-Hai

    2012-03-01

    Fine-scale, spatial heterogeneity in soil nutrient availability can increase the growth of individual plants, the productivity of plant communities and interspecific competition. If this is due to the ability of plants to concentrate their roots where nutrient levels are high, then nutrient heterogeneity should have little effect on intraspecific competition, especially when there are no genotypic differences between individuals in root plasticity. We tested this hypothesis in a widespread, clonal species in which individual plants are known to respond to nutrient heterogeneity. Plants derived from a single clone of Alternanthera philoxeroides were grown in the greenhouse at low or high density (four or 16 plants per 27·5 × 27·5-cm container) with homogeneous or heterogeneous availability of soil nutrients, keeping total nutrient availability per container constant. After 9 weeks, measurements of size, dry mass and morphology were taken. Plants grew more in the heterogeneous than in the homogeneous treatment, showing that heterogeneity promoted performance; they grew less in the high- than in the low-density treatment, showing that plants competed. There was no interactive effect of nutrient heterogeneity and plant density, supporting the hypothesis that heterogeneity does not affect intraspecific competition in the absence of genotypic differences in plasticity. Treatments did not affect morphological characteristics such as specific leaf area or root/shoot ratio. Results indicate that fine-scale, spatial heterogeneity in the availability of soil nutrients does not increase competition when plants are genetically identical, consistent with the suggestion that effects of heterogeneity on competition depend upon differences in plasticity between individuals. Heterogeneity is only likely to increase the spread of monoclonal, invasive populations such as that of A. philoxeroides in China.

  15. A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions.

    Science.gov (United States)

    Zhu, Qing; Riley, William J; Tang, Jinyun

    2017-04-01

    Terrestrial plants assimilate anthropogenic CO 2 through photosynthesis and synthesizing new tissues. However, sustaining these processes requires plants to compete with microbes for soil nutrients, which therefore calls for an appropriate understanding and modeling of nutrient competition mechanisms in Earth System Models (ESMs). Here, we survey existing plant-microbe competition theories and their implementations in ESMs. We found no consensus regarding the representation of nutrient competition and that observational and theoretical support for current implementations are weak. To reconcile this situation, we applied the Equilibrium Chemistry Approximation (ECA) theory to plant-microbe nitrogen competition in a detailed grassland 15 N tracer study and found that competition theories in current ESMs fail to capture observed patterns and the ECA prediction simplifies the complex nature of nutrient competition and quantitatively matches the 15 N observations. Since plant carbon dynamics are strongly modulated by soil nutrient acquisition, we conclude that (1) predicted nutrient limitation effects on terrestrial carbon accumulation by existing ESMs may be biased and (2) our ECA-based approach may improve predictions by mechanistically representing plant-microbe nutrient competition. © 2016 by the Ecological Society of America.

  16. Nutrient and metal uptake in wetland plants at stormwater detension ponds

    DEFF Research Database (Denmark)

    Istenic, Darja; Arias, Carlos Alberto; Brix, Hans

    2011-01-01

    Nutrients and metals were analysed in tissues of various wetland plants growing in stormwater detention ponds in Denmark. Nutrient and metal concentrations in below and aboveground tissues were compared to the concentrations of the adjacent sediment. The results showed accumulation of heavy metal...

  17. Effects of nutrients and fish on periphyton and plant biomass across a European latitudinal gradient

    NARCIS (Netherlands)

    Bécares, E.; Gomá, J.; Fernández-Aláez, M.; Fernández-Aláez, C.; Romo, S.; Rosa Miracle, M.; Ståhl-Delbanco, A.; Hansson, L-A.; Gyllström, M.; van de Bund, W.; Van Donk, E.; Kairesalo, T.; Hietala, J.; Stephen, D.; Balayla, D.; Moss, B.

    2008-01-01

    Replicated, factorial mesocosm experiments were conducted across Europe to study the effects of nutrient enrichment and fish density on macrophytes and on periphyton chlorophyll a (chl-a) with regard to latitude. Periphyton chl-a densities and plant decline were significantly related to nutrient

  18. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years

    Science.gov (United States)

    Ilyas Siddique; Vera Lex Engel; David Lamb; Gabriela B. Nardoto; Jean P.H.B. Ometto; Luiz A. Martinelli; Susanne. Schmidt

    2008-01-01

    Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations...

  19. Fungicidal seed coatings exert minor effects on arbuscular mycorrhizal fungi and plant nutrient content

    Science.gov (United States)

    Aims: Determine if contemporary, seed-applied fungicidal formulations inhibit colonization of plant roots by arbuscular mycorrhizal (AM) fungi, plant development, or plant nutrient content during early vegetative stages of several commodity crops. Methods: We evaluated seed-applied commercial fungic...

  20. RNA mobility in parasitic plant – host interactions

    Science.gov (United States)

    Kim, Gunjune

    2017-01-01

    ABSTRACT The parasitic plant Cuscuta exchanges mRNAs with its hosts. Systemic mobility of mRNAs within plants is well documented, and has gained increasing attention as studies using grafted plant systems have revealed new aspects of mobile mRNA regulation and function. But parasitic plants take this phenomenon to a new level by forming seamless connections to a wide range of host species, and raising questions about how mRNAs might function after transfer to a different species. Cuscuta and other parasitic plant species also take siRNAs from their hosts, indicating that multiple types of RNA are capable of trans-specific movement. Parasitic plants are intriguing systems for studying RNA mobility, in part because such exchange opens new possibilities for control of parasitic weeds, but also because they provide a fresh perspective into understanding roles of RNAs in inter-organismal communication. PMID:28277936

  1. The effect of elevated CO2 and temperature on nutrient uptake by plants grown in basaltic soil

    Science.gov (United States)

    Villasenor Iribe, E.; Dontsova, K.; Juarez, S.; Le Galliard, J. F.; Chollet, S.; Llavata, M.; Massol, F.; Barré, P.; Gelabert, A.; Daval, D.; Troch, P.; Barron-Gafford, G.; Van Haren, J. L. M.; Ferrière, R.

    2017-12-01

    Mineral weathering is an important process in soil formation. The interactions between the hydrologic, geologic and atmospheric cycles often determine the rate at which weathering occurs. Elements and nutrients weathered from the soil by water can be removed from soils in the runoff and seepage, but they can also remain in situ as newly precipitated secondary minerals or in biomass as a result of plant uptake. Here we present data from an experiment that was conducted at the controlled environment facility, Ecotron Ile-de-France (Saint-Pierre-les-Nemours, France) that studied mineral weathering and plant growth in granular basaltic material with high glass content that is being used to simulate soil in large scale Biosphere 2 Landscape Evolution Observatory (LEO) project. The experiment used 3 plant types: velvet mesquite (Prosopis velutina), green spangletop (Leptochloa dubia), and alfalfa (Medicago sativa), which were grown under varying temperature and CO2 conditions. We hypothesized that plants grown under warmer, higher CO2 conditions would have larger nutrient concentrations as more mineral weathering would occur. Results of plant digestions and analysis showed that plant concentrations of lithogenic elements were significantly influenced by the plant type and were different between above- and below-ground parts of the plant. Temperature and CO2 treatment effects were less pronounced, but we observed significant temperature effect on plant uptake. A number of major and trace elements showed increase in concentration with increase in temperature at elevated atmospheric CO2. Effect was observed both in the shoots and in the roots, but more significant differences were observed in the shoots. Results presented here indicate that climate change would have strong effect on plant uptake and mobility of weathered elements during soil formation and give further evidence of interactions between abiotic and biological processes in terrestrial ecosystems.

  2. Ash characteristics and plant nutrients in some aquatic biomasses

    Science.gov (United States)

    Masto, Reginald; Pandit, Ankita; George, Joshy; Mukhopadhyay, Sangeeta; Selvi, Vetrivel; Ram, Lal

    2016-04-01

    is released at 800 °C. The salgging tendencies based on both base: acid ratio and slagging factor, fouling probabilities based on fouling factors is in the order Hydrilla > Eichornia > Lemna > Spirogyra. Among the different heavy metals Zn, Pb, Cu, and Ni have concentration > 100 mg/kg; Cr and V content was > 50 mg/kg; Co, > 10 mg/kg. In general the heavy metal contents were higher in Spirogyra. Due to the volatile nature Cd and Pb decreases in ash with temperature and is lost continuously in flue gas. Plant nutrient content was relatively higher for Eichornia: K (8 - 12.8 %), P (5.7 - 7.3 %), Ca (9.2 - 10.8 %), Mg (2.8 - 3.6 %), S (1.9 - 2.9 %), Zn (0.033 - 0.045 %), Fe (3.3 - 4.7 %), Cu (0.009 - 0.013 %), Mn (0.8 -1.3%). Among the four biomasses we have studied, Eichornia could be a potential candidate for energy extraction in view of its C content and widespread availability in many parts of the globe, and fast multiplication associated with the eutrophication of water bodies.

  3. Litter Accumulation and Nutrient Content of Roadside Plant Communities in Sichuan Basin, China

    OpenAIRE

    He, Huiqin; Monaco, Thomas

    2017-01-01

    It is widely recognized that feedbacks exist between plant litter and plant community species composition, but this relationship is difficult to interpret over heterogeneous conditions typical of modified environments such as roadways. Given the need to expedite natural recovery of disturbed areas through restoration interventions, we characterized litter accumulation and nutrient content (i.e., organic carbon, total N, and P) and quantified their association with key plant species. Plant spe...

  4. Examining Dehydration and Hypoxic Stress in Wheat Plants Using a Porous Tube Plant Nutrient Delivery System Developed for Microgravity

    Science.gov (United States)

    Dreschel, T. W.; Hall, C. R.; Foster, T. E.; Salganic, M.; Warren, L.; Corbett, M.

    2005-01-01

    The Porous Tube Plant Nutrient Delivery System (PTPNDS) was designed for NASA to grow plants in microgravity of space. The system utilizes a controlled fluid loop to supply nutrients and water to plant roots growing on a ceramic surface moistened by capiflary action. A PTPNDS test bed was developed and utilizing remote sensing systems, spectral analyses procedures, gas-exchange, and fluorescence measurements, we examined differences in plant water status for wheat plants (Triticum aestivum, cv. Perigee) grown in a modified growth chamber during the summers of 2003 and 2004. Some differences in plant performance were detectable in the gas-exchange and fluorescence measurements. For instance, in both years the plants grown with the most available water had the lowest rates of photosynthesis and exhibited higher proportions of non-photochemical quenching particularly under low light levels. In addition, small differences in mean leaf water content between treatments were detected using spectral reflectance analyses.

  5. A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake.

    OpenAIRE

    Osorio Vega, Nelson Walter

    2011-01-01

    Este artículo se constituye en una revisión de los beneficios de bacterias rizosféricas sobre la nutrición vegetal. La interacción entre planta y bacterias solubilizadoras de fosfato es explicada en mayor detalle y usada como modelo para ilustrar el rol que algunas bacterias de la rizosfera juegan en la disponibilidad de nutrientes en el suelo. Las condiciones ambientales de la rizosfera también se discuten con detalle. Los beneficios de estas bacterias han sido obtenidos, y mejorados, en pre...

  6. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients

    NARCIS (Netherlands)

    Meisner, A.; De Boer, W.; Cornelissen, J.H.C.; Van der Putten, W.H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to

  7. Dynamics of water and nutrients for potted plants induced by flooded bench fertigation : experiments and simulation

    NARCIS (Netherlands)

    Otten, W.

    1994-01-01

    Dynamics of water and nutrients as affected by physical and chemical characteristics of a substrate, fertigation method and schedule, and plant uptake were studied for a flooded bench fertigation system for potted plants, through a detailed experimental study of the root environment and a

  8. Competition for light and nutrients in layered communities of aquatic plants

    NARCIS (Netherlands)

    Van Gerven, Luuk P.A.; de Klein, J.J.M; Gerla, Daan J.; Kooi, B.W.; Kuiper, Jan J.; Mooij, Wolf M.

    2015-01-01

    Dominance of free-floating plants poses a threat to biodiversity in many freshwater ecosystems. Here we propose a theoretical framework to understand this dominance, by modeling the competition for light and nutrients in a layered community of floating and submerged plants. The model shows that at

  9. Competition for Light and Nutrients in Layered Communities of Aquatic Plants

    NARCIS (Netherlands)

    van Gerven, L.P.A.; de Klein, J.J.M.; Gerla, D.J.; Kooi, B.W.; Kuiper, J.J.; Mooij, W.M.

    2015-01-01

    Dominance of free-floating plants poses a threat to biodiversity in many freshwater ecosystems. Here we propose a theoretical framework to understand this dominance, by modeling the competition for light and nutrients in a layered community of floating and submerged plants. The model shows that at

  10. Competition for light and nutrients in layered communities of aquatic plants

    NARCIS (Netherlands)

    Gerven, van Luuk P.A.; Klein, de Jeroen J.M.; Gerla, Daan J.; Kooi, Bob W.; Kuiper, Jan J.; Mooij, Wolf M.

    2015-01-01

    Dominance of free-floating plants poses a threat to biodiversity in many freshwater ecosystems. Here we propose a theoretical framework to understand this dominance, by modeling the competition for light and nutrients in a layered community of floating and submerged plants. The model shows that

  11. Competition for light and nutrients in layered communities of aquatic plants.

    Science.gov (United States)

    van Gerven, Luuk P A; de Klein, Jeroen J M; Gerla, Daan J; Kooi, Bob W; Kuiper, Jan J; Mooij, Wolf M

    2015-07-01

    Dominance of free-floating plants poses a threat to biodiversity in many freshwater ecosystems. Here we propose a theoretical framework to understand this dominance, by modeling the competition for light and nutrients in a layered community of floating and submerged plants. The model shows that at high supply of light and nutrients, floating plants always dominate due to their primacy for light, even when submerged plants have lower minimal resource requirements. The model also shows that floating-plant dominance cannot be an alternative stable state in light-limited environments but only in nutrient-limited environments, depending on the plants' resource consumption traits. Compared to unlayered communities, the asymmetry in competition for light-coincident with symmetry in competition for nutrients-leads to fundamentally different results: competition outcomes can no longer be predicted from species traits such as minimal resource requirements ([Formula: see text] rule) and resource consumption. Also, the same two species can, depending on the environment, coexist or be alternative stable states. When applied to two common plant species in temperate regions, both the model and field data suggest that floating-plant dominance is unlikely to be an alternative stable state.

  12. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Science.gov (United States)

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Impact of chemical oxidation on indigenous bacteria and mobilization of nutrients and subsequent bioremediation of crude oil-contaminated soil.

    Science.gov (United States)

    Xu, Jinlan; Deng, Xin; Cui, Yiwei; Kong, Fanxing

    2016-12-15

    Fenton pre-oxidation provides nutrients to promote bioremediation. However, the effects of the indigenous bacteria that remain following Fenton oxidation on nutrient mobilization and subsequent bioremediation remain unclear. Experiments were performed with inoculation with native bacteria and foreign bacteria or without inoculation after four regimens of stepwise pre-oxidations. The effects of the indigenous bacteria remaining after stepwise oxidation on nutrient mobilization and subsequent bioremediation over 80 days were investigated. After stepwise Fenton pre-oxidation at a low H 2 O 2 concentration (225×4), the remaining indigenous bacterial populations reached their peak (4.8±0.17×10 6 CFU/g), the nutrients were mobilized rapidly, and the subsequent bioremediation of crude oil was improved (biodegradation efficiency of 35%). However, after stepwise Fenton pre-oxidation at a high H 2 O 2 concentration (450×4), only 3.6±0.16×10 3 CFU/g of indigenous bacteria remained, and the indigenous bacteria that degrade C 15 -C 30 alkanes were inhibited. The nutrient mobilization was then highly limited, and only 19% of total petroleum hydrocarbon was degraded. Furthermore, the recovery period after the low H 2 O 2 concentration stepwise Fenton pre-oxidation (225×4) was less than 20 days, which was 20-30 days shorter than with the other pre-oxidation treatments. Therefore, stepwise Fenton pre-oxidation at a low H 2 O 2 concentration protects indigenous bacterial populations and improves the nutrient mobilization and subsequent bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparative growth behaviour and leaf nutrient status of native trees planted on mine spoil with and without nutrient amendment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Singh, J.S. [Banaras Hindu University, Varanasi (India). Dept. of Botany

    2001-07-01

    The effect of nutrient amendment on growth of nine indigenous tree species planted on coal mine spoil was studied. Greater growth in fertilized plots was accompanied by greater foliar N and P concentrations in all species. The response to fertilization varied among species and was greater in non-leguminous than in leguminous species. Furthermore, leguminous species exhibited higher growth rates compared to non-leguminous species. Acacia catechu, Dalbergia sissoo, Gmelina arborea and Azadirachta indica fitted the elastic similarity model of tree growth; whereas Pongamia pinnata and Phyllanthus emblica followed the constant stress model. Tectona grandis was the only species which fitted the geometric similarity model.

  15. Turning the table: plants consume microbes as a source of nutrients.

    Directory of Open Access Journals (Sweden)

    Chanyarat Paungfoo-Lonhienne

    Full Text Available Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively, we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles.

  16. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China

    Science.gov (United States)

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-01

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m−2 year−1) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China. PMID:25631373

  17. Adaptive radiation with regard to nutrient sequestration strategies in the carnivorous plants of the genus Nepenthes

    OpenAIRE

    Pavlovič, Andrej

    2012-01-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved a great diversity of pitcher morphologies. Selective pressures for maximizing nutrient uptake have driven speciation and diversification of the genus in a process known as adaptive radiation. This leads to the evolution of pitchers adapted to specific and often bizarre source of nutrients, which are not strictly animal-derived. One example is Nepenthes ampullaria with unusual growth pattern and pitcher morphology what enables the ...

  18. Nutrient status and plant growth effects of forest soils in the Basin of Mexico

    Science.gov (United States)

    Mark E. Fenn; V.M. Perea-Estrada; L.I. de Bauer; M. Pérez-Suárez; D.R. Parker; V.M. Cetina-Alcalá

    2006-01-01

    The nutrient status of forest soils in the Mexico City Air Basin was evaluated by observing plant growth responses to fertilization with N, P or both nutrients combined. P deficiency was the most frequent condition for soil from two high pollution sites and N deficiency was greatest at a low N deposition site. Concentrations of Pb and Ni, and to a lesser extent Zn and...

  19. Growth Responses of Three Dominant Wetland Plant Species to Various Flooding and Nutrient Levels

    Science.gov (United States)

    Barrett, S.; Shaffer, G. P.

    2017-12-01

    Coastal Louisiana is experiencing a greater rate of wetland loss than any other wetland system in the United States. This is primarily due to anthropogenic stressors such as flood control levees, backfilling and development of wetlands, and other hydrologic modifications. Methods employed to mitigate wetland loss include the construction of river diversions and assimilation wetlands, which can provide consistent sources of freshwater influx and nutrients to impounded swamps and marshes. It is well known that prolonged flooding causes strain on wetland plant communities and facilitates or exacerbates wetland degradation. However, because river diversions and assimilation wetlands bring high nutrient loads along with freshwater, there is debate over whether prolonged flooding or high influx of nutrients is the primary cause of stress in river diversion and assimilation wetland discharge areas. This mesocosm experiment addresses this question by isolating the effects of flooding and nutrients on the biomass of baldcypress (Taxodium distichum), maidencane (Panicum hemitomon), and cordgrass (Spartina patens) over the course of a growing season. The results of this study provide clarity as to whether flooding stress, high nutrient loads, or both cause a reduction in wetland plant productivity. By evaluating the growth responses of T. distichum, P. hemitomon, and S. patens at varying nutrient regimes, we gain insight on how these more dominant species will react to high nutrient discharges from large river diversions, such as those proposed in Louisiana's 2017 Master Plan.

  20. Testing of mobile surveillance robot at a nuclear power plant

    International Nuclear Information System (INIS)

    White, J.R.; Harvey, H.W.; Farnstrom, K.A.

    1987-01-01

    In-plant testing of a mobile surveillance robot (SURBOT) was performed at the Browns Ferry Nuclear Plant by TVA personnel. The results verified that SURBOT can be used for remote surveillance in 54 separate controlled radiation rooms at the plant. High-quality color video, audio, and other data are collected, digitized by an on-board computer, and transmitted through a cable to the control console for real-time display and videotaping. TVA projects that the use of SURBOT for surveillance during plant operation will produce annual savings of about 100 person-rem radiation exposure and $200,000 in operating costs. Based on the successful results of this program, REMOTEC is now commercializing the SURBOT technology on both wheeled and tracked mobile robots for use in nuclear power plants and other hazardous environments

  1. Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem

    Science.gov (United States)

    Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah

    2016-10-01

    Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant

  2. The performance of plant species in removing nutrients from ...

    African Journals Online (AJOL)

    2011-10-26

    Oct 26, 2011 ... but offered no explicit guidance about how these water quality targets might be achieved. ... the limited knowledge that exists about the performance of local plant ...... reuse: designing biofiltration systems for reliable treatment.

  3. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions

    Science.gov (United States)

    Gebremikael, Mesfin T.; Steel, Hanne; Buchan, David; Bert, Wim; de Neve, Stefaan

    2016-09-01

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.

  4. Are ant feces nutrients for plants? A metabolomics approach to elucidate the nutritional effects on plants hosting weaver ants

    DEFF Research Database (Denmark)

    Vidkjær, Nanna Hjort; Wollenweber, Bernd; Gislum, René

    2015-01-01

    Weaver ants (genus Oecophylla) are tropical carnivorous ant species living in high numbers in the canopies of trees. The ants excrete copious amounts of fecal matter on leaf surfaces, and these feces may provide nutrients to host trees. This hypothesis is supported by studies of ant......-plant interactions involving other ant species that have demonstrated the transfer of nutrients from ants to plants. In this 7-months study, a GC–MS-based metabolomics approach along with an analysis of total nitrogen and carbon levels was used to study metabolic changes in ant-hosting Coffea arabica plants compared...... with control plants. The results showed elevated levels of total nitrogen, amino acids, fatty acids, caffeine, and secondary metabolites of the phenylpropanoid pathway in leaves from ant-hosting plants. Minor effects were observed for sugars, whereas little or no effect was observed for organic acids, despite...

  5. Plant Size and Competitive Dynamics along Nutrient Gradients.

    Science.gov (United States)

    Goldberg, Deborah E; Martina, Jason P; Elgersma, Kenneth J; Currie, William S

    2017-08-01

    Resource competition theory in plants has focused largely on resource acquisition traits that are independent of size, such as traits of individual leaves or roots or proportional allocation to different functions. However, plants also differ in maximum potential size, which could outweigh differences in module-level traits. We used a community ecosystem model called mondrian to investigate whether larger size inevitably increases competitive ability and how size interacts with nitrogen supply. Contrary to the conventional wisdom that bigger is better, we found that invader success and competitive ability are unimodal functions of maximum potential size, such that plants that are too large (or too small) are disproportionately suppressed by competition. Optimal size increases with nitrogen supply, even when plants compete for nitrogen only in a size-symmetric manner, although adding size-asymmetric competition for light does substantially increase the advantage of larger size at high nitrogen. These complex interactions of plant size and nitrogen supply lead to strong nonlinearities such that small differences in nitrogen can result in large differences in plant invasion success and the influence of competition along productivity gradients.

  6. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes.

    Science.gov (United States)

    Bowles, Timothy M; Jackson, Louise E; Cavagnaro, Timothy R

    2018-01-01

    Climate change will alter both the amount and pattern of precipitation and soil water availability, which will directly affect plant growth and nutrient acquisition, and potentially, ecosystem functions like nutrient cycling and losses as well. Given their role in facilitating plant nutrient acquisition and water stress resistance, arbuscular mycorrhizal (AM) fungi may modulate the effects of changing water availability on plants and ecosystem functions. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant mycorrhiza-defective tomato genotype rmc were grown in microcosms in a glasshouse experiment manipulating both the pattern and amount of water supply in unsterilized field soil. Following 4 weeks of differing water regimes, we tested how AM fungi affected plant productivity and nutrient acquisition, short-term interception of a 15NH4+ pulse, and inorganic nitrogen (N) leaching from microcosms. AM fungi enhanced plant nutrient acquisition with both lower and more variable water availability, for instance increasing plant P uptake more with a pulsed water supply compared to a regular supply and increasing shoot N concentration more when lower water amounts were applied. Although uptake of the short-term 15NH4+ pulse was higher in rmc plants, possibly due to higher N demand, AM fungi subtly modulated NO3- leaching, decreasing losses by 54% at low and high water levels in the regular water regime, with small absolute amounts of NO3- leached (<1 kg N/ha). Since this study shows that AM fungi will likely be an important moderator of plant and ecosystem responses to adverse effects of more variable precipitation, management strategies that bolster AM fungal communities may in turn create systems that are more resilient to these changes. © 2017 John Wiley & Sons Ltd.

  7. The introduction of mobile plant clinics to Uganda

    DEFF Research Database (Denmark)

    Danielsen, Solveig; Mutebi, Emmanuel

    Four mobile (or community-based) plant health clinics were started in Uganda on a pilot basis in 2005 as an attempt to ensure better plant health advisory services for small-scale farmers.  This new way of delivering primary plant healthcare to farmers has attracted wider interest and the Ministry......, Makerere University and CABI. The purpose of this study was to gather results and lessons learned from the pilot period to inform future plant clinic interventions. The study covers issues of organisation and management, clinic operation and performance as well as clinic use and preliminary evidence...

  8. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions

    Science.gov (United States)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, M.

    2000-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  9. Improving Lowland Rice (O. sativa L. cv. MR219 Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    Directory of Open Access Journals (Sweden)

    Perumal Palanivell

    2015-01-01

    Full Text Available High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1. Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1 significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1 and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  10. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    Science.gov (United States)

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  11. Finding the harvesting frequency to maximize nutrient removal in a constructed wetland dominated by submerged aquatic plants

    NARCIS (Netherlands)

    Verhofstad, M.J.J.M.; Poelen, M.D.M.; Van Kempen, M.M.L.; Bakker, E.S.; Smolders, A.J.P.

    2017-01-01

    Water quality is still poor in many freshwater ecosystems around the world as a result of anthropogenic nutrient loading. Constructed wetlands can be used to remove excess nutrients. In these wetlands, helophytes or free floating aquatic plants are traditionally used to absorb the nutrients. The

  12. Investigation of 35S NE-78241 mobility in plants

    International Nuclear Information System (INIS)

    Enisz, J.; Orsos, S.

    1982-01-01

    The mobility of 35 S NE-78241 (N-iso-thiocyanato-methyl-2,6-dimethyl-chloracetanilide) in plants has been studied. The compound is not absorbed via the leaves from aqueous solutions. It shows active transport through the root-system. It is strongly bound to soil. In bean plant (Phaseolus vulgaris) inoculated with Uromyces appendiculatus 35 S NE-78241 is selectively enriched at the place of infection. (author)

  13. Nutrient acquisition and secondary metabolites in plant pathogenic fungi

    DEFF Research Database (Denmark)

    Droce, Aida

    Fusarium graminearum is a necrotrophic plant pathogen that leads to severe infections of cereals contaminating them with mycotoxins harmful to human and animal. Blumeria graminis f. sp. hordei is an obligate biotroph that causes powdery mildew infections of barley. In this thesis, lifecycles and ...

  14. Comparison of plant nutrient contents in vermicompost from selected ...

    African Journals Online (AJOL)

    In this experiment, earthworm, Eudrilus eugeniae was fed with different plant residues: grass clippings, sago waste and rice straw. These organic wastes were also left to decompose naturally as the control. Analysis on samples vermicompost showed that humic acid content was highest in rice straw, followed by grass ...

  15. A targeted management of the nutrient solution in a soilless tomato crop according to plant needs

    Directory of Open Access Journals (Sweden)

    Angelo eSignore

    2016-03-01

    Full Text Available The adoption of closed soilless systems is useful in minimizing the environmental impact of the greenhouse crops. Instead, a significant problem in closed soilless systems is represented by the accumulation of ions in the recycled nutrient solution, in particular the unabsorbed or poorly absorbed ones. To overcome such problem, we: 1 studied the effect of several values of the electrical conductivity (EC of nutrient solution in a NFT (Nutrient Film Technique system on a cherry type tomato crop, and 2 define a NS (called recovery solution, based on the concept of uptake concentration and transpiration-biomass ratio, that fits the real needs of the plant with respect to water and nutrients. Three levels of EC set point (SP, above which the NS was completely replaced (SP5, SP7.5, and SP10 for the EC limit of 5, 7.5 and 10 dS m-1, respectively, were established. The SP10 treatment yield was not different from other treatments, and it allowed a better quality of the berries (for dry matter and total soluble solids and higher environmental sustainability due to a lower discharge of total nutrients into the environment (37 and 59% with respect to SP7.5 and SP5, respectively.The recovery solution used in the second trial allowed a more punctual NS management, by adapting to the real needs of the crop. Moreover, it allowed a lesser amount of water and nutrients to be discharged into the environment and a better use of brackish water, due to a more accurate management of the EC of the NS. The targeted management, based on transpiration-biomass ratio, indicates that, in some stages of the plant cycle, the nutrient solution used can be diluted, in order to save water and nutrients. With such management a closed cycle can be realized without affecting the yield, but improving the quality of the tomato berries.

  16. Plant rhizosphere processes influencing radionuclide mobility in soil

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Cowan, C.E.; McFadden, K.M.; Garland, T.R.; Wildung, R.E.

    1987-10-01

    Native vegetation associated with commercial low-level waste disposal sites has the potential for modifying the soil chemical environment over the long term and, consequently, the mobility of radionuclides. These effects were assessed for coniferous and hardwood tree species by using plants grown in lysimeter systems and examining their influence on soil solution chemistry using advanced analytical and geochemical modeling techniques. The study demonstrated formation of highly mobile anionic radionuclide complexes with amino acids, peptides, and organic acids originating from plant leaf litter and roots. The production of complexing agents was related to season and tree species, suggesting that vegetation management and exclusion may be appropriate after a site is closed. This research provides a basis for focusing on key complexing agents in future studies to measure critical affinity constants and to incorporate this information into mathematical models describing biological effects on radionuclide mobility. 26 refs., 5 figs., 23 tabs

  17. New Ways to Determine Plant Nutrient Deficiences Using Fast Spectroscopy

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Marie

    In a global perspective, the agricultural sector is right now facing its biggest challenge ever. The world population is rapidly increasing, and food production has to grow at the same, or higher, speed to be able to feed everyone. At the same time, the effect on environmental and natural resources...... must be limited. Over-fertilization must be stopped to secure aquatic environments and to reduce greenhouse gas emissions, caused by production and use of inorganic fertilizers. For production of P fertilizer, furthermore a non-renewable natural resource is used, which is expected to be exhausted...... for soil and plant analysis are described and the usability of each technique is discussed. Focus is put particularly on the newest methods for plant analysis based on fast spectroscopy, such as visual and near-infrared (Vis-NIR) reflectance and chlorophyll a fluorescence. These methods enable easy, fast...

  18. Studies on uptake and translocation of some nutrient elements in plant

    International Nuclear Information System (INIS)

    Aly, S.S.M.

    1985-01-01

    The main objective of this work is to study the uptake and translocation of some nutrients. In this respect, two experiments, dealing with 3 2 P and 6 5 Zn, were conducted using a sandy clay loam soil where corn plants were grown to study such influence on the uptake and translocation of P, Zn, N and K.The utilization of P and Zn fertilizers by corn plants as well as the production of dry matter yield were considered. Chemical analysis of some mineral components and assay of radioactive materials 3 2 P and 6 5 Zn of both plant and soil and the dry weight of corn plants were estimated

  19. Adaptive radiation with regard to nutrient sequestration strategies in the carnivorous plants of the genus Nepenthes.

    Science.gov (United States)

    Pavlovič, Andrej

    2012-02-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved a great diversity of pitcher morphologies. Selective pressures for maximizing nutrient uptake have driven speciation and diversification of the genus in a process known as adaptive radiation. This leads to the evolution of pitchers adapted to specific and often bizarre source of nutrients, which are not strictly animal-derived. One example is Nepenthes ampullaria with unusual growth pattern and pitcher morphology what enables the plant to capture a leaf litter from the canopy above. We showed that the plant benefits from nitrogen uptake by increased rate of photosynthesis and growth what may provide competitive advantage over others co-habiting plants. A possible impact of such specialization toward hybridization, an important mechanism in speciation, is discussed.

  20. A mobile water analysis laboratory for the study of stream nutrient and DOC dynamics

    Science.gov (United States)

    Echevarria Roman, Y.; Pullin, M. J.; Schwingle, R.; Gabrielsen, P. J.

    2013-12-01

    The dynamics of nutrient and dissolved organic carbon (DOC) quantity and composition in streams vary with season and in response to hydrologic events. Periodic grab sampling can capture some of this variation, but has also been shown to miss high flow events. Sampling during winter, during thunderstorms, and at night is difficult and sometimes hazardous. For these reasons, we have developed a mobile laboratory that autonomously determines pH, Eh, conductivity, dissolved oxygen, turbidity, nitrate, phosphate, DOC, DIC, as well as DOC fluorescence and absorbance continuously on a minutes timescale. The laboratory includes a Labview operated computer system that allows remote control and interaction with pumps, pressure, temperature, and flow sensors as well as the analytical instruments. Climate control allows for operation in winter. The design and operation of this laboratory will be presented. We will also discuss example data showing diurnal changes and responses to hydrologic events in DOC quantity and quality in the East Fork of the Jemez River, New Mexico.

  1. The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants

    International Nuclear Information System (INIS)

    Saatz, Jessica; Vetterlein, Doris; Mattusch, Jürgen; Otto, Matthias; Daus, Birgit

    2015-01-01

    Rare earth elements (REE) are expected to become pollutants by enriching in the environment due to their wide applications nowadays. The uptake and distribution of gadolinium and yttrium and its influence on biomass production and nutrient balance was investigated in hydroponic solution experiments with maize plants using increasing application doses of 0.1, 1 and 10 mg L −1 . It could be shown that concentrations of up to 1 mg L −1 of Gd and Y did not reduce or enhance the plant growth or alter the nutrient balance. 10 mg L −1  Gd or Y resulted in REE concentrations of up to 1.2 weight-% in the roots and severe phosphate deficiency symptoms. Transfer rates showed that there was only little transport of Gd and Y from roots to shoots. Significant correlations were found between the concentration of Gd and Y in the nutrient solution and the root tissue concentration of Ca, Mg and P. - Highlights: • Roots accumulate REE in very high concentrations. • Transfer factors from root to shoot tissue are very low, with HREE higher than MREE. • The nutrient balance of the plant is severely influenced by REE addition. • Phosphate deficiency appears at high concentrations of REE addition. - The addition of the rare-earth elements Gd and Y results in less Ca and Mg uptake and phosphate deficiency in maize plants grown in hydroponics

  2. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis

    NARCIS (Netherlands)

    Graaff, de M.A.; Groenigen, van K.J.; Six, J.; Hungate, B.; Kessel, van C.

    2006-01-01

    free air carbon dioxide enrichment (FACE) and open top chamber (OTC) studies are valuable tools for evaluating the impact of elevated atmospheric CO2 on nutrient cycling in terrestrial ecosystems. Using meta-analytic techniques, we summarized the results of 117 studies on plant biomass production,

  3. Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist V.; Jeppsson, Ulf

    2012-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  4. Foliar mineral nutrient uptake in carnivorous plants: What do we know and what should we know?

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2013-01-01

    Roč. 4, č. 10 (2013), s. 1-3 ISSN 1664-462X R&D Projects: GA ČR(CZ) GAP504/11/0783 Institutional support: RVO:67985939 Keywords : terrestrial and aquatic carnivorous plant s * stimulation of root nutrient uptake * Utricularia traps Subject RIV: EF - Botanics Impact factor: 3.637, year: 2013

  5. Determination of Plant-Available Nutrients in Two Wood Ashes: the Influence of Combustion Conditions

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Ochecová, P.; Száková, J.; Hanzlíček, Tomáš; Tlustoš, P.

    2016-01-01

    Roč. 47, 13/14 (2016), 1664-1674 ISSN 0010-3624 R&D Projects: GA MZe QI102A207 Institutional support: RVO:67985891 Keywords : combustion condition * crystal phases * fertilizer * plant-available nutrients * wood ash Subject RIV: DM - Solid Waste and Recycling Impact factor: 0.589, year: 2016

  6. Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff

    Science.gov (United States)

    Leonard F. DeBano; Raymond M. Rice; Conrad C. Eugene

    1979-01-01

    This state-of-the-art report summarizes what is known about the effects of heat on soil during chaparral fires. It reviews the literature on the effects of such fires on soil properties, availabilty and loss of plant nutrients, soil wettability, erosion, and surface runoff. And it reports new data collected during recent prescribed burns and a wildfire in southern...

  7. Nutrient-enhanced decomposition of plant biomass in a freshwater wetland

    Science.gov (United States)

    Bodker, James E.; Turner, Robert Eugene; Tweel, Andrew; Schulz, Christopher; Swarzenski, Christopher M.

    2015-01-01

    We studied soil decomposition in a Panicum hemitomon (Schultes)-dominated freshwater marsh located in southeastern Louisiana that was unambiguously changed by secondarily-treated municipal wastewater effluent. We used four approaches to evaluate how belowground biomass decomposition rates vary under different nutrient regimes in this marsh. The results of laboratory experiments demonstrated how nutrient enrichment enhanced the loss of soil or plant organic matter by 50%, and increased gas production. An experiment demonstrated that nitrogen, not phosphorus, limited decomposition. Cellulose decomposition at the field site was higher in the flowfield of the introduced secondarily treated sewage water, and the quality of the substrate (% N or % P) was directly related to the decomposition rates. We therefore rejected the null hypothesis that nutrient enrichment had no effect on the decomposition rates of these organic soils. In response to nutrient enrichment, plants respond through biomechanical or structural adaptations that alter the labile characteristics of plant tissue. These adaptations eventually change litter type and quality (where the marsh survives) as the % N content of plant tissue rises and is followed by even higher decomposition rates of the litter produced, creating a positive feedback loop. Marsh fragmentation will increase as a result. The assumptions and conditions underlying the use of unconstrained wastewater flow within natural wetlands, rather than controlled treatment within the confines of constructed wetlands, are revealed in the loss of previously sequestered carbon, habitat, public use, and other societal benefits.

  8. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  9. International symposium on nuclear techniques in integrated plant nutrient, water and soil management. Book of extended synopses

    International Nuclear Information System (INIS)

    2000-10-01

    This document contains extended synopsis of 92 papers presented at the International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water, and Soil Management held in Vienna, Austria, 16-20 October 2000. The efficient use of plant nutrient and fertilizer using carbon 13 and nitrogen 15 tracers; plant water use using oxygen 18 and moisture gauges, as well as soil and plant radioactivity monitoring, are some of the major subjects covered by these papers

  10. Aliens. Plantes mobiles et experts en mutation

    OpenAIRE

    Matthey, Laurent; Fall, Juliet Jane

    2008-01-01

    Berce du Caucase, Renouée du Japon, Séneçon du Cap, Solidage du Canada : le monde s’invite dans nos jardins et nos paysages. Or, cet exotisme botanique, longtemps valorisé et promu par les Sociétés d’acclimatation, est aujourd’hui perçu comme un important problème écologique. Hors des limites contrôlées de nos jardins publics ou privés, ces plantes nous envahissent. Elles se mobilisent, concurrencent nos espèces indigènes, se dotent de pouvoirs allergènes et nous nuisent.

  11. Plant rhizosphere processes influencing the mobility of radionuclides in soils

    International Nuclear Information System (INIS)

    Cowan, C.E.; Cataldo, D.A.; McFadden, K.M.; Garland, T.R.; Wildung, R.E.

    1988-06-01

    Native vegetation associated with commercial low-level waste disposal sites has the potential for modifying the soil chemical environment over the long term and, consequently, affecting radionuclide mobility. These changes were assessed for coniferous and deciduous trees grown in lysimeter systems by examining their influence on soil solution chemistry using advanced analytical and geochemical modeling techniques. Our studies demonstrated the formation of highly mobile anionic radionuclide complexes with amino acids, peptides and organic acids originating from plant leaf litter and roots. The production of complexing agents was related to season and tree species, suggesting that vegetation management or exclusion may be appropriate after a site is closed

  12. Kinetic start-up performance of two large treatment plants for nutrient removal

    DEFF Research Database (Denmark)

    Haarbo, A.; Harremoës, Poul; Thirsing, C.

    2001-01-01

    In 1987 an action plan was passed in the Danish Parliament demanding a considerable reduction of the discharge of nutrients to the aquatic environment in Denmark. Consequently, the two largest wastewater treatment plants in the Copenhagen area had to be upgraded to include nutrient removal....... For more than 8 years an extensive effort has been made to determine an optimum solution for this upgrading from a technical and financial point of view. The work included six years of comprehensive pilot plant investigations with the aim of thoroughly studying and interpreting the kinetics...... of the processes involved. The investigations revealed valuable information particularly concerning limitations of the nitrification process. Consequently, the investigations contributed to an expectation of no unforeseen problems during the implementation of the upgraded plants. This paper presents the results...

  13. Tolerance of physic nut plants to aluminum activity in nutrient solution

    OpenAIRE

    Lana, Maria do Carmo; Steiner, Fábio [UNESP; Zoz, Tiago [UNESP; Fey, Rubens; Frandoloso, Jucenei Fernando

    2013-01-01

    Plants have different levels of tolerance to phytotoxic effects of aluminum and the exploitation of this characteristic is of significant importance to the use of acid soils. This research aimed to evaluate the effect of aluminum activity in nutrient solution on growth of physic nut young plant. After seven days of adaptation, plants were submitted to Al concentrations of 0; 200; 400; 600; 800 and 1,000 μmol L-1, corresponding to Al3+ activity solution, of: 14.5, 21.4; 46.6; 75.6; 108.3 e 144...

  14. Decomposition and nutrient release of leguminous plants in coffee agroforestry systems

    Directory of Open Access Journals (Sweden)

    Eduardo da Silva Matos

    2011-02-01

    Full Text Available Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD, the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA, there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1. Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.

  15. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants.

    Science.gov (United States)

    Weremijewicz, Joanna; Sternberg, Leonel da Silveira Lobo O'Reilly; Janos, David P

    2016-10-01

    Arbuscular mycorrhizal (AM) fungi interconnect plants in common mycorrhizal networks (CMNs) which can amplify competition among neighbors. Amplified competition might result from the fungi supplying mineral nutrients preferentially to hosts that abundantly provide fixed carbon, as suggested by research with organ-cultured roots. We examined whether CMNs supplied (15) N preferentially to large, nonshaded, whole plants. We conducted an intraspecific target-neighbor pot experiment with Andropogon gerardii and several AM fungi in intact, severed or prevented CMNs. Neighbors were supplied (15) N, and half of the target plants were shaded. Intact CMNs increased target dry weight (DW), intensified competition and increased size inequality. Shading decreased target weight, but shaded plants in intact CMNs had mycorrhizal colonization similar to that of sunlit plants. AM fungi in intact CMNs acquired (15) N from the substrate of neighbors and preferentially allocated it to sunlit, large, target plants. Sunlit, intact CMN, target plants acquired as much as 27% of their nitrogen from the vicinity of their neighbors, but shaded targets did not. These results suggest that AM fungi in CMNs preferentially provide mineral nutrients to those conspecific host individuals best able to provide them with fixed carbon or representing the strongest sinks, thereby potentially amplifying asymmetric competition below ground. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands

    Science.gov (United States)

    Seabloom, Eric W.; Borer, Elizabeth T.; Buckley, Yvonne M.; Cleland, Elsa E.; Davies, Kendi F.; Firn, Jennifer; Harpole, W. Stanley; Hautier, Yann; Lind, Eric M.; MacDougall, Andrew S.; Orrock, John L.; Prober, Suzanne M.; Adler, Peter B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Blumenthal, Dana M.; Brown, Cynthia S.; Brudvig, Lars A.; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen I.; Dantonio, Carla M.; DeCrappeo, Nicole M.; Du, Guozhen; Fay, Philip A.; Frater, Paul; Gruner, Daniel S.; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S.; Humphries, Hope C.; Jin, Virginia L.; Kay, Adam; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M. H.; La Pierre, Kimberly J.; Ladwig, Laura; Lambrinos, John G.; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R.; Pyke, David A.; Risch, Anita C.; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D.; Wright, Justin; Yang, Louie

    2015-01-01

    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands. PMID:26173623

  17. Mobilization of Iron by Plant-Borne Coumarins.

    Science.gov (United States)

    Tsai, Huei Hsuan; Schmidt, Wolfgang

    2017-06-01

    Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of 'iron efficiency' - the ability of plants to thrive on soils with limited iron availability - and may open avenues for generating iron-fortified crops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Symptoms of nutritional deficiencies in neem plants cultivated in nutrient solution

    Directory of Open Access Journals (Sweden)

    Ronnky Chaell Braga da Silva

    2011-03-01

    Full Text Available The planting of forest species is an activity that, besides introducing new exotic types of plants, can lessen the environmental impacts resulting from extractivism. Nevertheless, such success depends, upon other factors, on the knowledge of the nutritional needs of the species to be used. This study intended to check the typical symptoms of nutritional deficiency of macronutrients in the culture of Neem, through the visual observation of the plants. The experiment was carried out in a greenhouse at the College of Agronomy and Veterinary Medicine (FAMEV of the Federal University of Mato Grosso (UFMT in Cuiabá/MT, and it was set up in randomized blocks, with seven treatments and three repetitions. Each experimental unit was represented by a plastic vase, two liters capacity. The treatments used were: complete nutritive solution and solution with the omission of the following nutrients: -N, -P, -K, -Ca, -Mg and -S. It was ascertained that the visual symptoms of nutrient deficiency were, as a general rule, of easy characterization except for the treatment with omission of sulphur. Therefore, the omission of macronutrients decreases the production of total dry matter of the Neem plants, except for the omission of the S nutrient.

  19. Nutrient accumulation models in the banana (Musa AAA Simmonds cv Williams plant under nitrogen doses

    Directory of Open Access Journals (Sweden)

    Jaime Torres Bazurto

    2017-07-01

    Full Text Available This research determined the effect of four nitrogen (N doses on the nutritional behavior of (N, potassium (K, phosphorus (P, calcium (Ca and magnesium (Mg, respectively, in banana Williams, during five plant development stages and two productive cycles. The treatments were as follows: 1 absolute control, 2 0 N, 3 161 kg N ha-1, 4 321.8 kg N ha-1 and 5 483 kg N ha-1, respectively. A multivariate approach of the differences among cycles was used to adjust the models and eliminate their individual effect, with a randomized complete block design with repeated measurements over time. There were significant differences among plant development stages, with an increase in nutrient accumulation in the banana plant, there were no differences among treatments or blocks, nor in the interaction block by treatment, but the dose of 321.8 kg of N, exhibited a fructification increase in terms of N accumulation, harvest was exceeded by the dose of 483 kg of nitrogen, Ca and Mg, were the other nutrients, which showed effect at the dose of 483 kg of N but increasing only to harvest. It was concluded that high doses of nitrogen showed a trend to increase nutrient accumulation during the development of the banana plant, but especially until fructification, with the exception of Ca and Mg, which achieved the greatest accumulation in harvest.

  20. Nutrient Release, Plant Nutrition, and Potassium Leaching from Polymer-Coated Fertilizer

    Directory of Open Access Journals (Sweden)

    Henrique Bley

    Full Text Available ABSTRACT The increase in food consumption and limitations in food production areas requires improved fertilizer efficiency. Slow- or controlled-release fertilizers are an alternative for synchronizing nutrient availability with the plant demands, reducing losses to the environment. The aim of this study was to evaluate the efficacy of polymer-coated KCl compared with conventional KCl. The products were incubated in soil under controlled conditions to evaluate the time required for nutrient release. A greenhouse experiment was performed with corn plants in pots with loamy sand- or clay-textured soil types to evaluate plant nutrition and losses due to leaching. The K application rates were 0, 18, 36, and 54 mg dm-3. The pots were irrigated, and the percolated liquid was collected. The plants were harvested 30 days after sowing to quantify dry matter (DM and its K content. In the incubation study, the K release from the coated fertilizer was found to be 42 % over 154 days. The data were fit to a linear function from which a period of 315 days was estimated as required for the release of 75 % of the nutrient. Meanwhile, conventional KCl releases 85 % of the K nutrient in the first 48h. In the cultivation of plants in pots, the coating reduced K losses due to leaching in the loamy sand soil; however, only the application rate of 54 mg dm-3 promoted DM production equivalent to conventional KCl. It is possible that the need for K in the early stages of corn development was not met by a coated KCl.

  1. Embedded mobile farm robot for identification of diseased plants

    Science.gov (United States)

    Sadistap, S. S.; Botre, B. A.; Pandit, Harshavardhan; Chandrasekhar; Rao, Adesh

    2013-07-01

    This paper presents the development of a mobile robot used in farms for identification of diseased plants. It puts forth two of the major aspects of robotics namely automated navigation and image processing. The robot navigates on the basis of the GPS (Global Positioning System) location and data obtained from IR (Infrared) sensors to avoid any obstacles in its path. It uses an image processing algorithm to differentiate between diseased and non-diseased plants. A robotic platform consisting of an ARM9 processor, motor drivers, robot mechanical assembly, camera and infrared sensors has been used. Mini2440 microcontroller has been used wherein Embedded linux OS (Operating System) is implemented.

  2. Nutrient accumulation at the initial growth of pitaya plants according to phosphorus fertilization

    Directory of Open Access Journals (Sweden)

    Rodrigo Amato Moreira

    2016-09-01

    Full Text Available The knowledge about the amount of nutrient uptake in pitaya plants helps the balanced fertilizer recommendation for the crop, providing adequate nutrition and contributing to the maximum expression of this species potential. This research was carried out in order to evaluate the growth, nutrient accumulation and efficiency of absorption, transportation and use of P by pitaya according to phosphorus fertilization. A randomized blocks design was used, with five doses of P (0 mg dm-3, 20 mg dm-3, 40 mg dm-3, 80 mg dm-3 and 160 mg dm-3 incorporated into the soil, with four replications, three pots per plot and one cutting per pot. Differences in the nutrient accumulation of all doses were evident in the pitaya shoots and roots, as well as in the efficiency of absorption, transport and use of P, according to phosphorus fertilization. The nutrient accumulation in the pitaya roots was ranked in the following order: N > K > Ca > S > P > Mg > Fe > Mn > Zn > B ≥ Cu. For the shoots, the order was: K > N > Ca > S > Mg > P > Mn > Fe > Zn > B ≥ Cu. The initial growth of pitaya plants was maximum with 81 mg dm-3 of P, in a Red-Yellow Dystrophic Latosol. The application of 44-67 mg dm3 of P to the soil promoted the highest accumulation of macro and micronutrients in the pitaya.

  3. [Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress].

    Science.gov (United States)

    Wang, Jianfei; Shen, Qirong

    2006-11-01

    Organic acids not only act as the intermediates in carbon metabolism, but also exert key roles in the plant adaptation to nutrient deficiency and metal stress and in the plant-microbe interactions at root-soil interface. From the viewpoint of plant nutrition, this paper reviewed the research progress on the formation and physiology of organic acids in plant, and their functions in nitrogen metabolism, phosphorus and iron uptake, aluminum tolerance, and soil ecology. New findings in the membrane transport of organic acids and the biotechnological manipulation of organic acids in transgenic model were also discussed. This novel perspectives of organic acid metabolism and its potential manipulation might present a possibility to understand the fundamental aspects of plant physiology, and lead to the new strategies to obtain crop varieties better adapted to environmental and metal stress.

  4. Higher photosynthesis, nutrient- and energy-use efficiencies contribute to invasiveness of exotic plants in a nutrient poor habitat in northeast China.

    Science.gov (United States)

    Liu, Ming-Chao; Kong, De-Liang; Lu, Xiu-Rong; Huang, Kai; Wang, Shuo; Wang, Wei-Bin; Qu, Bo; Feng, Yu-Long

    2017-08-01

    The roles of photosynthesis-related traits in invasiveness of introduced plant species are still not well elucidated, especially in nutrient-poor habitats. In addition, little effort has been made to determine the physiological causes and consequences of the difference in these traits between invasive and native plants. To address these problems, we compared the differences in 16 leaf functional traits related to light-saturated photosynthetic rate (P max ) between 22 invasive and native plants in a nutrient-poor habitat in northeast China. The invasive plants had significantly higher P max , photosynthetic nitrogen- (PNUE), phosphorus- (PPUE), potassium- (PKUE) and energy-use efficiencies (PEUE) than the co-occurring natives, while leaf nutrient concentrations, construction cost (CC) and specific leaf area were not significantly different between the invasive and native plants. The higher PNUE contributed to higher P max for the invasive plants, which in turn contributed to higher PPUE, PKUE and PEUE. CC changed independently with other traits such as P max , PNUE, PPUE, PKUE and PEUE, showing two trait dimensions, which may facilitate acclimation to multifarious niche dimensions. Our results indicate that the invasive plants have a superior resource-use strategy, i.e. higher photosynthesis under similar resource investments, contributing to invasion success in the barren habitat. © 2017 Scandinavian Plant Physiology Society.

  5. Litter Accumulation and Nutrient Content of Roadside Plant Communities in Sichuan Basin, China.

    Science.gov (United States)

    He, Huiqin; Monaco, Thomas

    2017-08-30

    It is widely recognized that feedbacks exist between plant litter and plant community species composition, but this relationship is difficult to interpret over heterogeneous conditions typical of modified environments such as roadways. Given the need to expedite natural recovery of disturbed areas through restoration interventions, we characterized litter accumulation and nutrient content (i.e., organic carbon, total N, and P) and quantified their association with key plant species. Plant species cover and litter characteristics were sampled at 18 successional forest plant communities along major roadways in Sichuan Basin, western China. Variation in litter across communities was assessed with principal component analysis (PCA) and species with the highest correlation to PCA axes were determined with Pearson's r coefficients. Plant communities with the longest time since road construction (i.e., 70 years) were distinctly different in litter total N and organic carbon compared to plant communities with a shorter disturbance history. We encountered 59 plant species across sampling plots, but only four rare species (i.e., frequency plant litter across heavily disturbed landscapes and how litter characteristics and rare plant species are correlated.

  6. mobile nuclear energy power plants for Turkey and III. world

    International Nuclear Information System (INIS)

    Oezden, H.

    2001-01-01

    It is estimated that if there is no alternative energy source, there will be increase in building nuclear energy power plants. This source of energy and know how along with technology must be put into the possession of Turkey. Since almost all of Turkey is 1 st degree earthquake region and in view of the regional political instability, the requirement of ample amount of water for prolonged times, the density of settlement, environmental problems, high cost of building nuclear energy power plants it becomes necessary to think about their application techniques. In this study, mobile nuclear energy power plants having a wide area of use in conditions prevailing in Turkey , their draft drawings for making them by using metal/steel are shown. The positive-negative aspects of the topic is presented for discussions

  7. Hydroponic potato production on nutrients derived from anaerobically-processed potato plant residues

    Science.gov (United States)

    Mackowiak, C. L.; Stutte, G. W.; Garland, J. L.; Finger, B. W.; Ruffe, L. M.

    1997-01-01

    Bioregenerative methods are being developed for recycling plant minerals from harvested inedible biomass as part of NASA's Advanced Life Support (ALS) research. Anaerobic processing produces secondary metabolites, a food source for yeast production, while providing a source of water soluble nutrients for plant growth. Since NH_4-N is the nitrogen product, processing the effluent through a nitrification reactor was used to convert this to NO_3-N, a more acceptable form for plants. Potato (Solanum tuberosum L.) cv. Norland plants were used to test the effects of anaerobically-produced effluent after processing through a yeast reactor or nitrification reactor. These treatments were compared to a mixed-N treatment (75:25, NO_3:NH_4) or a NO_3-N control, both containing only reagent-grade salts. Plant growth and tuber yields were greatest in the NO_3-N control and yeast reactor effluent treatments, which is noteworthy, considering the yeast reactor treatment had high organic loading in the nutrient solution and concomitant microbial activity.

  8. Hydrographic parameters and distribution of dissolved Cu, Ni, Zn and nutrients near Jeddah desalination plant

    Directory of Open Access Journals (Sweden)

    Fallatah Mohammad M.

