WorldWideScience

Sample records for plant molecular ecology

  1. Photosynthesis, environmental change, and plant adaptation: Research topics in plant molecular ecology. Summary report of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    As we approach the 21st Century, it is becoming increasingly clear that human activities, primarily related to energy extraction and use, will lead to marked environmental changes at the local, regional, and global levels. The realized and the potential photosynthetic performance of plants is determined by a combination of intrinsic genetic information and extrinsic environmental factors, especially climate. It is essential that the effects of environmental changes on the photosynthetic competence of individual species, communities, and ecosystems be accurately assessed. From October 24 to 26, 1993, a group of scientists specializing in various aspects of plant science met to discuss how our predictive capabilities could be improved by developing a more rational, mechanistic approach to relating photosynthetic processes to environmental factors. A consensus emerged that achieving this goal requires multidisciplinary research efforts that combine tools and techniques of genetics, molecular biology, biophysics, biochemistry, and physiology to understand the principles, mechanisms, and limitations of evolutional adaptation and physiological acclimation of photosynthetic processes. Many of these basic tools and techniques, often developed in other fields of science, already are available but have not been applied in a coherent, coordinated fashion to ecological research. The efforts of this research program are related to the broader efforts to develop more realistic prognostic models to forecast climate change that include photosynthetic responses and feedbacks at the regional and ecosystem levels.

  2. Miscanthus plants used as an alternative biofuel material. The basic studies on ecology and molecular evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chang-Hung [Graduate Institute of Ecology and Evolutionary Biology, College of Life Sciences, China Medical University, Taichung 404 (China)

    2009-08-15

    Miscanthus Anderss, widely distributed in Asia and Pacific Islands, possesses 20 species. Of which 8 species and 1 variety were recorded in Chinese Mainland; 6 species and 1 variety found in Japan; 5 species and 3 varieties distributed in Taiwan; 3 species documented in the Philippines; and rest of species have been recorded in Jawa, eastern Himalaya, and Sikkim. The plant is a C{sub 4} perennial grass with high productivity of biomass. In the 19th and early 20th centuries in Taiwan, Miscanthus was a very important crop used for forage grass, clothing, and shelter, etc. The relatively high germination, and high yield of biomass made the plant available for people of Taiwan including aboriginal. The taxonomic study of Miscanthus plants was much done by several scientists, and its ecological study has been only taken by the present author since 1972. Chou and his associates paid a great attention to elucidate the mechanism of dominance of Miscanthus vegetation and found that allelopathy plays an important role. In addition, the population biology of Miscanthus taxa by using polyacrylamide gel electrophoreses technique to examine the patterns of peroxidase and esterase among populations (over 100) of Miscanthus in Taiwan were conducted. They also elucidated the phylogenetic relationship among species and varieties in Taiwan. Chou and Ueng proposed an evolutionary trend of Miscanthus species, indicating that the Miscanthus sinensis was assumed to be the origin of Miscanthus Anderss, which evolved to M. sinensis var. formosana, and M. sinensis var. flavidus, and M. sinensis var. transmorrisonensis, and Miscanthus floridulus was thought to be an out group of M. sinensis complex. Moreover, molecular phylogeny was attempted to clarify the population heterogeneity of M. sinensis complex, resulting in a substantial information. It would be available for making hybridization between Miscanthus species and its related species, such as Saccharum (sugar cane) spp. which is a

  3. Frontiers for research on the ecology of plant-pathogenic bacteria: fundamentals for sustainability: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Morris, Cindy E; Barny, Marie-Anne; Berge, Odile; Kinkel, Linda L; Lacroix, Christelle

    2017-02-01

    Methods to ensure the health of crops owe their efficacy to the extent to which we understand the ecology and biology of environmental microorganisms and the conditions under which their interactions with plants lead to losses in crop quality or yield. However, in the pursuit of this knowledge, notions of the ecology of plant-pathogenic microorganisms have been reduced to a plant-centric and agro-centric focus. With increasing global change, i.e. changes that encompass not only climate, but also biodiversity, the geographical distribution of biomes, human demographic and socio-economic adaptations and land use, new plant health problems will emerge via a range of processes influenced by these changes. Hence, knowledge of the ecology of plant pathogens will play an increasingly important role in the anticipation and response to disease emergence. Here, we present our opinion on the major challenges facing the study of the ecology of plant-pathogenic bacteria. We argue that the discovery of markedly novel insights into the ecology of plant-pathogenic bacteria is most likely to happen within a framework of more extensive scales of space, time and biotic interactions than those that currently guide much of the research on these bacteria. This will set a context that is more propitious for the discovery of unsuspected drivers of the survival and diversification of plant-pathogenic bacteria and of the factors most critical for disease emergence, and will set the foundation for new approaches to the sustainable management of plant health. We describe the contextual background of, justification for and specific research questions with regard to the following challenges: Development of terminology to describe plant-bacterial relationships in terms of bacterial fitness. Definition of the full scope of the environments in which plant-pathogenic bacteria reside or survive. Delineation of pertinent phylogenetic contours of plant-pathogenic bacteria and naming of strains

  4. Quantitative plant ecology

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2014-01-01

    This e-book is written in the Wolfram' CDF format (download free CDF player from Wolfram.com) The objective of this e-book is to introduce the population ecological concepts for measuring and predicting the ecological success of plant species. This will be done by focusing on the measurement......, will not be covered in this e-book....

  5. Quantitative plant ecology

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2014-01-01

    This e-book is written in the Wolfram' CDF format (download free CDF player from Wolfram.com) The objective of this e-book is to introduce the population ecological concepts for measuring and predicting the ecological success of plant species. This will be done by focusing on the measurement......, will not be covered in this e-book....

  6. Quantitative plant ecology

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2014-01-01

    This e-book is written in the Wolfram' CDF format (download free CDF player from Wolfram.com) The objective of this e-book is to introduce the population ecological concepts for measuring and predicting the ecological success of plant species. This will be done by focusing on the measurement...... and statistical modelling of plant species abundance and the relevant ecological processes that control species abundance. The focus on statistical modelling and likelihood function based methods also means that more algorithm based methods, e.g. ordination techniques and boosted regression tress...

  7. Molecular ecological network analyses

    Directory of Open Access Journals (Sweden)

    Deng Ye

    2012-05-01

    Full Text Available Abstract Background Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Results Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs through Random Matrix Theory (RMT-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological

  8. Wetland plants: biology and ecology

    National Research Council Canada - National Science Library

    Cronk, Julie K; Fennessy, M. Siobhan

    2001-01-01

    Providing a detailed account of the biology and ecology of wetland plants as well as applications of wetland plant science, this book presents a synthesis of studies and reviews from biology, plant...

  9. Plant interactions with microbes and insects: from molecular mechanisms to ecology

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Dicke, M.

    2007-01-01

    Plants are members of complex communities and interact both with antagonists and beneficial organisms. An important question in plant defense-signaling research is how plants integrate signals induced by pathogens, beneficial microbes and insects into the most appropriate adaptive response. Molecula

  10. Ecological Effects of Allelopathic Plants

    DEFF Research Database (Denmark)

    Kruse, M.; Strandberg, M.; Strandberg, B.

    with the environment through spread of GM-plants or transgenes outside agricultural areas. The last chapter discuss GM-allelopathic plants in relation to the ecological risk assessment. Preface: This report is based on a literature review on allelopathy from an ecological impact point of view carried out in 1999...... on allelopathy in these crops. It discusses the ecological effects of allelopathic plants in natural ecosystems and factors of importance for the effects of these plants are pointed out. Finally the report presents suggestions for an ecological risk assessment of crops with an enhanced release of allelochemicals...

  11. Parallel Ecological Speciation in Plants?

    Directory of Open Access Journals (Sweden)

    Katherine L. Ostevik

    2012-01-01

    Full Text Available Populations that have independently evolved reproductive isolation from their ancestors while remaining reproductively cohesive have undergone parallel speciation. A specific type of parallel speciation, known as parallel ecological speciation, is one of several forms of evidence for ecology's role in speciation. In this paper we search the literature for candidate examples of parallel ecological speciation in plants. We use four explicit criteria (independence, isolation, compatibility, and selection to judge the strength of evidence for each potential case. We find that evidence for parallel ecological speciation in plants is unexpectedly scarce, especially relative to the many well-characterized systems in animals. This does not imply that ecological speciation is uncommon in plants. It only implies that evidence from parallel ecological speciation is rare. Potential explanations for the lack of convincing examples include a lack of rigorous testing and the possibility that plants are less prone to parallel ecological speciation than animals.

  12. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  13. 红树植物分子生态与进化研究进展%Review of Molecular Ecology and Evolution Research on Mangrove Plants

    Institute of Scientific and Technical Information of China (English)

    张军丽; 王伯荪; 王峥峰; 张炜银; 李鸣光

    2001-01-01

    This paper reviewed the population ecology and systematic researches using molecular markers and cytological methods in mangrove plants and looked forward to the further prospects of molecular ecology in mangrove conservation and management according to the research references in these fields: The molecular evolutionary evidence of some species in Rhizophoraceae using ITS,matK rbcL sequencing conformed to the morphological systematic relationship with much earlier differentiation time than that from fossil records.The mangrove species populations based on isoenzyme and RAPD analyses showed that the lower genetic diversity and higher differentiation in those pan-distributed species populations dealing with the continental drift.This indicated that the relatively fragile ecosystem of mangrove needed to be protected urgently from more human activities.

  14. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-02-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important for the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread.

  15. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-06-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread. 

  16. Game theory and plant ecology.

    Science.gov (United States)

    McNickle, Gordon G; Dybzinski, Ray

    2013-04-01

    The fixed and plastic traits possessed by a plant, which may be collectively thought of as its strategy, are commonly modelled as density-independent adaptations to its environment. However, plant strategies may also represent density- or frequency-dependent adaptations to the strategies used by neighbours. Game theory provides the tools to characterise such density- and frequency-dependent interactions. Here, we review the contributions of game theory to plant ecology. After briefly reviewing game theory from the perspective of plant ecology, we divide our review into three sections. First, game theoretical models of allocation to shoots and roots often predict investment in those organs beyond what would be optimal in the absence of competition. Second, game theoretical models of enemy defence suggest that an individual's investment in defence is not only a means of reducing its own tissue damage but also a means of deflecting enemies onto competitors. Finally, game theoretical models of trade with mutualistic partners suggest that the optimal trade may reflect competition for access to mutualistic partners among plants. In short, our review provides an accessible entrance to game theory that will help plant ecologists enrich their research with its worldview and existing predictions.

  17. Molecular ecology of Listeria monocytogenes and other Listeria species in small and very small ready-to-eat meat processing plants.

    Science.gov (United States)

    Williams, Shanna K; Roof, Sherry; Boyle, Elizabeth A; Burson, Dennis; Thippareddi, Harshavardhan; Geornaras, Ifigenia; Sofos, John N; Wiedmann, Martin; Nightingale, Kendra

    2011-01-01

    A longitudinal study was conducted to track Listeria contamination patterns in ready-to-eat meats from six small or very small meat processing plants located in three states over 1 year. A total of 688 environmental sponge samples were collected from nonfood contact surfaces during bimonthly visits to each plant. Overall, L. monocytogenes was isolated from 42 (6.1%) environmental samples, and its prevalence ranged from 1.7 to 10.8% across different plants. Listeria spp., other than L. monocytogenes, were isolated from 9.5% of samples overall, with the prevalence ranging from 1.5 to 18.3% across different plants. The prevalence of L. monocytogenes correlated well with that of other Listeria spp. for some but not all plants. One L. monocytogenes isolate representing each positive sample was characterized by molecular serotyping, EcoRI ribotyping, and pulsed-field gel electrophoresis typing. Seven sample sites tested positive for L. monocytogenes on more than one occasion, and the same ribotype was detected more than once at five of these sites. Partial sigB sequencing was used to speciate other Listeria spp. isolates and assign an allelic type to each isolate. Other Listeria spp. were isolated more than once from 14 sample sites, and the same sigB allelic type was recovered at least twice from seven of these sites. One plant was colonized by an atypical hemolytic L. innocua strain. Our findings indicate that small and very small meat processing plants that produce ready-to-eat meat products are characterized by a varied prevalence of Listeria, inconsistent correlation between contamination by L. monocytogenes and other Listeria spp., and a unique Listeria molecular ecology.

  18. Plant-endophyte symbiosis, an ecological perspective.

    Science.gov (United States)

    Wani, Zahoor Ahmed; Ashraf, Nasheeman; Mohiuddin, Tabasum; Riyaz-Ul-Hassan, Syed

    2015-04-01

    Endophytism is the phenomenon of mutualistic association of a plant with a microorganism wherein the microbe lives within the tissues of the plant without causing any symptoms of disease. In addition to being a treasured biological resource, endophytes play diverse indispensable functions in nature for plant growth, development, stress tolerance, and adaptation. Our understanding of endophytism and its ecological aspects are overtly limited, and we have only recently started to appreciate its essence. Endophytes may impact plant biology through the production of diverse chemical entities including, but not limited to, plant growth hormones and by modulating the gene expression of defense and other secondary metabolic pathways of the host. Studies have shown differential recruitment of endophytes in endophytic populations of plants growing in the same locations, indicating host specificity and that endophytes evolve in a coordinated fashion with the host plants. Endophytic technology can be employed for the efficient production of agricultural and economically important plants and plant products. The rational application of endophytes to manipulate the microbiota, intimately associated with plants, can help in enhancement of production of agricultural produce, increased production of key metabolites in medicinal and aromatic plants, as well as adaption to new bio-geographic regions through tolerance to various biotic and abiotic conditions. However, the potential of endophytic biology can be judiciously harnessed only when we obtain insight into the molecular mechanism of this unique mutualistic relationship. In this paper, we present a discussion on endophytes, endophytism, their significance, and diverse functions in nature as unraveled by the latest research to understand this universal natural phenomenon.

  19. Principles for ecologically based invasive plant management

    Science.gov (United States)

    Jeremy J. James; Brenda S. Smith; Edward A. Vasquez; Roger L. Sheley

    2010-01-01

    Land managers have long identified a critical need for a practical and effective framework for designing restoration strategies, especially where invasive plants dominate. A holistic, ecologically based, invasive plant management (EBIPM) framework that integrates ecosystem health assessment, knowledge of ecological processes, and adaptive management into a successional...

  20. Molecular ecology of microbial mats.

    Science.gov (United States)

    Bolhuis, Henk; Cretoiu, Mariana Silvia; Stal, Lucas J

    2014-11-01

    Phototrophic microbial mats are ideal model systems for ecological and evolutionary analysis of highly diverse microbial communities. Microbial mats are small-scale, nearly closed, and self-sustaining benthic ecosystems that comprise the major element cycles, trophic levels, and food webs. The steep and fluctuating physicochemical microgradients, that are the result of the ever changing environmental conditions and of the microorganisms' own activities, give rise to a plethora of potential niches resulting in the formation of one of the most diverse microbial ecosystems known to date. For several decades, microbial mats have been studied extensively and more recently molecular biological techniques have been introduced that allowed assessing and investigating the diversity and functioning of these systems. These investigations also involved metagenomics analyses using high-throughput DNA and RNA sequencing. Here, we summarize some of the latest developments in metagenomic analysis of three representative phototrophic microbial mat types (coastal, hot spring, and hypersaline). We also present a comparison of the available metagenomic data sets from mats emphasizing the major differences between them as well as elucidating the overlap in overall community composition.

  1. A road map for molecular ecology.

    Science.gov (United States)

    Andrew, Rose L; Bernatchez, Louis; Bonin, Aurélie; Buerkle, C Alex; Carstens, Bryan C; Emerson, Brent C; Garant, Dany; Giraud, Tatiana; Kane, Nolan C; Rogers, Sean M; Slate, Jon; Smith, Harry; Sork, Victoria L; Stone, Graham N; Vines, Timothy H; Waits, Lisette; Widmer, Alex; Rieseberg, Loren H

    2013-05-01

    The discipline of molecular ecology has undergone enormous changes since the journal bearing its name was launched approximately two decades ago. The field has seen great strides in analytical methods development, made groundbreaking discoveries and experienced a revolution in genotyping technology. Here, we provide brief perspectives on the main subdisciplines of molecular ecology, describe key questions and goals, discuss common challenges, predict future research directions and suggest research priorities for the next 20 years.

  2. Integrating plant carbon dynamics with mutualism ecology.

    Science.gov (United States)

    Pringle, Elizabeth G

    2016-04-01

    Plants reward microbial and animal mutualists with carbohydrates to obtain nutrients, defense, pollination, and dispersal. Under a fixed carbon budget, plants must allocate carbon to their mutualists at the expense of allocation to growth, reproduction, or storage. Such carbon trade-offs are indirectly expressed when a plant exhibits reduced growth or fecundity in the presence of its mutualist. Because carbon regulates the costs of all plant mutualisms, carbon dynamics are a common platform for integrating these costs in the face of ecological complexity and context dependence. The ecophysiology of whole-plant carbon allocation could thus elucidate the ecology and evolution of plant mutualisms. If mutualisms are costly to plants, then they must be important but frequently underestimated sinks in the terrestrial carbon cycle.

  3. Molecular ecology of plant competition

    NARCIS (Netherlands)

    D.D. Schmidt; M.R. Kant; I.T. Baldwin

    2009-01-01

    Although considerable effort has been invested in describing the phenotypic traits required for invasiveness, little is known about their genetic basis. However, as a result of the technological revolution in (functional) genomics, this situation is rapidly changing. Importantly, it has brought mole

  4. Molecular ecology of microbial mats

    NARCIS (Netherlands)

    H. Bolhuis; M.S. Cretoiu; L.J. Stal

    2014-01-01

    Phototrophic microbial mats are ideal model systems for ecological and evolutionary analysis of highly diverse microbial communities. Microbial mats are small-scale, nearly closed, and self-sustaining benthic ecosystems that comprise the major element cycles, trophic levels, and food webs. The steep

  5. The behavioural ecology of climbing plants

    OpenAIRE

    Gianoli, Ernesto

    2015-01-01

    Climbing plants require an external support to grow vertically and enhance light acquisition. Vines that find a suitable support have greater performance and fitness than those that remain prostrate. Therefore, the location of a suitable support is a key process in the life history of climbing plants. Numerous studies on climbing plant behaviour have elucidated mechanistic details of support searching and attachment. Far fewer studies have addressed the ecological significance of support-find...

  6. Quantitative plant ecology:statistical and ecological modelling of plant abundance

    OpenAIRE

    Damgaard, Christian

    2014-01-01

    This e-book is written in the Wolfram' CDF format (download free CDF player from Wolfram.com)The objective of this e-book is to introduce the population ecological concepts for measuring and predicting the ecological success of plant species. This will be done by focusing on the measurement and statistical modelling of plant species abundance and the relevant ecological processes that control species abundance. The focus on statistical modelling and likelihood function based methods also mean...

  7. Plant domestication through an ecological lens.

    Science.gov (United States)

    Milla, Rubén; Osborne, Colin P; Turcotte, Martin M; Violle, Cyrille

    2015-08-01

    Our understanding of domestication comes largely from archeology and genetics. Here, we advocate using current ecological theory and methodologies to provide novel insights into the causes and limitations of evolution under cultivation, as well as into the wider ecological impacts of domestication. We discuss the importance of natural selection under cultivation, that is, the forces promoting differences in Darwinian fitness between plants in crop populations and of constraints, that is, limitations of diverse nature that, given values for trait X, shorten the range of variation of trait Y, during the domestication process. Throughout this opinion paper, we highlight how ecology can yield insight into the effects of domestication on plant traits, on crop feedback over ecological processes, and on how species interactions develop in croplands.

  8. The behavioural ecology of climbing plants.

    Science.gov (United States)

    Gianoli, Ernesto

    2015-02-12

    Climbing plants require an external support to grow vertically and enhance light acquisition. Vines that find a suitable support have greater performance and fitness than those that remain prostrate. Therefore, the location of a suitable support is a key process in the life history of climbing plants. Numerous studies on climbing plant behaviour have elucidated mechanistic details of support searching and attachment. Far fewer studies have addressed the ecological significance of support-finding behaviour and the factors that affect it. Without this knowledge, little progress can be made in the understanding of the evolution of support-finding behaviour in climbers. Here I review studies addressing ecological causes and consequences of support finding and use by climbing plants. I also propose the use of behavioural ecology theoretical frameworks to study climbing plant behaviour. I show how host tree attributes may determine the probability of successful colonization for the different types of climbers, and examine the evidence of environmental and genetic control of circumnutation behaviour and phenotypic responses to support availability. Cases of oriented vine growth towards supports are highlighted. I discuss functional responses of vines to the interplay between herbivory and support availability under different abiotic environments, illustrating with one study case how results comply with a theoretical framework of behavioural ecology originally conceived for animals. I conclude stressing that climbing plants are suitable study subjects for the application of behavioural-ecological theory. Further research under this framework should aim at characterizing the different stages of the support-finding process in terms of their fit with the different climbing modes and environmental settings. In particular, cost-benefit analysis of climbing plant behaviour should be helpful to infer the selective pressures that have operated to shape current climber ecological

  9. Wetland plants: biology and ecology

    National Research Council Canada - National Science Library

    Cronk, Julie K; Fennessy, M. Siobhan

    2001-01-01

    .... You get a thorough discussion of the range of wetland plant adaptations to life in water or saturated soils, high salt or high sulfur, low light and low carbon dioxide levels, as well as a detailed...

  10. The Evolutionary Ecology of Plant Disease: A Phylogenetic Perspective.

    Science.gov (United States)

    Gilbert, Gregory S; Parker, Ingrid M

    2016-08-04

    An explicit phylogenetic perspective provides useful tools for phytopathology and plant disease ecology because the traits of both plants and microbes are shaped by their evolutionary histories. We present brief primers on phylogenetic signal and the analytical tools of phylogenetic ecology. We review the literature and find abundant evidence of phylogenetic signal in pathogens and plants for most traits involved in disease interactions. Plant nonhost resistance mechanisms and pathogen housekeeping functions are conserved at deeper phylogenetic levels, whereas molecular traits associated with rapid coevolutionary dynamics are more labile at branch tips. Horizontal gene transfer disrupts the phylogenetic signal for some microbial traits. Emergent traits, such as host range and disease severity, show clear phylogenetic signals. Therefore pathogen spread and disease impact are influenced by the phylogenetic structure of host assemblages. Phylogenetically rare species escape disease pressure. Phylogenetic tools could be used to develop predictive tools for phytosanitary risk analysis and reduce disease pressure in multispecies cropping systems.

  11. Plant Insecticidal Toxins in Ecological Networks

    Directory of Open Access Journals (Sweden)

    Sébastien Ibanez

    2012-04-01

    Full Text Available Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects’ vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  12. Plant insecticidal toxins in ecological networks.

    Science.gov (United States)

    Ibanez, Sébastien; Gallet, Christiane; Després, Laurence

    2012-04-01

    Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects' vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  13. Plant Terpenoids: Biosynthesis and Ecological Functions

    Institute of Scientific and Technical Information of China (English)

    Ai-Xia Cheng; Yong-Gen Lou; Ying-Bo Mao; Shan Lu; Ling-Jian Wang; Xiao-Ya Chen

    2007-01-01

    Among plant secondary metabolites terpenoids are a structurally most diverse group; they function as phytoalexins in plant direct defense, or as signals in indirect defense responses which involves herbivores and their natural enemies. In recent years, more and more attention has been paid to the investigation of the ecological role of plant terpenoids. The biosynthesis pathways of monoterpenes, sesquiterpenes, and diterpenes include the synthesis of C5 precursor isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), the synthesis of the immediate diphosphate precursors, and the formation of the diverse terpenoids. Terpene synthases (TPSs) play a key role in volatile terpene synthesis. By expression of the TPS genes, significant achievements have been made on metabolic engineering to increase terpenoid production. This review mainly summarizes the recent research progress in elucidating the ecological role of terpenoids and characterization of the enzymes involved in the terpenoid biosynthesis. Spatial and temporal regulations of terpenoids metabolism are also discussed.

  14. The evolutionary ecology of C4 plants.

    Science.gov (United States)

    Christin, Pascal-Antoine; Osborne, Colin P

    2014-12-01

    C4 photosynthesis is a physiological syndrome resulting from multiple anatomical and biochemical components, which function together to increase the CO2 concentration around Rubisco and reduce photorespiration. It evolved independently multiple times and C4 plants now dominate many biomes, especially in the tropics and subtropics. The C4 syndrome comes in many flavours, with numerous phenotypic realizations of C4 physiology and diverse ecological strategies. In this work, we analyse the events that happened in a C3 context and enabled C4 physiology in the descendants, those that generated the C4 physiology, and those that happened in a C4 background and opened novel ecological niches. Throughout the manuscript, we evaluate the biochemical and physiological evidence in a phylogenetic context, which demonstrates the importance of contingency in evolutionary trajectories and shows how these constrained the realized phenotype. We then discuss the physiological innovations that allowed C4 plants to escape these constraints for two important dimensions of the ecological niche--growth rates and distribution along climatic gradients. This review shows that a comprehensive understanding of C4 plant ecology can be achieved by accounting for evolutionary processes spread over millions of years, including the ancestral condition, functional convergence via independent evolutionary trajectories, and physiological diversification.

  15. Molecular ecology studies of marine Synechococcus

    Institute of Scientific and Technical Information of China (English)

    MA Ying; JIAO Nianzhi

    2004-01-01

    Cyanobacteria of the genus Synechococcus is a dominant component of microbial community in the world's oceans, and is a major contributor to marine primary productivity and thus plays an important role in carbon cycling in the oceans. Besides the ecological importance, the cultivability also made Synechococcus a very special group of marine microorganisms, which has attracted great attention from oceanographers and biologists. Great progress in the physiology, biochemistry and phylogeny of Synechococcus has been made since its discovery. We here review the current status of molecular ecology of marine Synechococcus and give a perspective into the future based on our understanding of the literature and our own work.

  16. The ecology of tropical plant viruses

    OpenAIRE

    Thresh, J. Michael

    1998-01-01

    In recent decades ecology has become one of the dominant themes of the biological sciences. However, this has not always been so as the subject emerged from the specialist study of plant and animal communities in natural habitats that were often remote and sometimes exotic. It has since become a unifying all-embracing discipline that is of great importance, not only in botany, zoology and microbiology, but also in international affairs in relation to current issues concerning the environment,...

  17. 2011 Archaea: Ecology, Metabolism, & Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Keneth Stedman

    2011-08-05

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  18. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    Energy Technology Data Exchange (ETDEWEB)

    Furlow, Julie Maupin- [Univ. of Florida, Gainesville, FL (United States)

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  19. Ecological principles underpinning invasive plant management tools and strategies

    Science.gov (United States)

    The broad focus of ecologically-based invasive plant management is to identify and repair the ecological processes facilitating plant invasion. To be useful, however, EBIPM requires that our application of management tools and strategies be based on ecological principles that determine the rate and ...

  20. [Ecological stoichiometry and its application to medicinal plant resources].

    Science.gov (United States)

    Zhang, Ji; Jin, Hang; Zhang, Jin-Yu; Wang, Yuan-Zhong

    2013-01-01

    Ecological stoichiometry is a study of the balance of biological system's energy and the balance of multiple chemical elements. It focuses on the relationship of the element ratio in ecological processes. In this paper, the concept and main theoretical basis of ecological stoichiometry were introduced, and the status of stoichiometry in medicinal plant resources was reviewed. According to the recent development of ecological stoichiometry, the future directions of ecological stoichiometry of medicinal plants could be the study of the relationship between stoichiometric characteristic and growth and secondary metabolism of medicinal plants, and the influence of biotic (or abiotic) factors on the stoichiometric characteristic of medicinal plants.

  1. Microbial biofilms: from ecology to molecular genetics.

    Science.gov (United States)

    Davey, M E; O'toole, G A

    2000-12-01

    Biofilms are complex communities of microorganisms attached to surfaces or associated with interfaces. Despite the focus of modern microbiology research on pure culture, planktonic (free-swimming) bacteria, it is now widely recognized that most bacteria found in natural, clinical, and industrial settings persist in association with surfaces. Furthermore, these microbial communities are often composed of multiple species that interact with each other and their environment. The determination of biofilm architecture, particularly the spatial arrangement of microcolonies (clusters of cells) relative to one another, has profound implications for the function of these complex communities. Numerous new experimental approaches and methodologies have been developed in order to explore metabolic interactions, phylogenetic groupings, and competition among members of the biofilm. To complement this broad view of biofilm ecology, individual organisms have been studied using molecular genetics in order to identify the genes required for biofilm development and to dissect the regulatory pathways that control the plankton-to-biofilm transition. These molecular genetic studies have led to the emergence of the concept of biofilm formation as a novel system for the study of bacterial development. The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced our understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis of biofilm development.

  2. Microbial Biofilms: from Ecology to Molecular Genetics

    Science.gov (United States)

    Davey, Mary Ellen; O'toole, George A.

    2000-01-01

    Biofilms are complex communities of microorganisms attached to surfaces or associated with interfaces. Despite the focus of modern microbiology research on pure culture, planktonic (free-swimming) bacteria, it is now widely recognized that most bacteria found in natural, clinical, and industrial settings persist in association with surfaces. Furthermore, these microbial communities are often composed of multiple species that interact with each other and their environment. The determination of biofilm architecture, particularly the spatial arrangement of microcolonies (clusters of cells) relative to one another, has profound implications for the function of these complex communities. Numerous new experimental approaches and methodologies have been developed in order to explore metabolic interactions, phylogenetic groupings, and competition among members of the biofilm. To complement this broad view of biofilm ecology, individual organisms have been studied using molecular genetics in order to identify the genes required for biofilm development and to dissect the regulatory pathways that control the plankton-to-biofilm transition. These molecular genetic studies have led to the emergence of the concept of biofilm formation as a novel system for the study of bacterial development. The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced our understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis of biofilm development. PMID:11104821

  3. Contributions of plant molecular systematics to studies of molecular evolution.

    Science.gov (United States)

    Soltis, E D; Soltis, P S

    2000-01-01

    Dobzhansky stated that nothing in biology makes sense except in the light of evolution. A close corollary, and the central theme of this paper, is that everything makes a lot more sense in the light of phylogeny. Systematics is in the midst of a renaissance, heralded by the widespread application of new analytical approaches and the introduction of molecular techniques. Molecular phylogenetic analyses are now commonplace, and they have provided unparalleled insights into relationships at all levels of plant phylogeny. At deep levels, molecular studies have revealed that charophyte green algae are the closest relatives of the land plants and suggested that liverworts are sister to all other extant land plants. Other studies have suggested that lycopods are sister to all other vascular plants and clarified relationships among the ferns. The impact of molecular phylogenetics on the angiosperms has been particularly dramatic--some of the largest phylogenetic analyses yet conducted have involved the angiosperms. Inferences from three genes (rbcL, atpB, 18S rDNA) agree in the major features of angiosperm phylogeny and have resulted in a reclassification of the angiosperms. This ordinal-level reclassification is perhaps the most dramatic and important change in higher-level angiosperm taxonomy in the past 200 years. At lower taxonomic levels, phylogenetic analyses have revealed the closest relatives of many crops and 'model organisms' for studies of molecular genetics, concomitantly pointing to possible relatives for use in comparative studies and plant breeding. Furthermore, phylogenetic information has contributed to new perspectives on the evolution of polyploid genomes. The phylogenetic trees now available at all levels of the taxonomic hierarchy for angiosperms and other green plants should play a pivotal role in comparative studies in diverse fields from ecology to molecular evolution and comparative genetics.

  4. 2007 Archaea: Ecology, Metabolism and Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Imke Schroeder

    2008-09-18

    The Archaea are a fascinating and diverse group of prokaryotic organisms with deep roots overlapping those of eukaryotes. The focus of this GRC conference, 'Archaea: Ecology Metabolism & Molecular Biology', expands on a number of emerging topics highlighting the evolution and composition of microbial communities and novel archaeal species, their impact on the environment, archaeal metabolism, and research that stems from sequence analysis of archaeal genomes. The strength of this conference lies in its ability to couple reputable areas with new scientific topics in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  5. Molecular plant volatile communication.

    Science.gov (United States)

    Holopainen, Jarmo K; Blande, James D

    2012-01-01

    Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above-ground plant self-recognition is available.

  6. Molecular ecology in Vienna: hot topics in a chilly place

    Science.gov (United States)

    Städler, Thomas

    2012-01-01

    The international VIPCA conference on ‘Molecular Ecology' took place in Vienna, Austria, in early February 2012. The meeting showcased the diversity of molecular tools and conceptual approaches at the disposal of practitioners in this flourishing field, which lies at the interface of ecology, evolution and molecular biology.

  7. Molecular marker applications in plants.

    Science.gov (United States)

    Hayward, Alice C; Tollenaere, Reece; Dalton-Morgan, Jessica; Batley, Jacqueline

    2015-01-01

    Individuals within a population of a sexually reproducing species will have some degree of heritable genomic variation caused by mutations, insertion/deletions (INDELS), inversions, duplications, and translocations. Such variation can be detected and screened using molecular, or genetic, markers. By definition, molecular markers are genetic loci that can be easily tracked and quantified in a population and may be associated with a particular gene or trait of interest. This chapter will review the current major applications of molecular markers in plants.

  8. Amphibian molecular ecology and how it has informed conservation.

    Science.gov (United States)

    McCartney-Melstad, Evan; Shaffer, H Bradley

    2015-10-01

    Molecular ecology has become one of the key tools in the modern conservationist's kit. Here we review three areas where molecular ecology has been applied to amphibian conservation: genes on landscapes, within-population processes, and genes that matter. We summarize relevant analytical methods, recent important studies from the amphibian literature, and conservation implications for each section. Finally, we include five in-depth examples of how molecular ecology has been successfully applied to specific amphibian systems. © 2015 John Wiley & Sons Ltd.

  9. Microbial interactions: ecology in a molecular perspective.

    Science.gov (United States)

    Braga, Raíssa Mesquita; Dourado, Manuella Nóbrega; Araújo, Welington Luiz

    2016-12-01

    The microorganism-microorganism or microorganism-host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial-host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community.

  10. Microbial interactions: ecology in a molecular perspective

    Directory of Open Access Journals (Sweden)

    Raíssa Mesquita Braga

    Full Text Available ABSTRACT The microorganism-microorganism or microorganism-host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial-host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community.

  11. Biological, ecological and agronomic significance of plant phenolic ...

    African Journals Online (AJOL)

    Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. ... African Journal of Biotechnology ... compounds in the rhizosphere of a few studied symbiotic legumes and other plants.

  12. Plant Landscape Design in Special Space of Ecological Buildings

    Institute of Scientific and Technical Information of China (English)

    Guoyong; ZHANG; Xiaogang; CHEN

    2014-01-01

    This paper mainly discussed the application of plant landscape design in special space of ecological buildings. From the concept of special space of ecological buildings,it elaborated social and ecological benefits of greening projects in special space. It proposed the classification method for special space of ecological building with habitat as the major part and combined with characteristics of building form. On the basis of such classification,it discussed green design method and plant selection principle,in the hope of providing certain reference for garden designers in green design of ecological buildings.

  13. Biogeographic, molecular evolution, and diversification patterns in Neotropical plants

    Science.gov (United States)

    Smith, S. A.; Dick, C. W.

    2014-12-01

    Neotropical plants demonstrate a phenomenal range of ecological and morphological diversity. We will explore the phylogenetic and biogeographic patterns of a group of Neotropical plants and how these patterns relate to the geological history of the area. This includes the timing and location of biological exchange between areas. Neotropical plants also demonstrate repeated examples of rapid speciation and diversification. We will examine these evolutionary patterns and how they relate to molecular evolution.

  14. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ...... specific nucleic acid probes are discussed and exemplified by studies of anaerobic granular sludge, biofilm and digester systems......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... and malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine...

  15. Molecular musings in microbial ecology and evolution.

    Science.gov (United States)

    Case, Rebecca J; Boucher, Yan

    2011-11-10

    A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology.The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?" For evolutionists, the tree was a tool to understand the past of known (cultured) organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured) organisms, without much knowledge of their physiology.The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?" In evolutionary microbiology, frequent lateral gene transfer (LGT) made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution) and in the other to achieve its goals despite that phenomenon (ecology).The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough resolution to uncover what lies

  16. Molecular musings in microbial ecology and evolution

    Directory of Open Access Journals (Sweden)

    Case Rebecca J

    2011-11-01

    Full Text Available Abstract A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology. The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?" For evolutionists, the tree was a tool to understand the past of known (cultured organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured organisms, without much knowledge of their physiology. The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?" In evolutionary microbiology, frequent lateral gene transfer (LGT made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution and in the other to achieve its goals despite that phenomenon (ecology. The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough

  17. 2003 Archaea: Ecology, Metabolism and Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Richard F. Shand

    2004-09-21

    The Gordon Research Conference (GRC) on 2003 Archaea: Ecology, Metabolism and Molecular Biology was held at Proctor Academy, Andover, NH from August 3-8, 2003. The Conference was well-attended with 150 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, ''free time'' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field. I want to personally thank you for your support of this Conference. As you know, in the interest of promoting the presentation of unpublished and frontier-breaking research, Gordon Research Conferences does not permit publication of meeting proceedings. If you wish any further details, please feel free to contact me. Thank you, Dr. Richard F. Shand, 2003 Conference Chair.

  18. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens

    Directory of Open Access Journals (Sweden)

    W. H. Gera eHol

    2013-04-01

    Full Text Available Plant growth-promoting rhizobacteria (PGPR are increasingly appreciated for their contributions to primary productivity through promotion of growth and triggering of induced systemic resistance in plants. Here we focus on the beneficial effects of one particular species of PGPR (Pseudomonas fluorescens on plants through induced plant defence. This model organism has provided much understanding of the underlying molecular mechanisms of PGPR-induced plant defence. However, this knowledge can only be appreciated at full value once we know to what extent these mechanisms also occur under more realistic, species-diverse conditions as are occurring in the plant rhizosphere. To provide the necessary ecological context, we review the literature to compare the effect of P. fluorescens on induced plant defence when it is present as a single species or in combination with other soil dwelling species. Specifically, we discuss combinations with other plant mutualists (bacterial or fungal, plant pathogens (bacterial or fungal, bacterivores (nematode or protozoa and decomposers. Synergistic interactions between P. fluorescens and other plant mutualists are much more commonly reported than antagonistic interactions. Recent developments have enabled screenings of P. fluorescens genomes for defence traits and this could help with selection of strains with likely positive interactions on biocontrol. However, studies that examine the effects of multiple herbivores, pathogens, or herbivores and pathogens together on the effectiveness of PGPR to induce plant defences are underrepresented and we are not aware of any study that has examined interactions between P. fluorescens and bacterivores or decomposers. As co-occurring soil organisms can enhance but also reduce the effectiveness of PGPR, a better understanding of the biotic factors modulating P. fluorescens -plant interactions will improve the effectiveness of introducing P. fluorescens to enhance plant production

  19. The plant ecology of Amchitka Island, Alaska: Quarterly report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This quarterly report summarizes the findings of a study on the plant ecology of Amchitka Island. Observations of topographic forms, microclimate relations,...

  20. The causes and molecular consequences of polyploidy in flowering plants.

    Science.gov (United States)

    Moghe, Gaurav D; Shiu, Shin-Han

    2014-07-01

    Polyploidy is an important force shaping plant genomes. All flowering plants are descendants of an ancestral polyploid species, and up to 70% of extant vascular plant species are believed to be recent polyploids. Over the past century, a significant body of knowledge has accumulated regarding the prevalence and ecology of polyploid plants. In this review, we summarize our current understanding of the causes and molecular consequences of polyploidization in angiosperms. We also provide a discussion on the relationships between polyploidy and adaptation and suggest areas where further research may provide a better understanding of polyploidy.

  1. Formalizing the definition of meta-analysis in Molecular Ecology.

    Science.gov (United States)

    ArchMiller, Althea A; Bauer, Eric F; Koch, Rebecca E; Wijayawardena, Bhagya K; Anil, Ammu; Kottwitz, Jack J; Munsterman, Amelia S; Wilson, Alan E

    2015-08-01

    Meta-analysis, the statistical synthesis of pertinent literature to develop evidence-based conclusions, is relatively new to the field of molecular ecology, with the first meta-analysis published in the journal Molecular Ecology in 2003 (Slate & Phua 2003). The goal of this article is to formalize the definition of meta-analysis for the authors, editors, reviewers and readers of Molecular Ecology by completing a review of the meta-analyses previously published in this journal. We also provide a brief overview of the many components required for meta-analysis with a more specific discussion of the issues related to the field of molecular ecology, including the use and statistical considerations of Wright's FST and its related analogues as effect sizes in meta-analysis. We performed a literature review to identify articles published as 'meta-analyses' in Molecular Ecology, which were then evaluated by at least two reviewers. We specifically targeted Molecular Ecology publications because as a flagship journal in this field, meta-analyses published in Molecular Ecology have the potential to set the standard for meta-analyses in other journals. We found that while many of these reviewed articles were strong meta-analyses, others failed to follow standard meta-analytical techniques. One of these unsatisfactory meta-analyses was in fact a secondary analysis. Other studies attempted meta-analyses but lacked the fundamental statistics that are considered necessary for an effective and powerful meta-analysis. By drawing attention to the inconsistency of studies labelled as meta-analyses, we emphasize the importance of understanding the components of traditional meta-analyses to fully embrace the strengths of quantitative data synthesis in the field of molecular ecology. © 2015 John Wiley & Sons Ltd.

  2. Feeding on Phytoestrogens: Implications of Estrogenic Plants for Primate Ecology

    OpenAIRE

    Wasserman, Michael David

    2011-01-01

    As most primates depend heavily on plant foods, the chemical composition of edible plant parts, both nutritional and detrimental, are of key importance in understanding primate ecology and evolution. One class of plant compounds of strong current interest due to their potential ability to alter the fertility, fecundity, and survival of both males and females are phytoestrogens. These plant compounds mimic the activity of vertebrate estrogens mainly through binding with the estrogen receptor...

  3. Plants, viruses and the environment: Ecology and mutualism.

    Science.gov (United States)

    Roossinck, Marilyn J

    2015-05-01

    Since the discovery of Tobacco mosaic virus nearly 120 years ago, most studies on viruses have focused on their roles as pathogens. Virus ecology takes a different look at viruses, from the standpoint of how they affect their hosts׳ interactions with the environment. Using the framework of symbiotic relationships helps put the true nature of viruses into perspective. Plants clearly have a long history of relationships with viruses that have shaped their evolution. In wild plants viruses are common but usually asymptomatic. In experimental studies plant viruses are sometimes mutualists rather than pathogens. Virus ecology is closely tied to the ecology of their vectors, and the behavior of insects, critical for transmission of many plant viruses, is impacted by virus-plant interactions. Virulence is probable not beneficial for most host-virus interactions, hence commensal and mutualistic relationships are almost certainly common, in spite of the paucity of literature on beneficial viruses.

  4. Terpenoids in plant signaling, chemical ecology

    NARCIS (Netherlands)

    Kappers, I.F.; Dicke, M.; Bouwmeester, H.J.

    2008-01-01

    Terpenoids constitute the largest class of secondary metabolites in the plant kingdom. Because of their immense structural diversity and the resulting diversity in physiochemical properties, these molecules are particularly important for plant communication with other organisms. In this article, we

  5. Effects of plants containing secondary compounds and plant oils on rumen fermentation and ecology.

    Science.gov (United States)

    Wanapat, Metha; Kongmun, Pongthon; Poungchompu, Onanong; Cherdthong, Anusorn; Khejornsart, Pichad; Pilajun, Ruangyote; Kaenpakdee, Sujittra

    2012-03-01

    A number of experiments have been conducted to investigate effects of tropical plants containing condensed tannins and/or saponins present in tropical plants and some plant oils on rumen fermentation and ecology in ruminants. Based on both in vitro and in vivo trials, the results revealed important effects on rumen microorganisms and fermentation including methane production. Incorporation and/or supplementation of these plants containing secondary metabolites have potential for improving rumen ecology and subsequently productivity in ruminants.

  6. Forest climbing plants of West Africa: diversity, ecology and management

    NARCIS (Netherlands)

    Bongers, F.J.J.M.; Parren, M.P.E.; Traoré, D.

    2005-01-01

    Climbing plants, including lianas, represent a fascinating component of the ecology of tropical forests. This book focuses on the climbing plants of West African forests. Based on original research, it presents information on the flora (including a checklist), diversity (with overviews at several le

  7. ADDING ECOLOGICAL REALISM TO PLANT TESTING

    Science.gov (United States)

    Current test protocols for the protection of nontarget plants used when registering pesticides in the United States and many other countries depend on two tests using greenhouse grown, agricultural seedling plants. The seedling emergence and vegetative vigor tests are used to as...

  8. Native Plant Species Suitable for Ecological Restoration

    Science.gov (United States)

    2011-05-10

    Center The Dalles Research Facility Dallesport, WA Eau Galle Laboratory Spring Valley, WI Lewisville Aquatic Ecosystems Research Facility Lew isville, TX...of Agriculture . PLANTS data base. http://plants.usda.gov/  U.S. Department of Agriculture , Forest Service. Fire Effects Information System. http

  9. Space, time and complexity in plant dispersal ecology.

    Science.gov (United States)

    Robledo-Arnuncio, Juan J; Klein, Etienne K; Muller-Landau, Helene C; Santamaría, Luis

    2014-01-01

    Dispersal of pollen and seeds are essential functions of plant species, with far-reaching demographic, ecological and evolutionary consequences. Interest in plant dispersal has increased with concerns about the persistence of populations and species under global change. We argue here that advances in plant dispersal ecology research will be determined by our ability to surmount challenges of spatiotemporal scales and heterogeneities and ecosystem complexity. Based on this framework, we propose a selected set of research questions, for which we suggest some specific objectives and methodological approaches. Reviewed topics include multiple vector contributions to plant dispersal, landscape-dependent dispersal patterns, long-distance dispersal events, spatiotemporal variation in dispersal, and the consequences of dispersal for plant communities, populations under climate change, and anthropogenic landscapes.

  10. [Bacteria ecology in planting-culturing system].

    Science.gov (United States)

    Huang, Fenglian; Xia, Beicheng; Dai, Xin; Chen, Guizhu

    2004-06-01

    Planting-culturing system in inter-tidal zone is a new type eco-culturing model. The survey on bacteria biomass and water quality in the designed planting-culturing system in inter-tidal zone showed that the mangrove planted in the system improved water quality and made water quality to II-III type, better than the IV and V type in the control pond. Designed ponds made heterotrophic bacteria, vibrio, phosphorus bacteria and enzyme-producing bacteria populations 1-2 order lower than the control pond without mongrove planting. Correlation analyses with CORREL software showed that the biomass of these bacteria was positively related with the nitrogen and phosphorus contents in water of the system, and the correlation coefficient for heterogeneous bacteria and vibrio was up to 0.9205. Heterotrophic bacteria and vibrio could be used as the water-quality monitoring organisms.

  11. [Application of molecular marker techniques in invasion ecology].

    Science.gov (United States)

    Chu, Dong; Zhang, You-jun; Wan, Fang-hao

    2007-06-01

    Alien invasive species can cause huge economic loss in agricultural and forestry production, and threaten biodiversity and human health. The research of invasion ecology is of significance in understanding the invasion mechanisms of alien invasive species and in developing corresponding sustainable control methods. Molecular marker is regarded as a useful tool in approaching some essential issues in the research of invasion ecology. In this paper, the applications of molecular marker techniques in the studies of identification, geographic distribution, invasive source, spread pattern, genetic variation, hybridization, and gene introgression of alien invasive species were reviewed, and the application prospects were discussed.

  12. Molecular biomarkers for chronological age in animal ecology.

    Science.gov (United States)

    Jarman, Simon N; Polanowski, Andrea M; Faux, Cassandra E; Robbins, Jooke; De Paoli-Iseppi, Ricardo; Bravington, Mark; Deagle, Bruce E

    2015-10-01

    The chronological age of an individual animal predicts many of its biological characteristics, and these in turn influence population-level ecological processes. Animal age information can therefore be valuable in ecological research, but many species have no external features that allow age to be reliably determined. Molecular age biomarkers provide a potential solution to this problem. Research in this area of molecular ecology has so far focused on a limited range of age biomarkers. The most commonly tested molecular age biomarker is change in average telomere length, which predicts age well in a small number of species and tissues, but performs poorly in many other situations. Epigenetic regulation of gene expression has recently been shown to cause age-related modifications to DNA and to cause changes in abundance of several RNA types throughout animal lifespans. Age biomarkers based on these epigenetic changes, and other new DNA-based assays, have already been applied to model organisms, humans and a limited number of wild animals. There is clear potential to apply these marker types more widely in ecological studies. For many species, these new approaches will produce age estimates where this was previously impractical. They will also enable age information to be gathered in cross-sectional studies and expand the range of demographic characteristics that can be quantified with molecular methods. We describe the range of molecular age biomarkers that have been investigated to date and suggest approaches for developing the newer marker types as age assays in nonmodel animal species.

  13. Woody plants and woody plant management: ecology, safety, environmental impact

    Science.gov (United States)

    James H. Miller

    2001-01-01

    Wise and effective woody plant management is an increasing necessity for many land uses and conservation practices, especially on forests and rangelands where native or exotic plants are affecting productivity, access, or critical habitat. Tools and approaches for managing woody plants have been under concerted development for the past 50 years, integrating mechanical...

  14. Evolution of egg coats: linking molecular biology and ecology.

    Science.gov (United States)

    Shu, Longfei; Suter, Marc J-F; Räsänen, Katja

    2015-08-01

    One central goal of evolutionary biology is to explain how biological diversity emerges and is maintained in nature. Given the complexity of the phenotype and the multifaceted nature of inheritance, modern evolutionary ecological studies rely heavily on the use of molecular tools. Here, we show how molecular tools help to gain insight into the role of egg coats (i.e. the extracellular structures surrounding eggs and embryos) in evolutionary diversification. Egg coats are maternally derived structures that have many biological functions from mediating fertilization to protecting the embryo from environmental hazards. They show great molecular, structural and functional diversity across species, but intraspecific variability and the role of ecology in egg coat evolution have largely been overlooked. Given that much of the variation that influences egg coat function is ultimately determined by their molecular phenotype, cutting-edge molecular tools (e.g. proteomics, glycomics and transcriptomics), combined with functional assays, are needed for rigorous inferences on their evolutionary ecology. Here, we identify key research areas and highlight emerging molecular techniques that can increase our understanding of the role of egg coats in the evolution of biological diversity, from adaptation to speciation. © 2015 John Wiley & Sons Ltd.

  15. Microbial ecology and nematode control in natural ecosystems. Building coherence between microbial ecology and molecular mechanisms

    NARCIS (Netherlands)

    Costa, S.R.; Putten, van der W.H.; Kerry, B.R.

    2011-01-01

    Plant-parasitic nematodes have traditionally been studied in agricultural systems, where they can be pests of importance on a wide range of crops. Nevertheless, nematode ecology in natural ecosystems is receiving increasing interest because of the role of nematodes in soil food webs, nutrient

  16. Microbial ecology and nematode control in natural ecosystems. Building coherence between microbial ecology and molecular mechanisms

    NARCIS (Netherlands)

    Costa, S.R.; Putten, van der W.H.; Kerry, B.R.

    2011-01-01

    Plant-parasitic nematodes have traditionally been studied in agricultural systems, where they can be pests of importance on a wide range of crops. Nevertheless, nematode ecology in natural ecosystems is receiving increasing interest because of the role of nematodes in soil food webs, nutrient cyclin

  17. Using molecular biology to study mycorrhizal fungal community ecology: Limits and perspectives.

    Science.gov (United States)

    Chagnon, Pierre-Luc; Bainard, Luke D

    2015-01-01

    Molecular tools have progressively replaced morphological approaches to characterize microbial communities in nature. Arbuscular mycorrhizal (AM) fungi are no exception to this rule. Yet, one challenge posed by these symbionts is that they colonize simultaneously both plant roots and soil, which complicates their detection and quantification. In most studies conducted to date, AM fungal communities have been characterized from roots only, soil only or spores only. Here, we discuss the pitfalls associated to drawing ecological inferences using such datasets. We also conclude by arguing that molecular biology will contribute most to advance knowledge in AM fungal ecology if it is integrated into broader perspectives taking into account the natural history of these organisms. This calls for a better merging of molecular and morphological approaches, and the establishment of intensive, long-term research programs.

  18. Physiological and ecological significance of biomineralization in plants.

    Science.gov (United States)

    He, Honghua; Veneklaas, Erik J; Kuo, John; Lambers, Hans

    2014-03-01

    Biomineralization is widespread in the plant kingdom. The most common types of biominerals in plants are calcium oxalate crystals, calcium carbonate, and silica. Functions of biominerals may depend on their shape, size, abundance, placement, and chemical composition. In this review we highlight advances in understanding physiological and ecological significance of biomineralization in plants. We focus on the functions of biomineralization in regulating cytoplasmic free calcium levels, detoxifying aluminum and heavy metals, light gathering and scattering to optimize photosynthesis, aiding in pollen release, germination, and tube growth, the roles it plays in herbivore deterrence, biogeochemical cycling of carbon, calcium, and silicon, and sequestering atmospheric CO2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Reinforcing loose foundation stones in trait-based plant ecology.

    Science.gov (United States)

    Shipley, Bill; De Bello, Francesco; Cornelissen, J Hans C; Laliberté, Etienne; Laughlin, Daniel C; Reich, Peter B

    2016-04-01

    The promise of "trait-based" plant ecology is one of generalized prediction across organizational and spatial scales, independent of taxonomy. This promise is a major reason for the increased popularity of this approach. Here, we argue that some important foundational assumptions of trait-based ecology have not received sufficient empirical evaluation. We identify three such assumptions and, where possible, suggest methods of improvement: (i) traits are functional to the degree that they determine individual fitness, (ii) intraspecific variation in functional traits can be largely ignored, and (iii) functional traits show general predictive relationships to measurable environmental gradients.

  20. Ecological investigations at the Pantex Plant Site, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.; Mazaika, R.R.; Phillips, R.C.

    1993-09-01

    In 1992, Pantex requested that Pacific Northwest Laboratory (PNL) conduct a series of ecological surveys to provide baseline information for designing detailed ecological studies on the various ecosystems present at the Pantex plant site near Amarillo, Texas. To this end, PNL scientist and technicians visited the site at different times to conduct investigations and collect samples: July 6--13: birds, small mammals, general habitat assessment; August 10--14: wetland vegetation, birds, small mammals, Playa invertebrates; and September 7--11: birds, small mammals. This report presents the results of these three surveys.

  1. Common misconceptions in molecular ecology: echoes of the modern synthesis.

    Science.gov (United States)

    Karl, Stephen A; Toonen, R J; Grant, W S; Bowen, B W

    2012-09-01

    The field of molecular ecology has burgeoned into a large discipline spurred on by technical innovations that facilitate the rapid acquisition of large amounts of genotypic data, by the continuing development of theory to interpret results, and by the availability of computer programs to analyse data sets. As the discipline grows, however, misconceptions have become enshrined in the literature and are perpetuated by routine citations to other articles in molecular ecology. These misconceptions hamper a better understanding of the processes that influence genetic variation in natural populations and sometimes lead to erroneous conclusions. Here, we consider eight misconceptions commonly appearing in the literature: (i) some molecular markers are inherently better than other markers; (ii) mtDNA produces higher F(ST) values than nDNA; (iii) estimated population coalescences are real; (iv) more data are always better; (v) one needs to do a Bayesian analysis; (vi) selective sweeps influence mtDNA data; (vii) equilibrium conditions are critical for estimating population parameters; and (viii) having better technology makes us smarter than our predecessors. This is clearly not an exhaustive list and many others can be added. It is, however, sufficient to illustrate why we all need to be more critical of our own understanding of molecular ecology and to be suspicious of self-evident truths.

  2. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    Science.gov (United States)

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment.

  3. A systematic review of the recent ecological literature on cushion plants: champions of plant facilitation

    Directory of Open Access Journals (Sweden)

    A. M. Reid

    2010-09-01

    Full Text Available Cushion-forming plant species are found in alpine and polar environments around the world. They modify the microclimate, thereby facilitating other plant species. Similar to the effectiveness of shrubs as a means to study facilitation in arid and semi-arid environments, we explore the potential for cushion plant species to expand the generality of research on this contemporary ecological interaction. A systematic review was conducted to determine the number of publications and citation frequency on relevant ecological topics whilst using shrub literature as a baseline to assess relative importance of cushions as a focal point for future ecological research. Although there are forty times more shrub articles, mean citations per paper is comparable between cushion and shrub literature. Furthermore, the scope of ecological research topics studied using cushions is broad including facilitation, competition, environmental gradients, life history, genetics, reproduction, community, ecosystem and evolution. The preliminary ecological evidence to date also strongly suggests that cushion plants can be keystone species in their ecosystems. Hence, ecological research on net interactions including facilitation and patterns of diversity can be successfully examined using cushion plants, and this is particularly timely given expectations associated with a changing climate in these regions.

  4. Resource Limitation, Tolerance, and the Future of Ecological Plant Classification

    Directory of Open Access Journals (Sweden)

    Joseph M Craine

    2012-10-01

    Full Text Available Throughout the evolutionary history of plants, drought, shade, and scarcity of nutrients have structured ecosystems and communities globally. Humans have begun to drastically alter the prevalence of these environmental factors with untold consequences for plant communities and ecosystems worldwide. Given limitations in using organ-level traits to predict ecological performance of species, recent advances using tolerances of low resource availability as plant functional traits are revealing the often hidden roles these factors have in structuring communities and are becoming central to classifying plants ecologically. For example, measuring the physiological drought tolerance of plants has increased the predictability of differences among species in their ability to survive drought as well as the distribution of species within and among ecosystems. Quantifying the shade tolerance of species has improved our understanding of local and regional species diversity and how species have sorted within and among regions. As the stresses on ecosystems continue to shift, coordinated studies of whole-plant growth centered on tolerance of low resource availability will be central in predicting future ecosystem functioning and biodiversity. This will require efforts that quantify tolerances for large numbers of species and develop bioinformatic and other techniques for comparing large number of species.

  5. Resource limitation, tolerance, and the future of ecological plant classification.

    Science.gov (United States)

    Craine, Joseph M; Engelbrecht, Bettina M J; Lusk, Christopher H; McDowell, Nate G; Poorter, Hendrik

    2012-01-01

    Throughout the evolutionary history of plants, drought, shade, and scarcity of nutrients have structured ecosystems and communities globally. Humans have begun to drastically alter the prevalence of these environmental factors with untold consequences for plant communities and ecosystems worldwide. Given limitations in using organ-level traits to predict ecological performance of species, recent advances using tolerances of low resource availability as plant functional traits are revealing the often hidden roles these factors have in structuring communities and are becoming central to classifying plants ecologically. For example, measuring the physiological drought tolerance of plants has increased the predictability of differences among species in their ability to survive drought as well as the distribution of species within and among ecosystems. Quantifying the shade tolerance of species has improved our understanding of local and regional species diversity and how species have sorted within and among regions. As the stresses on ecosystems continue to shift, coordinated studies of whole-plant growth centered on tolerance of low resource availability will be central in predicting future ecosystem functioning and biodiversity. This will require efforts that quantify tolerances for large numbers of species and develop bioinformatic and other techniques for comparing large number of species.

  6. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms.

    Science.gov (United States)

    Sugio, Akiko; Dubreuil, Géraldine; Giron, David; Simon, Jean-Christophe

    2015-02-01

    Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted.

  7. [Recent progress in protist virology--molecular ecology, taxonomy, molecular evolution].

    Science.gov (United States)

    Nagasaki, Keizo; Tomaru, Yuji

    2009-06-01

    At present, more than 40 protist-infecting viruses have been isolated and characterized. From the viewpoints of molecular ecology, taxomony and molecular evolution, several new discoveries were made within the last five years. In this minireview, three topics of interest on protist-infecting viruses are introduced: 1) molecular ecological relationships between a bloom-forming dinoflagellate Heterocapsa circularisquama and its ssRNA virus (HcRNAV); 2) findings of new ssRNA- and ssDNA-virus groups infecting diatoms; 3) establishment of a hypothesis concerning the evolution of picornaviruses. The potential of aquatic virus studies is far-reaching and inestimable.

  8. Plant ecological strategies shift across the Cretaceous-Paleogene boundary.

    Science.gov (United States)

    Blonder, Benjamin; Royer, Dana L; Johnson, Kirk R; Miller, Ian; Enquist, Brian J

    2014-09-01

    The Chicxulub bolide impact caused the end-Cretaceous mass extinction of plants, but the associated selectivity and ecological effects are poorly known. Using a unique set of North Dakota leaf fossil assemblages spanning 2.2 Myr across the event, we show among angiosperms a reduction of ecological strategies and selection for fast-growth strategies consistent with a hypothesized recovery from an impact winter. Leaf mass per area (carbon investment) decreased in both mean and variance, while vein density (carbon assimilation rate) increased in mean, consistent with a shift towards "fast" growth strategies. Plant extinction from the bolide impact resulted in a shift in functional trait space that likely had broad consequences for ecosystem functioning.

  9. Plant ecological strategies shift across the Cretaceous-Paleogene boundary.

    Directory of Open Access Journals (Sweden)

    Benjamin Blonder

    2014-09-01

    Full Text Available The Chicxulub bolide impact caused the end-Cretaceous mass extinction of plants, but the associated selectivity and ecological effects are poorly known. Using a unique set of North Dakota leaf fossil assemblages spanning 2.2 Myr across the event, we show among angiosperms a reduction of ecological strategies and selection for fast-growth strategies consistent with a hypothesized recovery from an impact winter. Leaf mass per area (carbon investment decreased in both mean and variance, while vein density (carbon assimilation rate increased in mean, consistent with a shift towards "fast" growth strategies. Plant extinction from the bolide impact resulted in a shift in functional trait space that likely had broad consequences for ecosystem functioning.

  10. Plant Ecological Strategies Shift Across the Cretaceous–Paleogene Boundary

    Science.gov (United States)

    Blonder, Benjamin; Royer, Dana L.; Johnson, Kirk R.; Miller, Ian; Enquist, Brian J.

    2014-01-01

    The Chicxulub bolide impact caused the end-Cretaceous mass extinction of plants, but the associated selectivity and ecological effects are poorly known. Using a unique set of North Dakota leaf fossil assemblages spanning 2.2 Myr across the event, we show among angiosperms a reduction of ecological strategies and selection for fast-growth strategies consistent with a hypothesized recovery from an impact winter. Leaf mass per area (carbon investment) decreased in both mean and variance, while vein density (carbon assimilation rate) increased in mean, consistent with a shift towards “fast” growth strategies. Plant extinction from the bolide impact resulted in a shift in functional trait space that likely had broad consequences for ecosystem functioning. PMID:25225914

  11. Ecological Risk Assessment of Genetically Modified Higher Plants (GMHP)

    DEFF Research Database (Denmark)

    Kjær, C.; Damgaard, C.; Kjellsson, G.

    Preface This publication is a first version of a manual identifying the data needs for ecological risk assessment of genetically modified higher plants (GMHP). It is the intention of the authors to stimulate further discussion of what data are needed in order to conduct a proper ecological risk...... assessment of GM plants when application for placing on the market is made. It is our hope that both the scientific community, the biotechnological industry and the regulatory bodies will participate in the process of improving the present draft, so that it can develop into a useful tool for both...... the industry as well as the national regulatory bodies. Furthermore, we hope that these efforts will improve the transparency of risk assessment and harmonisation of the requirements for data. The report suggests a structured way to identify the data need for risk assessment of GMHPs. It does not discuss...

  12. Ecological Risk Assessment of Genetically Modified Higher Plants (GMHP)

    DEFF Research Database (Denmark)

    Kjær, C.; Damgaard, C.; Kjellsson, G.

    of the project Biotechnology: elements in environmental risk assessment of genetically modified plants. December 1999 Christian Kjær Introduction In ecological risk assessment of transgenic plants, information on a wide range of subjects is needed for an effective and reliable assessment procedure...... the actual risk assessment procedures and the risk evaluation, which must proceed the data collection. The report use the terminology ecological risk assessment rather than environmental risk assessment because at present this work does not include bio-geochemical effects and environmental impacts from...... for uncertainties in the extrapolation from limited laboratory studies to the species rich field environment. The relationship between the size of the safety factor and the number of species is therefore an issue of the risk assessment. Some of the issues raised in this report overlap with data needs...

  13. Planetary Biology and Microbial Ecology: Molecular Ecology and the Global Nitrogen cycle

    Science.gov (United States)

    Nealson, Molly Stone (Editor); Nealson, Kenneth H. (Editor)

    1993-01-01

    This report summarizes the results of the Planetary Biology and Molecular Ecology's summer 1991 program, which was held at the Marine Biological Laboratory in Woods Hole, Massachusetts. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The goals of the 1991 program were to examine several aspects of the biogeochemistry of the nitrogen cycle and to teach the application of modern methods of molecular genetics to field studies of organisms. Descriptions of the laboratory projects and protocols and abstracts and references of the lectures are presented.

  14. Molecular motors and their functions in plants

    Science.gov (United States)

    Reddy, A. S.

    2001-01-01

    Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory

  15. Molecular Ecological Insights into Neotropical Bird-Tick Interactions.

    Directory of Open Access Journals (Sweden)

    Matthew J Miller

    Full Text Available In the tropics, ticks parasitize many classes of vertebrate hosts. However, because many tropical tick species are only identifiable in the adult stage, and these adults usually parasitize mammals, most attention on the ecology of tick-host interactions has focused on mammalian hosts. In contrast, immature Neotropical ticks are often found on wild birds, yet difficulties in identifying immatures hinder studies of birds' role in tropical tick ecology and tick-borne disease transmission. In Panama, we found immature ticks on 227 out of 3,498 individually-sampled birds representing 93 host species (24% of the bird species sampled, and 13% of the Panamanian land bird fauna. Tick parasitism rates did not vary with rainfall or temperature, but did vary significantly with several host ecological traits. Likewise, Neotropical-Nearctic migratory birds were significantly less likely to be infested than resident species. Using a molecular library developed from morphologically-identified adult ticks specifically for this study, we identified eleven tick species parasitizing birds, indicating that a substantial portion of the Panamanian avian species pool is parasitized by a diversity of tick species. Tick species that most commonly parasitized birds had the widest diversity of avian hosts, suggesting that immature tick species are opportunistic bird parasites. Although certain avian ecological traits are positively associated with parasitism, we found no evidence that individual tick species show specificity to particular avian host ecological traits. Finally, our data suggest that the four principal vectors of Rocky Mountain Spotted Fever in the Neotropics rarely, if ever, parasitize Panamanian birds. However, other tick species that harbor newly-discovered rickettsial parasites of unknown pathogenicity are frequently found on these birds. Given our discovery of broad interaction between Panamanian tick and avian biodiversity, future work on tick ecology

  16. Molecular Ecological Insights into Neotropical Bird–Tick Interactions

    Science.gov (United States)

    Esser, Helen J.; Loaiza, Jose R.; Herre, Edward Allen; Aguilar, Celestino; Quintero, Diomedes; Alvarez, Eric; Bermingham, Eldredge

    2016-01-01

    In the tropics, ticks parasitize many classes of vertebrate hosts. However, because many tropical tick species are only identifiable in the adult stage, and these adults usually parasitize mammals, most attention on the ecology of tick-host interactions has focused on mammalian hosts. In contrast, immature Neotropical ticks are often found on wild birds, yet difficulties in identifying immatures hinder studies of birds’ role in tropical tick ecology and tick-borne disease transmission. In Panama, we found immature ticks on 227 out of 3,498 individually–sampled birds representing 93 host species (24% of the bird species sampled, and 13% of the Panamanian land bird fauna). Tick parasitism rates did not vary with rainfall or temperature, but did vary significantly with several host ecological traits. Likewise, Neotropical–Nearctic migratory birds were significantly less likely to be infested than resident species. Using a molecular library developed from morphologically–identified adult ticks specifically for this study, we identified eleven tick species parasitizing birds, indicating that a substantial portion of the Panamanian avian species pool is parasitized by a diversity of tick species. Tick species that most commonly parasitized birds had the widest diversity of avian hosts, suggesting that immature tick species are opportunistic bird parasites. Although certain avian ecological traits are positively associated with parasitism, we found no evidence that individual tick species show specificity to particular avian host ecological traits. Finally, our data suggest that the four principal vectors of Rocky Mountain Spotted Fever in the Neotropics rarely, if ever, parasitize Panamanian birds. However, other tick species that harbor newly–discovered rickettsial parasites of unknown pathogenicity are frequently found on these birds. Given our discovery of broad interaction between Panamanian tick and avian biodiversity, future work on tick ecology and the

  17. Central receiver power plant: an environmental, ecological, and socioeconomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Davison, M.; Grether, D.

    1977-06-01

    The technical details of the central receiver design are reviewed. Socio-economic questions are considered including: market penetration, air industrial sector model, demands on industry, employment, effluents associated with manufacture of components, strains due to intensive construction, water requirements, and land requirements. The ecological effects in the vicinity of the central receiver plant site are dealt with, with emphasis on effects on land surface, mammals, and reptiles and amphibians. Climatological considerations are reviewed including: desert types, effects of surface albedo modification, effects of aerosols, effects on evaporation rates, the heliostat canopy, effects on turbulent transfer rates, effects on the wind profile, a model of convection about a central receiver plant, and a global scenario. Drawings of heliostat and plant design are included in appendices. (MHR)

  18. Molecular mechanisms of metal hyperaccumulation in plants.

    Science.gov (United States)

    Verbruggen, Nathalie; Hermans, Christian; Schat, Henk

    2009-03-01

    Metal hyperaccumulator plants accumulate and detoxify extraordinarily high concentrations of metal ions in their shoots. Metal hyperaccumulation is a fascinating phenomenon, which has interested scientists for over a century. Hyperaccumulators constitute an exceptional biological material for understanding mechanisms regulating plant metal homeostasis as well as plant adaptation to extreme metallic environments.Our understanding of metal hyperaccumulation physiology has recently increased as a result of the development of molecular tools. This review presents key aspects of our current understanding of plant metal – in particular cadmium (Cd),nickel (Ni) and zinc (Zn) – hyperaccumulation.

  19. [DNA extraction methods of compost for molecular ecology analysis].

    Science.gov (United States)

    Yang, Zhao-Hui; Xiao, Yong; Zeng, Guang-Ming; Liu, Yun-Guo; Deng, Jiu-Hua

    2006-08-01

    Molecular ecology provides new techniques for studying compost microbes, and the DNA extraction is the basis of molecular techniques. Because of the contamination of humic acids, it turns to be more difficult for compost microbial DNA extraction. Three different approaches, named as lysozyme lysis, ultrasonic lysis and proteinase K lysis with CTAB, were used to extract the total DNA from compost. The detection performed on a nucleic acids and protein analyzer showed that all the three approaches produced high DNA yields. The agarose gel electrophoresis showed that the DNA fragments extracted from compost had a length of about 23 kb. A eubacterial 16S rRNA gene targeted primer pair (27F and 1 495R) was used for PCR amplification, and all the samples got almost the full length 16S rDNA sequence (about 1.5 kb). After digested by restriction endonucleases (Hae Ill and Alu I), the restriction map showed relatively identical microbial diversity in the DNA, which was extracted by the three different approaches. All the compost microbial DNA extracted by the three different approaches could be used for molecular ecological study, and researchers should choose the right approach for extracting microbial DNA from compost based on the facts.

  20. Population and community ecology of the rare plant amsinckia grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, T.M.

    1996-11-01

    Research was conducted between the fall of 1992 and the spring on the population and community ecology of the rare annual plant, Amsinckia glandiflora (Gray) Kleeb. ex Greene (Boraginaceae). The research goal was to investigate the causes of the species rarity, data useful to restorative efforts. The work focused on the examination of competitive suppression by exotic annual grasses; comparisons with common, weedy congener; and the role of litter cover and seed germination and seedling establishment. Annual exotic grasses reduced A. grandiflora reproductive output to a greater extent than did the native perennial bunch grass.

  1. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential

    KAUST Repository

    Soussi, Asma

    2015-08-28

    Background: Aridification is a worldwide serious threat directly affecting agriculture and crop production. In arid and desert areas, it has been found that microbial diversity is huge, built of microorganisms able to cope with the environmental harsh conditions by developing adaptation strategies. Plants growing in arid lands or regions facing prolonged abiotic stresses such as water limitation and salt accumulation have also developed specific physiological and molecular stress responses allowing them to thrive under normally unfavorable conditions. Scope: Under such extreme selection pressures, special root-associated bacterial assemblages, endowed with capabilities of plant growth promotion (PGP) and extremophile traits, are selected by the plants. In this review, we provide a general overview on the microbial diversity in arid lands and deserts versus specific microbial assemblages associated with plants. The ecological drivers that shape this diversity, how plant-associated microbiomes are selected, and their biotechnological potential are discussed. Conclusions: Selection and recruitment of the plant associated bacterial assemblages is mediated by the combination of the bio-pedo-agroclimatic conditions and the plant species or varieties. Diversity and functional redundancy of these associated PGPR makes them very active in supporting plant improvement, health and resistance to drought, salt and related stresses. Implementing proper biotechnological applications of the arid and desert-adapted PGPR constitute the challenge to be raised.

  2. SINEs of progress: Mobile element applications to molecular ecology.

    Science.gov (United States)

    Ray, David A

    2007-01-01

    Mobile elements represent a unique and under-utilized set of tools for molecular ecologists. They are essentially homoplasy-free characters with the ability to be genotyped in a simple and efficient manner. Interpretation of the data generated using mobile elements can be simple compared to other genetic markers. They exist in a wide variety of taxa and are useful over a wide selection of temporal ranges within those taxa. Furthermore, their mode of evolution instills them with another advantage over other types of multilocus genotype data: the ability to determine loci applicable to a range of time spans in the history of a taxon. In this review, I discuss the application of mobile element markers, especially short interspersed elements (SINEs), to phylogenetic and population data, with an emphasis on potential applications to molecular ecology.

  3. Plant Molecular Farming: Much More than Medicines

    Science.gov (United States)

    Tschofen, Marc; Knopp, Dietmar; Hood, Elizabeth; Stöger, Eva

    2016-06-01

    Plants have emerged as commercially relevant production systems for pharmaceutical and nonpharmaceutical products. Currently, the commercially available nonpharmaceutical products outnumber the medical products of plant molecular farming, reflecting the shorter development times and lower regulatory burden of the former. Nonpharmaceutical products benefit more from the low costs and greater scalability of plant production systems without incurring the high costs associated with downstream processing and purification of pharmaceuticals. In this review, we explore the areas where plant-based manufacturing can make the greatest impact, focusing on commercialized products such as antibodies, enzymes, and growth factors that are used as research-grade or diagnostic reagents, cosmetic ingredients, and biosensors or biocatalysts. An outlook is provided on high-volume, low-margin proteins such as industrial enzymes that can be applied as crude extracts or unprocessed plant tissues in the feed, biofuel, and papermaking industries.

  4. Molecular battles between plant and pathogenic bacteria in the phyllosphere

    Directory of Open Access Journals (Sweden)

    C.M. Baker

    2010-08-01

    Full Text Available The phyllosphere, i.e., the aerial parts of the plant, provides one of the most important niches for microbial colonization. This niche supports the survival and, often, proliferation of microbes such as fungi and bacteria with diverse lifestyles including epiphytes, saprophytes, and pathogens. Although most microbes may complete the life cycle on the leaf surface, pathogens must enter the leaf and multiply aggressively in the leaf interior. Natural surface openings, such as stomata, are important entry sites for bacteria. Stomata are known for their vital role in water transpiration and gas exchange between the plant and the environment that is essential for plant growth. Recent studies have shown that stomata can also play an active role in limiting bacterial invasion of both human and plant pathogenic bacteria as part of the plant innate immune system. As counter-defense, plant pathogens such as Pseudomonas syringae pv tomato (Pst DC3000 use the virulence factor coronatine to suppress stomate-based defense. A novel and crucial early battleground in host-pathogen interaction in the phyllosphere has been discovered with broad implications in the study of bacterial pathogenesis, host immunity, and molecular ecology of bacterial diseases.

  5. Engineering Molecular Immunity Against Plant Viruses

    KAUST Repository

    Zaidi, Syed Shan-e-Ali

    2017-04-26

    Genomic engineering has been used to precisely alter eukaryotic genomes at the single-base level for targeted gene editing, replacement, fusion, and mutagenesis, and plant viruses such as Tobacco rattle virus have been developed into efficient vectors for delivering genome-engineering reagents. In addition to altering the host genome, these methods can target pathogens to engineer molecular immunity. Indeed, recent studies have shown that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems that target the genomes of DNA viruses can interfere with viral activity and limit viral symptoms in planta, demonstrating the utility of this system for engineering molecular immunity in plants. CRISPR/Cas9 can efficiently target single and multiple viral infections and confer plant immunity. Here, we discuss the use of site-specific nucleases to engineer molecular immunity against DNA and RNA viruses in plants. We also explore how to address the potential challenges encountered when producing plants with engineered resistance to single and mixed viral infections.

  6. On community matrix theory in experimental plant ecology

    Directory of Open Access Journals (Sweden)

    C. F. Dormann

    2008-11-01

    Full Text Available In multi-species communities the stability of a system is difficult to assess from field observations. This is the case for example for competitive interactions in plant communities. If a mathematical model can be formulated that underlies the processes in the community, a community matrix can be constructed whose elements represent the effects of each species onto every other (and itself at equilibrium. The most common competition model is the Lotka-Volterra equation set. It contains interspecific competition coefficients to represent the interactions between species. In plant community ecology several attempts have been made to quantify competitive interactions and to assemble a community matrix, so far with limited success. In this paper we discuss a method to use pairwise interaction coefficients from experimental plant communities to analyse feasibility and stability of multi-species sets. The approach is contrasted with that of Wilson and Roxburgh (1992 and is illustrated using data from Roxburgh and Wilson (2000a. Results from Wilson and from this study differ (some times substantially, with our approach being more pessimistic about stability and coexistence in plant communities.

  7. Molecular characterization of trophic ecology within an island radiation of insect herbivores (Curculionidae: Entiminae: Cratopus).

    Science.gov (United States)

    Kitson, James J N; Warren, Ben H; Florens, F B Vincent; Baider, Claudia; Strasberg, Dominique; Emerson, Brent C

    2013-11-01

    The phytophagous beetle family Curculionidae is the most species-rich insect family known, with much of this diversity having been attributed to both co-evolution with food plants and host shifts at key points within the early evolutionary history of the group. Less well understood is the extent to which patterns of host use vary within or among related species, largely because of the technical difficulties associated with quantifying this. Here we develop a recently characterized molecular approach to quantify diet within and between two closely related species of weevil occurring primarily within dry forests on the island of Mauritius. Our aim is to quantify dietary variation across populations and assess adaptive and nonadaptive explanations for this and to characterize the nature of a trophic shift within an ecologically distinct population within one of the species. We find that our study species are polyphagous, consuming a much wider range of plants than would be suggested by the literature. Our data suggest that local diet variation is largely explained by food availability, and locally specialist populations consume food plants that are not phylogenetically novel, but do appear to represent a novel preference. Our results demonstrate the power of molecular methods to unambiguously quantify dietary variation across populations of insect herbivores, providing a valuable approach to understanding trophic interactions within and among local plant and insect herbivore communities.

  8. Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife.

    Science.gov (United States)

    Balkenhol, Niko; Waits, Lisette P

    2009-10-01

    Transportation infrastructures such as roads, railroads and canals can have major environmental impacts. Ecological road effects include the destruction and fragmentation of habitat, the interruption of ecological processes and increased erosion and pollution. Growing concern about these ecological road effects has led to the emergence of a new scientific discipline called road ecology. The goal of road ecology is to provide planners with scientific advice on how to avoid, minimize or mitigate negative environmental impacts of transportation. In this review, we explore the potential of molecular genetics to contribute to road ecology. First, we summarize general findings from road ecology and review studies that investigate road effects using genetic data. These studies generally focus only on barrier effects of roads on local genetic diversity and structure and only use a fraction of available molecular approaches. Thus, we propose additional molecular applications that can be used to evaluate road effects across multiple scales and dimensions of the biodiversity hierarchy. Finally, we make recommendations for future research questions and study designs that would advance molecular road ecology. Our review demonstrates that molecular approaches can substantially contribute to road ecology research and that interdisciplinary, long-term collaborations will be particularly important for realizing the full potential of molecular road ecology.

  9. Molecular regulators of phosphate homeostasis in plants.

    Science.gov (United States)

    Lin, Wei-Yi; Lin, Shu-I; Chiou, Tzyy-Jen

    2009-01-01

    An appropriate cellular phosphate (Pi) concentration is indispensable for essential physiological and biochemical processes. To maintain cellular Pi homeostasis, plants have developed a series of adaptive responses to facilitate external Pi acquisition and to limit Pi consumption and to adjust Pi recycling internally when the Pi supply is inadequate. Over the past decade, significant progress has been made toward understanding such regulation at the molecular level. In this review, the focus is on the molecular regulators that mediate cellular Pi concentrations. The regulators are introduced and organized according to their original identification procedures, by the forward genetic approach of mutant screening or by reverse genetic analysis. These genes are involved in Pi uptake, allocation or remobilization or are upstream regulators, such as transcriptional factors or signalling molecules. In the future, integration of current knowledge and exploration of new technology is expected to offer new insights into molecular mechanisms that maintain Pi homeostasis.

  10. [Study on medicinal plant allelopathy and soil sickness based on ecological niche].

    Science.gov (United States)

    Sun, Hao; Huang, Lu-ming; Huang, Lu-qi; Guo, Lan-ping; Zhou, Jie; Lv, Dong-mei; Zeng, Yan

    2008-09-01

    Based on the conception and theory of ecological niche, authors analyzed the cause of the allelopathy and soil sickness of medicinal plants and the relationship between them. Methods to resolve problems in the cultivating medicinal plant was found, that is to construct the ecological niche based on allelopathy theory and avoid the soil sickness.

  11. Host ecology determines the dispersal patterns of a plant virus.

    Science.gov (United States)

    Trovão, Nídia Sequeira; Baele, Guy; Vrancken, Bram; Bielejec, Filip; Suchard, Marc A; Fargette, Denis; Lemey, Philippe

    2015-01-01

    Since its isolation in 1966 in Kenya, rice yellow mottle virus (RYMV) has been reported throughout Africa resulting in one of the economically most important tropical plant emerging diseases. A thorough understanding of RYMV evolution and dispersal is critical to manage viral spread in tropical areas that heavily rely on agriculture for subsistence. Phylogenetic analyses have suggested a relatively recent expansion, perhaps driven by the intensification of agricultural practices, but this has not yet been examined in a coherent statistical framework. To gain insight into the historical spread of RYMV within Africa rice cultivations, we analyse a dataset of 300 coat protein gene sequences, sampled from East to West Africa over a 46-year period, using Bayesian evolutionary inference. Spatiotemporal reconstructions date the origin of RMYV back to 1852 (1791-1903) and confirm Tanzania as the most likely geographic origin. Following a single long-distance transmission event from East to West Africa, separate viral populations have been maintained for about a century. To identify the factors that shaped the RYMV distribution, we apply a generalised linear model (GLM) extension of discrete phylogenetic diffusion and provide strong support for distances measured on a rice connectivity landscape as the major determinant of RYMV spread. Phylogeographic estimates in continuous space further complement this by demonstrating more pronounced expansion dynamics in West Africa that are consistent with agricultural intensification and extensification. Taken together, our principled phylogeographic inference approach shows for the first time that host ecology dynamics have shaped the historical spread of a plant virus.

  12. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  13. Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data

    DEFF Research Database (Denmark)

    Raes, Jeroen; Letunic, Ivica; Yamada, Takuji;

    2011-01-01

    Using metagenomic 'parts lists' to infer global patterns on microbial ecology remains a significant challenge. To deduce important ecological indicators such as environmental adaptation, molecular trait dispersal, diversity variation and primary production from the gene pool of an ecosystem, we...... provincialism). Molecular functional richness and diversity show a distinct latitudinal gradient peaking at 20° N and correlate with primary production. The latter can also be predicted from the molecular functional composition of an environmental sample. Together, our results show that the functional community...... composition derived from metagenomes is an important quantitative readout for molecular trait-based biogeography and ecology....

  14. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    Science.gov (United States)

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes).

  15. 2010 Plant Molecular Biology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  16. Unraveling cyanobacteria ecology in wastewater treatment plants (WWTP).

    Science.gov (United States)

    Martins, Joana; Peixe, Luísa; Vasconcelos, Vítor M

    2011-08-01

    Cyanobacteria may be important components of wastewater treatment plants' (WWTP) biological treatment, reaching levels of 100% of the total phytoplankton density in some systems. The occurrence of cyanobacteria and their associated toxins in these systems present a risk to the aquatic environments and to public health, changing drastically the ecology of microbial communities and associated organisms. Many studies reveal that cyanotoxins, namely microcystins may not act as antibacterial compounds but they might have negative impacts on protozoans, inhibiting their growing and respiration rates and leading to changes in cellular morphology, decreasing consequently the treatment efficacy in WWTP. On the other side, flagellates and ciliates may ingest some cyanobacteria species while the formation of colonies by these prokaryotes may be seen as a defense mechanism against predation. Problems regarding the occurrence of cyanobacteria in WWTP are not limited to toxin production. Other cyanobacterial secondary metabolites may act as antibacterial compounds leading to the disruption of bacterial communities that biologically convert organic materials in WWTP being fundamental to the efficacy of the process. Studies reveal that the potential antibacterial capacity differs according to cyanobacteria specie and it seems to be more effective in Gram (+) bacteria. Thus, to understand the effects of cyanobacterial communities in the efficiency of the waste water treatment it will be necessary to unravel the complex interactions between cyanobacterial populations, bacteria, and protozoa in WWTP in situ studies.

  17. Molecular regulation of plant cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  18. Genetic tools for wildlife management: New TWS Working Group focuses on molecular ecology

    Science.gov (United States)

    Latch, Emily; Crowhurst, Rachel S.; Oyler-McCance, Sara J.; Robinson, Stacie

    2014-01-01

    Granted interim status in November, 2013, The Wildlife Society’s (TWS) Molecular Ecology Working Group aims to promote scientific advancement by applying molecular techniques to wildlife ecology, management, and conservation. The working group—composed of sci - entists from diverse backgrounds—met for the first time in Pittsburgh at the TWS Annual Conference held in October. Our overarching goal is to enhance awareness of molecular ecology and genetic applica - tions to wildlife biology and act as an informational and networking resource. During the group’s interim status, which runs for three years, we intend to focus on a broad scope of molecular ecology that is applicable to wildlife including genetic and ge - nomic methods, conservation genetics, non-invasive genetic population monitoring, landscape genetics, evolutionary genetics, and molecular forensics

  19. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  20. Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities

    NARCIS (Netherlands)

    Holmgren, M.; Gomez-Aparicio, L.; Quero, J.L.; Valladares, F.

    2012-01-01

    The combined effects of shade and drought on plant performance and the implications for species interactions are highly debated in plant ecology. Empirical evidence for positive and negative effects of shade on the performance of plants under dry conditions supports two contrasting theoretical model

  1. Molecular insights into seed dispersal mutualisms driving plant population recruitment

    Science.gov (United States)

    García, Cristina; Grivet, Delphine

    2011-11-01

    Most plant species require mutualistic interactions with animals to fulfil their demographic cycle. In this regard frugivory (i.e., the intake of fruits by animals) enhances natural regeneration by mobilizing a large amount of seeds from source trees to deposition sites across the landscape. By doing so, frugivores move propagules, and the genotypes they harbour creating the spatial, ecological, and genetic environment under which subsequent recruitment proceeds. Recruitment patterns can be envisioned as the result of two density- and distance-dependent processes: seed dispersal and seed/seedling survival (the Janzen-Connell model). Population genetic studies add another layer of complexity for understanding the fate of dispersed propagules: the genetic relatedness among neighbouring seeds within a seed clump, a major outcome of frugivore activity, modifies their chances of germinating and surviving. Yet, we virtually ignore how the spatial distribution of maternal progenies and recruitment patterns relate with each other in frugivore-generated seed rains. Here we focus on the critical role of frugivore-mediated seed dispersal in shaping the spatial distribution of maternal progenies in the seed rain. We first examine which genetic mechanisms underlying recruitment are influenced by the spatial distribution of maternal progenies. Next, we examine those studies depicting the spatial distribution of maternal progenies in a frugivore-generated seed rain. In doing so, we briefly review the most suitable analytical approaches applied to track the contribution of fruiting trees to the seed rain based on molecular data. Then we look more specifically at the role of distinct frugivore guilds in determining maternal genetic correlations and their expected consequences for recruitment patterns. Finally we posit some general conclusions and suggest future research directions that would provide a more comprehensive understanding of the ecological and evolutionary consequences

  2. Plants in Your Ants: Using Ant Mounds to Test Basic Ecological Principles

    Science.gov (United States)

    Zettler, Jennifer A.; Collier, Alexander; Leidersdorf, Bil; Sanou, Missa Patrick

    2010-01-01

    Urban students often have limited access to field sites for ecological studies. Ubiquitous ants and their mounds can be used to study and test ecology-based questions. We describe how soil collected from ant mounds can be used to investigate how biotic factors (ants) can affect abiotic factors in the soil that can, in turn, influence plant growth.

  3. Plants in Your Ants: Using Ant Mounds to Test Basic Ecological Principles

    Science.gov (United States)

    Zettler, Jennifer A.; Collier, Alexander; Leidersdorf, Bil; Sanou, Missa Patrick

    2010-01-01

    Urban students often have limited access to field sites for ecological studies. Ubiquitous ants and their mounds can be used to study and test ecology-based questions. We describe how soil collected from ant mounds can be used to investigate how biotic factors (ants) can affect abiotic factors in the soil that can, in turn, influence plant growth.

  4. Introduction to the Special Issue: Beyond traits: integrating behaviour into plant ecology and biology.

    Science.gov (United States)

    Cahill, James F

    2015-10-26

    The way that plants are conceptualized in the context of ecological understanding is changing. In one direction, a reductionist school is pulling plants apart into a list of measured 'traits', from which ecological function and outcomes of species interactions may be inferred. This special issue offers an alternative, and more holistic, view: that the ecological functions performed by a plant will be a consequence not only of their complement of traits but also of the ways in which their component parts are used in response to environmental and social conditions. This is the realm of behavioural ecology, a field that has greatly advanced our understanding of animal biology, ecology and evolution. Included in this special issue are 10 articles focussing not on the tried and true metaphor that plant growth is similar to animal movement, but instead on how application of principles from animal behaviour can improve our ability to understand plant biology and ecology. The goals are not to draw false parallels, nor to anthropomorphize plant biology, but instead to demonstrate how existing and robust theory based on fundamental principles can provide novel understanding for plants. Key to this approach is the recognition that behaviour and intelligence are not the same. Many organisms display complex behaviours despite a lack of cognition (as it is traditionally understood) or any hint of a nervous system. The applicability of behavioural concepts to plants is further enhanced with the realization that all organisms face the same harsh forces of natural selection in the context of finding resources, mates and coping with neighbours. As these ecological realities are often highly variable in space and time, it is not surprising that all organisms-even plants-exhibit complex behaviours to handle this variability. The articles included here address diverse topics in behavioural ecology, as applied to plants: general conceptual understanding, plant nutrient foraging, root

  5. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology

    National Research Council Canada - National Science Library

    Cruzan, Mitchell B; Weinstein, Ben G; Grasty, Monica R; Kohrn, Brendan F; Hendrickson, Elizabeth C; Arredondo, Tina M; Thompson, Pamela G

    2016-01-01

    Low-elevation surveys with small aerial drones (micro-unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions...

  6. Carotenoids in certain higher plants from various ecological niches of Egypt

    Directory of Open Access Journals (Sweden)

    B. Czeczuga

    2015-01-01

    Full Text Available The carotenoids content in Posidonia oceanica, Nelumbium nuciferum, Opuntia ficus-indica and Zygophyllum album from different ecological niches in Egypt was studied. Considerable differences, both qualitative and quantitative among four investigated plant species were found.

  7. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 April 2010 – 31 May 2010

    NARCIS (Netherlands)

    Andree, K.; Axtner, J.; Bagley, M.J.; Govers, F.; Jacobsen, E.; Mendes, O.; Lee, van der T.A.J.

    2010-01-01

    This article documents the addition of 396 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anthocidaris crassispina, Aphis glycines, Argyrosomus regius, Astrocaryum sciophilum, Dasypus novemcinctus, Delomys sublineatus, Dermatemy

  8. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 April 2010 – 31 May 2010

    NARCIS (Netherlands)

    Andree, K.; Axtner, J.; Bagley, M.J.; Govers, F.; Jacobsen, E.; Mendes, O.; Lee, van der T.A.J.

    2010-01-01

    This article documents the addition of 396 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anthocidaris crassispina, Aphis glycines, Argyrosomus regius, Astrocaryum sciophilum, Dasypus novemcinctus, Delomys sublineatus,

  9. Permanent genetic resources added to molecular ecology resources database 1 August 2010 - 30 September 2010

    NARCIS (Netherlands)

    Aggarwal, P.K.; Allainguillaume, J.; Bajay, M.M.; Belder, den E.; Elderson, J.; Esselink, G.D.; Smulders, M.J.M.

    2011-01-01

    This article documents the addition of 229 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acacia auriculiformis × Acacia mangium hybrid, Alabama argillacea, Anoplopoma fimbria, Aplochiton zebra, Brevicoryne brassicae, Bruguiera

  10. Permanent genetic resources added to molecular ecology resources database 1 june 2011–31 july 2011

    DEFF Research Database (Denmark)

    Barker, F. Keith; Bell, James J.; Bogdanowicz, Steven M.

    2011-01-01

    This article documents the addition of 112 microsatellite marker loci and 24 pairs of single nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Agelaius phoeniceus, Austrolittorina cincta, Circus cyaneus, Ci...

  11. Global Invader Impact Network (GIIN): toward standardized evaluation of the ecological impacts of invasive plants

    OpenAIRE

    Barney, Jacob N.; Tekiela, Daniel R.; Barrios-Garcia, Maria Noelia; Dimarco, Romina D.; Hufbauer, Ruth A.; Leipzig-Scott, Peter; Nuñez, Martin A.; Pauchard, Aníbal; Pyšek, Petr; Vítková, Michaela; Maxwell, Bruce D.

    2015-01-01

    Terrestrial invasive plants are a global problem and are becoming ubiquitous components of most ecosystems. They are implicated in altering disturbance regimes, reducing biodiversity, and changing ecosystem function, sometimes in profound and irreversible ways. However, the ecological impacts of most invasive plants have not been studied experimentally, and most research to date focuses on few types of impacts, which can vary greatly among studies. Thus, our knowledge of existing ecological i...

  12. Ultrastructural and molecular characterization of a bacterial symbiosis in the ecologically important scale insect family Coelostomidiidae.

    Science.gov (United States)

    Dhami, Manpreet K; Turner, Adrian P; Deines, Peter; Beggs, Jacqueline R; Taylor, Michael W

    2012-09-01

    Scale insects are important ecologically and as agricultural pests. The majority of scale insect taxa feed exclusively on plant phloem sap, which is carbon rich but deficient in essential amino acids. This suggests that, as seen in the related aphids and psyllids, scale insect nutrition might also depend upon bacterial symbionts, yet very little is known about scale insect-bacteria symbioses. We report here the first identification and molecular characterization of symbiotic bacteria associated with the New Zealand giant scale Coelostomidia wairoensis, using fluorescence in situ hybridization (FISH), transmission electron microscopy (TEM) and 16S rRNA gene-based analysis. Dissection and FISH confirmed the location of the bacteria in large, paired, multilobate organs in the abdominal region of the insect. TEM indicated that the dominant pleomorphic bacteria were confined to bacteriocytes in the sheath-enclosed bacteriome. Phylogenetic analysis revealed the presence of three distinct bacterial types, the bacteriome-associated B-symbiont (Bacteroidetes), an Erwinia-related symbiont (Gammaproteobacteria) and Wolbachia sp. (Alphaproteobacteria). This study extends the current knowledge of scale insect symbionts and is the first microbiological investigation of the ecologically important coelostomidiid scales.

  13. The role of plant disease in the development of controlled ecological life support systems

    Science.gov (United States)

    Nelson, B.

    1986-01-01

    Plant diseases could be important factors affecting growth of higher plants in Closed Ecological Life Support Systems (CELSS). Disease control, therefore, will be needed to maintain healthy plants. The most important controls should be aimed at preventing the introduction, reproduction and spread of pathogens and preventing plant infection. An integrared ease control program will maximize that approach. In the design and operation of CELSS, plant disease should be considered an important aspect of plant growth. The effects of plant diseases are reviewed and several disease control measures are discussed.

  14. Ecological networks are more sensitive to plant than to animal extinction under climate change

    Science.gov (United States)

    Schleuning, Matthias; Fründ, Jochen; Schweiger, Oliver; Welk, Erik; Albrecht, Jörg; Albrecht, Matthias; Beil, Marion; Benadi, Gita; Blüthgen, Nico; Bruelheide, Helge; Böhning-Gaese, Katrin; Dehling, D. Matthias; Dormann, Carsten F.; Exeler, Nina; Farwig, Nina; Harpke, Alexander; Hickler, Thomas; Kratochwil, Anselm; Kuhlmann, Michael; Kühn, Ingolf; Michez, Denis; Mudri-Stojnić, Sonja; Plein, Michaela; Rasmont, Pierre; Schwabe, Angelika; Settele, Josef; Vujić, Ante; Weiner, Christiane N.; Wiemers, Martin; Hof, Christian

    2016-01-01

    Impacts of climate change on individual species are increasingly well documented, but we lack understanding of how these effects propagate through ecological communities. Here we combine species distribution models with ecological network analyses to test potential impacts of climate change on >700 plant and animal species in pollination and seed-dispersal networks from central Europe. We discover that animal species that interact with a low diversity of plant species have narrow climatic niches and are most vulnerable to climate change. In contrast, biotic specialization of plants is not related to climatic niche breadth and vulnerability. A simulation model incorporating different scenarios of species coextinction and capacities for partner switches shows that projected plant extinctions under climate change are more likely to trigger animal coextinctions than vice versa. This result demonstrates that impacts of climate change on biodiversity can be amplified via extinction cascades from plants to animals in ecological networks. PMID:28008919

  15. Study on remote sensing method for drawing up and utilizing ecological and natural map II; concentrated on drawing up a plant ecological classification map

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong Woo; Chung, Hwui Chul [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following with the flows of the environmental conservation, Korea has revised the law of natural environmental conservation. In this law, it has suggested to draw up an ecological nature figure for efficient preservation and utilization of a country. To draw up an ecological nature figure, it requires several evaluating factors. Among them, a plant ecological classification is a very important evaluating factor since it can evaluate a habitation area of natural organisms. This study investigated a drawing up method of plant ecological classification using satellite image data. However the limit of satellite image data and the quality of required plant ecological classification are not quite matched but if the satellite image data and the infrared color aerial photograph are mixed, it can be expected to have an excellent quality of plant ecological classification. 85 refs., 86 figs., 45 tabs.

  16. Herbivore-mediated ecological costs of reproduction shape the life history of an iteroparous plant.

    Science.gov (United States)

    Miller, Tom E X; Tenhumberg, Brigitte; Louda, Svata M

    2008-02-01

    Plant reproduction yields immediate fitness benefits but can be costly in terms of survival, growth, and future fecundity. Life-history theory posits that reproductive strategies are shaped by trade-offs between current and future fitness that result from these direct costs of reproduction. Plant reproduction may also incur indirect ecological costs if it increases susceptibility to herbivores. Yet ecological costs of reproduction have received little empirical attention and remain poorly integrated into life-history theory. Here, we provide evidence for herbivore-mediated ecological costs of reproduction, and we develop theory to examine how these costs influence plant life-history strategies. Field experiments with an iteroparous cactus (Opuntia imbricata) indicated that greater reproductive effort (proportion of meristems allocated to reproduction) led to greater attack by a cactus-feeding insect (Narnia pallidicornis) and that damage by this herbivore reduced reproductive success. A dynamic programming model predicted strongly divergent optimal reproductive strategies when ecological costs were included, compared with when these costs were ignored. Meristem allocation by cacti in the field matched the optimal strategy expected under ecological costs of reproduction. The results indicate that plant reproductive allocation can strongly influence the intensity of interactions with herbivores and that associated ecological costs can play an important selective role in the evolution of plant life histories.

  17. Small plants, large plants: the importance of plant size for the physiological ecology of vascular epiphytes.

    Science.gov (United States)

    Zotz, G; Hietz, P; Schmidt, G

    2001-10-01

    Recently, a number of publications have reported that many physiological properties of vascular epiphytes are a function of plant size. This short review will summarize what is known to date about this phenomenon, describe the possible mechanism and will discuss the consequences for the present understanding of epiphyte biology. Size-related changes are also known from other plant groups and it is argued that close attention should be paid to the size of the organisms under study in order to understand the performance and survival of a species in the field. In the light of these findings, the results of many earlier studies on epiphyte ecophysiology are now difficult to interpret because essential information on the size of the specimens used is missing.

  18. Dewpoint - unstudied factor in ecology, physiology and plant introduction

    Directory of Open Access Journals (Sweden)

    Prokhorov Alexey

    2015-12-01

    Study of the mechanism of the condensation of atmospheric moisture on the surface of the plant and allow for modification of plant breeding with pronounced effect and reduce the temperature dependence on the least insolation. Such plants could be beneficial in reducing costs for irrigation of crops, and in the fight against desertification. The study of the mechanism of the phenomenon, allow for modification and selection of plants with the most pronounced effect of lowering the temperature and the lowest dependent on insolation. The plants, which are more efficient moisture capacitors can bring huge benefits in reducing costs for irrigation of crops, and in the fight against desertification.

  19. Molecular Probes in Marine Ecology: Concepts, Techniques and Applications

    Science.gov (United States)

    1990-03-12

    dynamics of benthic marine invertebrates, focusing specifically on scleractinian corals and gorgonian soft corals . I have initiated a study of genetic...Ecological Aspects Tom Chen, Center of Marino Biotechnology, University of Maryland, Baltimore, ND July 1 10330 A Translational Regulatory Mechanism for...alaae, coral . covepods. microflaaellates. dinoflacellates) (Rob Rovan). Isolate organisms and prepare DNA. Amplify rDNA usina universal (or zooxanthella

  20. Molecular ecological insights into neotropical bird-tick interactions

    NARCIS (Netherlands)

    Miller, Matthew J.; Esser, Helen J.; Loaiza, Jose R.; Herre, Edward Allen; Aguilar, Celestino; Quintero, Diomedes; Alvarez, Eric; Bermingham, Eldredge

    2016-01-01

    In the tropics, ticks parasitize many classes of vertebrate hosts. However, because many tropical tick species are only identifiable in the adult stage, and these adults usually parasitize mammals, most attention on the ecology of tick-host interactions has focused on mammalian hosts. In contrast, i

  1. Molecular ecological insights into neotropical bird-tick interactions

    NARCIS (Netherlands)

    Miller, Matthew J.; Esser, Helen J.; Loaiza, Jose R.; Herre, Edward Allen; Aguilar, Celestino; Quintero, Diomedes; Alvarez, Eric; Bermingham, Eldredge

    2016-01-01

    In the tropics, ticks parasitize many classes of vertebrate hosts. However, because many tropical tick species are only identifiable in the adult stage, and these adults usually parasitize mammals, most attention on the ecology of tick-host interactions has focused on mammalian hosts. In

  2. Constraints imposed by pollinator behaviour on the ecology and evolution of plant mating systems.

    Science.gov (United States)

    Devaux, C; Lepers, C; Porcher, E

    2014-07-01

    Most flowering plants rely on pollinators for their reproduction. Plant-pollinator interactions, although mutualistic, involve an inherent conflict of interest between both partners and may constrain plant mating systems at multiple levels: the immediate ecological plant selfing rates, their distribution in and contribution to pollination networks, and their evolution. Here, we review experimental evidence that pollinator behaviour influences plant selfing rates in pairs of interacting species, and that plants can modify pollinator behaviour through plastic and evolutionary changes in floral traits. We also examine how theoretical studies include pollinators, implicitly or explicitly, to investigate the role of their foraging behaviour in plant mating system evolution. In doing so, we call for more evolutionary models combining ecological and genetic factors, and additional experimental data, particularly to describe pollinator foraging behaviour. Finally, we show that recent developments in ecological network theory help clarify the impact of community-level interactions on plant selfing rates and their evolution and suggest new research avenues to expand the study of mating systems of animal-pollinated plant species to the level of the plant-pollinator networks. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  3. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  4. Two decades of Molecular Ecology: where are we and where are we heading?

    Science.gov (United States)

    Diepeveen, Eveline T; Salzburger, Walter

    2012-12-01

    The twentieth anniversary of the journal Molecular Ecology was celebrated with a symposium on the current state and the future directions of the field. The event, organized by Tim Vines and Loren Rieseberg, took place on the opening day of the First Joint Congress on Evolutionary Biology organized by the American Society of Naturalists (ASN), the Canadian Society for Ecology and Evolution (CSEE), the European Society for Evolutionary Biology (ESEB), the Society for the Study of Evolution (SSE) and the Society of Systematic Biologists (SSB) in Ottawa (Canada) from 6–10 July 2012. The get together of these five societies created a truly international and exciting “Evolution conference” and the ideal framework for the Molecular Ecology symposium. Its thirteen talks were grouped into the five different subject areas of the journal: Speciation and Hybridization; Landscape Genetics, Phylogeography and Conservation; Ecological Genomics and Molecular Adaptation; Kinship, Parentage and Behaviour; Ecological Interactions. Each session was followed by a panel discussion on the future direction of the subfield. That more than 300 colleagues registered for this special symposium illustrates the broad interest in, and appreciation of, molecular ecology – both the field and the journal.

  5. Aquatic Plant Control Research Program. Ecological Assessment of Kirk Pond

    Science.gov (United States)

    1994-03-01

    provide a constant output of 300-400 V at 5-7 A. One driver and two netters were present for each run, with each site sampled for 300 sec (5 min...Auburn, AL. Titus, J. E. (1977). "The comparative physiological ecology of three submersed macrophytes," Ph.D. diss., University of Wisconsin-Madison, 195

  6. Plant-seed predator interactions – ecological and evolutionary aspects

    OpenAIRE

    Östergård, Hannah

    2008-01-01

    Plant-animal interactions are affected by both abundance and distribution of interacting species and the community context in which they occur. However, the relative importance of these factors is poorly known. I examined the effects of predator host range, environmental factors, host plant populations, plant traits and fruit abortion on the intensity of pre-dispersal seed predation in 46 host populations of the perennial herb Lathyrus vernus. I recorded damage by beetle pre-dispersal seed pr...

  7. Ecological Risk Assessment with MCDM of Some Invasive Alien Plants in China

    Science.gov (United States)

    Xie, Guowen; Chen, Weiguang; Lin, Meizhen; Zheng, Yanling; Guo, Peiguo; Zheng, Yisheng

    Alien plant invasion is an urgent global issue that threatens the sustainable development of the ecosystem health. The study of its ecological risk assessment (ERA) could help us to prevent and reduce the invasion risk more effectively. Based on the theory of ERA and methods of the analytic hierarchy process (AHP) of multi-criteria decision-making (MCDM), and through the analyses of the characteristics and processes of alien plant invasion, this paper discusses the methodologies of ERA of alien plant invasion. The assessment procedure consisted of risk source analysis, receptor analysis, exposure and hazard assessment, integral assessment, and countermeasure of risk management. The indicator system of risk source assessment as well as the indices and formulas applied to measure the ecological loss and risk were established, and the method for comprehensively assessing the ecological risk of alien plant invasion was worked out. The result of ecological risk analysis to 9 representative invasive alien plants in China shows that the ecological risk of Erigeron annuus, Ageratum conyzoides, Alternanthera philoxeroides and Mikania midrantha is high (grade1-2), that of Oxalis corymbosa and Wedelia chinensis comes next (grade3), while Mirabilis jalapa, Pilea microphylla and Calendula officinalis of the last (grade 4). Risk strategies are put forward on this basis.

  8. Focus on molecular plant-nematode interactions

    NARCIS (Netherlands)

    Hogenhout, S.; Mitchum, M.; Smant, G.

    2013-01-01

    Sedentary plant-parasitic nematodes engage in a long-lasting and intimate relationship with their host plant. This interaction starts in the soil when freshly hatched infective juveniles are attracted to specific parts of a host plant root system. Little is known of what determines the attractivenes

  9. Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology.

    Science.gov (United States)

    Hempel, Stefan; Götzenberger, Lars; Kühn, Ingolf; Michalski, Stefan G; Rillig, Matthias C; Zobel, Martin; Moora, Mari

    2013-06-01

    Plant traits have been widely used to characterize different aspects of the ecology of plant species. Despite its wide distribution and its proven significance at the level of individuals, communities, and populations, the ability to form mycorrhizal associations has been largely neglected in these studies so far. Analyzing plant traits associated with the occurrence of mycorrhizas in plants can therefore enhance our understanding of plant strategies and distributions. Using a comparative approach, we tested for associations between mycorrhizal status and habitat characteristics, life history traits, and plant distribution patterns in 1752 species of the German flora (a major part of the Central European flora). Data were analyzed using log-linear models or generalized linear models, both accounting for phylogenetic relationships. Obligatorily mycorrhizal (OM) species tended to be positively associated with higher temperature, drier habitats, and higher pH; and negatively associated with moist, acidic, and fertile soils. Competitive species were more frequently OM, and stress tolerators were non-mycorrhizal (NM), while ruderal species did not show any preference. Facultatively mycorrhizal (FM) species showed the widest geographic and ecological amplitude. Indigenous species were more frequently FM and neophytes (recent aliens) more frequently OM than expected. FM species differed markedly from OM and NM species in almost all analyzed traits. Specifically, they showed a wider geographic distribution and ecological niche. Our study of the relationships between mycorrhizal status and other plant traits provides a comprehensive test of existing hypotheses and reveals novel patterns. The clear distinction between FM and OM + NM species in terms of their ecology opens up a new field of research in plant-mycorrhizal ecology.

  10. Carbon Assimilation Pathways, Water Relationships and Plant Ecology.

    Science.gov (United States)

    Etherington, John R.

    1988-01-01

    Discusses between-species variation in adaptation of the photosynthetic mechanism to cope with wide fluctuations of environmental water regime. Describes models for water conservation in plants and the role of photorespiration in the evolution of the different pathways. (CW)

  11. The Genetic and Molecular Basis of Plant Resistance to Pathogens

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Thomas Lubberstedt; Mingliang Xu

    2013-01-01

    Plant pathogens have evolved numerous strategies to obtain nutritive materials from their host,and plants in turn have evolved the preformed physical and chemical barriers as well as sophisticated two-tiered immune system to combat pathogen attacks.Genetically,plant resistance to pathogens can be divided into qualitative and quantitative disease resistance,conditioned by major gene(s) and multiple genes with minor effects,respectively.Qualitative disease resistance has been mostly detected in plant defense against biotrophic pathogens,whereas quantitative disease resistance is involved in defense response to all plant pathogens,from biotrophs,hemibiotrophs to necrotrophs.Plant resistance is achieved through interception of pathogen-derived effectors and elicitation of defense response.In recent years,great progress has been made related to the molecular basis underlying host-pathogen interactions.In this review,we would like to provide an update on genetic and molecular aspects of plant resistance to pathogens.

  12. Plant molecular stress responses face climate change. Trends in Plants

    NARCIS (Netherlands)

    Ahuja, I.; Vos, de R.C.H.; Bones, A.M.; Hall, R.D.

    2010-01-01

    Environmental stress factors such as drought, elevated temperature, salinity and rising CO2 affect plant growth and pose a growing threat to sustainable agriculture. This has become a hot issue due to concerns about the effects of climate change on plant resources, biodiversity and global food secur

  13. Molecular pharming - VLPs made in plants.

    Science.gov (United States)

    Marsian, Johanna; Lomonossoff, George P

    2016-02-01

    Plant-based expression offers a safe, inexpensive and potentially limitless way to produce therapeutics in a quick and flexible manner. Plants require only simple inorganic nutrients, water, carbon dioxide and sunlight for efficient growth. Virus-like particles (VLPs) are convincing look-alikes of viruses but without carrying infectious genomic material. However, they can still elicit a very potent immune response which makes them ideal vaccine candidates. In this review the different methods of plant expression are described together with the most recent developments in the field of transiently-expressed plant-made VLPs.

  14. Plant and soil nutrient stoichiometry along primary ecological successions: Is there any link?

    Science.gov (United States)

    Di Palo, Francesca; Fornara, Dario A

    2017-01-01

    Ecological stoichiometry suggests that plant Nitrogen (N)-to-Phosphorus (P) ratios respond to changes in both soil N:P stoichiometry and soil N and P availability. Thus we would expect that soil and plant N:P ratios be significantly related along natural gradients of soil development such as those associated with primary ecological successions. Here we explicitly search for linkages between plant and soil N:P stoichiometry along four primary successions distributed across Europe. We measured N and P content in soils and plant compartments (leaf, stem and root) of 72 wild plant species distributed along two sand dune and two glacier successions where soil age ranges from few to thousand years old. Overall we found that soil N:P ratios strongly increased along successional stages, however, plant N:P ratios were neither related to soil N:P stoichiometry nor to changes in soil N and P availability. Instead changes in plant nutrient stoichiometry were "driven" by plant-functional-group identity. Not only N:P ratios differed between legumes, grasses and forbs but each of these plant functional groups maintained N:P ratios relatively constant across pioneer, middle and advanced successional stages. Our evidence is that soil nutrient stoichiometry may not be a good predictor of changes in plant N:P stoichiometry along natural primary ecological successions, which have not reached yet a retrogressive stage. This could be because wild-plants rely on mechanisms of internal nutrient regulation, which make them less dependent to changes in soil nutrient availability under unpredictable environmental conditions. Further studies need to clarify what underlying evolutionary and eco-physiological mechanisms determine changes in nutrient stoichiometry in plant species distributed across natural environmental gradients.

  15. The geography and ecology of plant speciation: range overlap and niche divergence in sister species.

    Science.gov (United States)

    Anacker, Brian L; Strauss, Sharon Y

    2014-03-07

    A goal of evolutionary biology is to understand the roles of geography and ecology in speciation. The recent shared ancestry of sister species can leave a major imprint on their geographical and ecological attributes, possibly revealing processes involved in speciation. We examined how ecological similarity, range overlap and range asymmetry are related to time since divergence of 71 sister species pairs in the California Floristic Province (CFP). We found that plants exhibit strikingly different age-range correlation patterns from those found for animals; the latter broadly support allopatric speciation as the primary mode of speciation. By contrast, plant sisters in the CFP were sympatric in 80% of cases and range sizes of sisters differed by a mean of 10-fold. Range overlap and range asymmetry were greatest in younger sisters. These results suggest that speciation mechanisms broadly grouped under 'budding' speciation, in which a larger ranged progenitor gives rise to a smaller ranged derivative species, are probably common. The ecological and reproductive similarity of sisters was significantly greater than that of sister-non-sister congeners for every trait assessed. However, shifts in at least one trait were present in 93% of the sister pairs; habitat and soil shifts were especially common. Ecological divergence did not increase with range overlap contrary to expectations under character displacement in sympatry. Our results suggest that vicariant speciation is more ubiquitous in animals than plants, perhaps owing to the sensitivity of plants to fine-scale environmental heterogeneity. Despite high levels of range overlap, ecological shifts in the process of budding speciation may result in low rates of fine-scale spatial co-occurrence. These results have implications for ecological studies of trait evolution and community assembly; despite high levels of sympatry, sister taxa and potentially other close relatives, may be missing from local communities.

  16. Molecular mechanisms of desiccation tolerance in resurrection plants.

    Science.gov (United States)

    Gechev, Tsanko S; Dinakar, Challabathula; Benina, Maria; Toneva, Valentina; Bartels, Dorothea

    2012-10-01

    Resurrection plants are a small but diverse group of land plants characterized by their tolerance to extreme drought or desiccation. They have the unique ability to survive months to years without water, lose most of the free water in their vegetative tissues, fall into anabiosis, and, upon rewatering, quickly regain normal activity. Thus, they are fundamentally different from other drought-surviving plants such as succulents or ephemerals, which cope with drought by maintaining higher steady state water potential or via a short life cycle, respectively. This review describes the unique physiological and molecular adaptations of resurrection plants enabling them to withstand long periods of desiccation. The recent transcriptome analysis of Craterostigma plantagineum and Haberlea rhodopensis under drought, desiccation, and subsequent rehydration revealed common genetic pathways with other desiccation-tolerant species as well as unique genes that might contribute to the outstanding desiccation tolerance of the two resurrection species. While some of the molecular responses appear to be common for both drought stress and desiccation, resurrection plants also possess genes that are highly induced or repressed during desiccation with no apparent sequence homologies to genes of other species. Thus, resurrection plants are potential sources for gene discovery. Further proteome and metabolome analyses of the resurrection plants contributed to a better understanding of molecular mechanisms that are involved in surviving severe water loss. Understanding the cellular mechanisms of desiccation tolerance in this unique group of plants may enable future molecular improvement of drought tolerance in crop plants.

  17. A review on the molecular mechanism of plants rooting modulated ...

    African Journals Online (AJOL)

    A review on the molecular mechanism of plants rooting modulated by auxin. ... rooting modulated by auxin. H Han, S Zhang, X Sun ... Phytohormones, especially auxin, played an essential role in regulating roots developments. This review ...