    2018-04-01

    Full Text Available The development of safe desalination plants with low environmental impact is as important an issue as the supply of drinking water. The desalination plant in Jeddah (Saudi Arabia, Red Sea coast produces freshwater from seawater by multi-stage flash distillation (MSFD and reverse osmosis (RO. The process produces brine as by-product, which is dumped into the sea. The aim of this study was to assess the impact of Jeddah desalination plant on the coastal water in the nearby of the plant. Total concentrations of dissolved Cu, Ni, Zn and nutrients in several locations around the plant were analyzed by cathodic stripping voltammetry. The average levels of dissolved Cu, Ni, and Zn on surface in the sampling locations were 15.02, 11.02, and 68.03 nM respectively, whereas the levels at the seafloor near the discharging point were much higher. Distribution of temperature, salinity, nutrients and dissolved oxygen were quite normal both on surface and in depth.

  9. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  10. Automated pH Control of Nutrient Solution in a Hydroponic Plant Growth System

    Science.gov (United States)

    Smith, B.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

    1998-01-01

    Over, the years, NASA has played an important role in providing to and the development of automated nutrient delivery and monitoring, systems for growing crops hydroponically for long term space missions. One example are the systems used in the Biomass Production Chamber (BPC) at Kennedy Space Center (KSC). The current KSC monitoring system is based on an engineering workstation using standard analog/digital input/output hardware and custom written software. The monitoring system uses completely separate sensors to provide a check of control sensor accuracy and has the ability to graphically display and store data form past experiment so that they are available for data analysis [Fortson, 1992]. In many cases, growing systems have not been fitted with the kind of automated control systems as used at KSC. The Center for Food and Environmental Systems for Human Exploration of Space (CFESH) located on the campus of Tuskegee University, has effectively grown sweetpotatoes and peanuts hydroponically for the past five years. However they have adjusted the pH electrical conductivity and volume of the hydroponic nutrient solution only manually at times when the solution was to be replenished or changed out according to its protocol (e.g. one-week, two-week, or two-day cycle). But the pH of the nutrient solution flowing through the channel is neither known nor controlled between the update, change out, or replenishment period. Thus, the pH of the nutrient solution is not held at an optimum level over the span of the plant's growth cycle. To solve this dilemma, an automated system for the control and data logging of pH data relative to sweetpotato production using the nutrient film technique (NFT) has been developed, This paper discusses a microprocessor-based system, which was designed to monitor, control, and record the pH of a nutrient solution used for growing sweetpotatoes using NFT.

  11. Application of autonomous mobile patrol system for nuclear power plants

    International Nuclear Information System (INIS)

    Kanemoto, S.; Hattori, Y.; Ochiai, M.; Tai, I.; Ozaki, O.; Shimada, H.; Okano, H.

    1995-01-01

    The integrity of the components of an operating nuclear power plant (NPP) is usually monitored daily by an operator patrol. Currently, there is a great need to replace such human patrol activities by automated remote monitoring in order to reduce radiation exposure and severe workload. From this perspective, we started an R and D project with the objective of developing an autonomous mobile patrol system for NPPs. The project started in 1991 and is scheduled to be completed in 1996. The main targets of this project are as follows. (1) Development of an autonomous and independent mobile robot, (2) Development of a transportable compact remote sensing system for plant component inspection, (3) Development of a patrol guidance and sensing data evaluation system. The remote sensing system has the capability of detecting video image, sound, temperature and vibration distribution of component surfaces. A laser Doppler vibrometer is newly developed to measure a wide range of vibration distribution remotely. Also, in order to integrate and recognize various kinds of remote sensing data, a 3-dimensional (3D) computer aided design database and 3D graphics technology is extensively used. Operators can interpret the measured image data by mapping their textures onto the 3-dimensional model surface. In this paper, we describe the concept of the entire patrol system and its three main component technologies, that is, mobile robot, remote sensing and inspected data evaluations. (author)

  12. Mobile radiological monitoring around Nuclear Power Plant site at Tarapur

    International Nuclear Information System (INIS)

    Patil, S.S.; Saindane, S.S.; Sharma, R.; Suri, M.M.K.; Pradeepkumar, K.S.; Sharma, D.N.; Rao, D.D.

    2008-01-01

    Real time mobile radiological monitoring around nuclear facilities is required for establishing background radiation dose rate data and to detect any increase in the radiation level which is attributable to the atmospheric releases from Nuclear facilities. Mobile radiation survey using mobile monitoring systems was carried out in the Emergency Planning Zone around Tarapur Atomic Power station during plant operation, taking the wind direction also into consideration. For identifying the potential difficulties during an emergency scenario and to understand the variation of the measured values several systems/instruments were used simultaneously for mapping the dose rates. As demonstrated during this monitoring programme, 40mm x 40mm NaI(Tl) detector based Portable Mobile Gamma Spectrometry System (PMGSS) which is attached with a GPS can acquire and store large amount of gamma spectra tagged with positional coordinates and can enhance the capacity of decision makers during any accidental situation. The average of dose rates measured from various locations around Tarapur Atomic Power Station is 70 - 80 nGy.h -1 . The higher dose rate in the range of 110-125 nGy.h -1 measured at one of the location is due to higher concentration of natural radioactivity mainly by 40 K which was confirmed by the gamma spectrometric measurement. (author)

  13. Dynamic Response of Plant Chlorophyll Fluorescence to Light, Water and Nutrient Availability

    Science.gov (United States)

    Cendrero Mateo, M. D. P.; Moran, S. M.; Porcar-Castell, A.; Carmo-Silva, A. E.; Papuga, S. A.; Matveeva, M.; Wieneke, S.; Rascher, U.

    2014-12-01

    Photosynthesis is the most important exchange process of CO2 between the atmosphere and the land-surface. Spatial and temporal patterns of photosynthesis depend on dynamic plant-specific adaptation strategies to highly variable environmental conditions e.g. light, water, and nutrient availability. Chlorophyll fluorescence (ChF) has been proposed as a direct indicator of photosynthesis, and several studies have demonstrated its relationship with vegetation functioning at leaf and canopy level. In this study, two overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF?; Q2) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? The results of this study indicated that when the differences between treatments (water or nitrogen) drive the relationship between photosynthesis and ChF, ChF has a direct relationship with photosynthesis. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a simple linear function due to the complex physiological relation between photosynthesis and ChF. Our study showed that at times in the season when nitrogen was sufficient and photosynthesis was highest, ChF decreased because these two processes compete for available energy. The results from this study demonstrated that ChF is a reliable indicator of plant stress and has great potential as a tool for better understand where, when, and how CO2 is exchanged between the land and atmosphere.

  14. Nuclear techniques in integrated plant nutrient, water and soil management. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The need to produce sufficient food of acceptable quality in the context of an ever-expanding human population has been recognized as a priority by several international conventions and agreements. Intensification, rather than expansion of agriculture into new areas, will be required if the goal of food security is to become a reality. Problems related to the sustainable production of food, fuel and fibre, both in low input and in high input agricultural systems, are now widely recognized. The overexploitation of the natural resource base has led to serious declines in soil fertility through loss of organic matter, nutrient mining, and soil erosion. The overuse of external inputs of water and manufactured fertilizers has resulted in salinization and pollution of ground and surface waters. Nuclear science has a crucial role to play in supporting research and development of sustainable farming systems. An FAO/IAEA International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water and Soil Management, held in Vienna from 16 to 20 October 2000, was attended by 117 participants representing forty-three countries and five organizations. The purpose was to provide an international forum for a comprehensive review of the state of the art and recent advances made in this specific field, as well as a basis for delineating further research and development needs. The participation of soil, crop and environmental scientists, as well as isotope specialists, ensured an exchange of information and views on recent advances in interdisciplinary and multidisciplinary approaches to addressing problems in sustainable land management. The symposium was organized around seven themes, each represented by a technical session introduced by a keynote speaker: Evaluation and management of natural and manufactured nutrient sources; Soil organic matter dynamics and nutrient cycling; Soil water management and conservation; Plant tolerance to environmental stress; Environmental and

  15. Nuclear techniques in integrated plant nutrient, water and soil management. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    The need to produce sufficient food of acceptable quality in the context of an ever-expanding human population has been recognized as a priority by several international conventions and agreements. Intensification, rather than expansion of agriculture into new areas, will be required if the goal of food security is to become a reality. Problems related to the sustainable production of food, fuel and fibre, both in low input and in high input agricultural systems, are now widely recognized. The overexploitation of the natural resource base has led to serious declines in soil fertility through loss of organic matter, nutrient mining, and soil erosion. The overuse of external inputs of water and manufactured fertilizers has resulted in salinization and pollution of ground and surface waters. Nuclear science has a crucial role to play in supporting research and development of sustainable farming systems. An FAO/IAEA International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water and Soil Management, held in Vienna from 16 to 20 October 2000, was attended by 117 participants representing forty-three countries and five organizations. The purpose was to provide an international forum for a comprehensive review of the state of the art and recent advances made in this specific field, as well as a basis for delineating further research and development needs. The participation of soil, crop and environmental scientists, as well as isotope specialists, ensured an exchange of information and views on recent advances in interdisciplinary and multidisciplinary approaches to addressing problems in sustainable land management. The symposium was organized around seven themes, each represented by a technical session introduced by a keynote speaker: Evaluation and management of natural and manufactured nutrient sources; Soil organic matter dynamics and nutrient cycling; Soil water management and conservation; Plant tolerance to environmental stress; Environmental and

  16. Specialization to Extremely Low-Nutrient Soils Limits the Nutritional Adaptability of Plant Lineages.

    Science.gov (United States)

    Verboom, G Anthony; Stock, William D; Cramer, Michael D

    2017-06-01

    Specialization to extreme selective situations promotes the acquisition of traits whose coadaptive integration may compromise evolutionary flexibility and adaptability. We test this idea in the context of the foliar stoichiometry of plants native to the South African Cape. Whereas foliar concentrations of nitrogen, phosphorus (P), potassium (K), calcium, magnesium, and sodium showed strong phylogenetic signal, as did the foliar ratios of these nutrients to P, the same was not true of the corresponding soil values. In addition, although foliar traits were often related to soil values, the coefficients of determination were consistently low. These results identify foliar stoichiometry as having a strong genetic component, with variation in foliar nutrient concentrations, especially [P] and [K], being identified as potentially adaptive. Comparison of stoichiometric variation across 11 similarly aged clades revealed consistently low foliar nutrient concentrations in lineages showing specialization to extremely low-nutrient fynbos heathlands. These lineages also display lower rates of evolution of these traits as well as a reduced tendency for foliar [P] to track soil [P]. Reduced evolutionary lability and adaptability in the nutritional traits of fynbos-specialist lineages may explain the floristic distinctness of the fynbos flora and implies a reduced scope for edaphically driven ecological speciation.

  17. Characterization of the In Situ Ecophysiology of Novel Phylotypes in Nutrient Removal Activated Sludge Treatment Plants.

    Directory of Open Access Journals (Sweden)

    Simon Jon McIlroy

    Full Text Available An in depth understanding of the ecology of activated sludge nutrient removal wastewater treatment systems requires detailed knowledge of the community composition and metabolic activities of individual members. Recent 16S rRNA gene amplicon surveys of activated sludge wastewater treatment plants with nutrient removal indicate the presence of a core set of bacterial genera. These organisms are likely responsible for the bulk of nutrient transformations underpinning the functions of these plants. While the basic activities of some of these genera in situ are known, there is little to no information for the majority. This study applied microautoradiography coupled with fluorescence in situ hybridization (MAR-FISH for the in situ characterization of selected genus-level-phylotypes for which limited physiological information is available. These included Sulfuritalea and A21b, both within the class Betaproteobacteria, as well as Kaga01, within sub-group 10 of the phylum Acidobacteria. While the Sulfuritalea spp. were observed to be metabolically versatile, the A21b and Kaga01 phylotypes appeared to be highly specialized.

  18. Plant inspection tours with mobile data logging system

    International Nuclear Information System (INIS)

    Roesser, U.

    2006-01-01

    The MDE Mobile Data Logging System has been introduced in a number of German power plants for efficient logging, evaluation, and quality-assured documentation of data recorded on plant inspection tours by means of pocket PCs instead of slips of paper. It will be installed in other nuclear power plants in the near future. The MDE system is composed of the pocket PCs for logging data during plant inspection tours, the associated docking stations installed in the respective areas of application, one PC or, if necessary, several PCs with the appropriate user software, and the associated network links. To install the software in the power plant, lists of rooms and measurement stations as well as other positions on an inspection course are transmitted to the MDE system. When the system has been commissioned, inspection tours are planned in accordance with past experience and optimized in the computer. User experience is taken into account in program updates. New functions improve user comfort and ease of evaluation. Additions to the MDE software, and applications in other areas, are tentatively planned and will be implemented as the need arises. (orig.)

  19. Wool-waste as organic nutrient source for container-grown plants

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State University, North Mississippi Research and Extension Center, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Stratton, Glenn W [Department of Plant and Animal Sciences and Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, NS, B2N 5E3 (Canada); Pincock, James [Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4J3 (Canada); Butler, Stephanie [Department of Plant and Animal Sciences and Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, NS, B2N 5E3 (Canada); Jeliazkova, Ekaterina A [Mississippi State University, Department of Plant and Soil Sciences, Mississippi State, MS 39762 (United States); Nedkov, Nedko K [Research Institute for Roses and Aromatic Crops, 49 Osvobojdenie Blv., Kazanluk (Bulgaria); Gerard, Patrick D [Department of Applied Economics and Statistics, Clemson University, Clemson, SC 29634 (United States)

    2009-07-15

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) in pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO{sub 3}-N and NH{sub 4}-N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.

  20. Wool-waste as organic nutrient source for container-grown plants

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Stratton, Glenn W.; Pincock, James; Butler, Stephanie; Jeliazkova, Ekaterina A.; Nedkov, Nedko K.; Gerard, Patrick D.

    2009-01-01

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) in pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO 3 -N and NH 4 -N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.

  1. Atmospheric NH3 as plant nutrient: A case study with Brassica oleracea

    International Nuclear Information System (INIS)

    Castro, Ana; Stulen, Ineke; De Kok, Luit J.

    2008-01-01

    Nutrient-sufficient and nitrate- or sulfate-deprived plants of Brassica oleracea L. were exposed to 4 μl l -1 NH 3 (2.8 mg m -3 ), and effects on biomass production and allocation, N-compounds and root morphology investigated. Nitrate-deprived plants were able to transfer to atmospheric NH 3 as nitrogen source, but biomass allocation in favor of the root was not changed by exposure to NH 3 . NH 3 reduced the difference in total root length between nitrate-sufficient and nitrate-deprived plants, and increased the specific root length in the latter. The internal N status, therefore, might be involved in controlling root length in B. oleracea. Root surface area, volume and diameter were unaffected by both nitrate deprivation and NH 3 exposure. In sulfate-deprived plants an inhibitory effect of NH 3 on root morphological parameters was observed. These plants, therefore, might be more susceptible to atmospheric NH 3 than nitrate-deprived plants. The relevance of the present data under field conditions is discussed. - Atmospheric NH 3 can serve as sole N source for Brassica oleracea, but does not change root biomass allocation in nitrate-deprived plants

  2. Identification and Control of Nutrient Removing Processes in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Nielsen, Marinus K.; Madsen, Henrik; Carstensen, Niels Jacob

    1994-01-01

    the possibility of using statistical methods for identifying dynamical models for the biological processes. These models can then be used for simulating various control strategies and the parameters of the controllers can be found by off-line optimization. Simulation studies have shown that considerable savings......Today the use of on-line control for wastewater treatment plants is very low. A main reason is the lack of quality of the data, and the fact that more sophisticated control strategies must be based on a model of the dynamics of the biological processes. This paper discusses the historical reasons...... for the limited use of modern control strategies for wastewater treatment plants. Today, however, on-line nutrient sensors are more reliable. In the present context the use of on-line monitored values of ammonia, nitrate and phosphate from a full scale plant are used as the background for discussing...

  3. Nutrient status and plant growth effects of forest soils in the Basin of Mexico

    International Nuclear Information System (INIS)

    Fenn, M.E.; Perea-Estrada, V.M.; Bauer, L.I. de; Perez-Suarez, M.; Parker, D.R.; Cetina-Alcala, V.M.

    2006-01-01

    The nutrient status of forest soils in the Mexico City Air Basin was evaluated by observing plant growth responses to fertilization with N, P or both nutrients combined. P deficiency was the most frequent condition for soil from two high pollution sites and N deficiency was greatest at a low N deposition site. Concentrations of Pb and Ni, and to a lesser extent Zn and Co, were higher at the high pollution sites. However, positive plant growth responses to P and sometimes to N, and results of wheat root elongation bioassays, suggest that heavy metal concentrations were not directly phytotoxic. Further studies are needed to determine if heavy metal toxicity to mycorrhizal symbionts of eucalyptus (Eucalyptus camaldulensis Dehnh.) from high pollution sites may explain the P deficiency and stunted growth. P deficiency is expected to limit the capacity for biotic N retention in N saturated forested watersheds in the Basin of Mexico dominated by Andisols. - Plant response to N deposition may be limited by P limitation in forests growing on Andisol soils in the Basin of Mexico

  4. Nutrient status and plant growth effects of forest soils in the Basin of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Fenn, M.E. [USDA Forest Service, Pacific Southwest Research Station, Forest Fire Laboratory, 4955 Canyon Crest Dr., Riverside, CA 92507 (United States)]. E-mail: mfenn@fs.fed.us; Perea-Estrada, V.M. [Instituto de Recursos Naturales, Colegio de Postgraduados, CP 56230 Montecillo (Mexico); Bauer, L.I. de [Instituto de Recursos Naturales, Colegio de Postgraduados, CP 56230 Montecillo (Mexico)]. E-mail: libauer@colpos.mx; Perez-Suarez, M. [Instituto de Recursos Naturales, Colegio de Postgraduados, CP 56230 Montecillo (Mexico); Parker, D.R. [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)]. E-mail: david.parker@ucr.edu; Cetina-Alcala, V.M. [Instituto de Recursos Naturales, Colegio de Postgraduados, CP 56230 Montecillo (Mexico)

    2006-03-15

    The nutrient status of forest soils in the Mexico City Air Basin was evaluated by observing plant growth responses to fertilization with N, P or both nutrients combined. P deficiency was the most frequent condition for soil from two high pollution sites and N deficiency was greatest at a low N deposition site. Concentrations of Pb and Ni, and to a lesser extent Zn and Co, were higher at the high pollution sites. However, positive plant growth responses to P and sometimes to N, and results of wheat root elongation bioassays, suggest that heavy metal concentrations were not directly phytotoxic. Further studies are needed to determine if heavy metal toxicity to mycorrhizal symbionts of eucalyptus (Eucalyptus camaldulensis Dehnh.) from high pollution sites may explain the P deficiency and stunted growth. P deficiency is expected to limit the capacity for biotic N retention in N saturated forested watersheds in the Basin of Mexico dominated by Andisols. - Plant response to N deposition may be limited by P limitation in forests growing on Andisol soils in the Basin of Mexico.

  5. Essential oil composition and nutrient analysis of selected medicinal plants in Sultanate of Oman

    Directory of Open Access Journals (Sweden)

    Javid Hussain

    2013-12-01

    Full Text Available Objective: To evaluate the nutrients and essential oils of five medicinal plants, Juniperus excelsa (J. excelsa, Dodonaea viscosa, Euryops pinifolius, Teucrium polium (T. polium, and Helianthemum lippii that were collected from Jabal Al Akhdar, Oman. Methods: Proximate parameters (moisture, dry matter, ash, crude fats, proteins, fibers, nitrogen, carbohydrates, and energy values and nutrient analysis (K, Na, Ca, Fe, P, Mg etc. were evaluated in the five medicinal plants using standard techniques. On the basis of these analysis, T. polium and J. excels were selected for essential oil analysis using a rapid solvent-free microwave extraction method and GC-MS. Results: The results showed that leaves of J. excelsa had highest proportion of crude fats, fibers and energy value while ash was highest in T. polium. J. excelsa was also rich in essential minerals such as calcium, magnesium, potassium and iron while the trace elements and heavy metals composition was marginal. A rapid solvent-free microwave extraction method to extract oil from medicinal plants species showed that only T. polium and J. excelsa yielded oil. The chemical composition of essential oils showed higher proportion of delta-3-carene, limonene, β-eudesmol, ledeneoxide (II, α-trans-bergamatene, linalyl acetate and germacrene. Conclusions: J. excelsa and T. polium are a good source of proximate, minerals and essential oils, which can be considered for healthy life besides their medicinal values.

  6. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration

    Science.gov (United States)

    Kell, Douglas B.

    2011-01-01

    Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

  7. A mathematical model for investigating the effect of cluster roots on plant nutrient uptake

    KAUST Repository

    Zygalakis, K. C.

    2012-04-01

    Cluster roots are thought to play an important role in mediating nutrient uptake by plants. In this paper we develop a mathematical model for the transport and uptake of phosphate by a single root. Phosphate is assumed to diffuse in the soil fluid phase and can also solubilised due to citrate exudation. Using multiple scale homogenisation techniques we derive an effective model that accounts for the cumulative effect of citrate exudation and phosphate uptake by cluster roots whilst still retaining all the necessary information about the microscale geometry and effects. © 2012 EDP Sciences and Springer.

  8. Restoring crop productivity of eroded lands through , integrated plant nutrient management (IPNM) for sustained production

    International Nuclear Information System (INIS)

    Bhatti, A.U.; Ali, S.

    2005-01-01

    Crop productivity of eroded lands is very poor due to removal of top fertile soil losing organic matter and plant nutrients, with consequent exposure of the sub-soil with poor fertility status. Crop productivity of such lands needs to be restored in order to help farmers feed many mouths because of increased population and high land pressure. Three field experiments were laid out at three sites, Thana, Malakand Agency; Kabal and Matta, Swat during 2003-2004 to study the effect of integrated plant nutrient management on the yield of wheat. The fertilizer treatments consisted of farmer's practice (60-45-0 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/), recommended fertilizer rate (120-90-60 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -l/ + 5 kg Zn ha/sup -1), and combined application of organic and inorganic sources of plant nutrients (FYM at the rate of 20 t ha/sup -1/ plus 60-90-60 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/ + 5 kg Zn ha/sup -1/). The results obtained from these field trails showed that the combined application of FYM with NPK Zn increased the grain yield significantly over the other two treatments with an increase of 50-80% over the farmer's practice and 11 to 23 % over the recommended dose. As regards straw yields, T/sub 2/ and T/sub 3/ increased the yields significantly over farmer's practice (T) at all the sites; However, T/sub 2/ and T/sub 3/ at Thana and Kabal were at par with each other. As regards effect of various treatments on soil properties, organic matter content was improved at Thana and Kabal sites while at Matta the results were inconsistent. Similarly soil P and Zn contents were increased considerably in T/sub 2/ and T/sub 3/ at Thana and Kabal being at par with each other. It is apparent from these results that the crop productivity of eroded lands at all the three sties was considerably restored and the soil fertility status was improved by integrated plant nutrient management. (author)

  9. Influence of Phosphorus and Manganese Rats in Nutrient Solution on Mn-54 Uptake by Mango Plants

    International Nuclear Information System (INIS)

    Sharaf, A.N.

    2011-01-01

    A greenhouse experiment was designed using solution culture and Mn-54 to study the effect of P and Mn rates on absorption of Mn-54, its translocation and percentage using six month old mango seedlings (Hindi Bi-Sinara cv.). Rates of P in nutrient solution were zero, half, one and two strength i.e. 0, 1, 2 and 4 m M whereas Mn rates were 1, 2 and 3 strength i.e. 2, 4 and 6 μM. The prepared nutrient solutions were labelled with carrier free Mn-54. Total absorption of Mn-54 by mango roots from nutrient solution was highly increased by increasing Mn rates, moreover, increasing P rates in media tended to enhance Mn-54 absorption. Translocation and distribution pattern of absorbed Mn-54 followed, to a great extent, the same trend of total absorption of it but with different magnitude. In this concern, more than 90% (about 94%) of total absorption of Mn-54 was retained in root system, whereas about 4% and 2% was translocated in stems and leaves, respectively. Retained Mn in mango roots is considered a good source of Mn for supplying mango plants with it for long term during growing season.

  10. Growth, nutrient uptake and ectomycorrhizal function in Pinus sylvestris plants exposed to aluminium and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen-Jonnarth, Ulla [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    2000-07-01

    The potential role of aluminium (Al) toxicity to trees has been of particular concern to forest owners and scientists since the early 1980's when Ulrich hypothesised that both Al and heavy metals were involved in forest dieback because of their increased concentrations in soil due to acidification. Since then, numerous studies have examined the effects of metals upon nutrient uptake by plants. However, most of these investigations have been carried out in the absence of mycorrhizal fungi, which, in most ecosystems, are crucial components in nutrient uptake by plants. The present work focused on the effects of elevated concentrations of Al and heavy metals on Scots pine (Pinus sylvestris L.) and the potential role of ectomycorrhiza in modifying these effects. Ectomycorrhizal colonisation enhanced the growth and nutrient uptake by seedlings. To some extent, colonisation also alleviated reduced nutrient uptake which was a feature of seedlings growing in the presence of the metals. This effect was particularly noticeable with respect to P uptake. In general, mycorrhizal seedlings grew better and had an improved P, K, Mg and S status compared with non-mycorrhizal seedlings. Significant differences were also found in nutrient uptake among seedlings colonised by different fungi. One fungus, Hebeloma cf. longicaudum, was more sensitive to the Al treatment than the pine seedlings. The use of the base cation / Al ratio as an indicator of the potential detrimental effects to trees to acidification and Al is discussed. The production of oxalic acid was found to increase when mycorrhizal and nonmycorrhizal seedlings were exposed to Al or Cu. Colonisation by Suillus variegatus or Rhizopogon roseolus, in particular, resulted in a marked increase. These results demonstrate that there is a capacity, especially by certain ectomycorrhizal fungi, for increased production of the metal-chelating oxalic acid when root systems are exposed to increased levels of metals. In a field

  11. Growth, nutrient uptake and ectomycorrhizal function in Pinus sylvestris plants exposed to aluminium and heavy metals

    International Nuclear Information System (INIS)

    Ahonen-Jonnarth, Ulla

    2000-01-01

    The potential role of aluminium (Al) toxicity to trees has been of particular concern to forest owners and scientists since the early 1980's when Ulrich hypothesised that both Al and heavy metals were involved in forest dieback because of their increased concentrations in soil due to acidification. Since then, numerous studies have examined the effects of metals upon nutrient uptake by plants. However, most of these investigations have been carried out in the absence of mycorrhizal fungi, which, in most ecosystems, are crucial components in nutrient uptake by plants. The present work focused on the effects of elevated concentrations of Al and heavy metals on Scots pine (Pinus sylvestris L.) and the potential role of ectomycorrhiza in modifying these effects. Ectomycorrhizal colonisation enhanced the growth and nutrient uptake by seedlings. To some extent, colonisation also alleviated reduced nutrient uptake which was a feature of seedlings growing in the presence of the metals. This effect was particularly noticeable with respect to P uptake. In general, mycorrhizal seedlings grew better and had an improved P, K, Mg and S status compared with non-mycorrhizal seedlings. Significant differences were also found in nutrient uptake among seedlings colonised by different fungi. One fungus, Hebeloma cf. longicaudum, was more sensitive to the Al treatment than the pine seedlings. The use of the base cation / Al ratio as an indicator of the potential detrimental effects to trees to acidification and Al is discussed. The production of oxalic acid was found to increase when mycorrhizal and nonmycorrhizal seedlings were exposed to Al or Cu. Colonisation by Suillus variegatus or Rhizopogon roseolus, in particular, resulted in a marked increase. These results demonstrate that there is a capacity, especially by certain ectomycorrhizal fungi, for increased production of the metal-chelating oxalic acid when root systems are exposed to increased levels of metals. In a field

  12. Temporal-spatial dynamics in orthoptera in relation to nutrient availability and plant species richness.

    Directory of Open Access Journals (Sweden)

    Rob J J Hendriks

    Full Text Available Nutrient availability in ecosystems has increased dramatically over the last century. Excess reactive nitrogen deposition is known to negatively impact plant communities, e.g. by changing species composition, biomass and vegetation structure. In contrast, little is known on how such impacts propagate to higher trophic levels. To evaluate how nitrogen deposition affects plants and herbivore communities through time, we used extensive databases of spatially explicit historical records of Dutch plant species and Orthoptera (grasshoppers and crickets, a group of animals that are particularly susceptible to changes in the C:N ratio of their resources. We use robust methods that deal with the unstandardized nature of historical databases to test whether nitrogen deposition levels and plant richness changes influence the patterns of richness change of Orthoptera, taking into account Orthoptera species functional traits. Our findings show that effects indeed also propagate to higher trophic levels. Differences in functional traits affected the temporal-spatial dynamics of assemblages of Orthoptera. While nitrogen deposition affected plant diversity, contrary to our expectations, we could not find a strong significant effect of food related traits. However we found that species with low habitat specificity, limited dispersal capacity and egg deposition in the soil were more negativly affected by nitrogen deposition levels. Despite the lack of significant effect of plant richness or food related traits on Orthoptera, the negative effects of nitrogen detected within certain trait groups (e.g. groups with limited disperse ability could be related to subtle changes in plant abundance and plant quality. Our results, however, suggest that the changes in soil conditions (where many Orthoptera species lay their eggs or other habitat changes driven by nitrogen have a stronger influence than food related traits. To fully evaluate the negative effects of nitrogen

  13. Influence of Pulsed Electromagnetic Field on Plant Growth, Nutrient Absorption and Yield of Durum Wheat

    Directory of Open Access Journals (Sweden)

    Nikolaos KATSENIOS

    2015-12-01

    Full Text Available Researchers have adopted the use of magnetic field as a new pre-sowing, environmental friendly technique. Enhancements on plant characteristics with economic impact on producer’s income could be the future of a modern, organic and sustainable agriculture. A field experiment was established at Soil Science Institute of Athens, Lycovrissi, Greece, in the winter of 2014. Two durum wheat cultivars were used. It was a pot experiment with 6 treatments (2 cultivars with 3 magnetic field time exposure. The seeds were treated using a PAPIMI electromagnetic field generator for 0, 30 and 45 minutes one day before planting. The experiment followed a completely randomized design with six treatments and 30 replications. The aim of this study was to evaluate the positive effect of magnetic field pre-sowing treatment in a wide range of plant measurements, including yield. The influence of pulsed electromagnetic field on two varieties of durum wheat seeds showed some statistically significant differences at the 0.05 level in growth measurements, physiological measurements and root growth measurements. Plant tissue analysis showed that magnetic field treatments had higher values than control in total nitrogen, phosphorus, potassium, magnesium, copper (only MF-45, zinc (only MF-30 and boron content, although values showed statistically significant differences only in total nitrogen. The results indicate that this innovative technique can increase the yield of durum wheat, through enhanced absorption of nutrients. Pre-sowing treatment of the seeds leads to vigorous plant growth that are more productive.

  14. Effect of mycorrhizas application on plant growth and nutrient uptake in cucumber production under field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ortas, I.

    2010-07-01

    Mycorrhizas application in horticultural production in the Eastern Mediterranean region of Turkey has been studied under field conditions for several years. The effects of different arbuscular mycorrhizal fungi (AMF) have been evaluated under field conditions for cucumber production. The parameters measured were seedling survival, plant growth and yield, and root colonization. In 1998 and 1999, Glomus mosseae and Glomus etunicatum inoculated cucumber seedlings were treated with and without P (100 kg P2O5 ha-1) application. A second experiment was set up to evaluate the response of cucumber to the inoculation with a consortia of indigenous mycorrhizae, G. mosseae, G. etunicatum, Glomus clarum, Glomus caledonium and a mixture of these four species. Inoculated and control non inoculated cucumber seedlings were established under field conditions in 1998, 2001, 2002 and 2004. Seedling quality, seedling survival under field conditions and yield response to mycorrhiza were tested. Fruits were harvested periodically; at blossom, plant leaves and root samples were taken for nutrient content and mycorrhizal colonization analysis respectively. The field experiment results showed that mycorrhiza inoculation significantly increased cucumber seedling survival, fruit yield, P and Zn shoot concentrations. Indigenous mycorrhiza inoculum was successful in colonizing plant roots and resulted in better plant growth and yield. The relative effectiveness of each of the inocula tested was not consistent in the different experiments, although inoculated plants always grew better than control no inoculated. The most relevant result for growers was the increased survival of seedlings. (Author) 20 refs.

  15. Influences of Moisture Regimes and Functional Plant Types on Nutrient Cycling in Permafrost Regions

    Science.gov (United States)

    McCaully, R. E.; Arendt, C. A.; Newman, B. D.; Heikoop, J. M.; Wilson, C. J.; Sevanto, S.; Wales, N. A.; Wullschleger, S.

    2017-12-01

    In the permafrost-dominated Arctic, climatic feedbacks exist between permafrost, soil moisture, functional plant type and presence of nutrients. Functional plant types present within the Arctic regulate and respond to changes in hydrologic regimes and nutrient cycling. Specifically, alders are a member of the birch family that use root nodules to fix nitrogen, which is a limiting nutrient strongly linked to fertilizing Arctic ecosystems. Previous investigations in the Seward Peninsula, AK show elevated presence of nitrate within and downslope of alder patches in degraded permafrost systems, with concentrations an order of magnitude greater than that of nitrate measured above these patches. Further observations within these degraded permafrost systems are crucial to assess whether alders are drivers of, or merely respond to, nitrate fluxes. In addition to vegetative feedbacks with nitrate supply, previous studies have also linked low moisture content to high nitrate production. Within discontinuous permafrost regions, the absence of permafrost creates well-drained regions with unsaturated soils whereas the presence of permafrost limits vertical drainage of soil-pore water creating elevated soil moisture content, which likely corresponds to lower nitrate concentrations. We investigate these feedbacks further in the Seward Peninsula, AK, through research supported by the United States Department of Energy Next Generation Ecosystem Experiment (NGEE) - Arctic. Using soil moisture and thaw depth as proxies to determine the extent of permafrost degradation, we identify areas of discontinuous permafrost over a heterogeneous landscape and collect co-located soilwater chemistry samples to highlight the complex relationships that exist between alder patches, soil moisture regimes, the presence of permafrost and available nitrate supply. Understanding the role of nitrogen in degrading permafrost systems, in the context of both vegetation present and soil moisture, is crucial

  16. Relationships between nutrient-related plant traits and combinations of soil N and P fertility measures.

    Science.gov (United States)

    Fujita, Yuki; van Bodegom, Peter M; Witte, Jan-Philip M

    2013-01-01

    Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility-trait relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1) whether different elements (N or P) have contrasting or shared influences, (2) which timescale of fertility measures (e.g. mineralization rates for one or five years) has better predictive power, and (3) if integrated fertility measures explain trait variation better than individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had element-specific effects on traits related to species composition (e.g. Grime's CSR strategy). The timescale of fertility measures only had a minor impact on fertility-trait relationships. Two integrated fertility measures (one reflecting overall fertility, another relative availability of soil N and P) were related significantly to most plant traits, but were not better in explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations) but largely for others (e.g. 66% for whole-canopy P concentration). The moderate relationships were probably due to complex regulation mechanisms of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared) and divergent (i.e. element-specific and stoichiometric) effects of soil N and P on traits, implying the importance of explicitly

  17. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    Science.gov (United States)

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.

  18. Intelligent control system for nuclear power plant mobile robot

    International Nuclear Information System (INIS)

    Koenig, A.; Lecoeur-Taibi, I.; Crochon, E.; Vacherand, F.

    1991-01-01

    In order to fully optimize the efficiency of the perception and navigation components available on a mobile robot, the upper level of a mobile robot control requires intelligence support to unload the work of the teleoperator. This knowledge-based system has to manage a priori data such as the map of the workspace, the mission, the characteristics of sensors and robot, but also, the current environment state and the running mission. It has to issue a plan to drive the sensors to focus on relevant objects or to scan the environment and to select the best algorithms depending on the current situation. The environment workspace is a nuclear power plant building. The teleoperated robot is a mobile wheeled or legged vehicle that moves inside the different floors of the building. There are three types of mission: radio-activity survey, inspection and intervention. To perform these goals the robot must avoid obstacles, pass through doors, possibly climb stairs and recognize valves and pipes. The perception control system has to provide the operator with a synthetic view of the surroundings. It manages background tasks such as obstacle detection and free space map building, and specific tasks such as beacon recognition for odometry relocalization and valve detection for maintenance. To do this, the system solves perception resources conflicts, taking into account the current states of the sensors and the current conditions such as lightness or darkness, cluttered scenes, sensor failure. A perception plan is issued from the mission goals, planned path, relocalization requirements and available perception resources. Basically, the knowledge-based system is implemented on a blackboard architecture which includes two parts: a top-down planning part and a bottom-up perception part. The results of the perception are continuously sent to the operator who can trigger new perception actions. (author)

  19. After heat distribution of a mobile nuclear power plant

    Science.gov (United States)

    Parker, W. G.; Vanbibber, L. E.; Tang, Y. S.

    1971-01-01

    A computer program was developed to analyze the transient afterheat temperature and pressure response of a mobile gas-cooled reactor power plant following impact. The program considers (in addition to the standard modes of heat transfer) fission product decay and transport, metal-water reactions, core and shield melting and displacement, and pressure and containment vessel stress response. Analyses were performed for eight cases (both deformed and undeformed models) to verify operability of the program options. The results indicated that for a 350 psi (241 n/sq cm) initial internal pressure, the containment vessel can survive over 100,000 seconds following impact before creep rupture occurs. Recommendations were developed as to directions for redesign to extend containment vessel life.

  20. Seasonal variations and effects of nutrient applications on N and P and microbial biomass under two temperate heathland plants

    DEFF Research Database (Denmark)

    Nielsen, Pia Lund; Andresen, Louise Christoffersen; Michelsen, Anders

    2009-01-01

    . The microbial biomass on the other hand was positively related to soil water content in fertilized plots indicating that this was due to an indirect effect of enhanced nutrient availability. Microbial N and P pools were respectively 1000 and 100 times higher than the pool of inorganic N and P, and microbes...... this process. In this study the soil properties under two dominant heathland plants, the dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa, were investigated, with focus on nutrient content in the organic top soil and soil microbes during the main growing season and effects of nutrient amendments...... therefore may play an important role in regulating plant nutrient supply. Judged from responses of inorganic and microbial N and P concentrations to added N and P, N seemed to limit C. vulgaris and soil microbes below while P seemed to limit D. flexuosa and soil microbes below this species. There were lower...

  1. Plant availability of nutrients recovered as solids from human urine tested in climate chamber on Triticum aestivum L.

    Science.gov (United States)

    Ganrot, Zsófia; Dave, Göran; Nilsson, Eva; Li, Bo

    2007-11-01

    Recovered nutrients by freezing-thawing from human urine in combination with struvite precipitation and nitrogen adsorption on zeolite and activated carbon have been tested in pot trials with wheat, Triticum aestivum L., in a climate chamber during 21 days. A simple test design using sand as substrate was chosen to give a first, general evaluation of the nutrient (P and N) availability from these sources. Dry weight, plant growth morphology, total-P and total-N were analysed. The tests show a slow-release of nutrients (P and N) from struvite and from N-adsorbents. The nitrogen in all treatments was in the deficiency range for optimum yield for wheat. Higher pH than usual for soil tests contributed to the difficulties in plant uptake, especially in the pots with only struvite (with highest MgO addition) as nutrient source.

  2. Root foraging increases performance of the clonal plant Potentilla reptans in heterogeneous nutrient environments.

    Science.gov (United States)

    Wang, Zhengwen; van Kleunen, Mark; During, Heinjo J; Werger, Marinus J A

    2013-01-01

    Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention. In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed). Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.

  3. Seasonal amounts of nutrients in Western cherry fruit fly (Diptera: Tephritidae) and their relation to nutrient availability on cherry plant surfaces.

    Science.gov (United States)

    Yee, Wee L; Chapman, Peter S

    2008-10-01

    Relatively little is known about the nutritional ecology of fruit flies in the genus Rhagoletis. In this study, nutrient amounts in male and female western cherry fruit fly, Rhagoletis indifferens Curran, and availability of nitrogen and sugar on surfaces of leaves, fruit, and extrafloral nectaries (EFNs) of sweet cherry trees, were determined from late May to late June 2005 and of sugar from EFNs from mid-May to late June 2007 in Washington state. Protein amounts in male and female flies did not differ over the season. Nitrogen was present on leaves, fruit, and EFNs during the sampling period, but amounts on leaves and fruit were lower in late May than the rest of the season. Sugar amounts in flies did not differ over the season. Sugar was present on leaf, fruit, and EFN surfaces all season, but amounts on all three were lower in late May than later in the season. Fructose and glucose were the predominant sugars on all plant surfaces, but sucrose was also present in nectar from EFNs. In outdoor and field cage experiments in 2004 and 2006, more flies survived when cherry branches with leaves and fruit were present than absent. Results suggest that R. indifferens maintains stable protein and sugar levels throughout the season because sufficient amounts of nutrients are found in cherry trees during this time and that increases in nutrient availability caused by ripening and damaged cherries later in the season do not result in increased amounts of nutrients in flies.

  4. Simple procedure for nutrient analysis of coffee plant with energy dispersive X-ray fluorescence spectrometry (EDXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Tezotto, Tiago; Favarin, Jose Laercio; Neto, Ana Paula; Azevedo, Ricardo Antunes, E-mail: tiago.tezotto@usp.br [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil); Gratao, Priscila Lupino [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/ FCAV), Jaboticabal, SP (Brazil). Dept. de Biologia Aplicada a Agropecuaria; Mazzafera, Paulo [Universidade Estadual de Campinas (UNICAMP/IB), SP (Brazil). Dept. Biologia Vegetal

    2013-07-15

    Nutrient analysis is used to estimate nutrient content of crop plants to manage fertilizer application for sustained crop production. Direct solid analysis of agricultural and environmental samples by energy dispersive X-ray fluorescence spectrometry (EDXRF) was chosen as alternative technique to evaluate the simultaneous multielemental quantification of the most important essential elements in coffee (Coffea arabica L.) plants. Inductively coupled plasma atomic emission spectrometry and certified reference materials made from leaves were used to calibrate and check the trueness of EDXRF method for the determination of the concentration of several nutrients in coffee leaves and branches. Fluorescence spectrometry proved to be advantageous and presented low cost as loose powder samples could be used. Samples collected from a field experiment where coffee plants were treated with excess of Ni and Zn were used to verify the practical application of the method. Good relationships were achieved between certified values and data obtained by EDXRF, with recoveries ranging from 82 to 117 %.(author)

  5. Acúmulo de nutrientes pela alface destinada à produção de sementes Nutrients uptake by lettuce plants for seed production

    Directory of Open Access Journals (Sweden)

    C Kano

    2011-03-01

    Full Text Available O objetivo deste trabalho foi determinar a curva de acúmulo de nutrientes pela planta de alface destinada à produção de sementes. O experimento foi conduzido na Fazenda Experimental São Manuel, pertencente à Faculdade de Ciências Agronômicas da Universidade Estadual Paulista, no período de 25/09/03 a 19/02/04. O delineamento experimental utilizado foi em blocos ao acaso com cinco repetições e seis tratamentos (épocas de coleta das plantas: 0, 20, 34, 49, 69 e 112 dias após o transplante (DAT. Foi utilizada a alface crespa cultivar Verônica, sendo avaliados o acúmulo da massa seca e de N, P, K, Ca, Mg, S, B, Cu, Fe, Mn e Zn na parte aérea das plantas. O maior incremento da massa seca das plantas ocorreu após o ponto comercial (34 DAT. O período de maior demanda de macronutrientes foi entre o início do pendoamento e o início do florescimento. Observa-se que para a maioria dos micronutrientes o período de maior exigência foi após o início do florescimento. A ordem decrescente de acúmulo de nutrientes foi: K>N>Ca>Mg>P>S>Fe>Mn>Zn>B>Cu.The nutrients uptake curve of lettuce plants for seed production was evaluated. The experiment was carried out from September 2003 to February 2004 at the Faculdade de Ciências Agronômicas of the Universidade Estadual Paulista, in Botucatu, São Paulo State, Brazil. A randomized block design was used, with five replicates and six treatments (periods of plant collection: 0, 20, 34, 49, 69 and 112 days after transplant (DAT. We utilized the Verônica lettuce cultivar and evaluated the dry mass and the N, P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn accumulated in the aboveground part of the plants. The greatest increase in the plant dry matter occurred after the marketable point (34 DAT. The period of greatest demand for nutrients was between the beginning of the stem elongation stage and the beginning of the flowering stage. We also observed that for most micronutrients the period of highest demand

  6. Heavy metal and nutrient uptake in plants colonizing post-flotation copper tailings.

    Science.gov (United States)

    Kasowska, Dorota; Gediga, Krzysztof; Spiak, Zofia

    2018-01-01

    Copper ore mining and processing release hazardous post-flotation wastes that are difficult for remediation. The studied tailings were extremely rich in Cu (1800 mg kg -1 ) and contaminated with Co and Mn, and contained very little available forms of P, Fe, and Zn. The plants growing in tailings were distinctly enriched in Cu, Cd, Co, Ni, and Pb, and the concentration of copper achived the critical toxicity level in shoots of Cerastium arvense and Polygonum aviculare. The redundancy analysis demonstrated significant relationship between the concentration of available forms of studied elements in substrate and the chemical composition of plant shoots. Results of the principal component analysis enabled to distinguish groups of plants which significantly differed in the pattern of element accumulation. The grass species Agrostis stolonifera and Calamagrostis epigejos growing in the tailings accumulated significantly lower amounts of Cu, but they also had the lowest levels of P, Fe, and Zn in comparison to dicotyledonous. A. stolonifera occurred to be the most suitable species for phytostabilization of the tailings with regard to its low shoot Cu content and more efficient acquisition of limiting nutrients in relation to C. epigejos. The amendments improving texture, phosphorus fertilization, and the introduction of native leguminous species were recommended for application in the phytoremediation process of the tailings.

  7. Sanitary landfill leachate as a source of nutrients on the initial growth of sunflower plants

    Directory of Open Access Journals (Sweden)

    Francisco H. Nunes Júnior

    Full Text Available ABSTRACT The aim of this study was to evaluate the initial growth of sunflower seedlings under different concentrations of sanitary landfill leachate, considering the feasibility of its use as source of nutrients for agricultural production. Biometric and vigor variables were analyzed through the measurements of collar diameter, shoot height, number of leaves and shoot and root fresh and dry matters, from January to February 2015. The experimental design was completely randomized in a 5 x 4 factorial scheme: five leachate concentrations (0, 40, 60, 80 and 100 kg N ha-1 x four harvest periods (14, 21, 25 and 29 days after sowing, with five replicates each containing two plants. The data were subjected to analysis of variance and polynomial regression, and the results of the last harvest (29 DAS were compared by Tukey test (p ≤ 0.05. The use of sanitary landfill leachate increased all analyzed variables in sunflower plants when compared to the control plants (without leachate, especially in the treatment of 100 kg N ha-1. There was no inhibitory effect of the leachate on the initial growth of sunflower seedlings under adopted experimental conditions.

  8. Screening of Less known Two Food Plants for Comparison of Nutrient Contents: Iranian and Indian Vegetables

    Directory of Open Access Journals (Sweden)

    Ali Aberoumand

    2011-10-01

    Full Text Available Background: Greater consumption of fruits and vegetables is associated with reduced risk of cardiovascular disease, stroke, and cancers. The most important nutrients present in plants are carbohydrates, such as the starch and free sugars, oils, proteins, minerals, ascorbic acid, and the antioxidant phenols. Plants are an essential component of the universe. Human beings have used those as medicine from the very beginning of time.Methods: The proximate composition and mineral constituents of Asparagus officinalis stem and Momordica dioica fruit were evaluated in order to scientific standard methods of Association for Official and Analytical Chemists (AOAC.Results: The stem contained ashes: 10.70% crude protein: 32.69%, crude lipid: 3.44%, crude fiber: 18.50%, and carbohydrates: 34.67%. Stem also have high energy value (384.27kcal/100g dry weight. Mineral ranges (mg/100g dry weight, DW were: K (10.94, Na (1.84, Ca (0.67, Fe (0.19, and Zn (2.60. The fruits contained ashes: 9.1%, crude protein: 5.44%, crude lipid: 3.25%, crude fiber: 22.9%, and carbohydrates: 59.31%. The fruits also have high energy value (288.25kcal/100g dry weight. Mineral ranges (mg/100g dry weight, DW were: K (4.63, Na (1.62, Ca (7.37, Fe (5.04, and Zn (3.83.Conclusion: Comparing proximate and minerals contents of the stem and the fruit, the results indicated that Asparagus officinalis stem could be a good supplement for some nutrients such as protein, lipid, potassium and zinc, fibre and carbohydrates while Momordica dioica fruit was good source of lipid, crude fiber, carbohydrates, iron and zinc.Functional Foods in Health and Disease 2011; 10:416-424

  9. Responses of nutrients and mobile carbohydrates in Quercus variabilis seedlings to environmental variations using in situ and ex situ experiments.

    Directory of Open Access Journals (Sweden)

    Jing-Pin Lei

    Full Text Available Forest tree species distributed across a wide range of geographical areas are subjected to differential climatic and edaphic conditions and long-term selection, leading to genotypes with morphological and physiological adaptation to the local environment. To test the ability of species to cope with changing environmental conditions, we studied the ecophysiological features of Quercus variabilis using seedlings grown in geographically widely isolated populations (Exp. I, in situ and in a common garden (Exp. II, ex situ using seedlings originating from those populations. We found that Q. variabilis plants grown in different locations along a south-north gradient had different levels of nutrients (N, P, K and carbon-physiological performance (photosynthesis, non-structural carbohydrates, such as soluble sugars and starch, and that these physiological differences were not correlated with local soil properties. These geographic variations of plant physiology disappeared when plants from different locations were grown in the same environment. Our results indicate that the physiological performance of Q. variabilis plants is mainly determined by the climatic variations across latitude rather than by their soils or by genetic differentiation. The adaptive ability of Q. variabilis found in the present study suggests that this species has the potential to cope, at least to some extent, with changing environmental conditions.

  10. Physiological behavior of hydrogen sulfide in the rice plant. Part I. Effect of hydrogen sulfide on the absorption of nutrients

    Energy Technology Data Exchange (ETDEWEB)

    Okajima, H; Takagi, S

    1953-01-01

    A comparative study was made by the root separation method on the cases of lack of nutrients and nutritional injury caused by H/sub 2/S, as indicated by inhibition of nutrient uptake. The results are summarized as follows: the degree of inhibition of nutrient uptake caused by H/sub 2/S varied with the kind of nutrient in the order: P/sub 2/O/sub 5/ > K/sub 2/O > NH/sub 3/ > NO/sub 3/ = H/sub 2/O. There was observed a tendency of increase in absorption of CaO and MgO. There were indications that the degree of inhibition of nutrient uptake, except for absorption of H/sub 2/O is related to the stage of growth of the plant. The treatment of the roots on one side did not affect the efficiency of nutrient uptake by the roots on the opposite side of the same plant. 11 references, 1 figure, 8 tables.

  11. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.

    Science.gov (United States)

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim

    2015-01-01

    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  12. Trichoderma asperellum T42 Reprograms Tobacco for Enhanced Nitrogen Utilization Efficiency and Plant Growth When Fed with N Nutrients

    Directory of Open Access Journals (Sweden)

    Bansh N. Singh

    2018-02-01

    Full Text Available Trichoderma spp., are saprophytic fungi that can improve plant growth through increased nutrient acquisition and change in the root architecture. In the present study, we demonstrate that Trichoderma asperellum T42 mediate enhancement in host biomass, total nitrogen content, nitric oxide (NO production and cytosolic Ca2+ accumulation in tobacco. T42 inoculation enhanced lateral root, root hair length, root hair density and root/shoot dry mass in tobacco under deprived nutrients condition. Interestingly, these growth attributes were further elevated in presence of T42 and supplementation of NO3- and NH4+ nutrients to tobacco at 40 and 70 days, particularly in NO3- supplementation, whereas no significant increment was observed in nia30 mutant. In addition, NO production was more in tobacco roots in T42 inoculated plants fed with NO3- nutrient confirming NO generation was dependent on NR pathway. NO3- dependent NO production contributed to increase in lateral root initiation, Ca2+ accumulation and activities of nitrate transporters (NRTs in tobacco. Higher activities of several NRT genes in response to T42 and N nutrients and suppression of ammonium transporter (AMT1 suggested that induction of high affinity NRTs help NO3- acquisition through roots of tobacco. Among the NRTs NRT2.1 and NRT2.2 were more up-regulated compared to the other NRTs. Addition of sodium nitroprusside (SNP, relative to those supplied with NO3-/NH4+ nutrition and T42 treated plants singly, and with application of NO inhibitor, cPTIO, confirmed the altered NO fluorescence intensity in tobacco roots. Our findings suggest that T42 promoted plant growth significantly ant N content in the tobacco plants grown under N nutrients, notably higher in NO3-, providing insight of the strategy for not only tobacco but probably for other crops as well to adapt to fluctuating nitrate availability in soil.

  13. Nutrient cycling, connectivity, and free-floating plant abundance in backwater lakes of the Upper Mississippi River

    Science.gov (United States)

    Houser, Jeff N.; Giblin, Shawn M.; James, William F.; Langrehr, H.A.; Rogala, James T.; Sullivan, John F.; Gray, Brian R.

    2013-01-01

    River eutrophication may cause the formation of dense surface mats of free floating plants (FFP; e.g., duckweeds and filamentous algae) which may adversely affect the ecosystem. We investigated associations among hydraulic connectivity to the channel, nutrient cycling, FFP, submersed aquatic vegetation (SAV), and dissolved oxygen concentration (DO) in ten backwater lakes of the Upper Mississippi River (UMR) that varied in connectivity to the channel. Greater connectivity was associated with higher water column nitrate (NO3-N) concentration, higher rates of sediment phosphorus (P) release, and higher rates of NO3-N flux to the sediments. Rates of sediment P and N (as NH4-N) release were similar to those of eutrophic lakes. Water column nutrient concentrations were high, and FFP tissue was nutrient rich suggesting that the eutrophic condition of the UMR often facilitated abundant FFP. However, tissue nutrient concentrations, and the associations between FFP biomass and water column nutrient concentrations, suggested that nutrients constrained FFP abundance at some sites. FFP abundance was positively associated with SAV abundance and negatively associated with dissolved oxygen concentration. These results illustrate important connections among hydraulic connectivity, nutrient cycling, FFP, SAV, and DO in the backwaters of a large, floodplain river.

  14. Agricola use of compost and vermicomposts of urban wastes: supplying of nutrients to soil and plant; Uso agricola de compost y vermicompost de basuras urbanas: capacidad de cesion de nutrientes al suelo y la plant

    Energy Technology Data Exchange (ETDEWEB)

    Nogales, R.; Elvira, C.; Benitez, E.; Gallardo-Lara, F. [Dpto. Agroecoliga y Proteccion Vegetal, Estacion Experimental del Zaidin, CSIC (Spain)

    1996-06-01

    Compost and vermicomposts from town refuse can be considered as a valuable resource for supplying nitrogen, potassium and some micro nutrients to soils and plants. Application of these mature organic materials increase crop yield, although they are less efficient than mineral fertilizers in order to obtain inmediate crops. (Author) 79 refs.

  15. The effects of compost prepared from waste material of banana plants on the nutrient contents of banana leaves.

    Science.gov (United States)

    Doran, Ilhan; Sen, Bahtiyar; Kaya, Zülküf

    2003-10-01

    In this study, the possible utilization of removed shoots and plant parts of banana as compost after fruit harvest were investigated. Three doses (15-30-45 kg plan(-1)) of the compost prepared from the clone of Dwarf Cavendish banana were compared with Farmyard manure (50 kg plant(-1), Mineral fertilizers (180 g N + 150 g P + 335 g K plant(-1)) and Farmyard manure + Mineral fertilizers (25 kg FM + 180 g N + 150 g P + 335 g K plant(-1)) which determined positive effects on the nutrient contents of banana leaves. The banana plants were grown under a heated glasshouse and in a soil with physical and chemical properties suitable for banana growing. The contents of N, P, K and Mg in compost and in farmyard manure were found to be similar. Nitrogen, phosphorus and potassium contents of leaves in all applications except control, and Ca, Mg, Fe, Zn, Mn, Cu contents in all applications were determined between optimum levels of reference values. There were positive correlations among some nutrient contents of leaves, growth, yield and fruit quality characteristics. Farmyard manure, Farmyard manure + Mineral fertilizers and 45 kg plant(-1) of compost increased the nutrient contents of banana leaves. According to obtained results, 45 kg plant(-1) of compost was determined more suitable in terms of economical production and organic farming than the other fertiliser types.

  16. Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill.

    Science.gov (United States)

    Madejón, P; Murillo, J M; Marañón, T; Cabrera, F; Soriano, M A

    2003-05-20

    The failure of a tailing pond dam at the Aznalcóllar pyrite mine (SW Spain) in April 1998 released a toxic spill affecting approximately 4300 ha along the Agrio and Guadiamar valleys. Two years later, we have studied yield and concentration of mineral nutrients and trace elements in sunflower plants grown in the spill-affected soil, and in an adjacent unaffected soil as comparison. The study has been carried out in plants at seedling (V4) and mature (R8) stages. Shoot and root biomass of sunflower seedlings was significantly smaller in the affected soil than in the unaffected soil, but there was no significant difference at the mature stage. Oil production was greater in the spill-affected plants. We have not detected any 'fertilising' effect caused by the acid waters of the spill on the main nutrient (N, P and Ca) acquisition, as documented in 1998 for sunflower plants flooded by the spill. Sunflower plants growing in the spill-affected soil reached adequate levels of nutrients. None of the trace elements measured-As, Cd, Cu, Pb and Tl-reached levels either phytotoxic or toxic for humans or animals in seeds and the above-ground part of the spill-affected plants. We evaluate the potential use of sunflower plants for phytoremediation. The potential for phytoextraction is very low; however, it may be used for soil conservation. The production of oil (usable for industrial purposes) may add some value to this crop.

  17. Export of nutrients in plants jambu under different fertilizationExportação de nutrientes em plantas de jambu, sob diferentes adubações

    Directory of Open Access Journals (Sweden)

    Luciana da Silva Borges

    2013-03-01

    Full Text Available The jambu is a broad vegetable consumption in Northern Brazil, especially in Pará, known by the jambu and other common names is native to the Amazon region has been used and cultivated for culinary and also recently in natural medicines by their chemical properties, attributed to the spilanthol compound. Knowing the amount of nutrient uptake in plants, especially at the taken, it is important to evaluate the removal of nutrients necessary for economic fertilizer recommendations. So the goal of this project was to determine the accumulation of nutrients in plants of jambu (leaf and inflorescence under different fertilizations. The experiment was conducted at São Manuel Experimental Farm UNESP. The statistical was arranged in the randomized block design, in a 2 x 6 factorial scheme, two sources of fertilizers (organic and mineral and six doses of nitrogen, with four replications. We evaluated the macronutrients of accumulation N, P, K, Ca, Mg, S and micronutrients of accumulation B, Cu, Fe and Zn in leaves and inflorescence. The plants responded more jambu nutrients of translocation phosphorus (P, magnesium (Mg, sulfhur (S, boron (B, copper (Cu and iron (Fe in the inflorescences and phosphorus (P, calcium (Ca, manganese (Mg, sulfur (S, boron (B, copper (Cu and iron (Fe in leaves to organic fertilization demonstrating the effectiveness of using this source of fertilizer nutrients indicating that this was a defining characteristic in response to the accumulation of nutrients in the leaves and inflorescences jambu. Plants jambu are more responsive to fertilizer for the mineral of translocation nitrogen (N and manganese (Mn for both the sheet and for the inflorescences of plants jambu. O jambu é uma hortaliça de largo consumo na região Norte do Brasil, conhecida por diferentes nomes populares, como agrião do Pará, erva maluca, botão de ouro, é uma espécie nativa da Amazônia, bastante utilizada na culinária regional e também em

  18. Dipteran larvae and microbes facilitate nutrient sequestration in the Nepenthes gracilis pitcher plant host.

    Science.gov (United States)

    Lam, Weng Ngai; Chong, Kwek Yan; Anand, Ganesh S; Tan, Hugh Tiang Wah

    2017-03-01

    The fluid-containing traps of Nepenthes carnivorous pitcher plants (Nepenthaceae) are often inhabited by organisms known as inquilines. Dipteran larvae are key components of such communities and are thought to facilitate pitcher nitrogen sequestration by converting prey protein into inorganic nitrogen, although this has never been demonstrated in Nepenthes Pitcher fluids are also inhabited by microbes, although the relationship(s) between these and the plant is still unclear. In this study, we examined the hypothesis of digestive mutualism between N. gracilis pitchers and both dipteran larvae and fluid microbes. Using dipteran larvae, prey and fluid volumes mimicking in situ pitcher conditions, we conducted in vitro experiments and measured changes in available fluid nitrogen in response to dipteran larvae and microbe presence. We showed that the presence of dipteran larvae resulted in significantly higher and faster releases of ammonium and soluble protein into fluids in artificial pitchers, and that the presence of fluid microbes did likewise for ammonium. We showed also that niche segregation occurs between phorid and culicid larvae, with the former fragmenting prey carcasses and the latter suppressing fluid microbe levels. These results clarify the relationships between several key pitcher-dwelling organisms, and show that pitcher communities facilitate nutrient sequestration in their host. © 2017 The Author(s).

  19. The influence of arbuscular mycorrhizae on root precision nutrient foraging of two pioneer plant species during early reclamation

    Science.gov (United States)

    Boldt-Burisch, Katja; Naeth, M. Anne

    2017-04-01

    On many post mining sites in the Lusatian Mining District (East Germany) soil heterogeneity consists of sandy soil with embedded clay-silt fragments. Those clays silt fragments might act as nutrient hotspots. Arbuscular mycorrhizal fungi in an infertile ecosystem could enhance a plant's ability to selectively forage for those nutrients and thus to improve plants nutrient supply. In our study we investigated whether silt-clay fragments within a sandy soil matrix induced preferential root growth of Lotus corniculatus and Calamagrostis epigeios, whether arbuscular mycorrhizae influenced root foraging patterns, and to what extent selective rooting in clay silt fragments influenced plant growth were addressed in this research. Soil types were sterile and non-sterile sandy soil and clay-silt fragments. Treatments were with and without arbuscular mycorrhizae, with and without soil solution, and soil solution and mycorrhizal inoculum combined. Root biomass, root density and intraradical fungal alkaline phosphatase activity and frequency were determined in fragments relative to sandy soil. Furthermore, temporal relationship of number of roots in fragments and plant height was assessed. Lotus corniculatus showed strong selective rooting into fragments especially with those plants treated with commercial cultivated arbuscular mycorrhizae; Calamagrostis epigeios did not. Without arbuscular mycorrhizae, L. corniculatus growth was significantly reduced and selective rooting did not occur. Selective rooting induced significant growth spurts of L. corniculatus. Roots in fragments had higher fungal alkaline phosphatase activity suggesting that mycorrhizal efficiency and related plants phosphorus supply is enhanced in roots in fragments. The application of cultivated arbuscular mycorrhizal fungi significantly and quickly influenced root foraging patterns, especially those of L. corniculatus, suggesting mycorrhizae may also enhance the ability of other plants to selectively forage

  20. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    OpenAIRE

    Stanisław Ledakowicz; Paweł Stolarek; A. Malinowski

    2016-01-01

    The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h ...

  1. The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands

    NARCIS (Netherlands)

    Hayes, Matthew A.; Jesse, Amber; Tabet, Basam; Reef, Ruth; Keuskamp, Joost A.; Lovelock, Catherine E.

    2017-01-01

    Eutrophication of coastal waters can have consequences for the growth, function and soil processes of coastal wetlands. Our aims were to assess how nutrient enrichment affects growth, biomass allocation and decomposition of plant tissues of a common and widespread mangrove, Avicennia marina, and how

  2. Soil Nutrient Availability, Plant Nutrient Uptake, and Wild Blueberry (Vaccinium angustifolium Ait. Yield in Response to N-Viro Biosolids and Irrigation Applications

    Directory of Open Access Journals (Sweden)

    Aitazaz A. Farooque

    2012-01-01

    Full Text Available We compared the impact of surface broadcasted N-Viro biosolids and inorganic fertilizer (16.5% Ammonium sulphate, 34.5% Diammonium phosphate, 4.5% Potash, and 44.5% s and/or clay filler applications on soil properties and nutrients, leaf nutrient concentration, and the fruit yield of lowbush blueberry under irrigated and nonirrigated conditions during 2008-2009 at Debert, NS, Canada. Application rates of N-Viro biosolids were more than double of inorganic fertilizer applied at a recommended N rate of 32 kg ha−1. The experimental treatments NI: N-Viro with irrigation, FI: inorganic fertilizer with irrigation, N: N-Viro without irrigation, and F: inorganic fertilizer without irrigation (control were replicated four times under a randomized complete block design. The NI treatment had the highest OM (6.68% followed by FI (6.32%, N (6.18%, and F (4.43% treatments during the year 2008. Similar trends were observed during 2009 with the highest soil OM values (5.50% for NI treatment. Supplemental irrigation resulted in a 21% increase in the ripe fruit yield. Nonsignificant effect of fertilizer treatments on most of the nutrient concentrations in soil and plant leaves, and on ripe fruits yield reflects that the performance of N-Viro was comparable with that of the inorganic fertilizer used in this study.

  3. Mobility of nutrients and trace metals during weathering in the late Archean

    Science.gov (United States)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-08-01

    The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible

  4. Advanced nutrient root feeding system for conveyer-type cylindrical plant growth facilities developed for microgravity

    Science.gov (United States)

    Berkovich, Yuliy A.; Smolyanina, Svetlana O.; Krivobok, Anna; Krivobok, Nikolay

    A new brand of cylindrical conveyer-type space plant growth facilities (PGF) has been created to improve of cosmonauts’ diet in the microgravity conditions. Up to date several ground prototypes of the space PGF have been made and tested: “Phytocycle”, “Vitacycle”, “Phytocycle-LED”, “Phytoconveyer”; now the space PGF “Vitacycle-T” for the Russian segment of the ISS is under developing. In the PGFs the ion-exchange salt-saturated fibrous artificial soil (AS) is used as a root medium. We have proposed the system for enrichment of irrigation water by nutrients to decrease of the AS store required for PGF working during the long space mission. The system includes root modules filled in fibrous ion-exchange AS, the enrichment column with crumble salt-saturation ion-exchange resin and the cassette with slow releasing fertilizer (SRF). Both substrates (ion-exchange resin and SRF) are necessary because of the SRF contains mostly N, P and K but another three essential elements S, Ca, Mg are provided by the ion-exchange resin. In the system water goes throw the enrichment column with ion-exchange resin fertilizing by the nutrients and comes into the mixer cell fertilize equipped with the electrical conductivity sensor. When the signal of the conductivity sensor is coming to the controller it turns on the pump directed the water flow throw the cassette with SRF until the electric conductivity of the solution in the mixer cell will reach the setpoint. The nutrient root feeding system was tested during 88 days when Chinese cabbage grew in PGF “Phytocycle-LED”. The crop has been continuously illuminated by red and blue LEDs in the PPF ratio 7 to 1; an integral PPF level has been (240 ± 10) µmol/(m2×s). There was no renewal of the used fibrous AS during the experiment. The PGF total electric power consumption was of 0,45 kW. The average fresh biomass productivity of the PGF during steady state working mode was equal 135×g/day per m2 of the illuminated

  5. Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities

    Science.gov (United States)

    Nutrient use overlap among sympatric Streptomyces populations is correlated with pathogen inhibitory capacity, yet there is little information on either the factors that influence nutrient use overlap among coexisting populations or the diversity of nutrient use among soil Streptomyces. We examined ...

  6. An Invasive Clonal Plant Benefits from Clonal Integration More than a Co-Occurring Native Plant in Nutrient-Patchy and Competitive Environments

    Science.gov (United States)

    You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua

    2014-01-01

    Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits

  7. Plant-Based Lunch at Work: Effects on Nutrient Intake, Environmental Impact and Tastiness—A Case Study

    Directory of Open Access Journals (Sweden)

    Mirjam E. van de Kamp

    2018-01-01

    Full Text Available The aim of this study was to determine the environmental impact, nutrient intake, appreciation and tastiness of three buffet-style lunches served at the workplace, consisting of (1 animal-based foods; (2 plant-based foods; and (3 both animal-based and plant-based foods. Employees of the National Institute for Public Health and the Environment in the Netherlands participated in the study. Participants scored the lunch for appreciation and tastiness (scores from 1 to 10. Greenhouse gas (GHG emissions and land use associated with foods consumed were calculated using life cycle assessments. Nutrient intake was calculated using food composition data. The results show that both the plant-based and the combination lunch received higher scores for tastiness than the animal-based lunch. GHG emissions and land use were lowest for the plant-based lunch and highest for the animal-based lunch. The combination lunch was associated with increased fiber and decreased saturated fat intake compared to the animal-based lunch, but also lead to increased energy intake. The plant-based lunch did not increase energy intake, while increasing fiber intake and decreasing sodium (salt and saturated fat intakes. These initial results show that plant-based lunches have the potential to improve nutrient intake and tastiness while reducing environmental impact. Additional research in this field is worthwhile.

  8. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007–2010

    Directory of Open Access Journals (Sweden)

    Christopher J. Cifelli

    2016-07-01

    Full Text Available Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES 2007–2010 for persons two years and older (n = 17,387 were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i plant-based foods; (ii protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy; and (iii milk, cheese and yogurt. Scenarios (i and (ii had commensurate reductions in animal product intake. In both children (2–18 years and adults (≥19 years, the percent not meeting the Estimated Average Requirement (EAR decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that

  9. Mobile robot for power plant inspection and maintenance

    International Nuclear Information System (INIS)

    White, J.R.; Farnstrom, K.A.; Harvey, H.W.; Upton, R.G.; Walker, K.L.

    1988-01-01

    An all-terrain, mobile robot (called SURBOT-T) has been developed to perform remote visual, sound, and radiation surveillance within contaminated areas of nuclear power plants. The robot can be equipped with a two-armed, telerobotic manipulator system to perform remote maintenance work. The SURBOT-T vehicle has a double-articulating track base that is capable of climbing 45-deg slopes and stairs and over 16-in.-high obstacles. The overall size of SURBOT-T is 28 in. wide by 38 in. long with the front and rear tracks raised and 52 in. high with the camera lowered. With the tracks in a level position, the base provides a sturdy work platform and can ascend/descend stairs without fear of tipping over. The track can be pivoted straight down to elevate the base 14 in. and pass through water up to 24 in. deep. All motors, amplifiers, computer boards, and other electronic components are contained within a sealed housing. The color television camera, spotlight, and directional microphone are mounted on a pan/tilt, which is attached to an elevating mechanism that has 8 ft of vertical travel. An air sampler, radiation detector, and temperature/humidity probe are mounted on the vehicle. The slave manipulator arms on the vehicle can be teleoperated using master arms that are attached to a portable stand near the control console. They can also be taught to perform motions or tasks by computer control much like robot arms in the automated manufacturing industry

  10. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation

    Directory of Open Access Journals (Sweden)

    Michael J. McCann

    2016-03-01

    Full Text Available Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis to nutrient stoichiometry (nitrogen and phosphorus and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C and low nutrient conditions (0.5 mg N L−1, 0.083 mg P L−1. The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions.

  11. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation

    Science.gov (United States)

    2016-01-01

    Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis) to nutrient stoichiometry (nitrogen and phosphorus) and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C) and low nutrient conditions (0.5 mg N L−1, 0.083 mg P L−1). The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions. PMID:26989619

  12. Computer program for afterheat temperature distribution for mobile nuclear power plant

    Science.gov (United States)

    Parker, W. G.; Vanbibber, L. E.

    1972-01-01

    ESATA computer program was developed to analyze thermal safety aspects of post-impacted mobile nuclear power plants. Program is written in FORTRAN 4 and designed for IBM 7094/7044 direct coupled system.

  13. Mobile open-source plant-canopy monitoring system

    Science.gov (United States)

    Many agricultural applications, including improved crop production, precision agriculture, and phenotyping, rely on detailed field and crop information to detect and react to spatial variabilities. Mobile farm vehicles, such as tractors and sprayers, have the potential to operate as mobile sensing ...

  14. Improving the safety of workers in the vicinity of mobile plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report investigates possible approaches and technologies to improve the safety of pedestrians around mobile plant. The study has considered mobile plant in underground mining, surface mineral extraction and warehousing and materials handling. It investigates vehicle ergonomics and visual task analysis, aids to improve reversing and sight lines, direct body detection techniques, conventional transponder (RFID) and VLF magnetic dipole detection technologies. 43 refs., 5 apps.

  15. Effects of Plant Herb Combination Supplementation on Rumen Fermentation and Nutrient Digestibility in Beef Cattle

    Directory of Open Access Journals (Sweden)

    M. Wanapat

    2013-08-01

    Full Text Available Four rumen-fistulated crossbred beef cattle (Brahman native were randomly assigned according to a 4×4 Latin square design experiment to be fed plant herb supplements in their concentrate mixture. The treatments were: without herb supplementation (Control, lemongrass meal supplementation at 100 g/d (L, lemongrass meal supplementation at 100 g/d plus peppermint powder at 10 g/d (LP, and lemongrass meal supplementation at 100 g/d plus peppermint powder at 10 g/d with garlic powder 40 g/d (LPG, respectively. Based on the present study, the DMI and apparent digestibility of DM, OM, aNDF and ADF were not affected by dietary herb supplementation while CP digestibility tended to be decreased by herb supplement. Moreover, NH3-N and BUN were decreased in all herb supplemented treatments and there was a tendency to an increase in ruminal pH in all herb supplemented groups. While there was no change in TVFA and C4 among lemongrass treatments, C2 was decreased in all herb supplemented treatments while C3 was increased. Methane production by calculation was the lowest in the LP and LPG groups. Population sizes of bacteria and protozoa were decreased in all herb supplemented groups, but not fungal zoospores. In all supplemented groups, total viable and proteolytic bacteria were decreased, while amylolytic and cellulolytic bacteria were similar. More importantly, in all herb supplemented groups, there were higher N balances, while there was no difference among treatments on purine derivative (PD excretion or microbial N. Based on the results above, it could be concluded that there was no negative effect on ruminal fermentation characteristics and nutrient utilization by plant herb supplement, but protozoal population and CH4 production were reduced. Thus, lemongrass alone or in combination with peppermint and garlic powder could be used as feed additives to improve rumen fermentation efficiency.

  16. Natural remediation of an unremediated soil twelve years after a mine accident: trace element mobility and plant composition.

    Science.gov (United States)

    Burgos, Pilar; Madejón, Paula; Madejón, Engracia; Girón, Ignacio; Cabrera, Francisco; Murillo, José Manuel

    2013-01-15

    The long-term influence of a mine spill in soil was studied 12 years after the Aznalcóllar accident. Soils where the pyritic sludge was not removed, a fenced plot established for research purposes (2000 m(2)) and soils where the process of remediation was accomplished successfully were sampled and studied in detail. Soils were characterized at different depths, down to 100 cm depth, determining chemical parameters and total concentrations of major and trace elements. Moreover plants colonizing remediated (RE) and non remediated (NRE) soils were also analysed attending their potential risk for herbivores. Strong acidification was observed in the NRE soil except in surface (0-10 cm). The progressive colonization of natural vegetation, more than 90% of the fenced plot covered by plants, could facilitate this increased pH values in the top soil (pH 6). In the NRE soil, the successive oxidation and hydrolysis of sulphide in the deposited sludge on the surface after the accident resulted in a re-dissolution of the most mobile element (Cd, Cu and Zn) and a penetration to deeper layers. Trace element concentrations in plants growing in the NRE soil showed normal contents for higher plants and tolerable for livestock. Nitrogen and mineral nutrients were of the same order in both soils, and also normal for high plants and adequate for animal nutrition. Despite of the natural remediation of the NRE soil, results demonstrate that the remediation tasks carried out in all the area, the Guadiamar Green Corridor at present, were necessary to avoid the leaching of the most mobile elements and minimize the risk of contamination of groundwater sources, many of them close to the Doñana National Park. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Crescimento, absorção e exportação de nutrientes por uma cultura de urucu Growth, nutrient absorption and nutrient export by anato plants

    Directory of Open Access Journals (Sweden)

    H.P. Haag

    1992-01-01

    Full Text Available Sementes de urucu (Bixa orellana L. var. Peruana foram postas para germinar num substrato constituido de duas partes de terra para uma de matéria orgânica, onde foram adicionados 1,5g de superfosfato triplo por litro de substrato. Após 115 dias as plantas foram transplantadas para um Latossolo Vermelho Escuro Orto série "Luiz de Queiroz" de alta fertilidade natural. O espaçamento foi de 5m x 5m. Aos 201 dias foi feita uma adubação em cobertura com 5g de KCl + 10g de uréia por planta. Plantas foram coletadas a partir dos 115 dias com intervalos de 60 dias até a produção aos 507 dias. As plantas em número de quatro por amostragem foram subdivididas em folhas, ramos, caule e órgãos reprodutivos. Aos 507 dias foram coletados frutos que foram subdivididos em casca e sementes. Os resultados mostraram que o urucu cresce lentamente até aos 267 dias intensificando o seu crescimento até os 447 dias quando ocorre uma paralização. A extração de macro e micronutrientes por uma cultura de 400 plantas/ha aos 507 dias foi de: N - 25,7kg, P - 4,1kg, K -16,7kg, Ca - 16,4kg, Mg - 4,4kg, S - 2,5kg, B - 56,4g, Cu - 16,2g, Fe - 240- 130,3g e Zn - 50,7g.Anato plant seeds (Bixa orellana var. Peruana were germinated in a soil + organic matter (2:1 substrate that received triple superphosphate (1.5 g/l. After 115 days, plants were transplanted to a high fertility Dark Red Latosol. Spacing was 5m x 5m a top dressing with 5g of KCl and l0g urea per plant was applied at the 201 day. Starting on day 115 plants (4 per sampling were collected at 60 day intervals until the 507 day. Samples were subdivided in leaves, branches, stem and reproductive parts. At the 507 day fruits were taken and divided into seeds and hulls. Anato plants grew slowly until the 267 day and improved growth rate from then on to the 447 day, when growth almost stopped. The macro and micronutrient extraction by a 400 plant per hectare crop at the 507 day were: N - 25.7 kg, P - 4.1 kg

  18. Effect of mycorrhiza and phosphorus content in nutrient solution on the yield and nutritional status of tomato plants grown on rockwool or coconut coir

    Directory of Open Access Journals (Sweden)

    Iwona Kowalska

    2015-03-01

    Full Text Available Effects of P level in nutrient solution and the colonization of roots by arbuscular mycorrhizal fungi (AMF on P uptake by tomato plants, their nutritional status, yield and quality of fruits were studied. Plants were grown on rockwool or coconut coir. Inoculation by a mixture of several AMF species was performed three times during the growing period. The mycorrhizal frequency in roots inoculated with AMF amounted to 35.79 – 50.82%. The highest level of mycorrhiza was found in plants receiving nutrient solution with a lower concentration of P. Among the experimental factors, only P level influenced the fruit yield, being higher from plants receiving a nutrient solution with a higher P level. A higher concentration of P in nutrient solution imposed better nutritional status of plants. Higher contents of ascorbic acid and total soluble sugars were found in fruits collected from inoculated plants, grown on rockwool.

  19. Identification of Appropriate Reference Genes for Normalization of miRNA Expression in Grafted Watermelon Plants under Different Nutrient Stresses.

    Science.gov (United States)

    Wu, Weifang; Deng, Qin; Shi, Pibiao; Yang, Jinghua; Hu, Zhongyuan; Zhang, Mingfang

    2016-01-01

    Watermelon (Citrullus lanatus) is a globally important crop belonging to the family Cucurbitaceae. The grafting technique is commonly used to improve its tolerance to stress, as well as to enhance its nutrient uptake and utilization. It is believed that miRNA is most likely involved in its nutrient-starvation response as a graft-transportable signal. The quantitative real-time reverse transcriptase polymerase chain reaction is the preferred method for miRNA functional analysis, in which reliable reference genes for normalization are crucial to ensure the accuracy. The purpose of this study was to select appropriate reference genes in scion (watermelon) and rootstocks (squash and bottle gourd) of grafted watermelon plants under normal growth conditions and nutrient stresses (nitrogen and phosphorus starvation). Under nutrient starvation, geNorm identified miR167c and miR167f as two most stable genes in both watermelon leaves and squash roots. miR166b was recommended by both geNorm and NormFinder as the best reference in bottle gourd roots under nutrient limitation. Expression of a new Cucurbitaceae miRNA, miR85, was used to validate the reliability of candidate reference genes under nutrient starvation. Moreover, by comparing several target genes expression in qRT-PCR analysis with those in RNA-seq data, miR166b and miR167c were proved to be the most suitable reference genes to normalize miRNA expression under normal growth condition in scion and rootstock tissues, respectively. This study represents the first comprehensive survey of the stability of miRNA reference genes in Cucurbitaceae and provides valuable information for investigating more accurate miRNA expression involving grafted watermelon plants.

  20. Effects of organic plant oils and role of oxidation on nutrient utilization in juvenile rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Lund, Ivar; Dalsgaard, Anne Johanne Tang; Jacobsen, Charlotte

    2013-01-01

    Producing organic fish diets requires that the use of both fishmeal and fish oil (FO) be minimized and replaced by sustainable, organic sources. The purpose of the present study was to replace FO with organic oils and evaluate the effects on feed intake, feed conversion ratio (FCR), daily specifi...... with plant-based organic oils without negatively affecting nutrient digestibility and growth performance. Furthermore, plant-based organic oils are less likely to oxidize than FOs, prolonging the shelf life of such organic diets...... growth rate (SGR) and nutrient digestibility in diets in which fishmeal protein was partly substituted by organic plant protein concentrates. It is prohibited to add antioxidants to organic oils, and therefore the effects of force-oxidizing the oils (including FO) on feed intake and nutrient...... very different dietary fatty acid profiles. All organic plant oils had a positive effect on apparent lipid digestibility compared with the FO diet (P,0.05), whereas there were no effects on the apparent digestibility of other macronutrients when compared with the FO diet (P.0.05). Organic vegetable...

  1. THE IMPACT OF FRESH SAWDUST AND DRY PIG MANURE PRODUCED ON SAWDUST BEDDING APPLICATION ON THE NUTRIENTS MOBILITY IN SOIL AND SUGAR BEET YIELD

    Directory of Open Access Journals (Sweden)

    Peter Kováčik

    2013-07-01

    Full Text Available The objective of the pot trial carried out at the area of the Slovak University of Agriculture in Nitra was to determine the impact of dry pig manure produced on the sawdust bedding and sawdust litter on the level of nutrients’ mobility in the soil and sugar beet yield. The achieved results showed that one month after the sawdust and manure application to the soil, the contents of mobile nutrients (Nan, P, K, Ca, Mg in soil were lower than in the control unfertilized treatment. The sawdust litter immobilized nutrients more considerably than manure. Four months after the manure application into soil, its immobilization effect was not evident. On the contrary, the manure increased the mobile nutrients content in soil. In the second year of experiment the immobilization effect of sawdust litter was proved even four months after its application into soil. The application of manure increased considerably the beet root yield. The maximum root yield was determined in the treatment where the highest dose of manure was applied. The minimum root yield was detected in the treatment where the highest dose of sawdust litter was applied.

  2. Investigating the Effect of Livestock Grazing and Associated Plant Community Shifts on Carbon and Nutrient Cycling in Alberta, Canada

    Science.gov (United States)

    Hewins, D. B.; Chuan, S.; Stolnikova, E.; Bork, E. W.; Carlyle, C. N.; Chang, S. X.

    2015-12-01

    Grassland ecosystems are ubiquitous across the globe covering an estimated 40 % of Earth's terrestrial landmass. These ecosystems are widely valued for providing forage for domestic livestock and a suite of important ecosystem goods and services including carbon (C) storage. Despite storing more than 30 % of soil C globally, the effect of both livestock grazing and the associated change in plant community structure in response to grazing on C and nutrient cycling remains uncertain. To gain a quantitative understanding of the direct and indirect effects of livestock grazing on C and nutrient cycling, we established study sites at 15 existing site localities with paired long-term grazing (ca. 30 y) and non-grazed treatments (totaling 30 unique plant communities). Our sites were distributed widely across Alberta in three distinct grassland bioclimatic zones allowing us to make comparisons across the broad range of climate variability typical of western Canadian grasslands. In each plant community we decomposed 5 common plant species that are known to increase or decrease in response to grazing pressure, a unique plant community sample, and a cellulose paper control. We measured mass loss, initial lignin, C and N concentrations at 0, 1, 3, 6 and 12 months of field incubation. In addition we assayed hydrolytic and oxidative extracellular enzymes associated with for C (n= 5 hydrolytic; phenoloxidase and peroxidase) and nutrients (i.e. N and P; n=1 ea.) cycling from each litter sample at each collection. Our results suggest that by changing the plant community structure, grazing can affect rates of decomposition and associated biogeochemical cycling by changing plant species and associated litter inputs. Moreover, measures of microbial function are controlled by site-specific conditions (e.g. temperature and precipitation), litter chemistry over the course of our incubation.

  3. Soil-plant nutrient interactions in two mangrove areas at Southern Brazil

    Directory of Open Access Journals (Sweden)

    Ana Paula Lang Martins Madi

    2016-01-01

    The results exposed that the nutritional state of the mangrove species is different and independent form the soil attributes in which they grow. Few correlations were found among leaf nutrient concentrations and soil attributes, suggesting differential selective nutrient uptake among species.

  4. Mineral nutrient relations in the aquatic carnivorous plant Utricularia australis and its investment in carnivory

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2008-01-01

    Roč. 171, č. 3 (2008), s. 175-183 ISSN 1863-9135 Institutional research plan: CEZ:AV0Z60050516 Keywords : tissue nutrient content * investment in carnivory * mineral nutrient economy Subject RIV: EF - Botanics Impact factor: 0.558, year: 2008

  5. Effects of supplemental enzymes on apparent nutrient digestibility in rainbow trout (Oncorhynchus mykiss) fed plant-based diets

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; Hjermitslev, Niels Harthøj; Ekmann, Kim Schøn

    2010-01-01

    in fish feed due to growing demands for and high price variations in fish meal, but high inclusion levels in diets for carnivorous fish are hampered by a great variety of anti-nutritional factors (ANFs), which reduce nutrient utilisation. Exogenous dietary enzymes may potentially help to alleviate...... on the effects of enzymes in fish feed apart from phytase. Phytase works by hydrolyzing phytic acid, and numerous studies have documented that phytase supplementation increases phosphorus availability in fish fed diets with high inclusion levels of plant proteins. Plant derived proteins are increasingly used...... these effects, and the objective of the present study was to evaluate the effects of supplementing protease and pectinase to a diet containing approximately 30% soybean meal, rapeseed meal or sunflower meal on nutrient digestibility in juvenile rainbow trout (Oncorhynchus mykiss). Digestibility trials were...

  6. Tomato root growth and phosphorus absorption kinetics by tomato plants as affected by phosphorus concentration in nutrient solution

    International Nuclear Information System (INIS)

    Fontes, P.C.R.; Barber, S.A.

    1984-01-01

    To evaluate the effects P concentrations in nutrient solution on root growth and on root physiological characteristics involved in P uptake by tomato Lycopersicon esculentum Mill plants, six seedlings were grown in nutrient solution at initial concentrations of 48.5, 97, 194 and 388 μMP until one day before harvest. They were then transferred to solutions with P at 20 μM and 30 μM, and the depletion curves and Michaelis-Menten parameters were determined. The conclusions were that as P supply increased and as the plant P contents are sufficient for maximum growth, the rate of P uptake tends to be lower. The results also indicate that total P uptake by tomato seedlings depends on the amount of root surface area exposed to P. (M.A.C.) [pt

  7. Nutrients Can Enhance the Abundance and Expression of Alkane Hydroxylase CYP153 Gene in the Rhizosphere of Ryegrass Planted in Hydrocarbon-Polluted Soil

    Science.gov (United States)

    Arslan, Muhammad; Afzal, Muhammad; Amin, Imran; Iqbal, Samina; Khan, Qaiser M.

    2014-01-01

    Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K) in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum) was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination. PMID:25360680

  8. Mobile central heating plant ensures the supply during the power-plant modernization. Planning-safe reconstruction; Mobile Heizzentrale sichert Versorgung waehrend Kraftwerksmodernisierung. Planungssicherer Umbau

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard, Petra [Mobiheat GmbH, Friedberg (Germany). Presse- und Oeffentlichkeitsarbeit

    2012-09-15

    During the comprehensive energetic retrofitting of district heating plants in the spa resort of Badenweiler (Federal Republic of Germany) a mobile 2-MW heating plant from Mobilheat (Ebersberg, Federal Republic of Germany) was used for the heat supply. Thus, the installation of environmental friendly energy supply based on cogeneration plants could be implemented with planning security. This particularly was important because, among other things, the traditional spa resort, the Kurhaus as well as hotels and private customers depend on the heat supply system. These buildings have be supplied with thermal water also in the summer.

  9. Labour Mobility and Plant Performance in Denmark: The Significance of Related Inflows

    DEFF Research Database (Denmark)

    Timmermans, Bram; Boschma, Ron

    This paper investigates the impact of different types of labour mobility on plant performance, making use of the IDA-database that provides detailed information on all individuals and plants for the whole of Denmark. Our study shows that the effect of labour mobility can only be assessed when one...... performance. Moreover, intra-regional skilled labour mobility had a negative effect on plant performance in general, while the effect of inter-regional labour mobility depends on the type of skills that flow into the plant. We used a sophisticated indicator of revealed relatedness that measures the degree...... accounts for the type of skills that flow into the plant, and the degree to which these match the existing set of skills at the plant level. We found that the inflow of related skills has a positive impact on plant performance, while inflows of similar and unrelated skills have a negative effect on plant...

  10. Integrated plant nutrient system - with special emphasis on mineral nutriton and biofertilizers for Black pepper and cardamom - A review.

    Science.gov (United States)

    K P, Sangeeth; R, Suseela Bhai

    2016-05-01

    Integrated Plant Nutrition System (IPNS) as a concept and farm management strategy embraces and transcends from single season crop fertilization efforts to planning and management of plant nutrients in crop rotations and farming systems on a long-term basis for enhanced productivity, profitability and sustainability. It is estimated that about two-thirds of the required increase in crop production in developing countries will have to come from yield increases from lands already under cultivation. IPNS enhances soil productivity through a balanced use of soil nutrients, chemical fertilizers, combined with organic sources of plant nutrients, including bio-inoculants and nutrient transfer through agro-forestry systems and has adaptation to farming systems in both irrigated and rainfed agriculture. Horticultural crops, mainly plantation crops, management practices include application of fertilizers and pesticides which become inevitable due to the depletion of soil organic matter and incidence of pests and diseases. The extensive use of chemical fertilizers in these crops deteriorated soil health that in turn affected the productivity. To revitalize soil health and to enhance productivity, it is inexorable to enrich the soil using microorganisms. The lacunae observed here is the lack of exploitation of indigenous microbes having the potential to fix atmospheric nitrogen (N) and to solubilize Phosphorus (P) and Potassium (K). The concept of biofertilizer application appears to be technically simple and financially feasible, but the task of developing biofertilizers with efficient strains in appropriate combinations in a consortia mode is not easier. More than developing consortia, a suitable delivery system to discharge the microbial inoculants warranted much effort. This review focuses on the integrated plant nutrition system incorporating biofertilizer with special emphasis on developing and formulating biofertilizer consortium.

  11. Plants sensitivity on nickel under different conditions of iron or calcium concentration in the nutrient medium

    Directory of Open Access Journals (Sweden)

    Renata Matraszek

    2013-12-01

    Full Text Available The sensitivity of six vegetable plants on nickel at early stages of their growth was investigated by index of tolerance. Besides the possibility of nickel fitostabilization by additional application of iron or calcium was tested. The experiment was conducted on Petri dishes. Different concentrations of nickel (0; 0,03; 0,06mM Ni as nickel sulphate, iron (0,05; O,OlmM Fe as Fe2+ citrate and calcium (0,50; 0,75; lmM Ca as calcium carbonate were added. Taking into consideration the sensitivity, investigated vegetables can be ordered in the following way: Cucurbita pepo conv. giromontiina L.>Lactuca sativa L.>Sinapis alba L.>Spinacia oleracea L.=Zea mays var. saccharata Kcke.>Phaseolus vulgaris L. Positive, statistically significant effect ofnickel fitostabilization (0,03 or 0,06mM Ni on elongative growth by the iron application (0,10mM Fe was shown for Zea mays var. saccharata Kcke independently of Ni concentration in the nutrient medium as well as for Sinapis alba L. and Phaseolus vulgaris L. in 0,06mM Ni. Addition as much as 0,75mM Ca in the presence 0,03mM Ni had positive result on Sinapis alba L and Phaseolus vulgaris L. seedlings as well as on Zea mays var. saccharata Kcke and Lactuca sativa L. roots and Cucurbita pepo convar. giromontiina L. shoots. Addition of 0,75mM Ca in the presence 0,06mM Ni promoted elongative growth of Zea mays var. saccharata Kcke seedlings. Application lmM Ca resulted in the promotion of elongative growth of Zea mays var. saccharata Kcke. roots (0,03mM Ni as well as Spinacia oleracea L. roots (0,06mM Ni.

  12. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients

  13. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil

  14. Biochar-enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant-parasitic nematodes in excessively fertilized cucumber soils.

    Science.gov (United States)

    Cao, Yune; Gao, Yanming; Qi, Yanbin; Li, Jianshe

    2018-03-01

    Excessive fertilization is a common agricultural practice that has largely reduced soil nutrient retention capacity and led to nutrient leaching in China. To reduce nutrient leaching, in this study, we evaluated the application of biochar, compost, and biochar-compost on soil properties, leaching water quality, and cucumber plant growth in soils with different nutrient levels. In general, the concentrations of nutrients and heavy metals in leaching water were higher under high-nutrient conditions than under low-nutrient conditions. Both biochar and compost efficiently enhanced soil cation exchange capacity (CEC), water holding capacity (WHC), and microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP), reduced the potential leaching of nutrients and heavy metals, and improved plant growth. The efficiency of biochar and compost in soil CEC, WHC, MBC, MBN, and MBP and plant growth was enhanced when applied jointly. In addition, biochar and biochar-enhanced compost efficiently suppressed plant-parasitic nematode infestation in a soil with high levels of both N and P. Our results suggest that biochar-enhanced compost can reduce the potential environmental risks in excessively fertilized vegetable soils.

  15. Strain Identity of the Ectomycorrhizal Fungus Laccaria bicolor Is More Important than Richness in Regulating Plant and Fungal Performance under Nutrient Rich Conditions

    Directory of Open Access Journals (Sweden)

    Christina Hazard

    2017-09-01

    Full Text Available Effects of biodiversity on productivity are more likely to be expressed when there is greater potential for niche complementarity. In soil, chemically complex pools of nutrient resources should provide more opportunities for niche complementarity than chemically simple pools. Ectomycorrhizal (ECM fungal genotypes can exhibit substantial variation in nutrient acquisition traits and are key components of soil biodiversity. Here, we tested the hypothesis that increasing the chemical complexity and forms of soil nutrients would enhance the effects of intraspecific ECM diversity on host plant and fungal productivity. In pure culture, we found substantial variation in growth of strains of the ECM fungus Laccaria bicolor on a range of inorganic and organic forms of nutrients. Subsequent experiments examined the effects of intraspecific identity and richness using Scots pine (Pinus sylvestris seedlings colonized with different strains of L. bicolor growing on substrates supplemented with either inorganic or organic forms of nitrogen and phosphorus. Intraspecific identity effects on plant productivity were only found under the inorganic nutrient amendment, whereas intraspecific identity affected fungal productivity to a similar extent under both nutrient treatments. Overall, there were no significant effects of intraspecific richness on plant and fungal productivity. Our findings suggest soil nutrient composition does not interact strongly with ECM intraspecific richness, at least under experimental conditions where mineral nutrients were not limiting. Under these conditions, intraspecific identity of ECM fungi becomes more important than richness in modulating plant and fungal performance.

  16. Distribution of organic matter and plant nutrients in a sal (shorea robusta) coppice plantation

    Energy Technology Data Exchange (ETDEWEB)

    Kaul, O.N.; Sharma, D.C.; Srivastava, P.B.L.

    The biomass and nutrient content (N, P, K, Ca, Mg) of leaves, twigs, branches, stems and bark were determined for sample trees in a stand in the New Forest, Dehra Dun, coppiced 21 years previously. It was estimated that the removal of stems, branches and bark by harvesting at this age would remove 82-91% of the total nutrients (kg/ha) in the stand.

  17. Nitrogen and potassium concentrations in the nutrients solution for melon plants growing in coconut fiber without drainage.

    Science.gov (United States)

    Gratieri, Luiz Augusto; Cecílio Filho, Arthur Bernardes; Barbosa, José Carlos; Pavani, Luiz Carlos

    2013-01-01

    With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The "Bonus no. 2" was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L(-1)) and four K concentrations (4, 6, 8, and 10 mmol L(-1)). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO₃ and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L(-1)) and K (10 mmol L(-1)) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm(-2)).

  18. Nitrogen and Potassium Concentrations in the Nutrients Solution for Melon Plants Growing in Coconut Fiber without Drainage

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Gratieri

    2013-01-01

    Full Text Available With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The “Bonus no. 2” was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L−1 and four K concentrations (4, 6, 8, and 10 mmol L−1. The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L−1 and K (10 mmol L−1 resulted in higher masses for the first (968 g and the second (951 g fruits and crop yield (4,425 gm−2.

  19. Understory host plant and insect gall diversity changes across topographic habitats differing in nutrient and water stress in the Brazilian Amazon rainforest

    OpenAIRE

    JULIÃO, Genimar Rebouças; ALMADA, Emmanuel Duarte; COSTA, Flávia Regina Capellotto; CARNEIRO, Marco Antônio Alves; FERNANDES, G. Wilson

    2017-01-01

    ABSTRACT Topographic gradients in terra firme forests are associated with pronounced changes in soil texture, soil nutrients and distance to the water-table, thereby creating different hydric and nutritional conditions for plants and their associated herbivore community. The aim of this study was to investigate galling species and host plant richness and gall species composition across topographic habitats differing in nutrient and water stress in the Brazilian Amazon rainforest. Nineteen 250...

  20. Development of mobile electron beam plant for environmental applications

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Jinkyu; Kang, Wongu; Choi, Jang Seung; Jeong, Kwang-Young

    2016-01-01

    Due to the necessity of pilot scale test facility for continuous treatment of wastewater and gases on site, a mobile electron beam irradiation system mounted on a trailer has developed. This mobile electron beam irradiation system is designed for the individual field application with self-shielded structure of steel plate and lead block which will satisfy the required safety figures of International Commission on Radiological Protection (ICRP). Shielding of a mobile electron accelerator of 0.7 MeV, 30 mA has been designed and examined by Monte Carlo technique. Based on a 3-D model of electron accelerator shielding which is designed with steel and lead shield, radiation leakage was examined using the Monte Carlo N-Particle Transport (MCNP) Code. Simulations with two different versions (version 4c2 and version 5) of MCNP code showed agreements within statistical uncertainties, and the highest leakage expected is 5.5061×10 −01 (1±0.0454) μSv/h, which is far below the tolerable radiation dose limit for occupational workers. This unit could treat up to 500 m 3 of liquid waste per day at 2 kGy or 10,000 N m 3 of gases per hour at 15 kGy. - Highlights: • A mobile electron beam irradiation system mounted on a trailer has developed. • It is designed for treatment of wastewater and flue gas on site. • Shielding of 0.7 MeV, 30 mA accelerator has done by a Monte Carlo technique. • It can treat up to 500 m 3 /d of liquid waste at 2 kGy or 10,000 N m 3 /h of gas at 15 kGy.

  1. Effects of organic plant oils and role of oxidation on nutrient utilization in juvenile rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Lund, I; Dalsgaard, J; Jacobsen, C; Hansen, J H; Holm, J; Jokumsen, A

    2013-03-01

    Producing organic fish diets requires that the use of both fishmeal and fish oil (FO) be minimized and replaced by sustainable, organic sources. The purpose of the present study was to replace FO with organic oils and evaluate the effects on feed intake, feed conversion ratio (FCR), daily specific growth rate (SGR) and nutrient digestibility in diets in which fishmeal protein was partly substituted by organic plant protein concentrates. It is prohibited to add antioxidants to organic oils, and therefore the effects of force-oxidizing the oils (including FO) on feed intake and nutrient digestibility was furthermore examined. Four organic oils with either a relatively high or low content of polyunsaturated fatty acids were considered: linseed oil, rapeseed oil, sunflower oil and grapeseed oil. Substituting FO with organic oils did not affect feed intake (P > 0.05), FCR or SGR (P > 0.05) despite very different dietary fatty acid profiles. All organic plant oils had a positive effect on apparent lipid digestibility compared with the FO diet (P digestibility of other macronutrients when compared with the FO diet (P > 0.05). Organic vegetable oils did not undergo auto-oxidation as opposed to the FO, and the FO diet consequently had a significantly negative effect on the apparent lipid digestibility. Feed intake was not affected by oxidation of any oils. In conclusion, the study demonstrated that it is possible to fully substitute FO with plant-based organic oils without negatively affecting nutrient digestibility and growth performance. Furthermore, plant-based organic oils are less likely to oxidize than FOs, prolonging the shelf life of such organic diets.

  2. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics.

    Science.gov (United States)

    Per, Tasir S; Khan, Nafees A; Reddy, Palakolanu Sudhakar; Masood, Asim; Hasanuzzaman, Mirza; Khan, M Iqbal R; Anjum, Naser A

    2017-06-01

    Major abiotic stress factors such as salt and drought adversely affect important physiological processes and biochemical mechanisms and cause severe loss in crop productivity worldwide. Plants develop various strategies to stand healthy against these stress factors. The accumulation of proline (Pro) is one of the striking metabolic responses of plants to salt and drought stress. Pro biosynthesis and signalling contribute to the redox balance of cell under normal and stressful conditions. However, literature is meager on the sustainable strategies potentially fit for modulating Pro biosynthesis and production in stressed plants. Considering the recent literature, this paper in its first part overviews Pro biosynthesis and transport in plants and also briefly highlights the significance of Pro in plant responses to salt and drought stress. Secondly, this paper discusses mechanisms underlying the regulation of Pro metabolism in salt and drought-exposed plant via phytohormones, mineral nutrients and transgenic approaches. The outcome of the studies may give new opportunities in modulating Pro metabolism for improving plant tolerance to salt and drought stress and benefit sustainable agriculture. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Growth characteristics and nutrient removal capability of eco-ditch plants in mesocosm sediment receiving primary domestic wastewater.

    Science.gov (United States)

    Kumwimba, Mathieu Nsenga; Zhu, Bo; Muyembe, Diana Kavidia; Dzakpasu, Mawuli

    2017-10-01

    Eco-ditches are being explored to maximize their capability of capturing pollutants and mitigate any harmful side effects in rivers. In this study, mesocosm plastic drum sediment and field experiments were set up to screen 18 plant species found in ditches and identify those with potential for high biomass production and nutrients removal. Terrestrial plants grown in the mesocosm system were shown to be able to acclimate to aquatic conditions and to survive in primary domestic sewage. About 73-95% increase in plant biomass was recorded. Removal efficiencies for total nitrogen, total phosphorus, and ammonium-nitrogen from the sewage of 72-99%, 64-99%, and 75-100%, respectively, were recorded. Furthermore, complete removal of the applied nitrate-nitrogen load was achieved in mesocosm systems. Findings also show that all species, but especially Acorus calamus, Canna indica, Canna lily, Cyperus alternifolius, Colocasia gigantea, Eichhornia crassipes, Iris sibirica, and Typha latifolia had the highest efficiencies for nitrogen and phosphorous removal. The N and P mass balance analysis demonstrated that plant uptake and sediment N and P accumulation accounted for 41-86% and 18-49% of the total influent TN and TP loads, respectively. In addition, the amounts of nitrogen and phosphorous uptake by these plant species were influenced significantly by biomass. The field-culture experiment further identified Canna indica followed by Cyperus alternifolius as the most promising for high biomass production and nutrients uptake. Therefore, these plants may be recommended for extensive use in treating highly eutrophicated rivers. Outcomes of this work can be useful for model design specifications in eco-ditch mitigation of sewage pollution.

  4. Effect of gamma irradaition on growth and nutrients uptake of sorghum plants

    International Nuclear Information System (INIS)

    Eleiwa, M.E.; Rabie, M.H.

    1994-01-01

    A pot experiment was carried out using sandy calcareous soils to study the effects of gamma irradiating doses for sorghum seeds on dry matter yield and elemental uptake. Three cuttings were taken during the experiment every 40 days. Results showed that 4 Kr. dose was the best dose that caused significant higher increase of dry matter yield and nutrients uptake for three cuttings under both types of soil. Gamma irradiation doses at 8 Kr. and above all had an adverse affect on dry matter yield and nutrients uptake, especially under calcareous soil. (author)

  5. Biogas container - mobile plant concept for the decentralized power generation; Biogascontainer. Mobiles Anlagenkonzept zur dezentralen Energiegewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Warncke, Jessica; Orth, Maik [Innovations- und Bildungszentrum Hohen Luckow e.V., Hohen Luckow (Germany); Schlegel, Mathias [Rostock Univ. (Germany); Steinhagen, Katrin [ROSOMA GmbH, Rostock-Marienehe (Germany)

    2011-07-01

    In the framework of a cooperation project of the Federal Ministry of Economics and Technology was developed a small biogas system, that is concepted in the order of a 40-foot standard container, that is modular structured, works energy-independent and optional can be used mobile. First rank the system was designed for biogas production in developing and emerging countries. Now there are inter alia also concrete inquiries of german partners. (orig.)

  6. Isolation of ethyl acetic based AGF bio-nutrient and its application on the growth of Capsicum annum L. plants

    Science.gov (United States)

    Hendrawan, Sonjaya, Yaya; Khoerunnisa, Fitri; Musthapa, Iqbal; Nurmala, Astri Rizki

    2015-12-01

    The study aimed to obtain the bionutrient derived from extraction of AGF leafs in ethyl acetic solvents and to explore its application on the plant growth of capsicum annum L. (curly red chili). Particularly, the fraction of secondary metabolites groups composed bionutrient was intensively elucidated by liquid vacuum chromatography technique. The characterization of secondary metabolites groups was conducted through several methods, i.e. thin layer chromatography, phytochemical screening, and FTIR spectroscopy. The AGF extracts based bionutrient then was applied on capsicum annum L. plants with dosage of 2 and 10 mL/L. The ethyl acetic solvent and commercial nutrient of Phonska and pesticide of curacron (EC 500) were selected as a blank and a positive control to evaluate the growth pattern of capsicum annum L., respectively. The result showed that the CF 1 dan CF2 of AGF extract contained alkaloid and terpenoid of secondary metabolite group, the CF 3, and CF 4 of AGF extracts were dominated by alkaloid, flavonoid, and terpenoid, while the CF 5 of AGF extract contained alkaloid, tannin and terpenoid groups. The CF 2 of AGF extract has the highest growth rate constant of 0.1702 week-1 with the number and heaviest mass of the yield of 82 pieces and 186.60, respectively. It was also showed the significant bio-pesticide activity that should be useful to support plant growth, indicating that AGF extract can be applied as both bio-nutrient and bio-pesticide.

  7. Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants.

    Science.gov (United States)

    Wilson, Susan C; Leech, Calvin D; Butler, Leo; Lisle, Leanne; Ashley, Paul M; Lockwood, Peter V

    2013-10-15

    The effects of nutrient and lime additions on antimony (Sb) and arsenic (As) accumulation by native Australian and naturalised plants growing in two contaminated mine site soils (2,735 mg kg(-1) and 4,517 mg kg(-1) Sb; 826 mg kg(-1) and 1606 As mgkg(-1)) was investigated using a glasshouse pot experiment. The results indicated an increase in soil solution concentrations with nutrient addition in both soils and also with nutrient+lime addition for Sb in one soil. Metalloid concentrations in plant roots were significantly greater than concentrations in above ground plant parts. The metalloid transfer to above ground plant parts from the roots and from the soil was, however, low (ratio of leaf concentration/soil concentration≪1) for all species studied. Eucalyptus michaeliana was the most successful at colonisation with lowest metalloid transfer to above ground plant parts. Addition of nutrients and nutrients+lime to soils, in general, increased plant metalloid accumulation. Relative As accumulation was greater than that of Sb. All the plant species studied were suitable for consideration in the mine soil phytostabilisation strategies but lime additions should be limited and longer term trials also recommended. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency.

    Directory of Open Access Journals (Sweden)

    Anne eMaillard

    2015-05-01

    Full Text Available Higher plants have to cope with fluctuating mineral resource availability. However strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare and tree species (Quercus robur, Populus nigra, Alnus glutinosa grown under field conditions were harvested regularly during their life span and analysed to evaluate the net mobilization of 13 nutrients during leaf senescence. While N was remobilized in all plant species with different efficiencies ranging from 40% (maize to 90% (wheat, other macronutrients (K-P-S-Mg were mobilized in most species. Ca and Mn, usually considered as having low phloem mobility were remobilized from leaves in wheat and barley. Leaf content of Cu-Mo-Ni-B-Fe-Zn decreased in some species, as a result of remobilization. Overall, wheat, barley and oak appeared to be the most efficient at remobilization while poplar and maize were the least efficient. Further experiments were performed with rapeseed plants subjected to individual nutrient deficiencies. Compared to field conditions, remobilization from leaves was similar (N-S-Cu or increased by nutrient deficiency (K-P-Mg while nutrient deficiency had no effect on Mo-Zn-B-Ca-Mn, which seemed to be non-mobile during leaf senescence under field conditions. However, Ca and Mn were largely mobilized from roots (-97 and -86% of their initial root contents, respectively to shoots. Differences in remobilization between species and between nutrients are then discussed in relation to a range of putative mechanisms.

  9. Spontaneous plant colonization of brownfield soil and sludges and effects on substrate properties and pollutants mobility

    Science.gov (United States)

    Rocco, Claudia; Agrelli, Diana; Gonzalez, Maria Isabel; Mingo, Antonio; Motti, Riccardo; Stinca, Adriano; Coppola, Ida; Adamo, Paola

    2017-04-01

    This work was done on brownfield soil and sludges from a dismantled steel plant, moderately polluted by heavy metals (mainly Pb and Zn), 1) to analyzed the effects of substrate properties and environmental conditions on spontaneous vegetation; 2) to assess changes in the chemical properties of soils and sludges, with particular reference to the mobility and bioavailability of pollutants, induced by spontaneous plants revegetation. From 2006 to 2011, spontaneous plant colonization was monitored in the presence or absence of acidic peat both inside the degraded brownfield site and after transferal into a nearby Oak Park environment. During the five experimental years the vegetation growth was monitored using phytosociological method and data analyzed statistically. Both substrates, before and after plant growth, were analyzed for main chemical properties. Metals mobility and bioavailability was assessed using single (H2O; DTPA) and sequential extractions (EU-BCR). At the end of the experiment, plant ability to uptake metal was evaluated on selected species. Overall, 57 plant species grew healthily on the substrates. The combination of soil and sludges with peat resulted in an effective revegetation with a sensible increasing of plants biomass. Most of the species were found in the park (91%), showing plant colonization was mainly affected by the immediate environment rather than by substrate properties. Furthermore, after the five years, the substrate properties (pH, O.C.) were slightly affected by plant growth and, although metal pollutants in both substrates are characterized by low water solubility and DTPA availability, after plants growth an increase (even if not significant) of rhizospheric Cu, Fe, Mn and Zn solubility in H2O was detected. Metals speciation indicated a low risk of Pb and Zn mobility being either largely trapped in the mineralogical structure of oxides and silicates and occluded in easily reducible manganese or iron oxides. Restricted metal

  10. Mineral nutrition in aquatic carnivorous plants: effect of carnivory, nutrient reutilization and K+ uptake.

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2016-01-01

    Roč. 188, č. 1 (2016), s. 41-49 ISSN 1863-9135 R&D Projects: GA ČR(CZ) GAP504/11/0783 Institutional support: RVO:67985939 Keywords : Aldrovanda vesiculosa * Utricularia * mineral nutrient uptake Subject RIV: EF - Botanics Impact factor: 1.170, year: 2016

  11. Nutrient enrichment effects on photosynthesis in the wetland plants Typha orientalis and Phormium tenax

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans; Tanner, Chris

    -growing species raupo (Typha orientalis) and slower-growing flax (Phormium tenax). Photosynthesis was compared between 9 field locations differing in nutrient availability where the two species co-existed, and in an outdoor growth experiment. Raupo accumulated higher concentrations of nitrogen (N) and especially...