  18. Molecular mechanisms in plant abiotic stress response

    Directory of Open Access Journals (Sweden)

    Poltronieri Palmiro

    2011-01-01

    Full Text Available Improved crop varieties are needed to sustain the food supply, to fight climate changes, water scarcity, temperature increase and a high variability of rainfalls. Variability of drought and increase in soil salinity have negative effects on plant growth and abiotic stresses seriously threaten sustainable agricultural production. To overcome the influence of abiotic stresses, new tolerant plant varieties and breeding techniques using assisted selection are sought. A deep understanding of the mechanisms that respond to stress and sustain stress resistance is required. Here is presented an overview of several mechanisms that interact in the stress response. Localised synthesis of plant hormones, second messengers and local effectors of abiotic stress response and survival, the signaling pathways regulated by plant hormones are today better understood. Metabolic networks in drought stress responses, long distance signaling, cross-talk between plant organs finalised to tissue-specific expression of abiotic stress relieving genes have been at the centre of most recent studies.

  19. The ecology of macromycetes in roadside verges planted with trees

    NARCIS (Netherlands)

    Keizer, P.J.

    1993-01-01

    In this thesis phytocoena and mycocoena of ectomycorrhizal fungi and saprotrophic fungi in roadside verges planted with trees are described independently. An attempt is made to indicate which environmental variables are most important in the distinguished communities. Parasitic fungi on

  20. The ecology of macromycetes in roadside verges planted with trees.

    NARCIS (Netherlands)

    Keizer, P.J.

    1993-01-01

    In this thesis phytocoena and mycocoena of ectomycorrhizal fungi and saprotrophic fungi in roadside verges planted with trees are described independently. An attempt is made to indicate which environmental variables are most important in the distinguished communities. Parasitic fungi on trees, arthr

  1. A plant nutrition strategy for ex-situ conservation based on "Ecological Similarity"

    Institute of Scientific and Technical Information of China (English)

    WAN Kai-yuan; CHEN Fang; TAO Yong; CHEN Shu-sen; ZHANG Guo-shi

    2008-01-01

    This paper reviewed a large scale conservation work of rare and endangered plants currently conducted in main botanical gardens in China,and the existed,predictable and neglected problems on plant growth and reproduction in ex-situ conservation process.Considered the status quo in plant ex conservation,a nutritional strategy on the plant conservation was proposed based on 'Ecological Similarity'.Its main idea was that the ex-situ conservation plants coming from natural ecosystem were compulsively allocated in the agro-ecosystems and would return to natural ecosystem ultimately.Therefore,research on plant nutrition of the ex-situ conservation plants should neither just pursue yield and quality as that in agro-ecosystems nor merely stay on intrinsic natures without human intervening.We should give attentions to both of their attributes as in natural ecosystems and in agro-ecosystems,i.e.,taking full advantage of plant nutritional measures as in agro-ecosystems to solve actual survival problems of the ex-conservation plants,and ensuring the final goal of returning to nature and playing its ecological role.

  2. Evolutionary Ecology of Multitrophic Interactions between Plants, Insect Herbivores and Entomopathogens.

    Science.gov (United States)

    Shikano, Ikkei

    2017-06-01

    Plants play an important role in the interactions between insect herbivores and their pathogens. Since the seminal review by Cory and Hoover (2006) on plant-mediated effects on insect-pathogen interactions, considerable progress has been made in understanding the complexity of these tritrophic interactions. Increasing interest in the areas of nutritional and ecological immunology over the last decade have revealed that plant primary and secondary metabolites can influence the outcomes of insect-pathogen interactions by altering insect immune functioning and physical barriers to pathogen entry. Some insects use plant secondary chemicals and nutrients to prevent infections (prophylactic medication) and medicate to limit the severity of infections (therapeutic medication). Recent findings suggest that there may be selectable plant traits that enhance entomopathogen efficacy, suggesting that entomopathogens could potentially impose selection pressure on plant traits that improve both pathogen and plant fitness. Moreover, plants in nature are inhabited by diverse communities of microbes, in addition to entomopathogens, some of which can trigger immune responses in insect herbivores. Plants are also shared by numerous other herbivorous arthropods with different modes of feeding that can trigger different defensive responses in plants. Some insect symbionts and gut microbes can degrade ingested defensive phytochemicals and be orally secreted onto wounded plant tissue during herbivory to alter plant defenses. Since non-entomopathogenic microbes and other arthropods are likely to influence the outcomes of plant-insect-entomopathogen interactions, I discuss a need to consider these multitrophic interactions within the greater web of species interactions.

  3. The molecular biology of meiosis in plants.

    Science.gov (United States)

    Mercier, Raphaël; Mézard, Christine; Jenczewski, Eric; Macaisne, Nicolas; Grelon, Mathilde

    2015-01-01

    Meiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.

  4. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    Science.gov (United States)

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.

  5. The ecology of plant secondary metabolites : from genes to global processes

    NARCIS (Netherlands)

    Iason, G.R.; Dicke, M.; Hartley, S.E.

    2012-01-01

    Plant secondary metabolites (PSM) such as terpenes and phenolic compounds are known to have numerous ecological roles, notably in defence against herbivores, pathogens and abiotic stresses and in interactions with competitors and mutualists. This book reviews recent developments in the field to prov

  6. Permanent genetic resources added to molecular ecology resources database 1 august 2011-30 september 2011

    OpenAIRE

    2012-01-01

    This article documents the addition of 299 microsatellite marker loci and nine pairs of single-nucleotide polymorphism (SNP) EPIC primers to the Molecular Ecology Resources (MER) Database. Loci were developed for the following species: Alosa pseudoharengus, Alosa aestivalis, Aphis spiraecola, Argopecten purpuratus, Coreoleuciscus splendidus, Garra gotyla, Hippodamia convergens, Linnaea borealis, Menippe mercenaria, Menippe adina, Parus major, Pinus densiflora, Portunus trituberculatus, Procon...

  7. Permanent genetic resources added to Molecular Ecology Resources Database 1 June 2012-31 July 2012.

    Science.gov (United States)

    Barat, Ashoktaru; Bravo, S P; Chandra, Suresh; Corrêa, A S; Giombini, M I; Guedes, R N C; Huailei, Ma; Lal, Kuldeep K; Liang, Lu; Matura, Rakesh; Mohindra, Vindhya; Oliveira, L O; Patangia, Ruchi; Qiyong, Liu; Sah, Rama Shankar; Singh, Akanksha; Singh, Birender Kumar; Singh, Rajeev K; Tosto, D S; Tripathi, Ratnesh K; Vinson, C C

    2012-11-01

    This article documents the addition of 96 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Clarias batrachus, Marmota himalayana, Schizothorax richardsonii, Sitophilus zeamais and Syagrus romanzoffiana. These loci were cross-tested on the following species: Clarias dussumeri, Clarias gariepinus, Heteropneustus fossilis, Sitophilus granarius and Sitophilus oryzae.

  8. Cellular microbiology and molecular ecology of Legionella-amoeba interaction.

    Science.gov (United States)

    Richards, Ashley M; Von Dwingelo, Juanita E; Price, Christopher T; Abu Kwaik, Yousef

    2013-05-15

    Legionella pneumophila is an aquatic organism that interacts with amoebae and ciliated protozoa as the natural hosts, and this interaction plays a central role in bacterial ecology and infectivity. Upon transmission to humans, L. pneumophila infect and replicate within alveolar macrophages causing pneumonia. Intracellular proliferation of L. pneumophila within the two evolutionarily distant hosts is facilitated by bacterial exploitation of evolutionarily conserved host processes that are targeted by bacterial protein effectors injected into the host cell by the Dot/Icm type VIB translocation system. Although cysteine is semi-essential for humans and essential for amoeba, it is a metabolically favorable source of carbon and energy generation by L. pneumophila. To counteract host limitation of cysteine, L. pneumophila utilizes the AnkB Dot/Icm-translocated F-box effector to promote host proteasomal degradation of polyubiquitinated proteins within amoebae and human cells. Evidence indicates ankB and other Dot/Icm-translocated effector genes have been acquired through inter-kingdom horizontal gene transfer.

  9. Marcadores moleculares y ecología del movimiento

    Directory of Open Access Journals (Sweden)

    J.J. Robledo-Arnuncio

    2009-01-01

    Full Text Available El estudio del movimiento es parte esencial del análisis ecológico a nivel de gen, individuo, población, comunidad y ecosistema. Los marcadores de ADN son herramientas muy útiles para el estudio del movimiento a todos estos niveles, permitiendo, por ejemplo, establecer relaciones de parentesco entre individuos, determinar el origen poblacional de individuos migrantes, estudiar sistemas de apareamiento, cuantificar la escala de interacciones interespecíficas, o caracterizar el patrón espacial de la dispersión y la competencia. A nivel de gen, los marcadores de ADN son imprescindibles para estudiar la estructura y el flujo genético dentro y entre poblaciones, así como su efecto combinado con otras fuerzas evolutivas y los factores bióticos y abióticos del medio sobre la adaptación local. En este artículo se revisan algunos métodos basados en marcadores de ADN que pueden resultar de utilidad en ecología del movimiento, identificándose áreas de estudio en las que se espera estos marcadores sean de especial utilidad en los próximos años.

  10. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants.

    Science.gov (United States)

    Turley, Nash E; Johnson, Marc T J

    2015-07-01

    Genetic variation and contemporary evolution within populations can shape the strength and nature of species interactions, but the relative importance of these forces compared to other ecological factors is unclear. We conducted a field experiment testing the effects of genotypic variation, abundance, and presence/absence of green peach aphids (Myzus persicae) on the growth, leaf nitrogen, and carbon of two plant species (Brassica napus and Solanum nigrum). Aphid genotype affected B. napus but not S. nigrum biomass explaining 20 and 7% of the total variation, respectively. Averaging across both plant species, the presence/absence of aphids had a 1.6× larger effect size (Cohen's d) than aphid genotype, and aphid abundance had the strongest negative effects on plant biomass explaining 29% of the total variation. On B. napus, aphid genotypes had different effects on leaf nitrogen depending on their abundance. Aphids did not influence leaf nitrogen in S. nigrum nor leaf carbon in either species. We conducted a second experiment in the field to test whether contemporary evolution could affect plant performance. Aphid populations evolved in as little as five generations, but the rate and direction of this evolution did not consistently vary between plant species. On one host species (B. napus), faster evolving populations had greater negative effects on host plant biomass, with aphid evolutionary rate explaining 23% of the variation in host plant biomass. Together, these results show that genetic variation and evolution in an insect herbivore can play important roles in shaping host plant ecology.

  11. Herbicide impact on non-target plant reproduction: what are the toxicological and ecological implications?

    Science.gov (United States)

    Boutin, C; Strandberg, B; Carpenter, D; Mathiassen, S K; Thomas, P J

    2014-02-01

    Declining plant diversity and abundance have been widely reported in agro-ecosystems of North America and Europe. Intensive use of herbicides within cropfields and the associated drift in adjacent habitats are partly responsible for this change. The objectives of this work were to quantify the phenological stages of non-target plants in in-situ field situations during herbicide spray and to compare plant susceptibility at different phenological stages. Results demonstrated that a large number of non-target plants had reached reproductive stages during herbicide spray events in woodlots and hedgerows, both in Canada and Denmark where vegetation varies considerably. In addition, delays in flowering and reduced seed production occurred widely on plants sprayed at the seedling stage or at later reproductive periods, with plants sprayed at reproductive stages often exhibiting more sensitivity than those sprayed as seedlings. Ecological risk assessments need to include reproductive endpoints.

  12. Top 10 plant-parasitic nematodes in molecular plant pathology

    NARCIS (Netherlands)

    Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; Perry, R.N.

    2013-01-01

    The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a ‘top 10’ list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region

  13. Top 10 plant-parasitic nematodes in molecular plant pathology

    NARCIS (Netherlands)

    Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; Perry, R.N.

    2013-01-01

    The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a ‘top 10’ list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region o

  14. Vascular plants of the Nevada Test Site and Central-Southern Nevada: ecologic and geographic distributions

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1976-01-01

    The physical environment of the Nevada Test Site and surrounding area is described with regard to physiography, geology, soils, and climate. A discussion of plant associations is given for the Mojave Desert, Transition Desert, and Great Basin Desert. The vegetation of disturbed sites is discussed with regard to introduced species as well as endangered and threatened species. Collections of vascular plants were made during 1959 to 1975. The plants, belonging to 1093 taxa and 98 families are listed together with information concerning ecologic and geographic distributions. Indexes to families, genera, and species are included. (HLW)

  15. Problems, challenges and future of plant disease management:from an ecological point of view

    Institute of Scientific and Technical Information of China (English)

    HE Dun-chun; ZHAN Jia-sui; XIE Lian-hui

    2016-01-01

    Plant disease management faces ever-growing chalenges due to: (i) increasing demands for total, safe and diverse foods to support the booming global population and its improving living standards; (i) reducing production potential in agriculture due to competition for land in fertile areas and exhaustion of marginal arable lands; (ii) deteriorating ecology of agro-ecosystems and depletion of natural resources; and (iv) increased risk of disease epidemics resulting from agricultural intensiifcation and monocultures. Future plant disease management should aim to strengthen food security for a stable society while simultaneously safeguarding the health of associated ecosystems and reducing dependency on natural resources. To achieve these multiple functionalities, sustainable plant disease management should place emphases on rational adaptation of resistance, avoidance, elimination and remediation strategies individualy and colectively, guided by traits of speciifc host-pathogen associations using evolutionary ecology principles to create environmental (biotic and abiotic) conditions favorable for host growth and development while adverse to pathogen reproduction and evolution.

  16. Molecular diversity at the plant-pathogen interface.

    Science.gov (United States)

    McDowell, John M; Simon, Stacey A

    2008-01-01

    Plants have evolved a robust innate immune system that exhibits striking similarities as well as significant differences with various metazoan innate immune systems. For example, plants are capable of perceiving pathogen-associated molecular patterns through pattern recognition receptors that bear structural similarities to animal Toll-like receptors. In addition, plants have evolved a second surveillance system based on cytoplasmic "NB-LRR" proteins (nucleotide-binding, leucine-rich repeat) that are structurally similar to animal nucleotide-binding and oligomerization domain (NOD)-like receptors. Plant NB-LRR proteins do not detect PAMPs; rather, they perceive effector proteins that pathogens secrete into plant cells to promote virulence. This review summarizes the current state of knowledge about the molecular functionality and evolution of these immune surveillance genes.

  17. Identifying plant traits: a key aspect for suitable species selection in ecological restoration of semiarid slopes

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio

    2017-04-01

    In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In

  18. Molecular Characterization of Plant Prevacuolar and Endosomal Compartments

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Prevacuolar compartments (PVCs) and endosomal compartments are membrane-bound organelles mediating protein traffic to vacuoles in the secretory and endocytic pathways of plant cells. Over the years, great progress has been made towards our understanding in these two compartments in plant cells. In this review, we will summarize our contributions toward the identification and characterization of plant prevacuolar and endosomal compartments. Our studies will serve as important steps in future molecular characterization of PVC biogenesis and PVC-mediated protein trafficking in plant cells.

  19. Development of radiation indicator plants by molecular breeding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jang-Ryol; Min, Sung-Ran; Jeong, Won-Joong; Kwak, Sang-Soo; Lee, Haeng-Soon; Kwon, Seok-Yoon; Pai, Hyun-Sook; Cho, Hye-Sun; In, Dong-Su; Oh, Seung-Chol; Park, Sang- Gyu; Woo, Je-Wook; Kin, Tae-Hwan; Park, Ju-Hyun; Kim, Chang-Sook [Korea Research Institute of Bioscience and Biotechnology, Taejeon (Korea)

    2001-04-01

    To develop the transgenic plants with low level of antioxidant enzyme, transgenic tobacco plants (157 plants) using 8 different plant expression vectors which have APX genes in sense or antisense orientation under the control of CaMV 35S promoter or stress-inducible SWPA2 promoter were developed. The insertion of transgene in transgenic plants was confirmed by PCR analysis. The total APX activities of transgenic plants were enhanced or reduced by introduction of APX gene in plants. To clone the radiation-responsive genes and their promoter from plants, the NeIF2Bb, one of radiation-responsive genes from tobacco plant was characterized using molecular and cell biological tools. Promoter of GST6, a radiation-responsive gene, was cloned using RT-PCR. The GST6 promoter sequence was analyzed, and known sequence motif was searched. To develop the remediation technology of radioactively contaminated soil using transgenic plants uranium reductase and radiation resistance genes have been introduced in tobacco and indian mustard plans. The uranium reductase and radiation resistance (RecA) genes were confirmed in transgenic tobacco and indian mustard plants by PCR analysis. Also, Gene expression of uranium reductase and radiation resistance were confirmed in transgenic indian mustard plants by northern blot analysis. 42 refs., 12 figs. (Author)

  20. Ecological turmoil in evolutionary dynamics of plant-insect interactions: defense to offence.

    Science.gov (United States)

    Mishra, Manasi; Lomate, Purushottam R; Joshi, Rakesh S; Punekar, Sachin A; Gupta, Vidya S; Giri, Ashok P

    2015-10-01

    Available history manifests contemporary diversity that exists in plant-insect interactions. A radical thinking is necessary for developing strategies that can co-opt natural insect-plant mutualism, ecology and environmental safety for crop protection since current agricultural practices can reduce species richness and evenness. The global environmental changes, such as increased temperature, CO₂ and ozone levels, biological invasions, land-use change and habitat fragmentation together play a significant role in re-shaping the plant-insect multi-trophic interactions. Diverse natural products need to be studied and explored for their biological functions as insect pest control agents. In order to assure the success of an integrated pest management strategy, human activities need to be harmonized to minimize the global climate changes. Plant-insect interaction is one of the most primitive and co-evolved associations, often influenced by surrounding changes. In this review, we account the persistence and evolution of plant-insect interactions, with particular focus on the effect of climate change and human interference on these interactions. Plants and insects have been maintaining their existence through a mutual service-resource relationship while defending themselves. We provide a comprehensive catalog of various defense strategies employed by the plants and/or insects. Furthermore, several important factors such as accelerated diversification, imbalance in the mutualism, and chemical arms race between plants and insects as indirect consequences of human practices are highlighted. Inappropriate implementation of several modern agricultural practices has resulted in (i) endangered mutualisms, (ii) pest status and resistance in insects and (iii) ecological instability. Moreover, altered environmental conditions eventually triggered the resetting of plant-insect interactions. Hence, multitrophic approaches that can harmonize human activities and minimize their

  1. Ecological studies on the American alligator (Alligator mississippiensis) on the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Seigel, R.A.; Brandt, L.A.; Knight, J.L.; Novak, S.S.

    1986-06-01

    The American alligator (Alligator mississippiensis) is the largest vertebrate of the Savannah River Plant (SRP), reaching a maximum length of 3.7 meters (12 feet) and weighing up to 175 kg (385 pounds). Currently, populations in coastal South Carolina are considered Threatened, whereas populations in inland areas (such as the SRP) are still Endangered. Because of their legal status and economic and ecological importance, it is important to determine the environmental impacts of SRP operations on the local alligator population. The major objectives under the Endangered Species Program of the Comprehensive Cooling Water Study (CCWS) were as follows: (1) document and compare the present status and distribution of alligators on the SRP to previous surveys, in order to determine long-term changes in population abundance; (2) establish baseline population and ecological parameters of the Steel Creek population so that the ecological effects of L-Reactor operations can be determined, and (3) conduct ecological research on the immediate impacts of thermal effluents on American alligators. Gladden et al., (1985) summarized data on previous population surveys, temporal changes in the Par Pond population, preliminary results of the Steel Creek surveys and Savannah River Ecology Laboratory (SREL) research on the effects of thermal effluents. This report summarizes the current status of the SRP population, presents data on the abundance, movement patterns and activity cycles of the Steel Creek population, and presents additional data on the effect of cooling water releases on alligator ecology and behavior.

  2. Ecology of plant and free-living nematodes in natural and agricultural soil.

    Science.gov (United States)

    Neher, Deborah A

    2010-01-01

    Nematodes are aquatic organisms that depend on thin water films to live and move within existing pathways of soil pores of 25-100 mum diameter. Soil nematodes can be a tool for testing ecological hypotheses and understanding biological mechanisms in soil because of their central role in the soil food web and linkage to ecological processes. Ecological succession is one of the most tested community ecology concepts, and a variety of nematode community indices have been proposed for purposes of environmental monitoring. In contrast, theories of biogeography, colonization, optimal foraging, and niche partitioning by nematodes are poorly understood. Ecological hypotheses related to strategies of coexistence of nematode species sharing the same resource have potential uses for more effective biological control and use of organic amendments to foster disease suppression. Essential research is needed on nematodes in natural and agricultural soils to synchronize nutrient release and availability relative to plant needs, to test ecological hypotheses, to apply optimal foraging and niche partitioning strategies for more effective biological control, to blend organic amendments to foster disease suppression, to monitor environmental and restoration status, and to develop better predictive models for land-use decisions.

  3. The molecular ecology of the extinct New Zealand Huia.

    Directory of Open Access Journals (Sweden)

    David M Lambert

    Full Text Available The extinct Huia (Heteralocha acutirostris of New Zealand represents the most extreme example of beak dimorphism known in birds. We used a combination of nuclear genotyping methods, molecular sexing, and morphometric analyses of museum specimens collected in the late 19(th and early 20(th centuries to quantify the sexual dimorphism and population structure of this extraordinary species. We report that the classical description of Huia as having distinctive sex-linked morphologies is not universally correct. Four Huia, sexed as females had short beaks and, on this basis, were indistinguishable from males. Hence, we suggest it is likely that Huia males and females were indistinguishable as juveniles and that the well-known beak dimorphism is the result of differential beak growth rates in males and females. Furthermore, we tested the prediction that the social organisation and limited powers of flight of Huia resulted in high levels of population genetic structure. Using a suite of microsatellite DNA loci, we report high levels of genetic diversity in Huia, and we detected no significant population genetic structure. In addition, using mitochondrial hypervariable region sequences, and likely mutation rates and generation times, we estimated that the census population size of Huia was moderately high. We conclude that the social organization and limited powers of flight did not result in a highly structured population.

  4. Insect olfactory receptors: contributions of molecular biology to chemical ecology.

    Science.gov (United States)

    Jacquin-Joly, Emmanuelle; Merlin, Christine

    2004-12-01

    Our understanding of the molecular basis of chemical signal recognition in insects has been greatly expanded by the recent discovery of olfactory receptors (Ors). Since the discovery of the complete repertoire of Drosophila melanogaster Ors, candidate Ors have been identified from at least 12 insect species from four orders (Coleoptera, Lepidoptera, Diptera, and Hymenoptera), including species of economic or medical importance. Although all Ors share the same G-protein coupled receptor structure with seven transmembrane domains, they present poor sequence homologies within and between species, and have been identified mainly through genomic data analyses. To date, D. melanogaster remains the only insect species where Ors have been extensively studied, from expression pattern establishment to functional investigations. These studies have confirmed several observations made in vertebrates: one Or type is selectively expressed in a subtype of olfactory receptor neurons, and one olfactory neuron expresses only one type of Or. In addition, all olfactory neurons expressing one Or type converge to the same glomerulus in the antennal lobe. The olfactory mechanism, thus, appears to be conserved between insects and vertebrates. Although Or functional studies are in their initial stages in insects (mainly Drosophila), insects appear to be good models to establish fundamental concepts of olfaction with the development of powerful genetic, imaging, and behavioral tools. This new field of study will greatly contribute to the understanding of insect chemical communication mechanisms, particularly with agricultural pests and disease vectors, and could result in future strategies to reduce their negative effects.

  5. Climate change and the molecular ecology of Arctic marine mammals.

    Science.gov (United States)

    O'Corry-Crowe, Gregory

    2008-03-01

    Key to predicting likely consequences of future climate change for Arctic marine mammals is developing a detailed understanding of how these species use their environment today and how they were affected by past climate-induced environmental change. Genetic analyses are uniquely placed to address these types of questions. Molecular genetic approaches are being used to determine distribution and migration patterns, dispersal and breeding behavior, population structure and abundance over time, and the effects of past and present climate change in Arctic marine mammals. A review of published studies revealed that population subdivision, dispersal, and gene flow in Arctic marine mammals was shaped primarily by evolutionary history, geography, sea ice, and philopatry to predictable, seasonally available resources. A meta-analysis of data from 38 study units across seven species found significant relationships between neutral genetic diversity and population size and climate region, revealing that small, isolated subarctic populations tend to harbor lower diversity than larger Arctic populations. A few small populations had substantially lower diversity than others. By contrast, other small populations retain substantial neutral diversity despite extensive population declines in the 19th and 20th centuries. The evolutionary and contemporary perspectives gained from these studies can be used to model the consequences of different climate projections for individual behavior and population structure and ultimately individual fitness and population viability. Future research should focus on: (1) the use of ancient-DNA techniques to directly reconstruct population histories through the analysis of historical and prehistorical material, (2) the use of genomic technologies to identify, map, and survey genes that directly influence fitness, (3) long-term studies to monitor populations and investigate evolution in contemporary time, (4) further Arctic-wide, multispecies analyses

  6. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects.

    Science.gov (United States)

    Pinto, Delia M; Blande, James D; Souza, Silvia R; Nerg, Anne-Marja; Holopainen, Jarmo K

    2010-01-01

    Tropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death. It also activates many plant defense responses, including the emission of phytogenic VOCs. Plant emitted VOCs play a role in many eco-physiological functions. Besides protecting the plant from abiotic stresses (high temperatures and oxidative stress) and biotic stressors (competing plants, micro- and macroorganisms), they drive multitrophic interactions between plants, herbivores and their natural enemies e.g., predators and parasitoids as well as interactions between plants (plant-to-plant communication). In addition, VOCs have an important role in atmospheric chemistry. They are O3 precursors, but at the same time are readily oxidized by O3, thus resulting in a series of new compounds that include secondary organic aerosols (SOAs). Here, we review the effects of O3 on plants and their VOC emissions. We also review the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling, and propose further research directions.

  7. Insect-plant interactions: new pathways to a better comprehension of ecological communities in Neotropical savannas.

    Science.gov (United States)

    Del-Claro, Kleber; Torezan-Silingardi, Helena M

    2009-01-01

    The causal mechanisms shaping and structuring ecological communities are among the most important themes in ecology. The study of insect-plant interactions in trophic nets is pointed out as basic to improve our knowledge on this issue. The cerrado tropical savanna, although extremely diverse, distributed in more than 20% of the Brazilian territory and filled up with rich examples of multitrophic interactions, is underexplored in terms of biodiversity interaction. Here, this ecosystem is suggested as valuable to the study of insect-plant interactions whose understanding can throw a new light at the ecological communities' theory. Three distinct systems: extrafloral nectary plants or trophobiont herbivores and the associated ant fauna; floral herbivores-predators-pollinators; and plants-forest engineers and associated fauna, will serve as examples to illustrate promising new pathways in cerrado. The aim of this brief text is to instigate young researchers, mainly entomologists, to initiate more elaborated field work, including experimental manipulations in multitrophic systems, to explore in an interactive way the structure that maintain preserved viable communities in the Neotropical savanna.

  8. Microbiomes: unifying animal and plant systems through the lens of community ecology theory.

    Science.gov (United States)

    Christian, Natalie; Whitaker, Briana K; Clay, Keith

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.

  9. Microbiomes: unifying animal and plant systems through the lens of community ecology theory

    Directory of Open Access Journals (Sweden)

    Natalie eChristian

    2015-09-01

    Full Text Available The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration. The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.

  10. A method for under-sampled ecological network data analysis: plant-pollination as case study

    Directory of Open Access Journals (Sweden)

    Peter B. Sorensen

    2012-01-01

    Full Text Available In this paper, we develop a method, termed the Interaction Distribution (ID method, for analysis of quantitative ecological network data. In many cases, quantitative network data sets are under-sampled, i.e. many interactions are poorly sampled or remain unobserved. Hence, the output of statistical analyses may fail to differentiate between patterns that are statistical artefacts and those which are real characteristics of ecological networks. The ID method can support assessment and inference of under-sampled ecological network data. In the current paper, we illustrate and discuss the ID method based on the properties of plant-animal pollination data sets of flower visitation frequencies. However, the ID method may be applied to other types of ecological networks. The method can supplement existing network analyses based on two definitions of the underlying probabilities for each combination of pollinator and plant species: (1, pi,j: the probability for a visit made by the i’th pollinator species to take place on the j’th plant species; (2, qi,j: the probability for a visit received by the j’th plant species to be made by the i’th pollinator. The method applies the Dirichlet distribution to estimate these two probabilities, based on a given empirical data set. The estimated mean values for pi,j and qi,j reflect the relative differences between recorded numbers of visits for different pollinator and plant species, and the estimated uncertainty of pi,j and qi,j decreases with higher numbers of recorded visits.

  11. Molecular markers in medicinal plant biotechnology: past and present.

    Science.gov (United States)

    Sarwat, Maryam; Nabi, Gowher; Das, Sandip; Srivastava, Prem Shankar

    2012-03-01

    Plant based medicines have gained popularity worldwide due to their almost negligible side effects. In India, the three traditional medicinal systems, namely homeopathy, Ayurveda and Siddha rely heavily on plants for medicinal formulations. To prevent the indiscriminate collection of these valuable medicinal plants and for their proper authentication and conservation, it is imperative to go for sustained efforts towards proper germplasm cataloguing and devising conservation strategies. For this purpose, molecular markers have a significant role, as they provide information ranging from diversity at nucleotide level (single nucleotide polymorphisms) to gene and allele frequencies (genotype information), the extent and distribution of genetic diversity, and population structure. Over the past twenty years, the molecular marker field has completely transformed the meaning of conservation genetics which has emerged from a theory-based field of population biology to a full-fledged pragmatic discipline. In this review, we have explored the transition and transformation of molecular marker technologies throughout these years.

  12. 植物种群生态研究进展%Trends and Advances in Researches on Plant Population Ecology

    Institute of Scientific and Technical Information of China (English)

    钟章成; 曾波

    2001-01-01

    The trends and advances in all aspects of plant population ecology over past 20 years are summarized as follows:   (1) Due to the introduction and progress of molecular biology and biotechnology, plant population physiological ecology not only moves forward to the studies of large scale, but also to the studies on levels of organ, cell and molecule.   (2) Studies of plant population reproductive ecology are chiefly focused on the aspects of reproductive allocation and reproductive effort, currencies in reprod uctive allocation, reproductive value, life history evolution, reproductive timi ng and reproductive frequency, etc.   (3) As to clonal plant ecology, the research of it mainly focuses on clonality, physiological integration, clonal growth patterns, clonal growth forms, hierarch ical selection models and spatial mobility, etc.   (4) Modular dynamics, relations between morphology and modular dynamics are much considered in plant modular ecology.   (5) Population genetical structure, variance, differentiation, adaptation and it s relations to environments, ecotypes and their genetic background, and polymorp hism, etc. are chiefly researched in genetical ecology.   (6) Foraging behaviour is the most focal aspect in study of plant behavioural ec ology presently. Owing to this situation, resource allocation patterns, phenotyp ic plasticity, resource heterogeneity, foraging behaviour and evolution are bein g concentrated.   (7) Plant population demography mainly touches on diagrammatic models and transi tion matrix models.   (8) Plant population physiological ecology, reproductive ecology, genetical ecol ogy and population dynamics are all related to some extent to molecular mechanis ms, therefore are becoming the research front of plant population ecology.%对植物种群生态学近20年在其各个领域所取得的进展及其动态作如下归纳:(1)植物种群生理生态学在向宏观方向发展的同时, 由于分子生

  13. The community ecology of isoprene emissions from terrestrial plants and implications for other phytogenic volatiles (Invited)

    Science.gov (United States)

    Lerdau, M.; Fuentes, J. D.; Shugart, H. H.

    2013-12-01

    In the 1960's Frits Went published some of the first English language descriptions of volatile organic carbon (VOC) emissions from plants. Within 15 years it was well understood that the dominant phytogenic VOC was isoprene (2-methyl-1,3-butadiene). The years that followed saw a host of studies on the physiology, biochemistry, and molecular biology of isoprene emissions, and many of the most important controls at these scales have been elucidated and incorporated into large-scale models of isoprene emissions to the atmosphere. In addition, extensive surveys of isoprene emissions from high latitude, temperate, and tropical ecosystems have consistently found enormous variations in emissions across taxa, and the mechanisms underlying this variability remain the largest unknown in current models of isoprene emissions. We integrate community ecological modeling with isoprene emissions modeling to develop a predictive model of isoprene emissions across decadal to centennial time scales. The model combines an individual-based model of forest succession that includes architectural and biodiversity changes over succession after disturbance with a species-based canopy-scale emissions model. We parameterize this model for the southeastern United States, a region that is well studied both in terms of forests succession and in terms of isoprene emission. Our results highlight the sensitivity of isoprene emissions to successional stage and species composition. From this effort we predict that the largest impacts of global environmental change on isoprene emissions will occur through effects on community composition and structure rather than through direct impacts on primary and secondary metabolism. We also predict that land use and disturbance history will continue to have dramatic impacts on isoprene emissions from terrestrial ecosystems through their effects on canopy structure and community composition, even in the face of climate change and nutrient deposition. We suggest

  14. Watermill and Small-Scale Hydroelectric Power Plant Landscapes Assessed According to Ecological Aspects

    Directory of Open Access Journals (Sweden)

    Lilita Lazdāne

    2013-10-01

    Full Text Available Research of watermill and small-scale hydroelectric power plant (HPP landscapes in Latvia according to ecological aspects is a part of a more complex research. The aim of this research is to examine the existing situation of watermill and small-scale HPP landscapes in Latvia by applying the ecological assessment criteria, and then try to formulate a definition of common tendencies of the landscape character. This paper provides a landscape inventory matrix for research in the field stu­dies of landscape identification at the local planning level. The duration of the research was from 2010 to 2012. The research includes 42 territories starting with the three most densely developed areas in Latvia: in Latgale, Kurzeme and Vidzeme uplands distribution ranges. The research results reflect tendencies of the landscape features assessed according to the previously developed criteria of ecological aspects.

  15. Recent advances on host plants and expression cassettes' structure and function in plant molecular pharming.

    Science.gov (United States)

    Makhzoum, Abdullah; Benyammi, Roukia; Moustafa, Khaled; Trémouillaux-Guiller, Jocelyne

    2014-04-01

    Plant molecular pharming is a promising system to produce important recombinant proteins such as therapeutic antibodies, pharmaceuticals, enzymes, growth factors, and vaccines. The system provides an interesting alternative method to the direct extraction of proteins from inappropriate source material while offering the possibility to overcome problems related to product safety and source availability. Multiple factors including plant hosts, genes of interest, expression vector cassettes, and extraction and purification techniques play important roles in the plant molecular pharming. Plant species, as a biosynthesis platform, are a crucial factor in achieving high yields of recombinant protein in plant. The choice of recombinant gene and its expression strategy is also of great importance in ensuring a high amount of the recombinant proteins. Many studies have been conducted to improve expression, accumulation, and purification of the recombinant protein from molecular pharming systems. Re-engineered vectors and expression cassettes are also pivotal tools in enhancing gene expression at the transcription and translation level, and increasing protein accumulation, stability, retention and targeting of specific organelles. In this review, we report recent advances and strategies of plant molecular pharming while focusing on the choice of plant hosts and the role of some molecular pharming elements and approaches: promoters, codon optimization, signal sequences, and peptides used for upstream design, purification and downstream processing.

  16. Integrating Survey and Molecular Approaches to Better Understand Wildlife Disease Ecology

    Science.gov (United States)

    Cowled, Brendan D.; Ward, Michael P.; Laffan, Shawn W.; Galea, Francesca; Garner, M. Graeme; MacDonald, Anna J.; Marsh, Ian; Muellner, Petra; Negus, Katherine; Quasim, Sumaiya; Woolnough, Andrew P.; Sarre, Stephen D.

    2012-01-01

    Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa) population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design) versus transmission (molecular case series study design) and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37–45%). The median Salmonella DICE coefficient (or Salmonella genetic similarity) was 52% (interquartile range [IQR]: 42–62%). Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density) determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is driven by

  17. Integrating survey and molecular approaches to better understand wildlife disease ecology.

    Directory of Open Access Journals (Sweden)

    Brendan D Cowled

    Full Text Available Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design versus transmission (molecular case series study design and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37-45%. The median Salmonella DICE coefficient (or Salmonella genetic similarity was 52% (interquartile range [IQR]: 42-62%. Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is

  18. Characterization of the house sparrow (Passer domesticus) transcriptome: a resource for molecular ecology and immunogenetics.

    Science.gov (United States)

    Ekblom, Robert; Wennekes, Paul; Horsburgh, Gavin J; Burke, Terry

    2014-05-01

    The house sparrow (Passer domesticus) is an important model species in ecology and evolution. However, until recently, genomic resources for molecular ecological projects have been lacking in this species. Here, we present transcriptome sequencing data (RNA-Seq) from three different house sparrow tissues (spleen, blood and bursa). These tissues were specifically chosen to obtain a diverse representation of expressed genes and to maximize the yield of immune-related gene functions. After de novo assembly, 15,250 contigs were identified, representing sequence data from a total of 8756 known avian genes (as inferred from the closely related zebra finch). The transcriptome assembly contain sequence data from nine manually annotated MHC genes, including an almost complete MHC class I coding sequence. There were 407, 303 and 68 genes overexpressed in spleen, blood and bursa, respectively. Gene ontology terms related to ribosomal function were associated with overexpression in spleen and oxygen transport functions with overexpression in blood. In addition to the transcript sequences, we provide 327 gene-linked microsatellites (SSRs) with sufficient flanking sequences for primer design, and 3177 single-nucleotide polymorphisms (SNPs) within genes, that can be used in follow-up molecular ecology studies of this ecological well-studied species.

  19. [Molecular ecological basis of high-yielding formation of rice and its application].

    Science.gov (United States)

    Lin, Wenxiong; Liang, Kangjing; Guo, Yuchun; He, Huaqin; Wang, Jingyuan; Liang, Yiyuan; Chen, Fangyu

    2003-12-01

    This paper introduced the developmental genetics and its molecular ecological basis of high yielding formation of rice in the past decade, and analyzed the advantage and the shortage of comparative physiological approach traditionally used in the research work on crop cultivation. It was emphasized to actively introduce the research contents and its methodology from relative disciplines to deeply understand the scientific issue, and suggested that the key to realize stable and high yielding of rice was to develop a rational cultivation system based on the properties of genetic effects on the traits in different developmental stages by controlling and regulating the traits governed by dominant effect genes and additive effect genes x environment in same direction, which was considered as the main characteristics and the technological innovation of modern crop genetic ecological cultivation science. Finally, the development trend of crop cultivation science shifting to molecular crop cultivation science was predicted and discussed.

  20. Permanent genetic resources added to molecular ecology resources database 1 October 2012-30 November 2012.

    Science.gov (United States)

    Aksoy, Serap; Almeida-Val, Vera Maria F; Azevedo, V C R; Baucom, Regina; Bazaga, Pilar; Beheregaray, L B; Bennetzen, Jeffrey L; Brassaloti, Ricardo A; Burgess, Treena I; Caccone, Adagisa; Chang, Shu-Mei; Ciampi, A Y; Ciancaleoni, S; Clímaco, Gisele T; Clouet, Cécil; Coimbra, Maria R M; Coutinho, Luiz L; Dantas, Hozana L; De Vega, Clara; Echodu, Richard; Enyaru, John; Figueira, Antonio; Filho, Manoel A G; Foltz, Britnie; Fressigné, L; Gadomski, Mateusz; Gauthier, Nathalie; Herrera, Carlos M; Hyseni, Chaz; Jorge, Erika C; Kaczmarczyk, Dariusz; Knott, Emily; Kuester, Adam; Lima, Ana P S; Lima, Maíra A; Lima, Marcos P; Longo, Ana Luiza B; Lor, Grant; Maggioni, Rodrigo; Marques, Thiago S; Martins, Aline R; Matoso, Daniele A; Medrano, Mónica; Mendonça, M A C; Mettler, Raeann; Nascimento, Priscila Roberta M; Negri, V; Oliveira, Karine K C; Oliveira, L O; Ovcarenko, Irina; Paula-Silva, Maria N; Raggi, L; Sandoval-Castillo, J; Santos, Carlos Henrique Dos Anjos; Martin Schaefer, H; Segelbacher, Gernot; Seino, Miyuki M; Sistrom, Mark; Taole, Matsepo M; Teske, P R; Tsagkarakou, Anastasia; Verdade, Luciano M; Villela, Priscilla M S; Vinson, C C; Wingfield, Brenda D; Wingfield, Michael J

    2013-03-01

    This article documents the addition of 153 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Brassica oleracea, Brycon amazonicus, Dimorphandra wilsonii, Eupallasella percnurus, Helleborus foetidus, Ipomoea purpurea, Phrynops geoffroanus, Prochilodus argenteus, Pyura sp., Sylvia atricapilla, Teratosphaeria suttonii, Trialeurodes vaporariorum and Trypanosoma brucei. These loci were cross-tested on the following species: Dimorphandra coccicinea, Dimorphandra cuprea, Dimorphandra gardneriana, Dimorphandra jorgei, Dimorphandra macrostachya, Dimorphandra mollis, Dimorphandra parviflora and Dimorphandra pennigera.

  1. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  2. Ecological specialization and rarity indices estimated for a large number of plant species in France

    Directory of Open Access Journals (Sweden)

    Samira Mobaied

    2015-06-01

    Here, we present a list of specialization and rarity values for more than 2800 plant species of continental France, which were computed from the large botanical and ecological dataset SOPHY. Three specialization indices were calculated using species co-occurrence data. All three indices are based on (dissimilarity among plant communities containing a focal species, quantified either as beta diversity in an additive (Fridley et al., 2007 [6] or multiplicative (Zeleny, 2008 [15] partitioning of diversity or as the multiple site similarity of Baselga et al. (2007 [1]. Species rarity was calculated as the inverse of a species occurrence.

  3. Global Invader Impact Network (GIIN): toward standardized evaluation of the ecological impacts of invasive plants.

    Science.gov (United States)

    Barney, Jacob N; Tekiela, Daniel R; Barrios-Garcia, Maria Noelia; Dimarco, Romina D; Hufbauer, Ruth A; Leipzig-Scott, Peter; Nuñez, Martin A; Pauchard, Aníbal; Pyšek, Petr; Vítková, Michaela; Maxwell, Bruce D

    2015-07-01

    Terrestrial invasive plants are a global problem and are becoming ubiquitous components of most ecosystems. They are implicated in altering disturbance regimes, reducing biodiversity, and changing ecosystem function, sometimes in profound and irreversible ways. However, the ecological impacts of most invasive plants have not been studied experimentally, and most research to date focuses on few types of impacts, which can vary greatly among studies. Thus, our knowledge of existing ecological impacts ascribed to invasive plants is surprisingly limited in both breadth and depth. Our aim was to propose a standard methodology for quantifying baseline ecological impact that, in theory, is scalable to any terrestrial plant invader (e.g., annual grasses to trees) and any invaded system (e.g., grassland to forest). The Global Invader Impact Network (GIIN) is a coordinated distributed experiment composed of an observational and manipulative methodology. The protocol consists of a series of plots located in (1) an invaded area; (2) an adjacent removal treatment within the invaded area; and (3) a spatially separate uninvaded area thought to be similar to pre-invasion conditions of the invaded area. A standardized and inexpensive suite of community, soil, and ecosystem metrics are collected allowing broad comparisons among measurements, populations, and species. The method allows for one-time comparisons and for long-term monitoring enabling one to derive information about change due to invasion over time. Invader removal plots will also allow for quantification of legacy effects and their return rates, which will be monitored for several years. GIIN uses a nested hierarchical scale approach encompassing multiple sites, regions, and continents. Currently, GIIN has network members in six countries, with new members encouraged. To date, study species include representatives of annual and perennial grasses; annual and perennial forbs; shrubs; and trees. The goal of the GIIN

  4. Ecological modules and roles of species in heathland plant-insect flower visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2009-01-01

    1.  Co-existing plants and flower-visiting animals often form complex interaction networks. A long-standing question in ecology and evolutionary biology is how to detect nonrandom subsets (compartments, blocks, modules) of strongly interacting species within such networks. Here we use a network...... heathland sites in Denmark, separated by ≥ 10 km. Among sites, plant communities were similar, but composition of flower-visiting insect faunas differed. Visitation frequencies of visitor species were recorded as a measure of insect abundance. 3.  Qualitative (presence-absence) interaction networks were...... consisted of 1-6 plant species and 18-54 insect species. Interactions aggregated around one or two hub plant species, which were largely identical at the three study sites. 5.  Insect species were categorized in taxonomic groups, mostly at the level of orders. When weighted by visitation frequency, each...

  5. Beyond the ecological: biological invasions alter natural selection on a native plant species.

    Science.gov (United States)

    Lau, Jennifer A

    2008-04-01

    Biological invasions can have strong ecological effects on native communities by altering ecosystem functions, species interactions, and community composition. Even though these ecological effects frequently impact the population dynamics and fitness of native species, the evolutionary consequences of biological invasions have received relatively little attention. Here, I show that invasions impose novel selective pressures on a native plant species. By experimentally manipulating community composition, I found that the exotic plant Medicago polymorpha and the exotic herbivore Hypera brunneipennis alter the strength and, in some instances, the direction of natural selection on the competitive ability and anti-herbivore defenses of the native plant Lotus wrangelianus. Furthermore, the community composition of exotics influenced which traits were favored. For example, high densities of the exotic herbivore Hypera selected for increased resistance to herbivores in the native Lotus; however, when Medicago also was present, selection on this defense was eliminated. In contrast, selection on tolerance, another plant defense trait, was highest when both Hypera and Medicago were present at high densities. Thus, multiple exotic species may interact to influence the evolutionary trajectories of native plant populations, and patterns of selection may change as additional exotic species invade the community.

  6. The Role of Strigolactones and Their Potential Cross-talk under Hostile Ecological Conditions in Plants

    Science.gov (United States)

    Mishra, Sonal; Upadhyay, Swati; Shukla, Rakesh K.

    2017-01-01

    The changing environment always questions the survival mechanism of life on earth. The plant being special in the sense of their sessile habit need to face many of these environmental fluctuations as they have a lesser escape option. To counter these adverse conditions, plants have developed efficient sensing, signaling, and response mechanism. Among them the role of phytohormones in the management of hostile ecological situations is remarkable. The strigolactone, a newly emerged plant hormone has been identified with many functions such as growth stimulant of parasitic plants, plant architecture determinant, arbuscular mycorrhiza symbiosis promoter, and also in many other developmental and environmental cues. Despite of their immense developmental potential, the strigolactone research in the last few years has also established their significance in adverse environmental condition. In the current review, its significance under drought, salinity, nutrient starvation, temperature, and pathogenic assail has been discussed. This review also opens the research prospects of strigolactone to better manage the crop loss under hostile ecological conditions. PMID:28119634

  7. HOW ECOLOGICAL ENGINEERING HELPED TO CONTINUE BUILDING AND UPGRADE OF THE OPOLE POWER PLANT

    Directory of Open Access Journals (Sweden)

    Jan Siuta

    2016-09-01

    Full Text Available Principles of ecological engineering were applied for upgrading the Opole Power Plant under construction, complete with modern installation to protect the environment. The modernized project was a subject of „Integrated environmental impact assessment of the Opole Power Plant” developed by the Institute of Environmental Protection in 1981. The main issues covered by the impact assessment were presented and discussed at the national scientific conference attended, among others, by the representatives of local community from Opole. The conference was organized by the Polish Society of Ecological Engineering on June 5 and 6, 1992. The main aim of the conference was to identify and deliver as broad as possible analysis of environmental conditions for designing, building and operating coal fired power plants. A secondary goal, though of main concern for the Opole agglomeration, was to evaluate many-sided environmental risks resulting from the construction and operation of the Power Plant. The feasibility of continuing the construction of a power generating facility that meets the requirements of the 21st century was demonstrated by the fact that the Opole Power Plant S.A. was awarded the ISO 14001 - Environmental Management System certificate by the British Standards Institution. Advanced construction of the two consecutive blocks of a combined power of 1800 MW in the Opole Power Plant substantiates the validity and effectiveness of the conference organized in 1992.

  8. The Effect of Inappropriate Calibration: Three Case Studies in Molecular Ecology

    Science.gov (United States)

    Ho, Simon Y. W.; Saarma, Urmas; Barnett, Ross; Haile, James; Shapiro, Beth

    2008-01-01

    Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of time-scales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events. PMID:18286172

  9. Delimiting species boundaries within the Neotropical bamboo Otatea (Poaceae: Bambusoideae) using molecular, morphological and ecological data.

    Science.gov (United States)

    Ruiz-Sanchez, Eduardo; Sosa, Victoria

    2010-02-01

    Species delimitation is a task that has engaged taxonomists for more than two centuries. Recently, it has been demonstrated that molecular data and ecological niche modeling are useful in species delimitation. In this paper multiple data sets (molecular, morphological, ecological) were utilized to set limits for the species belonging to the Neotropical bamboo Otatea, because there is disagreement about species circumscriptions and also because the genus has an interesting distribution, with most of its populations in Mexico and a single disjunct population in Colombia. Molecular and morphological phylogenetic analyses recovered trees with conflicting topologies. Tree-based morphological and character-based analyses recognized the same entities. Ecological niche models and PCA/MANOVAS agreed with the recognition of the same entities that resulted from the morphological analyses. Morphological analyses retrieved clades supported by diagnostic characters and coherent geographical distributions. Based on these results seven entities should be recognized in Otatea, instead of the three previously described species. Copyright (c) 2009. Published by Elsevier Inc.

  10. Plant adaptation to low atmospheric pressures: potential molecular responses

    Science.gov (United States)

    Ferl, Robert J.; Schuerger, Andrew C.; Paul, Anna-Lisa; Gurley, William B.; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  11. The Top 10 fungal pathogens in molecular plant pathology

    NARCIS (Netherlands)

    Dean, R.; Kan, van J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Pietro, Di A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; Foster, G.D.

    2012-01-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a ‘Top 10’ based on scientific/economic importance. The survey generated 495 votes from the international co

  12. The Top 10 fungal pathogens in molecular plant pathology

    NARCIS (Netherlands)

    Dean, R.; Kan, van J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Pietro, Di A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; Foster, G.D.

    2012-01-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a ‘Top 10’ based on scientific/economic importance. The survey generated 495 votes from the international

  13. The Top 10 fungal pathogens in molecular plant pathology

    NARCIS (Netherlands)

    Dean, R.; Kan, van J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Pietro, Di A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; Foster, G.D.

    2012-01-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a ‘Top 10’ based on scientific/economic importance. The survey generated 495 votes from the international co

  14. Advances in molecular marker techniques and their applications in plant sciences.

    Science.gov (United States)

    Agarwal, Milee; Shrivastava, Neeta; Padh, Harish

    2008-04-01

    Detection and analysis of genetic variation can help us to understand the molecular basis of various biological phenomena in plants. Since the entire plant kingdom cannot be covered under sequencing projects, molecular markers and their correlation to phenotypes provide us with requisite landmarks for elucidation of genetic variation. Genetic or DNA based marker techniques such as RFLP (restriction fragment length polymorphism), RAPD (random amplified polymorphic DNA), SSR (simple sequence repeats) and AFLP (amplified fragment length polymorphism) are routinely being used in ecological, evolutionary, taxonomical, phylogenic and genetic studies of plant sciences. These techniques are well established and their advantages as well as limitations have been realized. In recent years, a new class of advanced techniques has emerged, primarily derived from combination of earlier basic techniques. Advanced marker techniques tend to amalgamate advantageous features of several basic techniques. The newer methods also incorporate modifications in the methodology of basic techniques to increase the sensitivity and resolution to detect genetic discontinuity and distinctiveness. The advanced marker techniques also utilize newer class of DNA elements such as retrotransposons, mitochondrial and chloroplast based microsatellites, thereby revealing genetic variation through increased genome coverage. Techniques such as RAPD and AFLP are also being applied to cDNA-based templates to study patterns of gene expression and uncover the genetic basis of biological responses. The review details account of techniques used in identification of markers and their applicability in plant sciences.

  15. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities

    Directory of Open Access Journals (Sweden)

    Martin A. Mörsdorf

    2015-03-01

    Full Text Available In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in

  16. An overview of the utility of population simulation software in molecular ecology.

    Science.gov (United States)

    Hoban, Sean

    2014-05-01

    Stochastic simulation software that simultaneously model genetic, population and environmental processes can inform many topics in molecular ecology. These include forecasting species and community response to environmental change, inferring dispersal ecology, revealing cryptic mating, quantifying past population dynamics, assessing in situ management options and monitoring neutral and adaptive biodiversity change. Advances in population demographic-genetic simulation software, especially with respect to individual life history, landscapes and genetic processes, are transforming and expanding the ways that molecular data can be used. The aim of this review is to explain the roles that such software can play in molecular ecology studies (whether as a principal component or a supporting function) so that researchers can decide whether, when and precisely how simulations can be incorporated into their work. First, I use seven case studies to demonstrate how simulations are employed, their specific advantage/necessity and what alternative or complementary (nonsimulation) approaches are available. I also explain how simulations can be integrated with existing spatial, environmental, historical and genetic data sets. I next describe simulation features that may be of interest to molecular ecologists, such as spatial and behavioural considerations and species' interactions, to provide guidance on how particular simulation capabilities can serve particular needs. Lastly, I discuss the prospect of simulation software in emerging challenges (climate change, biodiversity monitoring, population exploitation) and opportunities (genomics, ancient DNA), in order to emphasize that the scope of simulation-based work is expanding. I also suggest practical considerations, priorities and elements of best practice. This should accelerate the uptake of simulation approaches and firmly embed them as a versatile tool in the molecular ecologist's toolbox. © 2014 John Wiley & Sons Ltd.

  17. An ecological cost of plant defence : attractiveness of bitter cucumber plants to natural enemies of herbivores

    NARCIS (Netherlands)

    Agrawal, A.A.; Janssen, A.; Bruin, J.; Posthumus, M.A.; Sabelis, M.W.

    2002-01-01

    Plants produce defences that act directly on herbivores and indirectly via the attraction of natural enemies of herbivores. We examined the pleiotropic effects of direct chemical defence production on indirect defence employing near-isogenic varieties of cucumber plants (Cucumis sativus) that differ

  18. Ecological engineering by a native leaf-cutting ant increases the performance of exotic plant species.

    Science.gov (United States)

    Farji-Brener, Alejandro G; Lescano, Natalia; Ghermandi, Luciana

    2010-05-01

    Numerous mechanisms are proposed to explain why exotic plants successfully invade natural communities. However, the positive effects of native engineers on exotic plant species have received less consideration. We tested whether the nutrient-rich soil patches created by a native ecological engineer (refuse dumps from the leaf-cutting ant Acromyrmex lobicornis) increase the performance of exotic more than native plants. In a greenhouse experiment, individuals from several native and exotic species were planted in pots with refuse dumps (RDs) and non-nest soils (NNSs). Total plant biomass and foliar nutrient content were measured at the end of the experiment. We also estimated the cover of exotic and native plant species in external RDs from 54 field ant nests and adjacent areas. Greenhouse plants showed more biomass and foliar nutrient content in RDs than in NNS pots. Nevertheless, differences in the final mean biomass among RD and NNS plants were especially great in exotics. Accordingly, the cover of exotic plants was higher in field RDs than in adjacent, non-nest soils. Our results demonstrated that plants can benefit from the enhanced nutrient content of ant RDs, and that A. lobicornis acts as an ecosystem engineer, creating a substrate that especially increases the performance of exotics. This supports the fluctuating resource hypothesis as a mechanism to promote biological invasions, and illustrates how this hypothesis may operate in nature. Since ant nests and exotic plants are more common in disturbed than in pristine environments, the role of ant nests in promoting biological invasions might be of particular interest. Proposals including the use of engineer species to restore disturbed habitats should be planned with caution because of their potential role in promoting invasions.

  19. Ecological and genetic differences between Cacopsylla melanoneura (Hemiptera, Psyllidae populations reveal species host plant preference.

    Directory of Open Access Journals (Sweden)

    Valeria Malagnini

    Full Text Available The psyllid Cacopsylla melanoneura is considered one of the vectors of 'Candidatus Phytoplasma mali', the causal agent of apple proliferation disease. In Northern Italy, overwintered C. melanoneura adults reach apple and hawthorn around the end of January. Nymph development takes place between March and the end of April. The new generation adults migrate onto conifers around mid-June and come back to the host plant species after overwintering. In this study we investigated behavioural differences, genetic differentiation and gene flow between samples of C. melanoneura collected from the two different host plants. Further analyses were performed on some samples collected from conifers. To assess the ecological differences, host-switching experiments were conducted on C. melanoneura samples collected from apple and hawthorn. Furthermore, the genetic structure of the samples was studied by genotyping microsatellite markers. The examined C. melanoneura samples performed better on their native host plant species. This was verified in terms of oviposition and development of the offspring. Data resulting from microsatellite analysis indicated a low, but statistically significant difference between collected-from-apple and hawthorn samples. In conclusion, both ecological and genetic results indicate a differentiation between C. melanoneura samples associated with the two host plants.

  20. Complex Outcomes from Insect and Weed Control with Transgenic Plants: Ecological Surprises?

    Directory of Open Access Journals (Sweden)

    Thomas Bøhn

    2017-09-01

    Full Text Available Agriculture is fundamental for human survival through food production and is performed in ecosystems that, while simplified, still operate along ecological principles and retain complexity. Agricultural plants are thus part of ecological systems, and interact in complex ways with the surrounding terrestrial, soil, and aquatic habitats. We discuss three case studies that demonstrate how agricultural solutions to pest and weed control, if they overlook important ecological and evolutionary factors, cause “surprises”: (i the fast emergence of resistance against the crop-inserted Bt-toxin in South Africa, (ii the ecological changes generated by Bt-cotton landscapes in China, and (iii the decline of the monarch butterfly, Danaus plexippus, in North America. The recognition that we work with complex systems is in itself important, as it should limit the belief in reductionist solutions. Agricultural practices lacking eco-evolutionary understanding result in “surprises” like resistance evolution both in weeds and pest insects, risking the reappearance of the “pesticide treadmill”—with increased use of toxic pesticides as the follow-up. We recommend prioritization of research that counteracts the tendencies of reductionist approaches. These may be beneficial on a short term, but with trade-off costs on a medium- to long-term. Such costs include loss of biodiversity, ecosystem services, long-term soil productivity, pollution, and reduced food quality.

  1. The plant phenology monitoring design for the National Ecological Observatory Network

    Science.gov (United States)

    Elmendorf, Sarah C; Jones, Katherine D; Cook, Benjamin I.; Diez, Jeffrey M.; Enquist, Carolyn A.F.; Hufft, Rebecca A.; Jones, Matthew O.; Mazer, Susan J.; Miller-Rushing, Abraham J.; Moore, David J. P.; Schwartz, Mark D.; Weltzin, Jake

    2016-01-01

    Phenology is an integrative science that comprises the study of recurring biological activities or events. In an era of rapidly changing climate, the relationship between the timing of those events and environmental cues such as temperature, snowmelt, water availability or day length are of particular interest. This article provides an overview of the plant phenology sampling which will be conducted by the U.S. National Ecological Observatory Network NEON, the resulting data, and the rationale behind the design. Trained technicians will conduct regular in situ observations of plant phenology at all terrestrial NEON sites for the 30-year life of the observatory. Standardized and coordinated data across the network of sites can be used to quantify the direction and magnitude of the relationships between phenology and environmental forcings, as well as the degree to which these relationships vary among sites, among species, among phenophases, and through time. Vegetation at NEON sites will also be monitored with tower-based cameras, satellite remote sensing and annual high-resolution airborne remote sensing. Ground-based measurements can be used to calibrate and improve satellite-derived phenometrics. NEON’s phenology monitoring design is complementary to existing phenology research efforts and citizen science initiatives throughout the world and will produce interoperable data. By collocating plant phenology observations with a suite of additional meteorological, biophysical and ecological measurements (e.g., climate, carbon flux, plant productivity, population dynamics of consumers) at 47 terrestrial sites, the NEON design will enable continentalscale inference about the status, trends, causes and ecological consequences of phenological change.