  12. Tree harvest in an experimental sand ecosystem: plant effects on nutrient dynamics and solute generation.

    Science.gov (United States)

    C. K. Keller; R. O' Brien; J. R. Havig; J. L. Smith; B. T. Bormann; D. Wang

    2006-01-01

    The hydrochemical signatures of forested ecosystems are known to be determined by a time-variant combination of physical-hydrologic, geochemical, and biologic processes. We studied subsurface potassium (K), calcium (Ca), and nitrate (NO3) in an experimental red-pine mesocosm to determine how trees affect the behavior of these nutrients in soil...

  13. Impact of Seasonal Variability in Water, Plant and Soil Nutrient Dynamics in Agroecosystems

    Science.gov (United States)

    Pelak, N. F., III; Revelli, R.; Porporato, A. M.

    2017-12-01

    Agroecosystems cover a significant fraction of the Earth's surface, making their water and nutrient cycles a major component of global cycles across spatial and temporal scales. Most agroecosystems experience seasonality via variations in precipitation, temperature, and radiation, in addition to human activities which also occur seasonally, such as fertilization, irrigation, and harvesting. These seasonal drivers interact with the system in complex ways which are often poorly characterized. Crop models, which are widely used for research, decision support, and prediction of crop yields, are among the best tools available to analyze these systems. Though normally constructed as a set of dynamical equations forced by hydroclimatic variability, they are not often analyzed using dynamical systems theory and methods from stochastic ecohydrology. With the goal of developing this viewpoint and thus elucidating the roles of key feedbacks and forcings on system stability and on optimal fertilization and irrigation strategies, we develop a minimal dynamical system which contains the key components of a crop model, coupled to a carbon and nitrogen cycling model, driven by seasonal fluctuations in water and nutrient availability, temperature, and radiation. External drivers include seasonally varying climatic conditions and random rainfall forcing, irrigation and fertilization as well as harvesting. The model is used to analyze the magnitudes and interactions of the effects of seasonality on carbon and nutrient cycles, crop productivity, nutrient export of agroecosystems, and optimal management strategies with reference to productivity, sustainability and profitability. The impact of likely future climate scenarios on these systems is also discussed.

  14. Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment.

    Science.gov (United States)

    Fife, D N; Nambiar, E K S; Saur, E

    2008-02-01

    Internal nutrient recycling through retranslocation (resorption) is important for meeting the nutrient demands of new tissue production in trees. We conducted a comparative study of nutrient retranslocation from leaves of five tree species from three genera grown in plantation forests for commercial or environmental purposes in southern Australia--Acacia mearnsii De Wild., Eucalyptus globulus Labill., E. fraxinoides H. Deane & Maiden, E. grandis W. Hill ex Maiden and Pinus radiata D. Don. Significant amounts of nitrogen, phosphorus and potassium were retranslocated during three phases of leaf life. In the first phase, retranslocation occurred from young leaves beginning 6 months after leaf initiation, even when leaves were physiologically most active. In the second phase, retranslocation occurred from mature green leaves during their second year, and in the third phase, retranslocation occurred during senescence before leaf fall. Nutrient retranslocation occurred mainly in response to new shoot production. The pattern of retranslocation was remarkably similar in the leaves of all study species (and in the phyllodes of Casuarina glauca Sieber ex Spreng.), despite their diverse genetics, leaf forms and growth rates. There was no net retranslocation of calcium in any of the species. The amounts of nutrients at the start of each pre-retranslocation phase had a strong positive relationship with the amounts subsequently retranslocated, and all species fitted a common relationship. The percentage reduction in concentration or content (retranslocation efficiency) at a particular growth phase is subject to many variables, even within a species, and is therefore not a meaningful measure of interspecific variation. It is proposed that the pattern of retranslocation and its governing factors are similar among species in the absence of interspecies competition for growth and crown structure which occurs in mixed species stands.

  15. Effectiveness of a Mobile Plant Learning System in a Science Curriculum in Taiwanese Elementary Education

    Science.gov (United States)

    Huang, Yueh-Min; Lin, Yen-Ting; Cheng, Shu-Chen

    2010-01-01

    This study developed a Mobile Plant Learning System (MPLS) that provides instructors with the ways and means to facilitate student learning in an elementary-school-level botany course. The MPLS represented in this study was implemented to address problems that arise with the use of a didactic approach to teaching and learning botany, as is…

  16. The logic of communication: roles for mobile transcription factors in plants.

    Science.gov (United States)

    Long, Yuchen; Scheres, Ben; Blilou, Ikram

    2015-02-01

    Mobile transcription factors play many roles in plant development. Here, we compare the use of mobile transcription factors as signals with some canonical signal transduction processes in prokaryotes and eukaryotes. After an initial survey, we focus on the SHORT-ROOT pathway in Arabidopsis roots to show that, despite the simplicity of the concept of mobile transcription factor signalling, many lines of evidence reveal a surprising complexity in control mechanisms linked to this process. We argue that these controls bestow precision, robustness, and versatility on mobile transcription factor signalling. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil.

    Directory of Open Access Journals (Sweden)

    Muhammad Arslan

    Full Text Available Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination.

  18. The role of tolerant genotypes and plant nutrients in the management of acid soil infertility in upland rice

    International Nuclear Information System (INIS)

    Sahrawat, K.L.; Jones, M.P.; Diatta, S.

    2000-01-01

    As in other parts of the humid tropics, acid-related problems are the major constraint to crop production on low-activity clay soils in the humid and sub-humid zones of West Africa. The upland ecosystem of West Africa is very important to rice production. About 70% of upland rice is grown in the humid zone of the sub-region. To increase and stabilize rice productivity of the acid uplands at reasonable levels, a strategy is needed that integrates the use of tolerant cultivars with soil and plant-nutrient management. Research conducted on Alfisols and Ultisols of the humid-forest and savannah zones in West Africa showed that upland rice is a robust crop, possessing a wide range of tolerance to acid-soil conditions. Recent research at WARDA showed also that acid-soil tolerance can be enhanced through interspecific Oryza sativa x O. glaberrima progenies, which not only possess increased tolerance of acid-soil conditions, but also have superior overall adaptability to diverse upland environments in the sub-region. Our research on the diagnosis of acid-soil infertility problems on the Ultisols and Alfisols of the humid savannah and forest zones indicates that P deficiency is the most important nutrient disorder for upland rice. In the forest zone, response to N depended on the application of P. In the savannah and forest-savannah transition zones, N deficiency was more important than P deficiency. Among other plant nutrients, the application of Ca and Mg (as plant nutrients) did not appear initially to improve the performance of acid-tolerant upland rice cultivars. The results from a long-term study on an Ultisol with four acid-tolerant rice cultivars, revealed that they differed in agronomic and physiological P efficiencies, and the efficiencies were higher at lower rates of P. The amounts of total P removed in three successive crops were similar for all four cultivars although P-harvest index was 10 to 12% higher in the P-efficient than the inefficient cultivars. The

  19. Plant litter effects on soil nutrient availability and vegetation dynamics: changes that occur when annual grasses invade shrub-steppe communities

    Science.gov (United States)

    Sheel Bansal; Roger L. Sheley; Bob Blank; Edward A. Vasquez

    2014-01-01

    Changes in the quantity and quality of plant litter occur in many ecosystems as they are invaded by exotic species, which impact soil nutrient cycling and plant community composition. Such changes in sagebrush-steppe communities are occurring with invasion of annual grasses (AG) into a perennial grass (PG) dominated system. We conducted a 5-year litter manipulation...

  20. The Microbial Database for Danish wastewater treatment plants with nutrient removal (MiDas-DK) – a tool for understanding activated sludge population dynamics and community stability

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz; Saunders, Aaron Marc; Larsen, Poul

    2013-01-01

    Since 2006 more than 50 Danish full-scale wastewater treatment plants with nutrient removal have been investigated in a project called ‘The Microbial Database for Danish Activated Sludge Wastewater Treatment Plants with Nutrient Removal (MiDas-DK)’. Comprehensive sets of samples have been collected......, analyzed and associated with extensive operational data from the plants. The community composition was analyzed by quantitative fluorescence in situ hybridization (FISH) supported by 16S rRNA amplicon sequencing and deep metagenomics. MiDas-DK has been a powerful tool to study the complex activated sludge...

  1. Effect of Fenton pre-oxidation on mobilization of nutrients and efficient subsequent bioremediation of crude oil-contaminated soil.

    Science.gov (United States)

    Xu, Jinlan; Kong, Fanxing; Song, Shaohua; Cao, Qianqian; Huang, Tinglin; Cui, Yiwei

    2017-08-01

    Fenton pre-oxidation and a subsequent bioremediation phase of 80 days were used to investigate the importance of matching concentration of residual indigenous bacteria and nutrient levels on subsequent bioremediation of crude oil. Experiments were performed using either high (>10 7.7 ± 0.2  CFU/g soil) or low ( 9.8), moderate (C/N:5-9.8), and lacking nutrient level (C/N bioremediation of crude oil. In addition, the biodegradation of long chain molecules (C 26 C 30 ) required a high level of NH 4 + -N. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Digestibilidade dos nutrientes de alimentos volumosos determinada pela técnica dos sacos móveis em eqüinos Nutrient digestibility of forage feed determined using mobile bag technique in horses

    Directory of Open Access Journals (Sweden)

    Vinícius Pimentel Silva

    2009-01-01

    Full Text Available Objetivou-se estimar a digestibilidade de nutrientes de forrageiras em eqüinos utilizando-se a técnica de sacos de náilon móveis. Foram avaliados alfafa (Medicago sativa, amendoim forrageiro (Arachis pintoi, desmódio (Desmodium ovalifolium, estilosantes (Stylosanthes guianensis, guandu (Cajanus cajan, macrotiloma (Macrotyloma axillare e capim-coastcross (Cynodon dactylon cv. coastcross. O delineamento foi em blocos inteiramente casualizados com sete alimentos e cinco blocos (animais. Foram utilizados cinco eqüinos mestiços com 17 a 27 anos de idade e peso vivo médio de 350 kg. O ensaio teve duração de 12 dias: três para a adaptação às baias, cinco para inserção gástrica dos sacos através de sonda nasogástrica e quatro de coleta dos sacos nas fezes. No período pré-experimental de 30 dias, os animais foram mantidos em piquetes com dieta composta de 80% de feno de coastcross e 20% de concentrado. Na confecção dos sacos, utilizou-se náilon com porosidade de 45 µ e dimensão de 7,5 × 2 cm. Em cada saco, foram inseridos 510 mg de matéria seca de amostra do alimento. Os coeficientes de digestibilidade dos nutrientes das forragens foram calculados considerando o resíduo obtido no saco. A digestibilidade dos nutrientes do amendoim, estilosantes e macrotiloma foram superiores à da demais forrageiras, com destaque para a digestibilidade da proteína bruta, cujos valores foram de 91,4; 94,9 e 97,0%, respectivamente. O amendoim e macrotiloma apresentaram digestibilidade da fibra em detergente neutro de 72,3 e 65,2% e da fibra em detergente ácido de 70,9 e 59,4%, respectivamente. O amendoim forrageiro, macrotiloma e estilosantes apresentam digestibilidade dos nutrientes satisfatória e têm potencial para o uso em dietas para eqüinos.This work was carried out to evaluate the nutrient digestibility of forages using mobile bags technique in horses. The forages were lucerne (Medicago sativa, peanut (Arachis pintoi, desmodio

  3. Mobilities

    DEFF Research Database (Denmark)

    to social networks, personal identities, and our relationship to the built environment. The omnipresence of mobilities within everyday life, high politics, technology, and tourism (to mention but a few) all point to a key insight harnessed by the ‘mobilities turn’. Namely that mobilities is much more than......The world is on the move. This is a widespread understanding by many inhabitants of contemporary society across the Globe. But what does it actually mean? During over one decade the ‘mobilities turn’ within the social sciences have provided a new set of insights into the repercussions of mobilities...... and environmental degradation. The spaces and territories marked by mobilities as well as the sites marked by the bypassing of such are explored. Moreover, the architectural and technological dimensions to infrastructures and sites of mobilities will be included as well as the issues of power, social exclusion...

  4. Use of alkaline flyash-based products to amend acid soils: Plant growth response and nutrient uptake

    Energy Technology Data Exchange (ETDEWEB)

    Spark, K.M.; Swift, R.S. [University of Queensland, Gatton, Qld. (Australia)

    2008-07-01

    Vast quantities of flyash are generated annually by the burning of coal in the power industry, with most of this material being stockpiled with little prospect of being utilised at present. Two alkaline flyash-based products (FAP) for use as soil amendments (FAP1 and FAP2) have been assessed using glasshouse pot trials to determine the suitability of using these products to treat acid soils. The products both contain about 80% flyash which originated from coal-fired electricity generation. The acid soils used in the study were 2 Podsols and a Ferrosol, all originating from south-east Queensland and ranging in pH (1 : 5 suspension in water) from 4 to 5.5. The flyash products when applied to the soil significantly enhanced growth of maize plants (Zea mays L.), with optimal application rates in the range 1.25-5% w/w. The FAP/soil mixtures and plants were analysed using a range of methods including extraction with DTPA, and plant biomass (aboveground dry matter). The results indicate that in addition to the liming effect, the flyash in the alkaline flyash products may enhance plant growth as a result of increasing the uptake of micro-nutrients such as copper, zinc, and manganese. The study suggests that flyash has the potential to be used as a base material in the production of soil amendment materials that can change soil pH and act as a fertiliser for certain soil micro-nutrients such as Cu, Mn, and Zn.

  5. Effects of Nutrient Deficiencies in Corn Plants on the In Vivo and In Vitro Metabolism of [14C] Diazinon

    International Nuclear Information System (INIS)

    Kunstman, J.L.; Lichtenstein, E.P.

    1981-01-01

    Full text: The effects of calcium, nitrogen, and magnesium deficiencies on the penetration, translocation, and the in vivo and in vitro metabolism of the insecticide [ 14 C] diazinon (diethyl-2-isopropyl-6-methyl-4-pyrimidinyl) in corn plants were investigated. On a per gram fresh weight basis only roots from nitrogen-deficient solutions contained less C while tops from plants grown in calcium-deficient solutions contained nearly four times more radiocarbon than those from complete nutrient solutions. Due to calcium or nitrogen deficiencies a reduced degradation occurred in roots as indicated by the relatively higher recoveries of diazinon and the lower recoveries of an unidentified, more polar 14 C-ring compound. No differencies in [ 14 C] diazinon degradation due to nutrient deficiencies were noticeable with corn tops. The metabolic activity of corn roots was due to a soluble enzyme. In studies with subcellular components from roots, specific activities increased from the homogenate (4.09%/mg of protein) to the 105000 g supernatant (7.77%/mg of protein). Subcellular components from calcium-deficient roots produced significantly less water-soluble radiocarbon (sp act., 0.60) than did control roots (sp act., 1.60), results similar to those observed with in vivo experiments. However, the 10000 g supernatant from root material deficient in nitrogen produced significantly more water—soluble radiocarbon (sp act., 2.85) than subcellular fractions from control roots. (author)

  6. Arsenic-induced nutrient uptake in As-hyperaccumulator Pteris vittata and their potential role to enhance plant growth.

    Science.gov (United States)

    Liu, Xue; Feng, Hua-Yuan; Fu, Jing-Wei; Chen, Yanshan; Liu, Yungen; Ma, Lena Q

    2018-05-01

    It is known that arsenic (As) promotes growth of As-hyperaccumulator Pteris vittata (PV), however, the associated mechanisms are unclear. Here we examined As-induced nutrient uptake in P. vittata and their potential role to enhance plant growth in sterile agar by excluding microbial effects. As-hyperaccumulator P. multifida (PM) and non-hyperaccumulator P. ensiformis (PE) belonging to the Pteris genus were used as comparisons. The results showed that, after 40 d of growth, As induced biomass increase in hyperaccumulators PV and PM by 5.2-9.4 fold whereas it caused 63% decline in PE. The data suggested that As played a beneficial role in promoting hyperaccumulator growth. In addition, hyperaccumulators PV and PM accumulated 7.5-13, 1.4-3.6, and 1.8-4.4 fold more As, Fe, and P than the non-hyperaccumulator PE. In addition, nutrient contents such as K and Zn were also increased while Ca, Mg, and Mn decreased or unaffected under As treatment. This study demonstrated that As promoted growth in hyperaccumulators and enhanced Fe, P, K, and Zn uptake. Different plant growth responses to As among hyperaccumulators PV and PM and non-hyperaccumulator PE may help to better understand why hyperaccumulators grow better under As-stress. Published by Elsevier Ltd.

  7. Aboveground persistence of vascular plants in relationship to the levels of airborne nutrient deposition

    NARCIS (Netherlands)

    Hendriks, R.J.J.; Ozinga, W.A.; Berg, van den L.J.L.; Noordwijk, E.; Schaminee, J.H.J.; Groenendael, van J.M.

    2014-01-01

    This paper examines whether high atmospheric nitrogen deposition affects aboveground persistence of vascular plants. We combined information on local aboveground persistence of vascular plants in 245 permanent plots in the Netherlands with estimated level of nitrogen deposition at the time of

  8. Groundwater Availability Alters Soil-plant Nutrient Cycling in a Stand of Invasive, N-fixing Phreatophytes

    Science.gov (United States)

    Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.

    2013-12-01

    N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact

  9. Mobility of pollutants in the soil-water-plant system

    International Nuclear Information System (INIS)

    Gerzabek, M.H.; Algader, S.; Gottwald, B.; Schaffer, K.; Mueck, K.; Streit, S.; Urbanich, E.

    1995-01-01

    The present report describes the first results obtained from lysimeter experiments started in 1990. The lysimeter plant consists of twelf soil monoliths from four different sites (three replicates each). Since 1990 the following agricultural crops were grown: endive, corn, winterwheat, mustard, sugar beet and potato. The mean yields of corn and sugar beet were distinctly above average. Gravitational water ranged from 3.9 % to 18.3 % of precipitation plus irrigation water, calculated as half years average values excluding the first six months of operation. The two brown earths on sediments exhibited a mean percentage of app. 10 %. The brown earth on silicate rock and the gleysol showed average values of 20 %. In 1990 the top layers (20 cm) were contaminated with three radionuclides. The leaching of the artificial contaminants 60 Co, 137 Cs and 226 Ra differed distinctly between the elements. The lowest leaching rates were observed for 137 Cs, followed by 60 Co. The 226 Ra-concentrations in the gravitational water were clearly higher than that of the other nuclides. However, it has to be proved, if the measured radium originates from the contaminated top layers or comes from natural 226 Ra from the bottom layer of the soil profile. (author)

  10. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Zommer, N.

    2012-01-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  11. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Kim, J. K.; Kim, Y. R. [EB TECH Co., Ltd., Daejeon (Korea, Republic of); Zommer, N. [Pele Inc., Milpitas Californaa (United States)

    2012-07-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  12. Little Botany: A Mobile Game Utilizing Data Integration to Enhance Plant Science Education

    Directory of Open Access Journals (Sweden)

    Suphanut Jamonnak

    2017-01-01

    Full Text Available Mobile devices are rapidly becoming the new medium of educational and social life for young people, and hence mobile educational games have become an important mechanism for learning. To help school-aged children learn about the fascinating world of plants, we present a mobile educational game called Little Botany, where players can create their own virtual gardens in any location on earth. One unique feature of Little Botany is that the game is built upon real-world data by leveraging data integration mechanism. The gardens created in Little Botany are augmented with real-world location data and real-time weather data. More specifically, Little Botany is using real-time weather data for the garden location to simulate how the weather affects plants growth. Little Botany players can learn to select what crops to plant, maintain their own garden, watch crops to grow, tend the crops on a daily basis, and harvest them. With this game, users can also learn plant structure and three chemical reactions.

  13. Mobile robot teleoperation system for plant inspection based on collecting and utilizing environment data

    International Nuclear Information System (INIS)

    Kawabata, Kuniaki; Watanabe, Nobuyasu; Asama, Hajime; Kita, Nobuyuki; Yang, Hai-quan

    2004-01-01

    This paper describes about development of a mobile robot teleoperation system for plant inspection. In our system, the robot is an agent for collecting the environment data and is also teleoperated by the operator utilizing such accumulated environment data which is displayed on the operation interface. The robot equips many sensors for detecting the state of the robot and the environment. Such redundant sensory system can be also utilized to collect the working environment data on-site while the robot is patrolling. Here, proposed system introduces the framework of collecting and utilizing environment data for adaptive plant inspection using the teleoperated robot. A view simulator is primarily aiming to facilitate evaluation of the visual sensors and algorithms and is also extended as the Environment Server, which is the core technology of the digital maintenance field for the plant inspection. In order to construct detailed seamless digital maintenance field mobile robotic technology is utilized to supply environment data to the server. The sensory system on the robot collect the environment data on-site and such collected data is uploaded to the Environment Server for compiling accurate digital environment data base. The robot operator also can utilize accumulated environment data by referring to the Environment Server. In this paper, we explain the concept of our teleoperation system based on collecting and utilizing environment data. Using developed system, inspection patrol experiments were attempted in the plant mock-up. Experimental results are shown by using an omnidirectional mobile robot with sensory system and the Environment Server. (author)

  14. Varying plant density and harvest time to optimize cowpea leaf yield and nutrient content

    Science.gov (United States)

    Ohler, T. A.; Nielsen, S. S.; Mitchell, C. A.

    1996-01-01

    Plant density and harvest time were manipulated to optimize vegetative (foliar) productivity of cowpea [Vigna unguiculata (L.) Walp.] canopies for future dietary use in controlled ecological life-support systems as vegetables or salad greens. Productivity was measured as total shoot and edible dry weights (DW), edible yield rate [(EYR) grams DW per square meter per day], shoot harvest index [(SHI) grams DW per edible gram DW total shoot], and yield-efficiency rate [(YER) grams DW edible per square meter per day per grams DW nonedible]. Cowpeas were grown in a greenhouse for leaf-only harvest at 14, 28, 42, 56, 84, or 99 plants/m2 and were harvested 20, 30, 40, or 50 days after planting (DAP). Shoot and edible dry weights increased as plant density and time to harvest increased. A maximum of 1189 g shoot DW/m2 and 594 g edible DW/m2 were achieved at an estimated plant density of 85 plants/m2 and harvest 50 DAP. EYR also increased as plant density and time to harvest increased. An EYR of 11 g m-2 day-1 was predicted to occur at 86 plants/m2 and harvest 50 DAP. SHI and YER were not affected by plant density. However, the highest values of SHI (64%) and YER (1.3 g m-2 day-1 g-1) were attained when cowpeas were harvested 20 DAP. The average fat and ash contents [dry-weight basis (dwb)] of harvested leaves remained constant regardless of harvest time. Average protein content increased from 25% DW at 30 DAP to 45% DW at 50 DAP. Carbohydrate content declined from 50% DW at 30 DAP to 45% DW at 50 DAP. Total dietary fiber content (dwb) of the leaves increased from 19% to 26% as time to harvest increased from 20 to 50 days.

  15. effect of plant hormones on the growth and nutrient uptake of maize

    African Journals Online (AJOL)

    Preferred Customer

    Key words/phrases: Acidic soils, exogenous plant hormones, liming, neutral compost, placed applica- tion .... placed into plastic pots of 18 and 10 cm upper and ... 0.61. *15 ml pot-1 mixture of micronutrient elements were added.

  16. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality

    Directory of Open Access Journals (Sweden)

    Jing Xiong

    2017-08-01

    Full Text Available Rockwool (RC and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better. For all substrates, the blossom-end rot (BER of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato.

  17. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality.

    Science.gov (United States)

    Xiong, Jing; Tian, Yongqiang; Wang, Jingguo; Liu, Wei; Chen, Qing

    2017-01-01

    Rockwool (RC) and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC) has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC) cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better). For all substrates, the blossom-end rot (BER) of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato.

  18. Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae.

    Science.gov (United States)

    Fochi, Valeria; Falla, Nicole; Girlanda, Mariangela; Perotto, Silvia; Balestrini, Raffaella

    2017-10-01

    Orchid mycorrhizal protocorms and roots are heterogeneous structures composed of different plant cell-types, where cells colonized by intracellular fungal coils (the pelotons) are close to non-colonized plant cells. Moreover, the fungal coils undergo rapid turnover inside the colonized cells, so that plant cells containing coils at different developmental stages can be observed in the same tissue section. Here, we have investigated by laser microdissection (LMD) the localization of specific plant gene transcripts in different cell-type populations collected from mycorrhizal protocorms and roots of the Mediterranean orchid Serapias vomeracea colonized by Tulasnella calospora. RNAs extracted from the different cell-type populations have been used to study plant gene expression, focusing on genes potentially involved in N uptake and transport and previously identified as up-regulated in symbiotic protocorms. Results clearly showed that some plant N transporters are differentially expressed in cells containing fungal coils at different developmental stages, as well as in non-colonized cells, and allowed the identification of new functional markers associated to coil-containing cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Accumulation, mobility and plant availability of heavy metals in soils irrigated with untreated sewage effluent in Central Mexico

    International Nuclear Information System (INIS)

    Siebe-Grabach, C.

    1994-01-01

    In Irrigation District 03, Tula, Mexico, wastewater from Mexico City has been used for irrigating agricultural land since the beginning of this century. Today, approximately 85 000 ha are irrigated, alfalfa and maize being the main crops. The sewage effluent does not receive any treatment previous to its evacuation to this irrigation district, and only a part of the water is stored in the Endho Dam before being used, receiving in this way a kind or primary treatment through the sedimentation processes taking place. The reuse of wastewater for agricultural purposes represents an economic source of water and nutrients and has become an important disposal alternative for Mexico City. Nevertheless the contaminants and pathogens contained in the water represent a potential public health hazard and the production capacity of the soils. The aim of the present investigation is to determine the actual contamination levels of heavy metals (Pb, Cd, Cu, Zn) in soils, analysing the accumulation tendencies in time and space, and also to characterize their mobility and plant availability and thus their ecotoxicity. (orig.) [de

  20. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    Science.gov (United States)

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent

  1. Pre-study - mobile briquetting plant for reed canary grass in inland Northern Sweden; Foerstudie - mobil briketteringsanlaeggning foer roerflen i norrlands inland

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Lundmark, Bo

    2009-07-01

    The aim of this preliminary study was to summarize existing information and to develop an outline plan for a mobile briquette plant based on the conditions and requirements of reed canary grass production on forestry land. The results of the study show that there is potential to build up small-scale briquette production from reed canary grass in the areas around Arvidsjaur, Lycksele and Malaa. Important conclusions from the study are that there are potential users for reed canary grass briquettes in all three areas studied, but that profitability for mobile briquette plants is dependent on the willingness of the users to pay well for the briquettes. These briquette plants would need a relatively high degree of automation for commercial operation to be profitable. The first plant should therefore be collocated with another business so that staff, machinery (e.g. loader) and storage space can be shared with other operations. One appropriate location would be to build up activities for a mobile reed canary grass briquette plant around Glommers Miljoeenergi's pellet plant in Glommerstraesk. Thus, the plant could be used as a demonstration mobile unit, with a stationary 'home production base'CO{sub 2} Glommerstraesk

  2. Sustaining soil productivity by integrated plant nutrient management in wheat based cropping system under rainfed conditions

    International Nuclear Information System (INIS)

    Dilshad, M.; Lone, M.I.

    2011-01-01

    The study of the use of organic (FYM) and inorganic (NPK) nutrient sources with bio fertiliser on wheat-fallow and wheat-maize cropping system under rainfed environment revealed significant increase in bio metric parameters of wheat during winter and summer seasons of two years. During both the seasons, application of half NPK + half FYM + Bio power (brand) produced the highest grain yield (3684 kg/ha) and (3781 kg/ha) of wheat with the maximum N uptake of 357 kg/ha, P uptake of 51 kg/ha and K uptake of 215 kg/ha. Wheat-maize cropping system was found to be profitable economically with integrated use of mineral and organic and/or Bio power under rainfed conditions of Pakistan. (author)

  3. MOBILE MORTAR CONCRETE PLANTS FOR BUILDING COMPLEX OF BELARUS: ADVANTAGES AND DISADVANTAGES

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2015-01-01

    Full Text Available The paper considers main advantages and disadvantages of mobile mortar concrete plants in comparison with stationary concrete mixing units. The main idea of the mobility is to provide quick movement. In its turn, this approach imposes some restrictions on dimensions and weights of concrete mixing equipment. However in the context of the concrete mixing equipment and construction site as whole the mobility concept is considered in the form of three components: minimum expenses on site preparation for assembly of a mortar concrete plant, transportability, reduction in installation and startand-adjustment periods. In this regard processing chain for production of concrete and mortar mixes is divided in separate complete operations. Then it is necessary to develop modules which are performing the required operations. Every module is developed in accordance with the size of a shipping container in order to make transportation convenient. Detachable connections are stipulated in the place of module linkages, electrical wiring, pipelines for supply water and chemical admixtures, pneumatics. Henceforth, these connections make it possible to reduce time for on-site assembly and disassembly of the equipment.The paper presents a mobile mortar concrete unit of block-module arrangement which has been developed within the framework of the State Scientific Research Programme at the BNTU. The unit has been manufactured using production capacities of JSC “Viprotekh” and it has been successfully introduced in production process. One of the promising directions is to use the mobile mortar concrete plants which are located and which are operating directly on construction sites. Their economic efficiency becomes higher with an increase of distance to the nearest stationary mortar concrete unit and scope of concreting works. Mobile mortar concrete plants are mainly intended for construction organizations which are realizing construction projects away from urban

  4. Real-time monitoring and analysis of nutrient transportation in a living plant using a positron emitting tracer imaging system (PETIS)

    International Nuclear Information System (INIS)

    Matsuhashi, Shinpei

    2005-01-01

    We visualized the uptake and transportation of nutrition in a living plant using positron-emitting tracers and mathematical analysis of the data. We have been developing a positron-imaging technique to visualize the uptake and transportation of nutrients in a plant by a positron-emitting tracer-imaging system (PETIS) using positron-emitting nuclide-labeled compounds. The PETIS data is analyzed mathematically to understand the physiological meaning of the physical parameters. In this study, the results on the uptake and transportation of nutrients, which were obtained with the use of a positron-imaging method, are introduced. (author)

  5. Mapping of unknown industrial plant using ROS-based navigation mobile robot

    Science.gov (United States)

    Priyandoko, G.; Ming, T. Y.; Achmad, M. S. H.

    2017-10-01

    This research examines how humans work with teleoperated unmanned mobile robot inspection in industrial plant area resulting 2D/3D map for further critical evaluation. This experiment focuses on two parts, the way human-robot doing remote interactions using robust method and the way robot perceives the environment surround as a 2D/3D perspective map. ROS (robot operating system) as a tool was utilized in the development and implementation during the research which comes up with robust data communication method in the form of messages and topics. RGBD SLAM performs the visual mapping function to construct 2D/3D map using Kinect sensor. The results showed that the mobile robot-based teleoperated system are successful to extend human perspective in term of remote surveillance in large area of industrial plant. It was concluded that the proposed work is robust solution for large mapping within an unknown construction building.

  6. Nutrients in the cassava (Manihot esculenta Crantz leaf meal at three ages of the plant Nutrientes na farinha de folhas de mandioca (Manihot esculenta Crantz em três idades da planta

    Directory of Open Access Journals (Sweden)

    Carmen Wobeto

    2006-12-01

    Full Text Available The high number of cassava cultivars adapted to many different regions provides a wide variation in the chemical composition of cassava leaves meal (CLM. Therefore, the contents of some nutrients in CLM from five cultivars at three ages of the plant were investigated in order to select the cultivars and ages with superior levels of these nutrients. When the plants were 12 months old, the highest levels of crude protein (CP, beta-carotene, iron, magnesium, phosphorus and sulfur were observed. The IAC 289-70 cv. showed the highest levels of magnesium, as well as considerable contents of CP, beta-carotene, iron, zinc and sulfur, which did not differ statistically from the cultivars showing the highest levels of these nutrients.O número elevado de cultivares de mandioca adaptados às mais diversas regiões confere ampla variação na composição química da farinha de folhas de mandioca (FFM. Portanto, foram investigados os teores de alguns nutrientes nas FFM de cinco cultivares em três idades da planta, a fim de selecionar cultivares e idades com níveis superiores destes nutrientes. Aos 12 meses de idade da planta, observaram-se os maiores níveis de proteína bruta (PB, beta-caroteno, ferro, magnésio, fósforo e enxofre. O cultivar IAC 289-70 apresentou os maiores níveis de magnésio, assim como teores apreciáveis de PB, beta-caroteno, ferro, zinco e enxofre, pois não diferiu estatisticamente dos cultivares com os níveis mais elevados destes nutrientes.

  7. Mobilization of interactions between functional diversity of plant and soil organisms on nitrogen availability and use

    Science.gov (United States)

    Drut, Baptiste; Cassagne, Nathalie; Cannavacciuolo, Mario; Brauman, Alain; Le Floch, Gaëtan; Cobo, Jose; Fustec, Joëlle

    2017-04-01

    Keywords: legumes, earthworms, microorganisms, nitrogen, interactions Both aboveground and belowground biodiversity and their interactions can play an important role in crop productivity. Plant functional diversity, such as legume based intercrops have been shown to improve yields through plant complementarity for nitrogen use (Corre-Hellou et al., 2006). Moreover, plant species or plant genotype may influence the structure of soil microorganism communities through the composition of rhizodeposits in the rhizosphere (Dennis et al., 2010). Belowground diversity can also positively influence plant performance especially related to functional dissimilarity between soil organisms (Eisenhauer, 2012). Earthworms through their burrowing activity influence soil microbial decomposers and nutrient availability and have thus been reported to increase plant growth (Brown, 1995; Brown et al., 2004). We hypothesize that i) plant functional (genetic and/or specific) diversity associated to functional earthworms diversity are key drivers of interactions balance to improve crop performances and ii) the improvement of plant performances can be related to change in the structure of soil microorganism communities due to the diversity of rhizodeposits and the burrowing activity of earthworms. In a first mesocosm experiment, we investigated the effect of a gradient of plant diversity - one cultivar of wheat (Triticum aestivum L.), 3 different wheat cultivars, and 3 different cultivars intercropped with clover (Trifolium hybridum L.) - and the presence of one (endogeic) or two (endogeic and anecic) categories of earthworms on biomass and nitrogen accumulation of wheat. In a second mesocosm experiment, we investigated the influence of three species with different rhizodeposition - wheat, rapeseed (Brassica napus L. ) and faba bean (Vicia faba L.) in pure stand or intercropped - and the presence of endogeic earthworms on microbial activity and nitrogen availability. In the first experiment

  8. Catalytic production of hydrogen from methanol for mobile, stationary and portable fuel-cell power plants

    International Nuclear Information System (INIS)

    Lukyanov, Boris N

    2008-01-01

    Main catalytic processes for hydrogen production from methanol are considered. Various schemes of fuel processors for hydrogen production in stationary, mobile and portable power plants based on fuel cells are analysed. The attention is focussed on the design of catalytic reactors of fuel processors and on the state-of-the-art in the design of catalysts for methanol conversion, carbon monoxide steam conversion and carbon monoxide selective oxidation. Prospects for the use of methanol in on-board fuel processors are discussed.

  9. Plant Sterols as Anticancer Nutrients: Evidence for Their Role in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Bruce J. Grattan

    2013-01-01

    Full Text Available While many factors are involved in the etiology of cancer, it has been clearly established that diet significantly impacts one’s risk for this disease. More recently, specific food components have been identified which are uniquely beneficial in mitigating the risk of specific cancer subtypes. Plant sterols are well known for their effects on blood cholesterol levels, however research into their potential role in mitigating cancer risk remains in its infancy. As outlined in this review, the cholesterol modulating actions of plant sterols may overlap with their anti-cancer actions. Breast cancer is the most common malignancy affecting women and there remains a need for effective adjuvant therapies for this disease, for which plant sterols may play a distinctive role.

  10. Vision based nutrient deficiency classification in maize plants using multi class support vector machines

    Science.gov (United States)

    Leena, N.; Saju, K. K.

    2018-04-01

    Nutritional deficiencies in plants are a major concern for farmers as it affects productivity and thus profit. The work aims to classify nutritional deficiencies in maize plant in a non-destructive mannerusing image processing and machine learning techniques. The colored images of the leaves are analyzed and classified with multi-class support vector machine (SVM) method. Several images of maize leaves with known deficiencies like nitrogen, phosphorous and potassium (NPK) are used to train the SVM classifier prior to the classification of test images. The results show that the method was able to classify and identify nutritional deficiencies.

  11. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Stanisław Ledakowicz

    2016-06-01

    Full Text Available The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h of dewatered sludge. The pilot plant was mounted in a typical mobile container which could provide service to small and medium wastewater treatment plants offering thermal processing of sewage sludge. This unit consists of KENKI contact dryer and „Spirajoule”® pyrolyser supplied with electricity utilizing the Joule effect, and a boiler, wherein the pyrolysis gases and volatile products are burned producing steam sent to the contact dryer. The bio-char produced during sludge pyrolysis could be utilized for agriculture purposes. During preliminary experiments and short-term exploitation of the unit at Elbląg Wastewater Treatment Plant the obtained results allowed us to make a mass and energy balance depended on the process conditions in the pyrolysis temperature range of 400÷800 °C. Based on the obtained results a calculator was created in the Excel , which enables assessment of pyrolysis products content and making mass and energy balances depended on process parameters such as initial moisture of sludge, pyrolysis temperature and installation output.

  12. Cyber Security Evaluation of the Wireless Communication for the Mobile Safeguard Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, S.; Kim, Y.S.; Ye, S.H.

    2015-01-01

    This paper introduces cyber security evaluation results and a design of the wireless communication technology to apply to safeguard systems in nuclear power plants. While wireless communication technologies can generally make mobility and efficiency on plant operation, those have seldom been installed on the nuclear I&C systems due to the negative concern of unexpected outcomes that stem from electromagnetic interference and cyber attack. New design of advanced digital safeguard and I&C systems uses computer-based systems for the safeguard and safety functions. On the other hand, those are being exposed to various types of new and existing cyber threats, vulnerabilities and risks which significantly increase the likelihood that those could be compromised. In order to employ the wireless communication technology in safeguard function, licencees assess and manage the potential for adverse effects on safeguard and safety functions so as to provide high assurance that critical functions are properly protected cyber attack. It is expected that the safeguard function, specifically on the area of real-time monitoring, logging, can be enhanced by employing the mobile safeguard devices (: smart phone, laptop, smart pad, etc). In this paper, we deal with the cyber security evaluation, which consists of threat analysis, vulnerability test, establishment of security plan, and design solutions for the wireless communication on the basis of IEEE 802.11(Wi-Fi) protocol. Proposed evaluation and design solution could be a basis for the design of wireless communication and mobile safeguard systems in nuclear power plants. (author)

  13. Influence of drainage and nutrient-solution nitrogen and potassium concentrations on the agronomic behavior of bell-pepper plants cultivated in a substrate.

    Science.gov (United States)

    Wamser, Anderson Fernando; Cecilio Filho, Arthur Bernardes; Nowaki, Rodrigo Hiyoshi Dalmazzo; Mendoza-Cortez, Juan Waldir; Urrestarazu, Miguel

    2017-01-01

    The interactive effects of N (6, 9, 12 and 15 mmol L-1) and K (3, 5, 7, and 9 mmol L-1) concentrations in nutrient solutions were evaluated on bell pepper grown in a coconut-coir substrate and fertilized without drainage. An additional treatment with drainage was evaluated using N and K concentrations of 12 and 7 mmol L-1, respectively. The hybrid Eppo cultivar of yellow bell pepper was cultivated for 252 days beginning 9 November 2012. Electrical conductivity (EC), the N and K concentrations in the substrate solution, marketable fruit yield, total dry weight and macronutrient concentrations in shoots were periodically evaluated. Fruit production was lower in the system without drainage, regardless of the N and K concentrations, compared to the recommended 10-20% drainage of the volume of nutrient solution applied. Higher K concentrations in the nutrient solution did not affect plant production in the system without drainage for the substrate with an initial K concentration of 331.3 mg L-1. Fruit yield was higher without drainage at a nutrient-solution N concentration of 10.7 mmol L-1. The upper EC limit of the substrate solution in the system without drainage was exceeded 181 days after planting. Either lower nutrient concentrations in the nutrient solution or a drainage system could thus control the EC in the substrate solution.

  14. Tissue mineral nutrient content in turions of aquatic plants: does it represent a storage function?

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2010-01-01

    Roč. 176, č. 2 (2010), s. 145-151 ISSN 1863-9135 Institutional research plan: CEZ:AV0Z60050516 Keywords : carnivorous and non-carnivorous plants * turion N, P, K, Ca and Mg content * water chemistry Subject RIV: EF - Botanics Impact factor: 1.108, year: 2010

  15. effect of plant hormones on the growth and nutrient uptake of maize

    African Journals Online (AJOL)

    Preferred Customer

    prolonged vegetative growth, which resulted in decreased grain yield. The investigation of Caldiz et al. (1991) also indicated that foliar application of. BA and nitrogen on wheat plants delayed chlorophyll loss in the flag leaf but modified neither yield nor yield components. Benzylad- ennine (BA) increased only grain protein.

  16. The contribution of plant uptake to nutrient removal by floating treatment wetlands

    NARCIS (Netherlands)

    Keizer-Vlek, H.E.; Verdonschot, P.F.M.; Verdonschot, R.C.M.; Dekkers, T.B.M.

    2014-01-01

    Floating treatment wetlands (FTWs) may provide an appealing alternative to the more conventional (sub) surface flow wetlands to solve problems associated with eutrophication in urban surface waters, because they do not claim additional land area. This study examined the contribution of plant uptake

  17. Dissimilar response of plant and soil biota communities to long-term nutrient adition in grasslands

    NARCIS (Netherlands)

    Wal, van der A.; Geerts, R.H.E.M.; Korevaar, H.; Schouten, A.J.; Jagers op Akkerhuis, G.A.J.M.; Rutgers, M.; Mulder, C.

    2009-01-01

    The long-term effect of fertilizers on plant diversity and productivity is well known, but long-term effects on soil biota communities have received relatively little attention. Here, we used an exceptional long-lasting (>40 years) grassland fertilization experiment to investigate the long-term

  18. Quantifying Hydroperiod, Fire and Nutrient Effects on the Composition of Plant Communities in Marl Prairie of the Everglades: a Joint Probability Method Based Model

    Science.gov (United States)

    Zhai, L.

    2017-12-01

    Plant community can be simultaneously affected by human activities and climate changes, and quantifying and predicting this combined effect on plant community by appropriate model framework which is validated by field data is complex, but very useful to conservation management. Plant communities in the Everglades provide an unique set of conditions to develop and validate this model framework, because they are both experiencing intensive effects of human activities (such as changing hydroperiod by drainage and restoration projects, nutrients from upstream agriculture, prescribed fire, etc.) and climate changes (such as warming, changing precipitation patter, sea level rise, etc.). More importantly, previous research attention focuses on plant communities in slough ecosystem (including ridge, slough and their tree islands), very few studies consider the marl prairie ecosystem. Comparing with slough ecosystem featured by remaining consistently flooded almost year-round, marl prairie has relatively shorter hydroperiod (just in wet-season of one year). Therefore, plant communities of marl prairie may receive more impacts from hydroperiod change. In addition to hydroperiod, fire and nutrients also affect the plant communities in the marl prairie. Therefore, to quantify the combined effects of water level, fire, and nutrients on the composition of the plant communities, we are developing a joint probability method based vegetation dynamic model. Further, the model is being validated by field data about changes of vegetation assemblage along environmental gradients in the marl prairie. Our poster showed preliminary data from our current project.

  19. Ecosystem partitioning of 15N-glycine after long-term climate and nutrient manipulations, plant clipping and addition of labile carbon in a subarctic heath tundra

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Michelsen, Anders; Jonasson, Sven Evert

    2008-01-01

    of nitrogen (N). Here, we studied 15N label incorporation into microbes, plants and soil N pools after both long-term (12 years) climate manipulation and nutrient addition, plant clipping and a pulse-addition of labile C to the soil, in order to gain information on interactions among soil N and C pools...... addition. However, plants exerted control on the soil inorganic N concentrations and recovery of total dissolved 15N (TD15N), and likewise the microbes reduced these soil pools, but only when fed with labile C. Soil microbes in clipped plots were primarily C limited, and the findings of reduced N...... availability, both in the presence of plants and with the combined treatment of plant clipping and addition of sugar, suggest that the plant control of soil N pools was not solely due to plant uptake of soil N, but also partially caused by plants feeding labile C to the soil microbes, which enhanced...

  20. Spatial and temporal shifts in gross primary productivity, respiration, and nutrient concentrations in urban streams impacted by wastewater treatment plant effluent

    Science.gov (United States)

    Ledford, S. H.; Toran, L.

    2017-12-01

    Impacts of wastewater treatment plant effluent on nutrient retention and stream productivity are highly varied. The working theory has been that large pulses of nutrients from plants may hinder in-stream nutrient retention. We evaluated nitrate, total dissolved phosphorus, and dissolved oxygen in Wissahickon Creek, an urban third-order stream in Montgomery and Philadelphia counties, PA, that receives effluent from four wastewater treatment plants. Wastewater treatment plant effluent had nitrate concentrations of 15-30 mg N/L and total dissolved phosphorus of 0.3 to 1.8 mg/L. Seasonal longitudinal water quality samples showed nitrate concentrations were highest in the fall, peaking at 22 mg N/L, due to low baseflow, but total dissolved phosphorous concentrations were highest in the spring, reaching 0.6 mg/L. Diurnal dissolved oxygen patterns above and below one of the treatment plants provided estimates of gross primary productivity (GPP) and ecosystem respiration (ER). A site 1 km below effluent discharge had higher GPP in April (80 g O2 m-2 d-1) than the site above the plant (28 g O2 m-2 d-1). The pulse in productivity did not continue downstream, as the site 3 km below the plant had GPP of only 12 g O2 m-2 d-1. Productivity fell in June to 1-2 g O2 m-2 d-1 and the differences in productivity above and below plants were minimal. Ecosystem respiration followed a similar pattern in April, increasing from -17 g O2 m-2 d-1 above the plant to -47 g O2 m-2 d-1 1 km below the plant, then decreasing to -8 g O2 m-2 d-1 3 km below the plant. Respiration dropped to -3 g O2 m-2 d-1 above the plant in June but only fell to -9 to -10 g O2 m-2 d-1 at the two downstream sites. These findings indicate that large nutrient pulses from wastewater treatment plants spur productivity and respiration, but that these increases may be strongly seasonally dependent. Examining in-stream productivity and respiration is critical in wastewater impacted streams to understanding the seasonal and

  1. Synthesis of deuterium-labeled plant sterols and analysis of their side-chain mobility by solid state deuterium NMR

    International Nuclear Information System (INIS)

    Marsan, M.P.; Muller, I.; Milon, A.

    1996-01-01

    Sitosterol and stigmasterol, plant sterols, were deuterated at specific positions. Orientation and mobility of the deuterated sitosterol and stigmasterol (and two of their diasteromers) on oriented lipid bilayers were analyzed by deuterium NMR spectroscopy. Orientation and mobility of the side chains was revealed by these studies

  2. Growth and uptake of nutrients curves in star fruit plants budded with nota 10 cultivar Marcha de absorção de nutrientes e crescimento de mudas de caramboleira enxertada com a cultivar nota-10

    Directory of Open Access Journals (Sweden)

    Marina Burani Arouca

    2011-10-01

    Full Text Available The nutritional state of star fruit seedlings must be adequate for a successful field implementation. The objective of the present work was to study the growth and uptake of macro e micronutrients curves by star fruit plants budded with Nota 10 cultivar in nutrient solution conditions. The experimental design was randomized complete blocks, with four replications and six treatments, which were consisted by the times of collects during the 150 days of the experiment (each 25 days. In each collection, the plant growth was evaluated by the division of the plants in root, stem and leaves in order to obtain the height, diameter of the stem, leave area and the dry matter. The accumulation of dry matter followed sigmoidal adjustment, while the uptake of nutrients followed quadratic adjustment, except Mg, P, and Cu that followed sigmoidal adjustment. The accumulation of nutrients by star fruit seedlings ‘nota 10’ followed the sequence: NO adequado estado nutricional das mudas de caramboleira permite o sucesso da implantação de um pomar. O objetivo deste trabalho foi determinar a marcha de absorção de nutrientes e o crescimento de mudas enxertadas de caramboleira ‘Nota 10’ produzida em solução nutritiva. O delineamento experimental utilizado foi o inteiramente casualizado, com seis tratamentos e quatro repetições. Os tratamentos foram constituídos pelos tempos de coleta (25; 50; 75; 100; 125 e 150 dias após o início da brotação das borbulhas. As plantas foram avaliadas quanto a: altura, diâmetro do enxerto e do porta-enxerto, área foliar e massa da matéria seca (folhas, caule e raízes. Nos diferentes órgãos das mudas, determinou-se o acúmulo de macronutrientes. O acúmulo de massa seca das mudas de caramboleira apresentou ajuste sigmoidal, enquanto o acúmulo de nutrientes apresentou incremento quadrático, exceto Mg, P e Cu, que foi sigmoidal, obedecendo à seguinte sequência: N>K>Ca>P>S>Mg>Fe>Mn>Zn>B>Cu, sendo maior nas

  3. Moss cushions facilitate water and nutrient supply for plant species on bare limestone pavements

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Hammer, Kathrine

    2012-01-01

    declined by the -0.36 power of cushion diameter, and were not significantly different from -0.50 for the square root function previously predicted for the increasing thickness of the boundary layer, with greater linear dimensions for smooth flat objects at low wind velocities. Size dependence vanished...... richness, and evaluated duration of plant activity during desiccation as a function of ground area, for a large collection of moss cushions. We found that lower evaporation and higher water storage contributed equally to extending the desiccation period with increasing cushion size. Evaporation rates......Dense moss cushions of different size are distributed across the bare limestone pavements on Øland, SE Sweden. Increasing cushion size is predicted to physically protect and improve performance and colonization by vascular plants. Therefore, we tested water balance, phosphorus supply, and species...

  4. Evaluation of some organic residues on the availability of nutrients to plants using nuclear technique

    International Nuclear Information System (INIS)

    Sayed, S.A.S

    2006-01-01

    Two pot experiments were carried out under greenhouse conditions in Soils and Water Research Department, Atomic Energy Authority.The aim of this work studies the effect of chicken manure and rice straw either separately or combined with mineral fertilizer by different rates pronounced the recommended dose (120 kg N fed -1 ) or half the recommended dose (60 kg N fed -1 + BF) on wheat plant grown in sandy soils. Organic materials were mixed with soil before packed in pots (5 kg soil pot1). Mineral fertilizer was added ( 15 N-labeled ammonium sulfate) after thinned wheat plants. The recommended basic supplemental doses of phosphorus and potassium fertilizers were applied to each pot. Wheat grains inoculated by Azotobacter chroococcum before cultivation in the second experiment. In addition to this work aimed the study affect of different fertilizer treatments on NPK of wheat plants as well as nitrogen derived from fertilizer (Ndff), soil (Ndfs), air (Ndfa) and fertilizer use efficiency (FUE) after the harvest of yield.

  5. Nutrient evaluation and elemental analysis of four medicinal plants of Khyber Pakhtoon Khwa, Pakistan

    International Nuclear Information System (INIS)

    Khan, F.U.; Ullah, R.; Muhammad, Z.; Rehman, N.U.; Zohaib, M.; Shinwari, Z.K.

    2011-01-01

    The study was carried out to assess the nutritional value and mineral contents of four medicinal plants viz., Aerva javanica Burm.f, Calotropis procera Ait. f, Datura alba Nees, and Nepeta suavis Stapf., which are traditionally used as medicine in the Northwest Pakistan. Proximate analysis of plant sample determines that protein (21.353%) and ash (18.803%) was highest in Datura alba, carbohydrate (70.123 %) in Aerva javanica, energy (398.496 Kcal/100g), fats (12.595%) and fibre (40.150%) was highest in Nepeta suavis, while highest moisture (11.255%) was reported in Calotropis procera. In comparative assessment of the various species, the results showed that Nepeta suavis is the most significant species having higher concentrations of fat, fibre and energy values compared to the other species. The essential elements such as Fe, Cd, Cu, Mn, Pb, Cr, Mg and Na have been analysed using Atomic Absorption Spectrometric method from the medicinal plants in variable range. (author)

  6. Nutrient and energy content, in vitro ruminal fermentation characteristics and methanogenic potential of alpine forage plant species during early summer.

    Science.gov (United States)

    Jayanegara, Anuraga; Marquardt, Svenja; Kreuzer, Michael; Leiber, Florian

    2011-08-15

    Plants growing on alpine meadows are reported to be rich in phenols. Such compounds may affect ruminal fermentation and reduce the plants' methanogenic potential, making alpine grazing advantageous in this respect. The objective of this study was to quantify nutrients and phenols in Alpine forage grasses, herbs and trees collected over 2 years and, in a 24 h in vitro incubation, their effects on ruminal fermentation parameters. The highest in vitro gas production, resulting in metabolisable energy values around 10 MJ kg⁻¹, were found with Alchemilla xanthochlora and Crepis aurea (herbaceous species) and with Sambucus nigra leaves and flowers (tree species). Related to the amount of total gas production, methane formation was highest with Nardus stricta, and lowest with S. nigra and A. xanthochlora. In addition, Castanea sativa leaves led to an exceptional low methane production, but this was accompanied by severely impaired ruminal fermentation. When the data were analysed by principal component analysis, phenol concentrations were negatively related with methane proportion in total gas. Variation in methane production potential across the investigated forages was small. The two goals of limited methane production potential and high nutritive value for ruminants were met best by A. xanthochlora and S. nigra. Copyright © 2011 Society of Chemical Industry.