  2. The Plant Phenology Monitoring Design for the National Ecological Observatory Network

    Science.gov (United States)

    Elmendorf, Sarah C.; Jones, Katherine D.; Cook, Benjamin I.; Diez, Jeffrey M.; Enquist, Carolyn A. F.; Hufft, Rebecca A.; Jones, Matthew O.; Mazer, Susan J.; Miller-Rushing, Abraham J.; Moore, David J. P.; Schwartz, Mark D.; Weltzin, Jake F.

    2016-01-01

    Phenology is an integrative science that comprises the study of recurring biological activities or events. In an era of rapidly changing climate, the relationship between the timing of those events and environmental cues such as temperature, snowmelt, water availability, or day length are of particular interest. This article provides an overview of the observer-based plant phenology sampling conducted by the U.S. National Ecological Observatory Network (NEON), the resulting data, and the rationale behind the design. Trained technicians will conduct regular in situ observations of plant phenology at all terrestrial NEON sites for the 30-yr life of the observatory. Standardized and coordinated data across the network of sites can be used to quantify the direction and magnitude of the relationships between phenology and environmental forcings, as well as the degree to which these relationships vary among sites, among species, among phenophases, and through time. Vegetation at NEON sites will also be monitored with tower-based cameras, satellite remote sensing, and annual high-resolution airborne remote sensing. Ground-based measurements can be used to calibrate and improve satellite-derived phenometrics. NEON's phenology monitoring design is complementary to existing phenology research efforts and citizen science initiatives throughout the world and will produce interoperable data. By collocating plant phenology observations with a suite of additional meteorological, biophysical, and ecological measurements (e.g., climate, carbon flux, plant productivity, population dynamics of consumers) at 47 terrestrial sites, the NEON design will enable continental-scale inference about the status, trends, causes, and ecological consequences of phenological change.

  3. Wild common bean in the Central Valley of Costa Rica: ecological distribution and molecular characterization

    Directory of Open Access Journals (Sweden)

    Rosa In\\u00E9s Gonz\\u00E1lez Torres

    2004-01-01

    Full Text Available Frijol silvestre en el Valle Central de Costa Rica: distribución ecológica y caracterización molecular. Este trabajo presenta una actualización sobre la distribución de las formas silvestres de fríjol común en Costa Rica, su ecología y su caracterización molecular. Ala fecha 22 poblaciones fueron encontradas en cuatro cuencas alrededor del Valle Central, generalmente en vegetaciones ruderales (frecuentemente bordes de cafetales, con estatuto de conservación variable (desde protegido a amenazado. Su caracterización molecular indica su pertenencia al acervo genético mesoamericano. Varios marcadores indican una variabilidad aumentada en las formas silvestres y permiten inferir la presencia de un fenómeno de flujo genético e introgresión desde materiales cultivados.

  4. [The effect of thermal power plant on microbial ecology and environmental quality].

    Science.gov (United States)

    Yang, S S; Yang, C K; Chang, E H; Wei, C B

    1999-12-01

    To investigate the effect of thermal power plant on the microbial ecology and the environmental quality, the Hsieh-Ho Thermal Power Plant was chosen and the populations of microbes including bacteria, actinomycetes, fungi, and cellulolytic, phosphate-solubilizing and nitrogen-fixing microbes were selected as the parameters of microbial ecology. The pH values of the soil sample collected from inside and outside of the plant were 5.2-6.2 and 4.0-5.3, respectively. Moisture content in plant area was lower than that in the surrounding area. Microbial populations of the topsoils were higher than those of the subsoils. Each gram of soil contained 3.64 x 10(4)-5.16 x 10(7) colonies of bacteria, 1.75 x 10(3)-1.10 x 10(6) colonies of actinomycetes and 6.72 x 10(3)-8.78 x 10(6) colonies of fungi in the plant area; while they were 5.52 x 10(4)-2.14 x 10(7), 8.26 x 10(3)-7.25 x 10(5) and 3.49 x 10(3)-2.74 x 10(6) colonies of bacteria, actinomycetes and fungi, respectively, in the surrounding area. The effect of seasonal change on microbial populations was not significant. The ratio of cellulolytic, phosphate-solubilizing and nitrogen-fixing microbes to the total count in the plant area was also higher than that in the surrounding area, and some of them had significant differences. From the statistical analysis, the effect of thermal power generator on the population and distribution of microbes was significantly different.

  5. MAMP (Microbe-Associated Molecular Pattern triggered immunity in Plants

    Directory of Open Access Journals (Sweden)

    Mari-Anne eNewman

    2013-05-01

    Full Text Available Plants are sessile organisms that are under constant attack from microbes. They rely on both preformed defenses, and their innate immune system to ward of the microbial pathogens. Preformed defences include for example the cell wall and cuticle, which act as physical barriers to microbial colonization. The plant immune system is composed of surveillance systems that perceive several general microbe elicitors, which allow plants to switch from growth and development into a defense mode, rejecting most potentially harmful microbes. The elicitors are essential structures for pathogen survival and are conserved among pathogens. The conserved microbe-specific molecules, referred to as microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs, are recognized by the plant innate immune systems pattern recognition receptors (PRRs. General elicitors like flagellin (Flg, elongation factor Tu (EF-Tu, peptidoglycan (PGN, lipopolysaccharides (LPS, Ax21 (Activator of XA21-mediated immunity in rice, fungal chitin and β-glucans from oomycetes are recognized by plant surface localized PRRs. Several of the MAMPs and their corresponding PRRs have, in recent years, been identified. This review focuses on the current knowledge regarding important MAMPs from bacteria, fungi and oomycetes, their structure, the plant PRRs that recognizes them, and how they induce MAMP-triggered immunity (MTI in plants.

  6. Molecular and physiological strategies to increase aluminum resistance in plants.

    Science.gov (United States)

    Inostroza-Blancheteau, Claudio; Rengel, Zed; Alberdi, Miren; de la Luz Mora, María; Aquea, Felipe; Arce-Johnson, Patricio; Reyes-Díaz, Marjorie

    2012-03-01

    Aluminum (Al) toxicity is a primary limitation to plant growth on acid soils. Root meristems are the first site for toxic Al accumulation, and therefore inhibition of root elongation is the most evident physiological manifestation of Al toxicity. Plants may resist Al toxicity by avoidance (Al exclusion) and/or tolerance mechanisms (detoxification of Al inside the cells). The Al exclusion involves the exudation of organic acid anions from the root apices, whereas tolerance mechanisms comprise internal Al detoxification by organic acid anions and enhanced scavenging of free oxygen radicals. One of the most important advances in understanding the molecular events associated with the Al exclusion mechanism was the identification of the ALMT1 gene (Al-activated malate transporter) in Triticum aestivum root cells, which codes for a plasma membrane anion channel that allows efflux of organic acid anions, such as malate, citrate or oxalate. On the other hand, the scavenging of free radicals is dependent on the expression of genes involved in antioxidant defenses, such as peroxidases (e.g. in Arabidopsis thaliana and Nicotiana tabacum), catalases (e.g. in Capsicum annuum), and the gene WMnSOD1 from T. aestivum. However, other recent findings show that reactive oxygen species (ROS) induced stress may be due to acidic (low pH) conditions rather than to Al stress. In this review, we summarize recent findings regarding molecular and physiological mechanisms of Al toxicity and resistance in higher plants. Advances have been made in understanding some of the underlying strategies that plants use to cope with Al toxicity. Furthermore, we discuss the physiological and molecular responses to Al toxicity, including genes involved in Al resistance that have been identified and characterized in several plant species. The better understanding of these strategies and mechanisms is essential for improving plant performance in acidic, Al-toxic soils.

  7. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants

    Institute of Scientific and Technical Information of China (English)

    Zhaoliang Zhang; Hong Liao; William J. Lucas

    2014-01-01

    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobiliza-tion and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed local y by the root system where hormones serve as important signaling components in terms of develop-mental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to global y regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehen-sive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.

  8. Molecular strategies of plant defense and insect counter-defense

    Institute of Scientific and Technical Information of China (English)

    KEYANZHU-SALZMAN; JIAN-LONGBI; TONG-XIANLIU

    2005-01-01

    The prediction of human population growth worldwide indicates there will be a need to substantially increase food production in order to meet the demand on food supply.This can be achieved in part by the effective management of insect pests. Since plants have co-evolved with herbivorous insects for millions of years, they have developed an array of defense genes to protect themselves against a wide variety of chewing and sucking insects.Using these naturally-occurring genes via genetic engineering represents an environmentally friendly insect pest-control measure. Insects, however, have been actively evolving adaptive mechanisms to evade natural plant defenses. Such evolved adaptability undoubtedly has helped insects during the last century to rapidly overcome a great many humanimposed management practices and agents, including chemical insecticides and genetically engineered plants. Thus, better understanding of the molecular and genetic basis of plant defense and insect counter-defense mechanisms is imperative, not only from a basic science perspective, but also for biotechnology-based pest control practice. In this review, we emphasize the recent advance and understanding of molecular strategies of attack-counterattack and defense-counter-defense between plants and their herbivores.

  9. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.

    Science.gov (United States)

    Zhang, Zhaoliang; Liao, Hong; Lucas, William J

    2014-03-01

    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.

  10. Reflections on plant and soil nematode ecology: past, present and future.

    Science.gov (United States)

    Ferris, Howard; Griffiths, Bryan S; Porazinska, Dorota L; Powers, Thomas O; Wang, Koon-Hui; Tenuta, Mario

    2012-06-01

    The purpose of this review is to highlight key developments in nematode ecology from its beginnings to where it stands today as a discipline within nematology. Emerging areas of research appear to be driven by crop production constraints, environmental health concerns, and advances in technology. In contrast to past ecological studies which mainly focused on management of plant-parasitic nematodes, current studies reflect differential sensitivity of nematode faunae. These differences, identified in both aquatic and terrestrial environments include response to stressors, environmental conditions, and management practices. Methodological advances will continue to influence the role nematodes have in addressing the nature of interactions between organisms, and of organisms with their environments. In particular, the C. elegans genetic model, nematode faunal analysis and nematode metagenetic analysis can be used by ecologists generally and not restricted to nematologists.

  11. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  12. Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implications for ecological bioassessment.

    Science.gov (United States)

    Manoylov, Kalina M

    2014-06-01

    Algal taxonomy is a key discipline in phycology and is critical for algal genetics, physiology, ecology, applied phycology, and particularly bioassessment. Taxonomic identification is the most common analysis and hypothesis-testing endeavor in science. Errors of identification are often related to the inherent problem of small organisms with morphologies that are difficult to distinguish without research-grade microscopes and taxonomic expertise in phycology. Proposed molecular approaches for taxonomic identification from environmental samples promise rapid, potentially inexpensive, and more thorough culture-independent identification of all algal species present in a sample of interest. Molecular identification has been used in biodiversity and conservation, but it also has great potential for applications in bioassessment. Comparisons of morphological and molecular identification of benthic algal communities are improved by the identification of more taxa; however, automated identification technology does not allow for the simultaneous analysis of thousands of samples. Currently, morphological identification is used to verify molecular taxonomic identities, but with the increased number of taxa verified in algal gene libraries, molecular identification will become a universal tool in biological studies. Thus, in this report, successful application of molecular techniques related to algal bioassessment is discussed.

  13. Potato: A Favorable Crop for Plant Molecular Farming

    Institute of Scientific and Technical Information of China (English)

    Sunil Kumar G B; Ganapathi T R; Bapat V A

    2006-01-01

    Potato is one of the important food crops with a high yield potential and nutritional value. It has been used extensively for molecular farming to produce vaccines, antibodies and industrial enzymes. It has several desirable attributes as a favorable crop for the production of recombinant proteins. Potato tubers were employed for bulk production of recombinant antibodies. Vaccine production in potato has progressed to human clinical trials. Human milk proteins were successfully expressed in potato tubers. Potato hairy roots offer as another attractive system for the production of useful recombinant proteins both as intra cellular and secreted forms. This review describes the use of potato as a prospective host for plant molecular farming.

  14. Unpacking boxes: Integration of molecular, morphological and ecological approaches reveals extensive patterns of reticulate evolution in box eucalypts.

    Science.gov (United States)

    Flores-Rentería, Lluvia; Rymer, Paul D; Riegler, Markus

    2017-03-01

    Reticulate evolution by hybridization is considered a common process shaping the evolution of many plant species, however, reticulation could also be due to incomplete lineage sorting in biodiverse systems. For our study we selected a group of closely related plant taxa with contrasting yet partially overlapping geographic distributions and different population sizes, to distinguish between reticulated patterns due to hybridization and incomplete lineage sorting. We predicted that sympatric or proximal populations of different species are more likely to have gene flow than geographically distant populations of the same widespread species. Furthermore, for species with restricted distributions, and therefore, small effective population sizes, we predicted complete lineage sorting. Eastern grey box eucalypt species (Eucalyptus supraspecies Moluccanae) provide an ideal system to explore patterns of reticulate evolution. They form a diverse, recently evolved and phylogenetically undefined group within Eucalyptus, with overlapping morphological features and hybridization in nature. We used a multi-faceted approach, combining analyses of chloroplast and nuclear DNA, as well as seedling morphology, flowering time and ecological spatial differentiation in order to test for species delimitation and reticulate evolution in this group. The multiple layers of results were consistent and suggested a lack of monophyly at different hierarchical levels due to multidirectional gene flow among several species, challenging species delimitation. Chloroplast and nuclear haplotypes were shared among different species in geographic proximity, consistent with hybridization zones. Furthermore, species with restricted distributions appeared better resolved due to lineage sorting in the absence of hybridization. We conclude that a combination of molecular, morphological and ecological approaches is required to disentangle patterns of reticulate evolution in the box eucalypts. Published by

  15. 水生植物的生态敏感度研究%Ecological Sensitivity of Aquatic Plants

    Institute of Scientific and Technical Information of China (English)

    李宏文; Paul; K.Chien

    2001-01-01

    Throughy the study on the ecological effects of Cd and Zn onseveral aquatic plants,the ecological sensitivity of 5 species is determined.The results show that according to critical time when plants are injured by Cd and Zn,the order for ecological sensitivity of 5 species is:Nymphoides peltatum>Hydrilla verticillata>Potamogeton malaianus>Spirodela polyrhiza>Alternanthera philoxeroides.The results also show that on basis of catalase activity of aquatic plants,the order for ecological sensitivity of 5 species is:Alternanthera philoxeroides>Spirodela polyrhiza≈Potamogeton malaianus>Hydrilla verticillata>Nymphoides peltatum.It is evident that the pollution-durablty Potamogeton malaianus is higher than for Nymphoides peltatum and Hydrilla verticillata,pollution-sensible species

  16. Antarctic strict anaerobic microbiota from Deschampsia antarctica vascular plants rhizosphere reveals high ecology and biotechnology relevance.

    Science.gov (United States)

    Peixoto, Rafael José Marques; Miranda, Karla Rodrigues; Lobo, Leandro Araujo; Granato, Alessandra; de Carvalho Maalouf, Pedro; de Jesus, Hugo Emiliano; Rachid, Caio T C C; Moraes, Saulo Roni; Dos Santos, Henrique Fragoso; Peixoto, Raquel Silva; Rosado, Alexandre Soares; Domingues, Regina Maria Cavalcanti Pilotto

    2016-11-01

    The Antarctic soil microbial community has a crucial role in the growth and stabilization of higher organisms, such as vascular plants. Analysis of the soil microbiota composition in that extreme environmental condition is crucial to understand the ecological importance and biotechnological potential. We evaluated the efficiency of isolation and abundance of strict anaerobes in the vascular plant Deschampsia antarctica rhizosphere collected in the Antarctic's Admiralty Bay and associated biodiversity to metabolic perspective and enzymatic activity. Using anaerobic cultivation methods, we identified and isolated a range of microbial taxa whose abundance was associated with Plant Growth-Promoting Bacteria (PGPB) and presences were exclusively endemic to the Antarctic continent. Firmicutes was the most abundant phylum (73 %), with the genus Clostridium found as the most isolated taxa. Here, we describe two soil treatments (oxygen gradient and heat shock) and 27 physicochemical culture conditions were able to increase the diversity of anaerobic bacteria isolates. Heat shock treatment allowed to isolate a high percentage of new species (63.63 %), as well as isolation of species with high enzymatic activity (80.77 %), which would have potential industry application. Our findings contribute to the understanding of the role of anaerobic microbes regarding ecology, evolutionary, and biotechnological features essential to the Antarctic ecosystem.

  17. A truer measure of the market: the molecular ecology of fisheries and wildlife trade.

    Science.gov (United States)

    Baker, C Scott

    2008-09-01

    Wildlife and fisheries markets are end-points in the supply chain of both legitimate and illegitimate or unregulated trade in species and natural products. Molecular ecology provides powerful tools for surveillance and estimation of this trade. Here, I review the application of these tools to market surveys and species in trade, including species identification and molecular taxonomy, population assignment and 'mixed-stock' analysis, genetic tracking and capture-recapture by individual identification. I consider the analogy of markets to natural populations and also the unique features that require novel analytical approaches and sampling design. In the most developed of these applications, the molecular ecology of market surveys and confiscated trade shipments has provided independent estimates of illegal, unregulated or unreported exploitation for sharks, elephants and whales. Although each study has taken advantage of information from trade records or official government reports concerning the ostensible levels of exploitation, it is telling that the truer measure of exploitation seems to arise from the market end-point of the supply chain.

  18. Molecular trophic markers in marine food webs and their potential use for coral ecology.

    Science.gov (United States)

    Leal, Miguel Costa; Ferrier-Pagès, Christine

    2016-10-01

    Notable advances in ecological genomics have been driven by high-throughput sequencing technology and taxonomically broad sequence repositories that allow us to accurately assess species interactions with great taxonomic resolution. The use of DNA as a marker for ingested food is particularly relevant to address predator-prey interactions and disentangle complex marine food webs. DNA-based methods benefit from reductionist molecular approaches to address ecosystem scale processes, such as community structure and energy flow across trophic levels, among others. Here we review how molecular trophic markers have been used to better understand trophic interactions in the marine environment and their advantages and limitations. We focus on animal groups where research has been focused, such as marine mammals, seabirds, fishes, pelagic invertebrates and benthic invertebrates, and use case studies to illustrate how DNA-based methods unraveled food-web interactions. The potential of molecular trophic markers for disentangling the complex trophic ecology of corals is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Conference scene: molecular pharming: manufacturing medicines in plants.

    Science.gov (United States)

    Lössl, Andreas G; Clarke, Jihong L

    2013-01-01

    Within the expanding area of molecular pharming, the development of plants for manufacturing immunoglobulins, enzymes, virus-like particles and vaccines has become a major focus point. On 21 September 2012, the meeting 'Molecular Pharming - recent progress in manufacturing medicines in plants', hosted by EuroSciCon, was held at the Bioscience Catalyst campus, Stevenage, UK. The scientific program of this eventful meeting covered diverse highlights of biopharming: monoclonal antibodies, virus-like particles from transient and chloroplast expression systems, for example, for Dengue and HPV, apolipoproteins from safflower seeds, and new production platforms, such as potato or hydroponics by rhizosecretion. This report summarizes the stimulating scientific presentations and fruitful panel discussions on the current topics in this promising research field.

  20. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2011 - 30 November 2011

    KAUST Repository

    Abreu, Aluana Gonçalves

    2012-02-01

    This article documents the addition of 139 microsatellite marker loci and 90 pairs of single-nucleotide polymorphism sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Aglaoctenus lagotis, Costus pulverulentus, Costus scaber, Culex pipiens, Dascyllus marginatus, Lupinus nanus Benth, Phloeomyzus passerini, Podarcis muralis, Rhododendron rubropilosum Hayata var. taiwanalpinum and Zoarces viviparus. These loci were cross-tested on the following species: Culex quinquefasciatus, Rhododendron pseudochrysanthum Hay. ssp. morii (Hay.) Yamazaki and R. pseudochrysanthum Hayata. This article also documents the addition of 48 sequencing primer pairs and 90 allele-specific primers for Engraulis encrasicolus. © 2012 Blackwell Publishing Ltd.

  1. Permanent genetic resources added to Molecular Ecology Resources Database 1 October 2011-30 November 2011.

    Science.gov (United States)

    Abreu, Aluana G; Albaina, A; Alpermann, Tilman J; Apkenas, Vanessa E; Bankhead-Dronnet, S; Bergek, Sara; Berumen, Michael L; Cho, Chang-Hung; Clobert, Jean; Coulon, Aurélie; DE Feraudy, D; Estonba, A; Hankeln, Thomas; Hochkirch, Axel; Hsu, Tsai-Wen; Huang, Tsurng-Juhn; Irigoien, X; Iriondo, M; Kay, Kathleen M; Kinitz, Tim; Kothera, Linda; LE Hénanff, Maxime; Lieutier, F; Lourdais, Olivier; Macrini, Camila M T; Manzano, C; Martin, C; Morris, Veronica R F; Nanninga, Gerrit; Pardo, M A; Plieske, Jörg; Pointeau, S; Prestegaard, Tore; Quack, Markus; Richard, Murielle; Savage, Harry M; Schwarcz, Kaiser D; Shade, Jessica; Simms, Ellen L; Solferini, Vera N; Stevens, Virginie M; Veith, Michael; Wen, Mei-Juan; Wicker, Florian; Yost, Jennifer M; Zarraonaindia, I

    2012-03-01

    This article documents the addition of 139 microsatellite marker loci and 90 pairs of single-nucleotide polymorphism sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Aglaoctenus lagotis, Costus pulverulentus, Costus scaber, Culex pipiens, Dascyllus marginatus, Lupinus nanus Benth, Phloeomyzus passerini, Podarcis muralis, Rhododendron rubropilosum Hayata var. taiwanalpinum and Zoarces viviparus. These loci were cross-tested on the following species: Culex quinquefasciatus, Rhododendron pseudochrysanthum Hay. ssp. morii (Hay.) Yamazaki and R. pseudochrysanthum Hayata. This article also documents the addition of 48 sequencing primer pairs and 90 allele-specific primers for Engraulis encrasicolus.

  2. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2009-31 January 2010.

    Science.gov (United States)

    Anderson, Cynthia M; Aparicio, Gallego J; Atangana, Alain R; Beaulieu, Jean; Bruford, M W; Cain, Forrest; Campos, T; Cariani, A; Carvalho, M A; Chen, Nan; Chen, P P; Clamens, A-L; Clark, Ann M; Coeur D'Acier, A; Connolly, Paul; Cordero-Rivera, Adolfo; Coughlan, James P; Cross, Thomas S; David, Bruno; DE Bruyn, Colin; DE Meyer, M; DE Ridder, Chantal; Delatte, H; Dettori, M T; Downer, S J; Dubreuil, Christine; Evans, K J; Fan, Bin; Ferrara, G; Gagné, André; Gaillard, Maria; Gigliarelli, L; Giovinazzi, J; Gomez, D R; Grünwald, N J; Hansson, Bengt; Huotari, T; Jank, L; Jousselin, E; Jungmann, L; Kaczmarek, M E; Khasa, Damase P; Kneebone, Jeff; Korpelainen, H; Kostamo, K; Lanfaloni, L; Lin, Haoran; Liu, Xiaochun; Lucentini, L; Maes, G E; Mahaffee, W F; Meng, Zining; Micali, S; Milano, I; Mok, H F; Morin, L; Neill, T M; Newton, Craig H; Gigi Ostrow, D; Palomba, A; Panara, F; Puletti, M E; Quarta, R; Quilici, S; Ramos, A K B; Rigaud, Thierry; Risterucci, A M; Salomon, Matthew P; Sánchez-Guillén, Rosa A; Sarver, Shane K; Sequeira, A S; Sforça, D A; Simiand, C; Smith, Brian; Sousa, A C B; Souza, A P; Stepien, C C; Stuckert, A J; Sulikowski, James; Tayeh, A; Tinti, F; Tsang, Paul C W; VAN Houdt, J K J; Vendramin, E; Verde, I; Virgilio, M; Wang, Huan L; Wang, L E; Wattier, Rémi A; Wellenreuther, Maren; Xie, Cong X; Zane, L; Zhang, Xiu J; Zhang, Yong; Zhuang, Zhimeng; Zucchi, M I

    2010-05-01

    This article documents the addition of 220 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Allanblackia floribunda, Amblyraja radiata, Bactrocera cucurbitae, Brachycaudus helichrysi, Calopogonium mucunoides, Dissodactylus primitivus, Elodea canadensis, Ephydatia fluviatilis, Galapaganus howdenae howdenae, Hoplostethus atlanticus, Ischnura elegans, Larimichthys polyactis, Opheodrys vernalis, Pelteobagrus fulvidraco, Phragmidium violaceum, Pistacia vera, and Thunnus thynnus. These loci were cross-tested on the following species: Allanblackia gabonensis, Allanblackia stanerana, Neoceratitis cyanescens, Dacus ciliatus, Dacus demmerezi, Bactrocera zonata, Ceratitis capitata, Ceratitis rosa, Ceratits catoirii, Dacus punctatifrons, Ephydatia mülleri, Spongilla lacustris, Geodia cydonium, Axinella sp., Ischnura graellsii, Ischnura ramburii, Ischnura pumilio, Pistacia integerrima and Pistacia terebinthus.

  3. Pollinator-driven ecological speciation in plants: new evidence and future perspectives

    Science.gov (United States)

    Van der Niet, Timotheüs; Peakall, Rod; Johnson, Steven D.

    2014-01-01

    Background The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. Scope This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of ‘pollination ecotypes‘, (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies

  4. Plant systems for recognition of pathogen-associated molecular patterns.

    Science.gov (United States)

    Postel, Sandra; Kemmerling, Birgit

    2009-12-01

    Research of the last decade has revealed that plant immunity consists of different layers of defense that have evolved by the co-evolutional battle of plants with its pathogens. Particular light has been shed on PAMP- (pathogen-associated molecular pattern) triggered immunity (PTI) mediated by pattern recognition receptors. Striking similarities exist between the plant and animal innate immune system that point for a common optimized mechanism that has evolved independently in both kingdoms. Pattern recognition receptors (PRRs) from both kingdoms consist of leucine-rich repeat receptor complexes that allow recognition of invading pathogens at the cell surface. In plants, PRRs like FLS2 and EFR are controlled by a co-receptor SERK3/BAK1, also a leucine-rich repeat receptor that dimerizes with the PRRs to support their function. Pathogens can inject effector proteins into the plant cells to suppress the immune responses initiated after perception of PAMPs by PRRs via inhibition or degradation of the receptors. Plants have acquired the ability to recognize the presence of some of these effector proteins which leads to a quick and hypersensitive response to arrest and terminate pathogen growth.

  5. Plant-specific myosin XI, a molecular perspective

    Directory of Open Access Journals (Sweden)

    Motoki eTominaga

    2012-09-01

    Full Text Available In eukaryotic cells, organelle movement, positioning, and communications are critical for maintaining cellular functions and are highly regulated by intracellular trafficking. Directional movement of motor proteins along the cytoskeleton is one of the key regulators of such trafficking. Most plants have developed a unique actin–myosin system for intracellular trafficking. Although the composition of myosin motors in angiosperms is limited to plant-specific myosin classes VIII and XI, there are large families of myosins, especially in class XI, suggesting functional diversification among class XI members. However, the molecular properties and regulation of each myosin XI member remains unclear.To achieve a better understanding of the plant-specific actin–myosin system, the characterization of myosin XI members at the molecular level is essential. In the first half of this review, we summarize the molecular properties of tobacco 175-kDa myosin XI, and in the later half, we focus on myosin XI members in Arabidopsis thaliana.Through detailed comparison of the functional domains of these myosins with the functional domain of myosin V, we look for possible diversification in enzymatic and mechanical properties among myosin XI members concomitant with their regulation.

  6. QTL Analysis for Plant Height with Molecular Markers in Maize

    Institute of Scientific and Technical Information of China (English)

    YAN Jian-bing; TANG Hua; HUANG Yi-qin; SHI Yong-gang; ZHENG Yong-lian; LI Jian-sheng

    2003-01-01

    Plant height has become one of important agronomic traits with the increase of planting densityrecently and the rapid developments of molecular markers have provided powerful tools to localize importantagronomic QTL at the genomic level. The purposes of this investigation are to map plant height QTL with mo-lecular markers and to analyze their genetic effects in maize. An F2:3 population from an elite combination(Zong3 × 87-1) was utilized for evaluating plant height in two locations, Wuhan and Xiangfan, with a ran-domized complete block design. The mapping population included 266 F2:3 family lines. A genetic linkagemap, containing 150 SSR and 24 RFLP markers, was constructed, spanning a total of 2 531.6 cm with an av-erage interval of 14.5 cm. Totally 10 QTL affecting plant height were mapped on six different chromosomeswith the composite interval mapping. Seven of 10 QTL were detected in two locations. The contributions tophenotypic variations for the single QTL varied between 5.3 and 17.1%. Additive, partial dominance, domi-nance, and overdominance actions existed among all detected QTL affecting plant heights. A large number ofdigenic interactions for plant height were detected by two-way analyses of variance. 107 and 98 two-locus com-binations were found to be significant at a 0.01 probability level in two locations respectively. 23 of them weresimultaneously detected in both locations. They accounted for phenotypic variations of 4.5 -11%. It was no-ticed that a locus, umc1122, had digenic interactive effects with other four different loci for plant height,which distributed on three chromosomes. A few of plant height QTL was involved in significant digenic inter-actions, but most significant interactions occurred between markers that are not adjacent to mapped QTL.These results demonstrated that epistatic interactions might play an equal importance role as the single-locuseffects in determining plant height of maize.

  7. Geographic and molecular variation in a natural plant transgene.

    Science.gov (United States)

    Vallenback, Pernilla; Bengtsson, Bengt O; Ghatnekar, Lena

    2010-03-01

    A PCR based survey of Festuca ovina plants from populations around the southern part of the Baltic Sea demonstrates both geographic and molecular variation in the enzyme gene PgiC2, horizontally transferred from a Poa-species. Our results show that PgiC2-a natural functional nuclear transgene-is not a local ephemeral phenomenon but is present in a very large number of individuals. We find also that its frequency is geographically variable and that it appears in more than one molecular form. The chloroplast variation in the region does not indicate any distinct subdivision due to different colonization routes after the last glaciation. Our data illustrate the geographic and molecular variation that may occur in natural populations with a polymorphic, unfixed transgene affected by diverse kinds of mutational and evolutionary processes.

  8. [Diversity of plant in Jiaxing Shijiuyang ecological wetland for drinking water during operation].

    Science.gov (United States)

    Shen, Ya-Qiang; Wei, Hong-Bin; Cheng, Wang-Da; Zhang, Hong-Mei; Wang, Wei-Dong; Yin, Cheng-Qing

    2011-10-01

    The Shijiuyang ecological wetland for drinking water of Jiaxing City, Zhejiang Province is one of the biggest constructed wetlands for water resource protection in China. To ensure a deep understanding of the present status of the wetland vegetation of Shijiuyang ecological wetland which has been run for 2.5 years and provide support for the vegetation management of ecological wetland, systematic investigation was carried out by using plot method and quadrat method in October to November, 2010. The species composition, dynamics of plant diversity and the biomass production during operation were analyzed. Altogether 70 species belonging to 28 families and 62 genera were recorded. Among them, there were 26 wetland plants, 20 mesophytes, 14 emergent, 4 submerged, 6 floating ones. Compared with the preliminary stage, the species numbers of wetland plants increased significantly from 15 species to 70 species. The spatial pattern of riparian species diversity was examined by adopting the Simpson index and Shannon-Wiener index as species diversity indices. The results showed that the riparian species diversity was higher in the west of the Beijiaohe river (Simpson index = 0.468 3, Shannon-Wiener index = 0.835 2) than that in the south of the Dongsheng Road (Simpson index = 0.357 6, Shannon-Wiener index = 0.660 4). The analyses of quantitative characteristics of wetland vegetation showed that the plants in the root-channel purification zone in the south of the Dongsheng Road grew better than those in the west of the Beijiaohe river. With regard to the riparian vegetation, the riparian plants in the west of the Beijiaohe river were more abundant. The mean biomass production (dry weight) in the root-channel purification zone was 1.73 kg x m(-2) and the total area was 9.12 x 10(4) m2, so the total biomass production was estimated to be 157.8 t. In the same way, the mean riparian vegetation biomass production(dry weight) was 0.83 kg x m(-2) and the total vegetation area was 3

  9. Ecology of some mire and bog plant communities in the Western Italian Alps

    Directory of Open Access Journals (Sweden)

    Giorgio BUFFA

    2003-02-01

    Full Text Available During a mire vegetation study, conducted mainly in the subalpine-alpine sector of the Western Italian Alps, the ecology of several plant communities and numerous moss species of this kind of vegetation was evaluated. The study area covered the Piedmontese sector of the Graian Alps, the eastern sector of the Aosta Valley as well as certain localities of the Pennine Alps, the Canavese district and the Maritime Alps. They have a rocky substratum representative of the various regional lithologies and include the main sectors characterised by the highest precipitation. Three hundred and twenty two relevées were made using the phytosociological method and the pH and the conductivity of the water table and its depth were measured directly. Cluster Analysis allowed a classification of the samples and the identification of various groups of plant communities. Ordination performed by DCA and CCA allowed us to identify the ecological features of the various plant communities by using the values of the main environmental parameters, measured directly in the field, and certain climatic parameters (altitude and mean annual precipitation available. The use of climatic parameters is an important result for identifying communities which show greater oceanicity, something that is underlined also by the presence of indicator species such as Sphagnum papillosum and S. subnitens. Furthermore the communities are arranged in a "poor-rich" gradient, and are also profoundly influenced by depth to water table which is inversely correlated to the pH. Therefore we find certain kinds of communities all with a very low water table and which are little affected by its chemistry. Other groups share the fact that the water table is outcropping or near the surface and are distinguishable for their pH values and conductivity. We discuss the different response of the bryophytes and vascular plants of these communities to the environmental parameters considered, in light of their

  10. Microbiomes: unifying animal and plant systems through the lens of community ecology theory

    Science.gov (United States)

    Christian, Natalie; Whitaker, Briana K.; Clay, Keith

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant–fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant–fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant–fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research. PMID:26441846

  11. Quantifying Ecological Memory of Plant and Ecosystem Processes in Variable Environments

    Science.gov (United States)

    Ogle, K.; Barron-Gafford, G. A.; Bentley, L.; Cable, J.; Lucas, R.; Huxman, T. E.; Loik, M. E.; Smith, S. D.; Tissue, D.

    2010-12-01

    Precipitation, soil water, and other factors affect plant and ecosystem processes at multiple time scales. A common assumption is that water availability at a given time directly affects processes at that time. Recent work, especially in pulse-driven, semiarid systems, shows that antecedent water availability, averaged over several days to a couple weeks, can be just as or more important than current water status. Precipitation patterns of previous seasons or past years can also impact plant and ecosystem functioning in many systems. However, we lack an analytical framework for quantifying the importance of and time-scale over which past conditions affect current processes. This study explores the ecological memory of a variety of plant and ecosystem processes. We use memory as a metaphor to describe the time-scale over which antecedent conditions affect the current process. Existing approaches for incorporating antecedent effects arbitrarily select the antecedent integration period (e.g., the past 2 weeks) and the relative importance of past conditions (e.g., assign equal or linearly decreasing weights to past events). In contrast, we utilize a hierarchical Bayesian approach to integrate field data with process-based models, yielding posterior distributions for model parameters, including the duration of the ecological memory (integration period) and the relative importance of past events (weights) to this memory. We apply our approach to data spanning diverse temporal scales and four semiarid sites in the western US: leaf-level stomatal conductance (gs, sub-hourly scale), soil respiration (Rs, hourly to daily scale), and net primary productivity (NPP) and tree-ring widths (annual scale). For gs, antecedent factors (daily rainfall and temperature, hourly vapor pressure deficit) and current soil water explained up to 72% of the variation in gs in the Chihuahuan Desert, with a memory of 10 hours for a grass and 4 days for a shrub. Antecedent factors (past soil water

  12. Predicting the Plant Root-Associated Ecological Niche of 21 Pseudomonas Species Using Machine Learning and Metabolic Modeling

    OpenAIRE

    Chien, Jennifer; Larsen, Peter

    2017-01-01

    Plants rarely occur in isolated systems. Bacteria can inhabit either the endosphere, the region inside the plant root, or the rhizosphere, the soil region just outside the plant root. Our goal is to understand if using genomic data and media dependent metabolic model information is better for training machine learning of predicting bacterial ecological niche than media independent models or pure genome based species trees. We considered three machine learning techniques: support vector machin...

  13. Toward Molecular Level of the “Salmonella-Victim” Ecology, Genetics, and Evolution

    Directory of Open Access Journals (Sweden)

    S.N. Rumyantsev

    2004-01-01

    Full Text Available Bacteria of the Salmonella genus are polypathogenic agents that can affect both men and animals, causing devastating and fatal illness. Despite considerable immunological, epidemiological, and genetic efforts, and increased understanding of how the Salmonella infection develops, many key questions concerning Salmonella infection remain unanswered. Salmonella can be carried as harmless commensals in some sectors of the population. In some individuals, however, the same microbes cause illness while others display immunity to primary Salmonella infection. Nothing is known about the molecular base of the Salmonella pathogenicity. Even the ability of Salmonella to destroy the victim’s cells has been the subject of century-long discussions. In this article, some key findings concerning ecology, molecular ecology, and cell level of the Salmonella infection genetics are summarized and interpreted from the viewpoint of evolutionary theory with certitude that this approach can help to decipher the undiscovered secrets of Salmonella infection’s epidemiology and pathogenesis, as well as the clinical course and severity, and to select ways for fighting against Salmonella.

  14. Ecological and genetic factors linked to contrasting genome dynamics in seed plants.

    Science.gov (United States)

    Leitch, A R; Leitch, I J

    2012-05-01

    The large-scale replacement of gymnosperms by angiosperms in many ecological niches over time and the huge disparity in species numbers have led scientists to explore factors (e.g. polyploidy, developmental systems, floral evolution) that may have contributed to the astonishing rise of angiosperm diversity. Here, we explore genomic and ecological factors influencing seed plant genomes. This is timely given the recent surge in genomic data. We compare and contrast the genomic structure and evolution of angiosperms and gymnosperms and find that angiosperm genomes are more dynamic and diverse, particularly amongst the herbaceous species. Gymnosperms typically have reduced frequencies of a number of processes (e.g. polyploidy) that have shaped the genomes of other vascular plants and have alternative mechanisms to suppress genome dynamism (e.g. epigenetics and activity of transposable elements). Furthermore, the presence of several characters in angiosperms (e.g. herbaceous habit, short minimum generation time) has enabled them to exploit new niches and to be viable with small population sizes, where the power of genetic drift can outweigh that of selection. Together these processes have led to increased rates of genetic divergence and faster fixation times of variation in many angiosperms compared with gymnosperms.

  15. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.

    Science.gov (United States)

    Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J

    2015-04-01

    Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.

  16. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    Science.gov (United States)

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518

  17. Calcium Flux across Plant Mitochondrial Membranes: Possible Molecular Players

    Science.gov (United States)

    Carraretto, Luca; Checchetto, Vanessa; De Bortoli, Sara; Formentin, Elide; Costa, Alex; Szabó, Ildikó; Teardo, Enrico

    2016-01-01

    Plants, being sessile organisms, have evolved the ability to integrate external stimuli into metabolic and developmental signals. A wide variety of signals, including abiotic, biotic, and developmental stimuli, were observed to evoke specific spatio-temporal Ca2+ transients which are further transduced by Ca2+ sensor proteins into a transcriptional and metabolic response. Most of the research on Ca2+ signaling in plants has been focused on the transport mechanisms for Ca2+ across the plasma- and the vacuolar membranes as well as on the components involved in decoding of cytoplasmic Ca2+ signals, but how intracellular organelles such as mitochondria are involved in the process of Ca2+ signaling is just emerging. The combination of the molecular players and the elicitors of Ca2+ signaling in mitochondria together with newly generated detection systems for measuring organellar Ca2+ concentrations in plants has started to provide fruitful grounds for further discoveries. In the present review we give an updated overview of the currently identified/hypothesized pathways, such as voltage-dependent anion channels, homologs of the mammalian mitochondrial uniporter (MCU), LETM1, a plant glutamate receptor family member, adenine nucleotide/phosphate carriers and the permeability transition pore (PTP), that may contribute to the transport of Ca2+ across the outer and inner mitochondrial membranes in plants. We briefly discuss the relevance of the mitochondrial Ca2+ homeostasis for ensuring optimal bioenergetic performance of this organelle. PMID:27065186

  18. Calcium flux across plant mitochondrial membranes: possible molecular players

    Directory of Open Access Journals (Sweden)

    Luca eCarraretto

    2016-03-01

    Full Text Available Plants, being sessile organisms, have evolved the ability to integrate external stimuli into metabolic and developmental signals. A wide variety of signals, including abiotic, biotic, and developmental stimuli, were observed to evoke specific spatio-temporal Ca2+ transients which are further transduced by Ca2+ sensor proteins into a transcriptional and metabolic response. Most of the research on Ca2+ signaling in plants has been focused on the transport mechanisms for Ca2+ across the plasma- and the vacuolar membranes as well as on the components involved in decoding of cytoplasmic Ca2+ signals, but how intracellular organelles such as mitochondria are involved in the process of Ca2+ signaling is just emerging. The combination of the molecular players and the elicitors of Ca2+ signaling in mitochondria together with newly generated detection systems for measuring organellar Ca2+ concentrations in plants has started to provide fruitful grounds for further discoveries. In the present review we give an updated overview of the currently identified/hypothesized pathways, such as voltage-dependent anion channels, homologs of the mammalian mitochondrial uniporter, LETM1, a plant glutamate receptor family member, adenine nucleotide/phosphate carriers and the permeability transition pore, that may contribute to the transport of Ca2+ across the outer and inner mitochondrial membranes in plants. We briefly discuss the relevance of the mitochondrial Ca2+ homeostasis for ensuring optimal bioenergetic performance of this organelle.

  19. Plant breeding by using radiation mutation - Development of radiation indicator plants by molecular breeding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jang Ryol; Kwak, Sang Soo; Kwon, Seok Yoon [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    2000-04-01

    - tSOD1, cytosolic CuZnSOD cDNA was cloned from tobacco cDNA library by PCR. To develop the under-producing the transgenic plants, the vectors were constructed using by antisense and co-supressing technology. The transgenic tobacco plants were confirmed that over 60% of kanamycin-resistant plants were introduced the foreign gene by PCR and transformed one copy through Southern blot analysis. - In an attempt to identify marker genes for gamma irradiation of plants, expression patterns of diverse genes upon gamma irradiation of young tobacco plants were investigated. With the knowledge of distinctive expression patterns of diverse genes, irradiation-indicating marker plants could be developed by engineering and monitoring multiple radiation-responsive genes. Additionally, a gamma irradiation-responsive NtTMK1 receptor-like kinase gene was molecular biologically characterized. -Uranium reductase gene (Cytochrome C3) and radiation resistance gene (recA) have been cloned from Desulfovibrio and Deinococcus radiodurans. -Two plant transformation vectors (pCYC3 and pDrecA) have been constructed. - Tobacco transgenic plants of have been obtained. 52 refs., 5 figs. (Author)

  20. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record

    Science.gov (United States)

    Peterson, Kevin J.; Butterfield, Nicholas J.

    2005-01-01

    Molecular clocks have the potential to shed light on the timing of early metazoan divergences, but differing algorithms and calibration points yield conspicuously discordant results. We argue here that competing molecular clock hypotheses should be testable in the fossil record, on the principle that fundamentally new grades of animal organization will have ecosystem-wide impacts. Using a set of seven nuclear-encoded protein sequences, we demonstrate the paraphyly of Porifera and calculate sponge/eumetazoan and cnidarian/bilaterian divergence times by using both distance [minimum evolution (ME)] and maximum likelihood (ML) molecular clocks; ME brackets the appearance of Eumetazoa between 634 and 604 Ma, whereas ML suggests it was between 867 and 748 Ma. Significantly, the ME, but not the ML, estimate is coincident with a major regime change in the Proterozoic acritarch record, including: (i) disappearance of low-diversity, evolutionarily static, pre-Ediacaran acanthomorphs; (ii) radiation of the high-diversity, short-lived Doushantuo-Pertatataka microbiota; and (iii) an order-of-magnitude increase in evolutionary turnover rate. We interpret this turnover as a consequence of the novel ecological challenges accompanying the evolution of the eumetazoan nervous system and gut. Thus, the more readily preserved microfossil record provides positive evidence for the absence of pre-Ediacaran eumetazoans and strongly supports the veracity, and therefore more general application, of the ME molecular clock.

  1. Phytochemical evaluation and molecular characterization of some important medicinal plants

    Directory of Open Access Journals (Sweden)

    Varahalarao Vadlapudi

    2012-05-01

    Full Text Available Objective: Phytochemical evaluation and molecular characterization of plants is an important task in medicinal botany and drug discovery. In the current study, Ocimum species, Pimenta officinalis and Piper betel were considered as medicinal plants by evaluation of phytochemical composition like phenol content, Flavonoid content, antioxidant content and other activities like antibacterial, antifungal, lethal dosage (LD 50 of the plant extracts. Among the selected plants P. officinalis shown higher medicinal properties and is selected for molecular characterization. Methods: Antimicrobial activity by agar well diffusion method and also estimated Total phenols, flavonoids content, Total Antioxidants, Cytotoxic assay on Artemia salina for determining lethal dosage (LD50, matK gene was sequenced by using ABI Prism 3700. Leaf extract of P. officinalis plant is further selected for GC-chromatographic analysis to know its chemical composition. DNA was isolated by different protocols, optimized, and is used for the PCR amplification of trnL-gene which is a universal marker among plants in molecular taxonomy. The trnL-gene is amplified by using PCR. The product obtained from PCR is purified and the sample is used for sequencing so that it can be used for comparative studies. Results: P.offcinalis has shown good antimicrobial activity against all organisms . A. flavus is resistant against O. sanctum (B. Phenolic content (26.5 毺 g/g is found to be rich in P. betel where as flavonoid and Antioxidant content are significant in P. betel. The chromatogram revealed the presence of high concentration of Eugenol in the leaf sample. On submitting to BLASTN, the genetic sequence has found similarity with Pimenta dioica plastid partial matK gene and Ugni molinae trnK gene. MatK did not shown any interactions with trnK or trnL genes. MatK has shown interactions with various genes like ycf5, pclpp, psbh, atph, NDVI, rpoc1, ndha, ndhd, psai. Conclusions: we can

  2. Plant foods and the dietary ecology of Neanderthals and early modern humans.

    Science.gov (United States)

    Henry, Amanda G; Brooks, Alison S; Piperno, Dolores R

    2014-04-01

    One of the most important challenges in anthropology is understanding the disappearance of Neanderthals. Previous research suggests that Neanderthals had a narrower diet than early modern humans, in part because they lacked various social and technological advances that lead to greater dietary variety, such as a sexual division of labor and the use of complex projectile weapons. The wider diet of early modern humans would have provided more calories and nutrients, increasing fertility, decreasing mortality and supporting large population sizes, allowing them to out-compete Neanderthals. However, this model for Neanderthal dietary behavior is based on analysis of animal remains, stable isotopes, and other methods that provide evidence only of animal food in the diet. This model does not take into account the potential role of plant food. Here we present results from the first broad comparison of plant foods in the diets of Neanderthals and early modern humans from several populations in Europe, the Near East, and Africa. Our data comes from the analysis of plant microremains (starch grains and phytoliths) in dental calculus and on stone tools. Our results suggest that both species consumed a similarly wide array of plant foods, including foods that are often considered low-ranked, like underground storage organs and grass seeds. Plants were consumed across the entire range of individuals and sites we examined, and none of the expected predictors of variation (species, geographic region, or associated stone tool technology) had a strong influence on the number of plant species consumed. Our data suggest that Neanderthal dietary ecology was more complex than previously thought. This implies that the relationship between Neanderthal technology, social behavior, and food acquisition strategies must be better explored.

  3. Agro-ecological potential of the cup plant (Silphium perfoliatum L.) from a biodiversity perspective

    Science.gov (United States)

    Schrader, Stefan; Schorpp, Quentin; Lena Müller, Anna; Dauber, Jens

    2017-04-01

    The cup plant (Silphium perfoliatum L.) is an alternative bioenergy crop that may contribute to a more environmentally friendly production of renewable resources. The potential benefits of the cup plant are the perennial cultivation without tillage and its flowering-characteristics. Hence it can be hypothesized that beneficial organisms are promoted which in turn improves the provision of ecosystem services like soil fertility and pollination. To date biomass production in Germany is based mainly on cropping systems like intensive maize cultivation that bear a risk for biodiversity and ecosystem services. The importance to counteract this development increases considering the large land requirements for significant generation of energy from biomass. To what extent cropping of the cup plant meets the expectations of a sustainable biomass production was investigated within a comprehensive assessment of soil fauna communities (earthworms, collembolans, nematodes) including their functional groups as well as pollinating insects (bees and hoverflies) including the quantification of pollen and nectar in cup-plant cultivation systems with a crop management close to agricultural practice. From the results it became obvious that the cup plant as a bioenergy crop has got the necessary potential to mitigate the negative development of biodiversity and ecosystem services, especially in regions with a large share of maize monocultures. This agro-ecological potential can only be reached if certain agronomic requirements are met, i.e. a late harvest and cultivation periods of at least five years. Under these conditions the landscape context has to be considered. Semi-natural habitats in the surrounding landscape are required for nesting and larval development of wild pollinator groups. The development of biological functions in soil is tied to the land use history i.e. previous land use: Positive developments are expected for conversion of intensively managed crop fields to the

  4. Ecological effect and risk towards aquatic plants induced by perfluoroalkyl substances: Bridging natural to culturing flora.

    Science.gov (United States)

    Zhou, Yunqiao; Wang, Tieyu; Jiang, Zhaoze; Kong, Xiaoxiao; Li, Qifeng; Sun, Yajun; Wang, Pei; Liu, Zhaoyang

    2017-01-01

    In the present study, the concentrations and proportions of perfluoroalkyl substances (PFASs) in water and sediments (in different seasons) from the Qing River were investigated. The highest concentration of PFASs in water (207.59 ng L(-1)) was found in summer. The composition of PFASs in water changed with time, perfluorobutane sulfonate (PFBS) was the predominant compound in spring and summer, while long-chain PFASs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), started to increase in autumn and winter. The PFASs concentration in sediments ranged from 0.96 to 4.05 ng g(-1) dw. The proportion of long-chain PFASs was higher than that of short-chain PFASs in sediments, the dominant component in sediments was PFOA with a contribution of 24.6-75.4% to total PFASs in sediments, followed by PFOS. The concentrations of PFASs in roots of emergent plants were relatively higher than those in submerged plants. However, the translocation effect of PFASs was not remarkable. Bioaccumulation factors (BAFs) of the aquatic plants indicated the absorption of PFASs were effective. BAFs in submerged plants basically increased with increasing chain length accordingly. In general, aquatic plants had the absorption preference for long-chain PFASs, especially PFOS, which was the predominant compounds in both submerged and emergent plants. Based on the results above, hornworts were selected to be cultivated indoor in the nutrient solution spiked gradient concentrations of PFOS to assess the general ecological risk. The results revealed that hornworts were resistant to PFOS and might be used as remediation flora to eliminate PFOS contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Plant ecology. Worldwide evidence of a unimodal relationship between productivity and plant species richness.

    Science.gov (United States)

    Fraser, Lauchlan H; Pither, Jason; Jentsch, Anke; Sternberg, Marcelo; Zobel, Martin; Askarizadeh, Diana; Bartha, Sandor; Beierkuhnlein, Carl; Bennett, Jonathan A; Bittel, Alex; Boldgiv, Bazartseren; Boldrini, Ilsi I; Bork, Edward; Brown, Leslie; Cabido, Marcelo; Cahill, James; Carlyle, Cameron N; Campetella, Giandiego; Chelli, Stefano; Cohen, Ofer; Csergo, Anna-Maria; Díaz, Sandra; Enrico, Lucas; Ensing, David; Fidelis, Alessandra; Fridley, Jason D; Foster, Bryan; Garris, Heath; Goheen, Jacob R; Henry, Hugh A L; Hohn, Maria; Jouri, Mohammad Hassan; Klironomos, John; Koorem, Kadri; Lawrence-Lodge, Rachael; Long, Ruijun; Manning, Pete; Mitchell, Randall; Moora, Mari; Müller, Sandra C; Nabinger, Carlos; Naseri, Kamal; Overbeck, Gerhard E; Palmer, Todd M; Parsons, Sheena; Pesek, Mari; Pillar, Valério D; Pringle, Robert M; Roccaforte, Kathy; Schmidt, Amanda; Shang, Zhanhuan; Stahlmann, Reinhold; Stotz, Gisela C; Sugiyama, Shu-ichi; Szentes, Szilárd; Thompson, Don; Tungalag, Radnaakhand; Undrakhbold, Sainbileg; van Rooyen, Margaretha; Wellstein, Camilla; Wilson, J Bastow; Zupo, Talita

    2015-07-17

    The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.

  6. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology.

  7. Ecological Filtering and Plant Traits Variation Across Quarry Geomorphological Surfaces: Implication for Restoration

    Science.gov (United States)

    Gilardelli, Federica; Sgorbati, Sergio; Armiraglio, Stefano; Citterio, Sandra; Gentili, Rodolfo

    2015-05-01

    Revegetation patterns after quarry abandonment have been widely studied from several ecological points of view, but a trait-based approach is still lacking. The aim of this study was to characterise the plant species assemblages and the associated functional traits filtered on different geomorphological surfaces in abandoned limestone quarry areas: artificial cliffs, embankments, and platforms. We then verified if species with certain traits were better able to overcome the dispersal and environmental filters necessary for establishment. To this aim, we analyzed 113 vegetation plots and collected data on 25 morphological, ecological, and dispersal traits to detect species adaptaions across these man-made environments. As a case study, we investigated the extraction basin of Botticino (Lombardy, Italy), the second largest in Italy. The results obtained by SIMPER and CCA analyses showed that rockiness, stoniness, slope, elevation, and time of surfaces are the main filters that varied across quarries and affected plant assemblages at the macro-scale level. Across the three geomorphological surfaces (meso-scale) of quarries, more specific abiotic filters selecting species were found. In turn, traits differentiation according to the three main geomorphological surfaces of quarry emphasized that further filters acting at the micro-scale imply differences in dispersal mechanisms and resource availability. This work highlighted the utility to study species assemblages and environmental filters to address quarry restoration according to the type of geomorphological surface. The investigation of some traits (chorological form, life forms, seed dispersal,s and plant height) can furnish some interesting indications for practice individuating further abiotic filters acting at the micro-scale.

  8. Ecological filtering and plant traits variation across quarry geomorphological surfaces: implication for restoration.

    Science.gov (United States)

    Gilardelli, Federica; Sgorbati, Sergio; Armiraglio, Stefano; Citterio, Sandra; Gentili, Rodolfo

    2015-05-01

    Revegetation patterns after quarry abandonment have been widely studied from several ecological points of view, but a trait-based approach is still lacking. The aim of this study was to characterise the plant species assemblages and the associated functional traits filtered on different geomorphological surfaces in abandoned limestone quarry areas: artificial cliffs, embankments, and platforms. We then verified if species with certain traits were better able to overcome the dispersal and environmental filters necessary for establishment. To this aim, we analyzed 113 vegetation plots and collected data on 25 morphological, ecological, and dispersal traits to detect species adaptaions across these man-made environments. As a case study, we investigated the extraction basin of Botticino (Lombardy, Italy), the second largest in Italy. The results obtained by SIMPER and CCA analyses showed that rockiness, stoniness, slope, elevation, and time of surfaces are the main filters that varied across quarries and affected plant assemblages at the macro-scale level. Across the three geomorphological surfaces (meso-scale) of quarries, more specific abiotic filters selecting species were found. In turn, traits differentiation according to the three main geomorphological surfaces of quarry emphasized that further filters acting at the micro-scale imply differences in dispersal mechanisms and resource availability. This work highlighted the utility to study species assemblages and environmental filters to address quarry restoration according to the type of geomorphological surface. The investigation of some traits (chorological form, life forms, seed dispersal,s and plant height) can furnish some interesting indications for practice individuating further abiotic filters acting at the micro-scale.

  9. Ecological Fitness of Non-vector Planthopper Sogatella furcifera on Rice Plants Infected with Rice Black Streaked Dwarf Virus

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-chan; XU Hong-xing; ZHENG Xu-song; YANG Ya-jun; GAO Guang-chun; PAN Jian-hong; LU Zhong-xian

    2012-01-01

    We evaluated the effects of rice black streak dwarf virus (RBSDV)-infested rice plants on the ecological parameters and its relevant defensive and detoxification enzymes of white-backed planthopper (WBPH) in laboratory for exploring the relationship between RBSDV and the non-vector planthopper.The results showed that nymph survival rate,female adult weight and fecundity,and egg hatchability of WBPH fed on RBSDV-infested rice plants did not markedly differ from those on healthy plants,whereas the female adult longevity and egg duration significantly shortened on diseased plants.Furthermore,significantly higher activities of defensive enzymes (dismutase,catalase and peroxidase) and detoxification enzymes (acetylcholinesterase,carboxylesterase and glutathione S-transferase) were found in WBPH adults fed on infected plants.Results implied that infestation by RBSDV increased the ecological fitness of non-vector planlhopper population.

  10. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies.

    Science.gov (United States)

    Ruiz-Lozano, Juan Manuel; Porcel, Rosa; Azcón, Charo; Aroca, Ricardo

    2012-06-01

    Excessive salt accumulation in soils is a major ecological and agronomical problem, in particular in arid and semi-arid areas. Excessive soil salinity affects the establishment, development, and growth of plants, resulting in important losses in productivity. Plants have evolved biochemical and molecular mechanisms that may act in a concerted manner and constitute the integrated physiological response to soil salinity. These include the synthesis and accumulation of compatible solutes to avoid cell dehydration and maintain root water uptake, the regulation of ion homeostasis to control ion uptake by roots, compartmentation and transport into shoots, the fine regulation of water uptake and distribution to plant tissues by the action of aquaporins, the reduction of oxidative damage through improved antioxidant capacity and the maintenance of photosynthesis at values adequate for plant growth. Arbuscular mycorrhizal (AM) symbiosis can help the host plants to cope with the detrimental effects of high soil salinity. There is evidence that AM symbiosis affects and regulates several of the above mentioned mechanisms, but the molecular bases of such effects are almost completely unknown. This review summarizes current knowledge about the effects of AM symbiosis on these physiological mechanisms, emphasizing new perspectives and challenges in physiological and molecular studies on salt-stress alleviation by AM symbiosis.

  11. Molecular methods for the study of signal transduction in plants

    KAUST Repository

    Irving, Helen R.

    2013-09-03

    Novel and improved analytical methods have led to a rapid increase in our understanding of the molecular mechanism underlying plant signal transduction. Progress has been made both at the level of single-component analysis and in vivo imaging as well as at the systems level where transcriptomics and particularly phosphoproteomics afford a window into complex biological responses. Here we review the role of the cyclic nucleotides cAMP and cGMP in plant signal transduction as well as the discovery and biochemical and biological characterization of an increasing number of complex multi-domain nucleotide cyclases that catalyze the synthesis of cAMP and cGMP from ATP and GTP, respectively. © Springer Science+Business Media New York 2013.

  12. TALENs: Customizable Molecular DNA Scissors for Genome Engineering of Plants

    Institute of Scientific and Technical Information of China (English)

    Kunling Chen; Caixia Gao

    2013-01-01

    Precise genome modification with engineered nucleases is a powerful tool for studying basic biology and applied biotechnology.Transcription activator-like effector nucleases (TALENs),consisting of an engineered specific (TALE) DNA binding domain and a Fok I cleavage domain,are newly developed versatile reagents for genome engineering in different organisms.Because of the simplicity of the DNA recognition code and their modular assembly,TALENs can act as customizable molecular DNA scissors inducing double-strand breaks (DSBs) at given genomic location.Thus,they provide a valuable approach to targeted genome modifications such as mutations,insertions,replacements or chromosome rearrangements.In this article,we review the development of TALENs,and summarize the principles and tools for TALEN-mediated gene targeting in plant cells,as well as current and potential strategies for use in plant research and crop improvement.

  13. Sequence-Related Amplified Polymorphism (SRAP Markers: A Potential Resource for Studies in Plant Molecular Biology

    Directory of Open Access Journals (Sweden)

    Daniel W. H. Robarts

    2014-07-01

    Full Text Available In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR, random-amplified polymorphic DNA (RAPD, and amplified fragment length polymorphism (AFLP to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use. highly variable marker with inherent biological significance.

  14. Functional traits and ecological affinities of riparian plants along the Colorado River in Grand Canyon

    Science.gov (United States)

    Palmquist, Emily C.; Ralston, Barbara; Sarr. Daniel,; Merritt, David; Shafroth, Patrick B; Scott, Julian

    2017-01-01

    Trait-based approaches to vegetation analyses are becoming more prevalent in studies of riparian vegetation dynamics, including responses to flow regulation, groundwater pumping, and climate change. These analyses require species trait data compiled from the literature and floras or original field measurements. Gathering such data makes trait-based research time intensive at best and impracticable in some cases. To support trait-based analysis of vegetation along the Colorado River through Grand Canyon, a data set of 20 biological traits and ecological affinities for 179 species occurring in that study area was compiled. This diverse flora shares species with many riparian areas in the western USA and includes species that occur across a wide moisture gradient. Data were compiled from published scientific papers, unpublished reports, plant fact sheets, existing trait databases, regional floras, and plant guides. Data for ordinal environmental tolerances were more readily available than were quantitative traits. More publicly available data are needed for traits of both common and rare southwestern U.S. plant species to facilitate comprehensive, trait-based research. The trait data set is free to use and can be downloaded from ScienceBase: https://www.sciencebase.gov/catalog/item/58af41dee4b01ccd54f9f2ff and https://dx.doi.org/10.5066/F7QV3JN1

  15. Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system.

    Science.gov (United States)

    Woodard, S Hollis; Lozier, Jeffrey D; Goulson, David; Williams, Paul H; Strange, James P; Jha, Shalene

    2015-06-01

    Bumble bees are a longstanding model system for studies on behaviour, ecology and evolution, due to their well-studied social lifestyle, invaluable role as wild and managed pollinators, and ubiquity and diversity across temperate ecosystems. Yet despite their importance, many aspects of bumble bee biology have remained enigmatic until the rise of the genetic and, more recently, genomic eras. Here, we review and synthesize new insights into the ecology, evolution and behaviour of bumble bees that have been gained using modern genetic and genomic techniques. Special emphasis is placed on four areas of bumble bee biology: the evolution of eusociality in this group, population-level processes, large-scale evolutionary relationships and patterns, and immunity and resistance to pesticides. We close with a prospective on the future of bumble bee genomics research, as this rapidly advancing field has the potential to further revolutionize our understanding of bumble bees, particularly in regard to adaptation and resilience. Worldwide, many bumble bee populations are in decline. As such, throughout the review, connections are drawn between new molecular insights into bumble bees and our understanding of the causal factors involved in their decline. Ongoing and potential applications to bumble bee management and conservation are also included to demonstrate how genetics- and genomics-enabled research aids in the preservation of this threatened group. © 2015 John Wiley & Sons Ltd.

  16. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes

    Directory of Open Access Journals (Sweden)

    Yuting eLiang

    2016-02-01

    Full Text Available With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001. Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential keystone genes, defined as either hubs or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.

  17. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 April 2010 - 31 May 2010.

    Science.gov (United States)

    Andree, K; Axtner, Jan; Bagley, M J; Barlow, E J; Beebee, T J C; Bennetzen, Jeffrey L; Bermingham, Eldredge; Boisselier-Dubayle, M C; Bozarth, Christine A; Brooks, Christopher P; Brown, R P; Catanese, Gaetano; Cavers, S; Ceron-Souza, Ivania; Chak, Solomon T C; Chan, M N; Charles-Dominique, P; Chen, C Y; Chen, J D; Chinchilla, Leah; DA Silva, D; Dafreville, S; Daunt, F; Delatte, H; Dorge, T; Duncan, N; Durand, J D; Duvernell, D; Estep, Matt; Fan, Sigang; Fattahi, R; Villela, Oscar Flores; Fong, Yokking; Fréville, H; Funes, Victoria; Gallardo-Escarate, C; Ganeshaiah, K N; Ghaffari, M R; Girod, C; Gomez-Moliner, B J; Gonzalez-Porter, Gracia P; Gosa, A; Govers, F; Guérin, F; Guindo, Diarah; Hailer, Frank; Haye, P A; Hoelmer, Kim A; Hofmann, S; Hong, Yan; Hu, Chaoqun; Huang, S W; Humeau, L; Infante, Carlos; Jackson, S A; Jacobsen, E; Jowkar, A; Kafi, M; Kermani, M J; Kim, Hyojoong; Kim, Kyung Seok; Kim, Min-Young; Knibb, W; Koita, Ousmane A; Korpelainen, H; Lambourdiere, J; Lasso, Eloisa; Leblois, R; Lee, Hang; Lee, Seunghwan; Leung, F C C; Leung, Kenneth M Y; Li, Chunhong; Li, Y; Lieckfeldt, Dietmar; Lizana, M; Loughry, W J; Luo, Peng; Madeira, M J; Mahmoodi, P; Maldonado, Jesús E; Mardi, M; Mendes, O; Miehe, G; Muth, Peter; Nacci, D; Naveen Kumar, L; Ng, Wai-Chuen; Pailler, T; Parzies, Heiko K; Perez, Laura; Pfunder, M; Pietiläinen, M; Pirseyedi, S M; Porta, D; Porta, J; Porta, J M; Quilici, S; Rakotoarivelo, F P; Ramesha, B T; Ravikanth, G; Riéra, B; Risterucci, A M; Roberts, D A; Samadi, S; Sarasola-Puente, V; Sarrazin, E; Sarthou, C; Schmidt, Anke; Segovia, N I; Shen, K N; Simiand, C; Sman, Muhammad Hidayat Bin; Solhoy, T; Sommer, Simone; Sumangala, R C; Taubert, Ramona; Tejangkura, T; Telford, A; Testa, A; Tollon-Cordet, C; Tzeng, W N; Uma Shaanker, R; Van Der Lee, T A J; VAN Mourik, Thomas A; Vasudeva, R; Wai, T C; Wang, R L; Welch, Mark E; Weltzien, Eva; Whitehead, A; Woodard, Anastasia; Xia, Jianjun; Zeinolabedini, M; Zhang, Lvping

    2010-11-01

    This article documents the addition of 396 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anthocidaris crassispina, Aphis glycines, Argyrosomus regius, Astrocaryum sciophilum, Dasypus novemcinctus, Delomys sublineatus, Dermatemys mawii, Fundulus heteroclitus, Homalaspis plana, Jumellea rossii, Khaya senegalensis, Mugil cephalus, Neoceratitis cyanescens, Phalacrocorax aristotelis, Phytophthora infestans, Piper cordulatum, Pterocarpus indicus, Rana dalmatina, Rosa pulverulenta, Saxifraga oppositifolia, Scomber colias, Semecarpus kathalekanensis, Stichopus monotuberculatus, Striga hermonthica, Tarentola boettgeri and Thermophis baileyi. These loci were cross-tested on the following species: Aphis gossypii, Sooretamys angouya, Euryoryzomys russatus, Fundulus notatus, Fundulus olivaceus, Fundulus catenatus, Fundulus majalis, Jumellea fragrans, Jumellea triquetra Jumellea recta, Jumellea stenophylla, Liza richardsonii, Piper marginatum, Piper aequale, Piper darienensis, Piper dilatatum, Rana temporaria, Rana iberica, Rana pyrenaica, Semecarpus anacardium, Semecarpus auriculata, Semecarpus travancorica, Spondias acuminata, Holigarna grahamii, Holigarna beddomii, Mangifera indica, Anacardium occidentale, Tarentola delalandii, Tarentola caboverdianus and Thermophis zhaoermii. © 2010 Blackwell Publishing Ltd.

  18. Permanent genetic resources added to Molecular Ecology Resources Database 1 August 2010-30 September 2010.

    Science.gov (United States)

    Aggarwal, Ramesh K; Allainguillaume, Joel; Bajay, M M; Barthwal, Santan; Bertolino, P; Chauhan, Priti; Consuegra, Sofia; Croxford, Adam; Dalton, Desiré L; den Belder, E; Díaz-Ferguson, E; Douglas, M R; Drees, Michael; Elderson, J; Esselink, G D; Fernández-Manjarrés, J F; Frascaria-Lacoste, N; Gäbler-Schwarz, Steffi; Garcia de Leaniz, Carlos; Ginwal, H S; Goodisman, Michael A D; Guo, Baoling; Hamilton, M B; Hayes, Paul K; Hong, Yan; Kajita, Tadashi; Kalinowski, Steven T; Keller, Laurent; Koop, Ben F; Kotzé, Antoinette; Lalremruata, Albert; Leese, Florian; Li, Chunhong; Liew, W Y; Martinelli, S; Matthews, Emily A; Medlin, Linda K; Messmer, Amber M; Meyer, Elisabeth I; Monteiro, M; Moyer, G R; Nelson, R John; Nguyen, Thuy T T; Omoto, C; Ono, Junya; Pavinato, V A C; Pearcy, Morgan; Pinheiro, J B; Power, L D; Rawat, Anita; Reusch, Thorsten B H; Sanderson, Dan; Sannier, J; Sathe, Santosh; Sheridan, C K; Smulders, M J M; Sukganah, A; Takayama, Koji; Tamura, Mariko; Tateishi, Yoichi; Vanhaecke, Delphine; Vu, Ninh V; Wickneswari, R; Williams, A S; Wimp, G M; Witte, Volker; Zucchi, M I

    2011-01-01

    This article documents the addition of 229 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acacia auriculiformis × Acacia mangium hybrid, Alabama argillacea, Anoplopoma fimbria, Aplochiton zebra, Brevicoryne brassicae, Bruguiera gymnorhiza, Bucorvus leadbeateri, Delphacodes detecta, Tumidagena minuta, Dictyostelium giganteum, Echinogammarus berilloni, Epimedium sagittatum, Fraxinus excelsior, Labeo chrysophekadion, Oncorhynchus clarki lewisi, Paratrechina longicornis, Phaeocystis antarctica, Pinus roxburghii and Potamilus capax. These loci were cross-tested on the following species: Acacia peregrinalis, Acacia crassicarpa, Bruguiera cylindrica, Delphacodes detecta, Tumidagena minuta, Dictyostelium macrocephalum, Dictyostelium discoideum, Dictyostelium purpureum, Dictyostelium mucoroides, Dictyostelium rosarium, Polysphondylium pallidum, Epimedium brevicornum, Epimedium koreanum, Epimedium pubescens, Epimedium wushanese and Fraxinus angustifolia. © 2010 Blackwell Publishing Ltd.

  19. Permanent genetic resources added to Molecular Ecology Resources Database 1 December 2010-31 January 2011.

    Science.gov (United States)

    Agata, Kiyokazu; Alasaad, Samer; Almeida-Val, Vera Maria Fonseca; Alvarez-Dios, J A; Barbisan, F; Beadell, Jon S; Beltrán, J F; Benítez, M; Bino, G; Bleay, Colin; Bloor, P; Bohlmann, Jörg; Booth, Warren; Boscari, E; Caccone, Adalgisa; Campos, Tatiana; Carvalho, B M; Climaco, Gisele Torres; Clobert, Jean; Congiu, L; Cowger, Christina; Dias, G; Doadrio, I; Farias, Izeni Pires; Ferrand, N; Freitas, Patrícia D; Fusco, G; Galetti, Pedro M; Gallardo-Escárate, Cristian; Gaunt, Michael W; Ocampo, Zaneli Gomez; Gonçalves, H; Gonzalez, E G; Haye, Pilar; Honnay, O; Hyseni, Chaz; Jacquemyn, H; Jowers, Michael J; Kakezawa, Akihiro; Kawaguchi, Eri; Keeling, Christopher I; Kwan, Ye-Seul; La Spina, Michelangelo; Lee, Wan-Ok; Leśniewska, M; Li, Yang; Liu, Haixia; Liu, Xiaolin; Lopes, S; Martínez, P; Meeus, S; Murray, Brent W; Nunes, Aline G; Okedi, Loyce M; Ouma, Johnson O; Pardo, B G; Parks, Ryan; Paula-Silva, Maria Nazaré; Pedraza-Lara, C; Perera, Omaththage P; Pino-Querido, A; Richard, Murielle; Rossini, Bruno C; Samarasekera, N Gayathri; Sánchez, Antonio; Sanchez, Juan A; Santos, Carlos Henrique Dos Anjos; Shinohara, Wataru; Soriguer, Ramón C; Sousa, Adna Cristina Barbosa; Sousa, Carolina Fernandes Da Silva; Stevens, Virginie M; Tejedo, M; Valenzuela-Bustamante, Myriam; Van de Vliet, M S; Vandepitte, K; Vera, M; Wandeler, Peter; Wang, Weimin; Won, Yong-Jin; Yamashiro, A; Yamashiro, T; Zhu, Changcheng

    2011-05-01

    This article documents the addition of 238 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alytes dickhilleni, Arapaima gigas, Austropotamobius italicus, Blumeria graminis f. sp. tritici, Cobitis lutheri, Dendroctonus ponderosae, Glossina morsitans morsitans, Haplophilus subterraneus, Kirengeshoma palmata, Lysimachia japonica, Macrolophus pygmaeus, Microtus cabrerae, Mytilus galloprovincialis, Pallisentis (Neosentis) celatus, Pulmonaria officinalis, Salminus franciscanus, Thais chocolata and Zootoca vivipara. These loci were cross-tested on the following species: Acanthina monodon, Alytes cisternasii, Alytes maurus, Alytes muletensis, Alytes obstetricans almogavarii, Alytes obstetricans boscai, Alytes obstetricans obstetricans, Alytes obstetricans pertinax, Cambarellus montezumae, Cambarellus zempoalensis, Chorus giganteus, Cobitis tetralineata, Glossina fuscipes fuscipes, Glossina pallidipes, Lysimachia japonica var. japonica, Lysimachia japonica var. minutissima, Orconectes virilis, Pacifastacus leniusculus, Procambarus clarkii, Salminus brasiliensis and Salminus hilarii.

  20. Permanent genetic resources added to Molecular Ecology Resources Database 1 February 2012 - 31 March 2012.

    Science.gov (United States)

    Andris, Malvina; Arias, M C; Barthel, Brandon L; Bluhm, Burton H; Bried, Joël; Canal, D; Chen, X M; Cheng, P; Chiappero, Marina B; Coelho, Manuela M; Collins, Angela B; Dash, M; Davis, Michelle C; Duarte, Margarida; Dubois, Marie-Pierre; Françoso, E; Galmes, M A; Gopal, Keshni; Jarne, Philippe; Kalbe, Martin; Karczmarski, Leszek; Kim, Hun; Martella, Mónica B; McBride, Richard S; Negri, Valeria; Negro, J J; Newell, Annakay D; Piedade, Ana F; Puchulutegui, Cecilia; Raggi, Lorenzo; Samonte, Irene E; Sarasola, J H; See, D R; Seyoum, Seifu; Silva, Mónica C; Solaro, C; Tolley, Krystal A; Tringali, Michael D; Vasemägi, A; Xu, L S; Zanón-Martínez, J I

    2012-07-01

    This article documents the addition of 171 microsatellite marker loci and 27 pairs of single nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Bombus pauloensis, Cephalorhynchus heavisidii, Cercospora sojina, Harpyhaliaetus coronatus, Hordeum vulgare, Lachnolaimus maximus, Oceanodroma monteiroi, Puccinia striiformis f. sp. tritici, Rhea americana, Salmo salar, Salmo trutta, Schistocephalus solidus, Sousa plumbea and Tursiops aduncus. These loci were cross-tested on the following species: Aquila heliaca, Bulweria bulwerii, Buteo buteo, Buteo swainsoni, Falco rusticolus, Haliaeetus albicilla, Halobaena caerulea, Hieraaetus fasciatus, Oceanodroma castro, Puccinia graminis f. sp. Tritici, Puccinia triticina, Rhea pennata and Schistocephalus pungitii. This article also documents the addition of 27 sequencing primer pairs for Puffinus baroli and Bulweria bulwerii and cross-testing of these loci in Oceanodroma castro, Pelagodroma marina, Pelecanoides georgicus, Pelecanoides urinatrix, Thalassarche chrysostoma and Thalassarche melanophrys.

  1. An ecologically-based method for selecting ecological indicators for assessing risks to biological diversity from genetically-engineered plants

    DEFF Research Database (Denmark)

    Andow, D. A.; Lövei, Gabor L; Arpaia, Salvatore

    2013-01-01

    into ecological functional groups and selecting those that deliver the identified environmental values. (3) All of the species or ecosystem processes related to the selected functional groups are identified and (4) multi-criteria decision analysis (MCDA) is used to rank the indicator endpoint entities, which may......-driven, ecologically-based decision-making and provides formal methods for completing a screening level-ERA that can focus ERA on the most significant concerns. The process requires substantial human input but the human capital is available in most countries and regions of the world.......The environmental risks associated with genetically-engineered (GE) organisms have been controversial, and so have the models for the assessment of these risks. We propose an ecologically-based environmental risk assessment (ERA) model that follows the 1998 USEPA guidelines, focusing on potential...

  2. City plants as ecological indicator of environment quality in St. Petersburg

    Science.gov (United States)

    Sapunov, Valentin; Glazyrina, Tatyana

    2017-04-01

    Under increase of natural hazard activity and anthropogenic pressure the effective and cheep monitoring methods become necessary. Majority of modern methods of monitoring, such as space and air, needs significant foundation. The simplest monitoring method is biological indication, basing on essay of variability, sex ration and sexual dimorphism. Such a method does not need long time efforts and may be realized by short observation. Urban plants are natural indicators of ecological pressure. Check or their state may give us significant information on area pollution by use of principles of phenogenic indication. Genetic and phenotypic variability of different organism have general principles and constants. The per cent of abnormal organisms and coefficient of variability are stable for majority of species under favorable state and increase under unfavorable conditions. The basis for indication is both state of adult trees and morphological variability of pollen grains. The part of dried threes and threes infected by parasites-xylophagous is correlated with toxic pollution. Float asymmetry of lives is measure of mutagenic pollution. Abnormal form of three (dichotomy, curved) is criteria of teratogenic pollution. Importance of such an indication is increased by such incidents as Chernobyl, Fucusima and so on. Algorithm for analyze of such a data is considered. The map of ecological pressure of St. Petersburg is presented.

  3. Invasive plant species in the West Indies: geographical, ecological, and floristic insights.

    Science.gov (United States)

    Rojas-Sandoval, Julissa; Tremblay, Raymond L; Acevedo-Rodríguez, Pedro; Díaz-Soltero, Hilda

    2017-07-01

    The level of invasion (number or proportion of invasive species) in a given area depends on features of the invaded community, propagule pressure, and climate. In this study, we assess the invasive flora of nine islands in the West Indies to identify invasion patterns and evaluate whether invasive species diversity is related to geographical, ecological, and socioeconomic factors. We compiled a database of invasive plant species including information on their taxonomy, origin, pathways of introduction, habitats, and life history. This database was used to evaluate the similarity of invasive floras between islands and to identify invasion patterns at regional (West Indies) and local (island) scales. We found a total of 516 alien plant species that are invasive on at least one of the nine islands studied, with between 24 to 306 invasive species per island. The invasive flora on these islands includes a wide range of taxonomic groups, life forms, and habitats. We detected low similarity in invasive species diversity between islands, with most invasive species (>60%) occurring on a single island and 6% occurring on at least five islands. To assess the importance of different models in predicting patterns of invasive species diversity among islands, we used generalized linear models. Our analyses revealed that invasive species diversity was well predicted by a combination of island area and economic development (gross domestic product per capita and kilometers of paved roadways). Our results provide strong evidence for the roles of geographical, ecological, and socioeconomic factors in determining the distribution and spread of invasive species on these islands. Anthropogenic disturbance and economic development seem to be the major drivers facilitating the spread and predominance of invasive species over native species.

  4. Cellular and molecular aspects of plant adaptation to microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    Elucidation of the range and mechanisms of the biological effects of microgravity is one of the urgent fundamental tasks of space and gravitational biology. The absence of forbidding on plant growth and development in orbital flight allows studying different aspects of plant adaptation to this factor that is directly connected with development of the technologies of bioregenerative life-support systems. Microgravity belongs to the environmental factors which cause adaptive reactions at the cellular and molecular levels in the range of physiological responses in the framework of genetically determined program of ontogenesis. It is known that cells of a multicellular organism not only take part in reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and molecular levels in real and simulated microgravity is considered. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in the cell organelle functional load. The maintenance of the plasmalemma fluidity at the certain level, an activation of both the antioxidant system and expression of HSP genes, especially HSP70, under increasing reactive oxygen species, lipid peroxidation intensity and alteration in protein homeostasis, are a strategic paradigm of rapid (primary) cell adaptation to microgravity. In this sense, biological membranes, especially plasmalemma, and their properties and functions may be considered as the most sensitive indicators of the influence of gravity or altered gravity on a cell. The plasmalemma lipid bilayer is a border between the cell internal content and environment, so it is a mediator

  5. Biomimetic polymers of plant cutin: an approach from molecular modeling.

    Science.gov (United States)

    San-Miguel, Miguel A; Oviedo, Jaime; Heredia-Guerrero, Jose Alejandro; Heredia, Antonio; Benitez, Jose Jesus

    2014-07-01

    Biomimetics of materials is based on adopting and reproducing a model in nature with a well-defined functionality optimized through evolution. An example is barrier polymers that protect living tissues from the environment. The protecting layer of fruits, leaves, and non-lignified stems is the plant cuticle. The cuticle is a complex system in which the cutin is the main component. Cutin is a biopolyester made of polyhydroxylated carboxylic acids of 16 and 18 carbon atoms. The biosynthesis of cutin in plants is not well understood yet, but a direct chemical route involving the self-assembly of either molecules or molecular aggregates has been proposed. In this work, we present a combined study using experimental and simulation techniques on self-assembled layers of monomers selectively functionalized with hydroxyl groups. Our results demonstrate that the number and position of the hydroxyl groups are critical for the interaction between single molecules and the further rearrangement. Also, the presence of lateral hydroxyl groups reinforces lateral interactions and favors the bi-dimensional growth (2D), while terminal hydroxyl groups facilitate the formation of a second layer caused by head-tail interactions. The balance of 2D/3D growth is fundamental for the plant to create a protecting layer both large enough in 2D and thick enough in 3D.

  6. 2012 Gordon Research Conference, Plant molecular biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, Michael R. [Univ. of Wisconsin, Madison, WI (United States)

    2013-07-20

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologies for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?

  7. Bacterial pathogenesis of plants: future challenges from a microbial perspective: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Pfeilmeier, Sebastian; Caly, Delphine L; Malone, Jacob G

    2016-10-01

    secretion systems (T3SSs) are important and well-studied contributors to bacterial disease. Several key unanswered questions will shape future investigations of these systems. We need to define the mechanism of hierarchical and temporal control of effector secretion. For successful infection, effectors need to interact with host components to exert their function. Advanced biochemical, proteomic and cell biological techniques will enable us to study the function of effectors inside the host cell in more detail and on a broader scale. Population genomics analyses provide insight into evolutionary adaptation processes of phytopathogens. The determination of the diversity and distribution of type III effectors (T3Es) and other virulence genes within and across pathogenic species, pathovars and strains will allow us to understand how pathogens adapt to specific hosts, the evolutionary pathways available to them, and the possible future directions of the evolutionary arms race between effectors and molecular plant targets. Although pathogenic bacteria employ a host of different virulence and proliferation strategies, as a result of the space constraints, this review focuses mainly on the hemibiotrophic pathogens. We discuss the process of plant infection from the perspective of these important phytopathogens, and highlight new approaches to address the outstanding challenges in this important and fast-moving field. © 2016 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  8. Advances in Molecular Ecology of Marine Mammals.%海兽分子生态学研究进展

    Institute of Scientific and Technical Information of China (English)

    杨光; 任文华; 周开亚

    2001-01-01

    The molecular techniques applied in the molecular ecology of marine mammals mainly include sequencing of mtDNA control region,DNA fingerprinting,mtDNA RFLP,and alloyzme.These techniques have been used to document population structure and genetic diversity,social structure and migration behavior,individual identification and population size estimate,as well as food habitat analysis,etc.

  9. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms

    Directory of Open Access Journals (Sweden)

    Nurmi ePangesti

    2013-10-01

    Full Text Available Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the host plant that influence interactions between plants and aboveground insects at several trophic levels. Aboveground, plants are under continuous attack by insect herbivores and mount multiple responses that also have systemic effects on belowground microbes. Until recently, both ecological and mechanistic studies have mostly focused on exploring these below- and above-ground interactions using simplified systems involving both single microbe and herbivore species, which is far from the naturally occurring interactions. Increasing the complexity of the systems studied is required to increase our understanding of microbe - plant - insect interactions and to gain more benefit from the use of non-pathogenic microbes in agriculture. In this review, we explore how colonization by either single non-pathogenic microbe species or a community of such microbes belowground affects plant growth and defense and how this affects the interactions of plants with aboveground insects at different trophic levels. Moreover, we review how plant responses to foliar herbivory by insects belonging to different feeding guilds affect interactions of plants with non-pathogenic soil-borne microbes. The role of phytohormones in coordinating plant growth, plant defenses against foliar herbivores while simultaneously establishing associations with non-pathogenic soil microbes is discussed.

  10. Ecological and spatial modeling : mapping ecosystems, landscape changes, and plant species distribution in Llanos del Orinoco, Venezuela

    NARCIS (Netherlands)

    Moreno, E.J.C.

    2007-01-01

    The transformation of Llanos del Orinoco, focused on the flooding savanna, is evaluated in terms of the change and replacement of the savanna ecosystem and the plant species distribution under a Landscape Ecological approach. This research is carried out at three spatial scales: sub-continental, reg

  11. Ecological interaction between insect pests, climatic factors and plant traits on abundance of beneficial insects in paddy field

    Directory of Open Access Journals (Sweden)

    Norazliza, R.

    2016-04-01

    Full Text Available The presences of beneficial insects in the paddy field are very important for the ecological systems of paddy field as those insects could help managing the population of the pests. Hence, it will reduce the dependence on pesticides usage to combat the population of insect pests. This study was aimed to study on ecological interaction between environmental factors such as insect pests, plant height, rainfall, temperature and humidity with abundance of beneficial insects in paddy field of Sungai Burong, Tanjung Karang, Selangor for two seasons of paddy planting. Low number of insects composition were recorded in paddy field at Sungai Burong during the vegetative phase and highest during the reproductive and maturity phases for two seasons of paddy planting. The trend of mean composition of insects were gradually increasing from vegetative to maturity phases while, the ecological interaction between insect pests, climatic factors and plant traits were acceptable as good predictor for all beneficial insects collected in this study namely Zygoptera, Gerridae, Coccinellidae and Staphylinidae except for Anisoptera. Therefore, consideration on several stated factors by maintaining or conserving ecology and controlling practices in good manner in paddy field has high potential and more reliable to control insect pests effectively using beneficial insects.

  12. Support for NATO Advanced Study Institute on molecular ecology of aquatic microbes, August 28--September 9, 1994. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Joint, I.

    1995-06-16

    This is a summary paper for a NATO Advanced Study Institute sponsored meeting entitled `The Molecular Ecology of Aquatic Microbes` held in Luccia, Italy from August 28 to September 9, 1994. A full reference book for the proceedings is to be published later.

  13. Larval description of Drusus bosnicus Klapálek 1899 (Trichoptera: Limnephilidae), with distributional, molecular and ecological features

    Science.gov (United States)

    KUČINIĆ, MLADEN; PREVIŠIĆ, ANA; GRAF, WOLFRAM; MIHOCI, IVA; ŠOUFEK, MARIN; STANIĆ-KOŠTROMAN, SVJETLANA; LELO, SUVAD; VITECEK, SIMON; WARINGER, JOHANN

    2016-01-01

    In this study we present morphological, molecular and ecological features of the last instar larvae of Drusus bosnicus with data about distribution of this species in Bosnia and Herzegovina. We also included are the most important diagnostic features enabling separation of larvae of D. bosnicus from larvae of the other European Drusinae and Trichoptera species. PMID:26249056

  14. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    Full Text Available Plant productivity is severely affected by unfavourable environmental conditions (biotic and abiotic stresses. Among others, water deficit is the plant stress condition which mostly limits the quality and the quantity of plant products. Tolerance to water deficit is a polygenic trait strictly dependent on the coordinated expression of a large set of genes coding for proteins directly involved in stress-induced protection/repair mechanisms (dehydrins, chaperonins, enzymes for the synthesis of osmoprotectants and detoxifying compounds, and others as well as genes involved in transducing the stress signal and regulating gene expression (transcription factors, kinases, phosphatases. Recently, research activities in the field evolved from the study of single genes directly involved in cellular stress tolerance (functional genes to the identification and characterization of key regulatory genes involved in stress perception and transduction and able to rapidly and efficiently activate the complex gene network involved in the response to stress. The complexity of the events occurring in response to stress have been recently approached by genomics tools; in fact the analysis of transcriptome, proteome and metabolome of a plant tissue/cell in response to stress already allowed to have a global view of the cellular and molecular events occurring in response to water deficit, by the identification of genes activated and co-regulated by the stress conditions and the characterization of new signalling pathways. Moreover the recent application of forward and reverse genetic approaches, trough mutant collection development, screening and characterization, is giving a tremendous impulse to the identification of gene functions with key role in stress tolerance. The integration of data obtained by high-throughput genomic approaches, by means of powerful informatic tools, is allowing nowadays to rapidly identify of major genes/QTLs involved in stress tolerance

  15. Ecological significance and complexity of N-source preference in plants.

    Science.gov (United States)

    Britto, Dev T; Kronzucker, Herbert J

    2013-10-01

    Plants can utilize two major forms of inorganic N: NO3(-) (nitrate) and NH4(+) (ammonium). In some cases, the preference of one form over another (denoted as β) can appear to be quite pronounced for a plant species, and can be an important determinant and predictor of its distribution and interactions with other species. In many other cases, however, assignment of preference is not so straightforward and must take into account a wide array of complex physiological and environmental features, which interact in ways that are still not well understood. This Viewpoint presents a discussion of the key, and often co-occurring, factors that join to produce the complex phenotypic composite referred to by the deceptively simple term 'N-source preference'. N-source preference is much more complex a biological phenomenon than is often assumed, and general models predicting how it will influence ecological processes will need to be much more sophisticated than those that have been so far developed.

  16. Evolution of a unique anatomical precision in angiosperm leaf venation lifts constraints on vascular plant ecology.

    Science.gov (United States)

    Zwieniecki, Maciej A; Boyce, Charles K

    2014-03-22

    The main role of leaf venation is to supply water across the photosynthetic surface to keep stomata open and allow access to atmospheric CO2 despite evaporative demand. The optimal uniform delivery of water occurs when the distance between veins equals the depth of vein placement within the leaf away from the evaporative surface. As presented here, only angiosperms maintain this anatomical optimum across all leaf thicknesses and different habitats, including sheltered environments where this optimization need not be required. Intriguingly, basal angiosperm lineages tend to be underinvested hydraulically; uniformly high optimization is derived independently in the magnoliids, monocots and core eudicots. Gymnosperms and ferns, including available fossils, are limited by their inability to produce high vein densities. The common association of ferns with shaded humid environments may, in part, be a direct evolutionary consequence of their inability to produce hydraulically optimized leaves. Some gymnosperms do approach optimal vein placement, but only by virtue of their ability to produce thick leaves most appropriate in environments requiring water conservation. Thus, this simple anatomical metric presents an important perspective on the evolution and phylogenetic distribution of plant ecologies and further evidence that the vegetative biology of flowering plants-not just their reproductive biology-is unique.

  17. Preliminary assessment of perchlorate in ecological receptors at the Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas.

    Science.gov (United States)

    Smith, P N; Theodorakis, C W; Anderson, T A; Kendall, R J

    2001-10-01

    There have been increasing human health and ecological concerns about ionic perchlorate (ClO4-) since it was detected in drinking water sources in 1997. Perchlorate is known to affect thyroid function, causing subsequent hormone disruption and potential perturbations of metabolic activities. According to current estimates, perchlorate is found in the surface of groundwater of 14 states, including Texas. Longhorn Army Ammunition Plant, located in east central Texas, was a facility historically associated with perchlorate-containing propellants and rocket motors. Subsequently, perchlorate contamination in ground and surface waters at the facility has been reported. Soil, sediment, water, vegetation, and animal tissue samples were collected from several locations within the plant for a preliminary site assessment of perchlorate contamination. Perchlorate concentrations ranged from 555-5,557,000 ppb in vegetation, 811-2038 ppb in aquatic insects, below detection limits (ND) to 207 ppb in fish, ND-580 ppb in frogs, and ND-2328 ppb in mammals. Consistent with our hypothesis, aquatic organisms inhabiting perchlorate-contaminated surface water bodies contained detectable concentrations of perchlorate. Additionally, terrestrial organisms were exposed through pathways not necessarily related to contaminated surface waters. Therefore, these data demonstrate that aquatic and terrestrial species are exposed to perchlorate in the environment. To our knowledge, this represents the first incidence of perchlorate exposure among wild animals reported in the scientific literature.

  18. Effects of introduced and indigenous viruses on native plants: exploring their disease causing potential at the agro-ecological interface.

    Science.gov (United States)

    Vincent, Stuart J; Coutts, Brenda A; Jones, Roger A C

    2014-01-01

    The ever increasing movement of viruses around the world poses a major threat to plants growing in cultivated and natural ecosystems. Both generalist and specialist viruses move via trade in plants and plant products. Their potential to damage cultivated plants is well understood, but little attention has been given to the threat such viruses pose to plant biodiversity. To address this, we studied their impact, and that of indigenous viruses, on native plants from a global biodiversity hot spot in an isolated region where agriculture is very recent (plant species, we used introduced generalist and specialist viruses, and indigenous viruses, to inoculate plants of 15 native species belonging to eight families. We also measured resulting losses in biomass and reproductive ability for some host-virus combinations. In addition, we sampled native plants growing over a wide area to increase knowledge of natural infection with introduced viruses. The results suggest that generalist introduced viruses and indigenous viruses from other hosts pose a greater potential threat than introduced specialist viruses to populations of native plants encountered for the first time. Some introduced generalist viruses infected plants in more families than others and so pose a greater potential threat to biodiversity. The indigenous viruses tested were often surprisingly virulent when they infected native plant species they were not adapted to. These results are relevant to managing virus disease in new encounter scenarios at the agro-ecological interface between managed and natural vegetation, and within other disturbed natural vegetation situations. They are also relevant for establishing conservation policies for endangered plant species and avoiding spread of damaging viruses to undisturbed natural vegetation beyond the agro-ecological interface.

  19. An ecologically-based method for selecting ecological indicators for assessing risks to biological diversity from genetically-engineered plants

    DEFF Research Database (Denmark)

    Andow, D. A.; Lövei, Gabor L; Arpaia, Salvatore

    2013-01-01

    -driven, ecologically-based decision-making and provides formal methods for completing a screening level-ERA that can focus ERA on the most significant concerns. The process requires substantial human input but the human capital is available in most countries and regions of the world.......The environmental risks associated with genetically-engineered (GE) organisms have been controversial, and so have the models for the assessment of these risks. We propose an ecologically-based environmental risk assessment (ERA) model that follows the 1998 USEPA guidelines, focusing on potential....... Knowledge about the specific transgene and its possible environmental effects in other countries can be used to assist development of risk hypotheses. (6) The risk hypotheses are ranked using MCDA with criteria related to the severity of the potential risk. The model emphasizes transparent, expert...

  20. Call for Papers--Molecular Plant Breeding (ISSN 1923-8266)

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Molecular Plant Breeding (ISSN 1923-8266, online, http://mpb.sophiapublisher.com/) is an open access and peer reviewed journal, which publishes original research papers involving the transgenic breeding and marker assisted breeding in plants.

  1. Laboratory techniques in plant molecular biology taught with UniformMu insertion alleles of maize

    Science.gov (United States)

    An undergraduate course - Laboratory Techniques in Plant Molecular Biology - was organized around our research application of UniformMu insertion alleles to investigate mitochondrial functions in plant reproduction. The course objectives were to develop students’ laboratory, record keeping, bioinfor...

  2. Evolutionary, behavioural and molecular ecology must meet to achieve long-term conservation goals.

    Science.gov (United States)

    Keogh, J Scott

    2009-09-01

    Founder populations in reintroduction programmes can experience a genetic bottleneck simply because of their small size. The influence of reproductive skew brought on by polygynous or polyandrous mating systems in these populations can exacerbate already difficult conservation genetic problems, such as inbreeding depression and loss of adaptive potential. Without an understanding of reproductive skew in a target species, and the effect it can have on genetic diversity retained over generations, long-term conservation goals will be compromised. In this issue of Molecular Ecology, Miller et al. (2009a) test how founder group size and variance in male reproductive success influence the maintenance of genetic diversity following reintroduction on a long-term scale. They evaluated genetic diversity in two wild populations of the iconic New Zealand tuatara (Fig. 1), which differ greatly in population size and genetic diversity, and compared this to genetic diversity in multiple founder populations sourced from both populations. Population viability analysis on the maintenance of genetic diversity over 400 years (10 generations) demonstrated that while the loss of heterozygosity was low when compared with both source populations (1-14%), the greater the male reproductive skew, the greater the predicted losses of genetic diversity. Importantly however, the loss of genetic diversity was ameliorated after population size exceeded 250 animals, regardless of the level of reproductive skew. This study demonstrates that highly informed conservation decisions could be made when you build on a solid foundation of demographic, natural history and behavioural ecology data. These data, when informed by modern population and genetic analysis, mean that fundamental applied conservation questions (how many animals should make up a founder population?) can be answered accurately and with an eye to the long-term consequences of management decisions.

  3. Ecological Behavior of Linear Alkylbenzene Sulfonate (LAS) in Soil-Plant Systems

    Institute of Scientific and Technical Information of China (English)

    JIA Liang-Qing; OU Zi-Qing; OUYANG Zhi-Yun

    2005-01-01

    More and more linear alkylbenzene sulfonate (LAS) has contaminated the water and soil via pollution discharge,making it important to identify the ecological behavior and toxicity of LAS so as to carry out measures that will reduce its negative effects on the ecosystem. The ecological behavior of LAS, including degradation, migration, and plant uptake,in both soil-paddy rice and soil-soybean systems was studied. Reduction of LAS in pot and field plots followed the first order reaction kinetics with degradation half-lives of 35-50 days with LAS decreasing to very low concentrations after a season of crop growth. Strong migration ability for LAS was found and the breakthrough time in a 1.5 m soil monolith was significantly shortened to 23 days by preferential flow. Leachate volumes of soil-paddy and soil-soybean systems at preferential breakthrough were much different, while the leachate volumes at equilibrium governed by soil adsorption/desorption processes were very similar. Significant uptake of LAS in both paddy rice and soybeans was observed in pot and field experiments (P < 0.05). In aquatic culture, 20 μg mL-1 and above of LAS significantly inhibited the growth of paddy seedlings (P < 0.05). The critical concentration for LAS in soil inhibiting the growth and yield of paddy was 160 μg g-1; when higher, there was a strong negative influence, with decreases in height, spike length,and production; when lower than 80 μg g-1, paddy growth was stimulated. There was little effect of LAS on soybeans.

  4. Molecular and biochemical classification of plant-derived food allergens.

    Science.gov (United States)

    Breiteneder, H; Ebner, C

    2000-07-01

    Molecular biology and biochemical techniques have significantly advanced the knowledge of allergens derived from plant foods. Surprisingly, many of the known plant food allergens are homologous to pathogenesis-related proteins (PRs), proteins that are induced by pathogens, wounding, or certain environmental stresses. PRs have been classified into 14 families. Examples of allergens homologous to PRs include chitinases (PR-3 family) from avocado, banana, and chestnut; antifungal proteins such as the thaumatin-like proteins (PR-5) from cherry and apple; proteins homologous to the major birch pollen allergen Bet v 1 (PR-10) from vegetables and fruits; and lipid transfer proteins (PR-14) from fruits and cereals. Allergens other than PR homologs can be allotted to other well-known protein families such as inhibitors of alpha-amylases and trypsin from cereal seeds, profilins from fruits and vegetables, seed storage proteins from nuts and mustard seeds, and proteases from fruits. As more clinical data and structural information on allergenic molecules becomes available, we may finally be able to answer what characteristics of a molecule are responsible for its allergenicity.

  5. Distribution, Fraction, and Ecological Assessment of Heavy Metals in Sediment-Plant System in Mangrove Forest, South China Sea.

    Science.gov (United States)

    Li, Ruili; Chai, Minwei; Qiu, Guo Yu

    2016-01-01

    Overlying water, sediment, rhizosphere sediment and mangrove seedlings in the Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest.

  6. Molecular mechanisms of cholangiocarcinoma cell inhibition by medicinal plants

    Science.gov (United States)

    Leelawat, Surang; Leelawat, Kawin

    2017-01-01

    Cholangiocarcinoma (CCA) is one of the most common causes of cancer-associated mortality in Thailand. Certain phytochemicals have been demonstrated to modulate apoptotic signaling pathways, which may be targeted for the prevention and treatment of cancer. Therefore, the aim of the present study was to investigate the effect of specific medicinal plants on the inhibition of CCA cell proliferation, and to identify the molecular mechanisms underlying this. A WST-1 cell proliferation assay was performed using an RMCCA1 cell line, and apoptotic signaling pathways were also investigated using a PathScan Stress and Apoptosis Signaling Antibody Array Kit. The cell proliferation assay indicated that extracts from the Phyllanthus emblica fruit pulp (PEf), Phyllanthus emblica seed (PEs), Terminalia chebula fruit pulp (TCf), Terminalia chebula seed (TCs), Areca catechu seed (ACs), Curcuma longa (CL) and Moringa oleifera seed (MOs) exerted anti-proliferative activity in RMCCA1 cells. In addition, the PathScan assay revealed that certain pro-apoptotic molecules, including caspase-3, poly (ADP-ribose) polymerase, checkpoint kinase 2 and tumor protein 53, exhibited increased activity in RMCCA1 cells treated with the aforementioned selected plant extracts, with the exception of PEf. The mitogen-activated protein kinase (MAPK) pathways (including ERK1/2 and p38 MAPK) expression level was significantly increased in RMCCA1 cells pre-treated with extracts of PEs, TCf, CL and MOs. The activation of protein kinase B (Akt) was significantly demonstrated in RMCCA1 cells pre-treated with extracts of TCf, ACs and MOs. In summary, the present study demonstrated that extracts of PEs, TCf, TCs, ACs, CL and MOs exhibited anti-proliferative effects in CCA cells by inducing pro-apoptotic signals and modulating signal transduction molecules. Further studies in vivo are required to demonstrate the potential applications of specific plant extracts for the treatment of human cancer.

  7. Ecology's cruel dilemma, phylogenetic trait evolution and the assembly of Serengeti plant communities

    NARCIS (Netherlands)

    Anderson, T. Michael; Shaw, Joey; Olff, Han; Lortie, Christopher

    2011-01-01

    P>1. Ecologists debate the importance of neutral versus niche-based explanations for patterns of species coexistence and whether small-scale data can inform ecological understanding of communities, referred to by McNaughton [Ecological Monographs, 1983, 53, 291] as 'ecology's cruel dilemma.' Researc

  8. Ecology's cruel dilemma, phylogenetic trait evolution and the assembly of Serengeti plant communities

    NARCIS (Netherlands)

    Anderson, T. Michael; Shaw, Joey; Olff, Han; Lortie, Christopher

    P>1. Ecologists debate the importance of neutral versus niche-based explanations for patterns of species coexistence and whether small-scale data can inform ecological understanding of communities, referred to by McNaughton [Ecological Monographs, 1983, 53, 291] as 'ecology's cruel dilemma.'

  9. Ecological studies on the American alligator (Alligator mississippiensis) on the Savannah River Plant. Comprehensive Cooling Water Study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Seigel, R.A.; Brandt, L.A.; Knight, J.L.; Novak, S.S.

    1986-06-01

    The American alligator (Alligator mississippiensis) is the largest vertebrate of the Savannah River Plant (SRP), reaching a maximum length of 3.7 meters (12 feet) and weighing up to 175 kg (385 pounds). Currently, populations in coastal South Carolina are considered Threatened, whereas populations in inland areas (such as the SRP) are still Endangered. Because of their legal status and economic and ecological importance, it is important to determine the environmental impacts of SRP operations on the local alligator population. The major objectives under the Endangered Species Program of the Comprehensive Cooling Water Study (CCWS) were as follows: (1) document and compare the present status and distribution of alligators on the SRP to previous surveys, in order to determine long-term changes in population abundance; (2) establish baseline population and ecological parameters of the Steel Creek population so that the ecological effects of L-Reactor operations can be determined, and (3) conduct ecological research on the immediate impacts of thermal effluents on American alligators. Gladden et al., (1985) summarized data on previous population surveys, temporal changes in the Par Pond population, preliminary results of the Steel Creek surveys and Savannah River Ecology Laboratory (SREL) research on the effects of thermal effluents. This report summarizes the current status of the SRP population, presents data on the abundance, movement patterns and activity cycles of the Steel Creek population, and presents additional data on the effect of cooling water releases on alligator ecology and behavior.

  10. Plant physiological ecology and the global changes Ecofisiologia vegetal e as mudanças globais

    Directory of Open Access Journals (Sweden)

    João Paulo Rodrigues Alves Delfino Barbosa

    2012-06-01

    Full Text Available The global changes are marked by alteration on the normal patterns of important biochemical and biophysical processes of the Earth. However, the real effects as well as the feedbacks of the global changes over vegetation are still unclear. Part of this uncertainty can be attributed to the inattention of stakeholders and scientists towards vegetation and its complex interrelations with the environment, which drive plant physiological processes in different space-time scales. Notwithstanding, some key subjects of the global changes could be better elucidated with a more plant physiological ecology approach. We discuss some issues related to this topic, going through some limitations of approaching vegetation as a static component of the biosphere as the other sub-systems of the Earth-system change. With this perspective, this review is an initial reflection towards the assessment of the role and place of vegetation structure and function in the global changes context. We reviewed the Earth-system and global changes terminology; attempted to illustrate key plant physiological ecology researches themes in the global changes context; consider approaching plants as complex systems in order to adequately quantify systems characteristics as sensibility, homeostasis, and vulnerability. Moreover, we propose insights that would allow vegetation studies and scaling procedures in the context of the Earth-system. We hope this review will assist researchers on their strategy to identify, understand and anticipate the potential effects of global changes over the most vulnerable vegetation processes from the leaf to the global levels.As mudanças globais englobam importantes alterações nos padrões normais de processos bioquímicos e biofísicos da Terra. Os reais efeitos e retroalimentações das mudanças globais sobre a vegetação ainda são incertos. Parte das incertezas pode ser atribuída à falta de atenção de cientistas e políticos para a vegeta

  11. Ecology of rare water plant communities in lakes of north-eastern Poland

    Directory of Open Access Journals (Sweden)

    Ewa Jabłońska

    2012-03-01

    Full Text Available Habitat studies were conducted on three rare plant communities dominated by Nuphar pumila, Nymphaea candida and Hydrilla verticillata in lakes of north-eastern Poland. The comparison of habitat properties of these three types of phytocoenoses with those of Nuphar lutea common in the area under study was also performed. It was demonstrated that the plant communities studied were ecologically distinct. The habitats of the phytocoenoses of N. pumila differed most significantly from those of the other phytocoenoses. They often inhabited softer waters poor in Mg2+, dissolved SiO2, but rich in total Fe, PO43−, NO3−, and were associated with acidic substrates containing lower levels of Ca2+ and Na+, but greater amounts of total Fe and NO3−. The differences in the habitats of H. verticillata and N. candida phytocoenoses were most pronounced in the case of four properties of water: Na+, K+, Cl−, and Mg+. Their values were lower in waters of the H. verticillata phytocoenoses. The habitats of all the three types of rare phytocoenoses differed considerably from those of N. lutea. The most significant differences were found between the N. lutea and N. pumila phytocoenoses and the smallest differences were between the patches of N. lutea and N. candida. The properties of water were more important in differentiating the habitats of the phytocoenoses studied than the substrate properties. Due to alkalization and increase in water hardness in the lakes studied the stands of N. pumila are among the most threatened. The patches of N. candida and H. verticillata, which occur in waters with a wider range of hardness and tolerating a slight increase in trophy, can still continue to persist in the lakes for a long time.

  12. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2009-30 September 2009.

    Science.gov (United States)

    Abdoullaye, Doukary; Acevedo, I; Adebayo, Abisola A; Behrmann-Godel, Jasminca; Benjamin, R C; Bock, Dan G; Born, Céline; Brouat, Carine; Caccone, Adalgisa; Cao, Ling-Zhen; Casado-Amezúa, P; Catanéo, J; Correa-Ramirez, M M; Cristescu, Melania E; Dobigny, Gauthier; Egbosimba, Emmanuel E; Etchberger, Lianna K; Fan, Bin; Fields, Peter D; Forcioli, D; Furla, P; Garcia de Leon, F J; García-Jiménez, R; Gauthier, Philippe; Gergs, René; González, Clementina; Granjon, Laurent; Gutiérrez-Rodríguez, Carla; Havill, Nathan P; Helsen, P; Hether, Tyler D; Hoffman, Eric A; Hu, Xiangyang; Ingvarsson, Pär K; Ishizaki, S; Ji, Heyi; Ji, X S; Jimenez, M L; Kapil, R; Karban, R; Keller, Stephen R; Kubota, S; Li, Shuzhen; Li, Wansha; Lim, Douglas D; Lin, Haoran; Liu, Xiaochun; Luo, Yayan; Machordom, A; Martin, Andrew P; Matthysen, E; Mazzella, Maxwell N; McGeoch, Mélodie A; Meng, Zining; Nishizawa, M; O'Brien, Patricia; Ohara, M; Ornelas, Juan Francisco; Ortu, M F; Pedersen, Amy B; Preston, L; Ren, Qin; Rothhaupt, Karl-Otto; Sackett, Loren C; Sang, Qing; Sawyer, G M; Shiojiri, K; Taylor, Douglas R; Van Dongen, S; Van Vuuren, Bettine Jansen; Vandewoestijne, S; Wang, H; Wang, J T; Wang, L E; Xu, Xiang-Li; Yang, Guang; Yang, Yongping; Zeng, Y Q; Zhang, Qing-Wen; Zhang, Yongping; Zhao, Y; Zhou, Yan

    2010-01-01

    This article documents the addition of 238 microsatellite marker loci and 72 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Adelges tsugae, Artemisia tridentata, Astroides calycularis, Azorella selago, Botryllus schlosseri, Botrylloides violaceus, Cardiocrinum cordatum var. glehnii, Campylopterus curvipennis, Colocasia esculenta, Cynomys ludovicianus, Cynomys leucurus, Cynomys gunnisoni, Epinephelus coioides, Eunicella singularis, Gammarus pulex, Homoeosoma nebulella, Hyla squirella, Lateolabrax japonicus, Mastomys erythroleucus, Pararge aegeria, Pardosa sierra, Phoenicopterus ruber ruber and Silene latifolia. These loci were cross-tested on the following species: Adelges abietis, Adelges cooleyi, Adelges piceae, Pineus pini, Pineus strobi, Tubastrea micrantha, three other Tubastrea species, Botrylloides fuscus, Botrylloides simodensis, Campylopterus hemileucurus, Campylopterus rufus, Campylopterus largipennis, Campylopterus villaviscensio, Phaethornis longuemareus, Florisuga mellivora, Lampornis amethystinus, Amazilia cyanocephala, Archilochus colubris, Epinephelus lanceolatus, Epinephelus fuscoguttatus, Symbiodinium temperate-A clade, Gammarus fossarum, Gammarus roeselii, Dikerogammarus villosus and Limnomysis benedeni. This article also documents the addition of 72 sequencing primer pairs and 52 allele specific primers for Neophocaena phocaenoides. © 2009 Blackwell Publishing Ltd.

  13. Molecular, biochemical, and physiological approaches for understanding the ecology of denitrification.

    Science.gov (United States)

    Goregues, C M; Michotey, V D; Bonin, P C

    2005-02-01

    One of the major challenges in microbial ecology for the future is to establish links between structural and functional biodiversity. This is particularly difficult when one is interested in a phylogenetically diversified function such as denitrification. The data banks are very rich in functional gene sequences (nirS in this study), but most of them were obtained from not yet cultivated bacteria, and thus must be supplemented by sequences of organisms from the environment for which we could associate a taxonomic position and physiological characteristics. Combined analysis including molecular (16S-rRNA or nirS genes), physiological, and biochemical approaches was carried out on a bacterial set of 89 strains isolated from marine sediment. The denaturing gradient gel electrophoresis (DGGE) technique was successfully applied on unclamped polymerase chain reaction (PCR) products of nirS genes to compare the picture of the biodiversity obtained with 16S rRNA and nirS genes. The diversity of nirS genes and denitrifier characteristics were found within several of the 16S rDNA phylotypes. In contrast, the nirS phylotypes were no diverse both with respect to 16S rDNA and to physiology and biochemistry of denitrification. Sequences of the nirS PCR products were very close to marine environmental clones and were analyzed within the same phylogenetic tree.

  14. Permanent genetic resources added to Molecular Ecology Resources Database 1 August 2011-30 September 2011.

    Science.gov (United States)

    A'Hara, S W; Amouroux, P; Argo, Emily E; Avand-Faghih, A; Barat, Ashoktaru; Barbieri, Luiz; Bert, Theresa M; Blatrix, R; Blin, Aurélie; Bouktila, D; Broome, A; Burban, C; Capdevielle-Dulac, C; Casse, N; Chandra, Suresh; Cho, Kyung Jin; Cottrell, J E; Crawford, Charles R; Davis, Michelle C; Delatte, H; Desneux, Nicolas; Djieto-Lordon, C; Dubois, M P; El-Mergawy, R A A M; Gallardo-Escárate, C; Garcia, M; Gardiner, Mary M; Guillemaud, Thomas; Haye, P A; Hellemans, B; Hinrichsen, P; Jeon, Ji Hyun; Kerdelhué, C; Kharrat, I; Kim, Ki Hwan; Kim, Yong Yul; Kwan, Ye-Seul; Labbe, Ellen M; LaHood, Eric; Lee, Kyung Mi; Lee, Wan-Ok; Lee, Yat-Hung; Legoff, Isabelle; Li, H; Lin, Chung-Ping; Liu, S S; Liu, Y G; Long, D; Maes, G E; Magnoux, E; Mahanta, Prabin Chandra; Makni, H; Makni, M; Malausa, Thibaut; Matura, Rakesh; McKey, D; McMillen-Jackson, Anne L; Méndez, M A; Mezghani-Khemakhem, M; Michel, Andy P; Paul, Moran; Muriel-Cunha, Janice; Nibouche, S; Normand, F; Palkovacs, Eric P; Pande, Veena; Parmentier, K; Peccoud, J; Piatscheck, F; Puchulutegui, Cecilia; Ramos, R; Ravest, G; Richner, Heinz; Robbens, J; Rochat, D; Rousselet, J; Saladin, Verena; Sauve, M; Schlei, Ora; Schultz, Thomas F; Scobie, A R; Segovia, N I; Seyoum, Seifu; Silvain, J-F; Tabone, Elisabeth; Van Houdt, J K J; Vandamme, S G; Volckaert, F A M; Wenburg, John; Willis, Theodore V; Won, Yong-Jin; Ye, N H; Zhang, W; Zhang, Y X

    2012-01-01

    This article documents the addition of 299 microsatellite marker loci and nine pairs of single-nucleotide polymorphism (SNP) EPIC primers to the Molecular Ecology Resources (MER) Database. Loci were developed for the following species: Alosa pseudoharengus, Alosa aestivalis, Aphis spiraecola, Argopecten purpuratus, Coreoleuciscus splendidus, Garra gotyla, Hippodamia convergens, Linnaea borealis, Menippe mercenaria, Menippe adina, Parus major, Pinus densiflora, Portunus trituberculatus, Procontarinia mangiferae, Rhynchophorus ferrugineus, Schizothorax richardsonii, Scophthalmus rhombus, Tetraponera aethiops, Thaumetopoea pityocampa, Tuta absoluta and Ugni molinae. These loci were cross-tested on the following species: Barilius bendelisis, Chiromantes haematocheir, Eriocheir sinensis, Eucalyptus camaldulensis, Eucalyptus cladocalix, Eucalyptus globulus, Garra litaninsis vishwanath, Garra para lissorhynchus, Guindilla trinervis, Hemigrapsus sanguineus, Luma chequen. Guayaba, Myrceugenia colchagüensis, Myrceugenia correifolia, Myrceugenia exsucca, Parasesarma plicatum, Parus major, Portunus pelagicus, Psidium guayaba, Schizothorax richardsonii, Scophthalmus maximus, Tetraponera latifrons, Thaumetopoea bonjeani, Thaumetopoea ispartensis, Thaumetopoea libanotica, Thaumetopoea pinivora, Thaumetopoea pityocampa ena clade, Thaumetopoea solitaria, Thaumetopoea wilkinsoni and Tor putitora. This article also documents the addition of nine EPIC primer pairs for Euphaea decorata, Euphaea formosa, Euphaea ornata and Euphaea yayeyamana. © 2011 Blackwell Publishing Ltd.