  7. Condutividade elétrica da solução nutritiva e acúmulo de macro e micronutrientes no cultivo de crisântemo Electrical conductivity of nutrient solution on growth and nutrient accumulation in chrysanthemum plants

    Directory of Open Access Journals (Sweden)

    Poliana Rocha D'Almeida Mota

    2013-03-01

    Full Text Available A análise de crescimento com base no acúmulo de fitomassa e na marcha de absorção de nutrientes são importantes para determinar as épocas da maior demanda nutricional, de modo a programar a fertirrigação. Assim, esta pesquisa tem como objetivo determinar o crescimento e o acúmulo de nutrientes em plantas de crisântemo desenvolvidas em diferentes níveis de condutividade elétrica (CE da solução nutritiva. Realizou-se experimento em casa de vegetação, utilizando o delineamento de blocos casualizados com cinco tratamentos e quatro repetições. Os tratamentos corresponderam aos níveis de CE da solução aplicada, com valores de 1,42; 1,65; 1,89; 2,13 e 2,36 dS m¹(fase vegetativa e 1,71; 1,97; 2,28; 2,57 e 2,85 dS m¹(fase de botão. Após o enraizamento das estacas, determinou-se a fitomassa seca da parte aérea e realizou-se a análise química dos macronutrientes e micronutrientes a cada quatorze dias. Os nutrientes tiveram a seguinte ordem de absorção: K>N>Ca>P>Mg>S (1425, 892, 184, 150, 110 e 59 mg planta¹ e Fe>Zn>B>Mn>Cu (2254, 2219, 1725, 1287,210 µg planta¹. Grande parte dos nutrientes tem seu teor aumentado com a elevação do nível da CE da solução, sem que haja efeito salino até a CE de 2,85 dS m¹The study of growth and uptake of nutrients is important to determine the times of increased demand in order to schedule the fertigation. The present research was developed with the objective of evaluating the effects of different levels of electrical conductivity on growth and accumulation of nutrients in chrysanthemum plants under greenhouse conditions. The electri- cal conductivity levels on the applied solution were 1. 42, 1. 65, 1. 89, 2. 13 and 2. 36 dS m¹(bud vegetative stage; 1. 71, 1. 97, 2. 28, 2. 57 and 2. 85 dS m¹(bud stage. The dry mass of the aerial portion of the plant and the contents of macronutrients and micronutrients were determined every 14 days. The nutrient accumulation in chrysanthemum plant

  8. Condutividade elétrica da solução nutritiva e acúmulo de macro e micronutrientes no cultivo de crisântemo Electrical conductivity of nutrient solution on growth and nutrient accumulation in chrysanthemum plants

    Directory of Open Access Journals (Sweden)

    Poliana Rocha D'Almeida Mota

    2013-01-01

    Full Text Available A análise de crescimento com base no acúmulo de fitomassa e na marcha de absorção de nutrientes são importantes para determinar as épocas da maior demanda nutricional, de modo a programar a fertirrigação. Assim, esta pesquisa tem como objetivo determinar o crescimento e o acúmulo de nutrientes em plantas de crisântemo desenvolvidas em diferentes níveis de condutividade elétrica (CE da solução nutritiva. Realizou-se experimento em casa de vegetação, utilizando o delineamento de blocos casualizados com cinco tratamentos e quatro repetições. Os tratamentos corresponderam aos níveis de CE da solução aplicada, com valores de 1,42; 1,65; 1,89; 2,13 e 2,36 dS m¹(fase vegetativa e 1,71; 1,97; 2,28; 2,57 e 2,85 dS m¹(fase de botão. Após o enraizamento das estacas, determinou-se a fitomassa seca da parte aérea e realizou-se a análise química dos macronutrientes e micronutrientes a cada quatorze dias. Os nutrientes tiveram a seguinte ordem de absorção: K>N>Ca>P>Mg>S (1425, 892, 184, 150, 110 e 59 mg planta¹ e Fe>Zn>B>Mn>Cu (2254, 2219, 1725, 1287,210 µg planta¹. Grande parte dos nutrientes tem seu teor aumentado com a elevação do nível da CE da solução, sem que haja efeito salino até a CE de 2,85 dS m¹The study of growth and uptake of nutrients is important to determine the times of increased demand in order to schedule the fertigation. The present research was developed with the objective of evaluating the effects of different levels of electrical conductivity on growth and accumulation of nutrients in chrysanthemum plants under greenhouse conditions. The electri- cal conductivity levels on the applied solution were 1. 42, 1. 65, 1. 89, 2. 13 and 2. 36 dS m¹(bud vegetative stage; 1. 71, 1. 97, 2. 28, 2. 57 and 2. 85 dS m¹(bud stage. The dry mass of the aerial portion of the plant and the contents of macronutrients and micronutrients were determined every 14 days. The nutrient accumulation in chrysanthemum plant

  9. Biomass production and control of nutrient leaching of willows using different planting methods with special emphasis on an appraisal of the electrical impedance for roots

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cao

    2011-07-01

    Willow reproduction can be achieved through vertically or horizontally planted cuttings. Conventionally, plantations are established by inserting cuttings vertically into the soil. There is, however, a lack of information about the biomass production and nutrient leaching of plantations established through horizontally planted cuttings. A greenhouse experiment and a field trial were carried out to investigate whether horizontally planted Salix schwerinii cuttings have a positive effect on stem yield, root distribution and nutrient leaching in comparison with vertically planted cuttings with different planting densities. The shoots' height of horizontally planted cuttings was significantly smaller than that of vertically planted cuttings during the first two weeks after planting in the pot experiment. Thereafter, no significant effect of planting orientation on the stem biomass was observed in the two conducted experiments. In both experiments the total stem biomass increased with the planting density. It was also found that the fine root biomass and the specific root length were not affected by the planting orientation or density, while the fine root surface area and the absorbing root surface area (ARSA) were affected only by the planting density. The planting orientation did not affect the nutrient concentrations in the soil leachate, apart from SO{sub 4}-S and PO{sub 4}-P in the pot experiment. The ARSA in the pot experiment was assessed by using the earth impedance method. The applicability of this method was evaluated in a hydroponic study of willow cuttings where root and stem were measured independently. Electrical resistance had a good correlation with the contact area of the roots with the solution. However, the resistance depended strongly on the contact area of the stem with the solution, which caused a bias in the evaluation of root surface area. A similar experimental set-up with electrical impedance spectroscopy was employed to study the

  10. Compost-based growing media: influence on growth and nutrient use of bedding plants.

    Science.gov (United States)

    Grigatti, Marco; Giorgioni, Maria Eva; Ciavatta, Claudio

    2007-12-01

    The agronomic performance and the mineral composition and trace element content in Begonia semperflorens "Bellavista F1", Mimulus "Magic x hybridus", Salvia splendens "maestro", and Tagete patula xerecta "Zenith Lemon Yellow", were tested by growing the plants on substrates of white peat and 25-50-75-100% green waste and sewage sludge (80%+20%v/v) compost (CP). A commercial peat medium of black and white peat (2:1v/v) was used as control. At flowering, the agronomic parameters were compared by ANOVA and plant nutritional status was compared by vector analysis. Substrate-species interactions (PBegonia grown in 25% CP, showed the highest dry weight (DW) and number of flowers. Other treatments were comparable to the control. Mimulus and Salvia showed the highest DW in the 25-50% CP. Mimulus, after a DW increase up to 50% CP, showed the steepest reduction as the CP increased further. Tagete showed no differences in DW up to 50% CP, or in flower number up to 25% CP, compared to the control. The additional increases of CP in the medium showed a DW decrease similar to that of Salvia. Vector analysis showed the use of compost mainly induced a decrease of P concentration in tissues, except for Begonia which remained unchanged. Plant tissues showed a general P reduction due to a dilution effect in the low compost mixtures (25-50%) and a deficiency in the higher CP mixtures. In contrast, an increase of Mg in the aboveground tissues of all species was detectable as compost usage increased, with the exception of Salvia which suffered a Mg deficiency. Vector analysis also highlighted a Ni and partial Fe deficiency in Tagete and Salvia.

  11. Dynamics of plant nutrient uptake as affected by biopore-associated root growth in arable subsoil

    DEFF Research Database (Denmark)

    Han, Eusun; Kautz, Timo; Huang, Ning

    2017-01-01

    %) precrops, respectively. On average root diameter and root dry mass of following crops were greater by 11 and 15 % after chicory than tall fescue. At anthesis chicory-barley treatment accumulated 10 % more K in comparison to tall fescue-barley treatment. P uptake of canola was greater (7 %) after tall...... fescue compared with chicory at the stage of fruit development. Conclusions: Our results suggest that the subsoil heterogenization by altered soil biopores hold relevance for plant root growth and overall crop performance. However, the effects depended on biopore size classes, root characteristics...

  12. Symbiotic fungi that are essential for plant nutrient uptake investigated with NMP

    International Nuclear Information System (INIS)

    Pallon, J.; Wallander, H.; Hammer, E.; Arteaga Marrero, N.; Auzelyte, V.; Elfman, M.; Kristiansson, P.; Nilsson, C.; Olsson, P.A.; Wegden, M.

    2007-01-01

    The nuclear microprobe (NMP) technique using PIXE for elemental analysis and STIM on/off axis for parallel mass density normalization has proven successful to investigate possible interactions between minerals and ectomycorrhizal (EM) mycelia that form symbiotic associations with forest trees. The ability for the EM to make elements biologically available from minerals and soil were compared in field studies and in laboratory experiments, and molecular analysis (PCR-RFLP) was used to identify ectomycorrhizal species from the field samplings. EM rhizomorphs associated with apatite in laboratory systems and in mesh bags incubated in forest ecosystems contained larger amounts of Ca than similar rhizomorphs connected to acid-washed sand. EM mycelium produced in mesh bags had a capacity to mobilize P from apatite-amended sand and a high concentration of K in some rhizomorphs suggests that these fungi are good accumulators of K and may have a significant role in transporting K to trees. Spores formed by arbuscular mycorrhizal (AM) fungi in laboratory cultures were compared with spores formed in saline soils in Tunisia in Northern Africa. We found lower concentrations of P and higher concentrations of Cl in the spores collected from the field than in the spores collected from laboratory cultures. For the case of laboratory cultures, the distribution of e.g. P and K was found to be clearly correlated

  13. Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp.

    Science.gov (United States)

    Birschwilks, Mandy; Haupt, Sophie; Hofius, Daniel; Neumann, Stefanie

    2006-01-01

    During the development of the haustorium, searching hyphae of the parasite and the host parenchyma cells are connected by plasmodesmata. Using transgenic tobacco plants expressing a GFP-labelled movement protein of the tobacco mosaic virus, it was demonstrated that the interspecific plasmodesmata are open. The transfer of substances in the phloem from host to the parasite is not selective. After simultaneous application of (3)H-sucrose and (14)C-labelled phloem-mobile amino acids, phytohormones, and xenobiotica to the host, corresponding percentages of the translocated compounds are found in the parasite. An open continuity between the host phloem and the Cuscuta phloem via the haustorium was demonstrated in CLSM pictures after application of the phloem-mobile fluorescent probes, carboxyfluorescein (CF) and hydroxypyrene trisulphonic acid (HPTS), to the host. Using a Cuscuta bridge (14)C-sucrose and the virus PVY(N) were transferred from one host plant to the another. The results of translocation experiments with labelled compounds, phloem-mobile dyes and the virus should be considered as unequivocal evidence for a symplastic transfer of phloem solutes between Cuscuta species and their compatible hosts.

  14. Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus

    International Nuclear Information System (INIS)

    Hartley, William; Dickinson, Nicholas M.; Riby, Philip; Lepp, Nicholas W.

    2009-01-01

    Degraded land that is historically contaminated from different sources of industrial waste provides an opportunity for conversion to bioenergy fuel production and also to increase sequestration of carbon in soil through organic amendments. In pot experiments, As mobility was investigated in three different brownfield soils amended with green waste compost (GWC, 30% v/v) or biochar (BC, 20% v/v), planted with Miscanthus. Using GWC improved crop yield but had little effect on foliar As uptake, although the proportion of As transferred from roots to foliage differed considerably between the three soils. It also increased dissolved carbon concentrations in soil pore water that influenced Fe and As mobility. Effects of BC were less pronounced, but the impacts of both amendments on SOC, Fe, P and pH are likely to be critical in the context of As leaching to ground water. Growing Miscanthus had no measurable effect on As mobility. - Green waste compost enhances water-soluble iron, phosphorus and carbon, increasing arsenic mobility in soil pore water.

  15. [Combination of phosphorus solubilizing and mobilizing fungi with phosphate rocks and volcanic materials to promote plant growth of lettuce (Lactuca sativa L.)].

    Science.gov (United States)

    Velázquez, María S; Cabello, Marta N; Elíades, Lorena A; Russo, María L; Allegrucci, Natalia; Schalamuk, Santiago

    Arbuscular mycorrhizal fungi (AMF) increase the uptake of soluble phosphates, while phosphorus solubilizing fungi (S) promote solubilization of insoluble phosphates complexes, favoring plant nutrition. Another alternative to maintaining crop productivity is to combine minerals and rocks that provide nutrients and other desirable properties. The aim of this work was to combine AMF and S with pyroclastic materials (ashes and pumices) from Puyehue volcano and phosphate rocks (PR) from Rio Chico Group (Chubut) - to formulate a substrate for the production of potted Lactuca sativa. A mixture of Terrafertil®:ashes was used as substrate. Penicillium thomii was the solubilizing fungus and Rhizophagus intraradices spores (AMF) was the P mobilizer (AEGIS® Irriga). The treatments were: 1) Substrate; 2) Substrate+AMF; 3) Substrate+S; 4) Substrate+AMF+S; 5) Substrate: PR; 6) Substrate: PR+AMF; 7) Substrate: PR+S and 8) Substrate: PR+AMF+S. Three replicates were performed per treatment. All parameters evaluated (total and assimilable P content in substrate, P in plant tissue and plant dry biomass) were significantly higher in plants grown in substrate containing PR and inoculas with S and AMF. This work confirms that the combination of S/AMF with Puyehue volcanic ashes, PR from the Río Chico Group and a commercial substrate promote the growth of L. sativa, thus increasing the added value of national geomaterials. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Design of Mobile Device Display for Nuclear Power Plant Maintenance Considering the Level of Expertise

    International Nuclear Information System (INIS)

    Kim, In; Seong, Poong Hyun

    2009-01-01

    Maintaining and repairing complex technical facilities such as nuclear power plants requires comprehensive knowledge on a broad range of the system, as well as on operational and safety procedures by the performing maintenance personnel. There exists the need to have access to instruction sheets and parameter tables at the work site. This may not be practicable with printed manuals simply due to their increasing bulk. To cope with this situation, fully mobile wirelessly connected (FMWC) information and communication technologies (ICT) are thought to have high potential for improving field maintenance through increased accessibility and availability of critical information needed in on-site reference or decision making. Among many up-todate technologies, the mobile application to the maintenance support system will be proposed in this paper

  17. Effect of Plant Growth Promoting Rhizobacteria on the Concentration and Uptake of Macro Nutrients by Corn in a Cd-contaminated Calcareous Soil under Drought Stress

    Directory of Open Access Journals (Sweden)

    shahrzad karami

    2017-02-01

    Full Text Available Introduction: Heavy metals such as cadmium (Cd are found naturally in soils, but their amount can be changed by human activities. The study of the uptake and accumulation of heavy metals by plants is done in order to prevent their threats on human and animal’s health.Cadmium is a toxic element for living organisms. Cadmium competes with many of nutrients to be absorbed by the plant and interferes with their biological roles. Water stress affects the cell structure and the food is diverted from its normal metabolic pathway. It also reduces the availability and uptake of nutrients by the plant. One reason for the reduction of plant growth under drought stress is the accumulation of ethylene in plants. There are ways to mitigate the negative effects of drought stress that one of which is the use of Plant Growth Promoting Rhizobacteria(PGPRs to increasing the availability of nutrients. Soil beneficial bacteria play an important role in the biological cycles and have been used to increase plant health and soil fertility over the past few decades.The aim of this study was to investigate theeffect of PGPRson the concentration and uptake of macro nutrients by corn in a Cd-contaminated calcareous soil under drought stress. Materials and Methods: A greenhouse factorial experiment was conducted in a completely randomized design with three replications. The treatments were two levels of bacteria (with and without bacteria, four levels of Cd (5, 10, 20, and 40 mg kg-1, and three levels of drought stress (without stress, 80, and 65% of field capacity. The pots were filled with 3 kg of treated soil. Cd was treated as its sulfate salt in amounts of 5, 10, 20, and 40 mg kg-1. The soil was mixed uniformly with 150 mg N kg-1 as urea, 20 mg P kg-1 as Ca (H2PO42, 5 mg Fe kg-1 as Fe-EDDHA and 10, 10 and 2.5 mg Zn, Mn and Cu kg-1, respectively as their sulfate salt in order to meet plant needs for these nutrients. Six seeds of Zea mays (var. HIDO were planted at

  18. Nutrients, Toxins, and Water in Terrestrial and Aquatic Ecosystems Treated with Sewage Plant Effluents. Final Report of the Upland Recharge Program

    Energy Technology Data Exchange (ETDEWEB)

    Woodwell, G. M.; Ballard, J. T.; Clinton, J.; Pecan, E. V.

    1976-01-01

    The objective of this work was to appraise the capacity of terrestrial and aquatic plant communities for absorbing and retaining nutrients and organic matter in sewage and for releasing ''clean'' water. Experimental systems included a sere representative of the Eastern Deciduous Forest, a timothy field, two Phalaris arundinacea meadows, a freshwater marsh, a pond, and a marsh-pond complex. Sewage of two qualities was applied at the rate of 5 cm per week; one treatment was equivalent to the release from a primary treatment sewage plant, the second to that from a secondary treatment plant. Under normal circumstances, without the addition of water or nutrients in sewage, the flux of nutrients into the groundwater was greatest under the agricultural communities and least under the late successional forest communities. All the terrestrial communities were net sources of most elements. Because the agricultural communities were fertilized and a substantial fraction of the fertilizer applied remained after the first year, the agricultural communities appeared to be net sinks during the first year of the experiment. The highest concentrations of nutrients in the percolate of the untreated communities commonly occurred in the earliest stages of succession. This relationship was especially conspicuous for nitrogen. Phosphorus and iron appeared to be held tightly within most ecosystems.

  19. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    Energy Technology Data Exchange (ETDEWEB)

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  20. Development of a mobile unit for 'in loco' sistematic decontamination in nuclear power plants components

    International Nuclear Information System (INIS)

    Camargo, G.A.M.

    1986-01-01

    A mobile decontamination unit was developed to perform 'in situ' decontamination of tanks and pressure vessels belonging to the reactor auxiliary and ancillary systems. The whole system, including a control desk, is assembled in 6 trolleys which can be moved inside the plant, thus enabling component decontamination by injecting demineralized water at a pressure of approx. 50 bar and temperatures up to 90 0 , with or without chemical additives. Considering the versatility and easy handling demonstrated after extensive testing, this new system shall be used in Angra 2 and 3. (Author) [pt

  1. Consequences of a plant-based diet with low dairy consumption on intake of bone-relevant nutrients.

    Science.gov (United States)

    Merrill, Ray M; Aldana, Steven G

    2009-05-01

    This study examines the extent to which a plant-based dietary intervention that discourages consumption of dairy products and meat influences bone-relevant nutrients. A randomized controlled study design was used to evaluate the Coronary Health Improvement Project. The Project is a heart disease prevention intervention administered in an intensive 40-hour educational course delivered over a 4-week period. Participants were evaluated at baseline, 6 weeks, and 6 months. After 6 weeks, participants in the intervention group compared with the control group experienced significant increases in magnesium and daily intake of fruit, vegetables, and grains but significant decreases in dairy servings per day and calcium and vitamin D from food. After 6 months, those in the intervention group showed significant increases in daily intake of fruit, vegetables, and grains and significant decreases in dairy servings per day, daily meat consumption, and protein, phosphorous, calcium, total calcium, and vitamin D from food. Serum calcium levels are the primary determinant of parathyroid hormone (PTH) release, and within 6 weeks, the intervention group's PTH levels were elevated from baseline and significantly different from the control group's PTH levels. At 6 months, urinary type I collagen N-telopeptide (NTx) levels were significantly greater in the intervention group compared with the control group. The Coronary Health Improvement Project increases the intake of important food items but decreases calcium and vitamin D consumption. There is also some evidence of an increase in NTx biomarkers, consistent with increased bone resorption.

  2. Arbuscular mycorrhizal fungi and mycorrhizal stimulant affect dry matter and nutrient accumulation in bean and soybean plants

    Directory of Open Access Journals (Sweden)

    Fabrício Henrique Moreira Salgado

    2016-12-01

    Full Text Available The adoption of biological resources in agriculture may allow less dependence and better use of finite resources. This study aimed at evaluating the effects of inoculation with arbuscular mycorrhizal fungi native to the Brazilian Savannah associated with the application of mycorrhizal stimulant (7-hydroxy, 4'-methoxy-isoflavone, in the early growth of common bean and soybean. The experiment was carried out in a greenhouse, in a completely randomized design, with a 7 x 2 factorial arrangement, consisting of five arbuscular mycorrhizal fungi species, joint inoculation (junction of all species in equal proportions and native fungi (without inoculation, in the presence and absence of stimulant. The following traits were evaluated: shoot dry matter, root dry matter, mycorrhizal colonization, nodules dry matter and accumulation of calcium, zinc and phosphorus in the shoot dry matter. The increase provided by the arbuscular mycorrhizal fungi and the use of stimulant reached over 200 % in bean and over 80 % in soybean plants. The fungi Acaulospora scrobiculata, Dentiscutata heterogama, Gigaspora margarita and Rhizophagus clarus, for bean, and Claroideoglomus etunicatum, Dentiscutata heterogama, Rhizophagus clarus and the joint inoculation, for soybean, increased the dry matter and nutrients accumulation.

  3. Vermicomposting of herbal pharmaceutical industry waste: earthworm growth, plant-available nutrient and microbial quality of end materials.

    Science.gov (United States)

    Singh, Deepika; Suthar, Surindra

    2012-05-01

    Efforts were made to decompose herbal pharmaceutical industrial waste (HPIW) spiked with cow dung (CD) using Eisenia fetida. A total of five vermibeds: T(1) - HPIW (0%+CD 100%, control), T(2) - HPIW (25%), T(3) - HPIW (50%), T(4) - HPIW (75%) and T(5) - HPIW (100%) were used for vermicomposting. The changes in biology and chemistry of vermibeds were measured after ten days interval. E. fetida showed high growth and cocoon production rate in all vermibeds. The vermicomposted material contained great population of fungi 6.0-40.6 (CFU × 10(5)g(-1)), bacteria 220-1276.0 (CFU × 10(8)g(-1)) and actinomycetes 410.0-2962.0 (CFU × 10(5)g(-1)) than initial material. Vermicomposted material was rich in plant-available forms of nutrients (N-NO(3)(-),PO(4)(3-),available K and SO(4)(-2)). Results suggested that noxious industrial waste can be converted into valuable product for sustainable soil fertility programme. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    Directory of Open Access Journals (Sweden)

    Nigel V. Gale

    2016-08-01

    Full Text Available Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME–gas chromatography–mass spectrometry (GC-MS to qualitatively describe organic compounds in both biochar (through headspace extraction, and in the water leachates (through direct injection. Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species

  5. Effect of Glomus mosseae and plant growth promoting rhizomicroorganisms (PGPR's on growth, nutrients and content of secondary metabolites in Begonia malabarica Lam.

    Directory of Open Access Journals (Sweden)

    Thangavel Selvaraj

    2008-10-01

    Full Text Available Begonia malabarica Lam. (Begoniaceae is one of the important medicinal plants whose main secondary metabolites are luteolin, quercetin and β-sitosterol. The leaves are used for the treatment of respiratory tract infections, diarrhoea, blood cancer and skin diseases. A study was undertaken to determine the effect of arbuscular mycorrhizal (AM fungus, Glomus mosseae, and some plant growth promoting rhizomicro-organisms (PGPR's on the growth, biomass, nutrients, and content of secondary metabolites of B. malabarica plant under green house conditions. Various plant growth parameters (total plant biomass, mycorrhizal parameter, shoot and root phosphorus, mineral content (potassium, iron, zinc, and copper, and secondary metabolites (total phenols, ortho-dihydroxy phenols, tannins, flavonoids, and alkaloids were determined and found to vary with different treatments. Among all the treatments, plants inoculated with 'microbial consortium' consisting of Glomus mosseae + Bacillus coagulans + Trichoderma viride performed better than with other treatments or uninoculated control plants. The results of this experiment clearly indicated that inoculation of B. malabarica with G. mosseae along with PGPR's enhanced its growth, biomass yield, nutrients and secondary metabolites.

  6. Review: Weak radiofrequency radiation exposure from mobile phone radiation on plants.

    Science.gov (United States)

    Halgamuge, Malka N

    2017-01-01

    The aim of this article was to explore the hypothesis that non-thermal, weak, radiofrequency electromagnetic fields (RF-EMF) have an effect on living plants. In this study, we performed an analysis of the data extracted from the 45 peer-reviewed scientific publications (1996-2016) describing 169 experimental observations to detect the physiological and morphological changes in plants due to the non-thermal RF-EMF effects from mobile phone radiation. Twenty-nine different species of plants were considered in this work. Our analysis demonstrates that the data from a substantial amount of the studies on RF-EMFs from mobile phones show physiological and/or morphological effects (89.9%, p radiofrequency radiation influence on plants. Hence, this study provides new evidence supporting our hypothesis. Nonetheless, this endorses the need for more experiments to observe the effects of RF-EMFs, especially for the longer exposure durations, using the whole organisms. The above observation agrees with our earlier study, in that it supported that it is not a well-grounded method to characterize biological effects without considering the exposure duration. Nevertheless, none of these findings can be directly associated with human; however, on the other hand, this cannot be excluded, as it can impact the human welfare and health, either directly or indirectly, due to their complexity and varied effects (calcium metabolism, stress proteins, etc.). This study should be useful as a reference for researchers conducting epidemiological studies and the long-term experiments, using whole organisms, to observe the effects of RF-EMFs.

  7. Quantification of tomato and Arabidopsis mobile RNAs trafficking into the parasitic plant Cuscuta pentagona.

    Science.gov (United States)

    LeBlanc, Megan; Kim, Gunjune; Patel, Beneeta; Stromberg, Verlyn; Westwood, James

    2013-12-01

    The cross-species movement of mRNA from hosts to the parasitic plant Cuscuta pentagona has been reported previously, but has not been characterized quantitatively or with attention to uptake patterns and the fate of specific mRNAs. Real-time PCR and RNA-Seq approaches were used to identify and characterize mobile transcripts from tomato and Arabidopsis hosts into C. pentagona. Tomato transcripts of Gibberellic Acid Insensitive (SlGAI) and Cathepsin D Proteinase Inhibitor (SlPI) differed significantly in the rate of uptake into the parasite, but were then distributed over the length of the parasite shoot. When parasite shoots were detached from the hosts, the SlPI transcript concentrations in the parasite showed the greatest decrease within the first 8 h. Arabidopsis transcripts also varied in mobility into the parasite, and assay of specific regions of a Salt-inducible Zinc Finger Protein (AtSZF1) transcript revealed distinct patterns of abundance in the parasite. The uptake and distribution of host mRNAs into C. pentagona appears to vary among mRNAs, and perhaps even with the region of the mRNA under investigation. We propose that mRNAs traffic into the parasite via multiple routes, or that other mechanisms for selective uptake and mobility exist between host and parasite. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. The effect of intra- and inter-regional labour mobility on plant performance in Denmark: the significance of related labour inflows

    NARCIS (Netherlands)

    Timmermans, B.; Boschma, R.

    2013-01-01

    This article investigates the impact of labour mobility on plant performance in Denmark. Our study shows that the effect of labour mobility can only be assessed when one accounts for the type of skills that flow into the plant and the degree to which these match the existing skills at the plant

  9. The effect of intra- and inter-regional labour mobility on plant performance in Denmark : The significance of related labour inflows

    NARCIS (Netherlands)

    Timmermans, Bram; Boschma, Ron|info:eu-repo/dai/nl/123155541

    2014-01-01

    This article investigates the impact of labour mobility on plant performance in Denmark. Our study shows that the effect of labour mobility can only be assessed when one accounts for the type of skills that flow into the plant and the degree to which these match the existing skills at the plant

  10. Intercropping of Green Garlic (Allium sativum L.) Induces Nutrient Concentration Changes in the Soil and Plants in Continuously Cropped Cucumber (Cucumis sativus L.) in a Plastic Tunnel

    Science.gov (United States)

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic. PMID:23637994

  11. Intercropping of green garlic (Allium sativum L.) induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L.) in a plastic tunnel.

    Science.gov (United States)

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  12. Intercropping of green garlic (Allium sativum L. induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L. in a plastic tunnel.

    Directory of Open Access Journals (Sweden)

    Xuemei Xiao

    Full Text Available A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N, phosphorus (P, potassium (K, calcium (Ca and manganese (Mn in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg concentrations were decreased in the cucumber plants. Shoot iron (Fe concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  13. Effect of some factors on foliar absorption and mobility of Fe59 in plant

    International Nuclear Information System (INIS)

    Mohamed, F.A.

    1990-01-01

    Three experiments were conducted under greenhouse conditions using Fe 59 and seedlings of guava and orange to study the effect of PH value (3-8), Fe SO 4 concentrations in combination with three values of PH on foliar absorption and mobility of Fe. In addition, a comparative study to evaluate some compounds of iron for foliar spray was achieved. Foliar absorption of Fe 59 by guava leaves and its mobility were considerably influenced by PH value of spray solution. Maximum absorption and translocation were observed at PH 6. However, most of the absorbed iron 'about 90%' was retained in the treated leaves and the portion 'about 10%' acropetally and basipetally translocated. Upward transport of iron was more pronounced than downward one. Total iron in plant derived from applied FeSO 4 was greatly increased, whereas utilization percent of it was reduced by increasing the rate of Fe in spray solution. Generally, FeSO 4 had a good efficiency which ranged from about 25-43%. Specific absorption of iron by orange leaves was higher than that of guava leaves. From plant nutritional point of view, efficiency of FeSo 4 , Fe-metalosate and multi mineral-metalosate as different sources of Fe through foliar application remarkably varied and FeSO 4 was highly efficient one in comparison with metalosate compounds

  14. Development of a mobile manipulator for nuclear plant disaster, HELIOS X. Mechanical design and basic experiments

    International Nuclear Information System (INIS)

    Noda, Satsuya; Hirose, Shigeo; Ueda, Koji; Nakano, Hisami; Horigome, Atsushi; Endo, Gen

    2016-01-01

    In places such as nuclear power plant disaster area, which it is difficult for human workers to enter, robots are required to scout those places instead of human workers. In this paper, we present a mobile manipulator HELIOS X for a nuclear plant decommissioning task. Firstly, we address demands and specifications for the robot, considering the mission of reconnaissance. Then we outline the system of the robot, mainly focusing on the following mechanism: 'Crank Wheel', 'Main Arm', 'Sphere Link Wrist', 'Camera Arm', 'Control System' and 'System architecture'. Especially, we installed 3 degree of freedom 'Camera Arm' on the 'Main Arm', in order to improve functionality of remote control system. This enables the operator to monitor both the gripper and its overall view of the robot. 'Camera Arm' helps the operator to recognize the distance from an object to the gripper, because the operator can interactively move the viewpoint of the camera, and monitor from another camera angle without changing the gripper's position. We confirmed the basic functionality of mobile base, 'Main Arm' and 'Camera Arm' through hardware experiments. We also demonstrated that HELIOS X could pass through the pull-to-open door with a substantial closing force when the operator watched camera view only. (author)

  15. The influence of earthworms on the mobility of microelements in soil and their availability for plants

    Science.gov (United States)

    Bityutskii, N. P.; Kaidun, P. I.

    2008-12-01

    The influence of earthworms ( Aporrectodea caliginosa, Lumbricus rubellus, L. terrestris, and Eisenia fetida) on the mobility of microelements and their availability for plants was studied. The contents of water-soluble Fe and Mn compounds extracted from the coprolites were 5-10 times higher than that in the soil (enriched in calcium carbonate and dried) consumed by the earthworms. This digestion-induced effect became higher with the age of the coprolites (up to 9 days) and took place under their alkalization. In the excreta (surface + enteric) of earthworms, the Fe concentration exceeded those of Mn and Zn by many times. Iron and manganese were mostly concentrated (>80% and >60%, respectively) in the organic part of the excrements. In the tests with hydroponics, the excreta were found to be a source of iron compounds available for plants that were similar to Fe2(SO4)3 or Fe-citrate by their physiological effect in the case when the Fe concentration in the excretions was above 0.7 μM. However, the single application of excreta of different earthworm species into the CaCO3 enriched soil did not significantly affect the plant (cucumber) nutrition. The analysis of the transport of microelements with xylem sap showed that this fact appeared to be due to the absence of an Fe deficit in the cucumber plants because of their high capability for the absorption of weakly soluble iron compounds.

  16. Effect of plants in constructed wetlands for organic carbon and nutrient removal: a review of experimental factors contributing to higher impact and suggestions for future guidelines.

    Science.gov (United States)

    Jesus, João M; Danko, Anthony S; Fiúza, António; Borges, Maria-Teresa

    2018-02-01

    Constructed wetland is a proven technology for water pollution removal, but process mechanisms and their respective contribution are not fully understood. The present review details the effect of plants on removal efficiency of constructed wetlands by focusing on literature that includes experiments with unplanted controls for organic carbon and nutrient (N and P) removal. The contribution of plant direct uptake is also assessed. Although it was found that several studies, mostly at laboratory or pilot scales, showed no statistical differences between planted and unplanted controls, some factors were found that help maximize the effect of plants. This study intends to contribute to a better understanding of the significance of the effect of plants in a constructed wetland, as well as to suggest a set of experimental guidelines in this field.

  17. A new semi-mobile plant for radiation processing of waste

    International Nuclear Information System (INIS)

    Iacoboni, V.; Liccione, G.; Schwarz, M.; Tata, A.; Fantini, M.

    1998-01-01

    A new pilot/demonstrative semi-mobile irradiation plant, named TRIRIS (TRIsaia-RIfiuti-Sterilizzazione, namely ''Trisaia Res. Center - Wastes - Sterilization''), has been designed and erected in order to propose and explore new technological opportunities, based on in ''in-situ'' effective cleaning process. The main general goal is to face increased problems and concerns related to the treatment/disposal of different solid-liquid wastes, particularly with reference to emergency situation (e.g. need of quick environment restoring operation following an accident with groundwater pollution). The project, which was jointly carried out by ENEA and Hitesys Co., an Italian electron accelerators manufacturer, foresees a LINAC type EB-machine (s band) having 4-6 MeV and till 1000 W as beam features. A highly flexible automatic system allows materials (solid or liquid wastes) transporting and handling to be equipped with a belt conveyor and a piping net. Scattered radiation shielding is performed by a water pool surrounding the EB-machine head, filled up before operations. Auxiliary systems, control console and analytical chemical laboratories are hosted in suitable containers near the plant and are easily transportable. The whole plant and annexed systems disassembling and reassembling in a new site can be easily carried out in a short time (few days). The plant, located at ENEA-Trisaia Res. Center (Basilicata, southern Italy), allows a large operative flexibility: groundwater and wastewater decontamination (1800 to 70 kg/h in the 1 to 25 kGy dose range), organic and chlorinated waste streams (25 kg/h at 75 kGy), solid hospital wastes (50 kg/h at 35 kGy) or hazardous wastes like polycyclic aromatic compounds (180 to 35 kg/h in the 10 to 50 kGy dose range). The paper describes and illustrates the plant in details and presents the first available operating results so far performed by the installed plant

  18. [Nutrient Characteristics and Nitrogen Forms of Rhizosphere Soils Under Four Typical Plants in the Littoral Zone of TGR].

    Science.gov (United States)

    Wang, Xiao-feng; Yuan, Xing-zhong; Liu, Hong; Zhang, Lei; Yu, Jian-jun; Yue, Jun-sheng

    2015-10-01

    The Three Gorges Reservoir (TGR), which is the largest water conservancy project ever built in tne world, produced a drawdown area of about 348.93 km2 because of water level control. The biological geochemical cycle of the soil in the drawdown zone has been changed as the result of long-term winter flooding and summer drought and vegetation covering. The loss of soil nitrogen in the drawdown zone poses a threat to the water environmental in TGR. Pengxi river, is an important anabranch, which has the largest drawdown area has been selected in the present study. The four typical vegetation, contained Cynodon dactylon, Cyperus rotundus, Anthium sibiricum and Zea mays L. as the control, were studied to measure nutrient characteristics and nitrogen forms of rhizosphere and non-rhizosphere soils in three distribution areas with different soil types (paddy soil, purple soil and fluvo-aquic soils). The variables measured included organic matter (OM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), hydrolysis N, available P and available K, pH, ion-exchangeable N (IEE-N), weak acid extractable N (CF-N) , iron-manganese oxides N (IMOF-N), organic matter sulfide N (OSF-N), added up four N forms for total transferable N (TF-N) and TN minus TF-N for non-transferable N (NTF-N). The results showed: (1) pH of rhizosphere soil was generally lower than that of non-rhizosphere soil under different vegetation in different type soils because the possible organic acid and H+ released form plant roots and cation absorption differences, and the OM, TP, TN and hydrolysis N of rhizosphere soil were generally higher than those of non-rhizosphere soil, and that the enrichment ratio (ER) of all the four nutrient indicators showed Cyperus rotundus > Cynodon dactylon > Zea mays L. > Anthium sibiricum. Available P showed enrichment in the rhizosphere of three natural vegetations but lose under corn, and available K, TK showed different ER in different conditions. (2) IEF-N CF

  19. Produção de fitomassa e acúmulo de nutrientes na parte aérea do sorgo de Guiné gigante Biomass production and accumulation of nutrients in shoots of Giant Guinea sorghum plants

    Directory of Open Access Journals (Sweden)

    Gustavo Pavan Mateus

    2011-12-01

    Full Text Available A escolha de espécies com elevada produção de fitomassa para utilização como plantas de cobertura no sistema de semeadura direta é extremamente importante em regiões de inverno seco. O objetivo deste trabalho foi avaliar a produção de fitomassa e acúmulo de nutrientes na parte aérea das plantas de sorgo Guiné gigante (Sorghum bicolor subespécie bicolor raça guinea, semeados em diferentes épocas de semeadura. Foi utilizado um delineamento em blocos ao acaso, com seis tratamentos e quatro repetições. Os tratamentos foram constituídos por seis épocas de semeadura (25/09/2000; 25/10/2000; 24/11/2000; 22/12/2000; 22/02/2001 e 03/04/2001. Por ocasião do florescimento das plantas, avaliou-se a produção de matéria seca, o número e diâmetro de colmos e a altura das plantas. Também foi determinado o teor e acúmulo de macro e micronutrientes, além da relação C/N. O ciclo das plantas diminuiu com o atraso da época de semeadura, e, conseqüentemente, a produção de matéria seca e a relação C/N também foram menores. Comportamento contrário foi observado para o teor de nutrientes. O sorgo de Guiné gigante é sensível ao fotoperíodo e, portanto, semeaduras mais tardias ocasionam diminuição do crescimento das plantas, produção de biomassa e acúmulo de nutrientes. Esta espécie consiste em uma boa opção para cultivo como planta de cobertura no sistema de semeadura direta devido a alta produção de fitomassa e ciclagem de N, P e K.Choosing species with high phytomass production to be cropped in no tillage system is extremely important in dry winter regions. The purpose of this research was to study plant biomass production and accumulation of nutrients in shoots of Giant Guinea sorghum plants (Sorghum bicolor subspecies bicolor race Guinea sown in different sowing dates. A randomized complete block design with six treatments and four replications was performed. Treatments consisted of six sowing dates (09/25/2000; 10

  20. Nutrient-dense, Plant-rich Dietary Intervention Effective at Reducing Cardiovascular Disease Risk Factors for Worksites: A Pilot Study.

    Science.gov (United States)

    Sutliffe, Jay Thomas; Fuhrman, Joel Harvey; Carnot, Mary Jo; Beetham, Raena Marie; Peddy, Madison Sarah

    2016-09-01

    conduct interventions for health promotion and disease prevention to ameliorate chronic risk factors for disease, such as for cardiovascular disease (CVD). Likewise, nutrient-dense, plant-rich (NDPR) dietary patterns have been shown to be effective at preventing and improving chronic-disease conditions, including CVD. Objective • The study's aim was to determine the feasibility and effectiveness of an NDPR dietary intervention for worksites to lower CVD risk factors. Design • The study was a 6-wk pilot intervention using a pretest and posttest design. The intervention was conducted at the Northern Arizona University (Flagstaff, AZ, USA) and sponsored by its Employee Assistance and Wellness Department. Participants • Participants were 35 employees with body mass indexes (BMIs) >25 kg/m2 who were ready and willing to make a lifestyle change, who were not currently participating in a weight loss program, and who were not taking any medications that could increase medical risk or had weight loss as a primary side effect. The average age of participants was 42.57 y; 91.4% were female, and 80% were Caucasian. Intervention • The intervention used a dietary protocol consisting of the daily consumption of greens, beans, legumes, and a variety of other vegetables, as well as fresh or frozen whole fruits, nuts, seeds, and whole grains. Participants were encouraged to minimize the consumption of refined grains, vegetable oils, processed foods, and animal products. Outcome Measures • The study measured serum lipids, height, weight, waist and hip circumference, waist-to-hip ratio, and blood pressure. Results • Based on paired-sample t tests and Wilcoxon signed-ranks test with a maximum level of P = .05, the intervention resulted in significant changes in weight, BMI, waist and hip measurements, high-density lipoproteins, low-density lipoproteins, and estimated average glucose. Conclusions • The findings favorably revealed that an NDPR dietary intervention that was

  1. Application of TXRF spectrometry and HPLC for the characterization of xylem saps of nickel contaminated cucumber plants grown in urea containing nutrient solutions

    International Nuclear Information System (INIS)

    Tatar, E.; Mihucz, V.G.; Varga, G.; Zaray, G.; Cseh, E.

    2000-01-01

    The total reflection X-ray fluorescence (TXRF) spectrometry was used to determine the elemental composition of xylem saps of cucumber plants grown in nutrient solutions having urea, as the sole nitrogen source and artificially contaminated with nickel(II) ions in concentration of 10 μM, which proved to be toxic for the plants. The saps of uncontaminated plants - grown at the same time with the contaminated ones - were also investigated. The collection of the samples was performed for 1 hour followed by two additional 30-minute-long time periods, thus three samples resulted for each group of plants. The TXRF measurements were performed using Ga as internal standard. For excitation, Mo tube was used and the integration time was 300 s. The nutrient heavy metals determined by the TXRF spectrometry in the saps were Fe, Mn and Zn in concentration range of ng/cm 3 . Two other nutrient elements, Ca and K were also determined and they were present in the samples in concentration of μg/cm 3 . The concentration of nickel in the saps originating from the contaminated plants, was approximately 1400 ng/cm 3 . The concentration of another nutrient heavy metal, Cu was determined by the graphite furnace atomic absorption (GF-AAS) spectrometry. Applying a reversed-phased HPLC method, the organic acids of the samples, citric, malic and fumaric acids were also quantified, their concentrations being also in the μg/cm 3 concentration range. Size exclusion chromatography (SEC) measurements were also performed in order to detect possible macromolecules of the saps. Both techniques, having low sample volume demand, were suitable to perform reliable measurements of the samples whose masses were between 0,9-2,5 g. Furthermore, the absence of the matrix effects is also an important advantage of the TXRF spectrometry that permits the direct analysis of the xylem saps. These investigations form part of our work focusing on the availability, accumulation and transport of heavy metals in

  2. Concentrations of some macro and micro plant nutrient of cultivated soils in Central and Eastern Blacksea Region and their mapping by inverse distance weighted (IDW method

    Directory of Open Access Journals (Sweden)

    Mehmet Arif Özyazıcı

    2015-11-01

    Full Text Available The aim of this study was to determine plant nutrients content and to in terms of soil variables their soil database and generate maps of their distribution on agricultural land in Central and Eastern Black Sea Region using geographical information system (GIS. In this research, total 3400 soil samples (0-20 cm depth were taken at 2.5 x 2.5 km grid points representing agricultural soils. Total nitrogen, extractable calcium, magnesium, sodium, boron, iron, copper, zinc and manganese contents were analysed in collected soil samples. Analysis results of these samples were classified and evaluated for deficiency, sufficiency or excess with respect to plant nutrients. Afterwards, in terms of GIS, a soil database and maps for current status of the study area were created by using inverse distance weighted (IDW interpolation method. According to this research results, it was determined sufficient plant nutrient elements in terms of total nitrogen, extractable iron, copper and manganese in arable soils of Central and Eastern Blacksea Region while, extractable calcium, magnesium, sodium were found good and moderate level in 66.88%, 81.44% and 64.56% of total soil samples, respectively. In addition, insufficient boron and zinc concentration were found in 34.35% and 51.36% of soil samples, respectively.

  3. Root yield and reserpine content of Rauvolfia serpentina Benth. on media under the plant with potential allelopathic effect by nutrient addition

    Directory of Open Access Journals (Sweden)

    SULANDJARI

    2008-07-01

    Full Text Available The root of Rauvolfia serpentina Benth (pule pandak contains more than 50 kinds of alkaloid which is useful to treat many kinds of diseases and reserpine is ones to treat of hypertension. Eucalyptus deglupta and Acacia mangium have become release an allelochemy to ecosystem that are can reduce the growth of the plant association. The purpose of this research is to know about the influence of nutrient and media under the plant with potential allelopathic effect to root yield and reserpine content. The research was arranged in Complete Random Block Design. Nutrient was nested on media. Media are: under Tectona grandis, A. mangium, and E. deglupta. Nutrient is 30 t ha-1 organic fertilizers, 200 ha-1 inorganic (NPK fertilizers and control. Polybag with 30 cmx30 cm plant densities and 20% of shading. The result are that beside under the T. grandis, pule pandak was capable to growth under the A. mangium and E. deglupta. Thirty ton per hectare organic fertilizers was increased of growth and yield more than 200 ha-1 inorganic (NPK fertilizers. Allelocemy from A. mangium and E. deglupta was decreased dry root yield but was not effect to reserpine content.

  4. Efficacy of Fe(o,o-EDDHA) and Fe(o,p-EDDHA) isomers in supplying Fe to strategy I plants differs in nutrient solution and calcareous soil.

    Science.gov (United States)

    Rojas, Carmen L; Romera, Francisco J; Alcántara, Esteban; Pérez-Vicente, Rafael; Sariego, Cristina; Garcaí-Alonso, J Ignacio; Boned, Javier; Marti, Gabriel

    2008-11-26

    The FeEDDHA [iron(3+) ethylenediamine di(o-hydroxyphenylacetic) acid] is one of the most efficient iron chelates employed in the correction of iron clorosis in calcareous soils. FeEDDHA presents different positional isomers: the ortho-ortho (o,o), the ortho-para (o,p), and the para-para (p,p). Of these isomers, the p,p cannot chelate Fe in soil solution in a wide range of pH values, while both o,o and o,p can. The objective of this work was to compare the efficiency of both isomers (o,o and o,p) to provide Fe to two Strategy I plants (tomato and peach) in nutrient solution (pH approximately 6.0), as well as in calcareous soil (pH approximately 8.4; CALCIXEREPT). For this, chelates of both o,o-EDDHA and o,p-EDDHA with 57Fe (a nonradioactive isotope of Fe) were used, where the 57Fe acts as a tracer. The results obtained showed that the o,o isomer is capable of providing sufficient Fe to plants in both nutrient solution and calcareous soil. However, the o,p isomer is capable of providing sufficient Fe to plants in nutrient solution but not in calcareous soil.

  5. Geographic variation in the relationships of temperature, salinity or sigma sub t versus plant nutrient concentrations in the world ocean. [silicic acid, nitrate, and phosphate concentration

    Science.gov (United States)

    Kamykowski, D.; Zentara, S. J.

    1985-01-01

    A NODC data set representing all regions of the world ocean was analyzed for temperature and sigma-t relationships with nitrate, phosphate or silicic acid. Six cubic regressions were for each ten degree square of latitude and longitude containing adequate data. World maps display the locations that allow the prediction of plant nutrient concentrations from temperature or sigma-t. Geographic coverage improves along the sequence: nitrate, phosphate, and silicic acid and is better for sigma-t than for temperature. Contour maps of the approximate temperature of sigma-t at which these nitrients are no longer measurable in a parcel of water are generated, based on a percentile analysis of the temperature or sigma-t at which less than a selected amount of plant nutrient occurs. Results are stored on magnetic tape in tabular form. The global potential to predict plant nutrient concentrations from remotely sensed temperature of sigma-t and to emphasize the latitudinally and longitudinally changing phytoplankton growth environment in present and past oceans is demonstrated.

  6. A new hammer to crack an old nut: interspecific competitive resource capture by plants is regulated by nutrient supply, not climate.

    Science.gov (United States)

    Trinder, Clare J; Brooker, Rob W; Davidson, Hazel; Robinson, David

    2012-01-01

    Although rarely acknowledged, our understanding of how competition is modulated by environmental drivers is severely hampered by our dependence on indirect measurements of outcomes, rather than the process of competition. To overcome this, we made direct measurements of plant competition for soil nitrogen (N). Using isotope pool-dilution, we examined the interactive effects of soil resource limitation and climatic severity between two common grassland species. Pool-dilution estimates the uptake of total N over a defined time period, rather than simply the uptake of ¹⁵N label, as used in most other tracer experiments. Competitive uptake of N was determined by its available form (NO₃⁻ or NH₄⁺). Soil N availability had a greater effect than the climatic conditions (location) under which plants grew. The results did not entirely support either of the main current theories relating the role of competition to environmental conditions. We found no evidence for Tilman's theory that competition for soil nutrients is stronger at low, compared with high nutrient levels and partial support for Grime's theory that competition for soil nutrients is greater under potentially more productive conditions. These results provide novel insights by demonstrating the dynamic nature of plant resource competition.

  7. A new hammer to crack an old nut: interspecific competitive resource capture by plants is regulated by nutrient supply, not climate.

    Directory of Open Access Journals (Sweden)

    Clare J Trinder

    Full Text Available Although rarely acknowledged, our understanding of how competition is modulated by environmental drivers is severely hampered by our dependence on indirect measurements of outcomes, rather than the process of competition. To overcome this, we made direct measurements of plant competition for soil nitrogen (N. Using isotope pool-dilution, we examined the interactive effects of soil resource limitation and climatic severity between two common grassland species. Pool-dilution estimates the uptake of total N over a defined time period, rather than simply the uptake of ¹⁵N label, as used in most other tracer experiments. Competitive uptake of N was determined by its available form (NO₃⁻ or NH₄⁺. Soil N availability had a greater effect than the climatic conditions (location under which plants grew. The results did not entirely support either of the main current theories relating the role of competition to environmental conditions. We found no evidence for Tilman's theory that competition for soil nutrients is stronger at low, compared with high nutrient levels and partial support for Grime's theory that competition for soil nutrients is greater under potentially more productive conditions. These results provide novel insights by demonstrating the dynamic nature of plant resource competition.

  8. The Microbial Database for Danish wastewater treatment plants with nutrient removal (MiDas-DK) - a tool for understanding activated sludge population dynamics and community stability.

    Science.gov (United States)

    Mielczarek, A T; Saunders, A M; Larsen, P; Albertsen, M; Stevenson, M; Nielsen, J L; Nielsen, P H

    2013-01-01

    Since 2006 more than 50 Danish full-scale wastewater treatment plants with nutrient removal have been investigated in a project called 'The Microbial Database for Danish Activated Sludge Wastewater Treatment Plants with Nutrient Removal (MiDas-DK)'. Comprehensive sets of samples have been collected, analyzed and associated with extensive operational data from the plants. The community composition was analyzed by quantitative fluorescence in situ hybridization (FISH) supported by 16S rRNA amplicon sequencing and deep metagenomics. MiDas-DK has been a powerful tool to study the complex activated sludge ecosystems, and, besides many scientific articles on fundamental issues on mixed communities encompassing nitrifiers, denitrifiers, bacteria involved in P-removal, hydrolysis, fermentation, and foaming, the project has provided results that can be used to optimize the operation of full-scale plants and carry out trouble-shooting. A core microbial community has been defined comprising the majority of microorganisms present in the plants. Time series have been established, providing an overview of temporal variations in the different plants. Interestingly, although most microorganisms were present in all plants, there seemed to be plant-specific factors that controlled the population composition thereby keeping it unique in each plant over time. Statistical analyses of FISH and operational data revealed some correlations, but less than expected. MiDas-DK (www.midasdk.dk) will continue over the next years and we hope the approach can inspire others to make similar projects in other parts of the world to get a more comprehensive understanding of microbial communities in wastewater engineering.

  9. Effect of gamma radiation on wheat plant growth due to impact on gas exchange characteristics and mineral nutrient uptake and utilization

    International Nuclear Information System (INIS)

    Bhupinder Singh; Sumedha Ahuja; Singhal, R.K.; Venu Babu, P.

    2013-01-01

    The experiment was conducted to determine the effect of gamma radiation on plant growth and development, flag leaf gas exchange characteristics such as net photosynthetic rate (P N ), stomatal conductance (g s ), and transpiration rate (E) and activity of key carbon and nitrogen assimilating enzymes like Rubisco, starch synthase (SS) and nitrate reductase (NR) in field grown wheat. Grains of cultivar PBW-343 were exposed to a 60 Co (Cobalt-60) gamma source at a dose range from 0 to 500 Gy (Gray). Gas exchange characteristics of flag leaf were measured using Infrared Gas Analyzer (IRGA), while mineral nutrients were analyzed spectrophotometrically. Our results show that an irradiation treatment, in general, caused an improvement in plant growth and yield characteristics such as shoot and root mass, root length and surface area, leaf area and chlorophyll SPAD index, tiller number and grain yield. However, irradiation exceeding 5 Gy reduced the magnitude of radiation advantage for most of the investigated physiological and biochemical traits. No germination was recorded at 500 Gy irradiation dose. A dose-dependant increase in shoot Fe in radiated plants up to 25 Gy reflected its higher plant root to shoot translocation which may yield micronutrient rich grains. At higher dose of 100 Gy, there was a drastic reduction in flag leaf membrane stability index (MSI), photosynthesis, Rubisco, NR, and nutrients like K, P, Mg, Fe, and Zn. Starch synthase enzyme activity was unaffected by gamma irradiation indicating that the negative effect of high dose (100 Gy) on the grain yield were caused by the adverse effect of radiation on the gas exchange attributes particularly photosynthesis, carbon, and nitrogen assimilation efficiency and the plant uptake of mineral nutrients. The study concludes that gamma radiation at a low dose (25 Gy or lower) stimulates, while a high dose (100 Gy and above) inhibits plant growth and development of wheat. The adverse effect at 100 Gy and beyond

  10. Effect of Plant Growth Promoting Rhizobacteria on the Concentration and Uptake of Macro Nutrients by Corn in a Cd-contaminated Calcareous Soil under Drought Stress

    OpenAIRE

    shahrzad karami; mehdi zarei; jafar yasrebi; najafali karimian; s.Ali Akbar Moosavi

    2017-01-01

    Introduction: Heavy metals such as cadmium (Cd) are found naturally in soils, but their amount can be changed by human activities. The study of the uptake and accumulation of heavy metals by plants is done in order to prevent their threats on human and animal’s health.Cadmium is a toxic element for living organisms. Cadmium competes with many of nutrients to be absorbed by the plant and interferes with their biological roles. Water stress affects the cell structure and the food is diverted fr...

  11. [New nutrient medium for the cultivation and isolation of the plague microbe ChDS-37 as an element of the mobilization reserve of specialized antiepidemic teams of the Russian Inspectorate for the Protection of Consumer Rights and Human Welfare].

    Science.gov (United States)

    Mazrukho, A B; Kaminskiĭ, D I; Lomov, Yu M; Telesmanich, N P; Rozhkov, K K; Alutin, I M; Pukhov, Yu M; Prometnoĭ, V I; Fetsaĭlova, O P; Bulakhova, O G; Firsova, I A; Smolikova, L M; Bozhko, N V; Ivanova, V S; Burlakova, O S; Verkina, L M; Trukhachev, A L; Akulova, M V

    2011-04-01

    A new nutrient medium has been designed to culture and isolate the plague microbe ChDS-37 on the basis of the pancreatic digest of baker's yeast. The results of laboratory tests of the designed medium, by using 10 plague microbe strains and those of approval during the tactical and special training of a specialized antiepidemic team (SAET), suggest that the medium has some advantage over reference media and creates prerequisites for being incorporated into the mobilization reserve of a SAET.

  12. A new semi-mobile plant for radiation processing of waste

    International Nuclear Information System (INIS)

    Tata, A.

    1998-04-01

    A new pilot/demonstrative semi-mobile irradiation plant, named TRIRIS (TRIsaia-RIfiuti-Sterilizzazione, namely 'Trisaia Res. Center - Wastes- Sterilization') has been designed and erected. The plant goal is recognized in proposing and exploring new technological opportunities, based on an 'in-situ' effective processing of solid or liquid waste, mainly with reference to emergency situations (e.g. need of a quick environmental restoring operation following an accidental groundwater pollution). The project, which was jointly carried out by ENEA and Hitesys Co. and Italian electrons accelerators manufacturer, foresees a LINAC type EB-machine (s band) having 4-6 M e V and till 1000 W as beam features. Scattered radiation shielding is performed by a water pool surrounding the EB-machine head, filled up before operations. The plant, that is to be located at ENEA-Trisaia Res. Center (Basilicata southern of Italy), allows a large operative flexibility: groundwater and wastewater decontamination (1800 to 70 kg/h in the 1 to 25 kGy does range), organic and chlorinated waste streams (25 kg/h at 75 kGy), solid hospital wastes (50 kg/h at 35 kGy) or hazardous wastes like polycyclic aromatic compounds (180 to 35 kg/h in the 10 to 50 kGy dose range) [it

  13. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance.

    Science.gov (United States)

    Park, Sang-Wook; Kaimoyo, Evans; Kumar, Dhirendra; Mosher, Stephen; Klessig, Daniel F

    2007-10-05

    In plants, the mobile signal for systemic acquired resistance (SAR), an organism-wide state of enhanced defense to subsequent infections, has been elusive. By stimulating immune responses in mosaic tobacco plants created by grafting different genetic backgrounds, we showed that the methyl salicylate (MeSA) esterase activity of salicylic acid-binding protein 2 (SABP2), which converts MeSA into salicylic acid (SA), is required for SAR signal perception in systemic tissue, the tissue that does not receive the primary (initial) infection. Moreover, in plants expressing mutant SABP2 with unregulated MeSA esterase activity in SAR signal-generating, primary infected leaves, SAR was compromised and the associated increase in MeSA levels was suppressed in primary infected leaves, their phloem exudates, and systemic leaves. SAR was also blocked when SA methyl transferase (which converts SA to MeSA) was silenced in primary infected leaves, and MeSA treatment of lower leaves induced SAR in upper untreated leaves. Therefore, we conclude that MeSA is a SAR signal in tobacco.

  14. Optimising processes of discontinuous loading and continuous transportation through mobile crushing plants; Prozessoptimierung bei diskontinuierlicher Beladung und kontinuierlichem Transport durch mobile Brecheranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Christoph, B.M. [ThyssenKrupp Foerdertechnik GmbH, Essen (Germany)

    2006-10-15

    With its current development stage, the fully mobile crushing plant has reached the same level of mobility and capability as rope shovel and hydraulic excavators. Hence, this machine becomes an important link between discontinuous loading and continuous transportation in order to optimise surface mine operations which includes the sequences 'loosen', 'load' and 'transport'. Due to the increased availability of the crushing plant, the efficiency of the entire process rises. In addition, due to the central process control by the excavator operator, personnel cost can be saved. Consequently, the targets for increased process efficiency mentioned at the beginning of the presentation are fulfilled as fewer personnel can reach a higher degree of machine utilisation. (orig.)

  15. Structural and functional characteristics of buffer strip vegetation in an agricultural landscape - high potential for nutrient removal but low potential for plant biodiversity.

    Science.gov (United States)

    Hille, Sandra; Andersen, Dagmar Kappel; Kronvang, Brian; Baattrup-Pedersen, Annette

    2018-07-01

    Vegetated buffer strips constitute a transition zone between terrestrial and aquatic ecosystems and provide several ecosystem services. Buffer strips are often applied as a mitigation measure against diffuse pollution in agricultural areas, primarily because they may retain nutrients and in this way help protect the aquatic environment. Additionally, they can improve biodiversity in an otherwise homogenous landscape and may therefore have a value in their own right. In the present study, we characterized the structural and functional features of the vegetation in Danish buffer strips using a nationwide dataset to explore: i) their floristic quality in terms of species diversity and conservation value and ii) based on their functional characteristics, their potential to retain nutrients. Moreover, we analyzed how the structural and functional characteristics varied along gradients in the environmental features of the catchment. We found that the floristic quality of the buffer vegetation was generally low, exhibiting an average of only 3.3% of the number of species of conservation interest. Instead, Danish buffer strips were dominated by widespread and productive species that are tolerant of anthropogenic impacts in the catchment. The abundance of highly productive plant species was positively related to high intensity land use, whereas the abundance of stress-tolerant plant species was positively related to low intensity land use. The high productivity of the buffer strips implies a large bio-storage potential, and these areas might therefore offer an opportunity to remove nutrients by harvesting the plant biomass. We discuss how Danish buffer strips could be exploited via appropriate management (e.g. harvesting) to maximize nutrient retention and at the same time improve floristic quality. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Plant ecosystem responses to rising atmospheric CO2: applying a "two-timing" approach to assess alternative hypotheses for mechanisms of nutrient limitation

    Science.gov (United States)

    Medlyn, B.; Jiang, M.; Zaehle, S.

    2017-12-01

    There is now ample experimental evidence that the response of terrestrial vegetation to rising atmospheric CO2 concentration is modified by soil nutrient availability. How to represent nutrient cycling processes is thus a key consideration for vegetation models. We have previously used model intercomparison to demonstrate that models incorporating different assumptions predict very different responses at Free-Air CO2 Enrichment experiments. Careful examination of model outputs has provided some insight into the reasons for the different model outcomes, but it is difficult to attribute outcomes to specific assumptions. Here we investigate the impact of individual assumptions in a generic plant carbon-nutrient cycling model. The G'DAY (Generic Decomposition And Yield) model is modified to incorporate alternative hypotheses for nutrient cycling. We analyse the impact of these assumptions in the model using a simple analytical approach known as "two-timing". This analysis identifies the quasi-equilibrium behaviour of the model at the time scales of the component pools. The analysis provides a useful mathematical framework for probing model behaviour and identifying the most critical assumptions for experimental study.

  17. EFECTOS BENEFICOS DE BACTERIAS RIZOSFÉRICAS EN LA DISPONIBILIDAD DE NUTRIENTES EN EL SUELO Y LA ABSORCIÓN DE NUTRIENTES POR LAS PLANTAS A REVIEW ON BENEFICIAL EFFECTS OF RHIZOSPHERE BACTERIA ON SOIL NUTRIENT AVAILABILITY AND PLANT NUTRIENT UPTAKE

    Directory of Open Access Journals (Sweden)

    Nelson Walter Osorio Vega

    2007-06-01

    participan en el biocontrol de patógenos de plantas. Debido a estos beneficios sobre la nutrición y el crecimiento vegetal estas bacterias rizosfericas han sido llamadas “rizobacterias promotoras del crecimiento vegetal” (PGPR, por sus siglas en inglés.This paper is a review of the benefits of rhizosphere bacteria on plant nutrition. The interaction between plant and phosphate-solubilizing- bacteria is explained in more detail and used as model to illustrate the role that rhizosphere bacteria play on soil nutrient availability. Environmental conditions of rhizosphere and mycorrhizosphere are also discussed. Plants can release carbohydrates, aminoacids, lipids, and vitamins trough their roots to stimulate microorganisms in the soil. The soil volume affected by these root exudates, aproximately 2 mm from the root surface, is termed rhizosphere. Rhizosphere bacteria participate in the geochemical cycling of nutrients and determine their availability for plants and soil microbial community. For instance, in the rhizosphere there are organisms able to fix N2 forming specialized structures (e.g., Rhizobium and related genera or simply establishing associative relationships (e.g. Azospirillium, Acetobacter. On the other hand, bacterial ammonifiers and nitrifiers are responsible for the conversion of organic N compounds into inorganic forms (NH4+ and NO3- which are available for plants. Rhizosphere bacteria can also enhance the solubility of insoluble minerals that control the availability of phosphorus (native or applied using for that organic acids or producing phosphatases that act on organic phosphorus pools. The availability of sulfur, iron and manganese are also affected by redox reactions carried out by rhizosphere bacteria. Likewise, chelating agents can control the availability of micronutrients and participate in mechanisms of biocontrol of plant pathogens. Due to these and other benefits on plant growth, some rhizosphere bacteria have been called Plant Growth

  18. Nutrição mineral e extração de nutrientes de planta de milho irrigada com água salina Mineral nutrition and extraction of nutrients by corn plant irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Geocleber G. de Sousa

    2010-11-01

    Full Text Available A utilização de água salina na agricultura irrigada pode causar desequilíbrio nutricional e inibição competitiva na absorção de nutrientes. O objetivo deste trabalho foi avaliar os efeitos da salinidade da água de irrigação sobre o acúmulo, os totais extraídos e a distribuição de nutrientes em plantas de milho. O estudo foi conduzido em condições de campo em um Argissolo Vermelho Amarelo na estação seca, no delineamento em blocos ao acaso, com cinco repetições, de setembro a dezembro de 2007, em Fortaleza, CE. As plantas de milho foram coletadas aos 90 dias após a semeadura e realizadas as seguintes avaliações: teores, extração e distribuição de elementos minerais nas diferentes partes da planta (folha, colmo, grão e sabugo. O aumento da salinidade da água de irrigação aos 90 dias após a semeadura, inibiu o acúmulo de potássio nas folhas e de magnésio e fósforo nos grãos. A extração dos nutrientes e sódio pelas plantas irrigadas com água de salinidade variando de 0,8 a 3,6 dS m-1 obedeceu à seguinte ordem decrescente: K > Mg > Ca > P > Na; no tratamento de maior salinidade (5,0 dS m-1 a sequência de extração foi: K > Ca > Na > P > Mg.The use of saline water in irrigated agriculture can cause nutritional imbalance and competitive inhibition in the absorption of nutrients. The objective of this study was to evaluate the effects of salinity of irrigation water on the accumulation, the total absorption, and the distribution of mineral elements in maize plants. The study was conducted under field conditions in an Yellow Red Argisol in the dry season, in the randomized blocks design with five replicates during September to December 2007 in Fortaleza - CE. The maize plants were collected at 90 days after sowing, and the following assessments were made: content, extraction and distribution of mineral elements in the plant parts (leaf, stem, grain and elderberry. The increase of salinity of irrigation water

  19. Effect of compost and humic acid in mobility and concentration of cadmium and chromium in soil and plant

    Directory of Open Access Journals (Sweden)

    A. Chaab

    2016-12-01

    Full Text Available The effect of compost and humic acid in mobility and concentration of cadmium and chromium in contaminated soil were investigated. Experiment was carried out with three levels of soil cadmium and chromium and two organic matters (compost and humic acid. The study was performed in a randomized complete block design with 3 replicates. Results indicated that application of organic substances enhanced movement of cadmium and chromium in soil column. Humic acid is more effective than compost on the mobility of cadmium and chromium in soil. Mobility of cadmium and chromium in the lower depths of soil column were increased. Cadmium and chromium concentration in shoots and roots enhanced due to increasing those concentration in soil and application of organic substances. Increase in cadmium in shoots can be attributed to the high mobility of this element in maize plant. Maize root chromium concentration was greater than shoot chromium concentration. Humic acid was more effective than compost as cadmium and chromium concentration in root and shoot was concerned. Low mobility of chromium in plant and accumulation of chromium in roots can be reasons of decreasing of chromium concentration in shoot of plant and its bioaccumulation.

  20. Evaluation of elemental profiling methods, including laser-induced breakdown spectroscopy (LIBS), for the differentiation of Cannabis plant material grown in different nutrient solutions.

    Science.gov (United States)

    El-Deftar, Moteaa M; Robertson, James; Foster, Simon; Lennard, Chris

    2015-06-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging atomic emission based solid sampling technique that has many potential forensic applications. In this study, the analytical performance of LIBS, as well as that of inductively coupled plasma mass spectrometry (ICP-MS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray microfluorescence (μXRF), was evaluated for the ability to conduct elemental analyses on Cannabis plant material, with a specific investigation of the possible links between hydroponic nutrients and elemental profiles from associated plant material. No such study has been previously published in the literature. Good correlation among the four techniques was observed when the concentrations or peak areas of the elements of interest were monitored. For Cannabis samples collected at the same growth time, the elemental profiles could be related to the use of particular commercial nutrients. In addition, the study demonstrated that ICP-MS, LA-ICP-MS and LIBS are suitable techniques for the comparison of Cannabis samples from different sources, with high discriminating powers being achieved. On the other hand, μXRF method was not suitable for the discrimination of Cannabis samples originating from different growth nutrients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Variability of δ15N in soil and plants at a New Zealand hill country site: correlations with soil chemistry and nutrient inputs

    International Nuclear Information System (INIS)

    Hawke, D.J.

    2000-01-01

    This study investigated 15 N enrichment and nutrient cycling in hill country used for semi-extensive pastoral agriculture, at a site where pre-European seabird breeding occurred. Soil (>15 cm) and plant samples were taken from 18 ridgeline and sideslope transects. Three stock camps (locations which grazing animals frequent) were identified within the study area, two on the ridgeline and one on the sideslope. Soil 15 N enrichment was greatest at stock camps, and lowest where stock input was minimal. Soil natural abundance 15 N (815N) was therefore an index of stock nutrient inputs. Soil δ 15 N increased with decreasing C:N ratio, consistent with N loss through volatilisation and/or nitrate leaching from net mineralisation. Plant δ 15 N from stock camps was lower than its associated soil, implying that 15 N enrichment of plant-available N was lower than that of total soil N. However, the correlation between plant δ 15 N and soil δ 15 N varied between stock camps, indicating differences in N cycling. Olsen P was higher at stock camps, although again differences were found between stock camps. Total P and N were correlated neither with stock camps nor topography, but were higher than expected from parent material concentrations and literature results, respectively. It is postulated that significant contributions of both elements from former seabird breeding remain in the soil. Copyright (2000) CSIRO Publishing

  2. Clonal mobility and its implications for spatio-temporal patterns of plant communities: what do we need to know next?

    Czech Academy of Sciences Publication Activity Database

    Zobel, M.; Moora, M.; Herben, Tomáš

    2010-01-01

    Roč. 119, č. 5 (2010), s. 802-806 ISSN 0030-1299 Institutional research plan: CEZ:AV0Z60050516 Keywords : clonal mobility * spatio-temporal patterns * plant communities Subject RIV: EF - Botanics Impact factor: 3.393, year: 2010

  3. Nutrient addition shifts plant community composition towards earlier flowering species in some prairie ecoregions in the U.S. Central Plains.

    Directory of Open Access Journals (Sweden)

    Lori Biederman

    Full Text Available The distribution of flowering across the growing season is governed by each species' evolutionary history and climatic variability. However, global change factors, such as eutrophication and invasion, can alter plant community composition and thus change the distribution of flowering across the growing season. We examined three ecoregions (tall-, mixed, and short-grass prairie across the U.S. Central Plains to determine how nutrient (nitrogen (N, phosphorus, and potassium (+micronutrient addition alters the temporal patterns of plant flowering traits. We calculated total community flowering potential (FP by distributing peak-season plant cover values across the growing season, allocating each species' cover to only those months in which it typically flowers. We also generated separate FP profiles for exotic and native species and functional group. We compared the ability of the added nutrients to shift the distribution of these FP profiles (total and sub-groups across the growing season. In all ecoregions, N increased the relative cover of both exotic species and C3 graminoids that flower in May through August. The cover of C4 graminoids decreased with added N, but the response varied by ecoregion and month. However, these functional changes only aggregated to shift the entire community's FP profile in the tall-grass prairie, where the relative cover of plants expected to flower in May and June increased and those that flower in September and October decreased with added N. The relatively low native cover in May and June may leave this ecoregion vulnerable to disturbance-induced invasion by exotic species that occupy this temporal niche. There was no change in the FP profile of the mixed and short-grass prairies with N addition as increased abundance of exotic species and C3 graminoids replaced other species that flower at the same time. In these communities a disturbance other than nutrient addition may be required to disrupt phenological

  4. Mobile test stand for evaluation of electric power plants for unmanned aircraft

    Directory of Open Access Journals (Sweden)

    Serbezov Vladimir

    2017-01-01

    Full Text Available The absence of accurate performance data is a common problem with most civilian unmanned aerial vehicle (UAV power plant producers. The reasons for this are the small size of most of the manufacturers and the high price of precise wind tunnel testing and computer simulations. To overcome this problem at Dronamics Ltd., with support from the Department of Aeronautics of TU-Sofia, a mobile test stand for evaluation of electric power plants for unmanned aircraft was developed. The stand may be used statically, or may be installed on the roof of an automobile. The measurement system of the stand is based on popular hardware that is used in radio controlled models and in general automation. The verification of the measurement system is performed by comparing static test results with data published by the manufacturer of the tested electric motor. Tests were carried out with 2 different types of propellers and the results were compared with published results for common propellers as well as with results of theoretical studies. The results are satisfactory for practical applications. The use of this type of test stands can be a cheap and effective alternative for research and development start-up companies like Dronamics.

  5. Molybdenum and technetium cycle in the environment. Physical chemical evolution and mobility in soils and plants

    International Nuclear Information System (INIS)

    Saas, A.; Denardi, J.L.; Colle, C.; Quinault, J.M.

    1980-01-01

    Molybdenum 99 and technetium 99 from liquid discharges of base nuclear installations (reactors, reprocessing plants, UF 6 treatment, etc.) can reach the environment via irrigation waters and atmospheric deposits. The contribution to the soil by irrigation results in a physical-chemical transformation, the results of which, in the case of technetium 99, could be volatilization via microbes. The changes in the physical-chemical forms of technetium in different soils reveals the preponderant effect of the initial amount deposited. The determination of the rate of technetium and molybdenum assimilation shows a certain similarity in behaviour; yet the localization of these isotopes is not the same. The transfer of molybdenum and technetium via the root system is different in its intensity; this is mainly due to different physical-chemical forms. Finally, each isotope has an optimum assimilation threshold and a toxicity threshold. The study of the physical-chemical evolution and the mobility in the soil-plant-water table system of these two isotopes shows a new aspect with respect to certain transfer channels to the human being [fr

  6. Development of a general-purpose mobile robot for use in nuclear power plants

    International Nuclear Information System (INIS)

    Martinez, A.; Yague, M.A.; Linares, F.

    1993-01-01

    In recent years, the Space Division of CONSTRUCCIONES AERONAUTICAS (CASA) and EQUIPOS NUCLEARES (ENSA) have participated in several national and international robotics programs in the respective space and nuclear areas. In mid-1992, they decided to jointly undertake the development of a mobile inspection and maintenance robot for Nuclear Power Plants. The success of such a multidisciplinary project was ensured by the way both companies complement each other and by their previous development. Work was begun on the feasibility study and specifications, for which technical meetings were held with personnel from the Medical and Health Physics Association of the utilities (AMYS) and several Nuclear Power Plants. The result of these conversations was a preliminary system design along with the specifications with which the system must comply. With these results, a report and job plan were prepared for construction of two prototypes and submitted to the INI (National Institute of Industry Shareholder of both CASA and ENSA), which decided to finance this second Phase of Development by charging it to the Group's Research Development Fund

  7. Productivity and accumulation of nutrients in plants of jambu, under mineral and organic fertilizationProdutividade e acúmulo de nutrientes em plantas de jambu, sob adubação orgânica e mineral

    Directory of Open Access Journals (Sweden)

    Luciana da Silva Borges

    2013-03-01

    Full Text Available The organic production is a system that allows achieving good levels of productivity, while avoiding the risks of chemical contamination of farmers, consumers and the environment. Because jambu plant is widely used as alternative medicine and cosmetics industries, has been increasing interest in its cultivation. The aim of this study was to analyze the biomass, accumulation of nutrient, productivity and determine the pesticide residue in plant jambu when grown under organic and mineral fertilization. The experiment was conducted at the Experimental Farm São Manuel, FCA / UNESP. The experiment was conducted at São Manuel Experimental Farm UNESP. The statistical was arranged in the randomized block design, in a 2 x 6 factorial scheme, two sources of fertilizers (organic and mineral and six doses of nitrogen, with four replications. The characteristics evaluated were plant height, fresh and dry weight, nutrients of accumulation in shoots and productivity. Mineral fertilizer gave higher biomass, productivity and accumulation of N and K in relation to organic fertilizer used. It is recommended the dose of 90g m-2 of urea as appropriate to obtain these results. However the organic fertilization favored the accumulation of phosphorus in plants jambu in relation the mineral fertilizer, and the dose of 10 kg m-2 of cattle manure recommended to achieve this result in plants jambu. We did not detect the presence of phosphorous and carbamate on leaves of jambu under organic and mineral fertilization. However, we observed the presence of chlorine in the leaves used for the two fertilizations.A produção orgânica é um sistema que permite alcançar bons níveis de produtividade, evitando ao mesmo tempo os riscos de contaminação química do agricultor, dos consumidores e do meio ambiente. Pelo fato da planta de jambu ser bastante utilizada como medicamento alternativo e por indústrias de cosméticos, vem aumentando o interesse pelo seu cultivo. Assim, o

  8. Densidade de plantio na produtividade e nos teores de nutrientes nas folhas e frutos da bananeira cv. Thap Maeo Plants density on yield and nutrients concentration in leaves and fruits of banana cv. Thap Maeo

    Directory of Open Access Journals (Sweden)

    Adônis Moreira

    2007-01-01

    Full Text Available O objetivo deste estudo foi avaliar o efeito da densidade de plantio na produtividade, tempo de colheita e teores dos nutrientes nas folhas e nos frutos de bananeira cv. Thap Maeo (AAB cultivada em Manaus (AM. O delineamento experimental foi o de blocos casualizados, com três repetições. Os tratamentos foram constituídos pelos fatores: três densidades de plantio (1.111; 1.667 e 3.333 plantas ha-1 e duas épocas de colheita (primeiro e segundo ciclos. Os resultados do primeiro e segundo ciclos mostraram incremento significativo da produtividade, com aumento da densidade de plantio. O tempo médio para colheita dos cachos foi menor na densidade de 1.111 plantas ha-1 (1º ciclo, 338 e 2º ciclo, 401 dias. Na média das densidades e independentemente do ciclo, os teores de macronutrientes nos frutos apresentaram a ordem de: K>N>P>Mg>Ca=S, enquanto a dos micronutrientes foi: 1º ciclo - Cl>Fe>Mn=B>Zn>Cu e 2º ciclo - Cl>Fe>Zn>B=Mn>Cu.This study aimed to evaluate the effect of plants density on yield, period of harvest and nutrients concentration in leaves and fruits of banana cv. Thap Maeo (AAB, cultivated in Manaus, State of Amazonas, Brazil. The experiment was conduced in a randomized blocks, with three replicates. Treatments were comprised of planting density (1,111; 1,667 and 3,333 plants ha-1, and two cycles of harvest (sub treatments. The results obtained from 1st cycle and 2nd cycle showed significant increase in the yield per unit area as the employed plant density increased. The shortest average period to harvest banana bunches (1st cycle, 338 days and 2nd cycle, 401 days was observed for the lower density (1,111 plants ha-1. Pooled data of density and cycles showed that exportation of macronutrients through the fruits was, in order: K>N>P>Mg>Ca=S, while in micronutrients was: 1st cycle - Cl>Fe>Mn=B>Zn>Cu, and 2nd cycle - Cl>Fe>Zn>B=Mn>Cu.

  9. Total primary production and the balance between benthic and pelagic plants in different nutrient regimes in a shallow estuary

    DEFF Research Database (Denmark)

    Markager, Svend Stiig; Krause-Jensen, Dorte; Dalsgaard, Tage

    on a large monitoring data set in combination with historical information we have quantified and compared the benthic and the pelagic primary production along nutrient gradients in space and time for the shallow estuary Limfjorden, Denmark. As expected, increases in nutrient load stimulated the pelagic...... was again reduced, and the ecosystem entered a phase of oligotrophication, pelagic GPP declined gradually while benthic GPP did not increase correspondingly leading to an decline in overall GPP. Instead the ecosystem showed a resistance or time lag against return to a clear water state with benthic...

  10. Electrical conductivity of the nutrient solution and plant density in aeroponic production of seed potato under tropical conditions (winter/spring

    Directory of Open Access Journals (Sweden)

    Alex Humberto Calori

    Full Text Available ABSTRACT The recent introduction in Brazil of production of quality seed potatoes in hydroponic systems, such as aeroponics, demands studies on the nutritional and crop management. Thus, this study evaluated the influence of electrical conductivity of the nutrient solution and plant density on the seed potato minitubers production in aeroponics system. The Agata and Asterix cultivars were produced in a greenhouse under tropical conditions (winter/spring. The experimental design was a randomized block in a split-split plot design. The plot consisted of 4 electrical conductivities of the nutrient solution (1.0; 2.0; 3.0; and 4.0 dS∙m−1; the subplot, of 4 plant densities (25; 44; 66; and 100 plants∙m−2; and the subsubplot, of the 2 potato cultivars (Ágata and Asterix, totaling 4 blocks. The 2.2 and 2.1 dS∙m−1 electrical conductivities yielded the highest productivity of seed potato minitubers, for Ágata and Asterix cultivars, respectively, regardless of plant density. For both cultivars, the highest yield was observed for the 100 plants∙m−2 density.

  11. Miniature transposable sequences are frequently mobilized in the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola.

    Directory of Open Access Journals (Sweden)

    Leire Bardaji

    Full Text Available Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.6×10(-5 and 1.1×10(-6, depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt, represented an average 2

  12. Miniature transposable sequences are frequently mobilized in the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola.

    Science.gov (United States)

    Bardaji, Leire; Añorga, Maite; Jackson, Robert W; Martínez-Bilbao, Alejandro; Yanguas-Casás, Natalia; Murillo, Jesús

    2011-01-01

    Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.6×10(-5) and 1.1×10(-6), depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total

  13. Effects of mineral nutrients on ozone susceptibility of Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Craker, L E

    1971-01-01

    Susceptibility of Lemna minor L. to ozone injury was influenced by the mineral nutrients available to the Lemna plants. Additional nitrogen or additional iron in the nutrient media respectively enhanced or reduced chlorophyll loss of Lemna plants fumigated with ozone. Lemna plants growing on a nutrient medium lacking copper had significantly less injury from ozone fumigation than Lemna plants growing on a complete nutrient medium. There were apparent interactions among phosphorus and potassium nutrient levels in determing the Lemna plant's susceptibility to ozone.

  14. Evolution of nutrient uptake reveals a trade-off in the ecological stoichiometry of plant-herbivore interactions

    NARCIS (Netherlands)

    Branco, P.; Stomp, M.; Egas, M.; Huisman, J.

    2010-01-01

    Nutrient limitation determines the primary production and species composition of many ecosystems. Here we apply an adaptive dynamics approach to investigate evolution of the ecological stoichiometry of primary producers and its implications for plant‐herbivore interactions. The model predicts a

  15. Macro and Micro-Nutrient Contents of 18 Medicinal Plants used Traditionally to Alleviate Diabetes in Nuevo Leon, Northeast of Mexico

    International Nuclear Information System (INIS)

    Maiti, R.; Rodriguez, H. G.; Kumari, C. A.; Sarkar, N. C.

    2016-01-01

    Although several medicinal plants has been documented to alleviate diabetes in Nuevo Leon, Northeast of Mexico, no systematic study has been undertaken to determine the efficacy of these plant species. The present study was undertaken to determine micronutrients (Cu, Fe and Zn) and macro-nutrients (K, Mg and P), C, N and C/N and to select plants with high macro and micronutrient contents for high efficacy in 18 medicinal plants collected from botanical gardens of Forest Science Faculty, UANL, Mexico used in Nuevo Leon in Northeast of Mexico, at the experimental station of Facultad de Ciencias Forestales, Universidad Autonoma de Nuevo Leon. Following standard protocols, carbon and nitrogen were determined using a CHN analyzer (Perkin Elmer, model 2400). Mineral contents were using the wet digestion technique (Cherney, 2000). The present study indicated the presence of large variation in the contents of several macro and micronutrients among these 18 species of medicinal plants utilized traditionally to control diabetes and other diseases in Nuevo Leon, Mexico. Among these species containing high nitrogen content (%) are Moringa oleifera (6.25), Melia azadirachta (5.85), Marrubium vulgare (4.56) and Phoradendron villosum (4.9). The C/N values ranged from 8 to 30. The species having high C/N were Agave macroculmis (30), Arbutus xalapensis (26) and Rhus virens (22). The species Melia azadirachta, Marrubium vulgare, Buddleja cordata, Tecoma stans, Hedeoma palmeri, Phoradendron villosum, Opuntia ficus-indica, Arbutus xalapensis exhibited large variations in the contents of macro and micronutrients which, could be considered to be used effectively for the control of diabetes. Few species viz. Marrubium vulgare, Buddleja cordata, Tecoma stans, Hedeoma palmeri, Phoradendron villosum, Opuntia ficus-indica and Arbutus xalapensis on the basis of high nutrient content with respect to C, N, C/N, Cu, Fe, Zn, K, P and Mg are selected and recommended to control diabetes. (author)

  16. Yield performance and leaf nutrient levels of coffee cultivars under different plant densities Produtividade e níveis foliares de nutrientes em cultivares de café sob diferentes populações de plantas

    Directory of Open Access Journals (Sweden)

    Edison Martins Paulo

    2010-12-01

    Full Text Available Coffee (Coffea Arabica L. plantations using adapted cultivars to regional environmental conditions with optimal plant population density and adequate nutrition are expected to show high yield responses. The triennial production and leaf macronutrient concentrations of four coffee cultivars were studied under different plant population densities. Catuaí Amarelo (IAC 47, Obatã (IAC 1669-20, Acaiá (IAC 474-19 and Icatu Amarelo (IAC 2944 were planted in densities of 2,500; 5,000; 7,519; and 10,000 plants ha-1 with one plant per hole and two plants per hole in the 2,500 plant ha-1. Plants were homogeneously fertilized without liming. As the population density increased the triennial coffee productivity increased, the yield per plant decreased, and leaf concentrations of phosphorus (P, potassium (K and sulfur (S increased. Coffee plants under dense systems presented equal or higher leaf macronutrient concentrations compared to the plants under conventional population. Taller cultivars presented the highest nutrient concentration values, and Obatã, a dwarf cultivar, the lowest values. Higher coffee yields and lower leaf P, Ca and S concentrations were observed in plots with one plant compared to the plots with two plants. In general, the coffee cultivars had leaf N and S concentrations above the reference limits reported in the literature, but leaf concentrations of other macronutrients were within adequate ranges.Cultivares de cafeeiro (Coffea Arabica L. adaptadas às regiões de cultivo, com população de plantas otimizada e adequado estado nutricional são premissas para a obtenção de produções elevadas de café. Estudou-se a produção trienal de café e o teor foliar de macronutrientes de cultivares de cafeeiro em função das densidades de plantio. Foram utilizados os cultivares Catuaí Amarelo (IAC 47, Obatã (IAC 1669-20, Acaiá (IAC 474-19 e Icatu Amarelo (IAC 2944 nas populações de 2.500 plantas ha-1 com duas plantas por cova; e, 5

  17. Physiological indexese macro- and micronutrients in plant tissue and essential oil of Mentha piperita L. grown in nutrient solution with variation in N, P, K and Mg levels

    Directory of Open Access Journals (Sweden)

    E.F.S. David

    2014-03-01

    Full Text Available Mentha piperita L. is an aromatic and medicinal species of the family Lamiaceae, known as mint or peppermint, and its leaves and branches produce essential oil rich in menthol. This study aimed to evaluate physiological indexes, macro- and micronutrients inthe shootsand essential oil of Mentha piperita L. grown in nutrient solution number 2 of Hoagland and Arnon (1950 with different N, P, K and Mg levels. Shoot length, dry mass of the different organs, total dry mass, leaf area, essential oil yield and composition, and macronutrient (N, P, K, Mg, Ca, S and micronutrient (Mn, Cu, Fe, Zn contents in the shoot were evaluated. Plants treated with 65%N/50%P/25%K/100%Mg had a tendency towards longer shoot, greaterroot and leaf blade dry masses, higher essential oil yield, higher menthol levels and lower menthone levels. The results showed that Mentha can be grown in nutrient solution by reducing 65% N, 50% P, 25% K and 100% Mg. This solution had better development compared to the other tested treatments. Therefore,we recommendMentha piperita L. to be grown with such nutrient levels.

  18. Thresholds in the response of free-floating plant abundance to variation in hydraulic connectivity, nutrients, and macrophyte abundance in a large floodplain river

    Science.gov (United States)

    Giblin, Shawn M.; Houser, Jeffrey N.; Sullivan, John F.; Langrehr, H.A.; Rogala, James T.; Campbell, Benjamin D.

    2014-01-01

    Duckweed and other free-floating plants (FFP) can form dense surface mats that affect ecosystem condition and processes, and can impair public use of aquatic resources. FFP obtain their nutrients from the water column, and the formation of dense FFP mats can be a consequence and indicator of river eutrophication. We conducted two complementary surveys of diverse aquatic areas of the Upper Mississippi River as an in situ approach for estimating thresholds in the response of FFP abundance to nutrient concentration and physical conditions in a large, floodplain river. Local regression analysis was used to estimate thresholds in the relations between FFP abundance and phosphorus (P) concentration (0.167 mg l−1L), nitrogen (N) concentration (0.808 mg l−1), water velocity (0.095 m s−1), and aquatic macrophyte abundance (65 % cover). FFP tissue concentrations suggested P limitation was more likely in spring, N limitation was more likely in late summer, and N limitation was most likely in backwaters with minimal hydraulic connection to the channel. The thresholds estimated here, along with observed patterns in nutrient limitation, provide river scientists and managers with criteria to consider when attempting to modify FFP abundance in off-channel areas of large river systems.

  19. Sulphur and nitrogen supply - soil acidification and the absorption of nutrients in plants; Svovel og nitrogentilfoersel - jordforsuring og plantenes naeringstilgang

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, G

    1996-01-01

    Ecologically, soil is of the greatest interest as a growth medium for plants, and which affects the quality of ground water and surface water. In this connection, the paper looks upon how the increased deposition of sulphur, nitrogen and hydrogen ions affect the quality of soil as a growth medium for plants. Topics cover: Interaction between soil and plants, effects of acid rain in soil, and the effects of acid rain on plants. 11 refs., 1 tab.

  20. Environmental feasibility study for deployment and construction of mobile gas turbine power plants in urbanized areas

    Directory of Open Access Journals (Sweden)

    Bryukhan Fedor

    2017-01-01

    Full Text Available In the view of current electrical shortage in some regions of Russia, mobile gas turbine power plants (MGTPP have become urgent in recent years. Usually they are used as back-up power sources to cover peak loads in power networks and to ensure uninterrupted power supply to consumers. This paper deals with environmental feasibility study for deployment and construction of the MGTPP in an urban setting. Technogehic factors of the MGTPP impact on the environment have been assessed and possibility of the MGTPP deployment at various sites in different regions of Russia has been identified. The necessity of using the technology of water injection into the gas turbine units combustion chamber to suppress nitrogen oxides in some cases is mentioned. Quantitative assessments of the MGTPP technogehic impact on the environment components have been performed using standard techniques. The calculations have revealed that the MGTPP specifications ensure the levels of technogehic impacts within the standard limits. The results have ensured preparation of pre-design and design documentation related to protection of the environment against the MGTPP complex technogehic impact.

  1. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs and mobile genetic elements (MGEs in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP. Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.

  2. Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth

    Directory of Open Access Journals (Sweden)

    Andrea Colantoni

    2018-03-01

    Full Text Available The diffusion of renewable energy requires the search for new technologies useful for obtaining good energy and production efficiency. Even if the latter is not always easy to obtain, the integration of photovoltaic panels on the roof of greenhouses intended for floriculture can represent an alternative. The present paper evaluates climatic conditions inside a greenhouse, in which 20% of its roof surface has been replaced with mobile photovoltaic (PV panels. The PV system implemented in this study can vary the light energy collection surface in relation to the degree of insolation. The aim is to observe the shading effects of the PV system on the growth of several varieties of flowers (iberis, mini-cyclamens and petunias to ensure the use of solar energy as an income integration deriving from floricultural production. In fact, in agronomic terms, it has ensured: (i to be able to shade the underlying environment in most lighting conditions; and (ii to let through more light when it is required for the needs of crop plants or in cloudy weather. Results have described the distribution of solar radiation, variability of temperature and humidity and lighting in a solar year and the observed outcomes on floristic production.

  3. Eco-efficient post treatment of digestate from farm and collective biogas plants to improve nutrients (N&P) recycling

    DEFF Research Database (Denmark)

    Trémier, Anne; Béline, Fabrice; Déchaux, Claire

    an opportunity to improve nutrient recycling from organic waste through the development of an eco-effi cient post-treatment system. In this context, LCA was applied to evaluate the sustainability of diff erent raw digestate post-treatment technologies regarding recycling of nutrients from agricultural...... and organic waste to agricultural soils for decreased resource depletion and climate mitigation. Substitution of the use of N and P mineral fertilizers with recycled soil health improver or organic fertilizers products as function of fi ve diff erent post-treatment technologies and raw digestate...... characteristics was evaluated. A particular attention was carried to (1) the gaseous emissions (NH3 and N2O) from process (post-treatment) but also after land spreading and (2) the carbon cycle considering the CO2 carbon costs of fertiliser production and the soil carbon sequestration benefit....

  4. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants.

    Science.gov (United States)

    Acosta-Motos, José R; Alvarez, Sara; Barba-Espín, Gregorio; Hernández, José A; Sánchez-Blanco, María J

    2014-12-01

    The use of reclaimed water (RW) constitutes a valuable strategy for the efficient management of water and nutrients in landscaping. However, RW may contain levels of toxic ions, affecting plant production or quality, a very important aspect for ornamental plants. The present paper evaluates the effect of different quality RWs on physiological and biochemical parameters and the recovery capacity in Myrtus communis L. plants. M. communis plants were submitted to 3 irrigation treatments with RW from different sources (22 weeks): RW1 (1.7 dS m(-1)), RW2 (4.0 dS m(-1)) and RW3 (8.0 dS m(-1)) and one control (C, 0.8 dS m(-1)). During a recovery period of 11 weeks, all plants were irrigated with the control water. The RW treatments did not negatively affect plant growth, while RW2 even led to an increase in biomass. After recovery,only plants irrigated with RW3 showed some negative effects on growth, which was related to a decrease in the net photosynthesis rate, higher Na accumulation and a reduction in K levels. An increase in salinity was accompanied by decreases in leaf water potential, relative water content and gas exchange parameters, and increases in Na and Cl uptake. Plants accumulated Na in roots and restricted its translocation to the aerial part. The highest salinity levels produced oxidative stress, as seen from the rise in electrolyte leakage and lipid peroxidation. The use of regenerated water together with carefully managed drainage practices, which avoid the accumulation of salt by the substrate, will provide economic and environmental benefits.

  5. INFLUENCE OF ELEMENTAL SULFUR AND/OR INOCULATION WITH SULFUR OXIDIZING BACTERIA ON GROWTH, AND NUTRIENT CONTENT OF SORGHUM PLANTS GROWN ON DIFFERENT SOILS

    Directory of Open Access Journals (Sweden)

    Hala Kandil

    2011-12-01

    Full Text Available A pot experiment was conducted to study the effect of elemental sulfur(E.S rates (300 and 600 ppm and/or sulfur oxidizing bacteria (S.O.B. ATCC 8158 on growth and nutrients content of sorghum plants grown on different soils (sandy soils(I & II and clay loam soil.The obtained results could be summarized in the followings:Sorghum plants:Significant increases over the control were observed in fresh and dry weights of sorghum plant as well as its content of SO4=, N, P, K, Fe, Mn, Zn and Cu by using all the sulfur and/or the oxidizing bacteria treatments. Addition of E.S (300 & 600 ppm in combination with S.O.B. ATCC 8158 significantly increased both fresh and dry weights as well as SO4=, N, P, K, Fe, Mn, Zn and Cu contents of sorghum plants grown on the used soils as compared with either of them alone.E.S rates (300 & 600 ppm significantly increased the fresh and dry weights as well as all the studied nutrients content (SO4=, N, P, K, Fe, Mn, Zn and Cu of sorghum plants grown on the different soils as compared with S.O.B. ATCC 8158 treatment alone. The highest rate of E.S (600 ppm significantly increased all the previous parameters under study as compared with the lower rate (300 ppm. The highest values of fresh and dry weights as well as nutrients content (SO4=, N, P, K, Fe, Mn, Zn and Cu of sorghum plants grown on the used soils were obtained by 600 ppm E.S + S.O.B. ATCC 8158 treatment followed by 600 ppm E.S; 300 ppm E.S + S.O.B. ATCC 8158; 300 ppm E.S; S.O.B. ATCC 8158 and control treatments in decreasing order.The used soils:E.S rates (300 & 600 ppm and/or S.O.B. ATCC 8158 decreased pH values of the used soils after 3, 6 and 9 weeks from sowing as compared with their corresponding control treatments. The values of pH of sand soil (I and clay loam soil slightly decreased by time i.e they decreased from 3 weeks to 9 weeks from plantation. E.S rates (300 & 600 ppm with or without inoculation the used soils with S.O.B. ATCC 8158 significantly

  6. Litter and nutrient flows in tropical upland forest flooded by a hydropower plant in the Amazonian basin.

    Science.gov (United States)

    Pereira, Guilherme Henrique A; Jordão, Henos Carlos K; Silva, Vanessa Francieli V; Pereira, Marcos Gervasio

    2016-12-01

    Extensive areas in the Brazilian Amazon have been flooded for the construction of hydroelectric dams. However, the water regime of these areas affects the dynamics of igarapés (streams) in adjacent terra firme (upland forests). When the reservoirs are filled, the water levels of streams rise above the normal levels and upland bank forests are flooded. We investigated how this flooding affects the litterfall and nutrient input in the upland forests upstream of a hydroelectric dam reservoir in the Central Amazonia. When the reservoir was filled, the forests were flooded and produced more than twice the litter (8.80Mg·ha -1 yr -1 ), with three times more leaves (6.36Mg·ha -1 yr -1 ) than when they were not flooded (4.20 and 1.92Mg·ha -1 yr -1 , respectively). During flooding, the decomposition rate was four times lower in flooded forests (0.328g·g -1 yr -1 ) than in control forests (1.460g·g -1 yr -1 ). Despite this, the flooding did not favor litter or nutrient accumulation. Therefore, dam construction changes the organic matter and nutrient cycling in upland Amazon rainforests. This may influence the important role that they play in organic matter dynamics and could have consequences for the regional carbon balance and, ultimately, global climate. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Plant polyphenols mobilize nuclear copper in human peripheral lymphocytes leading to oxidatively generated DNA breakage: implications for an anticancer mechanism.

    Science.gov (United States)

    Shamim, Uzma; Hanif, Sarmad; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M

    2008-08-01

    It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage.

  8. Effects of Mode of Target Task Selection on Learning about Plants in a Mobile Learning Environment: Effortful Manual Selection versus Effortless QR-Code Selection

    Science.gov (United States)

    Gao, Yuan; Liu, Tzu-Chien; Paas, Fred

    2016-01-01

    This study compared the effects of effortless selection of target plants using quick respond (QR) code technology to effortful manual search and selection of target plants on learning about plants in a mobile device supported learning environment. In addition, it was investigated whether the effectiveness of the 2 selection methods was…

  9. Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release

    OpenAIRE

    Grutters, B.M.C.; Gross, E.M.; Bakker, E.S.

    2016-01-01

    Eutrophication and globalisation facilitate the dominance of exotic plants in aquatic ecosystems worldwide. Aquatic omnivores can provide biotic resistance to plant invasions, but little is known about whether obligate aquatic herbivores can do the same. Herbivores such as insects can decimate aquatic vegetation, but may not be able to consume exotic plants due to their more or less specialised nature of feeding. We experimentally tested the larval feeding of an aquatic insect, the moth Parap...

  10. Effects of anabolic and catabolic nutrients on woody plant encroachment after long-term experimental fertilization in a South African savanna.

    Directory of Open Access Journals (Sweden)

    Anthony J Mills

    Full Text Available The causes of the worldwide problem of encroachment of woody plants into grassy vegetation are elusive. The effects of soil nutrients on competition between herbaceous and woody plants in various landscapes are particularly poorly understood. A long-term experiment of 60 plots in a South African savanna, comprising annual applications of ammonium sulphate (146-1166 kg ha-1 yr-1 and superphosphate (233-466 kg ha-1 yr-1 over three decades, and subsequent passive protection over another three decades, during which indigenous trees encroached on different plots to extremely variable degrees, provided an opportunity to investigate relationships between soil properties and woody encroachment. All topsoils were analysed for pH, acidity, EC, water-dispersible clay, Na, Mg, K, Ca, P, S, C, N, NH4, NO3, B, Mn, Cu and Zn. Applications of ammonium sulphate (AS, but not superphosphate (SP, greatly constrained tree abundance relative to control plots. Differences between control plots and plots that had received maximal AS application were particularly marked (16.3 ± 5.7 versus 1.2 ± 0.8 trees per plot. Soil properties most affected by AS applications included pH (H2O (control to maximal AS application: 6.4 ± 0.1 to 5.1 ± 0.2, pH (KCl (5.5 ± 0.2 to 4.0 ± 0.1, acidity (0.7 ± 0.1 to 2.6 ± 0.3 cmol kg-1, acid saturation (8 ± 2 to 40 ± 5%, Mg (386 ± 25 to 143 ± 15 mg kg-1, Ca (1022 ± 180 to 322 ± 14 mg kg-1, Mn (314 ± 11 to 118 ± 9 mg kg-1, Cu (3.6 ± 0.3 to 2.3 ± 0.2 mg kg-1 and Zn (6.6 ± 0.4 to 3.7 ± 0.4 mg kg-1. Magnesium, B, Mn and Cu were identified using principal component analysis, boundary line analysis and Kruskal-Wallis rank sum tests as the nutrients most likely to be affecting tree abundance. The ratio Mn/Cu was most related to tree abundance across the experiment, supporting the hypothesis that competition between herbaceous and woody plants depends on the availability of anabolic relative to catabolic nutrients. These findings

  11. Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release

    NARCIS (Netherlands)

    Grutters, B.M.C.; Gross, E.M.; Bakker, E.S.

    2016-01-01

    Eutrophication and globalisation facilitate the dominance of exotic plants in aquatic ecosystems worldwide. Aquatic omnivores can provide biotic resistance to plant invasions, but little is known about whether obligate aquatic herbivores can do the same. Herbivores such as insects can decimate

  12. Wireless Power System Design for Mobile Robots used in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. Y.; Yoo, S. J.; Lee, Kun J.; Rim, C. T. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    The robots used in nuclear power plants (NPP) have received much attention in recent years due to the Fukushima nuclear accident, which is considered as one of the worst nuclear disasters. In general, the NPP robots can play important roles in fuel exchange, repair work, radiation monitoring, rescue, and scouting out NPP. Under these conditions, human access to NPP during normal and emergency operations is strictly restricted due to the risks of high level radiation and contamination. However, in practice, robots have not been widely used in NPP because of the following limitations. First, the NPP robots cannot be of multi-purpose use because of their mission complexity and uniqueness. Second, the demand of the NPP robots is low due to the limited number of NPP over the world. Third, the NPP robots developed so far have no enough confidence in spite of the improvement of robot technology. Lastly, the NPP robots cannot carry on their mission continuously due to the limited energy capacity of the battery: mobile robots should stop working every two hours to recharge their batteries and spend least twenty minutes. As the solutions for this 'energy hungry' problem, high capacity batteries, quick battery chargers, power cables, and internal combustion engines were proposed; however, they still have the problems such as limited mission time and range, frequent recharging, or exhausting emission and noise. In this paper, the wireless power transfer systems (WPTS) for NPP robots are proposed. This technology can let NPP robots free from mission time and range limits, and exhausting emission. The requirements for the NPP robots are newly proposed, and two types of WPTS, roaming and railway, are suggested in this paper

  13. Wireless Power System Design for Mobile Robots used in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, S. Y.; Yoo, S. J.; Lee, Kun J.; Rim, C. T.

    2012-01-01

    The robots used in nuclear power plants (NPP) have received much attention in recent years due to the Fukushima nuclear accident, which is considered as one of the worst nuclear disasters. In general, the NPP robots can play important roles in fuel exchange, repair work, radiation monitoring, rescue, and scouting out NPP. Under these conditions, human access to NPP during normal and emergency operations is strictly restricted due to the risks of high level radiation and contamination. However, in practice, robots have not been widely used in NPP because of the following limitations. First, the NPP robots cannot be of multi-purpose use because of their mission complexity and uniqueness. Second, the demand of the NPP robots is low due to the limited number of NPP over the world. Third, the NPP robots developed so far have no enough confidence in spite of the improvement of robot technology. Lastly, the NPP robots cannot carry on their mission continuously due to the limited energy capacity of the battery: mobile robots should stop working every two hours to recharge their batteries and spend least twenty minutes. As the solutions for this 'energy hungry' problem, high capacity batteries, quick battery chargers, power cables, and internal combustion engines were proposed; however, they still have the problems such as limited mission time and range, frequent recharging, or exhausting emission and noise. In this paper, the wireless power transfer systems (WPTS) for NPP robots are proposed. This technology can let NPP robots free from mission time and range limits, and exhausting emission. The requirements for the NPP robots are newly proposed, and two types of WPTS, roaming and railway, are suggested in this paper

  14. The Influence of Gamma Irradiation on the Bacterial Growth and the Concentration of Macro nutrient Plant Elements (N,P,K) in The Sludge

    International Nuclear Information System (INIS)

    Yazid, M.; Zainul Kamal; Elin Nuraini

    2002-01-01

    The investigation of the gamma irradiation influence for bacterial growth and macro-nutrient plant element in the sludge has been done. The objective of the research is to study the gamma irradiation influence on bacterial growth and macro-nutrient plant element concentration; after that, can be determine the effective dose for killing pathogenic bacteria, while the other kind of bacteria such as the decomposer has been survived. The sludge samples was collected from the vicinity of Surabaya such as Sukolilo for sewage, PT SIER Rungkut for industrial and Dr. Sutomo hospital waste sludge. The irradiation of the sludge has been done at P3TIR-BATAN by Co-60 irradiator and the dose variation are 0, 5, 10, 15, 20 and 25 kGy. Microbiological observation was done after irradiation at FMIPA-UNAIR laboratory and the analysis of N,P,K elements by using fast neutron activation analysis. The observation involving total bacterial and one kind of pathogenic microbial which is Salmonella, from this observation can be deduced that population of total bacteria in the sludge is in the range at 1.0 x 10 7 to 3.7 x 10 8 . For every 5 kGy increment could be able to decrease total bacterial growth about 10 times, and at 25 kGy the total bacterial growth can be suppressed. The higher population of Salmonella can be found in the hospital sludge is in range of 3.0 to 3.5 x 10 5 , in the sewage sludge is 1.4 to 1.6 x 10 4 and industry is 1.0 to 1.4 x 10 3 . For the Salmonella disinfection need the 15 to 20 kGy radiation dose. From the calculation results can be known that the nitrogen content in the sludge is in the range at 1.393 ± 0.692 to 3.147 ± 0.697 % , the phosphor 3.714 ± 0.892 to 8.120 ± 1.034 % and the potassium 1.999 ± 0.523 to 4.52 ± 0.599 %. The variation of the irradiation dose 10 - 25 kGy does not have any significant influence for the macro-nutrient plant (N,P,K) content in the sludge from the industrial, the sewage or the hospital waste water treatment. (author)

  15. Is fire exclusion in mountain big sagebrush communities prudent? Soil nutrient, plant diversity, and arthropod response to burning

    Science.gov (United States)

    Fire has largely been excluded from many mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle) communities. Land and wildlife managers are especially reluctant to reintroduce fire in mountain big sagebrush plant communities, especially those communities without significan...

  16. SUBMERGED MACROPHYTE EFFECTS ON NUTRIENT EXCHANGES IN RIVERINE SEDIMENTS

    Science.gov (United States)

    Submersed macrophytes are important in nutrient cycling in marine and lacustrine systems, although their role in nutrient exchange in tidally-influenced riverine systems is not well studied. In the laboratory, plants significantly lowered porewater nutrient pools of riverine sedi...

  17. Incorporated Woodchips as a Novel Intervention to Support Plant Growth through Increased Water Holding Capacity and Nutrient Retention in Sandy Degraded Soils

    Science.gov (United States)

    Menzies, E.; Schneider, R.; Walter, T.

    2017-12-01

    According to the World Wildlife Federation's most recent Plow Print report 53 million acres of temperate, water limited, grasslands across the Great Plains have been converted to agriculture since 2009. This conversion very often begins the process of soil degradation which can lead to desertification and the necessity to convert more land to agriculture. The most common solution to this problem is improved crop efficiency to reduce conversion of grasslands to agriculture while still producing enough food for us all. We suggest that while that may be the beginning of the solution, degraded soils need to be rehabilitated and brought back into production to adequately provide food crops for the increasing population of the globe. Incorporated woodchips can be used to improve the soils' water holding capacity and nutrient (N and P) retention. In a previous study we observed an increase in the gravimetric water content and a decrease in soluble N and P losses when fertilizers were applied in liquid form in soil columns with incorporated woodchips (see attached figure). In this study we examine the availability of the retained water and nutrients to grasses to determine the extent to which this intervention might be used to reestablish plant growth in degraded sandy soils. We also begin examining the quantity of woodchips necessary to retain sufficient water and nutrients to sustain the growth of grasses over the course of a growing season. A laboratory soil column study is currently underway to examine these questions; the results of this study will be presented at the Fall Meeting.

  18. A Dataset for Three-Dimensional Distribution of 39 Elements Including Plant Nutrients and Other Metals and Metalloids in the Soils of a Forested Headwater Catchment.

    Science.gov (United States)

    Wu, B; Wiekenkamp, I; Sun, Y; Fisher, A S; Clough, R; Gottselig, N; Bogena, H; Pütz, T; Brüggemann, N; Vereecken, H; Bol, R

    2017-11-01

    Quantification and evaluation of elemental distribution in forested ecosystems are key requirements to understand element fluxes and their relationship with hydrological and biogeochemical processes in the system. However, datasets supporting such a study on the catchment scale are still limited. Here we provide a dataset comprising spatially highly resolved distributions of 39 elements in soil profiles of a small forested headwater catchment in western Germany () to gain a holistic picture of the state and fluxes of elements in the catchment. The elements include both plant nutrients and other metals and metalloids that were predominately derived from lithospheric or anthropogenic inputs, thereby allowing us to not only capture the nutrient status of the catchment but to also estimate the functional development of the ecosystem. Soil samples were collected at high lateral resolution (≤60 m), and element concentrations were determined vertically for four soil horizons (L/Of, Oh, A, B). From this, a three-dimensional view of the distribution of these elements could be established with high spatial resolution on the catchment scale in a temperate natural forested ecosystem. The dataset can be combined with other datasets and studies of the TERENO (Terrestrial Environmental Observatories) Data Discovery Portal () to reveal elemental fluxes, establish relations between elements and other soil properties, and/or as input for modeling elemental cycling in temperate forested ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Nutrient management in substrate systems

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    Speaking about nutrient solutions in soilless cultivation, different solutions can be discerned. Originally, in soilless culture only one nutrient solution was taken into account, being the solution in the containers in which the plants were grown. Such solutions were intensively moved by air

  20. Mobility problems at the KNK II shut-down systems, cause investigations and valuation in comparison with the experience at other plants

    International Nuclear Information System (INIS)

    Hess, B.

    1992-12-01

    During the operation of the second core of the fast test reactor KNK II the shutdown systems showed repeatedly problems with their mobility, which also caused to be reported events. The present report gives a summary description of the events in chronological order. The investigations to remove the mobility problems and the resulting design modifications are described together with the comments of the licensing authorities on the way to the restart of the plant. The results of the post-irradiation investigations in the hot cells and of sodium-chemical investigations are also described. In addition to the comparison of the events at the KNK plant itself and a review of the experiences at comparable plants it will be shown that all known cases of mobility problems did only influence the availability of the plant but that the safe shut-down of the plant was never at risk [de

  1. Plant‐O‐Matic: a dynamic and mobile guide to all plants of the Americas

    DEFF Research Database (Denmark)

    Goldsmith, Greogory R.; Holme, Naia Morueta; Sandel, Brody Steven

    2016-01-01

    Advances in both informatics and mobile technology are providing exciting new opportunities for generating, disseminating, and engaging with information in the biological sciences at unprecedented spatial scales, particularly in disentangling information on the distributions and natural history o...

  2. Establishment growth and bud bank formation in Epilobium angustifolium: the effects of nutrient availability, plant injury and environmental heterogeneity

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Jitka; Pokorná, Adéla; Klimeš, Leoš

    2009-01-01

    Roč. 87, č. 2 (2009), s. 195-201 ISSN 1916-2790 R&D Projects: GA ČR(CZ) GA526/06/0723 Institutional research plan: CEZ:AV0Z60050516 Keywords : potential bud bank * adventitious root-sprouting * juvenile plant Subject RIV: EF - Botanics Impact factor: 0.904, year: 2009

  3. Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below ground

    NARCIS (Netherlands)

    Andreo Jimenez, B.; Ruyter-Spira, C.P.; Bouwmeester, H.J.; Lopez-Raez, J.A.

    2015-01-01

    Background Plants are exposed to ever changing and often unfavourable environmental conditions, which cause both abiotic and biotic stresses. They have evolved sophisticated mechanisms to flexibly adapt themselves to these stress conditions. To achieve such adaptation, they need to control and

  4. High plant uptake of radiocesium from organic soils due to Cs mobility and low soil K content

    International Nuclear Information System (INIS)

    Sanchez, A.L.; Wright, S.M.; Naylor, C.; Kennedy, V.H.; Dodd, B.A.; Singleton, D.L.; Barnett, C.L.; Stevens, P.A.

    1999-01-01

    Post-Chernobyl experience has demonstrated that persistently high plant transfer of 137 Cs occurs from organic soils in upland and seminatural ecosystems. The soil properties influencing this transfer have been known for some time but have not been quantified. A pot experiment was conducted using 23 soils collected from selected areas of Great Britain, which were spiked with 134 Cs, and Agrostis capillaris grown for 19--45 days. The plant-to-soil 134 Cs concentration ratio (CR) varied from 0.06 to 44; log CR positively correlated to soil organic matter content (R 2 = 0.84), and CR values were highest for soils with low distribution coefficients (K d ) of 134 Cs. Soils with high organic matter contents and high concentrations of NH 4 + in solution showed high 134 Cs mobility (low K d ). The plant-to-soil solution 134 Cs ratio decreased sharply with increasing soil solution K + . A two parameter linear model, used to predict log CR from soil solution K + and K d , explained 94% of the variability in CR values. In conclusion, the high transfer of 134 Cs in organic soils is related to both the high 134 Cs mobility (low clay content and high NH 4 + concentrations) and low K availability

  5. Nutrient balances in the forest energy cycle

    International Nuclear Information System (INIS)

    Olsson, Bengt

    2006-02-01

    In Sweden, recycling of stabilised wood-ashes to forests is considered to compensate for nutrient removals from whole-tree harvesting (i.e. use of harvest residues - slash - for energy purposes). This study has analysed nutrient fluxes through the complete forest energy cycle and estimated mass balances of nutrients in harvested biomass with those in ashes, to investigate the realism in large-scale nutrient compensation with wood-ash. Expected nutrient fluxes from forests through energy plants were calculated based on nutrient and biomass data of forest stands in the Nordic countries, and from data on nutrient fluxes through CFB-plants. The expected stoichiometric composition of wood-ashes was compared with the composition of CFB-fly ashes from various Swedish energy plants. Nutrient contents for different tree fractions were calculated to express the average nutrient concentrations in slash and stems with bark, respectively. A nutrient budget synthesis of the effects of whole-tree harvesting on base cation turnover in the following stand was presented for two experimental sites. Major conclusions from the study are: In the CFB-scenario, where the bottom ash is deposited and only the fly ash can be applied to forests, the fly ash from the slash do not meet the demands for nutrient compensation for slash harvesting. Stem material (50% wood, 50% bark) must be added at equivalent amounts, as the slash to produce the amounts of fly ash needed for compensation of slash harvesting. In the scenario where more stem material was added (75% of total fuel load), the amounts of fly ashes produced hardly compensated for nutrient removals with both stem and slash harvesting. The level of nutrient compensation was lowest for potassium. The stoichiometric nutrient composition of CFB-fly ashes from Swedish energy plants is not similar with the nutrient composition of tree biomass. The higher Ca/P ratio in ashes is only partly explained by the mixture of fuels (e.g. increasing bark

  6. The effect of intra- and interregional labour mobility on plant performance in Denmark

    DEFF Research Database (Denmark)

    Timmermans, Bram; Boschma, Ron

    2014-01-01

    level. As expected, we found that the inflow of skills that are related to skills in the plant impacts positively on plant productivity growth, while inflows of skills that are similar to the plant skills have a negative effect. We used a sophisticated indicator of revealed relatedness that measures...

  7. Intensity of Ground Cover Crop Arachis pintoi, Rhizobium Inoculation and Phosphorus Application and Their Effects on Field Growth and Nutrient Status of Cocoa Plants

    Directory of Open Access Journals (Sweden)

    John Bako Baon

    2006-08-01

    Full Text Available Arachis pintoiis potentially as a cover crop for cocoa (Theobroma cacaoL. farm, however information regarding its effect on the growth of cocoa plants in the field is very limited. The objective of this experiment is to investigate the combined influence of ground cover crop A. pintoi, rhizobial bacterial inoculation and phosphorus (P fertilizer on the growth of cocoa in the field and nutrient status. This experiment laid out in split-split plot design consisted of three levels of cover crop (without, A. pintoiand Calopogonium caeruleum, two levels of rhizobium inoculation (not inoculated and inoculated and two levels of phosphorus application (no P added and P added. The results showed that in field condition the presence of A. pintoias cover crop did not affect the growth of cocoa. On the other hand, C. caeruleumas cover crop tended to restrict cocoa growth compared to A. pintoi. Application of P increased leaf number of cocoa plant. Biomass production of A. pintoiwas 40% higher than C. caeruleum. Soil organic carbon and nitrogen contents were not affected by ground cover crops, though higher value (0.235% N and 1.63% organic C was obtained from combined treatments of inoculation and P addition or neither inoculation nor P addition. In the case of no rhizobium inoculation, soil N content in cocoa farm with A. pintoicover crop was lower than that of without cover crop or with C. caeruleum. Cover crop increased plant N content when there was no inoculation, on the other hand rhizobium inoculation decreased N content of cocoa tissue. Tissue P content of cocoa plant was not influenced by A. Pintoicover crop or by rhizobium inoculation, except that the P tissue content of cocoa was 28% higher when the cover crop was C. caeruleumand inoculated. Key words : Arachis pintoi, Theobroma cacao, Calopogonium caeruleum, rhizobium, nitrogen, phosphorus.

  8. Avaliação do Lithothamnium como corretivo da acidez do solo e fonte de nutrientes para o feijoeiro Evaluation of lithothamnium as corrective of soil acidity and source of nutrients for bean plants

    Directory of Open Access Journals (Sweden)

    Paulo César de Melo

    2003-06-01

    -se que as menores doses de Lithothamnium, nos três solos, foram as que apresentaram melhores resultados nas características avaliadas e que os melhores resultados foram encontrados no LVd.With the objective of evaluating the efficiency of lithothamnium in the correction of the soil acidity and as source of nutrients for bean plants, an experiment was conducted in vases, in greenhouse conditions. The experimental design was a complete randomized one, with nine treatments: control, four doses of lithothamnium (1/4, 1/2, 1 and 2 times the dose for V at 70%, commercial dolomite limestone as reference pattern (dose for V at 70%, lithothamnium (V at 70% without micronutrients, lithothamnium (V at 70% with reduction of 20% of NPK and lithothamnium (V at 70% plus Mg. Three soil classes were evaluated, Quartzarenic (NQ, Yellow Red Latossol (LV and Red Argissol (AV, with four repetitions for each treatment. Four bean plants were cultivated in vases with three dm3. Two of these plants were harvested in the flowering period, with both the macro and micronutrients concentrations being evaluated. The other two plants were harvested at the end of the cycle, when the productions of grain and vegetable dry matter (aerial parts, root, grain and total were evaluated. Lithothamnium showed practically the same effect of the commercial dolomite limestone in the correction of the acidity and in the saturation for bases being used the dose to reach a V at 70%. Lithothamnium promoted in the three soils, the elevation of calcium and magnesium levels, increasing the pH values and saturation for bases, and consequently, reduction in the saturation for aluminum, accrediting the product to be used as corrective and fertilizer. Those effects promoted better nutrition conditions, growth and production of the bean plant. The doses to reach 90% of the maximum production of grains in the NQ and LV soils were 610 and 1.090 kg ha-1, respectively, these doses being lower than those required to reach a V at

  9. Comparação da técnica do saco de náilon móvel com o método de coleta total para determinar a digestibilidade dos nutrientes de alimentos volumosos em eqüinos Comparison of the mobile nylon bag technique with the total collection method to determinate the forages nutrient digestibilities in equine

    Directory of Open Access Journals (Sweden)

    Kleber Villela Araújo

    2000-06-01

    Full Text Available Foram realizados dois ensaios com o objetivo de avaliar a precisão da técnica do saco de náilon móvel em relação ao método de coleta total de fezes, para estimar a digestibilidade aparente dos nutrientes de alimentos volumosos em eqüinos. Foram utilizados seis cavalos adultos sem raça definida, com idade média de sete anos. No primeiro ensaio, foram avaliados os valores de digestibilidade do nutrientes do feno de capim coast-cross, por intermédio da técnica do saco de náilon móvel, com amostra moída em três diferentes granulometrias por meio do método de coleta total de fezes. No segundo ensaio, foram comparados os dois métodos para estimar a digestibilidade, utilizando como alimento teste o capim-elefante. Foi avaliado em laboratório o desaparecimento dos nutrientes das amostras de feno de capim coast-cross e capim-elefante moídas em três diferentes granulometrias, após a lavagem dos sacos em água. Foi usado um delineamento em blocos casualizados, no qual cada cavalo constituiu o bloco, e os métodos de determinação da digestibilidade, os tratamentos. Os resultados mostraram que a técnica do saco de náilon móvel com amostra moída a 1 mm é bom método de estimativa de digestibilidade aparente de MS, EB e hemicelulose, para o feno de capim coast-cross, enquanto para o capim-elefante, a amostra moída a 5 mm é precisa para estimar a digestibilidade aparente da MS, EB e FDN. A moagem das amostras de feno de capim coast-cross e capim-elefante a 1 mm proporcionou a maior perda de partículas dos sacos de náilon, após lavagem em água.Two assays were carried out to evaluate the precision of the mobile nylon bag technique in relation to the total collection method, to estimate the apparent digestibility of nutrients of the forages in equines. Six adult crossbred horses averaging seven years old were used. In first assay, the values of digestibility of the nutrients of coast-cross hay were compared using the mobile nylon

  10. Diversity and importance of filamentous bacteria in biological nutrient removal wastewater treatment plants – a worldwide survey

    DEFF Research Database (Denmark)

    Nierychlo, Marta; McIlroy, Simon Jon; Ziegler, Anja Sloth

    Filamentous bacteria are present in wastewater treatment plants (WWTPs) worldwide where they play an important role by providing structural backbone for activated sludge (AS) flocs and thus ensuring good settling properties. However, their excessive growth may lead to inter-floc bridging, which i...... demonstrated limited diversity of abundant filamentous bacteria in AS community around the globe presenting a hope for solution of sludge settling problems if we can couple the knowledge of filaments identity and their physiology....

  11. Assessing biochar and compost from the organic fraction of municipal solid waste on nutrient availability and plant growth of lettuce

    Science.gov (United States)

    Regkouzas, Panagiotis; Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    Biochars have a high variability in chemical composition, which is determined by types of feedstock and pyrolysis conditions. Inorganic compounds, such as N, P, K and Ca, retained in biochar could be released and become available to plants. The aim of this study was to understand the effect of biochar and compost addition, derived from the organic fraction of municipal solid wastes at two different pyrolysis temperatures 3000C (BC300) and 6000C (BC600), on phosphorus availability and plant growth of lettuce (Lactuca sativa L.) grown in an alkaline loam soil. This type of soil is widely available in Greece, leading us to investigate ways to increase its fertility. A 39 d growth period of lettuce was studied in a greenhouse in triplicate. Treatments comprised of control soils (no addition of biochar or compost), soils treated only with compost (5%) or biochar (5%), and combinations of biochar (5%) plus compost (5%). No fertilization was added to any of the treatments. One biomass cut was obtained. Plant shoot yield and height were determined along with elemental concentration (N, P, K, Ca, Mg, Mn, Fe, Zn, Cu) and uptake of shoots. Results showed that BC300 combined with compost significantly increased P uptake of lettuce. On the other hand, BC600 plus compost, along with the two biochar-only treatments, significantly decreased Ca and Mg uptake of lettuce. N, K, Fe, Zn, Mn and Cu uptakes were not affected by the application of biochar, compost or the combined treatments. Despite the significant increase of P uptake, plant height and shoot yield were not significantly influenced by any of the treatments.

  12. Evaluation of Some Organic Residues on the Availability of Nutrients to wheat Plants Using '15N Isotope

    International Nuclear Information System (INIS)

    Omar, M.A.I.; Ismail, M.M.; El-akel, E.A.; Abdel Aziz, A.H.A.; Abdel-Wadood, A.

    2008-01-01

    The experiment was carried out in pots under greenhouse conditions to evaluate chicken manure and rice straw either individually or combined with mineral fertilizer rates on wheat plant grown in sandy soils. Organic materials were mixed with 5 kg soil pot 1 . 15 N-labeled ammonium sulfate was added after thinned wheat plants. Basal recommended dose of P and K were applied. The treatments were arranged in a completely randomized block design At harvest, the dry weight of straw and grains were recorded. Also Ndff, Ndfs and FUE were calculated. The obtained results showed that the application of organic and inorganic nitrogen fertilizer was significantly improved the yield of wheat straw and grains and have the order of ammonium sulfate (AS) > chicken manure (CM) > rice straw (RS). The effect was more pronounced when both CM and RS were applied in combined with labelled ammonium sulfate at the rates of (25% + 75%) and (50% + 50%). Fertilizer use efficiency (%FUE) was in the range of 3.9% to 13% in straw and 7.9% to 35.3% in grains. N derived from fertilizer (Ndff) by either straw or grains was ranged from 25.32 - 48.90% dependent on N fertilization forms and rates. Results indicated the importance of organic-N as a supplemental source for nitrogen and other elements which may be useful for enhancement of plant growth as well as saving the environment from pollution

  13. Using a Hydrodynamic and Biogeochemical Model to Investigate the Effects of Nutrient Loading from a Wastewater Treatment Plant into Lake Michigan

    Science.gov (United States)

    Khazaei, B.; Bravo, H.; Bootsma, H.

    2017-12-01

    There is clear evidence that excessive nutrient, in particular phosphorus (P), loading into Lake Michigan has produced significant problems, such as algal blooms, hypoxia, and reduced water quality. Addressing those problems requires understanding the transport and fate of P in the lake. The dominance of mixing and dispersion processes on the P transport has been demonstrated, yet recent research has shown the remarkable influence of dreissenid mussels and Cladophora on water clarity and the P budget. Since mussels and Cladophora tend to concentrate near the coastlines, nearshore-offshore P exchange is of a big importance. In this research, a computer model was developed to simulate the P cycle by incorporating the biogeochemical processes relevant to the transport of P into a 3D high-resolution hydrodynamic model. The near-bottom biogeochemical model consists of three linked modules: Cladophora, mussel, and sediment storage modules. The model was applied to the Milwaukee Metropolitan Sewerage District South Shore Wastewater Treatment Plant, between June and October of 2013 and 2015, as a case study. The plant outfall introduces a point source of P into the study domain—the nearshore zone of Lake Michigan adjacent to Milwaukee County. The model was validated against field observations of water temperature, dissolved phosphorus (DP), particulate phosphorus (PP), Cladophora biomass, and P content. The model simulations showed reasonably good agreement with field measurements. Model results showed a) different temporal patterns in 2013 and 2015, b) a larger range of fluctuations in DP than that in PP, and c) that the effects of mussels and Cladophora could explain the differences in patterns and ranges. PP concentrations showed more frequent spikes of concentration in 2013 due to resuspension events during that year because of stronger winds. The model is being applied as a management tool to test scenarios of nutrient loading to determine effluent P limits for the

  14. Effect of different nutrient supply and other growth factors on the activity of the oxidizing enzymes in plants

    Energy Technology Data Exchange (ETDEWEB)

    Amberger, A

    1960-01-01

    Among the plants studied were french beans and peas; the oxidizing enzymes examined were ascorbic acid oxidase, cytochrome oxidase, phenol oxidase, peroxidase and catalase. Increasing the K dosage reduced enzyme activity and raised dry matter contents until at a very high dosage this action was reversed. Both N and P increased enzyme activity and yields. With B high enzyme activity and low dry matter content were both associated with deficiency and toxicity levels. Increasing the Fe dosage led to a rise in both dry matter content and enzyme activity, whereas F depressed yields and raised enzyme activity. Lack of water increased respiration. Light inhibited all enzyme activity.

  15. Mobilities Mobilities

    Directory of Open Access Journals (Sweden)

    César Pompeyo

    2011-12-01

    Full Text Available Urry, John (2007 Mobilities.Oxford: Polity Press.Urry, John (2007 Mobilities.Oxford: Polity Press.John Urry (1946-, profesor en la Universidad de Lancaster, es un sociólogo de sobra conocido y altamente reputado en el panorama internacional de las ciencias sociales. Su dilatada carrera, aparentemente dispersa y diversificada, ha seguido senderos bastante bien definidos dejando tras de sí un catálogo extenso de obras sociológicas de primer nivel. Sus primeros trabajos se centraban en el campo de la teoría social y la filosofía de las ciencias sociales o de la sociología del poder [...

  16. The ability to manipulate plant glucosinolates and nutrients explains the better performance of Bemisia tabaci Middle East-Asia Minor 1 than Mediterranean on cabbage plants.

    Science.gov (United States)

    Cui, Hongying; Guo, Litao; Wang, Shaoli; Xie, Wen; Jiao, Xiaoguo; Wu, Qingjun; Zhang, Youjun

    2017-08-01

    The performance of herbivorous insects is greatly affected by host chemical defenses and nutritional quality. Some herbivores have developed the ability to manipulate plant defenses via signaling pathways. It is currently unclear, however, whether a herbivore can benefit by simultaneously reducing plant defenses and enhancing plant nutritional quality. Here, we show that the better performance of the whitefly Bemisia tabaci Middle East-Asia Minor 1 (MEAM1; formerly the "B" biotype) than Mediterranean (MED; formerly the "Q" biotype) on cabbage is associated with a suppression of glucosinolate (GS) content and an increase in amino acid supply in MEAM1-infested cabbage compared with MED-infested cabbage. MEAM1 had higher survival, higher fecundity, higher intrinsic rate of increase ( r m ), a longer life span, and a shorter developmental time than MED on cabbage plants. Amino acid content was higher in cabbage infested with MEAM1 than MED. Although infestation by either biotype decreased the levels of total GS, aliphatic GS, glucoiberin, sinigrin, glucobrassicin, and 4OH-glucobrassicin, and the expression of related genes in cabbage, MED infestation increased the levels of 4ME-glucobrassicin, neoglucobrassicin, progoitrin, and glucoraphanin. The GS content and expression of GS-related genes were higher in cabbage infested with MED than with MEAM1. Our results suggest that MEAM1 performs better than MED on cabbage by manipulating host defenses and nutritional quality.

  17. Landscape and host plant effects on reproduction by a mobile, polyphagous, multivoltine arthropod herbivore

    Science.gov (United States)

    Landscape factors can significantly influence arthropod natural enemy and herbivore pest populations. The economically important brown stink bug, Euschistus servus, is a native mobile, polyphagous and multivoltine pest of many crops in southeastern USA and understanding the relative influence of loc...

  18. Influence of plant roots upon the mobility of radionuclides in soil, with respect to location of contamination below the surface

    International Nuclear Information System (INIS)

    Harvey, N.W.; Shaw, G.; Bell, N.J.B.

    1997-01-01

    The movement of 85 Sr, 137 Cs, 54 Mn and 60 Co in the 50 cm soil profile was studied with and without the presence of plant roots (triticum aestivum) in order to investigate the influence of roots and depth contamination upon the migration of radionuclides. The water table was maintained manually at 3 cm from the bottom. The physicochemical characteristics (E h Fe -2 , NH 4 + , pH and moisture content) as well as the total and extractable radioactivity were investigated. In the discrete contamination, where the location of contamination varied within the soil profile (0-5, 25-30 or 45-50 cm from the top), the influence of location upon the movement of these radionuclides was also studied. It was found that the changes in the soil physicochemical characteristics influenced the mobility of the four radionuclides. The extractability of 54 Mn and 60 Co was significantly increased in the reducing region of the soil, whereas that of 85 Sr, 137 Cs was not. Plant roots excerted significant effects upon the soil characteristics, via, reducing the E h pH and moisture content of the soil; increasing the extractability of both 54 Mn and 60 Co from the depth of 35 cm downwards. Radionuclide migration occurred via physicochemical and biological transport. The biological transport via plant roots was of particular importance for 137 Cs. Location of contamination had a significant influence upon the mobility of radionuclides. The migration of radionuclides was in the sequence of contamination in middle > bottom > top. The degree of the influence varied with radionuclides concerned. In the top layer contamination, the rank of the migration from the contamination layers, on the other hand 54 Mn, 60 Co and 137 Cs were more mobile and the movement was: 85 Sr ∼ 54 Mn ∼ 60 Co > 137 Cs. In the middle and bottom contamination layers, on the other hand, 54 Mn and 60 Co and 137 Cs were more mobile and the movement was 85 Sr ∼ 54 Mn ∼ 60 Co ∼ 137 Cs. (author)

  19. Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen Erwinia Tracheiphila

    Science.gov (United States)

    Shapiro, Lori R.; Scully, Erin D.; Straub, Timothy J.; Park, Jihye; Stephenson, Andrew G.; Beattie, Gwyn A.; Gleason, Mark L.; Kolter, Roberto; Coelho, Miguel C.; De Moraes, Consuelo M.; Mescher, Mark C.; Zhaxybayeva, Olga

    2016-01-01

    Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila’s current ecological niche. PMID:26992913

  20. Use of natural gas, methanol, and ethanol fuel emulsions as environmentally friendly energy carriers for mobile heat power plants

    Science.gov (United States)

    Likhanov, V. A.; Lopatin, O. P.

    2017-12-01

    The need for using environmentally friendly energy carriers for mobile heat power plants (HPPs) is grounded. Ecologically friendly sources of energy, such as natural gas as well as renewable methyl and ethyl alcohols, are investigated. In order to develop, determine, and optimize the composition of environmentally friendly energy carriers for an HPP, the latter has been tested when working on diesel fuel (DF), compressed natural gas (CNG), and methanol and ethanol fuel emulsions (MFE, EFE). It has been experimentally established that, for the application of environmentally friendly energy carriers for a 4Ch 11.0/12.5 diesel engine of a mobile fuel and power plant, it is necessary to maintain the following ratio of components when working on CNG: 80% gas and 20% DF primer portion. When working on an alcohol mixture, emulsions of the following composition were used: 25% alcohol (methanol or ethanol), 0.5% detergent-dispersant additive succinimide C-5A, 7% water, and 67.5% DF. When this diesel passed from oil DF to environmentally friendly energy sources, it allowed for the reduction of the content of exhaust gases (EG) (1) when working on CNG with recirculation of exhaust gases (EGR) (recirculation was used to eliminate the increased amount of nitric oxides by using CNG): carbon black by 5.8 times, carbon dioxide by 45.9%, and carbon monoxide by 23.8%; (2) when working on MFE: carbon black by 6.4 times, nitrogen oxides by 29.6%, carbon dioxide by 10.1%, and carbon oxide by 47.6%; (3) when working on EFE: carbon black by 4.8 times; nitrogen oxides by 40.3%, carbon dioxide by 26.6%, and carbon monoxide by 28.6%. The prospects of use of environmentally friendly energy carriers in diesels of mobile HPPs, such as natural gas, ethanol, and methanol, has been determined.

  1. The ALMT Family of Organic Acid Transporters in Plants and Their Involvement in Detoxification and Nutrient Security.

    Science.gov (United States)

    Sharma, Tripti; Dreyer, Ingo; Kochian, Leon; Piñeros, Miguel A

    2016-01-01

    About a decade ago, members of a new protein family of anion channels were discovered on the basis of their ability to confer on plants the tolerance toward toxic aluminum ions in the soil. The efflux of Al 3+ -chelating malate anions through these channels is stimulated by external Al 3+ ions. This feature of a few proteins determined the name of the entire protein family as Aluminum-activated Malate Transporters (ALMT). Meanwhile, after several years of research, it is known that the physiological roles of ALMTs go far beyond Al-detoxification. In this review article we summarize the current knowledge on this transporter family and assess their involvement in diverse physiological processes.

  2. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security

    Directory of Open Access Journals (Sweden)

    Tripti Sharma

    2016-10-01

    Full Text Available About a decade ago, members of a new protein family of anion channels were discovered on the basis of their ability to confer on plants the tolerance towards toxic aluminum ions in the soil. The efflux of Al3+-chelating malate anions through these channels is stimulated by external Al3+ ions. This feature of a few proteins determined the name of the entire protein family as Aluminum-activated Malate Transporters (ALMT. Meanwhile, after several years of research, it is known that the physiological roles of ALMTs go far beyond Al-detoxification. In this review article we summarize the current knowledge on this transporter family and assess their involvement in diverse physiological processes.

  3. Mobile dune fixation by a fast-growing clonal plant : a full life-cycle analysis

    NARCIS (Netherlands)

    Li, Shou-Li; Yu, Fei-Hai; Werger, Marinus J A; Dong, Ming; During, Heinjo J; Zuidema, Pieter A

    2015-01-01

    Desertification is a global environmental problem, and arid dunes with sparse vegetation are especially vulnerable to desertification. One way to combat desertification is to increase vegetation cover by planting plant species that can realize fast population expansion, even in harsh environments.

  4. Mobile dune fixation by a fast-growing clonal plant: a full life-cycle analysis

    NARCIS (Netherlands)

    Werger, M.J.A.; During, H.J.; Zuidema, P.A.

    2015-01-01

    Desertification is a global environmental problem, and arid dunes with sparse vegetation are especially vulnerable to desertification. One way to combat desertification is to increase vegetation cover by planting plant species that can realize fast population expansion, even in harsh environments.

  5. Balanço de nutrientes em povoamento de Eucalyptus saligna implantado sobre Cambissolo Háplico no RS Nutrient balance in plantation of Eucalyptus saligna planted on Inceptisol in Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Michael Mazurana

    2011-09-01

    Full Text Available A fragilidade de um sistema florestal pode ser avaliada através do balanço de nutrientes, destacando a eficiência da ciclagem sendo que, em certos casos, a adubação deve ser utilizada para manter ou elevar a produtividade do sistema. Objetivou-se com este estudo avaliar o comportamento de diferentes sistemas de preparo de solo em Cambissolo Háplico e sua influência nas perdas de nutrientes transportados por erosão em área cultivada com Eucalyptus saligna. Os tratamentos foram constituídos por quatro métodos de preparo do solo: subsolagem interrompida com resíduo (SIR, subsolagem contínua com resíduo (SCR, subsolagem contínua sem resíduo (SSR e coveamento mecânico (CME, em delineamento de blocos ao acaso com três repetições por tratamento. O sistema SSR apresentou as maiores perdas de nutrientes quando comparadas com as dos outros métodos de preparo de solo. As maiores perdas de nutrientes pela erosão hídrica foram, pela ordem, K > Ca > Mg > P > Cu > B. Os sistemas de preparo SIR e SSR apresentaram os maiores teores de nutrientes contidos na parte aérea e o menor balanço nutricional, respectivamente.The forest system fragility can be evaluated through nutrient balance, with an emphasis in the cycling efficiency to maintain or elevate of productivity of system. The objective of this study was to evaluate the effects of different soil tillage systems on nutrient losses transported by erosion on an Inceptisol with Eucalyptus saligna. Four tillage systems were tested: interrupted deep chiseling with residue (SIR, continuous deep chiseling with residue (SCR, continuous deep chiseling without residue (SSR and mechanical pitting (CME. The SIR system showed the greatest nutrient losses. The loss of nutrients was higher by water erosion, in the following order, K > Ca > Mg > P > Cu > B. SIR and SSR tillage systems had the highest levels of nutrients in shoots and lower nutritional balance, respectively.

  6. Mobile plant for encapsulating of solid high-level radioactive waste in metal matrix

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Arustamov, A.Eh.; Shiryaev, V.V.; Ozhovan, M.I.; Semenov, K.N.; Kachalov, M.B.

    1993-01-01

    Technology for disposal of spent radionuclide sources of ionizing radiation into the standard well-type storage facilities is considered. Universal mobile facility, providing for incorporation of high-level solid wastes into metallic matrices, is proposed. The facility consists of separate moduli, assembled on a transport platform. Electrical meter, wherein the matrix metal (lead and its alloys) is melted and heated up to 600-800 C constitutes the basic modulus in the facility. 4 refs., 4 figs

  7. Technetium accumulation, fate, and behavior in plants

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Wildung, R.E.; Garland, T.R.

    1978-01-01

    Technetium, a product of the nuclear fuel cycle, is highly soluble in water and mobile in soils as the pertechnetate ion (TcO - 4 ). Soluble ions in soil have the potential for competing with nutrient ions for membrane carrier sites involved in ion uptake by plants. A study was, therefore, undertaken to determine the availability, toxicity, and mechanism of pertechnetate uptake by soybean (Glycine max cv. Williams). Technetium was effectively accumulated by plants at soil concentrations of 0.01 to 0.1 μg/g and in nutrient culture at levels as low as 0.02 pg/ml. Plants grown on soils containing technetium at levels below 0.1 μg/g effectively removed up to 90% of the technetium from soil. Minimal mobilization of technetium from vegetative tissues to the seed occurred during senescence. Chemical analyses indicated that the xylem-mobile form of technetium was TcO 4 - . The uptake rate of technetium by intact plants was multiphasic over the concentration range of 0.01 to 10μM; this suggests active uptake and a specificity for technetium in the root absorption process. Because of the efficiency of technetium accumulation and the probability of its chemical toxicity, competition kinetic studies were undertaken to identify possible nutrient analogs. Nutrients effective in reducing technetium uptake included the Mn 2+ , SO 4 2- , H 2 PO 4 - , and MoO 4 2- ions

  8. Effect of nutrients and fermentation conditions on the production of biosurfactants using rhizobacteria isolated from fique plants

    Directory of Open Access Journals (Sweden)

    Aura M. Pedroza-Rodríguez

    2010-12-01

    Full Text Available To isolate biosurfactant-producing microorganisms from the rhizosphere of fique and to select the best genus to evaluate theeffect of nutritional and fermentation conditions on the production of rhamnolipids. Materials and methods. Rhizospheric soil wassampled in three areas of Cauca. The best genus was selected for the experimental designs (Plackett Burman and 22 factorial and to find theproduction conditions for the growth kinetics at an Erlenmeyer flask scale. Results. Isolates from the rhizosphere of fique plants were fromgroups (or genera of Bacillus, Pseudomonas and Actinomycetes, being Pseudomonas the more responsive in preliminary testing foremulsification. From the results of the experimental designs and the kinetics of production, we found that rhamnose synthesis associatedwith rhamnolipids (3.2 g/l and emulsification (68% EC24 was significantly favored (p <0.0001 by cultivating an inoculum of 10% v/vof Pseudomonas fluorescens in a medium composed of: soybean oil 2% (v/v, K2HPO40.2% (w/v, yeast extract 0.4 g/l, NH4NO33.7 g/l, 1 ml trace elements (CoCl320 mg/l, H3BO330 mg/l, ZnSO410 mg/l, Cu2SO41 mg/l, Na2MoO43 mg/l, FeSO410 mg/l MnSO42,6 mg/l and pH 7.2. Conclusion. Of all the microbial genera isolated from the rhizosphere of fique, Pseudomonas fluorescens had the greatestpotential in the production of biosurfactants of the rhamnolipids family.

  9. Effects of aluminum on plant growth and nutrient uptake in young physic nut plantsEfeitos do alumínio no crescimento e na absorção de nutrientes em plantas jovens de pinhão-manso

    Directory of Open Access Journals (Sweden)

    João Alexandre Lopes Dranski

    2012-10-01

    Full Text Available Aluminum (Al3+ toxicity is a major limiting factor to crop productivity in acid soils. The effects of aluminum on root and shoot growth of physic nut (Jatropha curcas L. young plants and, the uptake and distribution of phosphorus, calcium, magnesium and aluminum in the roots and shoots were investigated in the present study. Plants were grown in 2.5L pots in a greenhouse. After fourteen days of adaptation to nutrient solution, plants were exposed to Al concentrations of 0, 370, 740, 1,100 and 1,480 ?mol L–1, corresponding to an active Al3+ solution of 13.3, 35.3, 90.0, 153.3 and 220.7 ?mol L–1, respectively. The dry matter partitioning between roots, stems and leaves, and the concentrations of P, Ca, Mg and Al in plant tissue, were measured after 75 days exposure to Al. The increasing level of Al3+ activity in solution progressively decreased the growth of the shoot and root of physic nut plants, and at the two highest active Al3+ levels, plants showed morphological abnormalities typical of the toxicity caused by this metal. Higher Al3+ activity reduced P concentrations in leaves and Ca and Mg in leaves and roots of physic nut, demonstrating the effect of Al on the uptake, transport and use of these nutrients by plants. The Al accumulated preferentially in the roots of physic nut, whereas only a small amount was transported to shoots.A toxicidade de alumínio (Al3+ é um dos principais fatores que limitam a produtividade das culturas em solos ácidos. O objetivo deste estudo foi avaliar o efeito do alumínio no crescimento e na absorção de fósforo, cálcio, magnésio e alumínio em plantas jovens de pinhão-manso, cultivadas em solução nutritiva. O experimento foi conduzido em vasos de 2,5 L e as plantas crescidas em casa de vegetação. Após 14 dias de adaptação em solução nutritiva, as plantas foram submetidas a concentrações de Al de: 0; 370; 740; 1.110 e 1.480 ?mol L–1, que corresponderam a atividade de Al3+ em solução de

  10. Determinação de nutrientes minerais em plantas medicinais Determination of minerals in medicinal plants

    Directory of Open Access Journals (Sweden)

    Maria Mozarina Beserra Almeida

    2002-01-01

    Full Text Available O uso de vegetais tem-se difundido largamente nos últimos anos para fins alimentícios, medicinais e cosméticos. Devido à importância do estudo da composição inorgânica desses vegetais, o presente trabalho se propõe a analisar a ocorrência de minerais com comprovadas funções no metabolismo humano em dez ervas de popular uso terapêutico. As amostras estudadas foram tratadas por dois métodos distintos: calcinação seguida de tratamento ácido ou infusão para a obtenção dos chás. Posteriormente, os metais foram determinados quantitativamente utilizando-se espectrofotometria de absorção atômica (Ca, Mg, Mn e Zn, espectrofotometria de absorção molecular (Al e Fe e fotometria de chama (K e Na. Comparando-se os resultados encontrados no presente trabalho com os valores diários recomendados pela RDA e WHO, sugere-se estudos para a utilização de Chenopodium ambrosioides L. como uma fonte alternativa complementar de Na, K, Mg e Zn, e do Ageratum conyzoides L. como fonte de Ca, Mg e Fe na dieta alimentar. Embora Lippia alba e Justicia gendarussa L. tenham apresentado elevados valores de Ca, recomenda-se uma certa prudência quanto ao uso desse vegetal, devido aos significativos teores encontrados para Al.The use of vegetables has become widely spread as nourishment, medicinal and cosmetic purposes in recent years. Due to the importance of the analytical study of this class of plants, and considering the growing interest about their inorganic composition that can be represented by the significant number of publications during the last years, the present work intended to analyze the occurrence of some minerals in ten herbs of popular therapeutic use that play important roles in the human metabolism. The studied samples were treated by two different methods: 1 dry ashing followed by acid treatment and 2 as tea by infusion of leaves in boiling water. Next, the metals were quantitatively determined by atomic absorption

  11. Effects of mineral nutrients on ozone susceptibility of Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Craker, L.E.

    1971-01-01

    Susceptibility of Lemna minor L. to ozone injury was influenced by the mineral nutrients available to the Lemna plants. Additional nitrogen or additional iron in the nutrient media respectively enhanced or reduced chlorophyll loss of Lemna plants fumigated with ozone. Lemna plants growing on a nutrient medium lacking copper had significantly less injury from ozone fumigation than Lemna plants growing on a complete nutrient medium. There were apparent interactions among phosphorus and potassium nutrient levels in determing the Lemna plant's susceptibility to ozone.

  12. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain)

    International Nuclear Information System (INIS)

    Murciego, A. Murciego; Sanchez, A. Garcia; Gonzalez, M.A. Rodriguez; Gil, E. Pinilla; Gordillo, C. Toro; Fernandez, J. Cabezas; Triguero, T. Buyolo

    2007-01-01

    A study about topsoil antimony distribution and mobility from the soils to the biomass has been afforded in three abandoned Sb mining areas located at Extremadura. Physico-chemical characteristics of the soils and total antimony levels were measured in soils and autochthonous plant species (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa). Comparison with corresponding values in reference areas isolated from the mining activities is discussed. Antimony mobility in the soils was estimated by measuring the water extractable fraction; low results were obtained for the three soil areas, with no statistical differences. Plant ability to accumulate antimony was estimated by use of plant accumulation coefficients (PAC). Seasonal (spring vs. autumn) effects on the antimony content in the plant species. Cytisus striatus from Mari Rosa mine presented antimony excluder characteristics, whereas Dittrichia viscosa specimens growing in San Antonio mine showed a significant antimony bioaccumulation. - Bioaccumulation of antimony in vegetal species growing in mining areas

  13. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Murciego, A. Murciego [Area de Cristalografia y Mineralogia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Sanchez, A. Garcia [IRNA-CSIC, Departamento de Geoquimica Ambiental, Aptdo. 257, Salamanca (Spain); Gonzalez, M.A. Rodriguez [Area de Cristalografia y Mineralogia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Gil, E. Pinilla [Departamento de Quimica Analitica y Electroquimica, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain)]. E-mail: epinilla@unex.es; Gordillo, C. Toro [Departamento de Quimica Analitica y Electroquimica, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Fernandez, J. Cabezas [Area de Ecologia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Triguero, T. Buyolo [Area de Ecologia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain)

    2007-01-15

    A study about topsoil antimony distribution and mobility from the soils to the biomass has been afforded in three abandoned Sb mining areas located at Extremadura. Physico-chemical characteristics of the soils and total antimony levels were measured in soils and autochthonous plant species (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa). Comparison with corresponding values in reference areas isolated from the mining activities is discussed. Antimony mobility in the soils was estimated by measuring the water extractable fraction; low results were obtained for the three soil areas, with no statistical differences. Plant ability to accumulate antimony was estimated by use of plant accumulation coefficients (PAC). Seasonal (spring vs. autumn) effects on the antimony content in the plant species. Cytisus striatus from Mari Rosa mine presented antimony excluder characteristics, whereas Dittrichia viscosa specimens growing in San Antonio mine showed a significant antimony bioaccumulation. - Bioaccumulation of antimony in vegetal species growing in mining areas.

  14. Hydrogen from renewable energy: A pilot plant for thermal production and mobility

    Science.gov (United States)

    Degiorgis, L.; Santarelli, M.; Calì, M.

    In the mainframe of a research contract, a feasibility pre-design study of a hydrogen-fuelled Laboratory-Village has been carried out: the goals are the design and the simulation of a demonstration plant based on hydrogen as primary fuel. The hydrogen is produced by electrolysis, from electric power produced by a mix of hydroelectric and solar photovoltaic plants. The plant will be located in a small remote village in Valle d'Aosta (Italy). This country has large water availability from glaciers and mountains, so electricity production from fluent water hydroelectric plants is abundant and cheap. Therefore, the production of hydrogen during the night (instead of selling the electricity to the grid at very low prices) could become a good economic choice, and hydrogen could be a competitive local fuel in term of costs, if compared to oil or gas. The H 2 will be produced and stored, and used to feed a hydrogen vehicle and for thermal purposes (heating requirement of three buildings), allowing a real field test (Village-Laboratory). Due to the high level of pressure requested for H 2 storage on-board in the vehicle, the choice has been the experimental test of a prototype laboratory-scale high-pressure PEM electrolyzer: a test laboratory has been designed, to investigate the energy savings related to this technology. In the paper, the description of the dynamic simulation of the plant (developed with TRNSYS) together with a detailed design and an economic analysis (proving the technical and economical feasibility of the installation) has been carried out. Moreover, the design of the high-pressure PEM electrolyzer is described.

  15. System for leaks inspection in a nuclear plant by means of a mobile robot

    International Nuclear Information System (INIS)

    Ramirez S, R.; Segovia de los Rios, J.A.

    2004-01-01

    In this work a supervision system that could allow to carry out the detection of leaks of vapor in pipe lines, using a mobile robot Pioneer 2 -D Xe, which is controlled by means of an external micro controller 68HC912B32 programmed in Forth and using diffuse control to travel a road by means of the one to follow one lines painted in the floor is described. The robot takes in his superior part, a thermographic camera that allows to determine if leaks of vapor exist in pipes and a dosemeter to measure the present radiation levels in the place, besides a video camera. This way, the personnel, can make sure of having a propitious situation to make the maintenance of the facilities. (Author)

  16. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals.

    Science.gov (United States)

    Schmidt, Ulrich

    2003-01-01

    For heavy metal-contaminated agricultural land, low-cost, plant-based phytoextraction measures can be a key element for a new land management strategy. When agents are applied into the soil, the solubility of heavy metals and their subsequent accumulation by plants can be increased, and, therefore, phytoextraction enhanced. An overview is given of the state of the art of enhancing heavy metal solubility in soils, increasing the heavy metal accumulation of several high-biomass-yielding and metal-tolerant plants, and the effect of these measures on the risk of heavy metal leaching. Several organic as well as inorganic agents can effectively and specifically increase solubility and, therefore, accumulation of heavy metals by several plant species. Crops like willow (Salix viminalis L.), Indian mustard [Brassica juncea (L.) Czern.], corn (Zea mays L.), and sunflower (Helianthus annuus L.) show high tolerance to heavy metals and are, therefore, to a certain extent able to use the surpluses that originate from soil manipulation. More than 100-fold increases of lead concentrations in the biomass of crops were reported, when ethylenediaminetetraacetic acid (EDTA) was applied to contaminated soils. Uranium concentrations could be strongly increased when citric acid was applied. Cadmium and zinc concentrations could be enhanced by inorganic agents like elemental sulfur or ammonium sulfate. However, leaching of heavy metals due to increased mobility in soils cannot be excluded. Thus, implementation on the field scale must consider measures to minimize leaching. So, the application of more than 1 g EDTA kg(-1) becomes inefficient as lead concentration in crops is not enhanced and leaching rate increases. Moreover, for large-scale applications, agricultural measures as placement of agents, dosage splitting, the kind and amount of agents applied, and the soil properties are important factors governing plant growth, heavy metal concentrations, and leaching rates. Effective

  17. Mobility of radionuclides and MCPA in the soil-water-plant system. Final report

    International Nuclear Information System (INIS)

    Gerzabek, M.H.; Haberhauer, G.; Strebl, F.; Temmel, B.

    1998-01-01

    The present report describes results of soil-to-plant transfer investigations for radionuclides in the years 1990 - 1997 obtained in lysimeter experiments of the Research Centre Seibersdorf and results of an investigation with 14 C-labelled MCPA. The lysimeter facility consists of twelve soil monoliths from four sites (Eutric Cambisol, Dystric Cambisol, Dystric Cambisol on crystalline, Dystric Gleysol/drained) with three replicates each and is located in Seibersdorf/Austria, a region with a pannonian climate (pronounced differences between hot and dry summers and wet winter conditions, annual mean of precipitation: 517 mm, mean annual temperature: 9.8 degrees C). Besides soil-to-plant transfer factors (TF) for endive, maize, wheat, mustard, sugarbeet, potato, Faba bean, rye grass, fluxes were calculated taking into account biomass production and growth time. Total median values of TF's (dry matter basis) for the three radionuclides decreased from 226 Ra (0.068 kg kg -1 ) to 137 CS (0.043 kg kg -1 ) and 60 CO (0.018 kg kg -1 ); flux values exhibited the same ranking. The varying physical and chemical properties of the four experimental soils resulted in statistically significant differences in transfer factors or fluxes between the investigated soils for 1 37 Cs and 226 Ra, but not for 60 CO . Differences in transfer between plant species and plant parts are distinct, with graminaceous species showing, on average, TF values 5.8 and 15 times lower than dicodyledonous species for 137 Cs and 60 CO, respectively. This pattern was not found for 226 Ra. It can be concluded that transfer heavily influenced by soil characteristics, whilst the plant-specific factors are the main source of TF variability for 60 Co. The variability of 226 Ra transfer originates both from soil properties and plant species behaviour. Model calculations showed that for Cs, Co and Ra leaching - at least in medium term - has no distinct impact on the overall radioactivity losses of the soil profile

  18. Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid.

    Directory of Open Access Journals (Sweden)

    Hyong Woo Choi

    2016-03-01

    Full Text Available Damage-associated molecular pattern molecules (DAMPs signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3 is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i MAPK activation, ii defense-related gene expression, iii callose deposition, and iv enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast. Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA, which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor.

  19. Influence of nitrogen additions on litter decomposition, nutrient dynamics, and enzymatic activity of two plant species in a peatland in Northeast China.

    Science.gov (United States)

    Song, Yanyu; Song, Changchun; Ren, Jiusheng; Tan, Wenwen; Jin, Shaofei; Jiang, Lei

    2018-06-01

    Nitrogen (N) availability affects litter decomposition and nutrient dynamics, especially in N-limited ecosystems. We investigated the response of litter decomposition to N additions in Eriophorum vaginatum and Vaccinium uliginosum peatlands. These two species dominate peatlands in Northeast China. In 2012, mesh bags containing senesced leaf litter of Eriophorum vaginatum and Vaccinium uliginosum were placed in N addition plots and sprayed monthly for two years with NH 4 NO 3 solution at dose rates of 0, 6, 12, and 24gNm -2 year -1 (CK, N1, N2 and N3, respectively). Mass loss, N and phosphorus (P) content, and enzymatic activity were measured over time as litter decomposed. In the control plots, V. uliginosum litter decomposed faster than E. vaginatum litter. N1, N2, and N3 treatments increased the mass losses of V. uliginosum litter by 6%, 9%, and 4% respectively, when compared with control. No significant influence of N additions was found on the decomposition of E. vaginatum litter. However, N and P content in E. vaginatum litter and V. uliginosum litter significantly increased with N additions. Moreover, N additions significantly promoted invertase and β-glucosidase activity in E. vaginatum and V. uliginosum litter. However, only in V. uliginosum litter was polyphenol oxidase activity significantly enhanced. Our results showed that initial litter quality and polyphenol oxidase activity influence the response of plant litter to N additions in peatland ecosystems. Increased N availability may change peatland soil N and P cycling by enhancing N and P immobilization during litter decomposition. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A new generic plant growth model framework (PMF): Simulating distributed dynamic interaction of biomass production and its interaction with water and nutrients fluxes

    Science.gov (United States)

    Multsch, Sebastian; Kraft, Philipp; Frede, Hans-Georg; Breuer, Lutz

    2010-05-01

    Today, crop models have a widespread application in natural sciences, because plant growth interacts and modifies the environment. Transport processes involve water and nutrient uptake from the saturated and unsaturated zone in the pedosphere. Turnover processes include the conversion of dead root biomass into organic matter. Transpiration and the interception of radiation influence the energy exchange between atmosphere and biosphere. But many more feedback mechanisms might be of interest, including erosion, soil compaction or trace gas exchanges. Most of the existing crop models have a closed structure and do not provide interfaces or code design elements for easy data transfer or process exchange with other models during runtime. Changes in the model structure, the inclusion of alternative process descriptions or the implementation of additional functionalities requires a lot of coding. The same is true if models are being upscaled from field to landscape or catchment scale. We therefore conclude that future integrated model developments would benefit from a model structure that has the following requirements: replaceability, expandability and independency. In addition to these requirements we also propose the interactivity of models, which means that models that are being coupled are highly interacting and depending on each other, i.e. the model should be open for influences from other independent models and react on influences directly. Hence, a model which consists of building blocks seems to be reasonable. The aim of the study is the presentation of the new crop model type, the plant growth model framework, PMF. The software concept refers to an object-oriented approach, which is developed with the Unified Modeling Language (UML). The model is implemented with Python, a high level object-oriented programming language. The integration of the models with a setup code enables the data transfer on the computer memory level and direct exchange of information

  1. Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation.

    Science.gov (United States)

    Tao, Jun; Ma, Yi-Cheng; Yang, Zhong-Shan; Zou, Cheng-Gang; Zhang, Ke-Qin

    2016-05-01

    Starvation is probably the most common stressful situation in nature. In vertebrates, elevation of the biogenic amine norepinephrine levels is common during starvation. However, the precise role of norepinephrine in nutrient deprivation remains largely unknown. We report that in the free-living nematode Caenorhabditis elegans, up-regulation of the biosynthesis of octopamine, the invertebrate counterpart of norepinephrine, serves as a mechanism to adapt to starvation. During nutrient deprivation, the nuclear receptor DAF-12, known to sense nutritional cues, up-regulates the expression of tbh-1 that encodes tyramine β-hydroxylase, a key enzyme for octopamine biosynthesis, in the RIC neurons. Octopamine induces the expression of the lipase gene lips-6 via its receptor SER-3 in the intestine. LIPS-6, in turn, elicits lipid mobilization. Our findings reveal that octopamine acts as an endocrine regulator linking nutrient cues to lipolysis to maintain energy homeostasis, and suggest that such a mechanism may be evolutionally conserved in diverse organisms.

  2. Some advanced concepts of mobile robotics for plant inspection and maintenance

    International Nuclear Information System (INIS)

    Halme, A.

    1994-01-01

    The paper introduces two concepts in robotics the feasibility of which are presently being studied for plant inspection/maintenance purposes. One of them is a walking machine platform which utilizes walking on discrete set of points making it possible to feed energy trough legs and/or grip on fixing points when needing strong support or climbing on walls. The other is a robot society concept in which the work is distributed among the member robots of the society. The society has an inner communication system trough which information is spread between the members. The control system of the society takes care of the task coordination and communication between the society and the user. As a special feature energy distribution within the society is considered. The concept is suggested for inspection and cleaning type of work in process equipment area and also inside processes in some cases. (author)

  3. Development of mobile manipulator for maintenance work in containment vessels of nuclear power plants

    International Nuclear Information System (INIS)

    Omichi, Takeo; Nishihara, Masatoshi; Hosaka, Shigetaka; Nakayama, Junji; Sato, Masatoshi; Ishida, Michiyasu

    1985-01-01

    The teleoperation system with robot is described for in the containment vessels of nuclear power plants. We have developed a high level robot system as the practical use level. The robot is designed to execute the locomotions and manipulations required for closing and opening the valve, tightening the bolt and others. The robot consists of a locomotor with four legs and two driving wheels, an articulated manipulator with seven joints, and an ITV arm with stereo-camera. The size of the robot is small, that is about 500 mm in length, 500 mm in width, 1200 mm in height and 420 kg in weight. The robot can be operated in a hostile environment, which has a 10 6 R gamma ray dose, 70 deg C temperature, 100 % relative humidity. We have added an advanced control method in order to reduce the operator's load. Also, an interlock and a fail-safe control are installed in the robot system. (author)

  4. MATÉRIA SECA E ABSORÇÃO DE NUTRIENTES EM FUNÇÃO DO ESPAÇAMENTO E DA DENSIDADE DE SEMEADURA EM ARROZ DE TERRA ALTA DRY MATTER AND NUTRIENT UPTAKE OF DRYLAND RICE RELATED TO ROW SPACING AND PLANT POPULATION

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol

    1999-01-01

    Full Text Available Foi instalado um experimento em condições de campo, em um Latossolo Vermelho escuro, epi-eutrófico, textura argilosa, em Selvíria-MS, com arroz de sequeiro cv. IAC 201, estudando-se três espaçamentos entre fileiras (30, 40 e 50 cm e três densidades de semeadura (100, 150 e 200 sementes viáveis/m2. Foram avaliadas a produção de matéria seca da parte aérea no momento do florescimento e determinados os teores e quantidades de N, P, K, Ca, Mg e S absorvidos, assim como a eficiência de utilização de nutrientes. A redução do espaçamento entre fileiras aumentou a produção de matéria seca da parte aérea e a quantidade de nutrientes absorvidos. A variação da densidade de semeadura não afetou os parâmetros estudados. A redução do espaçamento entre fileiras proporcionou maior eficiência de utilização do Ca e diminuiu a do N e Mg. Os teores de nutrientes na matéria seca da parte aérea não foram afetados pela variação do espaçamento entre fileiras.A field experiment was conducted in a clayey Dark Red Latosol in Selviria, MS, Brazil, to study the effect of three row spacings (30, 40 and 50 cm and three seed densities (100, 150 and 200 viable seeds/m2 on plant dry matter yield, macronutrient (N, P, K, Ca, Mg and S uptake at flowering, and the nutrient use efficiency. A decrease in row spacing led to an increase in shoot dry matter production and nutrient uptake. There was no effect of plant densities on dry matter or nutrient uptake. The decrease in row spacing allowed a higher Ca use efficiency, but not for N and Mg. The concentration of the macronutrients in the shoots was not affected by spacing.

  5. The bioavailability of iron, zinc, protein and vitamin A is highly variable in French individual diets: Impact on nutrient inadequacy assessment and relation with the animal-to-plant ratio of diets.

    Science.gov (United States)

    Perignon, Marlène; Barré, Tangui; Gazan, Rozenn; Amiot, Marie-Josèphe; Darmon, Nicole

    2018-01-01

    Nutritional adequacy depends on nutrient intakes and bioavailability which strongly varies with the plant- or animal-origin of foods. The aim was to estimate iron, zinc, protein and vitamin A bioavailability from individual diets, and investigate its relation with the animal-to-plant ratio (A/P) of diets. Bioavailability was estimated in 1899 French diets using diet-based algorithms or food-group specific conversion factors. Nutrient inadequacy was estimated based on i) bioavailability calculated in each individual diet and ii) average bioavailability assumed for Western-diets. Mean iron absorption, zinc absorption, protein quality and β-carotene conversion factor were 13%, 30%, 92%, and 17:1, respectively. Bioavailability displayed a high variability between individual diets, poorly explained by their A/P. Using individual bioavailability led to different inadequacy prevalence than with average factors assumed for Western-diets. In this population, the A/P does not seem sufficient to predict nutrient bioavailability and the corresponding recommended intakes. Nutritional adequacy should be assessed using bioavailability accounting for individual diets composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability.

    Science.gov (United States)

    Migliavacca, Mirco; Perez-Priego, Oscar; Rossini, Micol; El-Madany, Tarek S; Moreno, Gerardo; van der Tol, Christiaan; Rascher, Uwe; Berninger, Anna; Bessenbacher, Verena; Burkart, Andreas; Carrara, Arnaud; Fava, Francesco; Guan, Jin-Hong; Hammer, Tiana W; Henkel, Kathrin; Juarez-Alcalde, Enrique; Julitta, Tommaso; Kolle, Olaf; Martín, M Pilar; Musavi, Talie; Pacheco-Labrador, Javier; Pérez-Burgueño, Andrea; Wutzler, Thomas; Zaehle, Sönke; Reichstein, Markus

    2017-05-01

    Sun-induced fluorescence (SIF) in the far-red region provides a new noninvasive measurement approach that has the potential to quantify dynamic changes in light-use efficiency and gross primary production (GPP). However, the mechanistic link between GPP and SIF is not completely understood. We analyzed the structural and functional factors controlling the emission of SIF at 760 nm (F 760 ) in a Mediterranean grassland manipulated with nutrient addition of nitrogen (N), phosphorous (P) or nitrogen-phosphorous (NP). Using the soil-canopy observation of photosynthesis and energy (SCOPE) model, we investigated how nutrient-induced changes in canopy structure (i.e. changes in plant forms abundance that influence leaf inclination distribution function, LIDF) and functional traits (e.g. N content in dry mass of leaves, N%, Chlorophyll a+b concentration (Cab) and maximum carboxylation capacity (V cmax )) affected the observed linear relationship between F 760 and GPP. We conclude that the addition of nutrients imposed a change in the abundance of different plant forms and biochemistry of the canopy that controls F 760 . Changes in canopy structure mainly control the GPP-F 760 relationship, with a secondary effect of Cab and V cmax . In order to exploit F 760 data to model GPP at the global/regional scale, canopy structural variability, biodiversity and functional traits are important factors that have to be considered. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Ecotoxicological assessment of soils of former manufactured gas plant sites: Bioremediation potential and pollutant mobility

    International Nuclear Information System (INIS)

    Haeseler, F.; Blanchet, D.; Druelle, V.; Werner, P.; Vandecasteele, J.P.

    1999-01-01

    Analytically well-characterized soils from four different former manufactured gas plants (MGP) sites contaminated by coal tars were used in tests of extensive biodegradation of polycyclic aromatic hydrocarbons (PAHs) in stirred reactors. In all cases, the extent of biodegradation was limited to 80--100% for 2- and 3-ring PAHs, 40--70% for 4-ring PAHs, and below 20% for 5- and 6-ring PAHs. The capacities to transfer pollutants to water were compared for leachates from soils that had or had not undergone biological treatment. Leachate analysis involved determination of PAHs and bacterial tests of acute toxicity (Microtox) and genotoxicity (SOS Chromotest). For some untreated soils, PAH leaching was observed, and positive responses to the Microtox test were well correlated to the concentrations of naphthalene and phenanthrene. Biologically treated soils had lost all capacities for leaching as concluded from PAH determinations and responses to the Microtox test. All soil leachates were devoid of genotoxic effect, in accordance with the low concentrations observed of mutagenic PAHs. The results of this risk-based approach for assessment of MGP soils showed that pollutants remaining after biological treatment were unavailable for further biodegradation and that the extent of leaching had been reduced to the level that it did not represent a significant threat to groundwater

  8. Novel roaming and stationary tethered aerial robots for continuous mobile missions in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Beom W.; Choi, Su Y.; Rim, Chun T. [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cai, Guowei; Seneviratne, Lakmal [Dept. of Aerospace Engineering, Khalifa University, Abu Dhabi (United Arab Emirates)

    2016-08-15

    In this paper, new tethered aerial robots including roaming tethered aerial robots (RTARs) for radioactive material sampling and stationary tethered aerial robots (STARs) for environment monitoring are proposed to meet extremely-long-endurance missions of nuclear power plants. The flight of the proposed tethered aerial robots may last for a few days or even a few months as long as the tethered cable provides continuous power. A high voltage AC or DC power system was newly adopted to reduce the mass of the tethered cable. The RTAR uses a tethered cable spooled from the aerial robot and an aerial tension control system. The aerial tension control system provides the appropriate tension to the tethered cable, which is accordingly laid down on the ground as the RTAR roams. The STAR includes a tethered cable spooled from the ground and a ground tension control system, which enables the STAR to reach high altitudes. Prototypes of the RTAR and STAR were designed and successfully demonstrated in outdoor environments, where the load power, power type, operating frequency, and flight attitude of the RTAR and STAR were: 180 W, AC 100 kHz, and 20 m; and 300 W, AC or DC 100 kHz, and 80 m, respectively.

  9. Novel Roaming and Stationary Tethered Aerial Robots for Continuous Mobile Missions in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Beom W. Gu

    2016-08-01

    Full Text Available In this paper, new tethered aerial robots including roaming tethered aerial robots (RTARs for radioactive material sampling and stationary tethered aerial robots (STARs for environment monitoring are proposed to meet extremely-long-endurance missions of nuclear power plants. The flight of the proposed tethered aerial robots may last for a few days or even a few months as long as the tethered cable provides continuous power. A high voltage AC or DC power system was newly adopted to reduce the mass of the tethered cable. The RTAR uses a tethered cable spooled from the aerial robot and an aerial tension control system. The aerial tension control system provides the appropriate tension to the tethered cable, which is accordingly laid down on the ground as the RTAR roams. The STAR includes a tethered cable spooled from the ground and a ground tension control system, which enables the STAR to reach high altitudes. Prototypes of the RTAR and STAR were designed and successfully demonstrated in outdoor environments, where the load power, power type, operating frequency, and flight attitude of the RTAR and STAR were: 180 W, AC 100 kHz, and 20 m; and 300 W, AC or DC 100 kHz, and 80 m, respectively.

  10. Plant rhizosphere effects on metal mobilization and transport. 1997 annual progress report

    International Nuclear Information System (INIS)

    Crowley, D.E.; Fan, T.W.M.; Higashi, R.M.

    1997-01-01

    'During the funding period of 1996--1997, the authors explored the utility of multi-nuclear, two-dimensional nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) for a comprehensive analysis of barley root exudates collected under Fe sufficient and deficient conditions. As both structural and quantitative information was obtained directly from crude root exudates using this approach, no tedious sample fractionation was necessary, which will greatly facilitate future chemical characterization of root exudates in general. They found that the phytosiderophore mugineic acids (including 2'-deoxymugineic acid, mugineic acid, and 3-epi-hydroxymugineic acid) were readily identified and quantified in crude exudate samples along with a number of amino and organic acids. The amount of mugineic acids excreted was correlated positively with the extent of Fe deficiency with 3-epi-hydroxymugineic acid being the most prominent component. The total Fe chelating capacity was also measured using the ferrozine assay and compared with the production of the mugineic acids. They were surprised to find that the mugineic acids may account for a part of the Fe chelating capacity, especially under mild and moderatley Fe deficient conditions. Lactate, alanine, y-aminobutyrate, malate, and glycinebetaine collectively may contribute to a significant fraction of the Fe chelating capacity. In light of the known stimulatory effect of alanine and citrate on metal availability to algae (Campell, 1995), the function of these low molecular weight metabolites as vehicles for Fe or metal uptake in general warrant further investigation. This work is now published in Analytical Biochemistry 251, 57-68 ( 1997). They then proceeded to apply the above approach to investigate the interaction of elevated cadmium (Cd) with Fe deficiency in gramineous plants. They have completed one each series of cadmium (Cd) treatments of barley and wheat seedlings under Fe sufficient

  11. Closed-Cycle Nutrient Supply For Hydroponics

    Science.gov (United States)

    Schwartzkopf, Steven H.

    1991-01-01

    Hydroponic system controls composition and feed rate of nutrient solution and recovers and recycles excess solution. Uses air pressure on bladders to transfer aqueous nutrient solution. Measures and adjusts composition of solution before it goes to hydroponic chamber. Eventually returns excess solution to one of tanks. Designed to operate in microgravity, also adaptable to hydroponic plant-growing systems on Earth.

  12. Nutrient and energy recovery from urine

    NARCIS (Netherlands)

    Kuntke, P.

    2013-01-01

    Keywords: urine, urine treatment, nutrient recovery, microbial fuel cells, energy production from urine, membrane capacitive deionization.

    In conventional wastewater treatment plants large amounts of energy are required for the removal and recovery of nutrients (i.e. nitrogen and

  13. Suppression of the invasive plant mile-a-minute (Mikania micrantha) by local crop sweet potato (Ipomoea batatas) by means of higher growth rate and competition for soil nutrients.

    Science.gov (United States)

    Shen, Shicai; Xu, Gaofeng; Clements, David Roy; Jin, Guimei; Chen, Aidong; Zhang, Fudou; Kato-Noguchi, Hisashi

    2015-01-28

    There are a variety of ways of increasing crop diversity to increase agricultural sustainability and in turn having a positive influence on nearby natural ecosystems. Competitive crops may provide potent management tools against invasive plants. To elucidate the competitive mechanisms between a sweet potato crop (Ipomoea batatas) and an invasive plant, mile-a-minute (Mikania micrantha), field experiments were carried out in Longchuan County of Yunnan Province, Southwest China, utilizing a de Wit replacement series. The trial incorporated seven ratios of sweet potato and mile-a-minute plants in 25 m(2) plots. In monoculture, the total biomass, biomass of adventitious root, leafstalk length, and leaf area of sweet potato were all higher than those of mile-a-minute, and in mixed culture the plant height, branch, leaf, stem node, adventitious root, flowering and biomass of mile-a-minute were suppressed significantly (P competition was less than interspecific competition. The competitive balance index of sweet potato demonstrated a higher competitive ability than mile-a-minute. Except pH, other soil nutrient contents of initial soil (CK) were significantly higher than those of seven treatments. The concentrations of soil organic matter, total N, total K, available N, available P, available K, exchange Ca, exchange Mg, available Mn, and available B were significantly greater (P competition of sweet potato in the mixture. Evidently sweet potato has a competitive advantage in terms of plant growth characteristics and greater absorption of soil nutrients. Thus, planting sweet potato is a promising technique for reducing infestations of mile-a-minute, providing weed management benefits and economic returns from harvest of sweet potatoes. This study also shows the potential value of replacement control methods which may apply to other crop-weed systems or invaded natural ecosystems.

  14. Investigation of the effects of aluminum stress on some macro and micro-nutrient contents of the seedlings of lycopersicon esculentum mill. by using scanning electron microscope

    International Nuclear Information System (INIS)

    Colak, G.; Catak, E.; Baykul, M.C.

    2014-01-01

    This study was planned to see the affect of aluminum stress on plant nutrition and metabolism. The effects of aluminum stress on uptake level of some macro- and micro-nutrients from the nutrition solution into the seedlings of Lycopersicon esculentum Mill. and on mobilization of some nutrient elements in the seedlings were examined at the level of epidermal cells. The elemental structure of root, hypocotyl and cotyledon epidermal cells were determined by Energy Dispersive Xray Microanalysis (EDX) performed in a local area 50 nm in diameter at the level of a single epidermal cell cytoplasm by using low vacuum (24 pascal ) Scanning Electron Microscope. EDX analysis revealed that aluminum content of the cells was increasing with the increased concentrations of aluminum in the nutrient solution and that aluminum largelyaccumulated in the roots. Aluminum concentration was much higher in the root epidermal cells of the seedlings incubated in aluminum containing media for 17 days without adding any nutrient solution; it was also true for the local EDX analysis of radicle epidermal cells from the same series. Aluminum stress was found to tend to modify the plant nutritional element content of the cells and this was particularly of critical importance in terms of some macro- and micro-nutrients. The assessments performed at the level of epidermal cells of young seedlings of Lycopersicon esculentum suggest that aluminum stress leads to an absolute change in the plant nutritional element composition of the cells and in the mobilization of some nutritional elements in the seedlings. (author)

  15. On mobility of cesium-137, sodium, potassium in various types of soils and prediction of cesium-137 cumulation in agricultural plants

    International Nuclear Information System (INIS)

    Ashkinazi, Eh.I.

    1990-01-01

    Mobility of cesium-137, sodium and potassium in the natural environment in podzolic gray and chernozem medium-loamy, sward podzolic sandy soils and chernozem has been studied. Durability of fixation of cesium-137 increases in a number of soils and increase of the level of metabolic potassium. Coefficient of transition of level of metabolic cesium-137 by potassium and sodium, and of sodium by potassium. The mentioned above coefficients can be used for the prediction of cesium-137 cumulation in plants

  16. TOR Signaling and Nutrient Sensing.

    Science.gov (United States)

    Dobrenel, Thomas; Caldana, Camila; Hanson, Johannes; Robaglia, Christophe; Vincentz, Michel; Veit, Bruce; Meyer, Christian

    2016-04-29

    All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth.

  17. Doses de N e K no tomateiro sob estresse salino: I. Concentração de nutrientes no solo e na planta Doses of N and K in tomato under saline stress: I. Concentration of nutrients in the soil solution and plant

    Directory of Open Access Journals (Sweden)

    Flávio F. Blanco

    2008-02-01

    Full Text Available Em geral, culturas tolerantes à salinidade geralmente apresentam maiores teores foliares de certos nutrientes, sugerindo que a adubação em culturas sensíveis poderia elevar os teores desses nutrientes nas folhas, aumentando sua tolerância aos sais. Este trabalho teve o objetivo de estudar os efeitos do N e do K na condutividade elétrica, pH e concentração de nutrientes da solução do solo e nos teores de nutrientes e prolina nas folhas do tomateiro irrigado com água salina. Os tratamentos foram compostos da combinação de três níveis de N (7,5; 15,0 e 22,5 g por planta e de K (8, 16 e 24 gK2O por planta aplicados via fertirrigação por gotejamento, no esquema fatorial 3 x 3, com cinco repetições, sendo que à água de irrigação foram adicionados os sais cloreto de sódio e cloreto de cálcio, para obtenção de condutividade elétrica da água de 9,5 dS m-1. As concentrações de NO3 e K na solução do solo e de N e K nas folhas do tomateiro aumentaram com as doses de N e K mas não promoveram redução dos teores de Cl nem de Na nas folhas das plantas. O aumento do teor de prolina com as doses de K e a redução de Cl/N com as doses de N, sugerem que o aumento na adubação potássica e nitrogenada pode ser benéfico para o tomateiro sob condições de salinidade moderada.Crops tolerant to salinity generally present higher concentrations of some nutrients in the leaves, suggesting that the fertilization of sensitive crops could increase the contents of these nutrients in the leaves to increase the crop tolerance to salts. This work had the objective of studying the effects of N and K on electrical conductivity, pH and nutrient concentrations of soil solution and on concentration of nutrients and proline in the leaves of tomatos irrigated with saline water. The treatments were composed of the combination of three levels of N (7.5, 15.0 and 22.5 g per plant and K (8, 16 and 24 g K2O per plant applied by drip fertigation, in a 3

  18. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, nutrient concentrations, and plant nutrition and growth

    Science.gov (United States)

    Liming agents in irrigation water, typically associated with carbonates and bicarbonates of calcium and magnesium, contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient availability imbalan...

  19. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    NARCIS (Netherlands)

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; Visser, De Pieter H.B.; Marcelis, Leo F.M.

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of

  20. Mineral nutrient uptake from prey and glandular phosphatase activity as dual test of carnivory in semidesert plants with glandular leaves suspected of carnivory

    Czech Academy of Sciences Publication Activity Database

    Plachno, B.J.; Adamec, Lubomír; Huet, H.

    2009-01-01

    Roč. 104, č. 4 (2009), s. 649-654 ISSN 0305-7364 Institutional research plan: CEZ:AV0Z60050516 Keywords : mineral nutrient uptake * phosphatases * glandular leaves Subject RIV: EF - Botanics Impact factor: 3.501, year: 2009

  1. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, and nutrient concentrations; and plant nutrition and growth

    Science.gov (United States)

    Liming agents (LA) in irrigation water, typically associated with carbonates and bicarbonates of calcium (Ca) and magnesium (Mg), contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient avail...

  2. Effect of elevated [CO2 ] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in Eastern India.

    Science.gov (United States)

    Jena, Usha Rani; Swain, Dillip Kumar; Hazra, K K; Maity, Mrinal K

    2018-05-16

    Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO 2 ] that may impact future rice production and quality. In this study, the effect of elevated [CO 2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO 2 ]) were tested using four rice cultivars of eastern India. Under elevated [CO 2 ] (25% higher), yield of high yielding cultivars (HYCs) viz. IR 36, Swarna, and Swarna sub1 was significantly reduced (11-13%), whereas the yield increased (6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO 2 ] significantly enhanced K uptake (14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO 2 ] indicating that nutrients translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO 2 ] elevation. The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivar in minimizing the adverse effect of elevated [CO 2 ] on rice yield and quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Acúmulo e repartição da matéria seca da planta de pepino tipo conserva sob três doses de nutrientes minerais Dry matter accumulation and distribution of pickling cucumber plants under three mineral nutrient levels

    Directory of Open Access Journals (Sweden)

    Hugo Nicasio Rodríguez Espínola

    2001-06-01

    Full Text Available Determinou-se o efeito de três doses de nutrientes minerais sobre o acúmulo e distribuição da matéria seca da planta de pepino tipo conserva, híbrido Crispina. As plantas foram cultivadas em sacolas plásticas com 4,6kg de substrato composto por uma mistura de 40% de casca de arroz e 60% de solo, no interior de uma estufa de polietileno, na primavera de 1998 e no verão de 1999. Foi empregado um delineamento experimental de blocos casualizados, com três repetições e 15 plantas por parcela. Os tratamentos foram constituídos por três níveis múltiplos de uma dose padrão de nutrientes aplicada para cada planta, contendo N-P-K-Ca e Mg nas quantidades de 0,8-0,12-0,8-0,46-0,086g.pl-1, com 0,33m de solução de micronutrientes e 0,07m de quelato de ferro. Os níveis corresponderam às quantidades de 50%, 100% e 150% da dose padrão, denominados de tratamentos T1, T2 e T3, respectivamente, aplicados semanalmente através da fertirrigação em todas as plantas de uma mesma parcela. Determinou-se a matéria seca dos diferentes órgãos da parte aérea da planta a intervalos semanais. Houve efeito significativo dos tratamentos no acúmulo da matéria seca, nos dois experimentos. A maior fração foi alocada para os frutos, atingindo o valor mais elevado de 0,64 na primavera. Concluiu-se que a distribuição da matéria seca desse material vegetal não é constante, sofrendo interações com as variáveis do ambiente.It was determined the effect of three mineral nutrient levels on dry matter accumulation and distribution of pickling cucumber plants, hybrid Crispina, grown inside a polyethylene greenhouse, in spring 1998 and in summer 1999. Planting was made in bags filled with 4.6kg of a substrate mixture composed by 40% rice husks and 60% soil. A randomized block experimental design was used, with three replications and15 plants per plot. A reference nutrient dose was supplied weekly to each one of the plants, with the following composition

  4. The use of mobile devices as means of data collection in supporting elementary school students' conceptual understanding about plants

    NARCIS (Netherlands)

    Zacharia, Zacharias C.; Lazaridou, Charalambia; Avraamidou, Lucy

    2016-01-01

    The purpose of this study was to examine the impact of mobile learning among young learners. Specifically, we investigated whether the use of mobile devices for data collection during field trips outside the classroom could enhance fourth graders' learning about the parts of the flower and their

  5. The Use of Mobile Devices as Means of Data Collection in Supporting Elementary School Students' Conceptual Understanding about Plants

    Science.gov (United States)

    Zacharia, Zacharias C.; Lazaridou, Charalambia; Avraamidou, Lucy

    2016-01-01

    The purpose of this study was to examine the impact of mobile learning among young learners. Specifically, we investigated whether the use of mobile devices for data collection during field trips outside the classroom could enhance fourth graders' learning about the parts of the flower and their functions, flower pollinators and the process of…

  6. Cobertura do solo e estoque de nutrientes de duas leguminosas perenes, considerando espaçamentos e densidades de plantio Soil cover and nutrient accumulation of two perennial legumes as functions of spacing and planting densities

    Directory of Open Access Journals (Sweden)

    A. Perin

    2004-02-01

    arrangement 2 x 2 x 4, with four replications. The treatments consisted of the plant species Galactia striata and Pueraria phaseoloides, planted in two spacings (25 and 50 cm apart and four sowing densities (5, 10, 15 and 20 plants m-1. The most adequate density for a fast soil cover was 10 plants m-1 for Pueraria phaseoloides and Galactia striata, in a 25 cm spacing between planting rows. The highest dry matter production and accumulation of N, P and K in the aerial part of the plant were found in the first cut, in a spacing of 25 cm and row density of 10 plants m-1. The 25 cm spacing with 10 plants m-1 was identified as the most adequate combination for the formation of a full soil cover with Pueraria phaseoloides and Galactia striata.

  7. Mobile Plant Laboratory.

    Science.gov (United States)

    Carrier, Judy

    1979-01-01

    Describing the North Carolina Botanical Garden's horticultural therapy program, which provides activity therapy for the mental and physical well-being of people of all ages, this article details an educational training program. Journal availabillity: see RC 503 504. (SB)

  8. Nutrient cycle benchmarks for earth system land model

    Science.gov (United States)

    Zhu, Q.; Riley, W. J.; Tang, J.; Zhao, L.

    2017-12-01

    Projecting future biosphere-climate feedbacks using Earth system models (ESMs) relies heavily on robust modeling of land surface carbon dynamics. More importantly, soil nutrient (particularly, nitrogen (N) and phosphorus (P)) dynamics strongly modulate carbon dynamics, such as plant sequestration of atmospheric CO2. Prevailing ESM land models all consider nitrogen as a potentially limiting nutrient, and several consider phosphorus. However, including nutrient cycle processes in ESM land models potentially introduces large uncertainties that could be identified and addressed by improved observational constraints. We describe the development of two nutrient cycle benchmarks for ESM land models: (1) nutrient partitioning between plants and soil microbes inferred from 15N and 33P tracers studies and (2) nutrient limitation effects on carbon cycle informed by long-term fertilization experiments. We used these benchmarks to evaluate critical hypotheses regarding nutrient cycling and their representation in ESMs. We found that a mechanistic representation of plant-microbe nutrient competition based on relevant functional traits best reproduced observed plant-microbe nutrient partitioning. We also found that for multiple-nutrient models (i.e., N and P), application of Liebig's law of the minimum is often inaccurate. Rather, the Multiple Nutrient Limitation (MNL) concept better reproduces observed carbon-nutrient interactions.

  9. Mobility and plant availability of radioactive Cs in natural soil in relation to stable Cs, other alkali elements and soil fertility

    International Nuclear Information System (INIS)

    Varskog, P.; Steinnes, E.; Naeumann, R.

    1994-01-01

    The mobility and plant availability of radioactive Cs from the Chernobyl accident in natural soil-plant systems of varying fertility were studied at three sampling locations situated in subalpine areas of central Norway. The soil samples included litter, humus (0-2 cm and 2-5 cm depth), and mineral soil (8-12 cm and 20-30 cm depth), and the plant species studied were Betula nana, Empetrum hermaphroditum and Juncus trifidus. The lichen Cetraria nivalis was also sampled. The sampling took place in the middle of the growth season during the period 1987-1989. The soil and vegetation samples were analysed with respect to total radiocaesium ( 137 Cs and 134 Cs), Rb, stable Cs and exchangeable 137 Cs (in soil only), K, Ca and Mg. (Author)

  10. A Development Method of Mobile Computerized Procedure System for the Cooperation among Field Workers and Main Control Room Operators in Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Sun Jin; Seong, No Kyu; Jung, Yeon Sub

    2014-01-01

    Human errors can occur during the test and maintenance of steam generator, safety injection system and other various systems and devices in nuclear power plants (NPPs). Most of human errors can be improved by the human error prevention techniques such as self-check, peer-check, concurrent verification and etc. Another important technique is to share work information among main control room (MCR) operators and field workers. Various field service automation tools have been developed with recent information technology in many countries. APR1400 computerized procedure system (CPS) has been developed for the MCR operators of Shin-Kori 3 and 4 units. Especially, the concurrent verification support design is applied in the construction project of Shin-Hanul 1 and 2 CPS. It is expected that the proposed mobile CPS can enhance the reduction of human errors by supporting human error prevention techniques and information sharing. This paper describes the technical issues of the mobile CPS (mobile CPS) in the initial development stage. Based on the design of APR1400, CRI CPS has been developed and operated for SKN 3 and 4 HFE V and V and license test for the MCR operating staff. Therefore the mobile CPS will be developed by upgrading the CRI CPS with improved features

  11. A Development Method of Mobile Computerized Procedure System for the Cooperation among Field Workers and Main Control Room Operators in Korean Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun Jin; Seong, No Kyu; Jung, Yeon Sub [KHNP ,Daejeon (Korea, Republic of)

    2014-08-15

    Human errors can occur during the test and maintenance of steam generator, safety injection system and other various systems and devices in nuclear power plants (NPPs). Most of human errors can be improved by the human error prevention techniques such as self-check, peer-check, concurrent verification and etc. Another important technique is to share work information among main control room (MCR) operators and field workers. Various field service automation tools have been developed with recent information technology in many countries. APR1400 computerized procedure system (CPS) has been developed for the MCR operators of Shin-Kori 3 and 4 units. Especially, the concurrent verification support design is applied in the construction project of Shin-Hanul 1 and 2 CPS. It is expected that the proposed mobile CPS can enhance the reduction of human errors by supporting human error prevention techniques and information sharing. This paper describes the technical issues of the mobile CPS (mobile CPS) in the initial development stage. Based on the design of APR1400, CRI CPS has been developed and operated for SKN 3 and 4 HFE V and V and license test for the MCR operating staff. Therefore the mobile CPS will be developed by upgrading the CRI CPS with improved features.

  12. Can radiocaesium be used as a tracer for vegetal nutrients?

    International Nuclear Information System (INIS)

    Anjos, R. M.; Mosquera, B.; Carvalho, C.; Sanches, N.; Bastos, J.; Macario, K.; Vezzone, M.; Gomes, P.R.S.

    2007-01-01

    In recent years, there has been a growing interest in the evaluation of nutrient fluxes and radioactive contaminants in forest and agricultural ecosystems. Several studies on forest ecosystems have been carried out, mostly in Europe, after the Chernobyl accident. These studies have been performed mainly in the development of models for predicting the radiocaesium behavior in the soil and plant compartments of forest systems. However, research on the use of radiocaesium as a tracer for vegetal nutrients has shown that, despite the fact that caesium is a weakly hydrated alkaline metal and has chemical similarities to potassium and ammonium, this is still a complex problem requiring, then, more experimental results. Additionally, very little is known about the mechanisms involved in the radionuclide uptake and retention by tropical plants. In order to contribute to the understanding of the relative behavior of caesium, potassium and ammonium and to investigate whether radiocaesium can be used as a tracer for vegetal nutrients, the Laboratory of Radioecology (LARA) of the Federal Fluminense University has been performing analysis of 137 Cs, 40 K and NH 4 concentrations in several vegetal compartments of agricultural tropical plants, such as guava (Psidium guajava), mango (Mangifera indica), avocado (Persea americana), pomegranate (Punica granatum), papaya (Carica Papaya), banana (Musa paradisiaca), manioc (Manihot Esculenta), and chili pepper (Capsicum fructescens) trees. Measurements of 137 Cs, 40 K and NH 4 concentrations show that these elements can be very mobile within a plant, exhibiting the highest values of concentration in the growing parts of the trees: fruits, leaves, twigs, barks and the outer growth layers. On the other hand, our results indicate that for wood trees (such as guava, mango, avocado, pomegranate and chili pepper trees) do both caesium and the vegetal nutrients have simultaneously higher concentrations in the youngest rather than in the oldest

  13. A Comparative-Study on Nutrient Cycling in Wet Heathland Ecosystems.2.Litter Decomposition and Nutrient Mineralization

    NARCIS (Netherlands)

    Berendse, F.; Bobbink, R.; Rouwenhorst, G.

    1989-01-01

    The concept of the relative nutrient requirement (L n) that was introduced in the first paper of this series is used to analyse the effects of the dominant plant population on nutrient cycling and nutrient mineralization in wet heathland ecosystems. A distinction is made between the effect that the

  14. Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems

    NARCIS (Netherlands)

    Hemminga, M.A.; Marbà, N.; Stapel, J.

    1999-01-01

    Efficient nutrient resorption from senescing leaves, and extended leaf life spans are important strategies in order to conserve nutrients for plants in general. Despite the fact that seagrasses often grow in oligotrophic waters, these conservation strategies are not strongly developed in seagrasses.

  15. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil.

    Science.gov (United States)

    Karasawa, T; Hodge, A; Fitter, A H

    2012-04-01

    Although plant phosphate uptake is reduced by low soil temperature, arbuscular mycorrhizal (AM) fungi are responsible for P uptake in many plants. We investigated growth and carbon allocation of the AM fungus Glomus mosseae and a host plant (Plantago lanceolata) under reduced soil temperature. Plants were grown in compartmented microcosm units to determine the impact on both fungus and roots of a constant 2.7 °C reduction in soil temperature for 16 d. C allocation was measured using two (13)CO(2) pulse labels. Although root growth was reduced by cooling, AM colonization, growth and respiration of the extraradical mycelium (ERM) and allocation of assimilated (13)C to the ERM were all unaffected; the frequency of arbuscules increased. In contrast, root respiration and (13)C content and plant P and Zn content were all reduced by cooling. Cooling had less effect on N and K, and none on Ca and Mg content. The AM fungus G. mosseae was more able to sustain activity in cooled soil than were the roots of P. lanceolata, and so enhanced plant P content under a realistic degree of soil cooling that reduced plant growth. AM fungi may therefore be an effective means to promote plant nutrition under low soil temperatures. © 2011 Blackwell Publishing Ltd.

  16. Teores foliares de nutrientes em mudas do abacaxizeiro ‘smooth cayenne’ em resposta à adubação Leaf nutrient contents on ´smooth cayenne´ planting material as response to fertilization

    Directory of Open Access Journals (Sweden)

    Ruimário Inácio Coelho

    2010-12-01

    Full Text Available Mudas do abacaxizeiro ‘Smooth Cayenne’ obtidas por seccionamento de caule foram submetidas à adubação foliar com soluções em diferentes concentrações de uréia, KCl e H3BO3, em pulverizações semanais, num total de vinte e seis para a uréia e o KCl e aplicações mensais num total de quatro, para o H3BO3. Todos os tratamentos foram iniciados na nona semana após o plantio das secções. O delineamento utilizado foi fatorial fracionado do tipo (1/553, com três tipos de adubo (uréia, KCl e H3BO3 e cinco concentrações num total de 25 tratamentos. Cada parcela constituiu-se de 50 secções. Os tratamentos consistiram nas combinações das seguintes concentrações em g L-1: 0; 2,5; 5; 7,5 e 10 para a uréia e o KCl, e 0; 0,5; 1; 1,5 e 2,0 de H3BO3. Análises das amostras de folhas “D” revelam efeitos da uréia e H3BO3 sobre os teores foliares de S, Cl e B e efeito do KCL sobre K e Cl foliar. A uréia não apresentou efeito sobre o teor de N foliar, porém influencia significativamente o conteúdo de N nas mudas.‘Smooth Cayenne’ planting material obtained through stem sectioning were trea-ted with foliar fertilization with different concentrations of urea, KCl, in weekly pulverizations, and H3BO4, totalizing twenty-six for urea and KCL pulverizations and four for H3BO3, which was applied monthly The treatments were began nine weeks after planting thestem sections. The experimental scheme was a fractionated factorial (1/55³ with three types of fertilizers (urea, KCl and H3BO3 and five concentrations in a total of 25 treatments. There were 50 sections per plot. Treatments were a combination of concentrations in g L-1: 0, 2.5, 5.0, 7.5 and 10 of urea and KCl, and 0, 0.5, 1.0, 1.5 and 2,0 of H3BO3. Sample analyses of ‘D’ leaves showed urea and H3BO3 effect on S, Cl and B leaf contents whereas KCL affected leaf K and Cl contents. Urea did not affect N leaf content, however it strongly influenced N content in planting material.

  17. Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification

    Energy Technology Data Exchange (ETDEWEB)

    Samecka-Cymerman, A. [Department of Ecology and Nature Protection, Wroclaw University, ul. Kanonia 6/8, 50-328 Wroclaw (Poland); Kempers, A.J. [Department of Biogeology, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen (Netherlands)

    2001-12-17

    Concentration of heavy metals (Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn) as well as macronutrients (N, P, K, Ca, Mg, S) were measured in water, bottom sediments and plants from anthropogenic lakes in West Poland. The collected plants were: Phragmites australis, Potamogeton natans, Iris pseudoacorus, Juncus effusus, Drepanocladus aduncus, Juncus bulbosus, Phalaris arundinacea, Carex remota and Calamagrostis epigeios. Two reference lakes were sampled for Nymphaea alba, Phragmites australis, Schoenoplectus lacustris, Typha angustifolia and Polygonum hydropiper. These plants contained elevated levels of Cd, Co, Cr, Cu and Mn, and part of the plants contained in addition elevated levels of Mn, Fe, Pb, Ni and Zn. Analyses of water indicated pollution with sulfates, Cd, Co, Ni, Zn, Pb and Cu, and bottom sediments indicated that some of the examined lakes were polluted with Cd, Co and Cr. Strong positive correlations were found between concentrations of Co in water and in plants and between Zn in sediments and plants, indicating the potential of plants for pollution monitoring for this metal. Heavy metal accumulation seemed to be directly associated with the exclusion of Ca and Mg.

  18. The partitioning of 137Cs, in comparison to K, P, and Ca in the shoots of Eriophorum vaginatum L. plants

    International Nuclear Information System (INIS)

    Jones, D.R.; Eason, W.R.; Dighton, J.

    1998-01-01

    In previous studies, persistently high concentrations of 13 '7Cs in Eriophorum vaginatum plants in the UK uplands have been attributed partly to the efficiency with which they remobilize minerals. The partitioning in the shoots of E. vaginatum of 137 Cs from environmental sources was investigated and found to be the same as that of mobile nutrients, inferring similar relative mobility and remobilisation. (author)

  19. Rhizosphere priming: a nutrient perspective

    Directory of Open Access Journals (Sweden)

    Feike Auke Dijkstra

    2013-07-01

    Full Text Available Rhizosphere priming is the change in decomposition of soil organic matter (SOM caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P limited. Under P limitation, rhizodeposition may be used for mobilisation of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils.

  20. Successional dynamics drive tropical forest nutrient limitation

    Science.gov (United States)

    Chou, C.; Hedin, L. O. O.

    2017-12-01

    It is increasingly recognized that nutrients such as N and P may significantly constrain the land carbon sink. However, we currently lack a complete understanding of these nutrient cycles in forest ecosystems and how to incorporate them into Earth System Models. We have developed a framework of dynamic forest nutrient limitation, focusing on the role of secondary forest succession and canopy gap disturbances as bottlenecks of high plant nutrient demand and limitation. We used succession biomass data to parameterize a simple ecosystem model and examined the dynamics of nutrient limitation throughout tropical secondary forest succession. Due to the patterns of biomass recovery in secondary tropical forests, we found high nutrient demand from rapid biomass accumulation in the earliest years of succession. Depending on previous land use scenarios, soil nutrient availability may also be low in this time period. Coupled together, this is evidence that there may be high biomass nutrient limitation early in succession, which is partially met by abundant symbiotic nitrogen fixation from certain tree species. We predict a switch from nitrogen limitation in early succession to one of three conditions: (i) phosphorus only, (ii) phosphorus plus nitrogen, or (iii) phosphorus, nitrogen, plus light co-limitation. We will discuss the mechanisms that govern the exact trajectory of limitation as forests build biomass. In addition, we used our model to explore scenarios of tropical secondary forest impermanence and the impacts of these dynamics on ecosystem nutrient limitation. We found that secondary forest impermanence exacerbates nutrient limitation and the need for nitrogen fixation early in succession. Together, these results indicate that biomass recovery dynamics early in succession as well as their connection to nutrient demand and limitation are fundamental for understanding and modeling nutrient limitation of the tropical forest carbon sink.

  1. Nutrient Exchange through Hyphae in Intercropping Systems Affects Yields

    Science.gov (United States)

    Thun, Tim Von

    2013-01-01

    Arbuscular mycorrhizae fungi (AMF) play a large role in the current understanding of the soil ecosystem. They increase nutrient and water uptake, improve soil structure, and form complex hyphal networks that transfer nutrients between plants within an ecosystem. Factors such as species present, the physiological balance between the plants in the…

  2. The foraging behavior of Japanese macaques Macaca fuscata in a forested enclosure: Effects of nutrient composition, energy and its seasonal variation on the consumption of natural plant foods

    Directory of Open Access Journals (Sweden)

    M. Firoj JAMAN, Michael A. HUFFMAN, Hiroyuki TAKEMOTO

    2010-04-01

    Full Text Available In the wild, primate foraging behaviors are related to the diversity and nutritional properties of food, which are affected by seasonal variation. The goal of environmental enrichment is to stimulate captive animals to exhibit similar foraging behavior of their wild counterparts, e.g. to extend foraging time. We conducted a 12-month study on the foraging behavior of Japanese macaques in a semi-naturally forested enclosure to understand how they use both provisioned foods and naturally available plant foods and what are the nutritional criteria of their consumption of natural plants. We recorded time spent feeding on provisioned and natural plant foods and collected the plant parts ingested of their major plant food species monthly, when available. We conducted nutritional analysis (crude protein, crude lipid, neutral detergent fiber-‘NDF’, ash and calculated total non-structural carbohydrate – ‘TNC’ and total energy of those food items. Monkeys spent 47% of their feeding time foraging on natural plant species. The consumption of plant parts varied significantly across seasons. We found that leaf items were consumed in months when crude protein, crude protein-to-NDF ratio, TNC and total energy were significantly higher and NDF was significantly lower, fruit/nut items in months when crude protein and TNC were significantly higher and crude lipid content was significantly lower, and bark items in months when TNC and total energy were higher and crude lipid content was lower. This preliminary investigation showed that the forested enclosure allowed troop members to more fully express their species typical flexible behavior by challenging them to adjust their foraging behavior to seasonal changes of plant item diversity and nutritional content, also providing the possibility for individuals to nutritionally enhance their diet [Current Zoology 56 (2: 198–208, 2010].

  3. Crescimento e desenvolvimento do tomateiro cultivado em substrato com reutilização da solução nutritiva drenada Growth and development of tomato plants in substrate with re-use of drained nutrient solution

    Directory of Open Access Journals (Sweden)

    Jerônimo L. Andriolo

    2003-09-01

    produtividade de frutos maduros decresceu com o aumento da CE. Concluiu-se que é possível reutilizar integralmente a solução nutritiva drenada no cultivo do tomateiro em substrato e que os efeitos negativos da CE elevada sobre a produtividade de frutos são observados somente com valores superiores a 4,9 dS m-1.Two experiments were carried out in a plastic greenhouse in autumn and spring 2001. Sowing dates were February 17th and July 3rd, respectively. At 41 (1st experiment and 36 days (2nd experiment after sowing, plantlets were transplanted to 5.5 dm³ bags placed inside gullies, using a commercial substrate, in a plant density of 3.3 plants m-2. Treatments consisted of three nutrient solutions. In T1 treatment, fertilizer concentrations were, in mol. L-1: KNO3, 0.04: Ca(NO32, 0.027; MgSO4, 0.012. Phosphorus (P was added by 1.5 g L-1 of superphosphate (20% P2O5, and micronutrients by a commercial mixture. For T1 plants, 1 L of the above nutrient solution was supplied once a week, containing 14.9 g L-1 of macronutrients. For T2 and T3 treatments the amounts of nutrients from T1 were applied in duplicate and triplicate, resulting in a total of macronutrient of 29.8 and 44.7 g L-1, respectively, supplied once a week. Drained volumes from each irrigation were collected and re-used in the next fertigations, after correcting nutrient concentrations in order to reach the original threshold level previously fixed for each treatment. Average electrical conductivity (EC values of drained nutrient solution were 3.7; 6.8 and 8,9 dS m-1 at the first and 3.3; 5.2 and 7.4 dS m-1 at the second experiment, respectively for T1, T2 and T3. From 40 to 82 days after planting date (DAP in autumn and 37 to 79 DAP in spring. Plants were periodically harvested to determine growth and development. In spring, ripe fruits on remaining plants were harvested and weighed to determine fruit yield. No significant differences were found for the number of fruits among treatments. In autumn, total and

  4. Mobile marketing for mobile games

    OpenAIRE

    Vu, Giang

    2016-01-01

    Highly developed mobile technology and devices enable the rise of mobile game industry and mobile marketing. Hence mobile marketing for mobile game is an essential key for a mobile game success. Even though there are many articles on marketing for mobile games, there is a need of highly understanding mobile marketing strategies, how to launch a mobile campaign for a mobile game. Besides that, it is essential to understand the relationship between mobile advertising and users behaviours. There...

  5. Associação micorrízica e teores de nutrientes nas folhas de cupuaçuzeiro (Theobroma grandiflorum e guaranazeiro (Paullinia cupana de um sistema agroflorestal em Manaus, Amazonas Arbuscular mycorrhizal association and foliar nutrient concentrations of cupuassu (Theobroma grandiflorum and guaraná (Paullinia cupana plants in an agroforestry system in Manaus, AM, Brazil

    Directory of Open Access Journals (Sweden)

    A. N. Oliveira

    2004-12-01

    Full Text Available As micorrizas arbusculares podem ser importantes na nutrição das plantas em solos ácidos e de baixa fertilidade, como são os da Amazônia de modo geral. Avaliaram-se a colonização radicular por fungos micorrízicos arbusculares (FMAs nativos e os teores de nutrientes em cupuaçuzeiro e guaranazeiro em um sistema agroflorestal no município de Manaus, Amazonas. Dez plantas de cada espécie foram selecionadas, das quais foram coletadas amostras de raiz, folha e solo durante o período seco e chuvoso da região de Manaus. Os guaranazeiros e os cupuaçuzeiros apresentaram maior colonização radicular por FMAs na época chuvosa. Os teores foliares de Ca, Mg, K, P, Zn, Cu e Mn nas duas espécies não foram influenciados pelas épocas de amostragem. O teor de Fe nas folhas dos cupuaçuzeiros foi maior na época chuvosa, enquanto o dos guaranazeiros, na época seca. A colonização micorrízica correlacionou-se com a concentração foliar de Ca, Mg, P e Cu nos cupuaçuzeiros e com a de Ca, Fe, Zn e Cu nos guaranazeiros.Arbuscular mycorrhiza can be important for plant nutrition in acid and low fertility soils such as those of the Amazon. The present study evaluated the mycorrhizal colonization by native arbuscular mycorrhizal fungi (AMF and nutrient concentrations of cupuassu and guarana leaves in an agroforestry system in Manaus, Amazonas State, Brazil. Ten plants of each species were selected, of which the roots, soil and leaves were sampled during the rainy and dry seasons. Guarana and cupuassu trees presented higher levels of AMF colonization during the rainy season. Ca, Mg, K, P, Zn, Cu, and Mn concentrations in both species were not affected by the season. Fe concentration was higher during the rainy season in the cupuassu leaves, but higher in the dry season in the guarana leaves. Mycorrhizal colonization correlated with Ca, Mg, P, and Cu concentrations in cupuassu plants and with Ca, Fe, Zn, and Cu in guarana plants.

  6. Impacts of coal fly ash on plant growth and accumulation of essential nutrients and trace elements by alfalfa (Medicago sativa) grown in a loessial soil.

    Science.gov (United States)

    He, Honghua; Dong, Zhigang; Peng, Qi; Wang, Xia; Fan, Chenbin; Zhang, Xingchang

    2017-07-15

    Coal fly ash (CFA) is a problematic solid waste all over the world. One distinct beneficial reuse of CFA is its utilization in land application as a soil amendment. A pot experiment was carried out to assess the feasibility of using CFA to improve plant growth and increase the supply of plant-essential elements and selenium (Se) of a loessial soil for agricultural purpose. Plants of alfalfa (Medicago sativa) were grown in a loessial soil amended with different rates (5%, 10%, 20% and 40%) of CFA for two years and subjected to four successive cuttings. Dry mass of shoots and roots, concentrations of plant-essential elements and Se in plants were measured. Shoot dry mass and root dry mass were always significantly increased by 5%, 10% and 20% CFA treatments, and by 40% CFA treatment in all harvests except the first one. The CFA had a higher supply of exchangeable phosphorus (P), magnesium (Mg), copper (Cu), zinc (Zn), molybdenum (Mo), and Se than the loessial soil. Shoot P, calcium (Ca), Mg, Mo, boron (B), and Se concentrations were generally markedly increased, but shoot potassium (K), Cu, and Zn concentrations were generally reduced. The CFA can be a promising source of some essential elements and Se for plants grown in the loessial soil, and an application rate of not higher than 5% should be safe for agricultural purpose without causing plant toxicity symptoms in the studied loessial soil and similar soils. Field trials will be carried out to confirm the results of the pot experiment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs.

    Science.gov (United States)

    Fiesel, Anja; Gessner, Denise K; Most, Erika; Eder, Klaus

    2014-09-04

    Feeding polyphenol-rich plant products has been shown to increase the gain:feed ratio in growing pigs. The reason for this finding has not yet been elucidated. In order to find the reasons for an increase of the gain:feed ratio, this study investigated the effect of two polyphenol-rich dietary supplements, grape seed and grape marc meal extract (GSGME) or spent hops (SH), on gut morphology, apparent digestibility of nutrients, microbial composition in faeces and the expression of pro-inflammatory genes in the intestine of pigs. Pigs fed GSGME or SH showed an improved gain:feed ratio in comparison to the control group (P value, lower levels of volatile fatty acids and lower counts of Streptococcus spp. and Clostridium Cluster XIVa in the faecal microbiota (P pro-inflammatory genes in duodenum, ileum and colon than the control group (P present study suggests that dietary plant products rich in polyphenols are able to improve the gain:feed ratio in growing pigs. It is assumed that an alteration in the microbial composition and anti-inflammatory effects of the polyphenol-rich plant products in the intestine might contribute to this effect.

  8. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  9. BORILAIN. Mobile device for automatic continuous supply of liquid injection system backup of a nuclear plant in emergency

    International Nuclear Information System (INIS)

    Lacalle, J.; Traino, J.; Troeung, J.; Arnaldos, A.; Alcaraz, D. A.; Lopez, B.; Ponce, A. T.

    2014-01-01

    This paper presents the design and development of the first automatic mobile device for the preparation of a neutron absorbing solution, and providing continuous, 30 days, of the injection system liquid reserve of a nuclear emergency. The work has been developed by GD Energy Services (GDES) for Electricite de France (EDF). (Author)

  10. Soluções nutritivas para cultivo e produção de frutanos em plantas de Vernonia herbacea Nutrient solutions for plant growth and fructan production in Vernonia herbacea

    Directory of Open Access Journals (Sweden)

    Geraldo Rogério Faustini Cuzzuol

    2005-09-01

    Full Text Available O crescimento limitado de rizóforos de Vernonia herbacea (Asteraceae em solução de Hoagland levou à necessidade de estabelecer uma solução nutritiva para o cultivo dessa planta, visando ao incremento da biomassa de seus rizóforos ricos em frutanos. Essa solução (denominada Vernonia, constituída de Ca(NO32.4H2O 2,5 mmol L-1, KNO3 2,3 mmol L-1 , KH2PO4 0,52 mmol L-1, Mg(NO32.6H2O 1,7 mmol L-1 e Na2SO4 1,3 mmol L-1, foi comparada com a de Hoagland nas forças iônicas de 50%, 100% e 200%. Foram realizadas duas avaliações para análise de crescimento e conteúdo de frutanos. As plantas não sobreviveram até os dois meses na solução de Hoagland 200%. A solução Vernonia diluída duas vezes (50% foi a mais eficiente para o incremento de massa seca dos rizóforos e produção de frutanos por planta. Maior crescimento da parte aérea foi verificado nas soluções de Hoagland e Vernonia 100%. Em comparação com a solução de Hoagland, a solução Vernonia é mais pobre em macronutrientes, confirmando a hipótese de que plantas adaptadas a solos oligotróficos são menos exigentes em nutrientes minerais.The limited growth of rhizophores of Vernonia herbacea in Hoagland solution demanded the definition of a nutrient solution for plants of V. herbacea, aiming at the increase of the rhizophore biomass and fructan production. This solution, named Vernonia, is comprised of Ca(NO32.4H2O 2.5 mmol L-1, KNO3 2.3 mmol L-1 , KH2PO4 0.52 mmol L-1, Mg(NO32.6H2O 1.7 mmol L-1 and Na2SO4 1.3 mmol L-1. Its effect on plants was compared to that of Hoagland solution, both with different ionic strengths, 50%, 100% and 200%. The effect of the solutions on plant growth and fructan content was evaluated twice in a six-month period. Plants did not survive up to two months, when cultivated in 200% Hoagland solution. The 50% Vernonia solution was the most effective for rhizophore biomass increase and fructan production per plant. Growth of aerial organs was

  11. The role of arbuscular mycorrhizas in reducing soil nutrient loss.

    Science.gov (United States)

    Cavagnaro, Timothy R; Bender, S Franz; Asghari, Hamid R; Heijden, Marcel G A van der

    2015-05-01

    Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), associations of plant roots with fungi that acquire soil nutrients. There is emerging evidence that AM have the ability to reduce nutrient loss from soils by enlarging the nutrient interception zone and preventing nutrient loss after rain-induced leaching events. Until recently, this important ecosystem service of AM had been largely overlooked. Here we review the role of AM in reducing nutrient loss and conclude that this role cannot be ignored if we are to increase global food production in an environmentally sustainable manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Fernández, M., E-mail: mariafernandez@iiag.csic.es; Gómez-Rey, M.X., E-mail: mxgomez@iiag.csic.es; González-Prieto, S.J., E-mail: serafin@iiag.csic.es

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil–plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS + Fo), Firesorb (BS + Fi) and ammonium polyphosphate (BS + Ap). Soils (0–2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ{sup 15}N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH{sub 4}{sup +}–N and NO{sub 3}{sup −}–N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS + Ap had the highest levels of soil available P, Na and Al. Plants from BS + Ap plots had higher values of δ{sup 15}N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS + Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS + Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS + Fi) or had a distorted trunk. BS + Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil–plant system after 10 years

  13. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years

    International Nuclear Information System (INIS)

    Fernández-Fernández, M.; Gómez-Rey, M.X.; González-Prieto, S.J.

    2015-01-01

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil–plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS + Fo), Firesorb (BS + Fi) and ammonium polyphosphate (BS + Ap). Soils (0–2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ 15 N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH 4 + –N and NO 3 − –N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS + Ap had the highest levels of soil available P, Na and Al. Plants from BS + Ap plots had higher values of δ 15 N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS + Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS + Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS + Fi) or had a distorted trunk. BS + Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil–plant system after 10 years. - Highlights: • We hypothesized

  14. Results of about a seven years lysimeter study to the quantification of the mobility of radionuclides into the system soil-water-plant

    International Nuclear Information System (INIS)

    Gerzabek, M.H.; Strebl, F.; Temmel, B.

    1999-04-01

    The result of seven years lysimeter experiments (twelve soil monoliths, four soil types) to determine the uptake of 60 Co, 137 Cs and 226 Ra into agricultural crops and the leaching behaviour are presented. The mobility of the artificial radionuclides in soil profiles decreased in the following order: 60 Co ≥ 22 6Ra > 137 Cs. Total median values of soil-plant transfer factors (dry matter basis) for the three radionuclides decreased from 226 Ra (0.068 kg kg -1 ) to 137 Cs (0.043 kg kg -1 ) and 60 Co (0.018 kg kg -1 ). The physical and chemical properties of the experimental soils resulted in significant differences in transfer factors or fluxes between the investigated soils for 137 Cs and 226 Ra, but not for 60 Co. Differences in transfer between plant species and plant parts are distinct, with graminaceous species showing 5.8 and 15 times lower values for 137 Cs and 60 Co than dicodyle-donean species. In model calculations radionuclide losses through the different pathways (physical decay, leaching plant uptake and removal) were quantified. (author)

  15. Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem

    Science.gov (United States)

    Jonathan P. Benstead; Amy D. Rosemond; Wyatt F. Cross; J. Bruce Wallace; Susan L. Eggert; Keller Suberkropp; Vladislav Gulis; Jennifer L. Greenwood; Cynthia J. Tant

    2009-01-01

    Responses of detrital pathways to nutrients may differ fundamentally from pathways involving living plants: basal carbon resources can potentially decrease rather than increase with nutrient enrichment. Despite the potential for nutrients to accelerate heterotrophic processes and fluxes of detritus, few studies have examined detritus-nutrient dynamics at whole-...

  16. Monthly Levels and Criteria Considerations of Nutrient, pH, Alkalinity and Ionic Variables in Runoff Containment Basins in Ornamental Plant Nurseries.

    Science.gov (United States)

    Triplicate water samples were collected monthly from 9 waterways (8 recycling containment basins (RCBs) and 1 stream) on 4 commercial ornamental plant nurseries from February to July, and from 1 RCB and nursery from April to October. Four RCBs, one per nursery, were actively utilized as an irrigatio...

  17. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils.

    Science.gov (United States)

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W; Fallmann, Katharina; Puschenreiter, Markus

    2013-05-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.

  18. [Nutrient transfer and growth of Pinus greggii Engelm. inoculated with edible ectomycorrhizal mushrooms in two substrates].

    Science.gov (United States)

    Rentería-Chávez, María C; Pérez-Moreno, Jesús; Cetina-Alcalá, Víctor M; Ferrera-Cerrato, Ronald; Xoconostle-Cázares, Beatriz

    An ectomycorrhiza is a mutualistic symbiosis of paramount importance in forestry and tree production. One of the selection criteria of ectomycorrhizal fungi that has currently gained importance is their edibility due to the economic, ecological and cultural relevance of edible ectomycorrhizal mushrooms as a non-timber forest product. The effect of the inoculation with three edible ectomycorrhizal mushrooms: Laccaria laccata, Laccaria bicolor y Hebeloma leucosarx, which are widely sold in Mexico, on the growth and nutrient contents of Pinus greggii grown in an experimental substrate and a commercial substrate enriched with a slow-release fertilizer, was evaluated. Two years after sowing, differences in terms of shoot and root biomass and macro and micronutrient contents between inoculated and non-inoculated plants, were recorded independently of the fungal species and the substrate. Despite the fact that plants grown in the commercial substrate had higher growth and nutrient contents, their ectomycorrhizal colonization percentages were smaller than those of the plants grown in the experimental substrate. The differences in the nutrient transfer to the inoculated plant shoots among the evaluated fungal species were recorded. Ca mobilization by L. laccata, Na by L. bicolor and Mn by H. leucosarx were observed in the plants growing in the experimental substrate. It has been demonstrated that the selection of substrates constitutes an important factor in the production of ectomycorrhizal plants and that the three evaluated species of edible ectomycorrhizal mushrooms have an enormous potential in the controlled mycorrhization of P. greggii. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Application of mobile agent technology with portable information device to the maintenance support of nuclear power plant

    International Nuclear Information System (INIS)

    Takahashi, Makoto; Ito, Yo; Sato, Hisashi; Kitamura, Masaharu

    2004-01-01

    A support system for trouble shooting activities has been developed based on the distributed DB and mobile agent technology. The main purpose of the proposed system is to provide field workers with effective functions for realizing trouble-shooting with the aid of the mobile agents, which performs data retrieval from DB and fault diagnosis. In the proposed scheme of trouble shooting support, a portable information device is utilized by the maintenance personnel, which is connected to the local data base (LDB) via wireless network. The important point is that these functions can be accessed by the field workers through wearable information device with the lower cognitive burden. The prototype system has been developed using the JAVA-based Aglets Framework SDK and applied to the actual objective system. It has been confirmed through the experiments that the developed prototype system is capable of performing the tasks to support diagnostic activities. (author)

  20. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years.

    Science.gov (United States)

    Fernández-Fernández, M; Gómez-Rey, M X; González-Prieto, S J

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil-plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS+Fo), Firesorb (BS+Fi) and ammonium polyphosphate (BS+Ap). Soils (0-2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ(15)N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH₄(+)-N and NO₃(-)-N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS+Ap had the highest levels of soil available P, Na and Al. Plants from BS+Ap plots had higher values of δ(15)N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS+Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS+Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS+Fi) or had a distorted trunk. BS+Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil-plant system after 10 years. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. EFFECT OF SOLE AND ASSOCIATIVE ACTIONS OF ELEMENTAL SULFUR AND INOCULATION SULFUR OXIDIZING BACTERIA ON GROWTH AND NUTRIENTS CONTENTS OF PEPPER PLANTS AND THE USED SOILS

    Directory of Open Access Journals (Sweden)

    S. A. Ibrahim

    2011-12-01

    Full Text Available A pot experiment was conducted to study the effect of elemental sulfur (E.S rate (2.5 g/kg soil and sulfur oxidizing bacteria on pepper plant and some chemical properties of two representative soil samples varying in their texture and CaCO3 content. Pepper was grown in Shobrakheet clay loam and Nobaria sandy loam soils for 50 days. Each soil was treated with elemental sulfur (2.5 g kg-1 soil and inoculated with two sulfur oxidizing bacteria (S.O.B. No.8 and S.O.B. ATCC 8158. Elemental sulfur with or without sulfur oxidizing bacteria increased shoot dry weights of pepper plants as compared with control. The highest effect was observed with E.S + ATCC 8158 treatment which resulted in increasing the pepper shoot dry weights from 1.36 to 2.08 g pot-1 with the clay loam soil and from 0.77 to 1.37 g pot-1 with the sandy loam soil. The same treatment resulted in the highest plant content of S, N, P, K and micronutrients.

  2. Characterization of nutrient deficiency in Hancornia speciosa Gomes seedlings by omitting micronutrients from the nutrient solution

    Directory of Open Access Journals (Sweden)

    Layara Alexandre Bessa

    2013-06-01

    Full Text Available Hancornia speciosa Gomes (Mangaba tree is a fruit tree belonging to the Apocynaceae family and is native to Brazil. The production of seedlings of this species is limited by a lack of technical and nutritional expertise. To address this deficiency, this study aimed to characterize the visual symptoms of micronutrient deficiency and to assess growth and leaf nutrient accumulation in H. speciosa seedlings supplied with nutrient solutions that lack individual micronutrients. H. speciosa plants were grown in nutrient solution in a greenhouse according to a randomized block design, with four replicates. The treatments consisted of a group receiving complete nutrient solution and groups treated with a nutrient solution lacking one of the following micronutrients: boron (B, copper (Cu, iron (Fe, manganese (Mn, zinc (Zn, and molybdenum (Mo. The visual symptoms of nutrient deficiency were generally easy to characterize. Dry matter production was affected by the omission of micronutrients, and the treatment lacking Fe most limited the stem length, stem diameter, root length, and number of leaves in H. speciosa seedlings as well as the dry weight of leaves, the total dry weight, and the relative growth in H. speciosa plants. The micronutrient contents of H. speciosa leaves from plants receiving the complete nutrient solution treatment were, in decreasing order, Fe>Mn>Cu>Zn>B.

  3. Restoration of Shallow Lakes in Subtropical and Tropical China: Response of Nutrients and Water Clarity to Biomanipulation by Fish Removal and Submerged Plant Transplantation

    Directory of Open Access Journals (Sweden)

    Jinlei Yu

    2016-10-01

    Full Text Available Fish removal has been used to restore temperate lakes, and positive effects on ecological state and water clarity have frequently been recorded in many lakes. Recently, a supplementary measure, transplantation of submerged macrophytes after fish removal, has been applied to restore warm Chinese shallow lakes in order to compensate for the expected lack of increasing grazing control of phytoplankton after the biomanipulation. These measures have successfully shifted turbid warm lakes to a clear water state, but little is known about the responses to restoration of key physico-chemical variables. We analyzed the seasonal variation in nutrient concentrations in two subtropical and one tropical biomanipulated shallow Chinese lakes subjected to restoration. In all three lakes, a marked decline occurred in the concentrations of lake total nitrogen (TN, total phosphorus (TP, total suspended solids (TSS, and chlorophyll a (Chl a, while the transparency (SD:WD ratio, Secchi depth to water depth ratio increased. A clear water state was established, lasting so far for 7 to 23 months, and TN, TP, Chl a, and TSS levels in the three restored lakes decreased to, on average, 49%, 58%, 41%, and 18% of the level prior to restoration and/or the level in a reference lake, respectively, while the annual mean SD:WD ratio exhibited a 1.5–4 fold increase. In conclusion, lake restoration by transplantation of submerged macrophytes after fish removal had major positive effects on the physico-chemical variables in our study lakes. However, continuous control of omnivorous and herbivorous fish biomass is recommended as the fish typically present in warm, shallow lakes to some extent feed on submerged macrophytes, when available.