  15. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 May 2009-31 July 2009.

    Science.gov (United States)

    Almany, Glenn R; DE Arruda, Maurício P; Arthofer, Wolfgang; Atallah, Z K; Beissinger, Steven R; Berumen, Michael L; Bogdanowicz, S M; Brown, S D; Bruford, Michael W; Burdine, C; Busch, Jeremiah W; Campbell, Nathan R; Carey, D; Carstens, Bryan C; Chu, K H; Cubeta, Marc A; Cuda, J P; Cui, Zhaoxia; Datnoff, L E; Dávila, J A; Davis, Emily S; Davis, R M; Diekmann, Onno E; Eizirik, Eduardo; Fargallo, J A; Fernandes, Fabiano; Fukuda, Hideo; Gale, L R; Gallagher, Elizabeth; Gao, Yongqiang; Girard, Philippe; Godhe, Anna; Gonçalves, Evonnildo C; Gouveia, Licinia; Grajczyk, Amber M; Grose, M J; Gu, Zhifeng; Halldén, Christer; Härnström, Karolina; Hemmingsen, Amanda H; Holmes, Gerald; Huang, C H; Huang, Chuan-Chin; Hudman, S P; Jones, Geoffrey P; Kanetis, Loukas; Karunasagar, Iddya; Karunasagar, Indrani; Keyghobadi, Nusha; Klosterman, S J; Klug, Page E; Koch, J; Koopman, Margaret M; Köppler, Kirsten; Koshimizu, Eriko; Krumböck, Susanne; Kubisiak, T; Landis, J B; Lasta, Mario L; Lee, Chow-Yang; Li, Qianqian; Li, Shou-Hsien; Lin, Rong-Chien; Liu, M; Liu, Na; Liu, W C; Liu, Yuan; Loiseau, A; Luan, Weisha; Maruthachalam, K K; McCormick, Helen M; Mellick, Rohan; Monnahan, P J; Morielle-Versute, Eliana; Murray, Tomás E; Narum, Shawn R; Neufeld, Katie; De Nova, P J G; Ojiambo, Peter S; Okamoto, Nobuaki; Othman, Ahmad Sofiman; Overholt, W A; Pardini, Renata; Paterson, Ian G; Patty, Olivia A; Paxton, Robert J; Planes, Serge; Porter, Carolyn; Pratchett, Morgan S; Püttker, Thomas; Rasic, Gordana; Rasool, Bilal; Rey, O; Riegler, Markus; Riehl, C; Roberts, John M K; Roberts, P D; Rochel, Elisabeth; Roe, Kevin J; Rossetto, Maurizio; Ruzzante, Daniel E; Sakamoto, Takashi; Saravanan, V; Sarturi, Cladinara Roberts; Schmidt, Anke; Schneider, Maria Paula Cruz; Schuler, Hannes; Serb, Jeanne M; Serrão, Ester T A; Shi, Yaohua; Silva, Artur; Sin, Y W; Sommer, Simone; Stauffer, Christian; Strüssmann, Carlos Augusto; Subbarao, K V; Syms, Craig; Tan, Feng; Tejedor, Eugenio Daniel; Thorrold, Simon R; Trigiano, Robert N; Trucco, María I; Tsuchiya-Jerep, Mirian Tieko Nunes; Vergara, P; Van De Vliet, Mirjam S; Wadl, Phillip A; Wang, Aimin; Wang, Hongxia; Wang, R X; Wang, Xinwang; Wang, Yan; Weeks, Andrew R; Wei, Fuwen; Werner, William J; Wiley, E O; Williams, D A; Wilkins, Richard J; Wisely, Samantha M; With, Kimberly A; Wu, Danhua; Yao, Cheng-Te; Yau, Cynthia; Yeap, Beng-Keok; Zhai, Bao-Ping; Zhan, Xiangjiang; Zhang, Guo-Yan; Zhang, S Y; Zhao, Ru; Zhu, Lifeng

    2009-11-01

    This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.

  16. Permanent Genetic Resources added to Molecular Ecology Resources database 1 January 2009-30 April 2009.

    Science.gov (United States)

    Abercrombie, L G; Anderson, C M; Baldwin, B G; Bang, I C; Beldade, R; Bernardi, G; Boubou, A; Branca, A; Bretagnolle, F; Bruford, M W; Buonamici, A; Burnett, R K; Canal, D; Cárdenas, H; Caullet, C; Chen, S Y; Chun, Y J; Cossu, C; Crane, C F; Cros-Arteil, S; Cudney-Bueno, R; Danti, R; Dávila, J A; Della Rocca, G; Dobata, S; Dunkle, L D; Dupas, S; Faure, N; Ferrero, M E; Fumanal, B; Gigot, G; González, I; Goodwin, S B; Groth, D; Hardesty, B D; Hasegawa, E; Hoffman, E A; Hou, M L; Jamsari, A F J; Ji, H J; Johnson, D H; Joseph, L; Justy, F; Kang, E J; Kaufmann, B; Kim, K S; Kim, W J; Koehler, A V; Laitung, B; Latch, P; Liu, Y D; Manjerovic, M B; Martel, E; Metcalfe, S S; Miller, J N; Midgley, J J; Migeon, A; Moore, A J; Moore, W L; Morris, V R F; Navajas, M; Navia, D; Neel, M C; De Nova, P J G; Olivieri, I; Omura, T; Othman, A S; Oudot-Canaff, J; Panthee, D R; Parkinson, C L; Patimah, I; Pérez-Galindo, C A; Pettengill, J B; Pfautsch, S; Piola, F; Potti, J; Poulin, R; Raimondi, P T; Rinehart, T A; Ruzainah, A; Sarver, S K; Scheffler, B E; Schneider, A R R; Silvain, J F; Siti Azizah, M N; Springer, Y P; Stewart, C N; Sun, W; Tiedemann, R; Tsuji, K; Trigiano, R N; Vendramin, G G; Wadl, P A; Wang, L; Wang, X; Watanabe, K; Waterman, J M; Weisser, W W; Westcott, D A; Wiesner, K R; Xu, X F; Yaegashi, S; Yuan, J S

    2009-09-01

    This article documents the addition of 283 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Agalinis acuta; Ambrosia artemisiifolia; Berula erecta; Casuarius casuarius; Cercospora zeae-maydis; Chorthippus parallelus; Conyza canadensis; Cotesia sesamiae; Epinephelus acanthistius; Ficedula hypoleuca; Grindelia hirsutula; Guadua angustifolia; Leucadendron rubrum; Maritrema novaezealandensis; Meretrix meretrix; Nilaparvata lugens; Oxyeleotris marmoratus; Phoxinus neogaeus; Pristomyrmex punctatus; Pseudobagrus brevicorpus; Seiridium cardinale; Stenopsyche marmorata; Tetranychus evansi and Xerus inauris. These loci were cross-tested on the following species: Agalinis decemloba; Agalinis tenella; Agalinis obtusifolia; Agalinis setacea; Agalinis skinneriana; Cercospora zeina; Cercospora kikuchii; Cercospora sorghi; Mycosphaerella graminicola; Setosphaeria turcica; Magnaporthe oryzae; Cotesia flavipes; Cotesia marginiventris; Grindelia Xpaludosa; Grindelia chiloensis; Grindelia fastigiata; Grindelia lanceolata; Grindelia squarrosa; Leucadendron coniferum; Leucadendron salicifolium; Leucadendron tinctum; Leucadendron meridianum; Laodelphax striatellus; Sogatella furcifera; Phoxinus eos; Phoxinus rigidus; Phoxinus brevispinosus; Phoxinus bicolor; Tetranychus urticae; Tetranychus turkestani; Tetranychus ludeni; Tetranychus neocaledonicus; Tetranychus amicus; Amphitetranychus viennensis; Eotetranychus rubiphilus; Eotetranychus tiliarium; Oligonychus perseae; Panonychus citri; Bryobia rubrioculus; Schizonobia bundi; Petrobia harti; Xerus princeps; Spermophilus tridecemlineatus and Sciurus carolinensis.

  17. A note on the use of multiple linear regression in molecular ecology.

    Science.gov (United States)

    Frasier, Timothy R

    2016-03-01

    Multiple linear regression analyses (also often referred to as generalized linear models--GLMs, or generalized linear mixed models--GLMMs) are widely used in the analysis of data in molecular ecology, often to assess the relative effects of genetic characteristics on individual fitness or traits, or how environmental characteristics influence patterns of genetic differentiation. However, the coefficients resulting from multiple regression analyses are sometimes misinterpreted, which can lead to incorrect interpretations and conclusions within individual studies, and can propagate to wider-spread errors in the general understanding of a topic. The primary issue revolves around the interpretation of coefficients for independent variables when interaction terms are also included in the analyses. In this scenario, the coefficients associated with each independent variable are often interpreted as the independent effect of each predictor variable on the predicted variable. However, this interpretation is incorrect. The correct interpretation is that these coefficients represent the effect of each predictor variable on the predicted variable when all other predictor variables are zero. This difference may sound subtle, but the ramifications cannot be overstated. Here, my goals are to raise awareness of this issue, to demonstrate and emphasize the problems that can result and to provide alternative approaches for obtaining the desired information.

  18. Molecular systematics, phylogeny and ecology of anisakid nematodes of the genus Anisakis Dujardin, 1845: an update

    Directory of Open Access Journals (Sweden)

    Mattiucci S.

    2006-06-01

    Full Text Available Advances in the taxonomy and ecological aspects concerning geographical distribution and hosts of the so far genetically recognised nine taxa of the nematodes belonging to genus Anisakis (i.e. A. pegreffii, A. simplex s.s., A. simplex C, A. typica, A. ziphidarum, Anisakis sp., A. physeteris, A. brevispiculata and A. paggiae are here summarized. Genetic differentiation and phylogenetic relationships inferred from allozyme (20 enzyme-loci and mitochondrial (sequences of cox-2 gene markers, are revised and compared. The two genetic analyses are congruent in depicting their phylogenetic relationships. Two main clusters are showed to exist in the obtained trees, one encompassing the species A. pegreffii, A. simplex s.s., A. simplex C, A. typica, A. ziphidarum and Anisakis sp.; while, the second including A. physeteris, A. brevispiculata and A. paggiae. The existence of two clades is also supported by their morphological differentiation in adult and larval morphology. Comparison of phylogenetic relationships among Anisakis spp. with those currently available for their cetacean definitive hosts suggests parallelism between host and parasite phylogenetic tree topologies. Preliminary data for reconstruction of a possible co-evolutionary scenario between cetacean hosts and their Anisakis endoparasites suggests that cospeciation and host-switching events may have accompanied the evolution of this group of parasites. Finally, genetic/molecular markers for the identification of the so far genetically recognized taxa of Anisakis at any life-stage and both sexes were given also in relation to human anisakiosis is discussed.

  19. Mass Spectrometry Based Molecular 3D-Cartography of Plant Metabolites.

    Science.gov (United States)

    Floros, Dimitrios J; Petras, Daniel; Kapono, Clifford A; Melnik, Alexey V; Ling, Tie-Jun; Knight, Rob; Dorrestein, Pieter C

    2017-01-01

    Plants play an essential part in global carbon fixing through photosynthesis and are the primary food and energy source for humans. Understanding them thoroughly is therefore of highest interest for humanity. Advances in DNA and RNA sequencing and in protein and metabolite analysis allow the systematic description of plant composition at the molecular level. With imaging mass spectrometry, we can now add a spatial level, typically in the micrometer-to-centimeter range, to their compositions, essential for a detailed molecular understanding. Here we present an LC-MS based approach for 3D plant imaging, which is scalable and allows the analysis of entire plants. We applied this approach in a case study to pepper and tomato plants. Together with MS/MS spectra library matching and spectral networking, this non-targeted workflow provides the highest sensitivity and selectivity for the molecular annotations and imaging of plants, laying the foundation for studies of plant metabolism and plant-environment interactions.

  20. Plant-parasite coevolution: bridging the gap between genetics and ecology.

    Science.gov (United States)

    Brown, James K M; Tellier, Aurélien

    2011-01-01

    We review current ideas about coevolution of plants and parasites, particularly processes that generate genetic diversity. Frequencies of host resistance and parasite virulence alleles that interact in gene-for-gene (GFG) relationships coevolve in the familiar boom-and-bust cycle, in which resistance is selected when virulence is rare, and virulence is selected when resistance is common. The cycle can result in stable polymorphism when diverse ecological and epidemiological factors cause negative direct frequency-dependent selection (ndFDS) on host resistance, parasite virulence, or both, such that the benefit of a trait to fitness declines as its frequency increases. Polymorphism can also be stabilized by overdominance, when heterozygous hosts have greater resistance than homozygotes to diverse pathogens. Genetic diversity can also persist in the form of statistical polymorphism, sustained by random processes acting on gene frequencies and population size. Stable polymorphism allows alleles to be long-lived and genetic variation to be detectable in natural populations. In agriculture, many of the factors promoting stability in host-parasite interactions have been lost, leading to arms races of host defenses and parasite effectors. Copyright © 2011 by Annual Reviews. All rights reserved.

  1. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China.

    Science.gov (United States)

    Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and PAH16 was >ESL at 78.1% of the soil sampling stations, and could induce biological effects in mammals. The Bapeq concentrations posed a potential carcinogenic risk to humans. Further risk management and control of soil PAHs in these agricultural soils is required to ensure the safety of the biocoenosis and human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Molecular phylogeography of the Andean alpine plant, Gunnera magellanica

    Science.gov (United States)

    Shimizu, M.; Fujii, N.; Ito, M.; Asakawa, T.; Nishida, H.; Suyama, C.; Ueda, K.

    2015-12-01

    To clarify the evolutionary history of Gunnera magellanica (Gunneraceae), an alpine plant of the Andes mountains, we performed molecular phylogeographic analyses based on the sequences of an internal transcribed spacer (ITS) of nuclear ribosomal DNA and four non-coding regions (trnH-psbA, trnL-trnF, atpB-rbcL, rpl16 intron) of chloroplast DNA. We investigated 3, 4, 4 and 11 populations in, Ecuador, Bolivia, Argentina, and Chile, respectively, and detected six ITS genotypes (Types A-F) in G. magellanica. Five genotypes (Types A-E) were observed in the northern Andes population (Ecuador and Bolivia); only one ITS genotype (Type F) was observed in the southern Andes population (Chile and Argentina). Phylogenetic analyses showed that the ITS genotypes of the northern and southern Andes populations form different clades with high bootstrap probability. Furthermore, network analysis, analysis of molecular variance, and spatial analysis of molecular variance showed that there were two major clusters (the northern and southern Andes populations) in this species. Furthermore, in chloroplast DNA analysis, three major clades (northern Andes, Chillan, and southern Andes) were inferred from phylogenetic analyses using four non-coding regions, a finding that was supported by the above three types of analysis. The Chillan clade is the northernmost population in the southern Andes populations. With the exception of the Chillan clade (Chillan population), results of nuclear DNA and chloroplast DNA analyses were consistent. Both markers showed that the northern and southern Andes populations of G. magellanica were genetically different from each other. This type of clear phylogeographical structure was supported by PERMUT analysis according to Pons & Petit (1995, 1996). Moreover, based on our preliminary estimation that is based on the ITS sequences, the northern and southern Andes clades diverged ~0.63-3 million years ago, during a period of upheaval in the Andes. This suggests

  3. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus

    Directory of Open Access Journals (Sweden)

    Karolina Oszust

    2014-06-01

    Full Text Available The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential. Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a ecological based on the use of probiotic preparations and organic fertilization (b conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP of PCR ammonia monooxygenase α-subunit (amoA gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application.

  4. High molecular weight plant heteropolysaccharides stimulate fibroblasts but inhibit keratinocytes.

    Science.gov (United States)

    Shahbuddin, Munira; Shahbuddin, Dahlia; Bullock, Anthony J; Ibrahim, Halijah; Rimmer, Stephen; MacNeil, Sheila

    2013-06-28

    Konjac glucomannan (KGM) is a natural polysaccharide of β(1-4)-D-glucomannopyranosyl backbone of D-mannose and D-glucose derived from the tuber of Amorphophallus konjac C. Koch. KGM has been reported to have a wide range of activities including wound healing. In this study we examined KGM extracts prepared from five plant species, (Amorphophallus konjac Koch, Amorphophallus oncophyllus, Amorphophallus prainii, Amorphophallus paeoniifolius and Amorphophallus elegans) for their effects on cultured human keratinocytes and fibroblasts. Extracts from A. konjac Koch, A. oncophyllus and A. prainii (but not from A. paeoniifolius or A. elegans) stimulated fibroblast proliferation both in the absence and presence of serum. However, these materials inhibited keratinocyte proliferation. The fibroblast stimulatory activity was associated with high molecular weight fractions of KGM and was lost following ethanol extraction or enzyme digestion with β-mannanase. It was also reduced by the addition of concanavalin A but not mannose suggesting that these heteropolysaccharides are acting on lectins but not via receptors specific to mannose. The most dramatic effect of KGM was seen in its ability to support fibroblasts for 3weeks under conditions of deliberate media starvation. This effect did not extend to supporting keratinocytes under conditions of media starvation but KGM did significantly help support adipose derived stem cells under media starvation conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Ecological profiles of wetland plant species in the northern Apennines (N. Italy

    Directory of Open Access Journals (Sweden)

    Marcello TOMASELLI

    2003-02-01

    Full Text Available Eighteen selected species occurring in the wetlands of the northern Apennines were studied by the ecological profile method. By this method, it is possible to identify the ecological factors mostly influencing species distribution within a particular vegetation. Moreover, it is possible to evaluate both ecological amplitude and ecological preferences of species. Ecological profiles were built for three factors (altitude, pH and electrical conductivity from a data set of 265 phytosociological relevés, used for altitude, and from a set of 92 measures, carried out in selected sites, for idrochemical variables. By numerical classification, based on chord distance and minimum variance, the ecological species groups for each factor were individuated. Subsequently, they were ordered by correspondence analysis for detecting relationships between ecological groups and classes of factors. By applying a goodness-of-fit test to ecological profiles, the species significantly deviating from uniformity were detected. They can be regarded as indicators for the corresponding ecological factor. We found seven indicator species for altitude (Carex nigra, C. rostrata, Juncus filiformis, J. alpino-articulatus, Eriophorum latifolium, E. angustifolium and Warnstorfia exannulata, four indicator species for electrical conductivity (Campylium stellatum, Carex tumidicarpa, Eriophorum latifolium and Juncus alpino-articulatus and one indicator species for pH (Sphagnum capillifolium. The ecological profiles of the wetland species in the northern Apennines were compared with those reported in literature for the same species from the Alps (namely Dolomites. In this way, a certain degree of ecological shift in several wetland species of the northern Apennines was documented. For altitude, it is possible to explain the shift considering the reduced elevational amplitude of northern Apennine wetlands with respect to those of the Alps. For pH, Sphagnum capillifolium occurs in

  6. Distribution, fraction, and ecological risk assesment of heavy metals in sediment-plant system in mangrove forest, South China Sea

    Science.gov (United States)

    LI, R.; Shen, X.; Li, Y. H.; Chai, M. W.; Qiu, G. Y.

    2015-12-01

    Overlying water, sediment, rhizosphere sediment and mangrove seedlings in Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. The RAC values of heavy metals indicated that heavy metals have posed a considerable ecological risk to the biota, especially for Cd. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest.

  7. Molecular communications between plant heat shock responses and disease resistance.

    Science.gov (United States)

    Lee, Jae-Hoon; Yun, Hye Sup; Kwon, Chian

    2012-08-01

    As sessile, plants are continuously exposed to potential dangers including various abiotic stresses and pathogen attack. Although most studies focus on plant responses under an ideal condition to a specific stimulus, plants in nature must cope with a variety of stimuli at the same time. This indicates that it is critical for plants to fine-control distinct signaling pathways temporally and spatially for simultaneous and effective responses to various stresses. Global warming is currently a big issue threatening the future of humans. Reponses to high temperature affect many physiological processes in plants including growth and disease resistance, resulting in decrease of crop yield. Although plant heat stress and defense responses share important mediators such as calcium ions and heat shock proteins, it is thought that high temperature generally suppresses plant immunity. We therefore specifically discuss on interactions between plant heat and defense responses in this review hopefully for an integrated understanding of these responses in plants.

  8. RNA Editing and Its Molecular Mechanism in Plant Organelles

    OpenAIRE

    2016-01-01

    RNA editing by cytidine (C) to uridine (U) conversions is widespread in plant mitochondria and chloroplasts. In some plant taxa, “reverse” U-to-C editing also occurs. However, to date, no instance of RNA editing has yet been reported in green algae and the complex thalloid liverworts. RNA editing may have evolved in early land plants 450 million years ago. However, in some plant species, including the liverwort, Marchantia polymorpha, editing may have been lost during evolution. Most RNA edit...

  9. Molecular biology of Lea genes of higher plants

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains our progress to date in determining the function of the D-7 Lea proteins in cotton embryos. We have completely sequenced the D-7 gene and established {ital E. coli} transformants which synthesize reasonable amounts of the D-7 protein. Two-dimensional electrophoresis was required to assay fractions for D-7 protein during purification to homogeneity, since D-7 has no known enzymatic activity, contains no Trp, and little Phe or Tyr, and {ital E. coli} has several proteins of similar molecular weight to D-7. Purified D-7 was used to generate monospecific antibodies which are being used for determination of the cellular distribution of D-7, and also for exact quantitation of D-7 in late-stage cotton embryos. Computerized modelling of D-7 has shown similarities to proteins with a coiled-coil structure, but fitting D-7 to this structure resulted in a violation of the handedness rule. If the pitch of the helix is changed from 3.6 to 3.667, however, a three dimensional structure (not a coiled coil) is generated which has overall energetics of formation nearly as favorable as the traditional {alpha} helix. The driving force for the change in pitch is proposed to result from favorable energetics of dimerization. Preliminary evidence indicates that D-7 does indeed dimerize in solution. Future experiments will determine the exact 3D structure of D-7 and the related protein D-29, as well as test the hypothesis that D-7 and D-29 are involved in mitigating dehydration of embryos and plants through sequestering phosphate or other ions in sufficient quantity to prevent ion precipitation or crystallization. 13 refs., 3 figs. (MHB)

  10. Use of 1 6S rRNA and rpoB Genes as Molecular Markers for Microbial Ecology Studies[white triangle down

    National Research Council Canada - National Science Library

    Rebecca J Case; Yan Boucher; Ingela Dahllöf; Carola Holmström

    2007-01-01

      Several characteristics of the 16S rRNA gene, such as its essential function, ubiquity, and evolutionary properties, have allowed it to become the most commonly used molecular marker in microbial ecology...

  11. Molecular mechanisms governing differential robustness of development and environmental responses in plants

    DEFF Research Database (Denmark)

    Lachowiec, Jennifer; Queitsch, Christine; Kliebenstein, Daniel James

    2016-01-01

    -level and molecular, that modulate robustness, and discusses their implications for the optimization of plant fitness. Robustness in living systems arises from the structure of genetic networks, the specific molecular functions of the underlying genes, and their interactions. This very same network responsible......-genome duplications, tandem gene duplication and hybridization are emerging as major regulators of robustness in development. Despite their obvious implications for plant evolution and plant breeding, the mechanistic underpinnings by which plants modulate precise levels of robustness, plasticity and evolvability...

  12. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes.

    Science.gov (United States)

    Hardoim, Pablo R; van Overbeek, Leonard S; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela

    2015-09-01

    All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.

  13. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes

    Science.gov (United States)

    van Overbeek, Leonard S.; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela

    2015-01-01

    SUMMARY All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions. PMID:26136581

  14. Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants

    Science.gov (United States)

    Widhalm, Joshua R; Rhodes, David

    2016-01-01

    The 1,4-naphthoquinones (1,4-NQs) are a diverse group of natural products found in every kingdom of life. Plants, including many horticultural species, collectively synthesize hundreds of specialized 1,4-NQs with ecological roles in plant–plant (allelopathy), plant–insect and plant–microbe interactions. Numerous horticultural plants producing 1,4-NQs have also served as sources of traditional medicines for hundreds of years. As a result, horticultural species have been at the forefront of many basic studies conducted to understand the metabolism and function of specialized plant 1,4-NQs. Several 1,4-NQ natural products derived from horticultural plants have also emerged as promising scaffolds for developing new drugs. In this review, the current understanding of the core metabolic pathways leading to plant 1,4-NQs is provided with additional emphasis on downstream natural products originating from horticultural species. An overview on the biochemical mechanisms of action, both from an ecological and pharmacological perspective, of 1,4-NQs derived from horticultural plants is also provided. In addition, future directions for improving basic knowledge about plant 1,4-NQ metabolism are discussed. PMID:27688890

  15. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy

    Directory of Open Access Journals (Sweden)

    Fang eCheng

    2015-11-01

    Full Text Available Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment or negative effects (e.g., autotoxicity, soil sickness, or biological invasion. To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory / inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1 Description of management practices related to allelopathy and allelochemicals in agriculture. (2 Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3 Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4 Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on

  16. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy.

    Science.gov (United States)

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  17. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants

    Science.gov (United States)

    Friedman, Jannice; Barrett, Spencer C. H.

    2009-01-01

    Background The rich literature that characterizes the field of pollination biology has focused largely on animal-pollinated plants. At least 10 % of angiosperms are wind pollinated, and this mode of pollination has evolved on multiple occasions among unrelated lineages, and hence this discrepancy in research interest is surprising. Here, the evolution and functional ecology of pollination and mating in wind-pollinated plants are discussed, a theoretical framework for modelling the selection of wind pollination is outlined, and pollen capture and the occurrence of pollen limitation in diverse wind-pollinated herbs are investigated experimentally. Scope and Conclusions Wind pollination may commonly evolve to provide reproductive assurance when pollinators are scarce. Evidence is presented that pollen limitation in wind-pollinated plants may not be as common as it is in animal-pollinated species. The studies of pollen capture in wind-pollinated herbs demonstrate that pollen transfer efficiency is not substantially lower than in animal-pollinated plants as is often assumed. These findings challenge the explanation that the evolution of few ovules in wind-pollinated flowers is associated with low pollen loads. Floral and inflorescence architecture is crucial to pollination and mating because of the aerodynamics of wind pollination. Evidence is provided for the importance of plant height, floral position, and stamen and stigma characteristics in promoting effective pollen dispersal and capture. Finally, it is proposed that geitonogamous selfing may alleviate pollen limitation in many wind-pollinated plants with unisexual flowers. PMID:19218583

  18. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants.

    Science.gov (United States)

    Friedman, Jannice; Barrett, Spencer C H

    2009-06-01

    The rich literature that characterizes the field of pollination biology has focused largely on animal-pollinated plants. At least 10 % of angiosperms are wind pollinated, and this mode of pollination has evolved on multiple occasions among unrelated lineages, and hence this discrepancy in research interest is surprising. Here, the evolution and functional ecology of pollination and mating in wind-pollinated plants are discussed, a theoretical framework for modelling the selection of wind pollination is outlined, and pollen capture and the occurrence of pollen limitation in diverse wind-pollinated herbs are investigated experimentally. Wind pollination may commonly evolve to provide reproductive assurance when pollinators are scarce. Evidence is presented that pollen limitation in wind-pollinated plants may not be as common as it is in animal-pollinated species. The studies of pollen capture in wind-pollinated herbs demonstrate that pollen transfer efficiency is not substantially lower than in animal-pollinated plants as is often assumed. These findings challenge the explanation that the evolution of few ovules in wind-pollinated flowers is associated with low pollen loads. Floral and inflorescence architecture is crucial to pollination and mating because of the aerodynamics of wind pollination. Evidence is provided for the importance of plant height, floral position, and stamen and stigma characteristics in promoting effective pollen dispersal and capture. Finally, it is proposed that geitonogamous selfing may alleviate pollen limitation in many wind-pollinated plants with unisexual flowers.

  19. Ecological and evolutionary conditions for fruit abortion to regulate pollinating seed-eaters and increase plant production

    Science.gov (United States)

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2002-01-01

    Coevolved mutualisms, such as those between senita cacti, yuccas, and their respective obligate pollinators, benefit both species involved in the interaction. However, in these pollination mutualisms the pollinator's larvae impose a cost on plants through consumption of developing seeds and fruit. The effects of pollinators on benefits and costs are expected to vary with the abundance of pollinators, because large population sizes result in more eggs and larval seed-eaters. Here, we develop the hypothesis that fruit abortion, which is common in yucca, senita, and plants in general, could in some cases have the function of limiting pollinator abundance and, thereby, increasing fruit production. Using a general steady-state model of fruit production and pollinator dynamics, we demonstrate that plants involved in pollinating seed-eater mutualisms can increase their fecundity by randomly aborting fruit. We show that the ecological conditions under which fruit abortion can improve plants fecundity are not unusual. They are best met when the plant is long-lived, the population dynamics of the pollinator are much faster than those of the plant, the loss of one fruit via abortion kills a larva that would have the expectation of destroying more than one fruit through its future egg laying as an adult moth, and the effects of fruit abortion on pollinator abundance are spatially localized. We then use the approach of adaptive dynamics to find conditions under which a fruit abortion strategy based on regulating the pollinator population could feasibly evolve in this type of plant–pollinator interaction.

  20. The top 10 oomycete pathogens in molecular plant pathology

    Science.gov (United States)

    Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens that threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant pathogenic oomycete taxa based on scientific and economic importance. In total, ...

  1. Molecular sabotage of host plant defenses by spider mites

    NARCIS (Netherlands)

    Villarroel Figueroa, C.A.

    2016-01-01

    Plants constitute an ample source of nutrients for a diversity of organisms that include viruses, microbes, nematodes, insects, and mites. To protect their resources, plants possess a robust immune system that establishes structural and biochemical defenses to fight invaders. Some of these defenses

  2. The Top 10 oomycete pathogens in molecular plant pathology

    NARCIS (Netherlands)

    Kamoun, Sophien; Furzer, Oliver; Jones, Jonathan D G; Judelson, Howard S; Ali, Gul Shad; Dalio, Ronaldo J D; Roy, Sanjoy Guha; Schena, Leonardo; Zambounis, Antonios; Panabières, Franck; Cahill, David; Ruocco, Michelina; Figueiredo, Andreia; Chen, Xiao-Ren; Hulvey, Jon; Stam, Remco; Lamour, Kurt; Gijzen, Mark; Tyler, Brett M; Grünwald, Niklaus J; Mukhtar, M Shahid; Tomé, Daniel F A; Tör, Mahmut; Van Den Ackerveken, Guido; McDowell, John; Daayf, Fouad; Fry, William E; Lindqvist-Kreuze, Hannele; Meijer, Harold J G; Petre, Benjamin; Ristaino, Jean; Yoshida, Kentaro; Birch, Paul R J; Govers, Francine

    2015-01-01

    Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In tot

  3. Vascular plants of newly created “Bogdanka I” and “Bogdanka II” ecological lands in Poznań

    Directory of Open Access Journals (Sweden)

    Marcin K. Dyderski

    2014-12-01

    Full Text Available This paper presents results of study on the flora of ecological lands “Bogdanka I” and “Bogdanka II”, which covers 151.45 ha (“Bogdanka I” and 7.63 ha (“Bogdanka II”. Both of them are located in the valley of Bogdanka River, in NW part of Poznań city (W Poland. The floristic investigation was conducted during two vegetation seasons: 2012 and 2013. In the studied area we found 445 species of vascular plants (in “Bogdanka I” – 436, in “Bogdanka II” – 203 from 258 genera and 84 families. The most of species are indigenous (79.1%. Domination of indigenous urbanophobic and urbanoneutral species, with low level of hemeroby, high share of species from seminatural plant communities of fertile deciduous forests, wet and fresh meadows and water and peatland plant communities, occurrence of 38 ancient woodland indicator species and many (137 rare and endangered in the city species proves the high floristic value of examined ecological lands. In the studied area occur 22.9% of all species endangered in Poznań, including 5 strictly protected and 11 partially protected species, and the stands of Galium odoratum unique in Poznań and Iris sibirica considered to be extinct.

  4. CMEIAS bioimage informatics that define the landscape ecology of immature microbial biofilms developed on plant rhizoplane surfaces

    Directory of Open Access Journals (Sweden)

    Frank B Dazzo

    2015-10-01

    Full Text Available Colonization of the rhizoplane habitat is an important activity that enables certain microorganisms to promote plant growth. Here we describe various types of computer-assisted microscopy that reveal important ecological insights of early microbial colonization behavior within biofilms on plant root surfaces grown in soil. Examples of the primary data are obtained by analysis of processed images of rhizoplane biofilm landscapes analyzed at single-cell resolution using the emerging technology of CMEIAS bioimage informatics software. Included are various quantitative analyses of the in situ biofilm landscape ecology of microbes during their pioneer colonization of white clover roots, and of a rhizobial biofertilizer strain colonized on rice roots where it significantly enhances the productivity of this important crop plant. The results show that spatial patterns of immature biofilms developed on rhizoplanes that interface rhizosphere soil are highly structured (rather than distributed randomly when analyzed at the appropriate spatial scale, indicating that regionalized microbial cell-cell interactions and the local environment can significantly affect their cooperative and competitive colonization behaviors.

  5. Special issue on Ecology, evolution, and conservation of plants in China: Introduction and some considerations

    Directory of Open Access Journals (Sweden)

    Liu, J. Q.

    2015-12-01

    Full Text Available China has one of the world’s richest floras with around 33,000 vascular plants, of which up to 17,000 are endemic. Besides these astonishing figures, the Chinese flora is very interesting from the point of view of evolution, as it shows a strong relictual character with some truly “living fossils” such as Ginkgo biloba or Metasequoia glyptostroboides. At the same time, China probably harbours the most important ‘‘evolutionary front’’ of the world’s temperate flora, the Hengduan Mountains. Unfortunately, the flora of China also includes a high number of threatened species (with nearly 4000, mostly due to the destruction of natural habitats and the over-exploitation of natural resources. This special issue, which corresponds to volume 34 of Collectanea Botanica, is aimed to contribute to the knowledge of Chinese flora through a series of contributions (seven full-length articles and one short note spanning several topics such as biogeography, conservation, demography, ecology, evolution, and plant-animal interactions.China tiene una de las floras más ricas del mundo con alrededor 33.000 plantas vasculares, de las cuales hasta 17.000 son endémicas. Además de estas cifras asombrosas, la flora china es muy interesante desde el punto de vista de la evolución, ya que muestra un fuerte carácter relictual con algunos auténticos «fósiles vivientes» como Ginkgo biloba o Metasequoia glyptostroboides. Al mismo tiempo, China probablemente alberga el «frente evolutivo» más importante de las floras templadas del mundo, las montañas Hengduan. Por desgracia, la flora de China también destaca por el elevado número de especies amenazadas (casi 4000, sobre todo debido a la destrucción de los hábitats y la sobreexplotación de los recursos naturales. Este número especial, que corresponde al volumen 34 de Collectanea Botanica, tiene como objetivo contribuir al conocimiento de la flora de China a través de una serie de contribuciones

  6. Parasitic plants in agriculture: Chemical ecology of germination and host-plant location as targets for sustainable control: A review

    Science.gov (United States)

    Justin B. Runyon; John F. Tooker; Mark C. Mescher; Consuelo M. De Moraes

    2009-01-01

    Parasitic plants are among the most problematic pests of agricultural crops worldwide. Effective means of control are generally lacking, in part because of the close physiological connection between the established parasite and host plant hindering efficient control using traditional methods. Seed germination and host location are critical early-growth stages that...

  7. Eco-hydrology: Groundwater flow and site factors in plant ecology

    Science.gov (United States)

    Klijn, Frans; Witte, Jan-Philip M.

    Résumé En écologie végétale, le site est un concept central. Un site, c'est l'endroit où une espèce végétale ou une communauté de plantes se développe le site assure un ensemble de conditions dans lesquelles elles vivent. Dans un matériau homogène à l'origine, l'écoulement gravitaire d'une nappe influence les conditions du site par l'intermédiaire de la distribution spatiale des nutriments et d'autres composés chimiques associés. Les remontées d'eau peuvent tout spécialement produire et maintenir les conditions du site essentielles pour différentes espèces et communautés de plantes relativement rares. Les écologues ont porté une attention accrue à ces remontées d'eau, en sorte qu'une coopération avec les hydrologues en a résulté, avec l'émergence d'une discipline propre, l'éco-hydrologie, à la limite des deux domaines scientifiques et liée au concept de site. Aux Pays-Bas, une classification des types d'eau, basée sur l'histoire de l'eau souterraine à proximité de la surface, a été mise en oeuvre pour constituer une base nationale de données géographiques sur les remontées d'eau d'intérêt écologique. Des analyses des correspondances des données de cette base, portant sur l'existence de certaines espèces de plantes, montrent que dans les sols sableux pauvres du Pléistocène la remontée d'eau explique très bien la présence de certaines espèces et communautés, alors que, dans les plaines fluviales et les régions de polders à sols argileux riches, l'influence de la remontée d'eau est masquée par l'importance des caractéristiques des sols. En conclusion donc, certaines espèces de plantes peuvent être utilisées comme des indicateurs de la remontée d'eau dans des diagnostiques et des levés de terrain rapides, mais à condition de prendre en permanence des précautions sur les limites de l'approche. Resumen En ecología botánica un concepto de gran importancia es el de emplazamiento, definido como el lugar que

  8. Non-Indigenous Plants in the Northern Great Plains : Ecological Effects of Infestation and Control

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Euphorbia esula is a long-lived perennial plant with an extensive root system. The extent of the root system makes the plant highly resistant to most traditional...

  9. Palaeo plant diversity in subtropical Africa – ecological assessment of a conceptual model of climate–vegetation interaction

    Directory of Open Access Journals (Sweden)

    V. P. Groner

    2015-07-01

    Full Text Available We here critically re-assess a conceptual model dealing with the potential effect of plant diversity on climate–vegetation feedback, and provide an improved version adjusted to plant types that prevailed during the African Humid Period (AHP. Our work contributes to the understanding of the timing and abruptness of vegetation decline at the end of the AHP, investigated by various working groups during the past two decades using a wide range of model and palaeoproxy reconstruction approaches. While some studies indicated an abrupt collapse of vegetation at the end of the AHP, others suggested a gradual decline. Claussen et al. (2013 introduced a new aspect in the discussion, proposing that plant diversity in terms of moisture requirements could affect the strength of climate–vegetation feedback. In a conceptual model study, the authors illustrated that high plant diversity could stabilize an ecosystem, whereas a reduction in plant diversity might allow for an abrupt regime shift under gradually changing environmental conditions. Based on recently published pollen data and the current state of ecological literature, we evaluate the representation of climate–vegetation feedback in this conceptual approach, and put the suggested conclusions into an ecological context. In principle, the original model reproduces the main features of different plant types interacting together with climate although vegetation determinants other than precipitation are neglected. However, the model cannot capture the diversity of AHP vegetation. Especially tropical gallery forest taxa, indirectly linked to local precipitation, are not appropriately represented. In order to fill the gaps in the description of plant types regarding AHP diversity, we modify the original model in four main aspects. First, the growth ranges in terms of moisture requirements are extended by upper limits to represent full environmental envelopes. Second, data-based AHP plant types replace

  10. Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming.

    Science.gov (United States)

    Faye, Loïc; Boulaflous, Aurelia; Benchabane, Meriem; Gomord, Véronique; Michaud, Dominique

    2005-03-01

    Plants have become, over the last ten years, a suitable alternative to microbial and animal cell factories for the production of clinically-useful, therapeutic proteins. Besides the well known advantage of low-cost and large-scale production of safe and biologically active mammalian proteins, plants also are able to perform most post-translational maturations required for biological activity and suitable pharmacokinetics of recombinant therapeutic proteins. In this short review we focus on glycosylation and proteolytic processing of plant-made pharmaceuticals during their transport through the plant cell's secretory pathway. We also address the practical implications of these important processes on the effectiveness of plant molecular pharming systems.

  11. Pollination ecology of a plant in its native and introduced areas

    Science.gov (United States)

    Montero-Castaño, Ana; Vilà, Montserrat; Ortiz-Sánchez, F. Javier

    2014-04-01

    Entomophilous and obligate out-crossing non-native plants need to become well integrated in the resident plant-pollinator network to set seeds and become established. However, it is largely unknown how pollination patterns differ between native ranges and those where plants have been introduced.

  12. Linking plant ecology and long-term hydrology to improve wetland restoration success

    Science.gov (United States)

    P.V. Caldwell; M.J. Vepraskas; J.D. Gregory; R.W. Skaggs; R.L. Huffman

    2011-01-01

    Although millions of dollars are spent restoring wetlands, failures are common, in part because the planted vegetation cannot survive in the restored hydrology. Wetland restoration would be more successful if the hydrologic requirements of wetland plant communities were known so that the most appropriate plants could be selected for the range of projected hydrology at...

  13. Multitrophic effects of plant resistance: from basic ecology to application in transgenic crops

    NARCIS (Netherlands)

    Kos, M.

    2012-01-01

    Plants have evolved a wide array of direct and indirect resistance traits that prevent or reduce herbivory by insects. The aim of this thesis was to study the effects of direct and indirect plant resistance traits on the multitrophic interactions between brassicaceous plants, leaf-chewing and phloem

  14. Energy and Ecological Effects of the Primary Gas-Turbine Supplementing a Coal-Fired Power Plant

    Directory of Open Access Journals (Sweden)

    Jan T. Szargut

    1999-03-01

    Full Text Available Gas turbine fed with natural gas, introduced as a primary link of the coal-fired power plant for preheating the feed water, ensures positive energy and ecological effects. The energy effect has been expressed by means of the incremental energy efficiency, defined as the ratio of the increase of power to the chemical energy of the consumed gas. The reduction of CO2 emission has been also characterized by means of the incremental index. Formulae have been derived and numerical examples included.

  15. Permanent Genetic Resources added to the Molecular Ecology Resources Database 1 February 2010-31 March 2010.

    Science.gov (United States)

    Aurelle, D; Baker, A J; Bottin, L; Brouat, C; Caccone, A; Chaix, A; Dhakal, P; Ding, Y; Duplantier, J M; Fiedler, W; Fietz, J; Fong, Y; Forcioli, D; Freitas, T R O; Gunnarsson, G H; Haddrath, O; Hadziabdic, D; Hauksdottir, S; Havill, N P; Heinrich, M; Heinz, T; Hjorleifsdottir, S; Hong, Y; Hreggvidsson, G O; Huchette, S; Hurst, J; Kane, M; Kane, N C; Kawakami, T; Ke, W; Keith, R A; Klauke, N; Klein, J L; Kun, J F J; Li, C; Li, G-Q; Li, J-J; Loiseau, A; Lu, L-Z; Lucas, M; Martins-Ferreira, C; Mokhtar-Jamaï, K; Olafsson, K; Pampoulie, C; Pan, L; Pooler, M R; Ren, J-D; Rinehart, T A; Roussel, V; Santos, M O; Schaefer, H M; Scheffler, B E; Schmidt, A; Segelbacher, G; Shen, J-D; Skirnisdottir, S; Sommer, S; Tao, Z-R; Taubert, R; Tian, Y; Tomiuk, J; Trigiano, R N; Ungerer, M C; Van Wormhoudt, A; Wadl, P A; Wang, D-Q; Weis-Dootz, T; Xia, Q; Yuan, Q-Y

    2010-07-01

    This article documents the addition of 228 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anser cygnoides, Apodemus flavicollis, Athene noctua, Cercis canadensis, Glis glis, Gubernatrix cristata, Haliotis tuberculata, Helianthus maximiliani, Laricobius nigrinus, Laricobius rubidus, Neoheligmonella granjoni, Nephrops norvegicus, Oenanthe javanica, Paramuricea clavata, Pyrrhura orcesi and Samanea saman. These loci were cross-tested on the following species: Apodemus sylvaticus, Laricobius laticollis and Laricobius osakensis (a proposed new species currently being described). © 2010 Blackwell Publishing Ltd.

  16. Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?

    Directory of Open Access Journals (Sweden)

    Gregory Röder

    Full Text Available Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae that possesses constitutive chemical defence (pyrrolizidine alkaloids and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae. Plants were induced in the field using chemical elicitors of the jasmonic acid (JA and salicylic acid (SA pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.

  17. Molecular Mechanism of Salinity Stress and Biotechnological Strategies for Engineering Salt Tolerance in Plants

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Latoya Harris; Ronald J. Newton

    2003-01-01

    Molecular mechanisms of plant responses to salinity stress and the physiological consequences of altered gene expression are reviewed. Extensive use of comparisons with halophytic plants and glycophytos provide a paradigm for many responses to salinity exhibited by stress sensitive plants. Osmolyte biosynthesis, water flux control, and membrane transport of ions are important for maintenance and re-establishment of homeostasis. Transgenic plant and mutant analyses in Arabidopsis improve the understanding of stress responses and elements of stress signal transduction pathways. The genomic DNA sequences and cell-specific transcript expression data, combined with determinant identification based on molecular genetics, will provide the infrastructure for functional physiological dissection of salt tolerance determinants in plants. Protein interaction analysis, genetic activation and suppression screens will lead inevitably to an understanding of the interrelationships of the multiple signaling systems that control stress-adaptive responses and provide more opportunity to engineer salt tolerance in plants.

  18. Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions.

    Science.gov (United States)

    Blatrix, Rumsaïs; Djiéto-Lordon, Champlain; Mondolot, Laurence; La Fisca, Philippe; Voglmayr, Hermann; McKey, Doyle

    2012-10-07

    Usually studied as pairwise interactions, mutualisms often involve networks of interacting species. Numerous tropical arboreal ants are specialist inhabitants of myrmecophytes (plants bearing domatia, i.e. hollow structures specialized to host ants) and are thought to rely almost exclusively on resources derived from the host plant. Recent studies, following up on century-old reports, have shown that fungi of the ascomycete order Chaetothyriales live in symbiosis with plant-ants within domatia. We tested the hypothesis that ants use domatia-inhabiting fungi as food in three ant-plant symbioses: Petalomyrmex phylax/Leonardoxa africana, Tetraponera aethiops/Barteria fistulosa and Pseudomyrmex penetrator/Tachigali sp. Labelling domatia fungal patches in the field with either a fluorescent dye or (15)N showed that larvae ingested domatia fungi. Furthermore, when the natural fungal patch was replaced with a piece of a (15)N-labelled pure culture of either of two Chaetothyriales strains isolated from T. aethiops colonies, these fungi were also consumed. These two fungi often co-occur in the same ant colony. Interestingly, T. aethiops workers and larvae ingested preferentially one of the two strains. Our results add a new piece in the puzzle of the nutritional ecology of plant-ants.

  19. Molecular responses in root-associative rhizospheric bacteria to variations in plant exudates

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2015-04-01

    Plant exudates are a major factor in the interface of plant-soil-microbe interactions and it is well documented that the microbial community structure in the rhizosphere is largely influenced by the particular exudates excreted by various plants. Azospirillum brasilense is a plant growth promoting rhizobacterium that is known to interact with a large number of plants, including important food crops. The regulatory gene flcA has an important role in this interaction as it controls morphological differentiation of the bacterium that is essential for attachment to root surfaces. Being a response regulatory gene, flcA mediates the response of the bacterial cell to signals from the surrounding rhizosphere. This makes this regulatory gene a good candidate for analysis of the response of bacteria to rhizospheric alterations, in this case, variations in root exudates. We will report on our studies on the response of Azospirillum, an ecologically, scientifically and agriculturally important bacterial genus, to variations in the rhizosphere.

  20. Variation in trait trade-offs allows differentiation among predefined plant functional types: implications for predictive ecology.

    Science.gov (United States)

    Verheijen, Lieneke M; Aerts, Rien; Bönisch, Gerhard; Kattge, Jens; Van Bodegom, Peter M

    2016-01-01

    Plant functional types (PFTs) aggregate the variety of plant species into a small number of functionally different classes. We examined to what extent plant traits, which reflect species' functional adaptations, can capture functional differences between predefined PFTs and which traits optimally describe these differences. We applied Gaussian kernel density estimation to determine probability density functions for individual PFTs in an n-dimensional trait space and compared predicted PFTs with observed PFTs. All possible combinations of 1-6 traits from a database with 18 different traits (total of 18 287 species) were tested. A variety of trait sets had approximately similar performance, and 4-5 traits were sufficient to classify up to 85% of the species into PFTs correctly, whereas this was 80% for a bioclimatically defined tree PFT classification. Well-performing trait sets included combinations of correlated traits that are considered functionally redundant within a single plant strategy. This analysis quantitatively demonstrates how structural differences between PFTs are reflected in functional differences described by particular traits. Differentiation between PFTs is possible despite large overlap in plant strategies and traits, showing that PFTs are differently positioned in multidimensional trait space. This study therefore provides the foundation for important applications for predictive ecology.

  1. Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure.

    Science.gov (United States)

    Pennington, R Toby; Richardson, James E; Lavin, Matt

    2006-01-01

    Analytical methods are now available that can date all nodes in a molecular phylogenetic tree with one calibration, and which correct for variable rates of DNA substitution in different lineages. Although these techniques are approximate, they offer a new tool to investigate the historical construction of species-rich biomes. Dated phylogenies of globally distributed plant families often indicate that dispersal, even across oceans, rather than plate tectonics, has generated their wide distributions. By contrast, there are indications that animal lineages have undergone less long distance dispersal. Dating the origin of biome-specific plant groups offers a means of estimating the age of the biomes they characterize. However, rather than a simple emphasis on biome age, we stress the importance of studies that seek to unravel the processes that have led to the accumulation of large numbers of species in some biomes. The synthesis of biological inventory, systematics and evolutionary biology offered by the frameworks of neutral ecological theory and phylogenetic community structure offers a promising route for future work.

  2. Molecular Characterization and Analysis of Antimicrobial Activity of Endophytic Fungi From Medicinal Plants in Saudi Arabia

    OpenAIRE

    Gashgari, Rukaia; Gherbawy, Youssuf; Ameen, Fuad; Alsharari, Salam

    2016-01-01

    Background: Endophytic fungi, which have been reported in numerous plant species, are important components of the forest community and contribute significantly to the diversity of natural ecosystems. Objectives: The current study aimed to evaluate and characterize, at the molecular level, the diversity and antimicrobial activities of endophytic fungi from medicinal plants in Saudi Arabia. Materials and Methods: Fungi growing on plant segments were isolated and identified based on morphologica...

  3. Regulation of leaf hydraulics: from molecular to whole plant levels

    OpenAIRE

    2013-01-01

    The water status of plant leaves is dependent on both stomatal regulation and water supply from the vasculature to inner tissues. The present review addresses the multiple physiological and mechanistic facets of the latter process. Inner leaf tissues contribute to at least a third of the whole resistance to water flow within the plant. Physiological studies indicated that leaf hydraulic conductance (Kleaf) is highly dependent on the anatomy, development and age of the leaf and can vary rapidl...

  4. Sapfluxnet: a global database of sap flow measurements to unravel the ecological factors of transpiration regulation in woody plants

    Science.gov (United States)

    Poyatos, Rafael; Martínez-Vilalta, Jordi; Molowny-Horas, Roberto; Steppe, Kathy; Oren, Ram; Katul, Gabriel; Mahecha, Miguel

    2016-04-01

    regulation and hydraulic status. SAPFLUXNET will lead to the first comprehensive study of the ecological drivers of tree-level transpiration across the globe and will aid to constrain the empirical upscaling between plant traits and ecosystem function. Finally, we anticipate that, once SAPFLUXNET is populated with sufficient observations, it will complement existing ecological networks like FLUXNET and it will also contribute to the evaluation of Earth-system models.

  5. Molecular evolution of plant AAP and LHT amino acid transporters

    Directory of Open Access Journals (Sweden)

    Mechthild eTegeder

    2012-02-01

    Full Text Available Nitrogen is an essential mineral nutrient and it is often transported within living organisms in its reduced form, as amino acids. Transport of amino acids across cellular membranes requires proteins, and here we report the phylogenetic analysis across taxa of two amino acid transporter families, the Amino Acid Permeases (AAPs and the Lysine-Histidine-like Transporters (LHTs. We found that the two transporter families form two distinct groups in plants supporting the concept that both are essential. AAP transporters seem to be restricted to land plants. They were found in Selaginella moellindorffii and Physcomitrella patens but not in Chlorophyte, Charophyte or Rhodophyte algae. AAPs were strongly represented in vascular plants, consistent with their major function in phloem (vascular tissue loading of amino acids for sink nitrogen supply. LHTs on the other hand appeared prior to land plants. LHTs were not found in chlorophyte algae Chlamydomonas reinhardtii and Volvox carterii. However, the characean alga Klebsormidium flaccidum encodes KfLHT13 and phylogenetic analysis indicates that it is basal to land plant LHTs. This is consistent with the hypothesis that characean algae are ancestral to land plants. LHTs were also found in both Selaginella moellindorffii and Physcomitrella patens as well as in monocots and eudicots. To date, AAPs and LHTs have mainly been characterized in Arabidopsis (eudicots and these studies provide clues to the functions of the newly identified homologs.

  6. Molecular ecology of Frankia and other soil bacteria under natural and chlorobenzoate-stressed conditions

    NARCIS (Netherlands)

    Ramirez-Saad, H.C.

    1999-01-01

    Microbial Ecology studies aim to describe and assess the behavior and activity of microorganisms in their natural environments (Brock 1966). Nowadays it is clear that the large number of existing microorganisms has surpassed our capabilities to rapidly characterise them by traditional cultu

  7. Molecular ecology of Frankia and other soil bacteria under natural and chlorobenzoate-stressed conditions

    NARCIS (Netherlands)

    Ramirez-Saad, H.C.

    1999-01-01

    Microbial Ecology studies aim to describe and assess the behavior and activity of microorganisms in their natural environments (Brock 1966). Nowadays it is clear that the large number of existing microorganisms has surpassed our capabilities to rapidly characterise them by traditional

  8. Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system

    Science.gov (United States)

    Bumble bees are a longstanding model system for studies on behavior, ecology, and evolution, due to their well-studied social lifestyle, invaluable roles as both wild and managed pollinators, and their ubiquity and diversity across temperate ecosystems. Yet despite their importance, many aspects of ...

  9. Molecular ecology of Frankia and other soil bacteria under natural and chlorobenzoate-stressed conditions

    NARCIS (Netherlands)

    Ramirez Saad, H.C.

    1999-01-01

    Microbial Ecology studies aim to describe and assess the behavior and activity of microorganisms in their natural environments (Brock 1966). Nowadays it is clear that the large number of existing microorganisms has surpassed our capabilities to rapidly characterise them by traditional culturing meth

  10. Lake sedimentological and plant ecological development across the Early Danian hyperthermal, Boltysh Impact Crater, Ukraine

    Science.gov (United States)

    Ebinghaus, Alena; Jolley, David; Andrews, Steven; Kemp, David

    2017-04-01

    Past hyperthermals and associated negative carbon isotope excursions (CIEs) are inferred to have had significant impact on marine environments; however the formation and changes of terrestrial ecosystems across hyperthermals are less well constrained due to the lack of complete and high-resolution data. The Boltysh impact crater, Ukraine, which formed at the Cretaceous/Palaeogene (K/Pg) boundary at the northern margin of the Tethys Ocean, contains a >400 m thick unique and detailed lacustrine rock record of the Early Danian Dan-C2 hyperthermal. Based on a borehole (hole 42/11) drilled in the central part of the crater, we use a combination of sedimentological, palynological and carbon isotope data to 1) characterise and reconstruct lake formation and associated plant ecosystems, and 2) to assess lake sedimentological and ecological response to climatic variabilities during warming. Based on detailed facies analysis, 3 major gradual stages of lake formation are identified, indicating a strong relationship to carbon isotope shifts and associated climatic trends. Initial pre-excursion sedimentation was controlled by crater morphology and crater rim erosion transporting high amount of sediment into a shallow fresh water lake. During the negative excursion, sediment supply was increasingly characterised by inflow-evaporation ratio variabilities which affected seasonal stratification patterns and longer-term lake levels. An inferred increase in atmospheric pCO2 during the CIE, together with increasing mean annual temperatures, was likely responsible for periodic increases in bioproductivity. Palynological analyses demonstrate a gradual shift from mesic humid dominated vegetation to winterwet savannah-type vegetation at this stage, associated with an increase in mean annual temperatures and decrease in moisture availability. The positive excursion (recovery) and post-excursion stage is characterised by increased abundance of temperate mesic humid taxa. This cooling trend

  11. Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs.

    Science.gov (United States)

    Heil, Martin

    2015-01-07

    Plants secrete extrafloral nectar (EFN) as an induced defense against herbivores. EFN contains not only carbohydrates and amino acids but also pathogenesis-related proteins and other protective enzymes, making EFN an exclusive reward. EFN secretion is commonly induced after wounding, likely owing to a jasmonic acid-induced cell wall invertase, and is limited by phloem sucrose availability: Both factors control EFN secretion according to the optimal defense hypothesis. Non-ant EFN consumers include parasitoids, wasps, spiders, mites, bugs, and predatory beetles. Little is known about the relevance of EFN to the nutrition of its consumers and, hence, to the structuring of arthropod communities. The mutualism can be established quickly among noncoevolved (e.g., invasive) species, indicating its easy assembly is due to ecological fitting. Therefore, increasing efforts are directed toward using EFN in biocontrol. However, documentation of the importance of EFN for the communities of plants and arthropods in natural, invasive, and agricultural ecosystems is still limited.

  12. Improving ecological risk assessment by including bioavailability into species sensitivity distributions: an example for plants exposed to nickel in soil.

    Science.gov (United States)

    Semenzin, Elena; Temminghoff, Erwin J M; Marcomini, Antonio

    2007-07-01

    The variability of species sensitivity distribution (SSD) due to contaminant bioavailability in soil was explored by using nickel as metal of concern. SSDs of toxicity test results of Avena sativa L. originating from different soils and expressed as total content and available (0.01 M CaCl2) extractable concentration were compared to SSDs for terrestrial plants derived from literature toxicity data. Also the 'free' nickel (Ni2+) concentration was calculated and compared. The results demonstrated that SSDs based on total nickel content highly depend on the experimental conditions set up for toxicity testing (i.e. selected soil and pH value) and thus on metal bioavailability in soil, resulting in an unacceptable uncertainty for ecological risk estimation. The use in SSDs of plant toxicity data expressed as 0.01 M CaCl2 extractable metal strongly reduced the uncertainty in the SSD curve and thus can improve the ERA procedure remarkably by taking bioavailability into account.

  13. Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels

    Science.gov (United States)

    Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

    2013-04-30

    A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

  14. Ecology and life history affect different aspects of the population structure of 27 high-alpine plants.

    Science.gov (United States)

    Meirmans, Patrick G; Goudet, Jerome; Gaggiotti, Oscar E

    2011-08-01

    A plant species' genetic population structure is the result of a complex combination of its life history, ecological preferences, position in the ecosystem and historical factors. As a result, many different statistical methods exist that measure different aspects of species' genetic structure. However, little is known about how these methods are interrelated and how they are related to a species' ecology and life history. In this study, we used the IntraBioDiv amplified fragment length polymorphisms data set from 27 high-alpine species to calculate eight genetic summary statistics that we jointly correlate to a set of six ecological and life-history traits. We found that there is a large amount of redundancy among the calculated summary statistics and that there is a significant association with the matrix of species traits. In a multivariate analysis, two main aspects of population structure were visible among the 27 species. The first aspect is related to the species' dispersal capacities and the second is most likely related to the species' postglacial recolonization of the Alps. Furthermore, we found that some summary statistics, most importantly Mantel's r and Jost's D, show different behaviour than expected based on theory. We therefore advise caution in drawing too strong conclusions from these statistics.

  15. Evaluating the impact of a fluoropolymer plant on a river macrobenthic community by a combined chemical, ecological and genetic approach.

    Science.gov (United States)

    Rusconi, Marianna; Marziali, Laura; Stefani, Fabrizio; Valsecchi, Sara; Bettinetti, Roberta; Mazzoni, Michela; Rosignoli, Federica; Polesello, Stefano

    2015-12-15

    Effect-based monitoring is a recommended approach suggested in European Guidelines to assess the response of ecosystem affected by a pollution source, considering the effects at community, population, individual but also at suborganism level. A combined chemical, ecological and genetic approach was applied in order to assess the impact of a fluoropolymer plant on the macrobenthic community of the Northern Italian river Bormida (Piedmont region). The macrobenthic community living downstream of the industrial discharge was chronically exposed to a mixture of perfluoroalkyl substances (PFAS), with perfluorooctanoic acid as the main compound, at concentrations up to several μgL(-1). Ecological assessment proved that the downstream community was not substantially different from that living upstream of the pollution source. The impact on community is not quantifiable with the traditional monitoring methods used for ecological classification under European regulation because macrobenthic communities showed only slight differences in their structure. In order to highlight effects on genetic variability of the native population, a subcellular analysis by using the AFLP (Amplified Fragment Length Polymorphism) genetic technique was applied to genotype of individuals of a selected species (Hydropsyche modesta, Trichoptera) collected in the two sampling sites. Percentage of variation between the two populations was 6.8%, a threshold compatible with a genetic drift induced in the downstream population. The genetic study carried out in field identified a significant divergence between exposed and non-exposed populations, but at present it is not possible to associate this divergence to a specific effect induced by PFAS.

  16. Nothofagus, key genus of plant geography, in time and space, living and fossil, ecology and phylogeny

    NARCIS (Netherlands)

    Steenis, van C.G.G.J.

    1971-01-01

    Data are given on the taxonomy and ecology of the genus. Some New Caledonian species grow in or descend to the lowland. Details are provided on the distribution within New Guinea. For dominance of Nothofagus, and Fagaceae in general, it is suggested that possibly symbionts may contribute to this. So

  17. Nutritional ecology of insect-plant interactions: persistent handicaps and the need for innovative approaches

    NARCIS (Netherlands)

    Loon, van J.J.A.; Casas, J.; Pincebourde, S.

    2005-01-01

    Quantifying the flow of matter and energy in food webs is indispensable when assessing the effects of increases in atmospheric carbon dioxide, ozone level and temperature as a result of global climate change. In insect nutritional ecology, quantification of digestive and metabolic efficiency is perf

  18. Nutritional ecology of insect-plant interactions: persistent handicaps and the need for innovative approaches

    NARCIS (Netherlands)

    Loon, van J.J.A.; Casas, J.; Pincebourde, S.

    2005-01-01

    Quantifying the flow of matter and energy in food webs is indispensable when assessing the effects of increases in atmospheric carbon dioxide, ozone level and temperature as a result of global climate change. In insect nutritional ecology, quantification of digestive and metabolic efficiency is

  19. Modeling plant, microorganisms, and mineral surface competition for soil nitrogen and phosphorus: Competition representations and ecological significance

    Science.gov (United States)

    Zhu, Q.; Riley, W. J.; Chambers, J. Q.; Tang, J.

    2014-12-01

    It is widely accepted that terrestrial ecosystem carbon dynamics are strongly coupled and controlled by soil nutrients status. Nutrient availability serves as an indicator of aboveground carbon productivity and ecosystem stability, especially when soils are infertile. In these conditions, plants have to outcompete microorganism and mineral surfaces to acquire nutrients required for photosynthesis, respiration, seed production, defense, etc. It is usually hypothesized that microbes are short-term winners but long-term losers in nutrient competition. Microbes quickly trap available soil nitrogen and phosphorous, thereby preventing nutrient inaccessibility through hydrological leaching and mineral surface adsorption. Over longer temporal scales, nutrients are released into the soil and become available for plant uptake. Despite its ecological significance, nutrient competition is either absent or over-simplified (e.g., assuming all consumers are equally competitive) in terrestrial biogeochemistry models. Here, we aim to test the representation of different competitive strategies and to investigate their ecological consequences with a newly developed biogeochemical model structure. The new model includes three major soil nutrients (ammonia, nitrate, and phosphate) and multiple consumers (plants, microbes, mineral surfaces, nitrifiers, and denitrifiers). We analyze predicted soil carbon, nitrogen, and phosphorus dynamics with three different competitive strategies: (1) plants compete poorly against microorganisms; (2) all consumers are equally competitive; and (3) an explicit Equilibrium Chemical Approximation (ECA; Tang and Riley (2013)) treatment. We find that very different ecosystem states are predicted when assuming different competitive structures, and that the ECA approach provides the best match with a large suite of observational constraints from tropical experimental and transect studies. We conclude that terrestrial biogeochemical models should represent a

  20. Diverse Plant-Associated Pleosporalean Fungi from Saline Areas: Ecological Tolerance and Nitrogen-Status Dependent Effects on Plant Growth.

    Science.gov (United States)

    Qin, Yuan; Pan, Xueyu; Kubicek, Christian; Druzhinina, Irina; Chenthamara, Komal; Labbé, Jessy; Yuan, Zhilin

    2017-01-01

    Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance). Despite considerable work in selected model systems, it is generally poorly understood how plant-associated fungi are structured in habitats with extreme conditions and to what extent they contribute to improved plant performance. Here, we investigate the community composition of root and seed-associated fungi from six halophytes growing in saline areas of China, and found that the pleosporalean taxa (Ascomycota) were most frequently isolated across samples. A total of twenty-seven representative isolates were selected for construction of the phylogeny based on the multi-locus data (partial 18S rDNA, 28S rDNA, and transcription elongation factor 1-α), which classified them into seven families, one clade potentially representing a novel lineage. Fungal isolates were subjected to growth response assays by imposing temperature, pH, ionic and osmotic conditions. The fungi had a wide pH tolerance, while most isolates showed a variable degree of sensitivity to increasing concentration of either salt or sorbitol. Subsequent plant-fungal co-culture assays indicated that most isolates had only neutral or even adverse effects on plant growth in the presence of inorganic nitrogen. Interestingly, when provided with organic nitrogen sources the majority of the isolates enhanced plant growth especially aboveground biomass. Most of the fungi preferred organic nitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralize organic nitrogen into inorganic nitrogen. Microscopy revealed that several isolates can successfully colonize roots and form melanized hyphae and/or microsclerotia-like structures within cortical cells suggesting a phylogenetic assignment as dark septate endophytes. This work provides a better understanding of the symbiotic relationship between plants and

  1. Food allergens of plant origin - their molecular and evolutionary relationships

    DEFF Research Database (Denmark)

    Mills, E. N. C.; Madsen, Charlotte Bernhard; Shewry, P. R.

    2003-01-01

    Along with other forms of allergic disease, food allergies appear to be on the increase, with childhood allergies to foods such as peanuts being of particular concern. Around 7-10 foods are responsible for the majority of allergies, including several of plant origin, notably peanut. Allergies...... are usually triggered by the protein components in a food, which are also known as allergens. However, not all the proteins in an allergenic food like peanut are allergens. Why should this be? This question has been addressed by an EU-funded inter-disciplinary network of clinicians, food chemists and plant...... biochemists called Protall. From the groups considerations it is clear that, whilst the abundance of a protein in a food is one factor involved in determining its allergenic potential, this is not sufficient on its own to predict its allergenicity. Through an analysis of common properties of plant food...

  2. Estimating seed and pollen movement in a monoecious plant: a hierarchical Bayesian approach integrating genetic and ecological data.

    Science.gov (United States)

    Moran, Emily V; Clark, James S

    2011-03-01

    The scale of seed and pollen movement in plants has a critical influence on population dynamics and interspecific interactions, as well as on their capacity to respond to environmental change through migration or local adaptation. However, dispersal can be challenging to quantify. Here, we present a Bayesian model that integrates genetic and ecological data to simultaneously estimate effective seed and pollen dispersal parameters and the parentage of sampled seedlings. This model is the first developed for monoecious plants that accounts for genotyping error and treats dispersal from within and beyond a plot in a fully consistent manner. The flexible Bayesian framework allows the incorporation of a variety of ecological variables, including individual variation in seed production, as well as multiple sources of uncertainty. We illustrate the method using data from a mixed population of red oak (Quercus rubra, Q. velutina, Q. falcata) in the NC piedmont. For simulated test data sets, the model successfully recovered the simulated dispersal parameters and pedigrees. Pollen dispersal in the example population was extensive, with an average father-mother distance of 178 m. Estimated seed dispersal distances at the piedmont site were substantially longer than previous estimates based on seed-trap data (average 128 m vs. 9.3 m), suggesting that, under some circumstances, oaks may be less dispersal-limited than is commonly thought, with a greater potential for range shifts in response to climate change.

  3. [Review: plant polyphenols modulate lipid metabolism and related molecular mechanism].

    Science.gov (United States)

    Dai, Yan-li; Zou, Yu-xiao; Liu, Fan; Li, Hong-zhi

    2015-11-01

    Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms.

  4. Research Advances of Soils and Plants Ecological Stoichiometry%土壤与植物生态化学计量学研究进展

    Institute of Scientific and Technical Information of China (English)

    王晓光; 乌云娜; 宋彦涛; 霍光伟; 张凤杰

    2016-01-01

    生态化学计量学是一门新兴科学,主要研究生态作用和生态过程中能量平衡及碳、氮、磷等多重化学元素的平衡,有机统一了生物学不同层次(分子、细胞、个体、种群、生态系统以及全球尺度)的研究理论。陆地生态系统的生态化学计量学研究具有重要意义,土壤和植物的碳、氮、磷比例关系可以表征生态系统的养分限制状况以及有机质的分解程度及其对土壤肥力的潜在贡献等。主要综述了生态化学计量学的概念、起源及研究简史,重点概述了陆地生态系统(主要为草原生态系统)中土壤与植物碳、氮、磷的生态化学计量学特征及其对气候因子及人为干扰等因素的响应。%Ecological stoichiometry is a new science which mainly studies the energy balance and the mass balance of multiple chemical elements, especially carbon, nitrogen and phosphorus. This new science incorporates the theories of different levels of biology from molecular, cellulate, or-ganismal, population and ecosystem to global. It is significant to study the ecological stoichiometry of terrestrial ecosystem, because the C:N:P stoichiometry ratios of soils and plants can reflect the nutrients limiting status as well as the decomposition degree of the organic matters and its con-tribution to soil fertility of terrestrial ecosystems. This paper summarized the concepts, origin and research history of ecological stoichiometry. The characteristics of C:N:P stoichiometry ratios in soils and plants of terrestrial ecosystems ( especially grassland) and their responses to climatic fac-tors, human disturbances and so forth were also reviewed in this paper.

  5. 16S rRNA as molecular marker in ecology of Frankia.

    NARCIS (Netherlands)

    Hahn, D.

    1990-01-01

    The research described in this thesis focusses on the role of biotic factors encountered with the establishment of the symbiosis between black alder plants ( Alnus glutinosa ) and introduced Frankia strains. A selection of plant clones and Frankia strains that gave optimal nodulation and nitrogen f

  6. Molecular Mechanisms and Genetic Basis of Heavy Metal Tolerance/Hyperaccumulation in Plants

    Institute of Scientific and Technical Information of China (English)

    Xiao-E YANG; Xiao-Fen JIN; Ying FENG; Ejazul ISLAM

    2005-01-01

    Phytoremediation has gained increased attention as a cost-effective method for the remediation of heavy metal-contaminated sites. Because some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration,which is manifested by an interaction between a genotype and its environment. The growing application of molecular genetic technologies has led to increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance,as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. In the present review, our major objective is to concisely evaluate the progress made so far in understanding the molecular/cellular mechanisms and genetic basis that control the uptake and detoxification of metals by plants.

  7. Biodegradation of dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs) with plant and nutrients and their effects on the microbial ecological kinetics.

    Science.gov (United States)

    Sun, Guangdong; Zhang, Xu; Hu, Qing; Zhang, Heqing; Zhang, Dayi; Li, Guanghe

    2015-02-01

    Four pilot-scale test mesocosms were conducted for the remediation of organochlorine pesticides (OCPs)-contaminated aged soil. The results indicate that the effects on degradation of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) were in the following order: nutrients/plant bioaugmentation (81.18 % for HCHs; 85.4 % for DDTs) > nutrients bioaugmentation > plant bioaugmentation > only adding water > control, and nutrients/plant bioaugmentation greatly enhanced the degradation of HCHs (81.18 %) and DDTs (85.4 %). The bacterial community structure, diversity and composition were assessed by 454-pyrosequencing of 16S recombinant RNA (rRNA), whereas the abundance of linA gene was determined by quantitative polymerase chain reaction. Distinct differences in bacterial community composition, structure, and diversity were a function of remediation procedure. Predictability of HCH/DDT degradation in soils was also investigated. A positive correlation between linA gene abundance and the removal ratio of HCHs was indicated by correlation analyses. A similar relationship was also confirmed between the degradation of HCHs/DDTs and the abundance of some assemblages (Gammaproteobacteria and Flavobacteria). Our results offer microbial ecological insight into the degradation of HCHs and DDTs in aged contaminated soil, which is helpful for the intensification of bioremediation through modifying plant-microbe patterns, and cessation of costly and time-consuming assays.

  8. Microbial ecology of artisanal italian cheese: Molecular microbial characterization by culture-independent method

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, E.; Scarpellini, M.; Franzatti, L.; Dioguardi, L.

    2009-07-01

    Present study will treat the next topics: ecology of the natural and man made environments and functional diversity of bacteria. The microbial communities in artisanal goat cheeses produced in mountain pastures (typical farms) in Piemonte mountain (North of Italy) change a lot during precessing and ripening time. Moreover cheese microbial ecosystems are different in each small dairy because adventitious microflora can come from the environment and contamination the milk before the cheese making process and the product during manufacture and ripening. (Author)

  9. Molecular and physiological mechanisms of plant tolerance to toxic metals

    Science.gov (United States)

    Plants have evolved a myriad of adaptive mechanisms based on a number of genes to deal with the different toxic metals they encounter in the soils worldwide. These genes encode a range of different metal and organic compound transporters and enzyme pathways for the synthesis of metal detoxifying lig...

  10. Food allergens of plant origin - their molecular and evolutionary relationships

    DEFF Research Database (Denmark)

    Mills, E. N. C.; Madsen, Charlotte Bernhard; Shewry, P. R.

    2003-01-01

    Along with other forms of allergic disease, food allergies appear to be on the increase, with childhood allergies to foods such as peanuts being of particular concern. Around 7-10 foods are responsible for the majority of allergies, including several of plant origin, notably peanut. Allergies are...

  11. Molecular fingerprinting of the Egyptian medicinal plant Cocculus ...

    African Journals Online (AJOL)

    A. Fathi Shadia

    2013-11-27

    Nov 27, 2013 ... ... of all primer combinations. Also, the AFLP marker gives a complete infor- ... of this plant species and provide information about its genome. 2. ... tal of 72 bands (monomorphic and polymorphic) ranging in size from 60 to 570 ...

  12. Food allergens of plant origin : their molecular and evolutionary relationships

    NARCIS (Netherlands)

    Mills, E.N.C.; Madsen, C.; Shewry, P.R.; Wichers, H.J.

    2003-01-01

    Along with other forms of allergic disease, food allergies appear to be on the increase, with childhood allergies to foods such as peanuts being of particular concern. Around 7¿10 foods are responsible for the majority of allergies, including several of plant origin, notably peanut. Allergies are us

  13. Concepts in production ecology for analysis and design of animal and plant-animal production systems

    NARCIS (Netherlands)

    Ven, van de G.W.J.; Ridder, de N.; Keulen, van H.; Ittersum, van M.K.

    2003-01-01

    The use of a hierarchy in growth factors (defining, limiting and reducing growth factors), as developed for plant production has shown its usefulness in the analysis and design of plant production systems. This hierarchy presents a theoretical framework for the analysis of biophysical conditions in

  14. Traditional ecological knowledge among Sami reindeer herders in northern Sweden about vascular plants grazed by reindeer

    Directory of Open Access Journals (Sweden)

    Berit Inga

    2013-03-01

    Full Text Available Traditional knowledge about how reindeer utilize forage resources was expected to be crucial to reindeer herders. Seventeen Sami reindeer herders in four reindeer herding communities in Sweden (“samebyar” in Swedish were interviewed about plants species considered to be important reindeer food plants in scientific literature. Among 40 plant species, which the informants were asked to identify and indicate whether and when they were grazed by reindeer, they identified a total of 21 plant taxa and five plant groups. They especially recognised species that were used as human food by the Sami themselves, but certain specific forage plants were also identified. Detailed knowledge of vascular plants at the species level was surprisingly general, which may indicate that knowledge of pasture resources in a detailed species level is not of vital importance. This fact is in sharp contradiction to the detailed knowledge that Sami people express for example about reindeer (as an animal or snow (as physical element. The plausible explanation is that observations of individual plant species are unnecessarily detailed information in large-scale reindeer pastoralism, because the animals graze freely under loose herding and border surveillance.

  15. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    Energy Technology Data Exchange (ETDEWEB)

    Heven Sze

    2008-06-22

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  16. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    Energy Technology Data Exchange (ETDEWEB)

    Heven Sze

    2008-06-22

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  17. The molecular components of phospho- and glycolipid metabolism in plant cell membranes under the phosphorus deficiency

    Directory of Open Access Journals (Sweden)

    Svietlova N. B.

    2012-01-01

    Full Text Available One of the aspects of molecular regulation of phosphorus metabolism in plants, the lipid components of membrane structures, has been reviewed. The refocusing of phosphoand glycolipid metabolism is an indicator of phosphorus accessibility in plants. The compensatory mechanisms of substitution of phospholipids with non-phosphorus containing glycolipids in membranes, allow plants to adapt to the phosphate (Pi starvation. Phospholipids are the reserve pool of cellular phosphorus at reutilization of ions in the donor-acceptor system of plants. The mechanisms of transcriptional regulation of genes involved in the synthesis of phospholipids and glycolipids under Pi deficit have been analyzed.

  18. Molecular characterization, ecology, and epidemiology of a novel Tymovirus in Asclepias viridis from Oklahoma.

    Science.gov (United States)

    Min, Byoung-Eun; Feldman, Tracy S; Ali, Akhtar; Wiley, Graham; Muthukumar, Vijay; Roe, Bruce A; Roossinck, Marilyn; Melcher, Ulrich; Palmer, Michael W; Nelson, Richard S

    2012-02-01

    Native virus-plant interactions require more understanding and their study will provide a basis from which to identify potential sources of emerging destructive viruses in crops. A novel tymovirus sequence was detected in Asclepias viridis (green milkweed), a perennial growing in a natural setting in the Tallgrass Prairie Preserve (TGPP) of Oklahoma. It was abundant within and frequent among A. viridis plants and, to varying extents, within other dicotyledonous and one grass (Panicum virgatum) species obtained from the TGPP. Extracts from A. viridis containing the sequence were infectious to a limited number of species. The virus genome was cloned and determined to be closely related to Kennedya yellow mosaic virus. The persistence of the virus within the Oklahoma A. viridis population was monitored for five successive years. Virus was present in a high percentage of plants within representative areas of the TGPP in all years and was spreading to additional plants. Virus was present in regions adjacent to the TGPP but not in plants sampled from central and south-central Oklahoma. Virus was present in the underground caudex of the plant during the winter, suggesting overwintering in this tissue. The RNA sequence encoding the virus coat protein varied considerably between individual plants (≈3%), likely due to drift rather than selection. An infectious clone was constructed and the virus was named Asclepias asymptomatic virus (AsAV) due to the absence of obvious symptoms on A. viridis.

  19. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Yunzhao Li

    2014-01-01

    Full Text Available The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of βT and Jaccard’s coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion.

  20. Economically and ecologically important plant communities in high altitude coniferous forest of Malam Jabba, Swat, Pakistan.

    Science.gov (United States)

    Sher, Hassan; Al Yemeni, Mohammad

    2011-01-01

    A study on the economically important plant communities was carried out during summer 2008 in various parts of Malam Jabba valley, Swat. The principal aim of the study was phytosociological evaluation with special reference to the occurrence of commercially important medicinal plant species in coniferous forest of the study area. Secondly to prepare ethnobotanical inventory of the plant resources of the area, as well as to evaluate the conservation status of important medicinal and aromatic plants (MAPs) through rapid vulnerable assessment (RVA) procedure. The study documented 90 species of ethnobotanical importance, out of these 71 spp used as medicinal plant, 20 spp fodder plant, 10 spp vegetables, 14 spp wild fruit, 18 spp fuel wood, 9 spp furniture and agricultural tools, 9 spp thatching, fencing and hedges, 4 spp honey bee, 2 spp evil eyes, 2 spp religious and 3 spp as poison. Phytosociologically six plant communities were found, comprising five herbs-shrubs-trees communities and one meadow community. Further study is, therefore, required to quantify the availability of species and to suggest suitable method for their production and conservation. Recommendations are also given in the spheres of training in identification, sustainable collection, value addition, trade monitoring and cooperative system of marketing.

  1. Molecular approaches unravel the mechanism of acid soil tolerance in plants

    Institute of Scientific and Technical Information of China (English)

    Miao; Bian; Meixue; Zhou; Dongfa; Sun; Chengdao; Li

    2013-01-01

    Acid soil is a worldwide problem to plant production. Acid toxicity is mainly caused by a lack of essential nutrients in the soil and excessive toxic metals in the plant root zone. Of the toxic metals, aluminum(Al) is the most prevalent and most toxic. Plant species have evolved to variable levels of tolerance to aluminum enabling breeding of high Al-tolerant cultivars.Physiological and molecular approaches have revealed some mechanisms of Al toxicity in higher plants. Mechanisms of plant tolerance to Al stress include: 1) exclusion of Al from the root tips, and 2) absorbance, but tolerance of Al in root cells. Organic acid exudation to chelate Al is a feature shared by many higher plants. The future challenge for Al tolerance studies is the identification of novel tolerance mechanisms and the combination of different mechanisms to achieve higher tolerance. Molecular approaches have led to significant progress in explaining mechanisms and detection of genes responsible for Al tolerance.Gene-specific molecular markers offer better options for marker-assisted selection in breeding programs than linked marker strategies. This paper mainly focuses on recent progress in the use of molecular approaches in Al tolerance research.

  2. Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Dawei Xue

    2017-04-01

    Full Text Available Cuticular wax, the first protective layer of above ground tissues of many plant species, is a key evolutionary innovation in plants. Cuticular wax safeguards the evolution from certain green algae to flowering plants and the diversification of plant taxa during the eras of dry and adverse terrestrial living conditions and global climate changes. Cuticular wax plays significant roles in plant abiotic and biotic stress tolerance and has been implicated in defense mechanisms against excessive ultraviolet radiation, high temperature, bacterial and fungal pathogens, insects, high salinity, and low temperature. Drought, a major type of abiotic stress, poses huge threats to global food security and health of terrestrial ecosystem by limiting plant growth and crop productivity. The composition, biochemistry, structure, biosynthesis, and transport of plant cuticular wax have been reviewed extensively. However, the molecular and evolutionary mechanisms of cuticular wax in plants in response to drought stress are still lacking. In this review, we focus on potential mechanisms, from evolutionary, molecular, and physiological aspects, that control cuticular wax and its roles in plant drought tolerance. We also raise key research questions and propose important directions to be resolved in the future, leading to potential applications of cuticular wax for water use efficiency in agricultural and environmental sustainability.

  3. Molecular biology of gibberellins signaling in higher plants.

    Science.gov (United States)

    Itoh, Hironori; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2008-01-01

    Gibberellins (GAs), a large family of tetracyclic, diterpenoid plant hormones, play an important role in regulating diverse processes throughout plant development. In recent years, significant advances have been made in the isolation of GA signaling components and GA-responsive genes. All available data have indicated that DELLA proteins are an essential negative regulator in the GA signaling pathway and GA derepresses DELLA-mediated growth suppression by inducing degradation of DELLA proteins through the ubiquitin-26S proteasome proteolytic pathway. Identification of GID1, a gene encoding an unknown protein with similarity to hormone-sensitive lipases, has revealed that GID1 acts as a functional GA receptor with a reasonable binding affinity to biologically active GAs. Furthermore, the GID1 receptor interacts with DELLA proteins in a GA-dependent manner. These results suggest that formation of a GID1-GA-DELLA protein complex targets DELLA protein into the ubiquitin-26S proteasome pathway for degradation.

  4. Diversity and ecological ranges of plant species from dry inter-Andean valleys

    DEFF Research Database (Denmark)

    Quintana, Catalina

    of Ecuadorian dry inter-Andean valleys vegetation, including information related to the physical settings as well as to the vegetation and flora of the valleys. 2) This chapter unveils the influence of disturbance, water availability and low temperature in shaping species composition and occurrence. We found...... found on steep slopes and in ravines. These areas of original dry valley vegetation preserve many wild relatives of cultivated plants on the one hand and old lineages of other wild plant groups. Dry inter-Andean valleys (DIAVs) in Ecuador therefore makeup a biodiversity hot spot for both plants...

  5. Molecular interactions between ethylene and gibberellic acid pathways in plants

    OpenAIRE

    Rzewuski, Guillaume

    2004-01-01

    Flooding avoidance in deepwater rice is characterised by rapid growth of the youngest internode which allows the plant to keep part of its foliage above the surface of raising flood waters. The primary signal triggering internodal elongation is the phytohormone ethylene which accumulates as a result of increased ethylene biosynthesis and entrapment. Through unknown signalling components, ethylene increases the level of bioactive gibberellins (GA) and responsiveness of the tissue to GA. GA is ...

  6. Molecular and cellular aspects of calcium action in plants

    Science.gov (United States)

    Poovaiah, B. W.

    1988-01-01

    Calcium is known to be a second messenger in many developmental processes in animal systems, but it has only recently become evident that Ca is an important intracellular messenger in plants as well. The level of free Ca concentration in the cytoplasm is extremely low, and it is influenced by extracellular signals such as light, gravity, and hormones. Investigations from our laboratory indicated that Ca and its binding protein, calmodulin, play an important role in stimulus-response coupling by regulating enzyme activities, especially through protein phosphorylation. In vivo and in vitro protein phosphorylation studies have revealed Ca-dependent changes in various plant tissues. We have also been able to influence various physiological processes such as cell elongation, abscission, senescence, and tuberization by altering extracellular and intracellular Ca levels. Other examples of Ca-mediated processes in plants are as follows: a) cell division, b) geotropism, c) protoplasmic streaming, d) stomatal control, e) chloroplast movement, f) secretion, g) hormone-dependent changes, h) enzyme activation, and i) protein phosphorylation.

  7. Molecular mechanisms of Strawberry Plant Defence against colletotrichum acutatum

    OpenAIRE

    Amil-Ruiz, Francisco

    2013-01-01

    This thesis is focused on strawberry molecular studies aimed by the strong economic impact and social staple that represents this crop. With an annual production of 500000 tons and an economic weigh of 650 million €, Spain is the third producing country in world (FAOSTAT Agriculture Data [http://faostat.fao.org/]). Important losses in strawberry yields occur due to diseases and pests. Although resistant cultivars are a priority of most strawberry breeding programs, completely r...

  8. Molecular mechanisms of Strawberry Plant Defence against colletotrichum acutatum

    OpenAIRE

    Amil-Ruiz, Francisco

    2013-01-01

    This thesis is focused on strawberry molecular studies aimed by the strong economicimpact and social staple that represents this crop. With an annual production of 500000tons and an economic weigh of 650 million €, Spain is the third producing country inworld (FAOSTAT Agriculture Data [http://faostat.fao.org/]). Important losses instrawberry yields occur due to diseases and pests. Although resistant cultivars are apriority of most strawberry breeding programs, completely resistant cultivars h...

  9. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology.

    Science.gov (United States)

    Tang, Xiaoli; Mu, Xingmin; Shao, Hongbo; Wang, Hongyan; Brestic, Marian

    2015-01-01

    The increasing seriousness of salinization aggravates the food, population and environmental issues. Ameliorating the salt-resistance of plants especially the crops is the most effective measure to solve the worldwide problem. The salinity can cause damage to plants mainly from two aspects: hyperosmotic and hyperionic stresses leading to the restrain of growth and photosynthesis. To the adverse effects, the plants derive corresponding strategies including: ion regulation and compartmentalization, biosynthesis of compatible solutes, induction of antioxidant enzymes and plant hormones. With the development of molecular biology, our understanding of the molecular and physiology knowledge is becoming clearness. The complex signal transduction underlying the salt resistance is being illuminated brighter and clearer. The SOS pathway is the central of the cell signaling in salt stress. The accumulation of the compatible solutes and the activation of the antioxidant system are the effective measures for plants to enhance the salt resistance. How to make full use of our understanding to improve the output of crops is a huge challenge for us, yet the application of the genetic engineering makes this possible. In this review, we will discuss the influence of the salt stress and the response of the plants in detail expecting to provide a particular account for the plant resistance in molecular, physiological and transgenic fields.

  10. Molecular identification of commercialized medicinal plants in southern Morocco.

    Directory of Open Access Journals (Sweden)

    Anneleen Kool

    Full Text Available BACKGROUND: Medicinal plant trade is important for local livelihoods. However, many medicinal plants are difficult to identify when they are sold as roots, powders or bark. DNA barcoding involves using a short, agreed-upon region of a genome as a unique identifier for species- ideally, as a global standard. RESEARCH QUESTION: What is the functionality, efficacy and accuracy of the use of barcoding for identifying root material, using medicinal plant roots sold by herbalists in Marrakech, Morocco, as a test dataset. METHODOLOGY: In total, 111 root samples were sequenced for four proposed barcode regions rpoC1, psbA-trnH, matK and ITS. Sequences were searched against a tailored reference database of Moroccan medicinal plants and their closest relatives using BLAST and Blastclust, and through inference of RAxML phylograms of the aligned market and reference samples. PRINCIPAL FINDINGS: Sequencing success was high for rpoC1, psbA-trnH, and ITS, but low for matK. Searches using rpoC1 alone resulted in a number of ambiguous identifications, indicating insufficient DNA variation for accurate species-level identification. Combining rpoC1, psbA-trnH and ITS allowed the majority of the market samples to be identified to genus level. For a minority of the market samples, the barcoding identification differed significantly from previous hypotheses based on the vernacular names. CONCLUSIONS/SIGNIFICANCE: Endemic plant species are commercialized in Marrakech. Adulteration is common and this may indicate that the products are becoming locally endangered. Nevertheless the majority of the traded roots belong to species that are common and not known to be endangered. A significant conclusion from our results is that unknown samples are more difficult to identify than earlier suggested, especially if the reference sequences were obtained from different populations. A global barcoding database should therefore contain sequences from different populations of the

  11. Development of Ecologically-Based Invasive Plant Management Curriculum for University Audiences

    OpenAIRE

    2013-01-01

    The Great Basin is considered one of the most endangered ecoregions in the United States. One threat facing Great Basin rangelands is the invasion of harmful, non-native plants. These invasive weeds outcompete native plants, degrade wildlife habitat, decrease valuable forage for livestock, and cost millions every year in weed control efforts. In order to restore degraded ecosystems of the Great Basin, it is essential that effective weed management programs are integrated in rangeland manageme...

  12. An ecological role of fungal endophytes to ameliorate plants under biotic stress.

    Science.gov (United States)

    Chadha, Neha; Mishra, Manjita; Rajpal, Kartikeya; Bajaj, Ruchika; Choudhary, Devendra Kumar; Varma, Ajit

    2015-09-01

    It is our consensus that plants survive and flourish in stressed ecosystems because of endosymbiotic organisms that have co-evolved and were essential for their adaptation to changing environments. Some of these microbial components are noncultivable and vertically transmitted from generation to generation. They represent a vast reservoir of heritable DNA that can enhance plant performance in changing environments and add genetic flexibility to adaptation of long-lived plants. If such endophytes can be identified that not only persist in progeny of novel hosts, but can confer benefits in mechanized, agricultural systems, they would be increasingly important in agricultural production and lead to a rapid and economical method of providing novel germplasms of native and crop plants. In the present review, authors advocate the deployment of fungal diversity and its role to overcome the biotic stress in plants. Endophytic fungal association with plants helps it to protect from various pathogen and pests and adapt to survive in harsh biotic and abiotic stress condition.

  13. Mollusc and plant assemblages controlled by different ecological gradients at Eastern European fens

    Science.gov (United States)

    Schenková, Veronika; Horsák, Michal; Hájek, Michal; Plesková, Zuzana; Dítě, Daniel; Pawlikowski, Paweł

    2014-04-01

    Ecological patterns of mollusc assemblages and vegetation in relation to water chemistry, water regime, nutrient availability and climate were studied in eastern Polish lowland fens. Our goal was to examine if major compositional changes differ for molluscs and vegetation under the joint influence of multiple ecological gradients. Altogether 32 fen sites were investigated in 2010-2011, and analyzed using metric multidimensional scaling, cluster analysis and generalized additive models. Two major gradients driving the differences in mollusc species composition were revealed. The main direction of compositional changes was associated with the water table gradient, governing a species turnover from inundated and strongly water-logged sites occupied mostly by aquatic mollusc species, to moderately wet sites with the predominance of fen and meadow species. The second most important gradient for molluscs was that of mineral richness. For vegetation, three major gradients explained the changes in species composition. The highest importance was assigned to the nitrogen-to-phosphorus availability gradient (defined as a shift from N-limited to P-limited vegetation), followed by the water table gradient, and the mineral richness gradient. Our results demonstrate that the impact of mineral richness gradient, which has been often reported as the major determinant of compositional changes of fen molluscs and vegetation, can be exceeded by other ecological gradients of comparable variation. We also document for the first time that the main species turnover of fen vegetation is not accompanied by the analogous change in species composition of mollusc assemblages, due to a different sensitivity of these taxa to particular environmental factors (i.e. water level dynamics and type of nutrient limitation).

  14. Coexistence of trichome variation in a natural plant population: a combined study using ecological and candidate gene approaches.

    Directory of Open Access Journals (Sweden)

    Tetsuhiro Kawagoe

    Full Text Available The coexistence of distinct phenotypes within populations has long been investigated in evolutionary ecology. Recent studies have identified the genetic basis of distinct phenotypes, but it is poorly understood how the variation in candidate loci is maintained in natural environments. In this study, we examined fitness consequences and genetic basis of variation in trichome production in a natural population of Arabidopsis halleri subsp. gemmifera. Half of the individuals in the study population produced trichomes while the other half were glabrous, and the leaf beetle Phaedon brassicae imposed intensive damage to both phenotypes. The fitness of hairy and glabrous plants showed no significant differences in the field during two years. A similar result was obtained when sibling hairy and glabrous plants were transplanted at the same field site, whereas a fitness cost of trichome production was detected under a weak herbivory condition. Thus, equivalent fitness of hairy and glabrous plants under natural herbivory allows their coexistence in the contemporary population. The pattern of polymorphism of the candidate trichome gene GLABROUS1 (GL1 showed no evidence of long-term maintenance of trichome variation within the population. Although balancing selection under fluctuating biotic environments is often proposed to explain the maintenance of defense variation, the lack of clear evidence of balancing selection in the study population suggests that other factors such as gene flow and neutral process may have played relatively large roles in shaping trichome variation at least for the single population level.

  15. The unmanaged reproductive ecology of domesticated plants in traditional agroecosystems: An example involving cassavaand a call for data

    Science.gov (United States)

    Elias, Marianne; McKey, Doyle

    2000-05-01

    Although cassava is a strictly vegetatively propagated crop, in many traditional Amazonian agroecosystems, Amerindian farmers recognise volunteer seedlings of cassava and allow them to grow. If their properties are deemed desirable, plants originating from seedlings are included in the harvest of tuberous roots, and their stems are used to prepare cuttings for propagation. Incorporation of these products of spontaneous sexual reproduction appears to be important in origin and maintenance of genetic diversity in this clonally propagated plant. Our observations conducted in an Amerindian village in Guyana suggest that volunteer seedlings arise from a bank of viable seeds stored in soil, and that dispersal and burial of seeds by ants may be important in its constitution. Future investigations of the dynamics of genetic diversity in this crop in traditional agroecosystems must consider the role of the 'wild' sexual reproduction that occurs in parallel with vegetative propagation. We suggest that unmanaged processes of sexual reproduction play important but neglected roles in the evolutionary ecology of many domesticated plants in traditional agroecosystems.

  16. Ecological adaptation strategies of annual plants in artificial vegetation-stabilized sand dune in Shapotou Region

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jingguang; LI Xinrong; WANG Xinping; WANG Gang

    2004-01-01

    Taking annual plant Eragrostis poaeides in the artificial vegetation-stabilized sand dune in the Shapotou Experimental Research Station as example, study has been done on the adaptation strategies of annual plants to random environment through fixed quadrat observations of population changes and fixed plant determinations of individual growth, seed germination,population dynamics, spatial distribution pattern of population, competition and regulation. During the growing season, the survival rate of annual plants depends on the precipitation intensity and precipitation duration which activate the germination of seeds. The optimal germination strategy of annual plants in this habitat during the growing season appears as continuous germination under suitable conditions. Such continuous germination is an adaptive characteristic of annual plants to random environment. In addition, the variation processes of population size and regulation mechanism of E. poaeoides are studied. Statistical results of natural population in four consecutive years show that water condition in the habitat is the leading factor affecting the population dynamics of E. poaeoides. During the establishment period E. poaeoides had a higher death rate, but in the middle to later period they could survive stably. Due to the limitation of soil moisture, the competition among individuals for water inevitably led to self-thinning phenomena. Under very arid condition, the survival curve of annual herbs entirely appears as Deevey Ⅲ type (C type), but under relatively adequate precipitation condition, the survival curve appears as intermediate type. The strategy of life history obviously appears as r-strategy. Plant species of r-strategy often occurs in the early succession stage of the communities. In the relatively adequate and evenly-distributed rainfall years, E. poaeoides population exhibited a density-dependent, i. e., survival rate increased with decrease in population density. The main pattern to

  17. Ecological analysis of a typical farm-scale biogas plant in China

    Science.gov (United States)

    Duan, Na; Lin, Cong; Wang, Pingzhi; Meng, Jing; Chen, Hui; Li, Xue

    2014-09-01

    The aim of this work was to present the common anaerobic digestion technologies in a typical farm-scale biogas plant in China. The comprehensive benefits of most biogas plants in China have not been fully assessed in past decades due to the limited information of the anaerobic digestion processes in biogas plants. This paper analyzed four key aspects (i.e., operational performance, nonrenewable energy (NE) savings, CO2 emission reduction (CER) and economic benefits (EBs)) of a typical farm-scale biogas plant, where beef cattle manure was used as feedstock. Owing to the monitoring system, stable operation was achieved with a hydraulic retention time of 18-22 days and a production of 876,000 m3 of biogas and 37,960 t of digestate fertilizer annually. This could substantially substitute for the nonrenewable energy and chemical fertilizer. The total amount of NE savings and CER derived from biogas and digestate fertilizer was 2.10×107 MJ (equivalent to 749.7 tce) and 9.71×105 kg, respectively. The EBs of the biogas plant was 6.84×105 CNY·yr-1 with an outputs-to-inputs ratio of 2.37. As a result, the monitoring system was proved to contribute significantly to the sound management and quantitative assessment of the biogas plant. Biogas plants could produce biogas which could be used to substitute fossil fuels and reduce the emissions of greenhouse gases, and digestate fertilizer is also an important bio-product.

  18. Molecular ecological analysis of planktonic bacterial communities in constructed wetlands invaded by Culex (Diptera: Culicidae) mosquitoes.

    Science.gov (United States)

    Popko, David A; Han, Suk-Kyun; Lanoil, Brian; Walton, William E

    2006-11-01

    The succession of the planktonic bacterial community during the colonization by Culex (Diptera: Culicidae) mosquitoes of 0.1-ha treatment wetlands was studied using denaturing gradient gel electrophoresis (DGGE) methodology. Relationships between apparent bacterial diversity and ecological factors (water quality, total bacterial counts, and immature mosquito abundance) were determined during a 1-mo flooding period. Analysis of DGGE banding patterns indicated that days postflooding and temporal changes in water quality were the primary and secondary determinants, respectively, of diversity in bacterial communities. Lower levels of diversity were associated with later postflood stages and increases in ammoniacal nitrogen concentration and total bacterial counts. Diversity was therefore most similar for bacteria present on the same sampling date at wetland locations with similar flooding regimes and water quality, suggesting that wastewater input was the driving force shaping bacterial communities. Comparatively small changes in bacterial diversity were connected to natural processes as water flowed through the wetlands. Greater immature mosquito abundance coincided with less diverse communities composed of greater total numbers of bacteria. Five individual DGGE bands were directly associated with fluctuations in mosquito production, and an additional 16 bands were associated with hydrological aspects of the environment during the rise and fall of mosquito populations. A marked decline in mosquito numbers 21 d after inundation may have masked associations of bacterial communities and mosquito recruitment into the sparsely vegetated wetlands. DGGE was an effective tool for the characterization of bacteria in mosquito habitat in our study, and its potential application in mosquito ecology is discussed.

  19. Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations.

    Science.gov (United States)

    van der Ent, Antony; Mulligan, David

    2015-04-01

    Information about multi-elemental concentrations in different plant parts of tropical Ni hyperaccumulator species has the potential to provide insight into their unusual metabolism relative to a range of essential and non-essential elements, but this information is scant in the literature. As Ni hyperaccumulation, and possibly co-accumulation of other toxic elements, has been hypothesized to provide herbivore (insect) protection, there is a need to quantify a range of these elements in plant tissues and transport fluids to at least verify the possibility of this explanation. In this study, multiple elements were analyzed in a range of different plant parts and transport fluids from Ni hyperaccumulator species collected from Sabah (Malaysia). The results show preferential accumulation of Ni in leaves over woody parts, but the highest concentrations were found in the phloem tissue (up to 7.9 % in Rinorea bengalensis) and phloem sap (up to 16.9 % in Phyllanthus balgooyi), visible by a bright green coloration in the field fresh material. The amount of Ni contained in one mature R. bengalensis tree was calculated at 4.77 kg. The high Ni concentration in the flowers of Phyllanthus securinegoides could affect insect floral visitors and pollination. High concentrations of Ni in the seeds of this species also could supply the seedling with Ni and aid in herbivory protection during the first stages of development. Foliar Ca and Ni in P. cf. securinegoides and R. bengalensis are positively correlated. Low accumulation of Ca is desirable for phytomining but concentrations of Ca are high in most Ni hyperaccumulators examined, and this could have consequences for the economic viability of Ni extraction from bio ore if these species were to be used as 'metal crops'.

  20. Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Baltrus, David A; McCann, Honour C; Guttman, David S

    2017-01-01

    A remarkable shift in our understanding of plant-pathogenic bacteria is underway. Until recently, nearly all research on phytopathogenic bacteria was focused on a small number of model strains, which provided a deep, but narrow, perspective on plant-microbe interactions. Advances in genome sequencing technologies have changed this by enabling the incorporation of much greater diversity into comparative and functional research. We are now moving beyond a typological understanding of a select collection of strains to a more generalized appreciation of the breadth and scope of plant-microbe interactions. The study of natural populations and evolution has particularly benefited from the expansion of genomic data. We are beginning to have a much deeper understanding of the natural genetic diversity, niche breadth, ecological constraints and defining characteristics of phytopathogenic species. Given this expanding genomic and ecological knowledge, we believe the time is ripe to evaluate what we know about the evolutionary dynamics of plant pathogens. © 2016 BSPP and John Wiley & Sons Ltd.

  1. Advances on plant-pathogen interactions from molecular toward systems biology perspectives.

    Science.gov (United States)

    Peyraud, Rémi; Dubiella, Ullrich; Barbacci, Adelin; Genin, Stéphane; Raffaele, Sylvain; Roby, Dominique

    2016-11-21

    In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future.

  2. Insights into deep-time terrestrial carbon cycle processes from modern plant isotope ecology

    Science.gov (United States)

    Sheldon, N. D.; Smith, S. Y.

    2012-12-01

    While the terrestrial biosphere and soils contain much of the readily exchangeable carbon on Earth, how those reservoirs function on long time scales and at times of higher atmospheric CO2 and higher temperatures is poorly understood, which limits our ability to make accurate future predictions of their response to anthropogenic change. Recent data compilation efforts have outlined the response of plant carbon isotope compositions to a variety of environmental factors including precipitation amount and timing, elevation, and latitude. The compilations involve numerous types of plants, typically only found at a limited number of climatic conditions. Here, we expand on those efforts by examining the isotopic response of specific plant groups found both globally and across environmental gradients including: 1) ginkgo, 2) conifers, and 3) C4 grasses. Ginkgo is presently widely distributed as a cultivated plant and the ginkgoalean fossil record spans from the Permian to the present, making it an ideal model organism to understand climatic influence on carbon cycling both in modern and ancient settings. Ginkgo leaves have been obtained from a range of precipitation conditions (400-2200 mm yr-1), including dense sampling from individuals and populations in both Mediterranean and temperate climate areas and samples of different organs and developmental stages. Ginkgo carbon isotope results plot on the global C3 plant array, are consistent among trees at single sites, among plant organs, and among development stages, making ginkgo a robust recorder of both climatic conditions and atmospheric δ13C. In contrast, a climate-carbon isotope transect in Arizona highlights that conifers (specifically, pine and juniper) record large variability between organs and have a very different δ13C slope as a function of climate than the global C3 plant array, while C4 plants have a slope with the opposite sign as a function of climate. This has a number of implications for paleo

  3. Major pharmaceutical residues in wastewater treatment plants and receiving waters in Bangkok, Thailand, and associated ecological risks.

    Science.gov (United States)

    Tewari, S; Jindal, R; Kho, Y L; Eo, S; Choi, K

    2013-04-01

    Pharmaceuticals have been frequently detected in aquatic environment worldwide and suspected for potential ecological consequences. However, occurrences, sources and potential risks of pharmaceutical residues have rarely been investigated in Bangkok, Thailand, one of most densely populated cities in the world. We collected water samples from five wastewater treatment plants (WWTPs), six canals, and in mainstream Chao Phraya River of Bangkok, in three sampling events representing different seasonal flow conditions, i.e., June and September 2011 and January 2012. Fourteen major pharmaceuticals including acetaminophen, acetylsalicylic acid, atenolol, caffeine, ciprofloxacin, diclofenac, ibuprofen, mefenamic acid, naproxen, roxithromycin, sulfamethazine, sulfamethoxazole, sulfathiazole and trimethoprim were analyzed. Levels of pharmaceutical residues in WWTP influents on average were the highest for acetylsalicylic acid (4700 ng L(-1)), followed by caffeine (2250 ng L(-1)) and ibuprofen (702 ng L(-1)). In effluents, the concentration of caffeine was the highest (307 ng L(-1)), followed by acetylsalicylic acid (261 ng L(-1)) and mefenamic acid (251 ng L(-1)). In surface water, acetylsalicylic acid showed the highest levels (on average 1360 ng L(-1) in canals and 313 ng L(-1) in the river). Removal efficiencies of WWTPs for roxithromycin, sulfamethoxazole and sulfamethazine were determined negligible. For several compounds, the concentrations in ambient water were higher than those detected in the effluents, implying contribution of the WWTPs to be negligible. Hazard quotients estimated for acetylsalicylic acid, ciprofloxacin, diclofenac and mefenamic acid in most of the canals and that of ciprofloxacin in the river, were greater than or close to 1, suggesting potential ecological risks. Ecological implications of the pharmaceutical residues in Bangkok waterway warrant further investigation.

  4. Simulation and experimental studies of operators` decision styles and crew composition while using an ecological and traditional user interface for the control room of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Meshkati, N.; Buller, B.J.; Azadeh, M.A. [Univ. of Southern California, Los Angeles, CA (United States)

    1995-04-01

    The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators` individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and a mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators` individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators` decision styles affect on both their performance and preference for the Ecological interface.

  5. Insights into the Ecology and Evolution of Polyploid Plants through Network Analysis.

    Science.gov (United States)

    Gallagher, Joseph P; Grover, Corrinne E; Hu, Guanjing; Wendel, Jonathan F

    2016-06-01

    Polyploidy is a widespread phenomenon throughout eukaryotes, with important ecological and evolutionary consequences. Although genes operate as components of complex pathways and networks, polyploid changes in genes and gene expression have typically been evaluated as either individual genes or as a part of broad-scale analyses. Network analysis has been fruitful in associating genomic and other 'omic'-based changes with phenotype for many systems. In polyploid species, network analysis has the potential not only to facilitate a better understanding of the complex 'omic' underpinnings of phenotypic and ecological traits common to polyploidy, but also to provide novel insight into the interaction among duplicated genes and genomes. This adds perspective to the global patterns of expression (and other 'omic') change that accompany polyploidy and to the patterns of recruitment and/or loss of genes following polyploidization. While network analysis in polyploid species faces challenges common to other analyses of duplicated genomes, present technologies combined with thoughtful experimental design provide a powerful system to explore polyploid evolution. Here, we demonstrate the utility and potential of network analysis to questions pertaining to polyploidy with an example involving evolution of the transgressively superior cotton fibres found in polyploid Gossypium hirsutum. By combining network analysis with prior knowledge, we provide further insights into the role of profilins in fibre domestication and exemplify the potential for network analysis in polyploid species. © 2016 John Wiley & Sons Ltd.

  6. Statistical analysis of the associations between phenolic monoterpenes and molecular markers, AFLPs and SAMPLs in the spice plant Oregano

    Directory of Open Access Journals (Sweden)

    Azizi Ali

    2016-06-01

    Full Text Available Introduction: Molecular markers are the examples of the contribution of genome technology to medicinal plant breeding through marker-assisted selection (MAS for pharmaceutical quality.

  7. Grazers, shredders and filtering carnivores--the evolution of feeding ecology in Drusinae (Trichoptera: Limnephilidae): insights from a molecular phylogeny.

    Science.gov (United States)

    Pauls, Steffen U; Graf, Wolfram; Haase, Peter; Lumbsch, H Thorsten; Waringer, Johann

    2008-02-01

    We examined the phylogenetic relationships between species and genera within the caddisfly subfamily Drusinae (Trichoptera: Limnephilidae) using sequence data from two mitochondrial loci (cytochrome oxidase 1, large subunit rRNA) and one nuclear gene (wingless). Sequence data were analysed for 28 species from five genera from the subfamily. We analysed individual and combined data sets using a Bayesian Markov Chain Monte Carlo and a maximum parsimony approach and compared the performance of each partition for resolving phylogenetic relationships at this level. In terms of resolution and phylogenetic utility wingless outperformed the two mitochondrial gene partitions. Using both Shimodaira-Hasegawa and expected likelihood weights tests we tested several hypotheses of relationships previously inferred based on adult morphological characters. The data did not support the generic concept, or many previously proposed species groupings, based on adult morphology. In contrast, the molecular data correlated with the morphology and feeding ecology of larvae. Using Bayesian ancestral character state reconstructions we inferred the evolution of feeding ecology and relevant larval morphological characters. Our analyses showed that within the subfamily Drusinae two derived feeding types evolved. One of these--grazing epilithic algae--is otherwise unusual in the Limnephilidae and may have promoted the high degree of diversity in the Drusinae.

  8. Understanding the biology and ecology of vulnerable plant species: case study with tetratheca juncea occurring over coal leases

    Energy Technology Data Exchange (ETDEWEB)

    David Mulligan; Sean Bellairs; F.V. Bartier; C.L. Gross; D. Bowen

    2001-06-01

    Tetratheca juncea Smith (Tremandraceae) is a vulnerable species listed under the NSW Threatened Species Conservation Act (Schedule 2, TSC Act 1995), and in the Commonwealth Environment Protection and Biodiversity Conservation Act 1999.Researchers at the Universities of Queensland, New England and Newcastle established A collaborative research program investigated the reproductive and establishment biology of T juncea. Breeding systems, seed biology and mycorrhizal associations were investigated to determine factors limiting the reproductive output of the species. Native bees necessary for pollination were not detected in 100 hours of observation. The three key ramifications from this study of T. juncea's ecology is that: a pollinator is required for high seed yields; fire is required for germination; and a mycorrhizal partner is required for plant longevity. These findings indicate that translocations of the species cannot be recommended as there is a lack of knowledge about many factors that are critical for the persistence of the species. A fire management plan will need to cater for all obligate ecological requirements. The results of this study have been used to develop a flowchart on the biological procedures that need to be considered when a threatened flora species is found on a site. The results from this study are also considered to be a relevant guide for managing populations of other species of Tetratheca, many of which are also rare or threatened.

  9. Plant species diversity in the ecological species groups in the Kandelat Forest Park, Guilan, North of Iran

    Directory of Open Access Journals (Sweden)

    HASSAN POURBABAEI

    2012-01-01

    Full Text Available Pourbabaei H, Haghgooy T. 2012. Plant species diversity in the ecological species groups in the Kandelat Forest Park, Guilan, North of Iran. Biodiversitas 13: 7-12. Forest vegetation indicates conditions and productivity potential of forest habitat, because it reflects the interaction of climate, soil and topography. The aim of this research was to study the relationship between vegetation and topography factors. In order to do this research, type, number and percentage cover of trees, shrubs (sample plot with 1000 m2 area and type and percentage cover of herbaceous species (sample plot with 64 m2 area investigated and recorded. The coverage percent of species were estimated on the basis of Domin scale. Vegetation classified using Two-Way Indicator Species Analysis (TWINSPAN. The results revealed that there were 6 ecosystem units (ecological groups in the region. The comparison of diversity indices and topographic factors between groups were performed with ANOVA test. Results also indicated that there were significant differences between groups in terms of biodiversity indices and topographic factors. The formation of a particular group is affected by a combination of environment variables. The aspect was the most important variable of topographic factors in this study.

  10. La parasitología ecologíca en la era de la genética molecular

    OpenAIRE

    J. Pérez-Tris

    2009-01-01

    El estudio de la ecología de las relaciones entre parásitos y hospedadores se ha beneficiado recientemente de la aplicación de técnicas moleculares de diagnóstico e identificación de los parásitos. Dichas técnicas, basadas en la amplificación y secuenciación de un fragmento del ADN de los parásitos, no sólo facilitan enormemente la detección de infecciones, sino que han abierto un nuevo campo de investigación acerca de la diversidad -a menudo críptica- de estos parásitos, sus patrones de dive...

  11. La parasitología ecologíca en la era de la genética molecular

    OpenAIRE

    2009-01-01

    El estudio de la ecología de las relaciones entre parásitos y hospedadores se ha beneficiado recientemente de la aplicación de técnicas moleculares de diagnóstico e identificación de los parásitos. Dichas técnicas, basadas en la amplificación y secuenciación de un fragmento del ADN de los parásitos, no sólo facilitan enormemente la detección de infecciones, sino que han abierto un nuevo campo de investigación acerca de la diversidad -a menudo críptica- de estos parásitos, sus patrones de dive...

  12. Photoproduction of molecular hydrogen by a plant-algal symbiotic system

    Energy Technology Data Exchange (ETDEWEB)

    Newton, J.W.

    1976-02-13

    The rapidly growing water fern Azolla, which contains a nitrogen-fixing blue-green algal symbiont, has been studied as a possible system for photoproduction of molecular hydrogen. When this plant is grown on a combined nitrogen supply, photochemically generated hydrogen can be diverted through the algal nitrogenase system, which serves as a source of molecular hydrogen generated from water. This symbiosis has several advantages as a possible biological energy conversion system. (auth)

  13. Molecular Determinants of Substrate Specificity in Plant 5-Methylthioadenosine Nucleosidases

    Energy Technology Data Exchange (ETDEWEB)

    Siu,K.; Lee, J.; Sufrin, J.; Moffatt, B.; McMillan, M.; Cornell, K.; Isom, C.; Howell, L.

    2008-01-01

    5?-Methylthioadenosine (MTA)/S-adenosylhomocysteine (SAH) nucleosidase (MTAN) is essential for cellular metabolism and development in many bacterial species. While the enzyme is found in plants, plant MTANs appear to select for MTA preferentially, with little or no affinity for SAH. To understand what determines substrate specificity in this enzyme, MTAN homologues from Arabidopsis thaliana (AtMTAN1 and AtMTAN2, which are referred to as AtMTN1 and AtMTN2 in the plant literature) have been characterized kinetically. While both homologues hydrolyze MTA with comparable kinetic parameters, only AtMTAN2 shows activity towards SAH. AtMTAN2 also has higher catalytic activity towards other substrate analogues with longer 5?-substituents. The structures of apo AtMTAN1 and its complexes with the substrate- and transition-state-analogues, 5?-methylthiotubercidin and formycin A, respectively, have been determined at 2.0-1.8 Angstroms resolution. A homology model of AtMTAN2 was generated using the AtMTAN1 structures. Comparison of the AtMTAN1 and AtMTAN2 structures reveals that only three residues in the active site differ between the two enzymes. Our analysis suggests that two of these residues, Leu181/Met168 and Phe148/Leu135 in AtMTAN1/AtMTAN2, likely account for the divergence in specificity of the enzymes. Comparison of the AtMTAN1 and available Escherichia coli MTAN (EcMTAN) structures suggests that a combination of differences in the 5?-alkylthio binding region and reduced conformational flexibility in the AtMTAN1 active site likely contribute to its reduced efficiency in binding substrate analogues with longer 5?-substituents. In addition, in contrast to EcMTAN, the active site of AtMTAN1 remains solvated in its ligand-bound forms. As the apparent pKa of an amino acid depends on its local environment, the putative catalytic acid Asp225 in AtMTAN1 may not be protonated at physiological pH and this suggests the transition state of AtMTAN1, like human MTA phosphorylase and

  14. Molecular and biochemical analysis of symbiotic plant receptor kinase complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Douglas R; Riely, Brendan K

    2010-09-01

    DE-FG02-01ER15200 was a 36-month project, initiated on Sept 1, 2005 and extended with a one-year no cost extension to August 31, 2009. During the project period we published seven manuscripts (2 in review). Including the prior project period (2002-2005) we published 12 manuscripts in journals that include Science, PNAS, The Plant Cell, Plant Journal, Plant Physiology, and MPMI. The primary focus of this work was to further elucidate the function of the Nod factor signaling pathway that is involved in initiation of the legume-rhizobium symbiosis and in particular to explore the relationship between receptor kinase-like proteins and downstream effectors of symbiotic development. During the project period we have map-base cloned two additional players in symbiotic development, including an ERF transcription factor and an ethylene pathway gene (EIN2) that negatively regulates symbiotic signaling; we have also further characterized the subcellular distribution and function of a nuclear-localized symbiosis-specific ion channel, DMI1. The major outcome of the work has been the development of systems for exploring and validating protein-protein interactions that connect symbiotic receptor-like proteins to downstream responses. In this regard, we have developed both homologous (i.e., in planta) and heterologous (i.e., in yeast) systems to test protein interactions. Using yeast 2-hybrid screens we isolated the only known interactor of the nuclear-localized calcium-responsive kinase DMI3. We have also used yeast 2-hybrid methodology to identify interactions between symbiotic signaling proteins and certain RopGTPase/RopGEF proteins that regulate root hair polar growth. More important to the long-term goals of our work, we have established a TAP tagging system that identifies in planta interactions based on co-immuno precipitation and mass spectrometry. The validity of this approach has been shown using known interactors that either co-iummnoprecipate (i.e., remorin) or co

  15. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants.

    Science.gov (United States)

    Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md Mahabub; Roychowdhury, Rajib; Fujita, Masayuki

    2013-05-03

    High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants.

  16. Molecular Properties and Functional Divergence of the Dehydroascorbate Reductase Gene Family in Lower and Higher Plants.

    Directory of Open Access Journals (Sweden)

    Yuan-Jie Zhang

    Full Text Available Dehydroascorbate reductase (DHAR, which reduces oxidized ascorbate, is important for maintaining an appropriate ascorbate redox state in plant cells. To date, genome-wide molecular characterization of DHARs has only been conducted in bryophytes (Physcomitrella patens and eudicots (e.g. Arabidopsis thaliana. In this study, to gain a general understanding of the molecular properties and functional divergence of the DHARs in land plants, we further conducted a comprehensive analysis of DHARs from the lycophyte Selaginella moellendorffii, gymnosperm Picea abies and monocot Zea mays. DHARs were present as a small gene family in all of the land plants we examined, with gene numbers ranging from two to four. All the plants contained cytosolic and chloroplastic DHARs, indicating dehydroascorbate (DHA can be directly reduced in the cytoplasm and chloroplast by DHARs in all the plants. A novel vacuolar DHAR was found in Z. mays, indicating DHA may also be reduced in the vacuole by DHARs in Z. mays. The DHARs within each species showed extensive functional divergence in their gene structures, subcellular localizations, and enzymatic characteristics. This study provides new insights into the molecular characteristics and functional divergence of DHARs in land plants.

  17. 16S rRNA as molecular marker in ecology of Frankia

    NARCIS (Netherlands)

    Hahn, D.

    1990-01-01

    The research described in this thesis focusses on the role of biotic factors encountered with the establishment of the symbiosis between black alder plants ( Alnus glutinosa ) and introduced Frankia strains. A selection of

  18. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities.

    Energy Technology Data Exchange (ETDEWEB)

    Brudvig, Lars A. [Department of Plant Biology, Michigan State University; Orrock, John L. [Department of Zoology, University of Wisconsin; Damschen, Ellen I. [Department of Zoology, University of Wisconsin; et al, et al

    2014-01-23

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility

  19. Plant traits demonstrate that temperate and tropical giant eucalypt forests are ecologically convergent with rainforest not savanna.

    Science.gov (United States)

    Tng, David Y P; Jordan, Greg J; Bowman, David M J S

    2013-01-01

    Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world's tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest - open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management.

  20. Land-use history and contemporary management inform an ecological reference model for longleaf pine woodland understory plant communities.

    Directory of Open Access Journals (Sweden)

    Lars A Brudvig

    Full Text Available Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities, and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients-i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes. Our study demonstrates

  1. Land-use history and contemporary management inform an ecological reference model for longleaf pine woodland understory plant communities.

    Science.gov (United States)

    Brudvig, Lars A; Orrock, John L; Damschen, Ellen I; Collins, Cathy D; Hahn, Philip G; Mattingly, W Brett; Veldman, Joseph W; Walker, Joan L

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients-i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  2. Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants.

    Science.gov (United States)

    Li, Zhen; De La Torre, Amanda R; Sterck, Lieven; Cánovas, Francisco M; Avila, Concepción; Merino, Irene; Cabezas, José Antonio; Cervera, María Teresa; Ingvarsson, Pär K; Van de Peer, Yves

    2017-05-01

    Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angiosperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. The application of LTR retrotransposons as molecular markers in plants.

    Science.gov (United States)

    Schulman, Alan H; Flavell, Andrew J; Paux, Etienne; Ellis, T H Noel

    2012-01-01

    Retrotransposons are a major agent of genome evolution. Various molecular marker systems have been developed that exploit the ubiquitous nature of these genetic elements and their property of stable integration into dispersed chromosomal loci that are polymorphic within species. The key methods, SSAP, IRAP, REMAP, RBIP, and ISBP, all detect the sites at which the retrotransposon DNA, which is conserved between families of elements, is integrated into the genome. Marker systems exploiting these methods can be easily developed and inexpensively deployed in the absence of extensive genome sequence data. They offer access to the dynamic and polymorphic, nongenic portion of the genome and thereby complement methods, such as gene-derived SNPs, that target primarily the genic fraction.

  4. Antimicrobial Effect of 15 Medicinal Plant Species and their Dependency on Climatic Conditions of Growth in Different Geographical and Ecological Areas of Fars Province

    Directory of Open Access Journals (Sweden)

    Abbas Abdollahi

    2012-05-01

    Full Text Available Background: The effects of medicinal plants are variable in different conditions. Here, the antimicrobial effect of 15 medicinal plant species and their dependency on the climatic condition of growth in different geographical and ecological areas of Fars Province were studied. Materials and Methods: In This empirical study, the antimicrobial effect of hydro-alcoholic extract of 15 medicinal plant species was examined against standard bacterial strains comparing to conventional therapeutic antibiotics using disk diffusion assay and serial broth dilution. Results: All Extracts were effective against S.aureus ATCC 25923 growth; also Peganum harmala, Myrtus communis, Mentha pulegium, Mentha spp, and Zataria multiflora extracts were observed to have antimicrobial activity against E.coli ATCC 25922. This antimicrobial activity had partially similar results, comparing to conventional antibioticsConclusion: Medicinal plants produce various amounts of antimicrobial substances under the climatic and ecological conditions of each zone, which must be considered in manufacturing herbal medicines.

  5. Index of Alien Impact: A method for evaluating potential ecological impact of alien plant species

    Science.gov (United States)

    Alien plant species are stressors to ecosystems and indicators of reduced ecosystem integrity. The magnitude of the stress reflects not only the quantity of aliens present, but also the quality of their interactions with native ecosystems. We develop an Index of Alien Impact (IAI...

  6. Marine ecological habitat: A case study on projected thermal power plant around Dharamtar creek, India

    Digital Repository Service at National Institute of Oceanography (India)

    Kulkarni, V.A.; Naidu, V.S.; Jagtap, T.G.

    water discharges from konakovo tps on sex cycles of fish in the Ivankovo reservoir, Tr. VGBO, 21, 63-82 (1977). Fox, J.L. and M.S. Moyer: Effect of power plant chlorination on estuarine productivity. Chesapeake Sci., 16, 66-68 (1975). Gray, J.S., K...

  7. Diversity and ecological distribution of endophytic fungi associated with medicinal plants

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A total of 973 isolates of endophytic fungi were recovered from 1144 tissue fragments of the six me-dicinal plant species belonging to 4 families collected in the Beijing Botanical Garden. Of these isolates 778 sporulated and were identified into 21 taxa by morphological characteristics. Among the taxa 11 belonged to Coelomycetes, 6 to Ascomycetes, and 4 to Hyphomycetes. Various numbers of endophytic fungi (5―8 taxa) were obtained from each plant. Alternaria alternata was the dominant species in the 6 plants, and Microsphaeropsis conielloides was also dominant in Eucommia ulmoides. There were high colonization rates (47.9%―63.1%) and isolation rates (0.7―0.93) of endophytic fungi, and they were conspicuously higher in twigs than those in leaves in the 6 plants examined. The colonization and isolation rates of endophytic fungi increased with the twig age. The results based on the analyses of cluster and Sorenson’s similarity coefficients indicated that some endophytic fungi showed a certain degree of host and tissue preference.

  8. [Ecological control effects of Litchi chinensis-Desmodium intortum complex plant ecosystem on litchi pests].

    Science.gov (United States)

    Ouyang, Gecheng; Yang, Yueping; Liu, Deguang; Xiong, Jinjun; Huang, Mingdu

    2006-01-01

    An investigation on the community structure and dynamics of litchi pests and their natural enemies in constructed Litchi chinensis-Desmodium intortum complex plant ecosystem and single L. chinensis ecosystem showed that the total amount of litchi pests in the complex plant ecosystem was 61.27% of that in the single ecosystem in whole year, and only 50.45% in May, the key time for fruit development, which suggested that there was an interaction between D. intortum and L. chinensis. D. intortum and L. chinensis had a few common pests, but many common natural enemies. D. intortum florescence in winter provided shelter and substitutive food for the natural enemies of pests to survive in the extreme environmental conditions in winter. L. chinensis florescence was on the heel of D. intortum florescence, which provided better conditions for the natural enemies to survive and multiply. During florescence and fruit development stages of L. chinensis (from March to June), the predator/prey ratio in complex plant system was 4.22, 2.34, 2.2 and 20.63 times of that in single plant system in March, April, May and June, respectively, indicating the good control effect on pests of L. chinensis.

  9. Index of Alien Impact: A method for evaluating potential ecological impact of alien plant species

    Science.gov (United States)

    Alien plant species are stressors to ecosystems and indicators of reduced ecosystem integrity. The magnitude of the stress reflects not only the quantity of aliens present, but also the quality of their interactions with native ecosystems. We develop an Index of Alien Impact (IAI...

  10. Diversity and ecological distribution of endophytic fungi associated with medicinal plants.

    Science.gov (United States)

    Sun, Jianqiu; Guo, Liangdong; Zang, Wei; Ping, Wenxiang; Chi, Defu

    2008-08-01

    A total of 973 isolates of endophytic fungi were recovered from 1,144 tissue fragments of the six medicinal plant species belonging to 4 families collected in the Beijing Botanical Garden. Of these isolates 778 sporulated and were identified into 21 taxa by morphological characteristics. Among the taxa 11 belonged to Coelomycetes, 6 to Ascomycetes, and 4 to Hyphomycetes. Various numbers of endophytic fungi (5-8 taxa) were obtained from each plant. Alternaria alternata was the dominant species in the 6 plants, and Microsphaeropsis conielloides was also dominant in Eucommia ulmoides. There were high colonization rates (47.9%-63.1%) and isolation rates (0.7-0.93) of endophytic fungi, and they were conspicuously higher in twigs than those in leaves in the 6 plants examined. The colonization and isolation rates of endophytic fungi increased with the twig age. The results based on the analyses of cluster and Sorenson's similarity coefficients indicated that some endophytic fungi showed a certain degree of host and tissue preference.

  11. Flora and ecological characteristics of rare plant communities on the southern slope of Shennongjia Mountain

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to the investigation of sampling area of 6800 m2 on the south slope of Shennongjia Mountain, there were 126 vascular plant species, belonging to 108 genera and 64 families, in the investigated rare plant communities, of which 9 rare plant species were recorded, accounting for 27.3% of the total rare plants. The communities were about 30 m in height and were divided into three layers as tree layer, shrub layer, and herb layer. The flora of the communities had obvious temperate character. Phanerophytes (accounted for 65.9%), Mesophyllous (62.7%), Papyraceous (84.1%), simple leaf (83.3%), un-entire leaf (69.8%) were dominant in life form, leaf size class, leaf texture, leaf form, and leaf margin respectively. According to important value of species, the communities were divided into three types as Davidia involucrata + Litsea pungens community, Cercidiphyllum japanicum + Padus wilsonii community, and Padus wilsonii + Acer mono community. The indexes of species diversity of tree layer had little difference among communities and evenness was high. The results indicated that the communities had complex structure and relative stability.

  12. Diversity and ecological distribution of endophytic fungi associated with medicinal plants

    Institute of Scientific and Technical Information of China (English)

    SUN JianQiu; GUO LiangDong; ZANG Wei; PING WenXiang; CHI DeFu

    2008-01-01

    A total of 973 isolates of endophytic fungi were recovered from 1144 tissue fragments of the six me-dicinal plant species belonging to 4 families collected in the Beijing Botanical Garden. Of these isolates 778 sporulated and were identified into 21 taxa by morphological characteristics. Among the taxa 11 belonged to Coelomycetes, 6 to Ascomycetes, and 4 to Hyphomycetes. Various numbers of endophytic fungi (5-8 taxa) were obtained from each plant. Alternaria alternata was the dominant species in the 6 plants, and Microsphaeropsis conielloides was also dominant in Eucommia ulmoides. There were high colonization rates (47.9%-63.1%) and isolation rates (0.7-0.93) of endophytic fungi, and they were conspicuously higher in twigs than those in leaves in the 6 plants examined. The colonization and isolation rates of endophytic fungi increased with the twig age. The results based on the analyses of cluster and Sorenson's similarity coefficients indicated that some endophytic fungi showed a certain degree of host and tissue preference.

  13. Monitoring potential ecological impacts of a utility-scale photovoltaic panel facility on a creosote-bursage plant community

    Science.gov (United States)

    Apodaca, L.; Devitt, D. A.

    2016-12-01

    High energy demands and greater financial viability have propelled recent growth in the solar energy market. Southern Nevada is poised to become a major contributor of green energy through the commissioning of public and private lands for solar development, but there exists a pressing need to better understand the ecological consequences of these facilities as documentation of the impacts of large-scale solar operations on surrounding environments is severely lacking. The Copper Mountain 2 (CM2) solar facility in Eldorado Valley, Nevada, USA utilizes nearly 1.8 square kilometers of photovoltaic panels to generate enough energy to power about 50,000 homes and is situated within a predominately creosote (Larrea tridentata) and white bursage (Ambrosia dumosa) habitat. Currently, the potential impacts on the local environment related to this massive development are being studied from two perspectives: microclimate effects and alteration of surface hydrology. A series of meteorological towers and ibuttons are being used to monitor microclimate changes in the area of CM2 and the adjacent natural habitat as localized climate within the facility may be altering growing conditions in nearby desert plant communities. Because the placement of CM2 represents a major obstacle to established surface water flow, a transect of soil moisture probe access tubes have been placed in association with creosote plants along a downslope gradient from the facility to observe changes to soil water storage. Individual creosote and bursage plant physiologies are also being monitored to study any potential increase in plant stress influenced by the CM2 solar facility. Most measurements have been ongoing for at least one year. Greater details on the research infrastructure will be presented along with the latest observational data.

  14. Assessing ecological responses of wolves to wind power plants in Portugal: methodological constrains and conservation implications

    Energy Technology Data Exchange (ETDEWEB)

    Alvaras, Francisco; Rio-Maior, Helena; Roque, Sara; Nakamura, Monia; Cadete, Duarte; Pinto, Sara; Petrucci-Fonseca, Francisco

    2011-07-01

    Full text: Wind-power development has substantially increased in the last decade in Portugal and associated structures mostly overlap with wolf range, which raises major conservation concerns as a potential source of disturbance to this endangered carnivore. However, a comprehensive evaluation is greatly hampered by difficulties in studying wolf ecology and current lack of knowledge on the impacts of wind energy development on non-flying animals, especially large mammals. A research program was initiated in 2006, to: i) establish a methodological protocol for assessing impacts and monitoring wolf ecological responses to wind farms; ii) evaluate potential effects of wind farms on wolf space use and reproduction; iii) apply efficient mitigation and compensation measures. Field methods are based on howling and sign surveys, scat quantification through abundance indices and GPS telemetry. Preliminary results demonstrate that: i) road network built for wind-power development lead to a considerable increase in traffic, especially during construction of wind farms; ii) wolves continue to use areas with wind farms; iii) wolf presence tends to decrease with the cumulative number of turbines; iv) spatial responses of wolves to wind farms appear to depend on the number and proximity of turbines to important pack home sites and prey availability; v) wolves abandon or do not regularly use breeding sites located in the proximity of wind turbines; vi) wolves select breeding places at a lower altitude after wind farm construction, as a response to related disturbance in mountain ridges. Wind farms induce important changes in wolf space use, selection of and fidelity to reproduction sites and reproductive success. These behavioural and spatial responses may constrain connectivity within and between pack territories and increase reproductive instability, especially in already highly humanized landscapes as Portugal. Based on these findings, several preventive mitigation measures

  15. Contrasting Rates of Molecular Evolution and Patterns of Selection among Gymnosperms and Flowering Plants

    Science.gov (United States)

    Li, Zhen; Van de Peer, Yves; Ingvarsson, Pär K.

    2017-01-01

    Abstract The majority of variation in rates of molecular evolution among seed plants remains both unexplored and unexplained. Although some attention has been given to flowering plants, reports of molecular evolutionary rates for their sister plant clade (gymnosperms) are scarce, and to our knowledge differences in molecular evolution among seed plant clades have never been tested in a phylogenetic framework. Angiosperms and gymnosperms differ in a number of features, of which contrasting reproductive biology, life spans, and population sizes are the most prominent. The highly conserved morphology of gymnosperms evidenced by similarity of extant species to fossil records and the high levels of macrosynteny at the genomic level have led scientists to believe that gymnosperms are slow-evolving plants, although some studies have offered contradictory results. Here, we used 31,968 nucleotide sites obtained from orthologous genes across a wide taxonomic sampling that includes representatives of most conifers, cycads, ginkgo, and many angiosperms with a sequenced genome. Our results suggest that angiosperms and gymnosperms differ considerably in their rates of molecular evolution per unit time, with gymnosperm rates being, on average, seven times lower than angiosperm species. Longer generation times and larger genome sizes are some of the factors explaining the slow rates of molecular evolution found in gymnosperms. In contrast to their slow rates of molecular evolution, gymnosperms possess higher substitution rate ratios than angiosperm taxa. Finally, our study suggests stronger and more efficient purifying and diversifying selection in gymnosperm than in angiosperm species, probably in relation to larger effective population sizes. PMID:28333233

  16. Ecological application of biotic resistance to control the invasion of an invasive plant, Ageratina altissima.

    Science.gov (United States)

    Byun, Chaeho; Lee, Eun Ju

    2017-04-01

    Biotic resistance is the ability of species in a community to limit the invasion of other species. However, biotic resistance is not widely used to control invasive plants. Experimental, functional, and modeling approaches were combined to investigate the processes of invasion by Ageratina altissima (white snakeroot), a model invasive species in South Korea. We hypothesized that (1) functional group identity would be a good predictor of biotic resistance to A. altissima, whereas a species identity effect would be redundant within a functional group, and (2) mixtures of species would be more resistant to invasion than monocultures. We classified 37 species of native plants into three functional groups based on seven functional traits. The classification of functional groups was based primarily on differences in life longevity and woodiness. A competition experiment was conducted based on an additive competition design with A. altissima and monocultures or mixtures of resident plants. As an indicator of biotic resistance, we calculated a relative competition index (RCI avg) based on the average performance of A. altissima in a competition treatment compared with that of the control where only seeds of A. altissima were sown. To further explain the effect of diversity, we tested several diversity-interaction models. In monoculture treatments, RCI avg of resident plants was significantly different among functional groups but not within each functional group. Fast-growing annuals (FG1) had the highest RCI avg, suggesting priority effects (niche pre-emption). RCI avg of resident plants was significantly greater in a mixture than in a monoculture. According to the diversity-interaction models, species interaction patterns in mixtures were best described by interactions between functional groups, which implied niche partitioning. Functional group identity and diversity of resident plant communities were good indicators of biotic resistance to invasion by introduced A

  17. Molecular insights into Zeaxanthin-dependent quenching in higher plants

    Science.gov (United States)

    Xu, Pengqi; Tian, Lijin; Kloz, Miroslav; Croce, Roberta

    2015-01-01

    Photosynthetic organisms protect themselves from high-light stress by dissipating excess absorbed energy as heat in a process called non-photochemical quenching (NPQ). Zeaxanthin is essential for the full development of NPQ, but its role remains debated. The main discussion revolves around two points: where does zeaxanthin bind and does it quench? To answer these questions we have followed the zeaxanthin-dependent quenching from leaves to individual complexes, including supercomplexes. We show that small amounts of zeaxanthin are associated with the complexes, but in contrast to what is generally believed, zeaxanthin binding per se does not cause conformational changes in the complexes and does not induce quenching, not even at low pH. We show that in NPQ conditions zeaxanthin does not exchange for violaxanthin in the internal binding sites of the antennas but is located at the periphery of the complexes. These results together with the observation that the zeaxanthin-dependent quenching is active in isolated membranes, but not in functional supercomplexes, suggests that zeaxanthin is acting in between the complexes, helping to create/participating in a variety of quenching sites. This can explain why none of the antennas appears to be essential for NPQ and the multiple quenching mechanisms that have been observed in plants. PMID:26323786

  18. Links between Plant and Rhizoplane Bacterial Communities in Grassland Soils, Characterized Using Molecular Techniques

    Science.gov (United States)

    Nunan, Naoise; Daniell, Timothy J.; Singh, Brajesh K.; Papert, Artemis; McNicol, James W.; Prosser, James I.

    2005-01-01

    Molecular analysis of grassland rhizosphere soil has demonstrated complex and diverse bacterial communities, with resultant difficulties in detecting links between plant and bacterial communities. These studies have, however, analyzed “bulk” rhizosphere soil, rather than rhizoplane communities, which interact most closely with plants through utilization of root exudates. The aim of this study was to test the hypothesis that plant species was a major driver for bacterial rhizoplane community composition on individual plant roots. DNA extracted from individual roots was used to determine plant identity, by analysis of the plastid tRNA leucine (trnL) UAA gene intron, and plant-related bacterial communities. Bacterial communities were characterized by analysis of PCR-amplified 16S rRNA genes using two fingerprinting methods: terminal restriction fragment length polymorphisms (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Links between plant and bacterial rhizoplane communities could not be detected by visual examination of T-RFLP patterns or DGGE banding profiles. Statistical analysis of fingerprint patterns did not reveal a relationship between bacterial community composition and plant species but did demonstrate an influence of plant community composition. The data also indicated that topography and other, uncharacterized, environmental factors are important in driving bacterial community composition in grassland soils. T-RFLP had greater potential resolving power than DGGE, but findings from the two methods were not significantly different. PMID:16269710

  19. The Molecular Ecology of Antibiotic Resistance Genes in Genital Tract Pathogens

    OpenAIRE

    Johnson, Alan P.

    2011-01-01

    Genital tract pathogens resistant to antibiotics are now commonly encountered in many parts of the world. The emergence of such strains may clearly be accounted for, at least in part, by the selection of mutant strains which would have a selective advantage in the face of widespread antibiotic usage. Molecular and genetic analysis of antibioticresistant organisms, however, indicates that such an explanation is an over simplification. In many instances genes coding for antibiotic resistance ap...

  20. An Overview on the Marine Neurotoxin, Saxitoxin: Genetics, Molecular Targets, Methods of Detection and Ecological Functions

    OpenAIRE

    Sayler, Gary S.; Cusick, Kathleen D.

    2013-01-01

    Marine neurotoxins are natural products produced by phytoplankton and select species of invertebrates and fish. These compounds interact with voltage-gated sodium, potassium and calcium channels and modulate the flux of these ions into various cell types. This review provides a summary of marine neurotoxins, including their structures, molecular targets and pharmacologies. Saxitoxin and its derivatives, collectively referred to as paralytic shellfish toxins (PSTs), are unique among neurotoxin...

  1. {sup 137}Cs and {sup 40}K partitioning in the system soil-plant under different ecological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Luksiene, B. [Center for Physical Sciences and Technology (Lithuania); Marciulioniene, D. [Nature Research Centre (Lithuania)

    2014-07-01

    In the environment {sup 137}Cs is exclusively of the anthropogenic origin. Among different released fission radionuclides, {sup 137}Cs is the most significant one as it contributes to long-term doses to population. It belongs to the group of radionuclides which under accidental situations can disperse worldwide because of air mass transport. {sup 137}Cs deposition in the Lithuanian terrestrial and aquatic ecosystems is basically related to the global fallout and contaminated air masses from the Chernobyl NPP accident. An extra load of {sup 137}Cs to the Lithuanian terrestrial ecosystems was determined after the Fukushima Daiichi NPP accident as well. Over the recent decades evident changes in the approach to the radiation protection of non-human species from ionizing radiation have taken place. Furthermore, long-term predictions of the mobility and bioavailability of {sup 137}Cs are required because of its penetration into the food chain. {sup 40}K is a typical lithophilic element and its geochemistry could be similar to that of {sup 137}Cs because they both are of the same valence state, +1. Investigation results of {sup 137}Cs and {sup 40}K behavior in the environmental systems in the literature are rather contradictory. Therefore, the aim of the present study is to assess {sup 137}Cs and {sup 40}K activity concentration in soil and various plants of a different root system and to compare bioavailability of these radionuclides under different environmental ecological conditions. {sup 137}Cs deposition distribution in the upper soil layer is different in the studied territory. The mean {sup 137}Cs activity concentrations in soil and plants in the post-Chernobyl period varied in a wide range. {sup 137}Cs activity concentrations in soil varied from about 30 Bq/kg to 340 Bq/kg, while in various plants and grasses the range was 45-119 Bq/kg. Mean values of the {sup 137}Cs transfer factor ranged from 0.1 to 1.4. The discrimination factor was determined to evaluate the

  2. Ecological and evolutionary consequences of tri-trophic interactions: Spatial variation and effects of plant density.

    Science.gov (United States)

    Abdala-Roberts, Luis; Parra-Tabla, Víctor; Moreira, Xoaquín; Ramos-Zapata, José

    2017-02-01

    The factors driving variation in species interactions are often unknown, and few studies have made a link between changes in interactions and the strength of selection. We report on spatial variation in functional responses by a seed predator (SP) and its parasitic wasps associated with the herb Ruellia nudiflora. We assessed the influence of plant density on consumer responses and determined whether density effects and spatial variation in functional responses altered natural selection by these consumers on the plant. We established common gardens at two sites in Yucatan, Mexico, and planted R. nudiflora at two densities in each garden. We recorded fruit output and SP and parasitoid attack; calculated relative fitness (seed number) under scenarios of three trophic levels (accounting for SP and parasitoid effects), two trophic levels (accounting for SP but not parasitoid effects), and one trophic level (no consumer effects); and compared selection strength on fruit number under these scenarios across sites and densities. There was spatial variation in SP recruitment, whereby the SP functional response was negatively density-dependent at one site but density-independent at the other; parasitoid responses were density-independent and invariant across sites. Site variation in SP attack led, in turn, to differences in SP selection on fruit output, and parasitoids did not alter SP selection. There were no significant effects of density at either site. Our results provide a link between consumer functional responses and consumer selection on plants, which deepens our understanding of geographic variation in the evolutionary outcomes of multitrophic interactions. © 2017 Botanical Society of America.

  3. Ecological consequences of the expansion of N2-fixing plants in cold biomes

    Science.gov (United States)

    Hiltbrunner, Erika; Aerts, Rien; Bühlmann, Tobias; Huss-Danell, Kerstin; Magnusson, Borgthor; Myrold, David D.; Reed, Sasha C.; Sigurdsson, Bjarni D.; Körner, Christian

    2014-01-01

    Research in warm-climate biomes has shown that invasion by symbiotic dinitrogen (N2)-fixing plants can transform ecosystems in ways analogous to the transformations observed as a consequence of anthropogenic, atmospheric nitrogen (N) deposition: declines in biodiversity, soil acidification, and alterations to carbon and nutrient cycling, including increased N losses through nitrate leaching and emissions of the powerful greenhouse gas nitrous oxide (N2O). Here, we used literature review and case study approaches to assess the evidence for similar transformations in cold-climate ecosystems of the boreal, subarctic and upper montane-temperate life zones. Our assessment focuses on the plant genera Lupinus and Alnus, which have become invasive largely as a consequence of deliberate introductions and/or reduced land management. These cold biomes are commonly located in remote areas with low anthropogenic N inputs, and the environmental impacts of N2-fixer invasion appear to be as severe as those from anthropogenic N deposition in highly N polluted areas. Hence, inputs of N from N2 fixation can affect ecosystems as dramatically or even more strongly than N inputs from atmospheric deposition, and biomes in cold climates represent no exception with regard to the risk of being invaded by N2-fixing species. In particular, the cold biomes studied here show both a strong potential to be transformed by N2-fixing plants and a rapid subsequent saturation in the ecosystem’s capacity to retain N. Therefore, analogous to increases in N deposition, N2-fixing plant invasions must be deemed significant threats to biodiversity and to environmental quality.

  4. Ecological consequences of the expansion of N₂-fixing plants in cold biomes.

    Science.gov (United States)

    Hiltbrunner, Erika; Aerts, Rien; Bühlmann, Tobias; Huss-Danell, Kerstin; Magnusson, Borgthor; Myrold, David D; Reed, Sasha C; Sigurdsson, Bjarni D; Körner, Christian

    2014-09-01

    Research in warm-climate biomes has shown that invasion by symbiotic dinitrogen (N2)-fixing plants can transform ecosystems in ways analogous to the transformations observed as a consequence of anthropogenic, atmospheric nitrogen (N) deposition: declines in biodiversity, soil acidification, and alterations to carbon and nutrient cycling, including increased N losses through nitrate leaching and emissions of the powerful greenhouse gas nitrous oxide (N2O). Here, we used literature review and case study approaches to assess the evidence for similar transformations in cold-climate ecosystems of the boreal, subarctic and upper montane-temperate life zones. Our assessment focuses on the plant genera Lupinus and Alnus, which have become invasive largely as a consequence of deliberate introductions and/or reduced land management. These cold biomes are commonly located in remote areas with low anthropogenic N inputs, and the environmental impacts of N2-fixer invasion appear to be as severe as those from anthropogenic N deposition in highly N polluted areas. Hence, inputs of N from N2 fixation can affect ecosystems as dramatically or even more strongly than N inputs from atmospheric deposition, and biomes in cold climates represent no exception with regard to the risk of being invaded by N2-fixing species. In particular, the cold biomes studied here show both a strong potential to be transformed by N2-fixing plants and a rapid subsequent saturation in the ecosystem's capacity to retain N. Therefore, analogous to increases in N deposition, N2-fixing plant invasions must be deemed significant threats to biodiversity and to environmental quality.

  5. Molecular and genetics approaches for investigation of phospholipase D role in plant cells

    Directory of Open Access Journals (Sweden)

    Volotovsky I. D.

    2010-04-01

    Full Text Available The review is devoted to the analysis of publications ñoncerning the role of phospholipase D (PLD in regulation of metabolism in plant cells. Analysis of molecular and genetic studies suggest that PLD is an important component of various hormonal and stress signaling pathways

  6. 水生植物的生态功能和资源应用%Ecological Functions and Resource Utilization of Aquatic Plants

    Institute of Scientific and Technical Information of China (English)

    李冬林; 王磊; 丁晶晶; 芮雯奕

    2011-01-01

    水生植物具有水体产氧、氮循环、吸附沉积物、抑制浮游藻类繁殖、减轻水体富营养化、提高水体自净能力的重要功能,同时还能为水生动物、微生物提供栖息地和食物源,维持水岸带物种多样性.通过综述国内外水生植物的研究进展,阐明了水生植物的概念及分类方法,全面概述了水生植物的生态功能,讨论了中国城市建设中水生植物资源利用现状和效果,提出了水生植物在水岸带生态恢复应用中需要关注的问题以及今后水生植物研究的目标和方向.%Aquatic plants are one of the important factors in maintaining water ecological quality effectively. A lots of research showed that aquatic plants have many important functions, such as producing oxygen, nitrogen cycling, and adsorption deposit, controlling the harmful algal breeding, lightening water eutrophication, improving water clear ability. Moreover aquatic plants can provide inhabits and food to aquatic animals and microbe, maintain species diversity too. The concepts and classifying methods of aquatic plants were clarified by synthesized researched progress of aquatic plants in the paper. Ecological functions of aquatic plants were systematically summarized; their utilizing actuality and effect on building in the cities were discussed. Presently, much of correlative basic researches on aquatic plants, such as the collecting of genetic resources, breeding of new varieties, the general industrialized level and ecological functions with much faultiness in China. The more efforts of relevant studies were concentrated on ecological effect of aquatic plants on rivers and lakes water environment, but studies on their eco-physiological characteristics and regulation in adverse circumstances were few; presently, the researches on absorption of aquatic plants to nitrogen and phosphorus from polluted water have already been reported frequently in China, but the studies on the morphology

  7. Ecological systems as computer networks: Long distance sea dispersal as a communication medium between island plant populations.

    Science.gov (United States)

    Sanaa, Adnen; Ben Abid, Samir; Boulila, Abdennacer; Messaoud, Chokri; Boussaid, Mohamed; Ben Fadhel, Najeh

    2016-06-01

    Ecological systems are known to exchange genetic material through animal species migration and seed dispersal for plants. Isolated plant populations have developed long distance dispersal as a means of propagation which rely on meteorological such as anemochory and hydrochory for coast, island and river bank dwelling species. Long distance dispersal by water, in particular, in the case of water current bound islands, calls for the analogy with computer networks, where each island and nearby mainland site plays the role of a network node, the water currents play the role of a transmission channel, and water borne seeds as data packets. In this paper we explore this analogy to model long distance dispersal of seeds among island and mainland populations, when traversed with water currents, in order to model and predict their future genetic diversity. The case of Pancratium maritimum L. populations in Tunisia is used as a proof of concept, where their genetic diversity is extrapolated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Making the most of mitochondrial genomes--markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes: Digenea).

    Science.gov (United States)

    Zarowiecki, M Z; Huyse, T; Littlewood, D T J

    2007-10-01

    An increasing number of complete sequences of mitochondrial (mt) genomes provides the opportunity to optimise the choice of molecular markers for phylogenetic and ecological studies. This is particularly the case where mt genomes from closely related taxa have been sequenced; e.g., within Schistosoma. These blood flukes include species that are the causative agents of schistosomiasis, where there has been a need to optimise markers for species and strain recognition. For many phylogenetic and population genetic studies, the choice of nucleotide sequences depends primarily on suitable PCR primers. Complete mt genomes allow individual gene or other mt markers to be assessed relative to one another for potential information content, prior to broad-scale sampling. We assess the phylogenetic utility of individual genes and identify regions that contain the greatest interspecific variation for molecular ecological and diagnostic markers. We show that variable characters are not randomly distributed along the genome and there is a positive correlation between polymorphism and divergence. The mt genomes of African and Asian schistosomes were compared with the available intraspecific dataset of Schistosoma mansoni through sliding window analyses, in order to assess whether the observed polymorphism was at a level predicted from interspecific comparisons. We found a positive correlation except for the two genes (cox1 and nad1) adjoining the putative control region in S. mansoni. The genes nad1, nad4, nad5, cox1 and cox3 resolved phylogenies that were consistent with a benchmark phylogeny and in general, longer genes performed better in phylogenetic reconstruction. Considering the information content of entire mt genome sequences, partial cox1 would not be the ideal marker for either species identification (barcoding) or population studies with Schistosoma species. Instead, we suggest the use of cox3 and nad5 for both phylogenetic and population studies. Five primer pairs

  9. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    Science.gov (United States)

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  10. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology.

    Science.gov (United States)

    Rashid, Mamoon; Stingl, Ulrich

    2015-12-01

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70-80% of microbial diversity - recently called the "microbial dark matter" - remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology.

  11. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology

    KAUST Repository

    Rashid, Mamoon

    2015-09-25

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70–80% of microbial diversity – recently called the “microbial dark matter” – remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology.

  12. Modelling leaf, plant and stand flammability for ecological and operational decision making

    Science.gov (United States)

    Zylstra, Philip

    2014-05-01

    Numerous factors have been found to affect the flammability of individual leaves and plant parts; however the way in which these factors relate to whole plant flammability, fire behaviour and the overall risk imposed by fire is not straightforward. Similarly, although the structure of plant communities is known to affect the flammability of the stand, a quantified, broadly applicable link has proven difficult to establish and validate. These knowledge gaps have presented major obstacles to the integration into fire behaviour science of research into factors affecting plant flammability, physiology, species succession and structural change, so that the management of ecosystems for fire risk is largely uninformed by these fields. The Forest Flammability Model (Zylstra, 2011) is a process-driven, complex systems model developed specifically to address this disconnect. Flame dimensions and position are calculated as properties emerging from the capacity for convective heat to propagate flame between horizontally and vertically separated leaves, branches, plants and plant strata, and this capacity is determined dynamically from the ignitability, combustibility and sustainability of those objects, their spatial arrangement and a vector-based model of the plume temperature from each burning fuel. All flammability properties as well as the physics of flame dimensions, angle and temperature distributions and the vertical structure of wind within the plant array use published sub-models which can be replaced as further work is developed. This modular structure provides a platform for the immediate application of new work on any aspect of leaf flammability or fire physics. Initial validation of the model examined its qualitative predictions for trends in forest flammability as a function of time since fire. The positive feedback predicted for the subalpine forest examined constituted a 'risky prediction' by running counter to the expectations of the existing approach, however

  13. Phytoestrogens and avian reproduction: Exploring the evolution and function of phytoestrogens and possible role of plant compounds in the breeding ecology of wild birds.

    Science.gov (United States)

    Rochester, Johanna R; Millam, James R

    2009-11-01

    Phytoestrogens are secondary plant compounds, which can act to mimic estrogen and cause the disruption of estrogenic responses in organisms. Although there is a substantial body of research studying phytoestrogens, including their mechanisms of estrogenic effects, evolution, and detection in biological systems, little is known about their ecological significance. There is evidence, however, that an ecological relationship involving phytoestrogens exists between plants and animals-plants may produce phytoestrogens to reduce fecundity of organisms that eat them. Birds and other vertebrates may also exploit phytoestrogens to regulate their own reproduction-there are well known examples of phytoestrogens inhibiting reproduction in higher vertebrates, including birds. Also, common plant stressors (e.g., high temperature) increase the production of secondary plant compounds, and, as evidence suggests, also induce phytoestrogen biosynthesis. These observations are consistent with the single study ever done on phytoestrogens and reproduction in wild birds [Leopold, A.S., Erwin, M., Oh, J., Browning, B., 1976. Phytoestrogens adverse effects on reproduction in California quail. Science 191, 98-100.], which found that drought stress correlated with increased levels of phytoestrogens in plants, and that increased phytoestrogen levels correlated with decreased young. This review discusses the hypothesis that plants may have an effect on the reproduction of avian species by producing phytoestrogens as a plant defense against herbivory, and that birds may "use" changing levels of phytoestrogens in the vegetation to ensure that food resources will support potential young produced. Evidence from our laboratory and others appear to support this hypothesis.

  14. Microbial and plant ecology of a long-term TNT-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Emma R. [Institute of Biomedical and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ (United Kingdom)], E-mail: e.travis@bio.gla.ac.uk; Bruce, Neil C. [CNAP, Department of Biology, University of York, York YO10 5YW (United Kingdom)], E-mail: ncb5@york.ac.uk; Rosser, Susan J. [Institute of Biomedical and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ (United Kingdom)], E-mail: s.rosser@bio.gla.ac.uk

    2008-05-15

    The contamination of the environment with explosive residues presents a serious ecological problem at sites across the world, with the highly toxic compound trinitrotoluene (TNT) the most widespread contaminant. This study examines the soil microbial community composition across a long-term TNT-contaminated site. It also investigates the extent of nitroaromatic contamination and its effect on vegetation. Concentrations of TNT and its metabolites varied across the site and this was observed to dramatically impact on the extent and diversity of the vegetation, with the most heavily contaminated area completely devoid of vegetation. Bryophytes were seen to be particularly sensitive to TNT contamination. The microbial population experienced both a reduction in culturable bacterial numbers and a shift in composition at the high concentrations of TNT. DGGE and community-level physiological profiling (CLPP) revealed a clear change in both the genetic and functional diversity of the soil when soil was contaminated with TNT. - Long-term contamination of soil with TNT reduces the extent and diversity of vegetation, decreases culturable bacterial numbers and shifts the microbial community composition.

  15. Morphological, molecular and ecological aspects of the South American hypogeous fungus Alpova austroalnicola sp. nov.

    Science.gov (United States)

    Nouhra, Eduardo R; Dominguez, Laura S; Becerra, Alejandra G; Trappe, James M

    2005-01-01

    Field studies in Argentina's Yunga District revealed Alpova austroalnicola sp. nov., a hypogeous fungus associated with Alnus acuminata ssp. acuminata. Morphological and molecular studies based on amplification and sequencing of the nuclear LSU rDNA gene showed its unique identity within Alpova. Related genera included in the analyses were Boletus edulis, Rhizopogon spp., Suillus luteus and Truncocolumella citrina. Additional observations of animal diggings around the sites and microscopic examination of fecal pellets of the nine-banded armadillo (Dasypus novemcinctus novemcinctus) indicate A. austroalnicola is consumed and its spores dispersed by animals.

  16. Physics and the molecular revolution in plant biology: union needed for managing the future

    Directory of Open Access Journals (Sweden)

    Ulrich Lüttge

    2016-10-01

    Full Text Available The question was asked if there is still a prominent role of biophysics in plant biology in an age when molecular biology appears to be dominating. Mathematical formation of theory is essential in systems biology, and mathematics is more inherent in biophysics than in molecular biology. A survey is made identifying and briefly characterizing fields of plant biology where approaches of biophysics remain essential. In transport at membranes electrophysiology and thermodynamics are biophysical topics. Water is a special molecule. Its transport follows the physical laws of osmosis and gradients of water potential on the background of physics of hydraulic architecture. Photobiology needs understanding of the physics of electro-magnetic radiation of quantitative nature in photosynthesis and of qualitative nature in perception by the photo-sensors cryptochromes, phototropins and phytochrome in environmental responses and development. Biophysical oscillators can play a role in biological timing by the circadian clock. Integration in the self-organization of modules, such as roots, stems and leaves, for the emergence of whole plants as unitary organisms needs storage and transport of information where physical modes of signaling are essential with cross talks between electrical and hydraulic signals and with chemical signals. Examples are gravitropism and root-shoot interactions in water relations. All of these facets of plant biophysics overlie plant molecular biology and exchange with it. It is advocated that a union of approaches of plant molecular biology and biophysics needs to be cultivated. In many cases it is already operative. In bionics biophysics is producing output for practical applications linking biology with technology. Biomimetic engineering intrinsically uses physical approaches. An extreme biophysical perspective is looking out for life in space. Sustained and increased practice of biophysics with teaching and research deserves strong

  17. Mixing plants from different origins to restore a declining population: ecological outcomes and local perceptions 10 years later.

    Science.gov (United States)

    Maurice, Anne-Claire; Abdelkrim, Jawad; Cisel, Matthieu; Zavodna, Monika; Bardin, Philippe; Matamoro, Alexis; Dumez, Richard; Machon, Nathalie

    2013-01-01

    Populations of the Large-flowered Sandwort (Arenaria grandiflora L.) in the Fontainebleau forest (France) have declined rapidly during the last century. Despite the initiation of a protection program in 1991, less than twenty individuals remained by the late 1990s. The low fitness of these last plants, which is likely associated with genetic disorders and inbreeding depression, highlighted the need for the introduction of non-local genetic material to increase genetic diversity and thus restore Fontainebleau populations. Consequently, A. grandiflora was introduced at three distant sites in the Fontainebleau forest in 1999. Each of these populations was composed of an identical mix of individuals of both local and non-local origin that were obtained through in vitro multiplication. After establishment, the population status (number of individuals, diameter of the plants, and number of flowers) of the introduced populations was monitored. At present, two populations (one of which is much larger than the other) persist, while the third one became extinct in 2004. Analyses of the ecological parameters of the introduction sites indicated that differences in soil pH and moisture might have contributed to the differences in population dynamics. This introduction plan and its outcome attracted interest of local community, with those who supported the plan and regarded its 10-year result as a biological success (i.e., persistent populations were created), but also those who expressed reservations or disapproval of the plan and its outcome. To understand this controversy, a sociological study involving 27 semi-structured interviews was carried out. From these interviews emerged three areas of controversy: alteration of the identity of the plant, alteration of the identity of its territory, and the biological and ethical consequences of the techniques used for the experimental conservation.

  18. Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management.

    Science.gov (United States)

    Wood, Kevin A; Stillman, Richard A; Daunt, Francis; O'Hare, Matthew T

    2014-01-01

    Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems.

  19. Mixing plants from different origins to restore a declining population: ecological outcomes and local perceptions 10 years later.

    Directory of Open Access Journals (Sweden)

    Anne-Claire Maurice

    Full Text Available Populations of the Large-flowered Sandwort (Arenaria grandiflora L. in the Fontainebleau forest (France have declined rapidly during the last century. Despite the initiation of a protection program in 1991, less than twenty individuals remained by the late 1990s. The low fitness of these last plants, which is likely associated with genetic disorders and inbreeding depression, highlighted the need for the introduction of non-local genetic material to increase genetic diversity and thus restore Fontainebleau populations. Consequently, A. grandiflora was introduced at three distant sites in the Fontainebleau forest in 1999. Each of these populations was composed of an identical mix of individuals of both local and non-local origin that were obtained through in vitro multiplication. After establishment, the population status (number of individuals, diameter of the plants, and number of flowers of the introduced populations was monitored. At present, two populations (one of which is much larger than the other persist, while the third one became extinct in 2004. Analyses of the ecological parameters of the introduction sites indicated that differences in soil pH and moisture might have contributed to the differences in population dynamics. This introduction plan and its outcome attracted interest of local community, with those who supported the plan and regarded its 10-year result as a biological success (i.e., persistent populations were created, but also those who expressed reservations or disapproval of the plan and its outcome. To understand this controversy, a sociological study involving 27 semi-structured interviews was carried out. From these interviews emerged three areas of controversy: alteration of the identity of the plant, alteration of the identity of its territory, and the biological and ethical consequences of the techniques used for the experimental conservation.

  20. A Critical Review of the Concept of Transgenic Plants: Insights into Pharmaceutical Biotechnology and Molecular Farming.

    Science.gov (United States)

    Abiri, Rambod; Valdiani, Alireza; Maziah, Mahmood; Shaharuddin, Noor Azmi; Sahebi, Mahbod; Yusof, Zetty Norhana Balia; Atabaki, Narges; Talei, Daryush

    2016-01-01

    Using transgenic plants for the production of high-value recombinant proteins for industrial and clinical applications has become a promising alternative to using conventional bioproduction systems, such as bacteria, yeast, and cultured insect and animal cells. This novel system offers several advantages over conventional systems in terms of safety, scale, cost-effectiveness, and the ease of distribution and storage. Currently, plant systems are being utilised as recombinant bio-factories for the expression of various proteins, including potential vaccines and pharmaceuticals, through employing several adaptations of recombinant processes and utilizing the most suitable tools and strategies. The level of protein expression is a critical factor in plant molecular farming, and this level fluctuates according to the plant species and the organs involved. The production of recombinant native and engineered proteins is a complicated procedure that requires an inter- and multi-disciplinary effort involving a wide variety of scientific and technological disciplines, ranging from basic biotechnology, biochemistry, and cell biology to advanced production systems. This review considers important plant resources, affecting factors, and the recombinant-protein expression techniques relevant to the plant molecular farming process.

  1. Ecological and floristic characteristics of higher aquatic plants in Volgograd reservoir

    Directory of Open Access Journals (Sweden)

    Kochetkova Anna Igorevna

    2016-12-01

    Full Text Available In this paper the long-term gydro-botanical studies of Volgograd reservoir were analyzed. Flora in different parts of the reservoir, located in Volgograd and Saratov regions was compared. In the floristic investigations, several species of flora, rare in Volgograd region and previously not noted were revealed. The regularities in the floristic composition changes depending on the amplification of climate aridity and features of the hydrological regime of the Volgograd reservoir were determined. Unstable hydrological conditions in the reservoir contribute to the emergence of new free habitats, which are so necessary for the spread and establishment of different plants, including new invasive ones and formed hybrids.

  2. An Overview on the Marine Neurotoxin, Saxitoxin: Genetics, Molecular Targets, Methods of Detection and Ecological Functions

    Science.gov (United States)

    Cusick, Kathleen D.; Sayler, Gary S.

    2013-01-01

    Marine neurotoxins are natural products produced by phytoplankton and select species of invertebrates and fish. These compounds interact with voltage-gated sodium, potassium and calcium channels and modulate the flux of these ions into various cell types. This review provides a summary of marine neurotoxins, including their structures, molecular targets and pharmacologies. Saxitoxin and its derivatives, collectively referred to as paralytic shellfish toxins (PSTs), are unique among neurotoxins in that they are found in both marine and freshwater environments by organisms inhabiting two kingdoms of life. Prokaryotic cyanobacteria are responsible for PST production in freshwater systems, while eukaryotic dinoflagellates are the main producers in marine waters. Bioaccumulation by filter-feeding bivalves and fish and subsequent transfer through the food web results in the potentially fatal human illnesses, paralytic shellfish poisoning and saxitoxin pufferfish poisoning. These illnesses are a result of saxitoxin’s ability to bind to the voltage-gated sodium channel, blocking the passage of nerve impulses and leading to death via respiratory paralysis. Recent advances in saxitoxin research are discussed, including the molecular biology of toxin synthesis, new protein targets, association with metal-binding motifs and methods of detection. The eco-evolutionary role(s) PSTs may serve for phytoplankton species that produce them are also discussed. PMID:23535394

  3. An Overview on the Marine Neurotoxin, Saxitoxin: Genetics, Molecular Targets, Methods of Detection and Ecological Functions

    Directory of Open Access Journals (Sweden)

    Gary S. Sayler

    2013-03-01

    Full Text Available Marine neurotoxins are natural products produced by phytoplankton and select species of invertebrates and fish. These compounds interact with voltage-gated sodium, potassium and calcium channels and modulate the flux of these ions into various cell types. This review provides a summary of marine neurotoxins, including their structures, molecular targets and pharmacologies. Saxitoxin and its derivatives, collectively referred to as paralytic shellfish toxins (PSTs, are unique among neurotoxins in that they are found in both marine and freshwater environments by organisms inhabiting two kingdoms of life. Prokaryotic cyanobacteria are responsible for PST production in freshwater systems, while eukaryotic dinoflagellates are the main producers in marine waters. Bioaccumulation by filter-feeding bivalves and fish and subsequent transfer through the food web results in the potentially fatal human illnesses, paralytic shellfish poisoning and saxitoxin pufferfish poisoning. These illnesses are a result of saxitoxin’s ability to bind to the voltage-gated sodium channel, blocking the passage of nerve impulses and leading to death via respiratory paralysis. Recent advances in saxitoxin research are discussed, including the molecular biology of toxin synthesis, new protein targets, association with metal-binding motifs and methods of detection. The eco-evolutionary role(s PSTs may serve for phytoplankton species that produce them are also discussed.

  4. Molecular enumeration of an ecologically important cyanophage in a Laurentian Great Lake.

    Science.gov (United States)

    Matteson, Audrey R; Loar, Star N; Bourbonniere, Richard A; Wilhelm, Steven W

    2011-10-01

    Considerable research has shown that cyanobacteria and the viruses that infect them (cyanophage) are pervasive and diverse in global lake populations. Few studies have seasonally analyzed freshwater systems, and little is known about the bacterial and viral communities that coexist during the harsh winters of the Laurentian Great Lakes. Here, we employed quantitative PCR to estimate the abundance of cyanomyoviruses in this system, using the portal vertex g20 gene as a proxy for cyanophage abundance and to determine the potential ecological relevance of these viruses. Cyanomyoviruses were abundant in both the summer and the winter observations, with up to 3.1 × 10(6) copies of g20 genes ml(-1) found at several stations and depths in both seasons, representing up to 4.6% of the total virus community. Lake Erie was productive during both our observations, with high chlorophyll a concentrations in the summer (up to 10.3 μg liter(-1)) and winter (up to 5.2 μg liter(-1)). Both bacterial and viral abundances were significantly higher during the summer than during the winter (P < 0.05). Summer bacterial abundances ranged from 3.3 × 10(6) to 1.6 × 10(7) ml(-1) while winter abundances ranged between ∼3.4 × 10(5) and 1.2 × 10(6) ml(-1). Total virus abundances were high during both months, with summer abundances significantly higher at most stations, ranging from 6.5 × 10(7) to 8.8 × 10(7) ml(-1), and with winter abundances ranging from 3.4 × 10(7) to 6.6 × 10(7) ml(-1). This work confirms that putative cyanomyoviruses are ubiquitous in both summer and winter months in this large freshwater lake system and that they are an abundant component of the virioplankton group.

  5. Evaluation of the Effect of Ecologic on Root Knot Nematode, Meloidogyne incognita, and Tomato Plant, Lycopersicon esculenum

    Directory of Open Access Journals (Sweden)

    Gary W. Lawrence

    2008-06-01

    Full Text Available Nonchemical methods and strategies for nematode management including cultural methods and engineered measures have been recommended as an alternative to methyl bromide (a major soil fumigant, due to its role in the depletion of the ozone layer. Hence, an international agreement has recently been reached calling for its reduced consumption and complete phasing out. This present research evaluates the potential of Ecologic, a biological, marine shell meal chitin material, as a soil amendment management agent for root knot nematode, Meloidogyne incognita, control, and its effect on the growth of Floradel tomato plant, Lycopersicon esculentum. To accomplish this goal, studies were conducted during which, experimental pots were set up in greenhouse environments using sterilized soil inoculated with 5,000 root-knot eggs per 1500 g soil. There were 4 treatments and 5 replications. Treatments were: No chitin; 50 g chitin; 100 g chitin; and 200 g chitin. A two-week wait period following Ecologic amendment preceded Floradel tomato planting to allow breakdown of the chitin material into the soil. Fresh and dry weights of shoot and root materials were taken as growth end-points. A statistically significant difference (p ≤ 0.05 was obtained with regard to the growth rate of L. esculentum at 100 g chitin treatment compared to the control with no chitin. Mean fresh weights of Floradel tomato were 78.0 ± 22.3g, 81.0 ± 20.3g, 109.0 ± 25.4g and 102.0 ± 33.3g at 0, 50, 100 and 200g chitin, respectively. The analysis of root knot nematode concentrations indicated a substantial effect on reproduction rate associated with chitin amendment. Study results showed a significant decrease in both root knot nematode eggs and juveniles (J2 at 100g and 200g Ecologic chitin levels, however, an increase in nematode concentrations was recorded at the 50g Ecologic chitin level (p ≤ 0.05. The mean amounts of J2 population, as

  6. THE GENESIS OF PHOTOSYNTHESIS TYPES AS THE BASIS OF ECOLOGICAL EXPANSION OF HALOPHYTIC PLANTS

    Directory of Open Access Journals (Sweden)

    Pyurko O.Ye.

    2011-12-01

    Full Text Available The C3, C4, and CAM photosynthesis types are considerably differed by CO2 absorption intensity, its biochemistry, saturation level, water productivity, biological productivity, and other different features, which secure the plants survival at stress and extreme conditions. The aim of current research was to discover the photosynthesis peculiarities at halophytic plants species (Salicornia europaea L., Halimione pedunculata, Artemisia santonica L., Plantago lanceolata L. by salinity at model and natural conditions, and to generalize data in historical aspect. It was constituted that S. europaea L. was characterized by C3 photosynthesis passage which was switched on CAM CO2 fixation under soil salinity conditions till 4-4,5 %, but glycophyte A.santonica was immanent C4assimilation way of aspartate type.Analysis of literature data and own research allows to find out that in majority the C3photosynthesis dependence from environmental factors described by determinate curve with matched mathematical expression. It was suggested to generalize the data by Lagrange polynomial. The obtained results proved that the pattern of photosynthesis evolution is: C3 → C4 → CAM with commute possibilities: C3 → CAM; C4 → CAM.

  7. Predicting ecological regime shift under climate change: New modelling techniques and potential of molecular-based approaches

    Directory of Open Access Journals (Sweden)

    Richard STAFFORD, V. Anne SMITH, Dirk HUSMEIER, Thomas GRIMA, Barbara-ann GUINN

    2013-06-01

    Full Text Available Ecological regime shift is the rapid transition from one stable community structure to another, often ecologically inferior, stable community. Such regime shifts are especially common in shallow marine communities, such as the transition of kelp forests to algal turfs that harbour far lower biodiversity. Stable regimes in communities are a result of balanced interactions between species, and predicting new regimes therefore requires an evaluation of new species interactions, as well as the resilience of the ‘stable’ position. While computational optimisation techniques can predict new potential regimes, predicting the most likely community state of the various options produced is currently educated guess work. In this study we integrate a stable regime optimisation approach with a Bayesian network used to infer prior knowledge of the likely stress of climate change (or, in practice, any other disturbance on each component species of a representative rocky shore community model. Combining the results, by calculating the product of the match between resilient computational predictions and the posterior probabilities of the Bayesian network, gives a refined set of model predictors, and demonstrates the use of the process in determining community changes, as might occur through processes such as climate change. To inform Bayesian priors, we conduct a review of molecular approaches applied to the analysis of the transcriptome of rocky shore organisms, and show how such an approach could be linked to measureable stress variables in the field. Hence species-specific microarrays could be designed as biomarkers of in situ stress, and used to inform predictive modelling approaches such as those described here [Current Zoology 59 (3: 403–417, 2013].

  8. Predicting ecological regime shift under climate change:New modelling techniques and potential of molecular-based approaches

    Institute of Scientific and Technical Information of China (English)

    Richard STAFFORD; V.Anne SMITH; Dirk HUSMEIER; Thomas GRIMA; Barbara-ann GUINN

    2013-01-01

    Ecological regime shift is the rapid transition from one stable community structure to another,often ecologically inferior,stable community.Such regime shifts are especially common in shallow marine communities,such as the transition of kelp forests to algal turfs that harbour far lower biodiversity.Stable regimes in communities are a result of balanced interactions between species,and predicting new regimes therefore requires an evaluation of new species interactions,as well as the resilience of the ‘stable' position.While computational optimisation techniques can predict new potential regimes,predicting the most likely community state of the various options produced is currently educated guess work.In this study we integrate a stable regime optimisation approach with a Bayesian network used to infer prior knowledge of the likely stress of climate change (or,in practice,any other disturbance) on each component species of a representative rocky shore community model.Combining the results,by calculating the product of the match between resilient computational predictions and the posterior probabilities of the Bayesian network,gives a refined set of model predictors,and demonstrates the use of the process in determining community changes,as might occur through processes such as climate change.To inform Bayesian priors,we conduct a review of molecular approaches applied to the analysis of the transcriptome of rocky shore organisms,and show how such an approach could be linked to measureable stress variables in the field.Hence species-specific microarrays could be designed as biomarkers of in situ stress,and used to inform predictive modelling approaches such as those described here.

  9. Determinants of plant community assembly in a mosaic of landscape units in central Amazonia: ecological and phylogenetic perspectives.

    Directory of Open Access Journals (Sweden)

    María Natalia Umaña

    Full Text Available The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace and flooded forests (Igapó. We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogen