WorldWideScience

Sample records for plant mix

  1. Herbivore-plant interactions: mixed-function oxidases and secondary plant substances.

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F; Eisner, T

    1977-06-17

    The mixed-function oxidases of a polyphagous insect larva (the southern armyworm, Spodoptera eridania) were found to be induced by a diversity of secondary plant substances. The induction proceeds rapidly and in response to a small quantity of secondary substance. Following induction, the larva is less susceptible to dietary poisoning. It is argued that mixed-function oxidases play a major role in protecting herbivores against chemical stress from secondary plant substances.

  2. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    Science.gov (United States)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  3. Benefits of tree mixes in carbon plantings

    Science.gov (United States)

    Hulvey, Kristin B.; Hobbs, Richard J.; Standish, Rachel J.; Lindenmayer, David B.; Lach, Lori; Perring, Michael P.

    2013-10-01

    Increasingly governments and the private sector are using planted forests to offset carbon emissions. Few studies, however, examine how tree diversity -- defined here as species richness and/or stand composition -- affects carbon storage in these plantings. Using aboveground tree biomass as a proxy for carbon storage, we used meta-analysis to compare carbon storage in tree mixtures with monoculture plantings. Tree mixes stored at least as much carbon as monocultures consisting of the mixture's most productive species and at times outperformed monoculture plantings. In mixed-species stands, individual species, and in particular nitrogen-fixing trees, increased stand biomass. Further motivations for incorporating tree richness into planted forests include the contribution of diversity to total forest carbon-pool development, carbon-pool stability and the provision of extra ecosystem services. Our findings suggest a two-pronged strategy for designing carbon plantings including: (1) increased tree species richness; and (2) the addition of species that contribute to carbon storage and other target functions.

  4. Mixing and sampling tests for Radiochemical Plant

    International Nuclear Information System (INIS)

    Ehinger, M.N.; Marfin, H.R.; Hunt, B.

    1999-01-01

    The paper describes results and test procedures used to evaluate uncertainly and basis effects introduced by the sampler systems of a radiochemical plant, and similar parameters associated with mixing. This report will concentrate on experiences at the Barnwell Nuclear Fuels Plant. Mixing and sampling tests can be conducted to establish the statistical parameters for those activities related to overall measurement uncertainties. Density measurements by state-of-the art, commercially availability equipment is the key to conducting those tests. Experience in the U.S. suggests the statistical contribution of mixing and sampling can be controlled to less than 0.01 % and with new equipment and new tests in operating facilities might be controlled to better accuracy [ru

  5. Description of a reference mixed oxide fuel fabrication plant (MOFFP)

    International Nuclear Information System (INIS)

    1978-01-01

    In order to evaluate the environment impact, due to the Mixed Oxide Fuel Fabrication Plants, work has been initiated to describe the general design and operating conditions of a reference Mixed Oxide Fuel Fabrication Plant (MOFFP) for the 1990 time frame. The various reference data and basic assumptions for the reference MOFFP plant have been defined after discussion with experts. The data reported in this document are only made available to allow an evaluation of the environmental impact due to a reference MOFFP plant. These data have therefore not to be used as recommandation, standards, regulatory guides or requirements

  6. Criteria impacting shipments of Rocky Flats Plant radioactive mixed wastes

    International Nuclear Information System (INIS)

    Clawson, R.L.; Eide, J.H.

    1992-05-01

    Westinghouse Hanford Company, Transportation and Packaging Division, under contract for the Los Alamos Technology Office-Rocky Flats Plant, has developed this synopsis report to be used as a reference in the development of the Rocky Flats Plant Comprehensive Treatment and Management Plan and the Rocky Flats Plant Residue Elimination Plan. This report represents the criteria for packaging, shipping, and transporting Rocky Flats Plant radioactive mixed wastes. It is a compilation of state and federal regulations, US Department of Energy orders, and acceptance criteria specific to US Department of Energy radioactive mixed waste treatment, storage and disposal facilities

  7. Savannah River Plant Separations Department mixed waste program

    International Nuclear Information System (INIS)

    Wierzbicki, W.M.

    1988-01-01

    The Department of Energy's (DOE) Savannah River Plant (SRP) generates radioactive and mixed waste as a result of the manufacture of nuclear material for the national defense program. The radioactive portion of the mixed waste and all nonhazardous radioactive wastes would continue to be regulated by DOE under the Atomic Energy Act. The Separations Department is the largest generator of solid radioactive waste at the Savannah River Plant. Over the last three years, the Separations Department has developed and implemented a program to characterize candidate mixed-waste streams. The program consisted of facility personnel interviews, a waste-generation characterization program and waste testing to determine whether a particular waste form was hazardous. The Separations Department changed waste-handling practices and procedures to meet the requirements of the generator standards. For each Separation Department Facility, staging areas were established, inventory and reporting requirements were developed, operating procedures were revised to ensure proper waste handling, and personnel were provided hazardous waste training. To emphasize the importance of the new requirements, a newsletter was developed and issued to all Separations supervisory personnel

  8. Liquid concrete mixes for V-2 nuclear power plant at Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Valenta, D.; Oravec, J.

    1983-01-01

    The liquid concrete mixes consist of aggregates, cement, water and plastifiers. The main component of aggregates is redeposited dolomite from the Dolinka locality and sand. Cement of the SPC-325 type is used while mixing water is taken from the service water pump station for the V-1 nuclear power plant. All concretes used for the V-2 nuclear power plant construction are treated using plastifier Plastifikator S. In concrete mix development, care was primarily taken to select sand with sufficient amounts of grain of a size up to 0.25 mm. Granularity curves of the sands and the resulting curve of the aggregates granularity of the concrete mix are shown graphically. The method of manufacture and conveying of concrete mixes are briefly described. The mathematical statistical analysis of the quality of the concrete mixes produced showed that the proposed concrete mixes meet the requirements for homogeneity in the controlled parameters and that they can be manufactured in the situation of building production provided suitable components are selected, suitable aggregates are available and the quality of production is systematically checked. (J.P.)

  9. Dosimetry of the Embalse nuclear power plant neutron/gamma mixed fields

    International Nuclear Information System (INIS)

    Salas, C.A.

    1990-01-01

    The aim of this work is to describe the method used at the Embalse nuclear power plant for carrying out personal dosimetry of the agents affected to the tasks on the Embalse nuclear power plant neutron-gamma mixed fields. (Author) [es

  10. Plant growth response in experimental soilless mixes prepared from coal combustion products and organic waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, S.; Watson, M.; Dick, W.A. [Ohio State University, Wooster, OH (United States)

    2008-07-15

    Large quantities of organic materials such as animal manures, yard trimmings, and biosolids are produced each year. Beneficial use options for them are often limited, and composting has been proposed as a way to better manage these organic materials. Similarly, burning of coal created 125 million tons of coal combustion products (CCP) in the United States in 2006. An estimated 53 million tons of CCP were reused, whereas the remainder was deposited in landfills. By combining CCP and composted organic materials (COM), we were able to create soilless plant growth mixes with physicochemical conditions that can support excellent plant growth. An additional benefit is the conservation of natural raw materials, such as peat, which is generally used for making soilless mixes. Experimental mixes were formulated by combining CCP and COM at ratios ranging from 2:8 to 8:2 (vol/vol), respectively. Water content at saturation for the created mixes was 63% to 72%, whereas for the commercial control, it was 77%. pH values for the best performing mixes ranged between 5.9 and 6.8. Electrical conductivity and concentrations of required plant nutrient were also within plant growth recommendations for container media. Significantly (P < 0.0001) higher plant biomass growth (7%-130%) was observed in the experimental mixes compared with a commercial mix. No additional fertilizers were provided during the experiment, and reduced fertilization costs can thus accrue as an added benefit to the grower. In summary, combining CCP and COM, derived from source materials often viewed as wastes, can create highly productive plant growth mixes.

  11. Polymer solidification of mixed wastes at the Rocky Flats Plant

    International Nuclear Information System (INIS)

    Faucette, A.M.; Logsdon, B.W.; Lucerna, J.J.; Yudnich, R.J.

    1994-01-01

    The Rocky Flats Plant is pursuing polymer solidification as a viable treatment option for several mixed waste streams that are subject to land disposal restrictions within the Resource Conservation and Recovery Act provisions. Tests completed to date using both surrogate and actual wastes indicate that polyethylene microencapsulation is a viable treatment option for several mixed wastes at the Rocky Flats Plant, including nitrate salts, sludges, and secondary wastes such as ash. Treatability studies conducted on actual salt waste demonstrated that the process is capable of producing waste forms that comply with all applicable regulatory criteria, including the Toxicity Characteristic Leaching Procedure. Tests have also been conducted to evaluate the feasibility of macroencapsulating certain debris wastes in polymers. Several methods and plastics have been tested for macroencapsulation, including post-consumer recycle and regrind polyethylene

  12. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN PW

    2009-08-27

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  13. Fabrication experience with mixed-oxide LWR fuels at the BELGONUCLEAIRE plant

    International Nuclear Information System (INIS)

    Vanhellemont, G.

    1979-01-01

    For nearly 20 years BELGONUCLEAIRE has been involved in a steadily growing effort to increase its production of mixed oxides. This programme has ranged from basic research and process development through a pilot-scale unit to today's mixed-oxide fuel fabrication plant at Dessel, which has been in operation for just over 5 years. The reference fabrication flow sheet includes UO 2 , PuO 2 and a scraped powder preparation, sintered ground pellets as well as rod fabrication and assembling. With regard to quality, attention is especially paid to the process monitoring and quality controls at the qualification step and during the routine production. Entirely different types of thermal UO 2 -PuO 2 fuel pellets, rods and assemblies have been manufactured for PWR and BWR operation. For these fabrications, some diagrams of the results with regard to the required technical specifications are presented. Special emphasis is placed on the occasional deviations of some finished products from the specifications and on the solutions applied to avoid such problems. Concerning the actual capacity of the mixed-oxide fuel fabrication plant, several limiting factors due to the nature of plutonium itself are discussed. Taking into account all these ambient limitations, a reference PWR mixed-oxide fuel output of nominally 18 t/a is obtained. The industrial feasibility of UO 2 -PuO 2 fuel fabrication has been thoroughly demonstrated by the present BELGONUCLEAIRE plant. The experience obtained has led to progressive improvements of the fabrication process and adaptation of the product controls in order to ensure the requested quality levels. (author)

  14. Modelling the effect of environmental factors on resource allocation in mixed plants systems

    Science.gov (United States)

    Gayler, Sebastian; Priesack, Eckart

    2010-05-01

    In most cases, growth of plants is determined by competition against neighbours for the local resources light, water and nutrients and by defending against herbivores and pathogens. Consequently, it is important for a plant to grow fast without neglecting defence. However, plant internal substrates and energy required to support maintenance, growth and defence are limited and the total demand for these processes cannot be met in most cases. Therefore, allocation of carbohydrates to growth related primary metabolism or to defence related secondary metabolism can be seen as a trade-off between the demand of plants for being competitive against neighbours and for being more resistant against pathogens. A modelling approach is presented which can be used to simulate competition for light, water and nutrients between plant individuals in mixed canopies. The balance of resource allocation between growth processes and synthesis of secondary compounds is modelled by a concept originating from different plant defence hypothesis. The model is used to analyse the impact of environmental factors such as soil water and nitrogen availability, planting density and atmospheric concentration of CO2 on growth of plant individuals within mixed canopies and variations in concentration of carbon-based secondary metabolites in plant tissues.

  15. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING and SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    International Nuclear Information System (INIS)

    Griffin, P.W.

    2009-01-01

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  16. Safety aspects of LWR fuel reprocessing and mixed oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Fischer, M.; Leichsenring, C.H.; Herrmann, G.W.; Schueller, W.; Hagenberg, W.; Stoll, W.

    1977-01-01

    The paper is focused on the safety and the control of the consequences of credible accidents in LWR fuel reprocessing plants and in mixed oxide fuel fabrication plants. Each of these plants serve for many power reactor (about 50.000 Mwel) thus the contribution to the overall risk of nuclear energy is correspondingly low. Because of basic functional differences between reprocessing plants, fuel fabrication plants and nuclear power reactors, the structure and safety systems of these plants are different in many respects. The most important differences that influence safety systems are: (1) Both fuel reprocessing and fabrication plants do not have the high system pressure that is associated with power reactors. (2) A considerable amount of the radioactivity of the fuel, which is in the form of short-lived radionuclides has decayed. Therefore, fuel reprocessing plants and mixed oxide fuel fabrication plants are designed with multiple confinement barriers for control of radioactive materials, but do not require the high-pressure containment systems that are used in LWR plants. The consequences of accidents which may lead to the dispersion of radioactive materials such as chemical explosions, nuclear excursions, fires and failure of cooling systems are considered. A reasonable high reliability of the multiple confinement approach can be assured by design. In fuel reprocessing plants, forced cooling is necessary only in systems where fission products are accumulated. However, the control of radioactive materials can be maintained during normal operation and during the above mentioned accidents, if the dissolver off-gas and vessel off-gas treatment systems provide for effective removal of radioactive iodine, radioactive particulates, nitrogen oxides, tritium and krypton 85. In addition, the following incidents in the dissolver off-gas system itself must be controlled: failures of iodine filters, hydrogen explosion in O 2 - and NOsub(x)-reduction component, decomposition of

  17. Numerical Boron mixing studies for Loviisa Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Gango, P. [IVO International Ltd. (Finland)

    1995-09-01

    A program has been started for studying numerically boron mixing in the downcomer of Loviisa NPP (VVER-440). Mixing during the transport of a diluted slug from the loop to the core might serve as an inherent protection mechanism against severe reactivity accidents in inhomogenous boron dilution scenarios for PWRs. The commercial general purpose Computational Fluid Dynamics (CFD) core PHOENICS is used for solving the governing fluid flow equations in the downcomer geometry of VVER-440. So far numerical analyses have been performed for steady state operation conditions and two different pump driven transients. The steady state analyses focused on model development and validation against existing experimental data. The two pump driven transient scenarios reported are based on slug transport during the start of the sixth and first loop respectively. The results from the two transients show that mixing is case and plant specific; the high and open downcomer geometry of VVER-440 seems to be advantageous from mixing point of view. In addition the analyzing work for the {open_quotes}first pump start{close_quotes} scenario brought up some considerations about flow distribution in the existing experimental facilities.

  18. Biochar As Plant Growth Promoter: Better Off Alone or Mixed with Organic Amendments?

    Directory of Open Access Journals (Sweden)

    Giuliano Bonanomi

    2017-09-01

    Full Text Available Biochar is nowadays largely used as a soil amendment and is commercialized worldwide. However, in temperate agro-ecosystems the beneficial effect of biochar on crop productivity is limited, with several studies reporting negative crop responses. In this work, we studied the effect of 10 biochar and 9 not pyrogenic organic amendments (NPOA, using pure and in all possible combinations on lettuce growth (Lactuca sativa. Organic materials were characterized by 13C-CPMAS NMR spectroscopy and elemental analysis (pH, EC, C, N, C/N and H/C ratios. Pure biochars and NPOAs have variable effects, ranging from inhibition to strong stimulation on lettuce growth. For NPOAs, major inhibitory effects were found with N poor materials characterized by high C/N and H/C ratio. Among pure biochars, instead, those having a low H/C ratio seem to be the best for promoting plant growth. When biochars and organic amendments were mixed, non-additive interactions, either synergistic or antagonistic, were prevalent. However, the mixture effect on plant growth was mainly dependent on the chemical quality of NPOAs, while biochar chemistry played a secondary role. Synergisms were prevalent when N rich and lignin poor materials were mixed with biochar. On the contrary, antagonistic interactions occurred when leaf litter or woody materials were mixed with biochar. Further research is needed to identify the mechanisms behind the observed non-additive effects and to develop biochar-organic amendment combinations that maximize plant productivity in different agricultural systems.

  19. Effect of single and mixed polycyclic aromatic hydrocarbon contamination on plant biomass yield and PAH dissipation during phytoremediation.

    Science.gov (United States)

    Afegbua, Seniyat Larai; Batty, Lesley Claire

    2018-04-27

    Polycyclic aromatic hydrocarbon (PAH)-contaminated sites have a mixture of PAH of varying concentration which may affect PAH dissipation differently to contamination with a single PAH. In this study, pot experiments investigated the impact of PAH contamination on Medicago sativa, Lolium perenne, and Festuca arundinacea biomass and PAH dissipation from soils spiked with phenanthrene (Phe), fluoranthene (Flu), and benzo[a]pyrene (B[a]P) in single and mixed treatments. Stimulatory or inhibitory effects of PAH contamination on plant biomass yields were not different for the single and mixed PAH treatments. Results showed significant effect of PAH treatments on plant growth with an increased root biomass yield for F. arundinacea in the Phe (175%) and Flu (86%) treatments and a root biomass decrease in the mixed treatment (4%). The mean residual PAHs in the planted treatments and unplanted control for the single treatments were not significantly different. B[a]P dissipation was enhanced for single and mixed treatments (71-72%) with F. arundinacea compared to the unplanted control (24-50%). On the other hand, B[a]P dissipation was inhibited with L. perenne (6%) in the single treatment and M. sativa (11%) and L. perenne (29%) in the mixed treatment. Abiotic processes had greater contribution to PAH dissipation compared to rhizodegradation in both treatments. In most cases, a stimulatory effect of PAH contamination on plant biomass yield without an enhancement of PAH dissipation was observed. Plant species among other factors affect the relative contribution of PAH dissipation mechanisms during phytoremediation. These factors determine the effectiveness and suitability of phytoremediation as a remedial strategy for PAH-contaminated sites. Further studies on impact of PAH contamination, plant selection, and rhizosphere activities on soil microbial community structure and remediation outcome are required.

  20. Effect of plant density and mixing ratio on crop yield in sweet corn/mungbean intercropping.

    Science.gov (United States)

    Sarlak, S; Aghaalikhani, M; Zand, B

    2008-09-01

    In order to evaluate the ear and forage yield of sweet corn (Zea mays L. var. Saccarata) in pure stand and intercropped with mung bean (Vigna radiata L.), a field experiment was conducted at Varamin region on summer 2006. Experiment was carried out in a split plot design based on randomized complete blocks with 4 replications. Plant density with 3 levels [Low (D1), Mean (D2) and High (D3) respecting 6, 8 and 10 m(-2) for sweet corn, cultivar S.C.403 and 10, 20 and 30 m(-2) for mung bean cultivar, Partow] was arranged in main plots and 5 mixing ratios [(P1) = 0/100, (P2) = 25/75, (P3) = 50/50, (P4) = 75/25, (P5) = 100/0% for sweet corn/mung bean, respectively] were arranged in subplots. Quantitative attributes such as plant height, sucker numbers, LER, dry matter distribution in different plant organs were measured in sweet corn economical maturity. Furthermore the yield of cannable ear corn and yield components of sweet corn and mung bean were investigated. Results showed that plant density has not any significant effect on evaluated traits, while the effect of mixing ratio was significant (p ratio of 75/25 (sweet corn/mung bean) could be introduced as the superior mixing ratio; because of it's maximum rate of total sweet corn's biomass, forage yield, yield and yield components of ear corn in intercropping. Regarding to profitability indices of intercropping, the mixing ratio 75/25 (sweet corn/mung bean) in low density (D1P2) which showed the LER = 1.03 and 1.09 for total crop yield before ear harvesting and total forage yield after ear harvest respectively, was better than corn or mung bean monoculture.

  1. Economic and thermal feasibility of multi stage flash desalination plant with brine–feed mixing and cooling

    International Nuclear Information System (INIS)

    Alhazmy, Majed M.

    2014-01-01

    Improving the performance of MSF (multi stage flash) desalination plants is a major challenge for desalination industry. High feed temperature in summer shortens the evaporation range of MSF plants and limits their yield. Installing a cooler at the feed intake expands the evaporation range of MSF plants and increases their yield. Adding a cooler and a mixing chamber increases the capital and operational costs of MSF plants. This paper presents thermal and economic analysis of installing a feed cooler at the plant intake. The profit of selling the additionally produced water must cover the cost of the cooling system. The selling prices for a reasonable breakeven depend on the selected cooling temperature. The cost of installing coolers capable of maintaining feed–brine mixture temperatures of 18–20 °C shows breakeven selling prices of 0.5–0.9 $/m 3 . These prices fall within the current range of potable water selling prices. - Highlights: • Thermo-economic analysis for MSF plant with brine mixing and cooling is presented. • Analysis is based on first and second laws of thermodynamics. • The profit gained from producing additional water covers the cooling cost. • The suggested modification is a promising technique for plants in hot climates

  2. Implementation of deep soil mixing at the Kansas City Plant

    International Nuclear Information System (INIS)

    Gardner, F.G.; Korte, N.; Strong-Gunderson, J.; Siegrist, R.L.; West, O.R.; Cline, S.R.

    1998-01-01

    In July 1996, the US Department of Energy (DOE) Kansas City Plant (KCP), AlliedSignal Federal Manufacturing and Technologies, and Oak Ridge National Laboratory (ORNL), conducted field-scale tests of in situ soil mixing and treatment technologies within the Northeast Area (NEA) of the KCP at the Former Ponds site. This demonstration, testing, and evaluation effort was conducted as part of the implementation of a deep soil mixing (DSM) innovative remedial technology demonstration project designed to test DSM in the low-permeability clay soils at the KCP. The clay soils and groundwater beneath this area are contaminated by volatile organic compounds (VOCs), primarily trichloroethene (TCE) and 1,2-dichloroethene (1,2-DCE). The demonstration project was originally designed to evaluate TCE and 1,2-DCE removal efficiency using soil mixing coupled with vapor stripping. Treatability study results, however, indicated that mixed region vapor stripping (MRVS) coupled with calcium oxide (dry lime powder) injection would improve TCE and 1,2-DCE removal efficiency in saturated soils. The scope of the KCP DSM demonstration evolved to implement DSM with the following in situ treatment methodologies for contaminant source reduction in soil and groundwater: DSM/MRVS coupled with calcium oxide injection; DSM/bioaugmentation; and DSM/chemical oxidation using potassium permanganate. Laboratory treatability studies were started in 1995 following collection of undisturbed soil cores from the KCP. These studies were conducted at ORNL, and the results provided information on optimum reagent concentrations and mixing ratios for the three in situ treatment agents to be implemented in the field demonstration

  3. B Plant complex hazardous, mixed and low level waste certification plan

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria

  4. B Plant complex hazardous, mixed and low level waste certification plan

    Energy Technology Data Exchange (ETDEWEB)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria.

  5. Pollen transmission of asparagus virus 2 (AV-2) may facilitate mixed infection by two AV-2 isolates in asparagus plants.

    Science.gov (United States)

    Kawamura, Ryusuke; Shimura, Hanako; Mochizuki, Tomofumi; Ohki, Satoshi T; Masuta, Chikara

    2014-09-01

    Asparagus virus 2 (AV-2) is a member of the genus Ilarvirus and thought to induce the asparagus decline syndrome. AV-2 is known to be transmitted by seed, and the possibility of pollen transmission was proposed 25 years ago but not verified. In AV-2 sequence analyses, we have unexpectedly found mixed infection by two distinct AV-2 isolates in two asparagus plants. Because mixed infections by two related viruses are normally prevented by cross protection, we suspected that pollen transmission of AV-2 is involved in mixed infection. Immunohistochemical analyses and in situ hybridization using AV-2-infected tobacco plants revealed that AV-2 was localized in the meristem and associated with pollen grains. To experimentally produce a mixed infection via pollen transmission, two Nicotiana benthamiana plants that were infected with each of two AV-2 isolates were crossed. Derived cleaved-amplified polymorphic sequence analysis identified each AV-2 isolate in the progeny seedlings, suggesting that pollen transmission could indeed result in a mixed infection, at least in N. benthamiana.

  6. 75 FR 81250 - Pulse Jet Mixing at the Waste Treatment and Immobilization Plant

    Science.gov (United States)

    2010-12-27

    ... Immobilization Plant (WTP) in conjunction with the Hanford tank farm waste feed delivery system will operate... imperative requires that the pulse jet mixing and transfer systems relied upon in the WTP design perform reliably and effectively for decades of WTP operations, and that technical issues with the performance of...

  7. Development of a model for optimisation of a power plant mix by means of evolution strategy; Modellentwicklung zur Kraftwerksparkoptimierung mit Hilfe von Evolutionsstrategien

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Hans

    2008-09-17

    Within the scope of this thesis a model based on evolution strategy is depicted, which optimises the upgrade of an existing power plant mix. In doing so the optimisation problem is divided in two sections covering the building of new power plants as well as their ideal usage within the persisting power plant mix. The building of new power plants is optimised by means of mutations, while their ideal usage is specified by a heuristic classification according to the merit order of the power plant mix. By applying a residual yearly load curve the consumer load can be modelled, incorporating the impact of fluctuating power generation and its probability of occurrence. Power plant failures and the duration of revisions are adequately considered by means of a power reduction factor. The optimisation furthermore accommodates a limiting threshold for yearly carbon dioxide emissions as well as a premature decommissioning of power plants. (orig.)

  8. Wood pellets in a power plant - mixed combustion of coal and wood pellets

    International Nuclear Information System (INIS)

    Nupponen, M.

    2001-01-01

    The author reviews in his presentation the development of Turku Energia, the organization of the company, the key figures of the company in 2000, as well as the purchase of energy in 2000. He also presents the purchase of basic heat load, the energy production plants of the company, the sales of heat in 2000, the emissions of the plants, and the fuel consumption of the plants in 2000. The operating experiences of the plants are also presented. The experiences gained in Turku Energia on mixed combustion of coal and wood pellets show that the mixing ratios, used at the plants, have no effect on the burning properties of the boiler, and the use of wood pellets with coal reduce the SO 2 and NO x emissions slightly. Simultaneously the CO 2 share of the wood pellets is removed from the emissions calculations. Several positive effects were observed, including the disappearance of the coal smell of the bunker, positive publicity of the utilization of wood pellets, and the subsidies for utilization of indigenous fuels in power generation. The problems seen include the tendency of wood pellets to arc the silos, especially when the pellets include high quantities of dust, and the loading of the trucks and the pneumatic unloading of the trucks break the pellets. Additionally the wood pellets bounce on the conveyor so they drop easily from the conveyor, the screw conveyors designed for conveying grain are too weak and they get stuck easily, and static electricity is easily generated in the plastic pipe used as the discharge pipe for wood pellet (sparkling tendency). This disadvantage has been overcome by using metal net and grounding

  9. Colophonium and Compositae mix as markers of fragrance allergy: cross-reactivity between fragrance terpenes, colophonium and compositae plant extracts

    DEFF Research Database (Denmark)

    Paulsen, Evy; Andersen, Klaus Ejner

    2005-01-01

    , colophonium and fragrance mix sensitization. The individual results indicated that simultaneously occurring positive reactions to essential oils, colophonium and Compositae were based on cross-reactivity rather than concomitant sensitization. Thus, all patients with positive reaction to the rare fragrance...... sensitizer beta-caryophyllene had positive colophonium reactions, and cross-reactivity between essential oils and Compositae was related to the Compositae plant extracts of the Compositae mix and not the pure sesquiterpene lactones of the standard series. The implication is that Compositae mix...... and colophonium may be markers of fragrance allergy, which is important to know when assessing the relevance of positive reactions to Compositae plant extracts and colophonium....

  10. Rhizospheric salt tolerant bacteria improving plant growth in single and mixed culture inoculations under NaCl stress (abstract)

    International Nuclear Information System (INIS)

    Afrasayab, S.; Hasnain, S.

    2005-01-01

    Salt tolerant bacterial strains isolated from rhizosphere of Mazus plant (inhabitant of salt range) were used singly (ST -1; ST -2; ST -3; ST -4) and in mixed combinations (ST -1,3,4; ST -2,3,4) to improve the growth to Tricticum aestivum in the pot experiments. Growth and yield of T. aestivum var. Inqlab-91 plants exposed to NaCl stress (0.75% NaCl) was markedly affected. Na/sup +//K/sup +/ ratios in shoots and roots were profoundly increased under NaCl stress. Bacterial inoculations improved plant growth under salt stress. Bacterial combinations ST - 1,3,4 and ST -2,3,4 were more effective in stimulating growth and showed prominent results as compared to their pure cultures. Mono and mixed bacterial inoculations improved yield parameters of wheat. ST -1,3,4 mixed culture inoculation maximally improved yield under salt stress. Generally bacterial inoculations resulted in increase in Na/sup +//K/sup +/ ratios in shoots and roots under salt free and salt stress conditions. Overall ST -1,3,4 mixed inoculation yielded promising results under NaCl stress, hence 168 rRNA gene sequence analysis of its pure cultures was obtained for their identification to genus level. (author)

  11. Biomass conversion to hydrocarbon fuels using the MixAlco™ process at a pilot-plant scale

    International Nuclear Information System (INIS)

    Taco Vasquez, Sebastian; Dunkleman, John; Chaudhuri, Swades K.; Bond, Austin; Holtzapple, Mark T.

    2014-01-01

    Texas A and M University has built a MixAlco™ pilot plant that converts biomass to hydrocarbons (i.e., jet fuel, gasoline) using the following steps: fermentation, descumming, dewatering, thermal ketonization, distillation, hydrogenation, and oligomerization. This study describes the pilot plant and reports results from an 11-month production campaign. The focus was to produce sufficient jet fuel to be tested by the U.S. military. Because the scale was relatively small, energy-saving features were not included in the pilot plant. Further, the equipment was operated in a manner to maximize productivity even if yields were low. During the production campaign, a total of 6.015 Mg of shredded paper and 120 kg of chicken manure (dry basis) were fermented to produce 126.5 m 3 of fermentation broth with an average concentration of 12.5 kg m −3 . A total of 1582 kg of carboxylate salts were converted to 587 L of raw ketones, which were distilled and hydrogenated to 470 L of mixed alcohols ranging from C3 to C12. These alcohols, plus 300 L of alcohols made by an industrial partner (Terrabon, Inc.) were shipped to an independent contractor (General Electric) and transformed to jet fuel (∼100 L) and gasoline (∼100 L) byproduct. - Highlights: • We produce hydrocarbons from paper and chicken manure in a pilot-scale production using the MixAlco™ process. • About 100 L of jet fuel were produced for military testing. • High production rates and good product quality were preferred rather than high yields or energy efficiency. • The MixAlco™ process converted successfully lignocellulosic biomass to hydrocarbons and viable for commercial-scale production

  12. Environmental information document: New hazardous and mixed waste storage/disposal facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.; Grant, M.W.; Towler, O.O.

    1987-04-01

    Site selection, alternative facilities and alternative operations are described for new hazardous and mixed waste storage/disposal facilities at the Savannah River Plant. Performance assessments and cost estimates for the alternatives are presented

  13. Mixed-power scaling of whole-plant respiration from seedlings to giant trees.

    Science.gov (United States)

    Mori, Shigeta; Yamaji, Keiko; Ishida, Atsushi; Prokushkin, Stanislav G; Masyagina, Oxana V; Hagihara, Akio; Hoque, A T M Rafiqul; Suwa, Rempei; Osawa, Akira; Nishizono, Tomohiro; Ueda, Tatsushiro; Kinjo, Masaru; Miyagi, Tsuyoshi; Kajimoto, Takuya; Koike, Takayoshi; Matsuura, Yojiro; Toma, Takeshi; Zyryanova, Olga A; Abaimov, Anatoly P; Awaya, Yoshio; Araki, Masatake G; Kawasaki, Tatsuro; Chiba, Yukihiro; Umari, Marjnah

    2010-01-26

    The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439:457-461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122 -126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth.

  14. New pressure control method of mixed gas in a combined cycle power plant of a steel mill

    Science.gov (United States)

    Xie, Yudong; Wang, Yong

    2017-08-01

    The enterprise production concept is changing with the development of society. A steel mill requires a combined-cycle power plant, which consists of both a gas turbine and steam turbine. It can recycle energy from the gases that are emitted from coke ovens and blast furnaces during steel production. This plant can decrease the overall energy consumption of the steel mill and reduce pollution to our living environment. To develop a combined-cycle power plant, the pressure in the mixed-gas transmission system must be controlled in the range of 2.30-2.40 MPa. The particularity of the combined-cycle power plant poses a challenge to conventional controllers. In this paper, a composite control method based on the Smith predictor and cascade control was proposed for the pressure control of the mixed gases. This method has a concise structure and can be easily implemented in actual industrial fields. The experiment has been conducted to validate the proposed control method. The experiment illustrates that the proposed method can suppress various disturbances in the gas transmission control system and sustain the pressure of the gas at the desired level, which helps to avoid abnormal shutdowns in the combined-cycle power plant.

  15. Study on flow phenomena at a mixing tee pipe in plants

    International Nuclear Information System (INIS)

    Maeda, Shogo; Kubota, Hiroki; Sugimoto, Katsumi; Takenaka, Nobuyuki; Miyoshi, Koji

    2016-01-01

    Thermal fatigue cracking may initiate at a tee pipe in plants where high and low temperature fluids flow in. The thermal stress fluctuation is caused by the wall temperature fluctuation due to heat transfer of the fluid temperature fluctuation near the wall. In order to elucidate the flow phenomena at a mixing tee pipe to cause temperature fluctuation, a visualization experiment of the flow in mixing section was conducted using a rectangular test section made of acrylic. As a result, the flow pattern was classified by momentum ratio M_R of the main and branch pipes, and it changed from wall jet to deflecting jet on M_R=3.70, and from deflecting jet to impinging jet on M_R=0.64. The jet flow from the branch pipe is swaying at a period of from about 5 s to 10 s. The relationship between the periods of fluctuation and M_R was investigated. The period decreased as M_R increased. (author)

  16. Characteristics of nitrogen fixation of mixed diazotrophs associated with rice plant

    International Nuclear Information System (INIS)

    Ling Fan; Wang Zhengfang; Wang Yaodong; Song Wei

    1997-01-01

    Characteristics of N 2 fixation of diazotrophs associated with rice plant in paddy soils in Nanjing was studied by 15 N tracing technique. The results showed that amount of N fixed by rice plant was 1.03 kg/666.7 m 2 and the rate of fixed N was 6.7%. The maximum N fixed was occurred during jointing-complete heading stage. The daily average amount of N fixed reached to 24.31 mg/m 2 ·day. The fixed N of jointing-complete heading stage was 40.9% of that whole rice growth stage. The amount of fixed N during jointing-maturing stage was over 70% of whole rice growth stage. The economic benefits for fertilizer saving was 13.3 kg/666.7 m 2 of ammonium sulphate. The yield of rice grain was increased by 4.14% after inoculation with the mixed diazotrophs

  17. EVALUASI KINERJA UNIT BISNIS ASPHALT MIXING PLANT PT PRAYOGA PERTAMBANGAN DAN ENERGI

    OpenAIRE

    Raden Isma Anggraini; Aida Vitayala Hubeis; Radjab Tampubolon

    2016-01-01

    Currently, the mining sector is still one of the main sectors driving the economy of Indonesia and is in demand by both indigenous and foreign investors. Asphalt mixing plant business unit (AMP BU) is currently the main priority scale of PT Prayoga. The AMP UB excellent performance of PT Prayoga enable itself to be able to contribute to the company's revenue and accelerate development of infrastructure in Bogor. The objectives of the research were to identify key performance indicator (KPI) t...

  18. Diversity and spatial structure of belowground plant-fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S

    2014-01-01

    Plant-mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant-fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant-fungal symbiosis in subtropical forests is complex in that it includes "non-typical" plant-fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that

  19. Mixing Construction, Demolition and Excavation Waste and Solid Waste Compost for the Derivation of a Planting Medium for Use in the Rehabilitation of Quarries

    Science.gov (United States)

    Assaf, Eleni

    2015-04-01

    Lebanon's very high population density has been increasing since the end of the civil war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which are locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been interrupted by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Mathiolla crassifolia, a native Lebanese plant and Zea mays (Corn), which is commonly

  20. Simulation and Optimization of an Innovative Dual Mixed Component Refrigerant Cycle (DMRC) for Natural Gas Offshore Liquefaction Plants

    International Nuclear Information System (INIS)

    SHAHBA, L.A.; Fahmy, M.F.M.

    2004-01-01

    Simulation and optimization of an innovative liquefaction process used for the LNG production , namely the Dual Mixed Refrigerant Process (DMRC) has been conducted using the HYSYS simulator .This new process is especially suitable for off shore natural gas liquefaction plants. A numerical optimization technique has been used to determine the optimum conditions for Egyptian natural gas feed source. The investigation of the effect of different compositions of the Mixed refrigerants used was conducted. Meanwhile, the investigation of the influence of the temperature of cooling water used was conducted. The best optimum conditions for the DMRC process were determined .The optimum results achieved for the DMRC process revealed that the DMRC process can be successfully applied as a promising technique for off shore natural gas liquefaction plants

  1. Reuse of By-Products from Ready-Mixed Concrete Plants for the Production of Cement Mortars

    Directory of Open Access Journals (Sweden)

    Monika Zervaki

    2013-06-01

    Full Text Available This study was motivated by the necessity to recycle sludge water resulting from washing out concrete mixing trucks - a problem of both environmental and economic importance for the ready-mixed concrete industry. Sludge water from ready-mixed concrete plants as well as dry sludge, which is derived from the settling of the water, are hazardous for disposal due to their high pH value (pH>11.5. In this work, cement mortars were composed using either sludge water after various treatment, or dry sludge in several ratios. The cement mortars were tested for their workability and strength development. The purpose of this experimental design was to prove that sludge water, as well as sludge in a wet or dry form, can be used in the production of mortars without degrading any of their properties.

  2. Patch testing with constituents of Compositae mixes

    DEFF Research Database (Denmark)

    Paulsen, Evy; Andersen, Klaus Ejner

    2012-01-01

    Background. The development of mixes containing Compositae plant extracts has improved the diagnosis of Compositae contact allergy, but none of them has fulfilled the criteria for an ideal European plant mix. Objective. To evaluate which constituents of two commercial Compositae mixes were most u...

  3. Using Publicly Available Data to Quantify Plant-Pollinator Interactions and Evaluate Conservation Seeding Mixes in the Northern Great Plains.

    Science.gov (United States)

    Otto, C R V; O'Dell, S; Bryant, R B; Euliss, N H; Bush, R M; Smart, M D

    2017-06-01

    Concern over declining pollinators has led to multiple conservation initiatives for improving forage for bees in agroecosystems. Using data available through the Pollinator Library (npwrc.usgs.gov/pollinator/), we summarize plant-pollinator interaction data collected from 2012-2015 on lands managed by the U.S. Fish and Wildlife Service and private lands enrolled in U.S. Department of Agriculture conservation programs in eastern North Dakota (ND). Furthermore, we demonstrate how plant-pollinator interaction data from the Pollinator Library and seed cost information can be used to evaluate hypothetical seeding mixes for pollinator habitat enhancements. We summarize records of 314 wild bee and 849 honey bee (Apis mellifera L.) interactions detected on 63 different plant species. The wild bee observations consisted of 46 species, 15 genera, and 5 families. Over 54% of all wild bee observations were represented by three genera-Bombus, Lassioglossum, and Melissodes. The most commonly visited forbs by wild bees were Monarda fistulosa, Sonchus arvensis, and Zizia aurea. The most commonly visited forbs by A. mellifera were Cirsium arvense, Melilotus officinalis, and Medicago sativa. Among all interactions, 13% of A. mellifera and 77% of wild bee observations were made on plants native to ND. Our seed mix evaluation shows that mixes may often need to be tailored to meet the unique needs of wild bees and managed honey bees in agricultural landscapes. Our evaluation also demonstrates the importance of incorporating both biologic and economic information when attempting to design cost-effective seeding mixes for supporting pollinators in a critically important part of the United States. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  4. Preliminary study on acceptability of scope of thermal discharge mixing zone for nuclear power plant

    International Nuclear Information System (INIS)

    Liu Yongye; Yang Yang; Wang Liang; Chen Xiaoqiu; Liu Senlin

    2012-01-01

    Based on the situation that the existing domestic temperature control standards are not performable, the preliminary study on the acceptability of the mixing zone scope of thermal discharge for nuclear power plant was conducted in this paper, taking a coastal power station SNP as a case. The following preliminary conclusions could be drawn from the results of cluster analysis of the SNP site under different results of mathematical modeling and physical model test: 1) The influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable under SNP-1 (Unit 1 and 2) operating condition; 2) the influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable in spring under SNP-1 (Unit 1 and 2) and SNP-2 (Unit 3 and 4) operating condition, while the influence intensity of ecological function of the SNP site seawater is large and the scope of mixing zone is unacceptable in autumn under the same operating condition. (authors)

  5. Specifications and Construction Methods for Asphalt Concrete and Other Plant-Mix Types, 3rd Edition.

    Science.gov (United States)

    Asphalt Inst., College Park, MD.

    The purpose of this publication is to assist engineers in the analysis, design and control of paving projects that use asphalt concrete and other asphalt plant-mixes. The scope of this new third edition has been enlarged, and changes necessitated by advances in asphalt technology have been incorporated. Chapters I and II and Appendices A and B…

  6. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-26

    This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

  7. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years

    Science.gov (United States)

    Ilyas Siddique; Vera Lex Engel; David Lamb; Gabriela B. Nardoto; Jean P.H.B. Ometto; Luiz A. Martinelli; Susanne. Schmidt

    2008-01-01

    Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations...

  8. Used mixed oxide fuel reprocessing at RT-1 plant

    Energy Technology Data Exchange (ETDEWEB)

    Kolupaev, D.; Logunov, M.; Mashkin, A.; Bugrov, K.; Korchenkin, K. [FSUE PA ' Mayak' , 30, Lenins str, Ozersk, 460065 (Russian Federation); Shadrin, A.; Dvoeglazov, K. [ITCP ' PRORYV' , 2/8 Malaya Krasmoselskay str, Moscow, 107140 (Russian Federation)

    2016-07-01

    Reprocessing of the mixed uranium-plutonium spent nuclear fuel of the BN-600 reactor was performed at the RT-1 plant twice, in 2012 and 2014. In total, 8 fuel assemblies with a burn-up from 73 to 89 GW day/t and the cooling time from 17 to 21 years were reprocessed. The reprocessing included the stages of dissolution, clarification, extraction separation of U and Pu with purification from the fission products, refining of uranium and plutonium at the relevant refining cycles. Dissolution of the fuel composition of MOX used nuclear fuel (UNF) in nitric acid solutions in the presence of fluoride ion has occurred with the full transfer of actinides into solution. Due to the high content of Pu extraction separation of U and Pu was carried out on a nuclear-safe equipment designed for the reprocessing of highly enriched U spent nuclear fuel and Pu refining. Technological processes of extraction, separation and refining of actinides proceeded without deviations from the normal mode. The output flow of the extraction outlets in their compositions corresponded to the regulatory norms and remained at the level of the compositions of the streams resulting from the reprocessing of fuel types typical for the RT-1 plant. No increased losses of Pu into waste have been registered during the reprocessing of BN-600 MOX UNF an compare with VVER-440 uranium UNF reprocessing. (authors)

  9. Comparative study of modified bitumen binder properties collected from mixing plant and quarry.

    Science.gov (United States)

    Mustafa Kamal, M.; Abu Bakar, R.; Hadithon, K. A.

    2017-11-01

    Quality control and assurance are essential in pavement construction. In general, the properties of bitumen change as it ages in bulk storage, transport, and storage on site. The minimization of bituminous hardening during storing, transportation and mixing depends on careful control of binder temperature. Hence therefore, bitumen should always be stored and handled at the lowest temperature possible, consistent with efficient use. The objective of the work is to monitor the quality of bitumen samples collected from mixing plant and quarry. Results showed that, samples modified bitumen which collected from quarry showed some adverse effects on rheological properties and physical properties after subjecting to high temperature storage within a period of time. The dynamic stiffness, elastic properties and other common binder properties were deteriorated too. The chemical changes that occurred during storage were analysed using Fourier transform infra-red spectroscopy (FTIR). Thus studies developed an understanding of bitumen ageing in storage.

  10. Production equipment development needs for a 700 metric ton/year light water reactor mixed oxide fuel manufacturing plant

    International Nuclear Information System (INIS)

    Blahnik, D.E.

    1977-09-01

    A literature search and survey of fuel suppliers was conducted to determine how much development of production equipment is needed for a 700 metric tons/y LWR mixed-oxide (UO 2 --PuO 2 ) fuel fabrication plant. Results indicate that moderate to major production equipment development is needed in the powder and pellet processing areas. The equipment in the rod and assembly processing areas need only minor development effort. Required equipment development for a 700 MT/y plant is not anticipated to delay startup of the plant. The development, whether major or minor, can be done well within the time frame for licensing and construction of the plant as long as conventional production equipment is used

  11. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    International Nuclear Information System (INIS)

    Zhang, Yuanyuan; Liu, Junhong

    2011-01-01

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  12. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China); Liu, Junhong, E-mail: liujh@qust.edu.cn [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China)

    2011-05-15

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  13. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance

    Science.gov (United States)

    Larson, D.L.; Anderson, P.J.; Newton, W.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  14. Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rempe, N.T.

    1993-01-01

    Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600 m thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope - amounting to about a quarter million years, the time during which its activity will decline to background level represent only 0.11 percent of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible

  15. Understory plant diversity in mixed and pure plantations of jatropha curcas vs. native vegetation in the lower-middle reaches of the lancang-meikong river watershed, china

    International Nuclear Information System (INIS)

    Ou, G.L.; Ma, H.C.; Tang, J.R.

    2015-01-01

    22 plots at the Xiaoheijiang base, located in the lower-middle reaches of the Lancang-Meikong River in China, were investigated to analyze the understory biodiversity of Jatropha curcas plantations. Two kinds of mixed modes of J. curcas (mixed plantation with Macadamia integrifolia and mixed plantation with shrub species) and a pure plantation of J. curcas were planted, while the native vegetation served as a control. The plots were distributed along the gradients of forest management, succession and elevation by CCA analysis. Species richness was not significantly different for the different types of plantation, but the evenness of species could be affected, especially for the total community and the understory by planting J. curcas. The diversity and evenness indices of species were affected for the mixed plantation with different proportions of M. integrifolia, especially for the shrub layer, the Shannon diversity index and Pilou evenness index showed significant differences. And for the different mixed shrub species, only the Shannon diversity index and Pilou evenness index were significantly different. Finally, from the perspective of biological diversity, J.curcas plantation with shrub species would be a recommended planting model for ecological restoration in a dry-hot valley area, while J. curcas plantation with M. integrifolia would be an effective planting model to balance crop yield and food security. (author)

  16. Mixing of maize and wheat genomic DNA by somatic hybridization in regenerated sterile maize plants.

    Science.gov (United States)

    Szarka, B.; Göntér, I.; Molnár-Láng, M.; Mórocz, S.; Dudits, D.

    2002-07-01

    Intergeneric somatic hybridization was performed between albino maize ( Zea mays L.) protoplasts and mesophyll protoplasts of wheat ( Triticum aestivum L.) by polyethylene glycol (PEG) treatments. None of the parental protoplasts were able to produce green plants without fusion. The maize cells regenerated only rudimentary albino plantlets of limited viability, and the wheat mesophyll protoplasts were unable to divide. PEG-mediated fusion treatments resulted in hybrid cells with mixed cytoplasm. Six months after fusion green embryogenic calli were selected as putative hybrids. The first-regenerates were discovered as aborted embryos. Regeneration of intact, green, maize-like plants needed 6 months of further subcultures on hormone-free medium. These plants were sterile, although had both male and female flowers. The cytological analysis of cells from callus tissues and root tips revealed 56 chromosomes, but intact wheat chromosomes were not observed. Using total DNA from hybrid plants, three RAPD primer combinations produced bands resembling the wheat profile. Genomic in situ hybridization (GISH) using total wheat DNA as a probe revealed the presence of wheat DNA islands in the maize chromosomal background. The increased viability and the restored green color were the most-significant new traits as compared to the original maize parent. Other intermediate morphological traits of plants with hybrid origin were not found.

  17. Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.

    Science.gov (United States)

    Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina

    2016-06-01

    Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Strategy for managing mixed waste at a plant site

    International Nuclear Information System (INIS)

    Fentiman, A.

    1991-01-01

    No waste disposal site is currently accepting mixed waste, but facilities across the country continue to generate it. The waste manager at each site is faced with two problems: how to manage the mixed waste already on-site and how to minimize the amount of new waste generated. A strategy has been developed to address each problem. A key element of the strategy is a building-by-building survey of the site. The survey provides information on how and where mixed waste is generated and stored. This paper describes a method for planning and conducting a site-wide mixed-waste survey. It then outlines approaches to managing existing mixed waste and to minimizing mixed-waste generation using information from the survey

  19. General features of conceptual design for the pilot plant to manufacture fuel rods from mixed oxides

    International Nuclear Information System (INIS)

    Quesada, C.A.; Adelfang, P.; Esteban, A.; Aparicio, G.; Friedenthal, M.; Orlando, O.S.

    1987-01-01

    This paper conceptually describes: 1) the processes in the manufacturing lines; 2) the distribution of quality controls and glove boxes in manufacturing lines; 3) the Control and Radiological Safety Room; 4) the Dressing Room; 5) the requirements of the ventilation system. The plant will be located in the first floor of the Radiochemical Processes Laboratory building, occupying a surface of 600 m 2 . The necessary equipment for the following manufacturing lines will be provided: a) conversion from Pu(NO3)4 to PuO 2 (through Pu(III)oxalate); b) manufacture of homogeneous of mixed oxides of U and Pu; c) manufacture of (U,Pu)O 2 pellets; d) manufacture of fuel rods of mixed uranium and plutonium oxides. (Author)

  20. Scaled Testing to Evaluate Pulse Jet Mixer Performance in Waste Treatment Plant Mixing Vessels

    International Nuclear Information System (INIS)

    Fort, James A.; Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Scott, Paul A.; Minette, Michael J.; Gauglitz, Phillip A.

    2010-01-01

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pre-treat and vitrify the waste in Hanford's 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. These vessels have pulse jet mixer (PJM) systems. A test program was developed to evaluate the adequacy of mixing system designs in the solids-containing vessels in the WTP. The program focused mainly on non-cohesive solids behavior. Specifically, the program addressed the effectiveness of the mixing systems to suspend settled solids off the vessel bottom, and distribute the solids vertically. Experiments were conducted at three scales using various particulate simulants. A range of solids loadings and operational parameters were evaluated, including jet velocity, pulse volume, and duty cycle. In place of actual PJMs, the tests used direct injection from tubes with suction at the top of the tank fluid. This gave better control over the discharge duration and duty cycle and simplified the facility requirements. The mixing system configurations represented in testing varied from 4 to 12 PJMs with various jet nozzle sizes. In this way the results collected could be applied to the broad range of WTP vessels with varying geometrical configurations and planned operating conditions. Data for 'just-suspended velocity', solids cloud height, and solids concentration vertical profile were collected, analyzed, and correlated. The correlations were successfully benchmarked against previous large-scale test results, then applied to the WTP vessels using reasonable assumptions of anticipated waste properties to evaluate adequacy of the existing mixing system designs.

  1. Patch testing with constituents of Compositae mixes.

    Science.gov (United States)

    Paulsen, Evy; Andersen, Klaus E

    2012-05-01

    The development of mixes containing Compositae plant extracts has improved the diagnosis of Compositae contact allergy, but none of them has fulfilled the criteria for an ideal European plant mix. To evaluate which constituents of two commercial Compositae mixes were most useful as screening agents. These comprised 76 patients testing positive to Compositae mix 6% in petrolatum and 29 patients testing positive to Compositae mix 5% pet., all of whom were tested with constituents of the respective mixes. The majority of patients tested positive to parthenolide or parthenolide-containing extracts, followed by German chamomile, yarrow, and arnica. As German chamomile is a weak sensitizer, the results suggest cross-reactions or reactions to unknown allergens. No one was positive to Roman chamomile. Even though parthenolide seems to be a suitable supplement to the baseline series, the results emphasize that it is important to patch test with extracts of native or locally grown plants, not only because of the geographical variation, but also because of the potential unknown allergens contained in short ether preparations and the variability in the individual patient's exposure and cross-reaction patterns. © 2012 John Wiley & Sons A/S.

  2. Technology, safety and costs of decommissioning a reference small mixed oxide fuel fabrication plant. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C. E.; Murphy, E. S.; Schneider, K J

    1979-01-01

    Detailed technology, safety and cost information are presented for the conceptual decommissioning of a reference small mixed oxide fuel fabrication plant. Alternate methods of decommissioning are described including immediate dismantlement, safe storage for a period of time followed by dismantlement and entombment. Safety analyses, both occupational and public, and cost evaluations were conducted for each mode.

  3. The Challenges of Creating a Real-Time Data Management System for TRU-Mixed Waste at the Advanced Mixed Waste Treatment Plant

    International Nuclear Information System (INIS)

    Paff, S. W; Doody, S.

    2003-01-01

    This paper discusses the challenges associated with creating a data management system for waste tracking at the Advanced Mixed Waste Treatment Plant (AMWTP) at the Idaho National Engineering Lab (INEEL). The waste tracking system combines data from plant automation systems and decision points. The primary purpose of the system is to provide information to enable the plant operators and engineers to assess the risks associated with each container and determine the best method of treating it. It is also used to track the transuranic (TRU) waste containers as they move throughout the various processes at the plant. And finally, the goal of the system is to support paperless shipments of the waste to the Waste Isolation Pilot Plant (WIPP). This paper describes the approach, methodologies, the underlying design of the database, and the challenges of creating the Data Management System (DMS) prior to completion of design and construction of a major plant. The system was built utilizing an Oracle database platform, and Oracle Forms 6i in client-server mode. The underlying data architecture is container-centric, with separate tables and objects for each type of analysis used to characterize the waste, including real-time radiography (RTR), non-destructive assay (NDA), head-space gas sampling and analysis (HSGS), visual examination (VE) and coring. The use of separate tables facilitated the construction of automatic interfaces with the analysis instruments that enabled direct data capture. Movements are tracked using a location system describing each waste container's current location and a history table tracking the container's movement history. The movement system is designed to interface both with radio-frequency bar-code devices and the plant's integrated control system (ICS). Collections of containers or information, such as batches, were created across the various types of analyses, which enabled a single, cohesive approach to be developed for verification and

  4. Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control

    Directory of Open Access Journals (Sweden)

    Yano Akira

    2012-11-01

    Full Text Available Abstract Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD. The average photosynthetic PFD (PPFD in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%, which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength, the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1 was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a

  5. Energy savings by reduced mixing in aeration tanks: results from a full scale investigation and long term implementation at Avedoere wastewater treatment plant.

    Science.gov (United States)

    Sharma, A K; Guildal, T; Thomsen, H R; Jacobsen, B N

    2011-01-01

    The aim of this project was to investigate the potential of reducing number of mixers in the biological treatment process and thereby achieve energy and economical savings and contribute to cleaner environment. The project was carried out at Avedoere wastewater treatment plant and a full scale investigation was conducted to study the effect of reduced mixing on flow velocity, suspended solid sedimentation, concentration gradients of oxygen and SS with depth and treatment efficiency. The only negative effect observed was on flow velocity; however the velocity was above the critical velocity. The plant has been operating with 50% of its designed number of mixers since September 2007 and long term results also confirm that reduced mixing did not have any negative effect on treatment efficiency. The estimated yearly electricity saving is 0.75 GWh/year.

  6. Comparison of simulated and measured response of load rejection on A hydro power plant model with mixed mode nonlinear controller

    Energy Technology Data Exchange (ETDEWEB)

    Babunski, Darko; Tuneski, Atanasko; Zaev, Emil [Faculty of Mechanical Engineering, ' Ss. Cyril and Methodius' University, Skopje (Macedonia, The Former Yugoslav Republic of)

    2014-07-01

    Revised Hydro Power Plant model of the IEEE working group recommended converted to state space model is used for simulation of transient response of hydro turbine, and verification was made using measurements of transients from real Hydro Power Plant (HPP). Nonlinear mixed model controller was designed and implemented into complete HPP simulation model and compared with PID with real parameters used in HPP, and with adjusted PID parameters with consideration of smallest frequency error. Verification of performance of the model was made comparing model response with measured load rejection, which is worst case of HPP operation. (Author)

  7. Towards a more common use of Ultra-High Performance Concrete (UHPC) – development of UHPC for ready-mix and prefabrication concrete plants

    NARCIS (Netherlands)

    Spiesz, P.R.; Hunger, M.; Justnes, Harald; Braarud, Henny

    2017-01-01

    This study addresses the development of ultra-high performance concrete (UHPC) suitable for a mass production in conventional ready-mix and prefabrication concrete plants. In order to facilitate the production process, curing regime and to minimize the costs, no additional treatments (e.g. thermal

  8. Conundrums in mixed woody-herbaceous plant systems

    CSIR Research Space (South Africa)

    House, JI

    2003-11-01

    Full Text Available -form communities, the novel, complex, nonlinear behaviour of mixed tree-grass systems cannot be accounted for by simply studying or modelling woody and herbaceous components independently. A more robust understanding requires addressing three fundamental conundrums...

  9. Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Brummond, W.; Celeste, J.; Steenhoven, J.

    1993-08-01

    The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE

  10. Leaf-Cutter Ant Fungus Gardens Are Biphasic Mixed Microbial Bioreactors That Convert Plant Biomass to Polyols with Biotechnological Applications

    Science.gov (United States)

    Somera, Alexandre F.; Lima, Adriel M.; dos Santos-Neto, Álvaro J.; Lanças, Fernando M.

    2015-01-01

    Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology. PMID:25911490

  11. Hydraulic jett mixing

    International Nuclear Information System (INIS)

    Ackerman, J.R.

    1989-01-01

    Efficient mixing of reactants into a waste stream has always been a problem in that there has been no mixer capable of combining all the elements of enhanced mixing into a single piece of equipment. Through the development of a mixing system for the mining industry to treat acid mine water containing heavy metals, a versatile new hydraulic jetting static mixer has been developed that has no moving parts and a clean bore with no internal components. This paper reports that the main goal of the development of the hydraulic jett mixer was to reduce the size of the tankage required for an acid mine drainage (AMD) treatment plant through development of a static mixing device that could coincidentally aerate the treatment flow. This process equipment being developed would simultaneously adjust the pH and oxidize the metals allowing formation of the hydroxide sludges required for sedimentation and removal of the metals from the treatment stream. In effect, the device eliminates two reaction tanks, the neutralization/mixing tank and the aeration tank

  12. Polycyclic aromatic hydrocarbons emitted from a hot-mix drum, asphalt plant: study of the influence from use of recycled bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, A.; Jullien, A.; Moneron, P. [Lab. Central des Ponts et Chaussees, Div. Technologie du Genie Civil et Environnement, Section Developpement Durable, Bouguenais (France)

    2007-11-15

    A study was conducted to determine if the use of recycled asphalt aggregate influences emissions of polycyclic aromatic hydrocarbons (PAH). Hot bitumen contains PAH compounds which have been gaining increasing attention due to their toxicity. In addition, the energy consumed during asphalt mixing can reach 60 per cent of the total energy needed for the construction and maintenance of a road over a 30-year service life. Asphalt hot mixing is one of the most common processes found in the road sector. It requires warming and drying aggregate through combustion. In order to minimize emissions, the major influential parameters must be identified. A joint research program involving several institutions has been launched to conduct an experimental campaign on the Blois Hot Mix Asphalt plant, with quantification of the 16 PAH listed by the United States Environmental Protection Agency. Variations in asphalt recycling rate favour emissions of heavy molecular weight PAH, among those analysed. It was determined that specific markers of combustion and materials may contribute to a better understanding of the entire hot asphalt mixing process. It was suggested that chemical characterization of bitumen may help in predicting PAH emissions. 24 refs., 6 tabs., 5 figs.

  13. [Growth effect of eucalyptus-acacia mixed plantation in South China].

    Science.gov (United States)

    Yang, Zeng-Jiang; Xu, Da-Ping; Chen, Wen-Ping; Huang, Lie-Jian; Li, Shang-Jun; Chen, Yuan

    2009-10-01

    Eucalyptus U6 and Acacia crassicarpa were mixed planted with different ratios and modes to investigate the growth parameters of the two tree species. In the 2-3 years old mixed plantation, the wind-throw of A. crassicarpa decreased markedly with increasing ratio of Eucalyptus U6, the decrement being 26.14% when the Eucalyptus U6/A. crassicarpa ratio was 3 : 1, but the survival rates of Eucalyptus U6 and A. crassicarpa had no significant difference under different planting modes. Mixed planting retarded the A. crassicarpa growth to some extent, with the DBH being 90% of that in pure A. crassicarpa stand. The mixed planting had little effects on the height growth of Eucalyptus U6, but promoted its DBH growth markedly, and the beneficial effect increased with increasing ratio of A. crassicarpa. In the 6 years old 1 : 1 Eucalyptus U6/A. crassicarpa plantation, the Eucalyptus U6 individuals with DBH > 15 cm occupied 32.1%; while in pure Eucalyptus U6 stand, they only accounted for 5.83%. Mixed planting with 2 : 1 Eucalyptus U6/A. crassicarpa could obtain a maximum total biomass of 198.8 m3 x hm(-2), which was 118.8% of the total biomass in pure Eucalyptus U6 stand, or 169.9% of that in pure A. crassicarpa stand. Mixture of Eucalyptus with Acacia would be a good choice to produce Eucalyptus trees with larger DBH.

  14. Investigation of warm-mix asphalt for Iowa roadways.

    Science.gov (United States)

    2013-09-01

    Phase II of this study further evaluated the performance of plant-produced warm-mix asphalt (WMA) mixes by conducting : additional mixture performance tests at a broader range of temperatures, adding additional pavements to the study, comparing : vir...

  15. Energy savings by reduced mixing in aeration tanks: Results from a full scale investigation and long term implementation at Avedoere wastewater treatment plant

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Guildal, T.; Thomsen, H.R.

    2011-01-01

    investigation was conducted to study the effect of reduced mixing on flow velocity, suspended solid sedimentation, concentration gradients of oxygen and SS with depth and treatment efficiency. The only negative effect observed was on flow velocity; however the velocity was above the critical velocity. The plant...

  16. Separation of allelopathy from resource competition using rice/barnyardgrass mixed-cultures.

    Directory of Open Access Journals (Sweden)

    Hai Bin He

    Full Text Available Plant-plant interference is the combined effect of allelopathy, resource competition, and many other factors. Separating allelopathy from resource competition is almost impossible in natural systems but it is important to evaluate the relative contribution of each of the two mechanisms on plant interference. Research on allelopathy in natural and cultivated plant communities has been hindered in the absence of a reliable method that can separate allelopathic effect from resource competition. In this paper, the interactions between allelopathic rice accession PI312777, non-allelopathic rice accession Lemont and barnyardgrass were explored respectively by using a target (rice-neighbor (barnyardgrass mixed-culture in hydroponic system. The relative competitive intensity (RCI, the relative neighbor effect (RNE and the competitive ratio (CR were used to quantify the intensity of competition between each of the two different potentially allelopathic rice accessions and barnyardgrass. Use of hydroponic culture system enabled us to exclude any uncontrolled factors that might operate in the soil and we were able to separate allelopathy from resource competition between each rice accession and barnyardgrass. The RCI and RNE values showed that the plant-plant interaction was positive (facilitation for PI312777 but that was negative (competition for Lemont and barnyardgrass in rice/barnyardgrass mixed-cultures. The CR values showed that one PI312777 plant was more competitive than 2 barnyardgrass plants. The allelopathic effects of PI312777 were much more intense than the resource competition in rice/barnyardgrass mixed cultures. The reverse was true for Lemont. These results demonstrate that the allelopathic effect of PI312777 was predominant in rice/barnyardgrass mixed-cultures. The most significant result of our study is the discovery of an experimental design, target-neighbor mixed-culture in combination with competition indices, can successfully

  17. Alien plant invasion in mixed-grass prairie: effects of vegetation type, stochiasticity, and anthropogenic disturbance in two park units

    Science.gov (United States)

    Larson, Diane L.; Anderson, Patrick J.; Newton, Wesley E.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  18. Mixed-waste minimization activities in the nuclear weapons complex

    International Nuclear Information System (INIS)

    Marchetti, J.A.; Suffern, J.S.

    1991-01-01

    Over the past 40 years, the US Department of Energy (DOE) and the nuclear weapons complex have successfully executed their mission of providing the country with a strong nuclear deterrent. Now, however, they must attain another mission at the same time: to eliminate or greatly reduce the environmental, safety, and health problems in the complex. Mixed-waste minimization activities have taken place in 11 of the complex production plants and laboratories: the Pinellas plant, the Mount plant, the Kansas City plant, the Y-12 plant, the Rocky Flats plant, the Savannah River Site (SRS), the Savannah River Site (SRS), the Pantex plant, the Nevada Test Site, Sandia National Laboratories, Los Alamos National Laboratory, and the Lawrence Livermore National Laboratory. The mixed-waste minimization opportunities that have been implemented to date by the production facilities are different from those that have been implemented by the laboratories. Areas of opportunity at the plants involve the following activities: (1) process design or improvement; (2) substitution of materials; (3) waste segregation; (4) recycling; and (5) administrative controls

  19. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    Breeding gain in symbiotic nuclear power plant system consisting of both thermal and fast breeder reactors depends on the characteristics and the ratio of thermal and fast reactors. The composition of the symbiotic power plant systems was determined for equilibrium and plutonium deficient systems. According to natural uranium utilization, symbiotic power plant systems are not less efficient than the systems containing only fast breeders. Depleted uranium can be applied in both types of systems. Reprocessing demands of the symbiotic power plant sytems were determined. (V.N.) 23 figs.; 1 tab

  20. Study of the European market for industrial nuclear power plants for the mixed production of electricity and steam

    International Nuclear Information System (INIS)

    1975-01-01

    The opportunity of developing the mixed production of electricity and steam from nuclear power plants in the nine countries of the European Community is studied. Both public distribution and autonomous production are envisaged. An attempt is made to estimate the potentiel market for district heating and for chemical, agricultural and alimentary, textile, paper, car manufacture and wood industries. The reactors considered are LWR reactors of at least 1000MWth. Suggestions are given to overcome the difficulties and constraints that stand in the way of a nuclear solution [fr

  1. Migration of 137Cs in soils and its transfer to mushrooms and vascular plants in mixed forest

    International Nuclear Information System (INIS)

    Pietrzak-Flis, Z.; Radwan, I.; Rosiak, L.; Wirth, E.

    1996-01-01

    Migration of 137 Cs in the podzol soil and transfer of 137 Cs, 134 Cs and potassium from the soil to mushrooms and vascular plants in the mixed forest at the Kampinos National Park near Warsaw, Poland, was studied in 1994 at locations lying about 6 km apart. In the soil at both locations, up to about 40% of 137 Cs was present in the Of horizon and slightly less in the mixed organic/mineral OhAh horizon. The data indicate a slow vertical migration of radiocesium. Total content of 137 Cs in the soils was 3000 Bq m -2 . The enrichment of the Of horizon in 137 Cs from the decomposing mushroom fruitbodies was evaluated and it was shown that it can significantly contribute to the horizontal displacement of radiocesium. Transfer factors (TF) for mushrooms and Calluna were calculated using the concentrations of 137 Cs in the Of horizons, whereas for grass, Vaccinium myrtillus and Polypodium vulgare TF were calculated using a weighted mean concentration of 137 Cs in the nutritive horizons with organic matter as a weight

  2. Modern methods of material accounting for mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Eggers, R.F.; Pindak, J.L.; Brouns, R.J.; Williams, R.C.; Brite, D.W.; Kinnison, R.R.; Fager, J.E.

    1981-01-01

    The generic requirements loss detection, and response to alarms of a contemporary material control and accounting (MCandA) philosophy have been applied to a mixed oxide fuel fabrication plant to produce a detailed preliminary MCandA system design that is generally applicable to facilities of this type. This paper summarizes and discusses detailed results of the mixed oxide fuel fabrication plant study

  3. Diversity and Spatial Structure of Belowground Plant–Fungal Symbiosis in a Mixed Subtropical Forest of Ectomycorrhizal and Arbuscular Mycorrhizal Plants

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S.

    2014-01-01

    Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in

  4. Scoping Study of Airlift Circulation Technologies for Supplemental Mixing in Pulse Jet Mixed Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Schonewill, Philip P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Berglin, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Boeringa, Gregory K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buchmiller, William C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burns, Carolyn A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-07

    At the request of the U.S. Department of Energy Office of River Protection, Pacific Northwest National Laboratory (PNNL) conducted a scoping study to investigate supplemental technologies for supplying vertical fluid motion and enhanced mixing in Waste Treatment and Immobilization Plant (WTP) vessels designed for high solids processing. The study assumed that the pulse jet mixers adequately mix and shear the bottom portion of a vessel. Given that, the primary function of a supplemental technology should be to provide mixing and shearing in the upper region of a vessel. The objective of the study was to recommend a mixing technology and configuration that could be implemented in the 8-ft test vessel located at Mid-Columbia Engineering (MCE). Several mixing technologies, primarily airlift circulator (ALC) systems, were evaluated in the study. This technical report contains a review of ALC technologies, a description of the PNNL testing and accompanying results, and recommended features of an ALC system for further study.

  5. Study on mixing phenomena in T-pipe junction. Experimental analysis using DNS and investigation of mixing process

    International Nuclear Information System (INIS)

    Igarashi, Minoru; Tanaka, Masaaki; Kimura, Nobuyuki; Kamide, Hideki

    2003-02-01

    In the place where hot and cold fluids are mixed, a time and spatial temperature fluctuation occurs. When this temperature fluctuation amplitude is large, it causes high cycle thermal fatigue in surrounding structure (thermal striping phenomena). Mixing area of high and low temperature fluid exists not only in an atomic power plant but also in a general plant, then, it is significant to investigate this phenomena and also to establish an evaluation rule. In Japan Nuclear Cycle Development Institute, several experiments and the improvement of the analysis methods have been carried out to understand thermal striping phenomena and also to construct an evaluation rule, which can be applied to design. Water Experiment on Fluid Mixing in T-pipe with Long Cycle Fluctuation (WATLON), aiming at examining thermal striping phenomena in a mixing tee, is performed to investigate key factors of mixing phenomena. In this study, in order to investigate the fluid mixing phenomena, temperature and flow velocity distribution were measured by movable thermocouple tree and particle image velocimetry (PIV). And the analysis using a in-house direct numerical simulation (DNS) code, DINUS-3 was performed to understand applicability of the analytical method in mixing tee. The temperature and velocity fields obtained from the DINUS-3 were in good agreement with the experimental results. And the prominent frequency of temperature fluctuation was also in good agreement. The DINUS-3 calculation simulated vortex structure in the wake region behind the branch pipe jet. The results of analysis showed that a Karman vortex generated in the wake region behind the branch pipe jet influenced the temperature fluctuation behavior in the mixing tee. And the analytical results revealed that the vortex generated in the wake region behind the branch pipe jet showed the 3-dimensional behavior. (author)

  6. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    In equilibrium symbiotic power plant system containing both thermal reactors and fast breeders, excess plutonium produced by the fast breeders is used to enrich the fuel of the thermal reactors. In plutonium deficient symbiotic power plant system plutonium is supplied both by thermal plants and fast breeders. Mathematical models were constructed and different equations solved to characterize the fuel utilization of both systems if they contain only a single thermal type and a single fast type reactor. The more plutonium is produced in the system, the higher output ratio of thermal to fast reactors is achieved in equilibrium symbiotic power plant system. Mathematical equations were derived to calculate the doubling time and the breeding gain of the equilibrium symbiotic system. (V.N.) 2 figs.; 2 tabs

  7. Mixed waste, preparing for 1996

    International Nuclear Information System (INIS)

    Duke, D.L.

    1995-01-01

    The Environmental Protection Agency has recently approved an extension to the enforcement policy for the storage of restricted mixed waste. Under this policy, EPA assigns a reduced enforcement priority to violations of the 40CFR268.50 prohibition on storage of restricted waste. Eligibility for the lower enforcement priority afforded by the policy is subject to specified conditions. The recent extension is for a two year period, and agency personnel have advised that it may be difficult to extend the enforcement policy again. This paper reviews anticipated changes in mixed waste treatment and disposal capabilities. Types of mixed waste that may be generated, or in storage, at commercial nuclear power plants are identified. This information is evaluated to determine if the two year extension in the storage enforcement policy will be adequate for the nuclear power industry to treat or dispose of the mixed waste inventories that are identified, and if not, where potential problem areas may reside. Recommendations are then made on mixed waste management strategies

  8. Investigation of bioresistant dry building mixes modified by carbon nanotubes

    OpenAIRE

    Korolev Evgeniy Valer'evich; Erofeev Vladimir Trofimovich; Suraeva Ekaterina Nikolaevna

    2015-01-01

    Dry construction mixes are today a product of high technologies. Depending on the purpose and requirements to the properties it is easy to produce dry construction mixes with different compositions and operating indicators in plant conditions using the necessary modifying additives. Cement, gypsum and other mineral binders are used in the construction mixes. Different types of cement are more heavily used in dry construction mixes. Such dry mixes are believed to be more effective materials co...

  9. Ion leakage from mixed beds in condensate polishing plants

    International Nuclear Information System (INIS)

    Venderbosch, H.W.; Overman, L.J.; Snel, A.

    1977-01-01

    In view to the interest for theoretical and practical factors, which influence the ion slip of mixed bed filters, these facts were studied in detail. It proved to be necessary that the slip shall be subdivided into kinetic - and elution slip. The kinetic slip is depending e.g. on the electrolyte concentration of the influenct condensate, as well as on the period of contact, however it does not depend on the regeneration condition; the elution slip however depends clearly on the regeneration condition. Incomplete regeneration of the exchangers, a too low excess of regenerant, incomplete separation of cation - and anion exchanger, and the contact of an exchanger layer with the wrong regenerant in the separation zone, during the internal regeneration are raising the slip. With tests on mixed bed filters, which have been well regenerated, (less than 0.1% Na in the cation exchanger) and by using filters with normal regenerated exchangers, (approx. 10% Na in the cation exchanger) the quality of the effluent was compared with values, which were expected from calculations. In order to decrease the elution leakage, the contamination of the exchangers, especially at NH 4 OH - mixed bed filters, must be limited to a very low percentage. Several possibilities to obtain this, will be discussed in the lecture. Special attention will be paid to the internal regeneration procedure. KEMA has developed a method, the so-called partial regeneration method, in order to operate internal regenerated mixed bed filters, which have been designed for the HOH cycle, also in the ammonia form, without the occurence of an undue slip of sodium or chloride. Not only extended running periods and lower operating- and regeneration costs are of advantage, but also the reducing of salt- and ammonia containing sewage were achieved. (orig.) [de

  10. Optimal fuel-mix in CHP plants under a stochastic permit price. Risk-neutrality versus risk-aversion

    International Nuclear Information System (INIS)

    Lappi, Pauli; Ollikka, Kimmo; Ollikainen, Markku

    2010-01-01

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO 2 -intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO 2 -intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion. (author)

  11. Delisting efforts for mixed radioactive and chemically hazardous waste at the Oak Ridge Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Goodpasture, S.T.

    1987-01-01

    Presently, there are four hazardous wastes at the Oak Ridge Gaseous Diffusion Plant that are candidates for the delisting from the Resource Conservation and Recovery Act (RCRA) hazardous waste regulations. These candidates are the sludges from K-1407-B and C ponds, Central Neutralization Facility sludges, mixed sludges from Y-12 and the ash generated by the RCRA/Toxic Substances Control Act (TSCA) Incinerator. All of these hazardous wastes contain radioactive constituents as well as hazardous constituents. The delisting will be based upon the nonradioactive constituents. Whether the delisting petition is granted or not, the wastes will be handled according to the Department of Energy guidelines for radioactive wastes. The presentation discusses the methodologies for delisting these wastes and the rationale behind the processes

  12. Impact of a 1,000-foot thermal mixing zone on the steam electric power industry

    International Nuclear Information System (INIS)

    Veil, J.A.

    1994-04-01

    Thermal discharge requirements for power plants using once-through cooling systems are based on state water quality standards for temperatures that must be met outside of designated mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones to no more than 1,000 feet from the discharge point. Data were collected from 79 steam electric plants. Of the plants currently using once-through cooling systems, 74% could not meet current thermal standards at the edge of a 1,000-foot mixing zone. Of this total, 68% would retrofit cooling towers, and 6% would retrofit diffusers. The estimated nationwide capital cost for retrofitting plants that could not meet current thermal standards at the edge of a 1,000-foot mixing zone is $21.4 billion. Conversion of a plant from once-through cooling to cooling towers or addition of diffusers would result in a lower energy output from that plant. For the affected plants, the total estimated replacement cost would be $370 to $590 million per year. Some power companies would have to construct new generating capacity to meet the increased energy demand. The estimated nationwide cost of this additional capacity would be $1.2 to $4.8 billion. In addition to the direct costs associated with compliance with a 1,000-foot mixing zone limit, other secondary environmental impacts would also occur. Generation of the additional power needed would increase carbon dioxide emissions by an estimated 8.3 million tons per year. In addition, conversion from once-through cooling systems to cooling towers at affected plants would result in increased evaporation of about 2.7 million gallons of water per minute nationwide

  13. Development of manufacturing of low dew-point mixed gas of butane-air

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Hitoshi

    1988-09-10

    A dehumidifying plant was installed to supply high-quality dehumidified butane-air mixed gas aiming at saving the heat required for vaporizing liquid butane by the heat exchange with the potential heat of air as well as the dehumidification of the air used for the mixed gas by cooling with the vaporizing latent heat of liquid butane. The plant has been smoothly operated since August, 1987. Butane sent from the air-dehumidifier is completely vaporized by hot water in the vaporizer and the vaporized butane ejected by the Venturi mixer to mix with the dehumidified air. The gas production capacity is 3000Nm/sup 3//h and the treating capacities of butane and air are 661 and 2339 Nm/sup 3//h, respectively. The dew point of the mixed gas is 18/sup 0/C under 0.7kg/cm/sup 2/G at atmospheric temperature of 38/sup 0/C subject to the operation of the plant only in hot and humid summer. It was demonstrated that the plant is characterized by low construction and operating costs, low level of noise and stable heat value of the product gas. (5 figs, 4 tabs, 1 photo)

  14. Mixed Cropping of Legumes and Maize by the Use of Urea

    Directory of Open Access Journals (Sweden)

    Esmaeil Alibakhshi

    2016-10-01

    Full Text Available To study the effect of nitrogenous fertilizers and mixed cropping of legumes and maize on its grain yield and yield component of corn in Arak, an experiment was carried at the Agricultural Research Center of Markazi Province in 2013. A factorial experiment based on randomized complete block design with three replications was performed. Treatments were four levels of urea (N0= control, N1= 75 kg.ha-1, N2= 150 kg.ha-1, N3= 225 kg.ha-1 and mixed cropping with four levels (S1= planting corn, S2= planting corn + chickpea, S3= planting corn + cowpea, S4= planting corn + mung bean. Plot consisted of 4 rows, 6 m long with 60 cm between rows space and 20 cm between plants on the rows, and S.C 704 corn hybrid was used. In this study characteristics such as: plant height, number of green leaf, grain yield, number of row per ear, number of grain per ear row, nitrogen use efficiency, biomasses of legumes, nitrogen percentage and 1000 grain weight were assessed. Results indicated that the effect of different levels of urea on plant height, number of green leaf, grain yield, number of grain per row, nitrogen use efficiency, legumes biomass and nitrogen percentage were significant. Effect of mixed cropping on characteristics like grain yield, nitrogen use efficiency, biomasses of legumes nitrogen percentage was also significant. Highest and lowest grain yield (7.37 and 5.47 t.ha-1 were obtained with the use of 225 and 75 kg.ha-1 urea, respectively. The highest and lowest grain yield (7.30 and 6.01 t.ha-1 belonged to sole cropping at corn and mixed cropping of corn + mung bean, respectively.

  15. Improving mixing efficiency in a closed circuit water flow rig for ...

    African Journals Online (AJOL)

    . ... pulse velocity method, indicating that the flow meters functioned correctly. The modified rig with scaled-up mixing techniques could serve as platform for training in evaluating mixing vessels and flow meters in industrial process plants.

  16. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants.

    Science.gov (United States)

    Rehman, Fahad; Medley, Gareth J D; Bandulasena, Hemaka; Zimmerman, William B J

    2015-02-01

    Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min. The highest improvement of 55% was observed at the flow rates of 60, 90 and 100l/min respectively. Standard oxygen transfer rate and efficiency were also calculated. Both standard oxygen transfer rate and efficiency were found to be considerably higher under oscillatory air flow conditions compared to steady state airflow. The bubble size distributions and bubble densities were measured using an acoustic bubble spectrometer and confirmed production of monodisperse bubbles with approximately 100 μm diameters with fluidic oscillation. The higher number density of microbubbles under oscillatory flow indicated the effect of the fluidic oscillation in microbubble production. Visual observations and dissolved oxygen measurements suggested that the bubble cloud generated by the fluidic oscillator was sufficient enough to provide good mixing and to maintain uniform aerobic conditions. Overall, improved mass transfer coefficients, mixing efficiency and energy efficiency of the novel microbubble generation method could offer significant savings to the water treatment plants as well as reduction in the carbon footprint. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Optimal fuel-mix in CHP plants under a stochastic permit price. Risk-neutrality versus risk-aversion

    Energy Technology Data Exchange (ETDEWEB)

    Lappi, Pauli; Ollikka, Kimmo; Ollikainen, Markku [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland)

    2010-02-15

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO{sub 2}-intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO{sub 2}-intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion. (author)

  18. Optimal fuel-mix in CHP plants under a stochastic permit price: Risk-neutrality versus risk-aversion

    Energy Technology Data Exchange (ETDEWEB)

    Lappi, Pauli, E-mail: pauli.lappi@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland); Ollikka, Kimmo, E-mail: kimmo.ollikka@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland); Ollikainen, Markku, E-mail: markku.ollikainen@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland)

    2010-02-15

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO{sub 2}-intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO{sub 2}-intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion.

  19. Plant stress signalling: understanding and exploiting plant-plant interactions.

    Science.gov (United States)

    Pickett, J A; Rasmussen, H B; Woodcock, C M; Matthes, M; Napier, J A

    2003-02-01

    When plants are attacked by insects, volatile chemical signals can be released, not only from the damaged parts, but also systemically from other parts of the plant and this continues after cessation of feeding by the insect. These signals are perceived by olfactory sensory mechanisms in both the herbivorous insects and their parasites. Molecular structures involved can be characterized by means of electrophysiological assays, using the insect sensory system linked to chemical analysis. Evidence is mounting that such signals can also affect neighbouring intact plants, which initiate defence by the induction of further signalling systems, such as those that increase parasitoid foraging. Furthermore, insect electrophysiology can be used in the identification of plant compounds having effects on the plants themselves. It has been found recently that certain plants can release stress signals even when undamaged, and that these can cause defence responses in intact plants. These discoveries provide the basis for new crop protection strategies, that are either delivered by genetic modification of plants or by conventionally produced plants to which the signal is externally applied. Delivery can also be made by means of mixed seed strategies in which the provoking and recipient plants are grown together. Related signalling discoveries within the rhizosphere seem set to extend these approaches into new ways of controlling weeds, by exploiting the elusive potential of allelopathy, but through signalling rather than by direct physiological effects.

  20. Installation report on porous friction course hot plant mix.

    Science.gov (United States)

    1972-01-01

    An investigation was initiated in the spring of 1972 to develop surface mixes with high skid resistance for use at special locations. The porous friction course will hopefully provide high skid coefficients where water drainage and hydroplaning may b...

  1. Mixed cropping of groundnuts and maize in East Java

    NARCIS (Netherlands)

    Hoof, van W.C.H.

    1987-01-01

    Mixed cropping of groundnuts and maize in East Java was studied by means of a survey of farming practice and by field experiments. The influence of different sowing times and plant density of maize on the development and yield of groundnuts and maize were the main topics in this thesis. Plant

  2. Further development of a mixed-dryer for wood biomass; Sekoituskuivurin jatkokehitys

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, O. [Imatran Voima Oy, Vantaa (Finland). Research and Development; Parvio, E. [IVO International Oy, Vantaa (Finland)

    1995-12-31

    Imatran Voima Oy and IVO International Ltd are developing a new, advanced drying method for high moisture content fuels such as peat, biomass, and brown coal. The drying technology is based on using the heat of the fluidized bed directly for drying. The drying takes place at steam atmosphere, which makes it possible to recover the latent heat of evaporation back to process at high temperature level. This improves the thermal efficiency of the plant considerably. The technology is called bed mixing dryer. The pilot plant of the bed mixing dryer was built to IVO`s Kuusamo peat and wood fired power plant that was commissioned in the beginning of 1994. The Kuusamo district heating power plant has a fuel input of 27 MW that gives a power output of 6 MWe and district heat output of 17.5/21.2 MWth. As fuels are used peat, saw dust and wood wastes. The boiler is a bubbling fluidized bed boiler and the steam cycle is a conventional back pressure steam process. The unique feature in the plant is the new dryer that increases the overall thermal efficiency of the plant 10 to 15 units of percentage. In this project the operation and behaviour of the bed mixing dryer has been examined. Various components of the dryer were developed by the cold model tests carried out at IVO`s laboratory in Helsinki. Testing with the Kuusamo bed mixing dryer consisted of about 390 hours of drying tests with peat, bark and saw dust. The dryer operated well, and the drying was effective. The measured final moisture content varied from 7 to 19 % depending on the fuel particle size and the temperature level of the dryer

  3. Further development of a mixed-dryer for wood biomass; Sekoituskuivurin jatkokehitys

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, O. [Imatran Voima Oy, Vantaa (Finland). Research and Development; Parvio, E [IVO International Oy, Vantaa (Finland)

    1996-12-31

    Imatran Voima Oy and IVO International Ltd are developing a new, advanced drying method for high moisture content fuels such as peat, biomass, and brown coal. The drying technology is based on using the heat of the fluidized bed directly for drying. The drying takes place at steam atmosphere, which makes it possible to recover the latent heat of evaporation back to process at high temperature level. This improves the thermal efficiency of the plant considerably. The technology is called bed mixing dryer. The pilot plant of the bed mixing dryer was built to IVO`s Kuusamo peat and wood fired power plant that was commissioned in the beginning of 1994. The Kuusamo district heating power plant has a fuel input of 27 MW that gives a power output of 6 MWe and district heat output of 17.5/21.2 MWth. As fuels are used peat, saw dust and wood wastes. The boiler is a bubbling fluidized bed boiler and the steam cycle is a conventional back pressure steam process. The unique feature in the plant is the new dryer that increases the overall thermal efficiency of the plant 10 to 15 units of percentage. In this project the operation and behaviour of the bed mixing dryer has been examined. Various components of the dryer were developed by the cold model tests carried out at IVO`s laboratory in Helsinki. Testing with the Kuusamo bed mixing dryer consisted of about 390 hours of drying tests with peat, bark and saw dust. The dryer operated well, and the drying was effective. The measured final moisture content varied from 7 to 19 % depending on the fuel particle size and the temperature level of the dryer

  4. RADIOECOLOGICAL STUDIES IN MARINE ENVIRONMENT. A STUDY ON THE CONCENTRATION OF MIXED FISSION PRODUCTS IN GREEK SEA WATERS AND OF 137CS IN FISH AND SEA PLANTS

    International Nuclear Information System (INIS)

    DANALI-KOTSAKI, S.; FLOROU-GAZI, H.

    1982-12-01

    Full text: The concentrations of mixed fission products in sea water and of 137 Cs in fish and sea plants are different for samples collected from different sampling areas. This difference is more remarkable the year where the level of the world wide fall-out is higher, especially with regards to M. F. P. concentrations in sea water samples. Increases or decreases to M.F.P. concentrations in sea water samples result to increases or decreases of 137 Cs in fish and sea plants. (author)

  5. Ethanol from mixed waste paper

    International Nuclear Information System (INIS)

    Kerstetter, J.D.; Lyons, J.K.

    1991-01-01

    The technology, markets, and economics for converting mixed waste paper to ethanol in Washington were assessed. The status of enzymatic and acid hydrolysis projects were reviewed. The market for ethanol blended fuels in Washington shows room for expansion. The economics for a hypothetical plant using enzymatic hydrolysis were shown to be profitable

  6. Modern methods of material accounting for mixed-oxide fuel-fabrication facility

    International Nuclear Information System (INIS)

    Eggers, R.F.; Brouns, R.J.; Brite, D.W.; Pindak, J.L.

    1981-07-01

    The generic requirements loss detection, and response to alarms of a contemporary material control and accounting (MC and A) philosophy have been applied to a mixed-oxide fuel-fabrication plant to produce a detailed preliminary MC and A system design that is generally applicable to facilities of this type. This paper summarizes and discusses detailed results of the mixed-oxide fuel-fabrication plant study. Topics covered in this paper include: mixed-oxide fuel-fabrication process description, process disaggregation into MC and A system control units, quantitative results of analysis of control units for abrupt and recurring loss-detection capability, impact of short- and long-term holdup on loss-detection capability, response to alarms for abrupt loss, and response to alarms for recurring loss

  7. Best power mix under nuclear-decreasing society

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Nakao, Kazuhide

    2012-01-01

    East Japan Great Earthquake and the subsequent failures of nuclear power plants compel Japanese to consider a new paradigm of national energy policy. In this study, we discuss the future power mix scenario considering a variety of power options; nuclear, coal fire, LNG fire, oil fire, LNG combined cycle, hydro, hydropump, battery, photovoltaic, wind, and geothermal. Future developments of installed capacity, properties such as efficiency, etc. are discussed for each type of power option. Seven sets of daily demand profile are used. Power generation mix model developed in preceding studies is used to estimate the installation and operation of each power option for representative years of 2010, 2020, 2030, 2040, and 2050. Future power mix is discussed on the basis of results from power generation mix model. (author)

  8. Local variation in conspecific plant density influences plant-soil feedback in a natural grassland

    NARCIS (Netherlands)

    Kos, M.; Veendrick, Johan; Bezemer, T.M.

    2013-01-01

    Several studies have argued that under field conditions plant–soil feedback may be related to the local density of a plant species, but plant–soil feedback is often studied by comparing conspecific and heterospecific soils or by using mixed soil samples collected from different locations and plant

  9. Flora Robotica – Mixed Societies of Symbiotic Robot-Plant Bio-Hybrids

    DEFF Research Database (Denmark)

    Hamann, Heiko; Wahby, Mostafa; Schmickl, Thomas

    2015-01-01

    robotica. Our objective is to develop and to investigate closely linked symbiotic relationships between robots and natural plants and to explore the potentials of a plant-robot society able to produce architectural artifacts and living spaces. These robot-plant bio-hybrids create synergies that allow...

  10. Nuclear energy in the European energy mix operation

    International Nuclear Information System (INIS)

    Gueldner, R.

    2009-01-01

    The world nuclear energy is on the upswing. This is shown by lifetime extensions up to 60 years and the construction of new nuclear power plants. Especially, the progressive climate change requires new, definitive, fast and decisive solutions. Europe has to find the right energy mix for the future having the magic triangle of environmental sustainability, security of supply and economic affordability in mind. At the centre of all the efforts made by many countries all over the world, nuclear is one vital key technology to face and combat global warming. Nuclear has a positive eco-balance, nuclear gives security of supply and nuclear power generation is competitive. Beside this the most important fact is and will be the high safety to run a nuclear power plant. The energy mix in the EU of the next decades will be defined today. It is vital to consider every option, which can contribute to a sustainable energy mix. Nuclear alone is not the solution for all problems but there will be no sustainable solution without nuclear. (author)

  11. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs

  12. Simultaneous analysis of steviol and steviol glycosides by liquid chromatography with ultraviolet detection on a mixed-mode column: application to Stevia plant material and Stevia-containing dietary supplements.

    Science.gov (United States)

    Jaworska, Karolina; Krynitsky, Alexander J; Rader, Jeanne I

    2012-01-01

    Simultaneous separation of steviol and steviol glycosides is challenging because of differences in their polarity and chemical structure. In this study, simultaneous analysis of steviol and steviol glycosides was achieved by LC with UV detection using a mixed-mode RP weak anion exchange chromatography column. Steviol and seven steviol glycosides were analyzed on an Acclaim Mixed-Mode Wax-1 (Dionex) column with a linear gradient of deionized water adjusted to pH 3.00 with phosphoric acid and acetonitrile. The extraction was performed by sonicating dry plant material at 40 degreesC in acetonitrile-water (30 + 70, v/v). LOQ values (mg/g dry weight of plant material) were rebaudioside B, 0.50; steviol, 0.70, dulcoside A, 1.0; steviolbioside, 1.2; stevioside and rebaudioside C, 2.0; rebaudioside D, 3.3; and rebaudioside A, 5.0. The method demonstrated suitable performance for all analytes tested with respect to accuracy (mean recoveries 95-99%), intraday and interday precision for retention times (0.070-0.28% and 0.33-1.0% RSD, respectively), and linearity. The method was used to authenticate steviol glycosides in several samples of Stevia plant material as well as to quantitate steviol glycosides in dietary supplements containing Stevia.

  13. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides.

    Science.gov (United States)

    Anzuay, María Soledad; Ciancio, María Gabriela Ruiz; Ludueña, Liliana Mercedes; Angelini, Jorge Guillermo; Barros, Germán; Pastor, Nicolás; Taurian, Tania

    2017-06-01

    The aims of this study were, to analyze in vitro phosphate solubilization activity of six native peanut bacteria and to determine the effect of single and mixed inoculation of these bacteria on peanut and maize plants. Ability to produce organic acids and cofactor PQQ, to solubilize FePO 4 and AlPO 4 and phosphatase activity were analyzed. Also, the ability to solubilize phosphate under abiotic stress and in the presence of pesticides of the selected bacteria was determined. The effect of single and mixed bacterial inocula was analyzed on seed germination, maize plant growth and in a crop rotation plant assay with peanut and maize. The six strains produced gluconic acid and five released cofactor PQQ into the medium. All bacteria showed ability to solubilize phosphate from FePO 4 and AlPO 4 and phosphatase activity. The ability of the bacteria to solubilize tricalcium phosphate under abiotic stress and in presence of pesticides indicated encouraging results. Bacterial inoculation on peanut and maize increased seed germination, plant́s growth and P content. Phosphate solubilizing bacteria used in this study showed efficient phosphate mineralizing and solubilization ability and would be potential P-biofertilizers for peanut and maize. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Exotic plant infestation is associated with decreased modularity and increased numbers of connectors in mixed-grass prairie pollination networks

    Science.gov (United States)

    Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton

    2016-01-01

    The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested

  15. Effluent Mixing Modeling for Liquefied Natural Gas Outfalls in a Coastal Ecosystem

    Directory of Open Access Journals (Sweden)

    Mustafa Samad

    2014-06-01

    Full Text Available Liquid Natural Gas (LNG processing facilities typically are located on ocean shores for easy transport of LNG by marine vessels. These plants use large quantities of water for various process streams. The combined wastewater effluents from the LNG plants are discharged to the coastal and marine environments typically through submarine outfalls. Proper disposal of effluents from an LNG plant is essential to retain local and regional environmental values and to ensure regulatory and permit compliance for industrial effluents. Typical outfall designs involve multi-port diffuser systems where the design forms a part of the overall environmental impact assessment for the plant. The design approach needs to ensure that both near-field plume dispersion and far-field effluent circulation meets the specified mixing zone criteria. This paper describes typical wastewater process streams from an LNG plant and presents a diffuser system design case study (for an undisclosed project location in a meso-tidal coast to meet the effluent mixing zone criteria. The outfall is located in a coastal and marine ecosystem where the large tidal range and persistent surface wind govern conditions for the diffuser design. Physical environmental attributes and permit compliance criteria are discussed in a generic format. The paper describes the design approach, conceptualization of numerical model schemes for near- and far-field effluent mixing zones, and the selected diffuser design.

  16. Hot Mix Asphalt Recycling: Practices and Principles

    OpenAIRE

    Mohajeri, M.

    2015-01-01

    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a high RA content are produced in a batch plant to which a parallel drum is attached. In this drum RA is pre-heated to approximately 130°C. Since 2007 another hot mix recycling techniques became availa...

  17. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants

    International Nuclear Information System (INIS)

    Feretic, Danilo; Cavlina, Nikola

    2010-01-01

    The aim of this paper is to compare potential energy options for future electricity generation. The paper considers comparison of discounted total cost of electricity generated by nuclear power plant and by combined natural gas and wind plants, having in total equal electricity generation. Large uncertainty in the future fuel costs makes planning of optimal power generating mix very difficult to justify. Probabilistic method is used in the analysis which allows inclusion of uncertainties in future electricity generating cost prediction. Additionally, an informative functional relation between nuclear plant investment cost, natural gas price and wind plant efficiency, that determines competitive power generation between considered options, is also shown. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants are presented. (authors)

  18. Auto-Thermal Reforming Using Mixed Ion-Electronic Conducting Ceramic Membranes for a Small-Scale H2 Production Plant

    Directory of Open Access Journals (Sweden)

    Vincenzo Spallina

    2015-03-01

    Full Text Available The integration of mixed ionic electronic conducting (MIEC membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650–850 Nm3/h via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%. Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%–70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%–78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.

  19. The influence of canopy-layer composition on understory plant diversity in southern temperate forests

    Directory of Open Access Journals (Sweden)

    Luciana Mestre

    2017-05-01

    Full Text Available Background Understory plants represents the largest component of biodiversity in most forest ecosystems and plays a key role in forest functioning. Despite their importance, the influence of overstory-layer composition on understory plant diversity is relatively poorly understood within deciduous-evergreen broadleaved mixed forests. The aim of this work was to evaluate how tree overstory-layer composition influences on understory-layer diversity in three forest types (monospecific deciduous Nothofagus pumilio (Np, monospecific evergreen Nothofagus betuloides (Nb, and mixed N. pumilio-N. betuloides (M forests, comparing also between two geographical locations (coast and mountain to estimate differences at landscape level. Results We recorded 46 plant species: 4 ferns, 12 monocots, and 30 dicots. Canopy-layer composition influences the herb-layer structure and diversity in two different ways: while mixed forests have greater similarity to evergreen forests in the understory structural features, deciduous and mixed were similar in terms of the specific composition of plant assemblage. Deciduous pure stands were the most diverse, meanwhile evergreen stands were least diverse. Lack of exclusive species of mixed forest could represent a transition where evergreen and deciduous communities meet and integrate. Moreover, landscape has a major influence on the structure, diversity and richness of understory vegetation of pure and mixed forests likely associated to the magnitude and frequency of natural disturbances, where mountain forest not only had highest herb-layer diversity but also more exclusive species. Conclusions Our study suggests that mixed Nothofagus forest supports coexistence of both pure deciduous and pure evergreen understory plant species and different assemblages in coastal and mountain sites. Maintaining the mixture of canopy patch types within mixed stands will be important for conserving the natural patterns of understory plant

  20. Power plant emissions reduction

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  1. Plastometry for the Self-Compacting Concrete Mixes

    Science.gov (United States)

    Lapsa, V. Ā.; Krasnikovs, A.; Lusis, V.; Lukasenoks, A.

    2015-11-01

    Operative determination of consistence of self-compacting concrete mixes at plant or in construction conditions is an important problem in building practice. The Abram's cone, the Vebe's device, the U-box siphon, L-box or funnel tests are used in solving this problem. However, these field methods are targeted at determination of some indirect parameters of such very complicated paste-like material like concrete mix. They are not physical characteristics suitable for the rheological calculations of the coherence between the stress and strains, flow characteristics and the reaction of the concrete mix in different technological processes. A conical plastometer having higher precision and less sensitive to the inaccuracy of the tests in construction condition has been elaborated at the Concrete Mechanics Laboratory of RTU. In addition, a new method was elaborated for the calculation of plasticity limit τ0 taking into account the buoyancy force of the liquid or non-liquid concrete mix. In the present investigation rheological test of the concrete mix by use the plastometer and the method mentioned earlier was conducted for different self-compacting and not self-compacting concrete mixes.

  2. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    Science.gov (United States)

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Lightweight Brick by Carbon Ash from The Mixed Plastic Waste Treatment Plant

    OpenAIRE

    Chen Kuo-Wei

    2016-01-01

    This study was designed to investigate the mixed plastic waste from the production of light carbon ash bricks performance. The mixed waste plastic pyrolysis process generated waste - Carbon ash. After extrusion, a Lightweight brick was made by carbon ash, additive and Cement mortar. In general, the set compressive strength and insulation effect of lightweight bricks with carbon ash proportion for significant impact. The set water absorption and thermal conductivity of lightweight bricks with ...

  4. Bed mixing dryer for high moisture content fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hulkkonen, S; Heinonen, O. [Imatran Voima Oy, Vantaa (Finland)

    1998-12-31

    Bed mixing dryer is a new type of fuel drying technology for fluidized bed combustion. The idea is to extract hot bed material from the fluidized bed and use it as a heat source for drying the fuel. Drying occurs at steam atmosphere which makes it possible to recover the latent heat of evaporation to process. This improves the thermal efficiency of the power plant process considerably, especially in combined heat and power applications. Imatran Voima Oy (IVO) has developed the Bed Mixing Dryer technology since early 1990s. The first pilot plant was built in 1994 to IVO`s Kuusamo peat and wood fired power plant. The capacity of the plant is 6 MW{sub e} and 20 MW of district heat. In Kuusamo the dryer is connected to a bubbling fluidized bed. Since it`s commissioning the dryer has been used successfully for about 3000 hours during the heating season in wintertime. The second application of the technology will be a demonstration project in Oerebro (S). IVO Power Engineering Ltd will supply in 1997 a dryer to Oerebro Energi`s peat, wood and coal fired CHP plant equipped with circulating fluidized bed boiler. The fuel to be dried is sawdust with fuel input of about 60 MW. In Kuusamo the dryer produces 3 MW of additional district heat and in Oerebro 6 MW. The fuels in Kuusamo are peat, saw dust and bark. In addition to the municipal heat production this type of drying technology has its benefits in pulp and paper industry processes. Disposal of paper mill sludges is becoming more difficult and costly which has resulted in need of alternative treatment. Drying of the sludge before combustion in a boiler for power production is an attractive option. At the moment IVO is carrying out several studies to apply the Bed Mixing Dryer in pulp and paper industry processes. Economy of drying the sludge looks promising

  5. Bed mixing dryer for high moisture content fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hulkkonen, S.; Heinonen, O. [Imatran Voima Oy, Vantaa (Finland)

    1997-12-31

    Bed mixing dryer is a new type of fuel drying technology for fluidized bed combustion. The idea is to extract hot bed material from the fluidized bed and use it as a heat source for drying the fuel. Drying occurs at steam atmosphere which makes it possible to recover the latent heat of evaporation to process. This improves the thermal efficiency of the power plant process considerably, especially in combined heat and power applications. Imatran Voima Oy (IVO) has developed the Bed Mixing Dryer technology since early 1990s. The first pilot plant was built in 1994 to IVO`s Kuusamo peat and wood fired power plant. The capacity of the plant is 6 MW{sub e} and 20 MW of district heat. In Kuusamo the dryer is connected to a bubbling fluidized bed. Since it`s commissioning the dryer has been used successfully for about 3000 hours during the heating season in wintertime. The second application of the technology will be a demonstration project in Oerebro (S). IVO Power Engineering Ltd will supply in 1997 a dryer to Oerebro Energi`s peat, wood and coal fired CHP plant equipped with circulating fluidized bed boiler. The fuel to be dried is sawdust with fuel input of about 60 MW. In Kuusamo the dryer produces 3 MW of additional district heat and in Oerebro 6 MW. The fuels in Kuusamo are peat, saw dust and bark. In addition to the municipal heat production this type of drying technology has its benefits in pulp and paper industry processes. Disposal of paper mill sludges is becoming more difficult and costly which has resulted in need of alternative treatment. Drying of the sludge before combustion in a boiler for power production is an attractive option. At the moment IVO is carrying out several studies to apply the Bed Mixing Dryer in pulp and paper industry processes. Economy of drying the sludge looks promising

  6. Planting on the slope of Yangjiang nuclear power plant by spraying combined materials

    International Nuclear Information System (INIS)

    Li Ning

    2010-01-01

    During the development and construction of nuclear power projects, in order to prevent ecological degradation and soil erosion of slope hazards, taking practical measures in the works or plant is particularly important. through the main high slope green field application of Yangjiang nuclear power plant, introducing mixed vegetation spraying techniques and characteristics of the construction process, for similar projects it is also a good guide. (author)

  7. Application of autochthonous mixed starter for controlled Kedong sufu fermentation in pilot plant tests.

    Science.gov (United States)

    Feng, Zhen; Xu, Miao; Zhai, Shuang; Chen, Hong; Li, Ai-li; Lv, Xin-tong; Deng, Hong-ling

    2015-01-01

    Traditional sufu is fermented by back-slopping and back-slopping has many defects. The objective of this study was to apply autochthonous mixed starter to control Kedong sufu fermentation. Sufu was manufactured using back-slopping (batch A) and autochthonous mixed starter (batch B) with Kocuria kristinae F7, Micrococcus luteus KDF1, and Staphylococcus carnosus KDFR1676. Considering physicochemical properties of sufu, 150-day sufu samples from batch A and 90-day sufu samples from batch B met the standard requirements, respectively. Considering sensory characteristics of sufu, 150-day sufu samples from batch A and 90-day sufu samples from batch B showed no significant differences (P > 0.05). The maturation period of sufu was shortened by 60 d. Profiles of free amino acids and peptides partly revealed the mechanism of typical sensory quality and shorter ripening time of sufu manufactured by autochthonous mixed starter. In final products, content of total biogenic amines was reduced by 48%. Autochthonous mixed starter performed better than back-slopping. Fermentation had a positive influence on the quality, safety, and sensory properties of sufu. The application of autochthonous mixed starter does not change the sensory characteristics of traditional fermented sufu. In addition, it reduces maturation period and improves their homogeneity and safety. It is possible to substitute autochthonous mixed starter for back-slopping in the manufacture of sufu. © 2014 Institute of Food Technologists®

  8. EVALUASI KINERJA UNIT BISNIS ASPHALT MIXING PLANT PT PRAYOGA PERTAMBANGAN DAN ENERGI

    Directory of Open Access Journals (Sweden)

    Raden Isma Anggraini

    2016-05-01

    Full Text Available Currently, the mining sector is still one of the main sectors driving the economy of Indonesia and is in demand by both indigenous and foreign investors. Asphalt mixing plant business unit (AMP BU is currently the main priority scale of PT Prayoga. The AMP UB excellent performance of PT Prayoga enable itself to be able to contribute to the company's revenue and accelerate development of infrastructure in Bogor. The objectives of the research were to identify key performance indicator (KPI that is applied in the financial and non-financial perspectives as well as to evaluate the performance of UB AMP of PT Prayoga in terms of financial and non-financial aspects based on the vision, mission and strategy of the company. The method used in this research was the balanced scorecard as a management tool to maintain a balance between the financial (financial perspective and non-financial (customer perspective, business processes, learning and growth indicators. The results showed that the KPI applied in the evaluation of the performance of AMP BU of PT Prayoga consists of 19 indicators including 5 KPI of financial perspective, 5 KPI of customer perspective, 5 KPI of business process perspective, and 4 KPI of learning and growth perspective. The assessment results indicate this business unit obtained the performance index of 78.42% included in the criterion of very good or excellent, thus it has shown its best performance according to the vision, mission and strategy of the company.Keywords: balanced scorecard, performance assessment, performance index, KPI, mining

  9. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    Science.gov (United States)

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Estimation of the common cause failure probabilities on the component group with mixed testing scheme

    International Nuclear Information System (INIS)

    Hwang, Meejeong; Kang, Dae Il

    2011-01-01

    Highlights: ► This paper presents a method to estimate the common cause failure probabilities on the common cause component group with mixed testing schemes. ► The CCF probabilities are dependent on the testing schemes such as staggered testing or non-staggered testing. ► There are many CCCGs with specific mixed testing schemes in real plant operation. ► Therefore, a general formula which is applicable to both alternate periodic testing scheme and train level mixed testing scheme was derived. - Abstract: This paper presents a method to estimate the common cause failure (CCF) probabilities on the common cause component group (CCCG) with mixed testing schemes such as the train level mixed testing scheme or the alternate periodic testing scheme. In the train level mixed testing scheme, the components are tested in a non-staggered way within the same train, but the components are tested in a staggered way between the trains. The alternate periodic testing scheme indicates that all components in the same CCCG are tested in a non-staggered way during the planned maintenance period, but they are tested in a staggered way during normal plant operation. Since the CCF probabilities are dependent on the testing schemes such as staggered testing or non-staggered testing, CCF estimators have two kinds of formulas in accordance with the testing schemes. Thus, there are general formulas to estimate the CCF probability on the staggered testing scheme and non-staggered testing scheme. However, in real plant operation, there are many CCCGs with specific mixed testing schemes. Recently, Barros () and Kang () proposed a CCF factor estimation method to reflect the alternate periodic testing scheme and the train level mixed testing scheme. In this paper, a general formula which is applicable to both the alternate periodic testing scheme and the train level mixed testing scheme was derived.

  11. Data acquisition and monitoring of radwaste cementation plants

    International Nuclear Information System (INIS)

    Cable, A.S.; Lee, D.J.; Samways, J.; Weller, F.C.; Williams, J.R.A.

    1988-03-01

    This paper summarises the progress made in the two years to June 1987 on the DOE funded programme for Data acquisition and monitoring of Radwaste Cementation Plants. The results of the computer based data logging and processing system fitted to an in-drum mixing station, cement powder plant and sludge handling plant are reported. (author)

  12. Evidence for competition and cooperation among climbing plants.

    Science.gov (United States)

    Biernaskie, Jay M

    2011-07-07

    A plant's best strategy for acquiring resources may often depend on the identity of neighbours. Here, I ask whether plants adjust their strategy to local relatedness: individuals may cooperate (reduce competitiveness) with kin but compete relatively intensely with non-kin. In a greenhouse experiment with Ipomoea hederacea, neighbouring siblings from the same inbred line were relatively uniform in height; groups of mixed lines, however, were increasingly variable as their mean height increased. The reproductive yield of mixed and sibling groups was similar overall, but when adjusted to a common mean height and height inequality, the yield of mixed groups was significantly less. Where this difference in yield was most pronounced (among groups that varied most in height), mixed groups tended to allocate more mass to roots than comparable sibling groups, and overall, mixed groups produced significantly fewer seeds per unit mass of roots. These results suggest that, from the group perspective, non-kin may have wasted resources in below-ground competition at the expense of reproduction; kin groups, on the other hand, displayed the relative efficiency that is expected of reduced competitiveness.

  13. AAEC builds synroc demonstration plant

    International Nuclear Information System (INIS)

    O'Hagan, R.

    1986-01-01

    A demonstration plant to test the feasibility of an Australian-developed method of immobilising radioactive waste is being built at the Australian Atomic Energy Commission's Lucas Heights Research Laboratories. The plant will operate as if radioactive waste was actually being processed, but non-radioactive elements of a similar composition will be used. The process involves the simulated waste being mixed into a slurry with the main SYNROC ingredients and then converted to a powder. The powder is moved about the plant in bellows-type containers by robots

  14. Application of a stable finite element hydrodynamic calculation model for improving mixing process in waste water treatment plants; Aplicacion de un modelo estable de calculo hidrodinamico en Elementos Finitos para la mejora de los procesos de mezcla en plantas de tratamiento de aguas

    Energy Technology Data Exchange (ETDEWEB)

    Vellando, P.; Lucas, T.

    2003-07-01

    This article describes a hydrodynamic study carried out with a view to improving the behaviour of the mixing processes that tale place in waste water treatment plants . The treatment units talen as a benchmark were the neutralisation tans in the liquid effluents treatment plant of Endesa's thermal production unit in As Pontes. However, the characteristics of the mixing processes in the units studied here are very similar to those that are employed in a large number of large waste water treatment plants. The hydrodynamic study made use of an adapted version of the finite elements program known as Hydrafen which was developed at the Escuela Superior de Ingenieros de Caminos, Canales y Puertos in La Coruna. Unlike currently available commercial programs, this code makes it possible to perform and optimum assessment of the hydrodynamic performance of this type of facility, as it successfully resolves the Navier-Stokes equations governing the incompressible viscous flow. In the light of the numerical results obtained solutions are suggested to improve the operation of the mixing process under study. (Author) 19 refs.

  15. Assessment of LANL transuranic mixed waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; McCance, C.H.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from the evaluation of the Los Alamos National Laboratory (LANL) TRU Mixed Waste Acceptance Criteria to determine its compliance with applicable DOE requirements. The driving requirements for s TRU Mixed Waste Acceptance Criteria are essentially those contained in the ''TRU Waste Acceptance Criteria for the Waste Isolation Pilot Plant'' or WIPP WAC (DOE Report WIPP-DOE-069), 40 CFR 261-270, and DOE Order 5820.2A (Radioactive Waste Management), specifically Chapter II which is entitled ''Management of Transuranic Waste''. The primary purpose of the LANL WAC is the establishment of those criteria that must be met by generators of TRU mixed waste before such waste can be accepted by the Waste Management Group. An annotated outline of a genetic TRU mixed waste acceptance criteria document was prepared from those requirements contained in the WIPP WAC, 40 CFR 261-270, and 5820.2A, and is based solely upon those requirements

  16. COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS

    Science.gov (United States)

    Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...

  17. Effects of goat manure liquid fertilizer combined with AB-MIX on foliage vegetables growth in hydroponic

    Science.gov (United States)

    Sunaryo, Y.; Purnomo, D.; Darini, M. T.; Cahyani, V. R.

    2018-03-01

    Hydroponic as one of the protected cultivation practices is very important to be developed in Indonesia due to not only the reduction of arable agricultural lands in lines with increasing of residential demand and other public facilities but also due to the negative influences of climate change as well global warming to plant growth. The effects of liquid fertilizer made from goat manure (LFGM) in combination with AB-Mix on three kinds of foliage vegetable growth was examined in hydroponics. The research was conducted by 3 x 4 factorial experiment and arranged in Completely Randomized Design with 3 replications. The first factor was foliage vegetable consisting of 3 levels: Mustard Green, Lettuce, and Red Spinach. The second factor was the mixture composition of nutrient solution consisting of 4 levels: LFGM + AB-Mix (v/v: 1:1), LFGM + AB-Mix (v/v: 1:3), LFGM + AB-Mix (v/v: 3:1), and A/B mix as control. Results indicated that the application of LFGM + AB-Mix (v/v: 1:3) resulted in similar plant growth as control (AB-Mix application), and also resulted in the highest chlorophyll content of Mustard green.

  18. Development of a process for co-conversion of Pu-U nitrate mixed solutions to mixed oxide powder using microwave heating method

    International Nuclear Information System (INIS)

    Koizumi, Masumichi; Ohtsuka, Katsuyuki; Ohshima, Hirofumi; Isagawa, Hiroto; Akiyama, Hideo; Todokoro, Akio; Naruki, Kaoru

    1983-01-01

    For the complete nuclear fuel cycle, the development of a process for the co-conversion of Pu-U nitrate mixed solutions to mixed oxide powder has been performed along the line of non-proliferation policy of nuclear materials. A new co-conversion process using a microwave heating method has been developed and successfully demonstrated with good results using the test unit with a capacity of 2 kg MOX/d. Through the experiments and engineering test operations, several important data have been obtained concerning the feasibility of the test unit, powder characteristics and homogeneity of the product, and impurity pickups during denitration process. The results of these experimental operations show that the co-conversion process using a microwave heating method has many excellent advantages, such as good powder characteristics of the product, good homogeneity of Pu-U oxide, simplicity of the process, minimum liquid waste, no possibility of changing the Pu/U ratio and stable operability of the plant. Since August 1979, plutonium nitrate solution transported from the Tokai Reprocessing Plant has been converted to mixed oxide powder which has the Pu/U ratio = 1. The products have been processed to the ATR ''FUGEN'' reloading fuel. Based on the successful development of the co-conversion process, the microwave heating direct denitration facility with a 10 kg MOX/d capacity has been constructed adjacent to the reprocessing plant. This facility will come into hot operation by the fall of this year. For future development of the microwave heating method, a continuous direct denitration, a vitrification of high active liquid waste and a solidification of the plutonium-contaminated waste are investigated in Power Reactor and Nuclear Fuel Development Corp. (author)

  19. Ammonia loss, ammonium and nitrate accumulation from mixing ...

    African Journals Online (AJOL)

    Ammonia loss from urea significantly hinders efficient use of urea in agriculture. In order to reduce ammonia loss and, at the same time, improve beneficial accumulation of soil exchangeable ammonium and nitrate for efficient utilization by plants, this laboratory study was conducted to determine the effect of mixing urea with ...

  20. Halophytic Companion Plants Improve Growth and Physiological Parameters of Tomato Plants Grown under Salinity

    International Nuclear Information System (INIS)

    Karakas, S.; Cullu, M. A.; Kaya, C.; Dikilitas, M.

    2016-01-01

    Salinity becomes a major concern when soil salt concentration becomes excessive in growth medium. Halophytes are capable of accumulating high concentrations of NaCl in their tissues, thus using halophytic plants in crop rotations or even in mixed cropping systems may be a promising management practices to mitigate salt stress related yield loses. Salinity induced yield losses and related physiological parameters on tomato plants (Lycopersicon esculentum Mill. cv. SC2121) grown with or without halophytic companion plants (SalsolasodaL. and Portulacaoleracea L.) were investigated in pot experiment. Treatments consist of four soil type (collected from Harran plain-Turkey) with similar physical properties but varying in salinity level: electrical conductivity (EC): 0.9, 4.2, 7.2, and 14.1 dS m/sup -1/. The reduction in plant total dry weight was 24, 19, and 48 percent in soils with slight (4.2dS m/sup -1/), moderate (7.2 dS m/sup -1/) and high (14.1 dS m/sup -1/) salinity as compared to non-saline soil (0.9 dS m/sup -1/), respectively. Leaf content of proline, malondialdehyde (MDA), catalase (CAT) and peroxidase (POX) enzyme activity increased with increasing level of salinity. In tomato plants grown in consociation with Salsolasoda, salinity induced DM decrease was only 6, 12 and 28% in soils with slight, moderate and high salinity as compared to non-saline soil, respectively. However, when Portulaca oleracea used as companion plant, no significant change in biomass or fruit yield was observed. This study showed that mixed planting with Salsolasodain high saline soils may be an effective phyto-remediation technique that may secure yield formation and quality of tomato. (author)

  1. Effect of mix parameters on longevity of bituminous mixtures

    Science.gov (United States)

    Reichle, Clayton Matthew

    This study was performed to evaluate the effects of varying aggregate sources, aggregate gradations on the stripping and rutting potential of bituminous based plant mixes specified by the Missouri Department of Transportation. The different aggregate combinations included two different aggregate sources (Potosi Dolomite and Jefferson City Dolomite) including two variations for the Jefferson City Dolomite mix to simulate a marginally in-specification mix and an out-of-specification but in-field tolerance mix. The "field" mix simulated the marginal mix where field tolerance of high dust and low binder content were maximized. All three mixes were evaluated for stripping susceptibility using the Tensile Strength Ratio (TSR) test and the Hamburg Wheel Tracking Device (HWTD). The mix characteristics (unit weight, effective binder content, and air voids) were used for a Level 3 analysis in the Mechanistic-Empirical Pavement Design Guide (MEPDG) to determine long term pavement distress conditions such as fatigue cracking, rutting, and IRI (smoothness). The Potosi mix exhibited the best resistance to rutting and stripping during both the TSR testing as well as the Hamburg testing. The Jefferson City In-Spec and Out-of-Spec mixes showed less resistance to rutting and stripping in order, respectively. This was expected for the Jefferson City mixes where the aggregate was of lower quality (higher Los Angeles Abrasion, Micro Deval loss, absorption, and deleterious materials). Also, in the case of the Jefferson City Out-of-Spec mix, the binder content was lower. Upon evaluating the mixes using the MEPDG software, it was shown that mix characteristics such as air voids, VMA, and VFA influenced the fatigue cracking, rutting, and IRI predictions to a minor degree.

  2. Plant gene technology: social considerations

    African Journals Online (AJOL)

    Administrator

    The genetic modification of plants by gene technology is of immense potential benefits, but there may be possible risks. ... As a new endeavour, however, people have a mixed ... reality by gene biotechnology (Watson, 1997). Industrial ...

  3. ANALYSIS ON THE DYNAMICS OF SPATIAL DISTRIBUTION PATTERN OF MIXED SPIDER POPULATION IN RICE FIELD

    Institute of Scientific and Technical Information of China (English)

    ZhiWang; Zhe-mingYuan; Da-xiangSong; Ming-shengZhu

    2004-01-01

    The results make it clear that there are total 11 families, 29 genera and 43 species of spiders in the rice field of Dong Fang Hong Farm. Among them, there are 8 families, 19 genera and 28 species in the early rice field, and 10 families, 27 genera and 36 species in the late rice field. The spatial distribution pattern of mixed spider populations in rice fields was different during different development stages of rice plant. During the prophase, metaphase and anaphase of early rice plant development, the spatial distribution pattern of mixed spider populations was aggregative, random and aggregative respectively. During the prophase, metaphase and anaphase of late rice plant development, the spatial distribution pattern was uniform, aggregative and uniform respectively.

  4. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime

    International Nuclear Information System (INIS)

    Denyes, Mackenzie J.; Rutter, Allison; Zeeb, Barbara A.

    2013-01-01

    The in situ use of carbon amendments such as activated carbon (AC) and biochar to minimize the bioavailability of organic contaminants is gaining in popularity. In the first in situ experiment conducted at a Canadian PCB-contaminated Brownfield site, GAC and two types of biochar were statistically equal at reducing PCB uptake into plants. PCB concentrations in Cucurbita pepo root tissue were reduced by 74%, 72% and 64%, with the addition of 2.8% GAC, Burt's biochar and BlueLeaf biochar, respectively. A complementary greenhouse study which included a bioaccumulation study of Eisenia fetida (earthworm), found mechanically mixing carbon amendments with PCB-contaminated soil (i.e. 24 h at 30 rpm) resulted in shoot, root and worm PCB concentrations 66%, 59% and 39% lower than in the manually mixed treatments (i.e. with a spade and bucket). Therefore, studies which mechanically mix carbon amendments with contaminated soil may over-estimate the short-term potential to reduce PCB bioavailability. Highlights: •Biochar and GAC reduced PCB uptake into plants and earthworms. •Biochar offered additional benefits, including increased plant and earthworm biomass. •BSAF reductions are greater when amendments are mechanically vs. manually mixed. •Mechanically mixing carbon amendments may over-estimate their remediation potential. -- In situ AC and biochar soil amendments perform equally well at reducing PCB uptake, however, laboratory-based mixing methods may exaggerate the sorptive capacities of both amendments

  5. Progresso da ferrugem e da cercosporiose do cafeeiro consorciado com grevílea, com ingazeiro e a pleno sol em Lavras - MG Progress of rust and coffee plant cercosporiose mixed with grevílea, with ingazeiro and in the full sunshine in Lavras - MG

    Directory of Open Access Journals (Sweden)

    Bruno Grandi Salgado

    2007-08-01

    Full Text Available Com o presente trabalho, objetivou-se avaliar a incidência da ferrugem e da cercosporiose do cafeeiro em diferentes sistemas de cultivo, agroflorestais e a pleno sol, através da curva de progresso dessas doenças. Utilizou-se o delineamento inteiramente casualizado, com três tratamentos e sete repetições. Os tratamentos foram compostos por cafeeiros consorciados com ingazeiro, cafeeiros consorciados com grevílea e cafeeiros cultivados convencionalmente a pleno sol. As avaliações foram realizadas mensalmente no período de abril de 2001 a março de 2003. Realizou-se o cálculo da área abaixo da curva de progresso da doença (AACPD, a qual foi submetida à análise de variância. Para a incidência da ferrugem do cafeeiro o consórcio cafeeiro x ingazeiro mostrou-se com maiores índices da doença, sendo que os tratamentos consórcio cafeeiro x grevílea e cafeeiro a pleno sol não diferiram entre si e apresentaram menores incidências da doença. Diminuição na luz solar direta e maior umidade podem ter favorecido a ferrugem no sistema cafeeiro x ingazeiro. Para a incidência de cercosporiose, os cafeeiros a pleno sol obtiveram maiores valores de incidência da doença, seguidos por cafeeiros x grevílea, e menores taxas da doença foram observadas no consórcio cafeeiros x ingazeiro. A incidência de radiação solar direta pode ter favorecido a maior incidência de cercosporiose nos cafeeiros a pleno sol.The present work aimed to evaluate the incidence of rust and coffee plant cercosporiose in different systems of agroforest cultivation and in the full sunshine through the progress curve of those diseases. The completely randomized design with three treatments and seven replicates was utilized. The treatments were made up of coffee plants mixed with ingazeiro, coffee plants mixed with grevílea and coffee plants cultivated conventionally in the full sunshine. The evaluations were performed monthly during the period of April 2001 to

  6. Marine biomass power plant using methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T.; Saito, H.; Amano, T.; Sugawara, H.; Seki, T.; Abe, T. [Technology Research Inst., Tokyo Gas Co. Ltd., Tokyo (Japan)

    2004-07-01

    This study presented an effective way to produce biogas from the large quantities of seaweed waste in Japan. A large-scale marine biomass pilot plant was built to produce biogas from marine biomass. Methane fermentation was the process used to produce biogas from Laminaria sp. The maximum treating capacity of the pilot plant is 1 ton of seaweed per day. The pilot plant includes a pretreatment facility, fermentation, biogas storage and power generation. The maximum methane yield from the biomass plant is 22 cubic ton-seaweed. The purified biogas has generated 10 kW of electricity and 23 kW of heat. The biogas was also mixed with natural gas for use in a gas engine generator. The engine operation remained stable despite changes in quantity and composition of the collected biogas caused by changes with the source of biomass and sea conditions. The thermal efficiency of the gas engine running on mixed biogas and natural gas was more than 10 per cent higher than an engine running on biogas fuel alone. 4 refs., 2 tabs., 3 figs.

  7. Study on the coal mixing ratio optimization for a power plant

    Science.gov (United States)

    Jin, Y. A.; Cheng, J. W.; Bai, Q.; Li, W. B.

    2017-12-01

    For coal-fired power plants, the application of blended coal combustion has been a great issue due to the shortage and rising prices of high-rank coal. This paper describes the optimization of blending methods between Xing'an lignite coal, Shaltala lignite coal, Ura lignite coal, and Inner Mongolia bituminous coal. The multi-objective decision-making method based on fuzzy mathematics was used to determine the optimal blending ratio to improve the power plant coal-fired economy.

  8. CFD simulation on reactor flow mixing phenomena

    International Nuclear Information System (INIS)

    Kwon, T.S.; Kim, K.H.

    2016-01-01

    A pre-test calculation for multi-dimensional flow mixing in a reactor core and downcomer has been studied using a CFD code. To study the effects of Reactor Coolant Pump (RCP) and core zone on the boron mixing behaviors in a lower downcomer and core inlet, a 1/5-scale CFD model of flow mixing test facility for the APR+ reference plant was simulated. The flow paths of the 1/5-scale model were scaled down by the linear scaling method. The aspect ratio (L/D) of all flow paths was preserved to 1. To preserve a dynamic similarity, the ratio of Euler number was also preserved to 1. A single phase water flow at low pressure and temperature conditions was considered in this calculation. The calculation shows that the asymmetric effect driven by RCPs shifted the high velocity field to the failed pump's flow zone. The borated water flow zone at the core inlet was also shifted to the failed RCP side. (author)

  9. Lightweight Brick by Carbon Ash from The Mixed Plastic Waste Treatment Plant

    Directory of Open Access Journals (Sweden)

    Chen Kuo-Wei

    2016-01-01

    Full Text Available This study was designed to investigate the mixed plastic waste from the production of light carbon ash bricks performance. The mixed waste plastic pyrolysis process generated waste - Carbon ash. After extrusion, a Lightweight brick was made by carbon ash, additive and Cement mortar. In general, the set compressive strength and insulation effect of lightweight bricks with carbon ash proportion for significant impact. The set water absorption and thermal conductivity of lightweight bricks with carbon ash proportion for significant impact. The set density of lightweight brick ameliorates with M3824 additive and CM3 cement mortar for significant impact. Under conditions of technology and economic, the results of this study as reference for market-oriented marketing and commercialization of production.

  10. Hanford Waste Vitrification Plant Clean Air Act permit application

    International Nuclear Information System (INIS)

    1990-04-01

    This document briefly describes the Hanford Site and provides a general overview of the Hanford Waste Vitrification Plant (HWVP). Other topics include sources of emissions, facility operating parameters, facility emissions, pollutant and radionuclide control technology and air quality. The HWVP will convert mixed wastes (high-activity radioactive and hazardous liquid wastes) to a solid vitrified form (borosilicate glass) for disposal. Mixed wastes pretreated in the Hanford Site B Plant will be pumped into double- shell tanks in the 200 East Area for interim storage. This pretreated mixed waste will be batch transferred from interim storage to the HWVP facility, where the waste will be concentrated by evaporation, treated with chemicals, and mixed with glass-forming materials. The mixture will then be continuously fed into an electrically heated glass melter. The molten glass will be poured into canisters that will be cooled, sealed, decontaminated, and stored until the vitrified product can be transferred to a geologic repository. 25 refs., 18 figs., 32 tabs

  11. The evolution of photochemical smog in a power plant plume

    Science.gov (United States)

    Luria, Menachem; Valente, Ralph J.; Tanner, Roger L.; Gillani, Noor V.; Imhoff, Robert E.; Mueller, Stephen F.; Olszyna, Kenneth J.; Meagher, James F. Present address: Aeronomy Laboratory, NOAA, 325 Broadway, Boulder CO 80303, USA.)

    The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study - Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west-northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50-60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O 3 that peaked at 120 ppbv at a short distance (15-25 km) downwind of Nashville. Ozone productivity (the ratio of excess O 3 to NO y and NO z) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism.

  12. The evolution of photochemical smog in a power plant plume

    International Nuclear Information System (INIS)

    Luria, M.; The Hebrew University, Jerusalem; Valente, R.J.; Tanner, R.L.; Imhoff, R.E.; Mueller, S.F.; Olszyna, K.J.; Meagher, J.F.; Gillani, N.V.; University of Alabama, Huntsville, AL

    1999-01-01

    The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study - Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west-northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50-60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O 3 that peaked at 120 ppbv at a short distance (15-25 km) downwind of Nashville. Ozone productivity (the ratio of excess O 3 to NO y and NO z ) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism. (author)

  13. Virtual power plant mid-term dispatch optimization

    International Nuclear Information System (INIS)

    Pandžić, Hrvoje; Kuzle, Igor; Capuder, Tomislav

    2013-01-01

    Highlights: ► Mid-term virtual power plant dispatching. ► Linear modeling. ► Mixed-integer linear programming applied to mid-term dispatch scheduling. ► Operation profit maximization combining bilateral contracts and the day-ahead market. -- Abstract: Wind power plants incur practically zero marginal costs during their operation. However, variable and uncertain nature of wind results in significant problems when trying to satisfy the contracted quantities of delivered electricity. For this reason, wind power plants and other non-dispatchable power sources are combined with dispatchable power sources forming a virtual power plant. This paper considers a weekly self-scheduling of a virtual power plant composed of intermittent renewable sources, storage system and a conventional power plant. On the one hand, the virtual power plant needs to fulfill its long-term bilateral contracts, while, on the other hand, it acts in the market trying to maximize its overall profit. The optimal dispatch problem is formulated as a mixed-integer linear programming model which maximizes the weekly virtual power plant profit subject to the long-term bilateral contracts and technical constraints. The self-scheduling procedure is based on stochastic programming. The uncertainty of the wind power and solar power generation is settled by using pumped hydro storage in order to provide flexible operation, as well as by having a conventional power plant as a backup. The efficiency of the proposed model is rendered through a realistic case study and analysis of the results is provided. Additionally, the impact of different storage capacities and turbine/pump capacities of pumped storage are analyzed.

  14. Deep soil mixing for reagent delivery and contaminant treatment

    International Nuclear Information System (INIS)

    Korte, N.; Gardner, F.G.; Cline, S.R.; West, O.R.

    1997-01-01

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy's Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd 3 ), there are few alternatives for soils of this type

  15. The effect of sludge water treatment plant residuals on the properties of compressed brick

    Science.gov (United States)

    Shamsudin, Shamrul-Mar; Shahidan, S.; Azmi, M. A. M.; Ghaffar, S. A.; Ghani, M. B. Abdul; Saiful Bahari, N. A. A.; Zuki, S. S. M.

    2017-11-01

    The focus of this study is on the production of compressed bricks which contains sludge water treatment plant (SWTP) residuals obtained from SAJ. The main objective of this study is to utilise and incorporate discarded material (SWTP) in the form of residual solution to produce compressed bricks. This serves as one of the recycling efforts to conserve the environment. This study determined the optimum mix based on a mix ratio of 1:2:4 (cement: sand: soil) in the production of compressed bricks where 5 different mixes were investigated i. e. 0%, 5%, 10%, 20%, and 30% of water treatment plant residue solution. The production of the compressed bricks is in accordance with the Malaysian Standard MS 7.6: 1972 and British Standard BS 3921: 1985 - Compressive Strength & Water Absorption. After being moulded and air dried, the cured bricks were subjected to compression tests and water absorption tests. Based on the tests conducted, it was found that 20% of water treatment plant residue solution which is equivalent to 50% of soil content replacement with a mix composition of [10: cement] [20: sand] [20: soil] [20: water treatment plant residue solution] is the optimum mix. It was also observed that the bricks containing SWTP residuals were lighter in weight compared to the control specimens

  16. Avaliação da eficiência de herbicidas no controle de plantas daninhas em alfafa Decreasing of weed plants using herbicides and herbicides mix in alfalfa crop

    Directory of Open Access Journals (Sweden)

    Wilson da Silva

    2004-08-01

    Full Text Available Objetivou-se neste trabalho avaliar a seletividade e a eficiência de herbicidas no controle de plantas daninhas na cultura da alfafa. Foram desenvolvidos dois experimentos em Anápolis, GO. No primeiro, avaliaram-se oito herbicidas (imazethapyr, MSMA, fomesafen, bentazon, chlorimuron-ethyl, imazamox aplicados em pós-emergência da alfafa, e no segundo, seis misturas de herbicidas [(diuron + MSMA, (diuron + MSMA, (diuron + paraquat, (diuron + paraquat] aplicados um dia após o corte da alfafa. Em ambos os experimentos, foram incluídas duas testemunhas (capinada e sem capina, sendo os tratamentos distribuídos em blocos ao acaso com quatro repetições. Os herbicidas como imazethapyr, MSMA, fomesafen, bentazon, chlorimuron-ethyl e imazamox foram seletivos à cultura da alfafa e eficientes no controle de plantas daninhas. As misturas dos herbicidas (diuron + MSMA e (diuron + paraquat aplicados logo após o corte da alfafa causaram danos às folhas e aos caules remanescentes. As brotações, todavia, surgiram isentas de toxicidade, apresentando crescimento e desenvolvimento normais. Essas misturas promoveram eficiente controle de plantas daninhas, e não afetaram o acúmulo de biomassa seca e altura de plantas em relação à testemunha capinada. O não-controle das plantas daninhas reduziu a produção de biomassa seca e a altura das plantas de alfafa em 74,5% e 42,8%, respectivamente.The objectives of this study were to evaluate the efficiency and selectivity of herbicides on the weed plants control at the alfalfa crop. Two experiments were carried out at the Experimental Station of Agenciarural, located in Anápolis, GO. In the first experiment it was evaluated eight herbicides (imazethapyr, MSMA, fomesafen, bentazon, chlorimuron-ethyl and imazamox post emergency and in the second experiment six different mixed of herbicides [(diuron + MSMA, (diuron + MSMA, (diuron + paraquat, (diuron + paraquat] applied one day after the alfalfa harvesting

  17. Next power generation-mix for Bangladesh: Outlook and policy priorities

    International Nuclear Information System (INIS)

    Ahamad, Mazbahul; Tanin, Fahian

    2013-01-01

    Bangladesh's strategy for economic development relies heavily on its energy and power policy, searching for an efficient implementation of planned power generation-mix of gas, oil, coal and hydro. At present, the contribution of gas is around 83% of total power generation, which is much higher than other traditional fuel sources. To reduce this single-source dependency on gas, Bangladesh needs to initiate alternative option to sustain its mid-term power generation-mix in addition to achieve its long-term energy security. Government of Bangladesh has already initiated a new master plan for the development of power generation under fuel-diversification scenario. In this view, local coal production and imported coal would assist the power planners to reduce the sole dependency on gas-driven power plants. In addition, cross-border hydropower import from Bhutan, Myanmar and Nepal would also be a vital policy imperative to maintain the country's long-term energy security. Nonetheless, adding extra power to production side is certainly essential, demand side management through efficient energy use and energy conservation could also be of assistance to the release the existing crisis to a greater extent. - Highlights: • In 2010, the contribution of gas in power generation is about 88% in Bangladesh. • Installed capacity (4.29%) and actual power generation (3.75%) from coal is very low. • Local coal-based power plants would be an alternative for next generation-mix. • Cross-border hydropower trade with Bhutan, Myanmar and Nepal would be another alternative. • Public-private partnership (PPP) could solve financing constraints to install new plants

  18. Hanford Waste Vitrification Plant Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Facility currently stores mixed waste, resulting from various processing operations, in underground storage tanks. The Hanford Waste Vitrification Plant will be constructed and operated to process the high-activity fraction of mixed waste stored in these underground tanks. The Hanford Waste Vitrification Plant will solidify pretreated tank waste into a glass product that will be packaged for disposal in a national repository. This Vitrification Plant Dangerous Waste Permit Application, Revision 2, consists of both a Part A and a Part B permit application. An explanation of the Part A revisions, including Revision 4 submitted with this application, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987)

  19. Influence of fly dust from coking plants on some biological processes of plants

    Energy Technology Data Exchange (ETDEWEB)

    Masek, V

    1972-03-01

    The influence of three typical samples of fly dust from a coking plant on enzymatic reactions, photosynthesis, chlorophyll concentration in leaves of bean plants was studied. The hydrolysis of starch with amylases and of the albumen with pepsin at 37 C and the inversion of sacharosis by invertase in a buffered environment were also examined. None of the three dust samples had a significant effect on enzymatic reactions. Applying the dust samples to the leaves of young bean plants reduced the intensity of photosynthesis and chlorophyll concentration. In aqueous extracts, the dust samples liberated only small quantities of nutrients, plants which were grown in a dust suspension showed no increase of dry substance and growth rate. A stimulating effect of the dust samples on root growth was determined. Mixing the dust samples with the soil influenced the accessibility of water to plants. 17 references, 6 figures, 9 tables.

  20. Future energy mix - also without nuclear power?

    International Nuclear Information System (INIS)

    George, C.

    2005-01-01

    The considerable rises in the price of oil in the months of October and November 2004 assigned topical importance to the 'Future Energy Mix - also without Nuclear Power?' meeting of young nuclear engineers and students with experts from politics, industry, and research at the YOUNG GENERATION event organized at the Biblis nuclear power station on November 4-6, 2004. Specialized presentations were made about these topics: The Biblis Nuclear Power Plant Site. The Effects of Deregulation on the Electricity Market Emission Trading - a Combination of Economy and Ecology? Energy Mix for the 21 st Century. The event was completed by a round-table discussion among leading experts, and a presentation of perspectives in university education in areas encompassing power technology. (orig.)

  1. Introduction of mixed oxide fuel elements in the belgian cores

    International Nuclear Information System (INIS)

    Charlier, A.F.; Hollasky, N.A.

    1994-01-01

    The important amount of plutonium recovered from the reprocessing of spent fuel on the one hand, the national and international experience of the use of mixed oxide UO 2 -PuO 2 fuel in power reactors on the other hand, have led Belgian utilities to decide the introduction of Mixed-Oxide fuel in Doel unit 3 and Tihange unit 2 cores. The 'MOX' project has shown that it was possible without reducing safety or requiring modifications of the plant equipment. It has been approved by the Belgian 'Nuclear Safety Commission'. (authors). 1 tab., 2 figs

  2. Fluid mixing in reactor containment

    International Nuclear Information System (INIS)

    Deoras M Prabhudharwadkar; Kannan N Iyer

    2005-01-01

    Full text of publication follows: Hydrogen release and distribution in nuclear power plant containment is an important safety issue. Selection of a proper turbulence model is important for accurate estimation of the mixing process. The selection of turbulence model is dictated by the best compromise between accuracy and computational efforts. For this, three different turbulence models, viz. Standard k-ε, RNG k-ε and Reynolds Stress Model, based on Reynolds averaged Navier Stokes equations (RANS) approach, were used. The computations were done using the CFD code FLUENT, which is based on the control volume methodology. The computational results were compared with the experimental results of HYMIS test facility, where helium was used to simulate hydrogen. The processes of helium plume rise, multiple plume merging, distribution and mixing were studied. Based on these computations, a simple analytical/empirical zone based model was formulated for the same problem, which predicted the helium concentration reasonably accurately and quickly. (authors)

  3. Generation Mix Study Focusing on Nuclear Power by Practical Peak Forecast

    International Nuclear Information System (INIS)

    Shin, Jung Ho; Roh, Myung Sub

    2013-01-01

    The excessive underestimation can lead to a range of problem; expansion of LNG plant requiring short construction period, the following increase of electricity price, low reserve margin and inefficient configuration of power source. With regard to nuclear power, the share of the stable and economic base load plant, nuclear power, can reduce under the optimum level. Amongst varied factors which contribute to the underestimate, immoderate target for demand side management (DSM) including double deduction of the constraint amount by DSM from peak demand forecast is one of the causes. The hypothesis in this study is that the better optimum generation mix including the adequate share of nuclear power can be obtained under the condition of the peak demand forecast without deduction of DSM target because this forecast is closer to the actual peak demand. In this study, the hypothesis is verified with comparison between peak demand forecast before (or after) DSM target application and the actual peak demand in the 3 rd through 5 th BPE from 2006 to 2010. Furthermore, this research compares and analyzes several generation mix in 2027 focusing on the nuclear power by a few conditions using the WASP-IV program on the basis of the 6 th BPE in 2013. According to the comparative analysis on the peak demand forecast and actual peak demand from 2006 to 2010, the peak demand forecasts without the deduction of the DSM target is closer to the actual peak demand than the peak demand forecasts considering the DSM target in the 3 th , 4 th , 5 th entirely. In addition, the generation mix until 2027 is examined by the WASP-IV. As a result of the program run, when considering the peak demand forecast without DSM reflection, since the base load plants including nuclear power take up adequate proportion, stable and economic supply of electricity can be achieved. On the contrary, in case of planning based on the peak demand forecast with DSM reflected and then compensating the shortage by

  4. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to a combination of plant sterols and Cholesternorm®mix and reduction of blood LDL-cholesterol concentrations pursuant to Article 14 of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following an application from Health Concern B.V., submitted for authorisation of a claim pursuant to Article 14 of Regulation (EC) No 1924/2006 via the Competent Authority of the Netherlands, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the sci......Following an application from Health Concern B.V., submitted for authorisation of a claim pursuant to Article 14 of Regulation (EC) No 1924/2006 via the Competent Authority of the Netherlands, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion...... on the scientific substantiation of a health claim related to a combination of plant sterols and Cholesternorm®mix and reduction of blood LDL-cholesterol concentrations. The food which is the subject of the health claim is a combination of plant sterols (free and in esterified form) and Cholesternorm......®mix and provides at the levels of the proposed conditions of use around 0.52 g plant sterols, 0.95 g linoleic acid, 0.13 g alpha-linolenic acid and 0.13 g pectins per day. The combination of plant sterols and Cholesternorm®mix, which is the subject of the claim, is sufficiently characterised in relation...

  5. Encapsulation of ILW raffinate in the Dounreay cementation plant

    International Nuclear Information System (INIS)

    Sinclair, G.F.

    1998-01-01

    The Dounreay Cementation Plant has been designed and constructed to encapsulate the first cycle liquid raffinate arising from the reprocessing of irradiated Research Reactor fuel into a cementitious matrix. The acidic liquid waste is conditioned with sodium hydroxide prior to mixing with the cement powders (a 9:1 ratio of Blast Furnace Slag / Ordinary Portland Cement with 5% Lime). The complete cement mixing process is performed within the 500-liter drum, which provides the waste package primary containment. The plant has recently been commissioned and has commenced routine operation, processing stocks of existing raffinate that has been stored at Dounreay for up to 30 years. The waste loading per drum has been optimised within the constraints of the chemical composition of the raffinate, with an expected plant throughput of 2.5 m 3 /week. (author)

  6. Mixed waste: An alternative solution. The utility perspective

    International Nuclear Information System (INIS)

    Seizert, R.D.

    1988-01-01

    The issue of mixed waste is one of significant interest to the utility industry. The interest is focused on the current regulatory scheme of dual regulation. A fundamental concern of the commercial nuclear utilities resulting from dual regulation is that there are currently no facilities in the US to dispose of mixed low-level radioactive and hazardous waste. The lack of available sites renders mixed waste an orphan, requiring generators of such material to store the waste on-site. This in turn causes commercial nuclear power plants to be subjected to the full gamut of Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) regulation in addition to the existing Nuclear Regulatory Commission (NRC) regulations. Superimposing dual regulatory schemes will have impacts which extend far beyond the mere management of mixed waste. Certainly the burdens, complexities and costs of complying with the overlapping regulatory schemes will not have a commensurate increase in protection from the real risks being addressed. For these reasons, the commercial nuclear utility industry is working toward an alternative solution which will protect the public health and the environment from all hazards of mixed waste and will minimize the impacts on both the regulators and the regulated community

  7. Hydrogen storage for mixed wind-nuclear power plants in the context of a hydrogen economy

    International Nuclear Information System (INIS)

    Taljan, Gregor; Fowler, Michael; Canizares, Claudio; Verbic, Gregor

    2008-01-01

    A novel methodology for the economic evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new aspects such as residual heat and oxygen utilization is applied in this work. This analysis is completed in the context of a hydrogen economy and competitive electricity markets. The simulation of the operation of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity, the selling of excess hydrogen and oxygen, and the selling of heat are optimized to maximize profit to the energy producer. The simulation is performed in two phases: in a pre-dispatch phase, the system model is optimized to obtain optimal hydrogen charge levels for the given operational horizons. In the second phase, a real-time dispatch is carried out on an hourly basis to optimize the operation of the system as to maximize profits, following the hydrogen storage levels of the pre-dispatch phase. Based on the operation planning and dispatch results, an economic evaluation is performed to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return and net present values for a realistic scenario. The results of the present studies demonstrate the feasibility of a hydrogen storage and production system with oxygen and heat utilization for existent nuclear and wind power generation facilities. (author)

  8. Composting plant of vegetables wastes and sewage sludges in Castesdefells. Plant de compostaje de restos de poda y lodos de depuradora en Castelldefells

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Castelldefells Municipality (Catalonia, Spain) has set up a recycling plant for vegetable wastes mixed with sewage sludge to obtain compost. The plant treats 48.000 m''3/y. of vegetable wastes, and receive 8.000 m''3/y. of sewage sludge. (Author)

  9. Investigation of bioresistant dry building mixes modified by carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Korolev Evgeniy Valer'evich

    2015-04-01

    Full Text Available Dry construction mixes are today a product of high technologies. Depending on the purpose and requirements to the properties it is easy to produce dry construction mixes with different compositions and operating indicators in plant conditions using the necessary modifying additives. Cement, gypsum and other mineral binders are used in the construction mixes. Different types of cement are more heavily used in dry construction mixes. Such dry mixes are believed to be more effective materials comparing to traditional cement-sandy solutions of centralized preparation. The authors present the results of the investigations on obtaining biocidal cement-sand compositions. It was established, that introduction of sodium sulfate into the composition provides obtaining the materials with funginert and fungicide properties. The strength properties of the mixes modified by carbon nanotubes and biocide additive were investigated by mathematical planning methods. The results of the investigations showed that the modification of cement stone structure by carbon nanotubes positively influences their strength and technological properties. Nanomodifying of construction composites by introducing carbon nanotubes may be effectively used at different stages of structure formation of a construction material.

  10. Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species.

    Science.gov (United States)

    Lee, Insook; Baek, Kyunghwa; Kim, Hyunhee; Kim, Sunghyun; Kim, Jaisoo; Kwon, Youngseok; Chang, Yoontoung; Bae, Bumhan

    2007-11-01

    We investigated the germination, growth rates and uptake of contaminants of four plant species, barnyard grass (Echinochloa crusgalli), sunflower (Helianthus annuus), Indian mallow (Abutilon avicennae) and Indian jointvetch (Aeschynomene indica), grown in soil contaminated with cadmium (Cd), lead (Pb) and 2,4,6-trinitrotoluene (TNT). These contaminants are typically found at shooting ranges. Experiments were carried out over 180 days using both single plant cultures and cultures containing an equal mix of the 4 plant species. Germination rates differed among the species in single culture (92% for H. annuus, 84% for E. crusgalli, 48% for A. avicennae and 38% Ae. indica). In the 4-plant mix culture, phytoremediation for the removal of heavy metals and TNT from contaminated soils should use a single plant species rather than a mixture of several plants.

  11. Desalination demonstration plant using nuclear heat

    International Nuclear Information System (INIS)

    Hanra, M.S.; Misra, B.M.

    1998-01-01

    Most of the desalination plants which are operating throughout the world utilize the energy from thermal power station which has the main disadvantage of polluting the environment due to combustion of fossil fuel and with the inevitable rise in prices of fossil fuel, nuclear driven desalination plants will become more economical. So it is proposed to set up nuclear desalination demonstration plant at the location of Madras Atomic Power Station (MAPS), Kalpakkam. The desalination plant will be of a capacity 6300 m 3 /day and based on both Multi Stage Flash (MSF) and Sea Water Reverse Osmosis (SWRO) processes. The MSF plant with performance ratio of 9 will produce water total dissolved solids (TDS-25 ppm) at a rate of 4500 m 3 /day from seawater of 35000 ppm. A part of this water namely 1000 m 3 /day will be used as Demineralised (DM) water after passing it through a mixed bed polishing unit. The remaining 3500 m 3 /day water will be mixed with 1800 m 3 /day water produced from the SWRO plant of TDS of 400 ppm and the same be supplied to industrial/municipal use. The sea water required for MSF and SWRO plants will be drawn from the intake/outfall system of MAPS which will also supply the required electric power pumping. There will be net 4 MW loss of power of MAPS namely 3 MW for MSF and 1 MW for SWRO desalination plants. The salient features of the project as well as the technical details of the both MSF and SWRO processes and its present status are given in this paper. It also contains comparative cost parameters of water produced by both processes. (author)

  12. Mixing of Process Heels, Process Solutions and Recycle Streams: Small-Scale Simulant

    International Nuclear Information System (INIS)

    Kaplan, D.I.

    2001-01-01

    The overall objective of this small-scale simulant mixing study was to identify the processes within the Hanford Site River Protection Project - Waste Treatment Plant (RPP-WTP) that may generate precipitates and to identify the types of precipitates formed. This information can be used to identify where mixtures of various solutions will cause precipitation of solids, potentially causing operational problems such as fouling equipment or increasing the amount of High Level Waste glass produced. Having this information will help guide protocols for flushing or draining tanks, mixing internal recycle streams, and mixing waste tank supernates. This report contains the discussion and thermodynamic chemical speciation modeling of the raw data

  13. A novel approach of anaerobic co-digestion between organic fraction of food waste and waste sludge from municipal wastewater treatment plant: Effect of mixing ratio

    Science.gov (United States)

    Nga, Dinh Thi; Ngoc, Tran Thi Minh; Van Ty, Nguyen; Thuan, Van Tan

    2017-09-01

    The aim of this study was to investigate the effect of mixing ratio of co-anaerobic digestion between dewatered waste sludge from municipal wastewater treatment plant (DS) and organic fraction of food waste (FW). The experiment was carried out in 3L reactors for 16 days at ambient temperature. Four mixing ratios of DW and FW was investigated including 100 % DS : 0 % FW (Run S100); 75% DS : 25 % FW (Run S75); 50% DS : 50% FW (Run S50); and 25% DS : 75% FW (Run S25) in term of VS concentration. As a result, the Run S50 achieved best performance among the four funs indicated in biogas accumulation of 32.48 L biogas and methane yield of 358.9 400ml CH4/g VS removal after 16 days operation at ambient temperature. Biogas accumulation of Run S25 was higher than that of Run S75. Run S100 produced the lowest of biogas of all runs. It is concluded that co-anaerobic digestion of different organic sources could enhance the performance of methane fermentation.

  14. Optimal installation program for reprocessing plants

    International Nuclear Information System (INIS)

    Kubokawa, Toshihiko; Kiyose, Ryohei

    1976-01-01

    Optimization of the program of installation of reprocessing plants is mathematically formulated as problem of mixed integer programming, which is numerically solved by the branch-and-bound method. A new concept of quasi-penalty is used to obviate the difficulties associated with dual degeneracy. The finiteness of the useful life of the plant is also taken into consideration. It is shown that an analogous formulation is possible for the cases in which the demand forecasts and expected plant lives cannot be predicted with certainty. The scale of the problem is found to have kN binary variables, (k+2)N continuous variables, and (k+3)N constraint conditions, where k is the number of intervals used in the piece-wise linear approximation of a nonlinear objective function, and N the overall duration of the period covered by the installation program. Calculations are made for N=24 yr and k=3, with the assumption that the plant life is 15 yr, the plant scale factor 0.5, and the maximum plant capacity 900 (t/yr). The results are calculated and discussed for four different demand forecasts. The difference of net profit between optimal and non-optimal installation programs is found to be in the range of 50 -- 100 M$. The pay-off matrix is calculated, and the optimal choice of action when the demand cannot be forecast with certainty is determined by applying Bayes' theory. The optimal installation program under such conditions of uncertainty is obtained also with a stochastic mixed integer programming model. (auth.)

  15. Experimental observations of thermal mixing characteristics in T-junction piping

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei-Shiue, E-mail: chenms@mx.nthu.edu.tw; Hsieh, Huai-En; Ferng, Yuh-Ming; Pei, Bau-Shi

    2014-09-15

    Highlights: • The effects of flow velocity ratio on thermal mixing phenomenon are the major parameters. • The flow velocity ratio (V{sub b}/V{sub m}) is greater than 13.6, reverse flow occurs. • The flow velocity ratio is greater than 13.7, a “good” mixing quality is achieved. - Abstract: The T-junction piping is frequently used in many industrial applications, including the nuclear plants. For a pressurized water reactor (PWR), the emergency core cooling systems (ECCS) inject cold water into the primary loops if a loss-of-coolant accident (LOCA) happens. Inappropriate mixing of the two streams with significant temperature different at a junction may cause strong thermal stresses to the downstream structures in the reactor vessel. The downstream structures may be damaged. This study is an experimental investigation into the thermal mixing effect occurring at a T-junction. A small-scale test facility was established to observe the mixing effect of flows with different temperature. Thermal mixing effect with different flow rates in the main and branch pipes are investigated by measuring the temperature distribution along the main pipe. In test condition I, we found that lower main pipe flow rate leads to better mixing effect with constant branch pipe flow rate. And in conditions II and III, higher injection flow velocity would enhance the turbulence effect which results in better thermal mixing. The results will be useful for applications with mixing fluids with different temperature.

  16. New applications of statistical tools in plant pathology.

    Science.gov (United States)

    Garrett, K A; Madden, L V; Hughes, G; Pfender, W F

    2004-09-01

    ABSTRACT The series of papers introduced by this one address a range of statistical applications in plant pathology, including survival analysis, nonparametric analysis of disease associations, multivariate analyses, neural networks, meta-analysis, and Bayesian statistics. Here we present an overview of additional applications of statistics in plant pathology. An analysis of variance based on the assumption of normally distributed responses with equal variances has been a standard approach in biology for decades. Advances in statistical theory and computation now make it convenient to appropriately deal with discrete responses using generalized linear models, with adjustments for overdispersion as needed. New nonparametric approaches are available for analysis of ordinal data such as disease ratings. Many experiments require the use of models with fixed and random effects for data analysis. New or expanded computing packages, such as SAS PROC MIXED, coupled with extensive advances in statistical theory, allow for appropriate analyses of normally distributed data using linear mixed models, and discrete data with generalized linear mixed models. Decision theory offers a framework in plant pathology for contexts such as the decision about whether to apply or withhold a treatment. Model selection can be performed using Akaike's information criterion. Plant pathologists studying pathogens at the population level have traditionally been the main consumers of statistical approaches in plant pathology, but new technologies such as microarrays supply estimates of gene expression for thousands of genes simultaneously and present challenges for statistical analysis. Applications to the study of the landscape of the field and of the genome share the risk of pseudoreplication, the problem of determining the appropriate scale of the experimental unit and of obtaining sufficient replication at that scale.

  17. Mixed U/Pu oxide fabrication facility for gel-sphere-pac fuel

    International Nuclear Information System (INIS)

    1978-09-01

    This paper describes a conceptual plant which uses the gel-sphere-pac process to fabricate mixed oxide (MOX) fuel and covers (1) fabrication of co-processed MOX fuel and (2) fabrication of co-processed spiked MOX fuel, using 60 Co. The report describes: the fuel fabrication process and plant layout, including scrap and waste processing; and maintenance safety and ventilation measures. A description of the conversion of U and Pu nitrate using a gel sphere process is given in Appendix A

  18. Investing in biogas: Timing, technological choice and the value of flexibility from input mix

    International Nuclear Information System (INIS)

    Di Corato, Luca; Moretto, Michele

    2011-01-01

    In a stochastic dynamic frame, we study the technology choice problem of a continuous co-digestion biogas plant where input factors are substitutes but need to be mixed together to provide output. Given any initial rule for the composition of the feedstock, we consider the possibility of revising it if economic circumstances make it profitable. Flexibility in the mix is an advantage under randomly fluctuating input costs and comes at a higher investment cost. We show that the degree of flexibility in the productive technology installed depends on the value of the option to profitably re-arrange the input mix. Such option adds value to the project in that it provides a device for hedging against fluctuations in the input relative convenience. Accounting for such value we discuss the trade-off between investment timing and profit smoothing flexibility. - Research highlights: ► We study the technology choice problem of a continuous co-digestion biogas plant where input factors are substitutes but need to be mixed together to provide output. ► We show that the degree of flexibility in the productive technology installed depends on the value of the option to profitably re-arrange the input mix. ► Such option adds value to the project in that it provides a device for hedging against fluctuations in the input relative convenience.

  19. Mixed waste disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dickman, P.T.; Kendall, E.W.

    1987-01-01

    In 1984, a law suit brought against DOE resulted in the requirement that DOE be subject to regulation by the state and US Environmental Protection Agency (EPA) for all hazardous wastes, including mixed wastes. Therefore, all DOE facilities generating, storing, treating, or disposing of mixed wastes will be regulated under the Resource Conservation and Recovery Act (RCTA). In FY 1985, DOE Headquarters requested DOE low-level waste (LLW) sites to apply for a RCRA Part B Permit to operate radioactive mixed waste facilities. An application for the Nevada Test Site (NTS) was prepared and submitted to the EPA, Region IX in November 1985 for review and approval. At that time, the state of Nevada had not yet received authorization for hazardous wastes nor had they applied for regulatory authority for mixed wastes. In October 1986, DOE Nevada Operations Office was informed by the Rocky Flats Plant that some past waste shipments to NTS contained trace quantities of hazardous substances. Under Colorado law, these wastes are defined as mixed. A DOE Headquarters task force was convened by the Under Secretary to investigate the situation. The task force concluded that DOE has a high priority need to develop a permitted mixed waste site and that DOE Nevada Operations Office should develop a fast track project to obtain this site and all necessary permits. The status and issues to be resolved on the permit for a mixed waste site are discussed

  20. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Abzazou, Tarik; Araujo, Rosa M.; Auset, María; Salvadó, Humbert

    2016-01-01

    A moving bead biofilm reactor (MBBR) pilot plant was implemented as a partial nitrification process for pre-treatment of ammonium-rich liquors (676 ± 195 mg L"−"1), and studied for 479 days under variations in hydraulic retention time. The main purpose of this work, was the study of dynamics abundance of total bacteria and single-cells nitrifying bacteria belonging to ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in biofilms and mixed liquor of the plant. The microbial monitoring was successfully achieved using fluorescence in situ hybridization combined with flocs disaggregation protocol as a useful microbial monitoring tool. A partial nitrification process with a N-NH_4"+ removal rate of about 38.6 ± 14.8% was successfully achieved at 211 days after start-up, with a clear dominance of AOB, which accounted for 11.3 ± 17.0% of total bacterial cells compared with only 2.1 ± 4.0% of NOB. The effluent obtained was subsequently supplied to an Anammox reactor for complete ammonium treatment. - Highlights: • Partial nitrification process in a MBBR fed with ammonium-rich liquor was achieved. • The operational key parameters were the HRT and temperature. • DAPI and FISH were useful to monitoring microbial composition of MBBR pilot plant. • The AOB were the dominant nitrifying bacteria, presenting 11.3% of total bacteria. • A significant correlation (R = 0.68) between AOB and ammonia removal was found.

  1. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Abzazou, Tarik, E-mail: tabzazou@ub.edu [Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain); Araujo, Rosa M., E-mail: raraujo@ub.edu [Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain); Auset, María, E-mail: maria.auset.vallejo@acciona.com [ACCIONA AGUA, S.A., Av de les Garrigues 22, El Prat de Llobregat, 08820 Barcelona (Spain); Salvadó, Humbert, E-mail: hsalvado@ub.edu [Department of Animal Biology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain)

    2016-01-15

    A moving bead biofilm reactor (MBBR) pilot plant was implemented as a partial nitrification process for pre-treatment of ammonium-rich liquors (676 ± 195 mg L{sup −1}), and studied for 479 days under variations in hydraulic retention time. The main purpose of this work, was the study of dynamics abundance of total bacteria and single-cells nitrifying bacteria belonging to ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in biofilms and mixed liquor of the plant. The microbial monitoring was successfully achieved using fluorescence in situ hybridization combined with flocs disaggregation protocol as a useful microbial monitoring tool. A partial nitrification process with a N-NH{sub 4}{sup +} removal rate of about 38.6 ± 14.8% was successfully achieved at 211 days after start-up, with a clear dominance of AOB, which accounted for 11.3 ± 17.0% of total bacterial cells compared with only 2.1 ± 4.0% of NOB. The effluent obtained was subsequently supplied to an Anammox reactor for complete ammonium treatment. - Highlights: • Partial nitrification process in a MBBR fed with ammonium-rich liquor was achieved. • The operational key parameters were the HRT and temperature. • DAPI and FISH were useful to monitoring microbial composition of MBBR pilot plant. • The AOB were the dominant nitrifying bacteria, presenting 11.3% of total bacteria. • A significant correlation (R = 0.68) between AOB and ammonia removal was found.

  2. High productivity of wheat intercropped with maize is associated with plant architectural responses

    NARCIS (Netherlands)

    Zhu, J.; Werf, van der W.; Vos, J.; Putten, van der P.E.L.; Evers, J.B.

    2016-01-01

    Mixed cultivation of crops often results in increased production per unit land area, but the underlying mechanisms are poorly understood. Plants in intercrops grow differently from plants in single crops; however, no study has shown the association between plant plastic responses and the yield

  3. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina

    International Nuclear Information System (INIS)

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE's mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company

  4. Mixing ratio sensor of alcohol mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Shigeru; Matsubara, Yoshihiro

    1987-08-07

    In order to improve combustion efficiency of an internal combustion engine using gasoline-alcohol mixed fuel and to reduce harmful substance in its exhaust gas, it is necessary to control strictly the air-fuel ratio to be supplied and the ignition timing and change the condition of control depending upon the mixing ratio of the mixed fuel. In order to detect the mixing ratio of the mixed fuel, the above mixing ratio has so far been detected by casting a ray of light to the mixed fuel and utilizing a change of critical angle associated with the change of the composition of the fluid of the mixed fuel. However, in case when a light emitting diode is used for the light source above, two kinds of sensors are further needed. Concerning the two kinds of sensors above, this invention offers a mixing ratio sensor for the alcohol mixed fuel which can abolish a temperature sensor to detect the environmental temperature by making a single compensatory light receiving element deal with the compensation of the amount of light emission of the light emitting element due to the temperature change and the compensation of the critical angle caused by the temperature change. (6 figs)

  5. Mixed Cropping of Legumes and Maize by the Use of Urea

    OpenAIRE

    Esmaeil Alibakhshi; Mohammad Mirzakhani

    2016-01-01

    To study the effect of nitrogenous fertilizers and mixed cropping of legumes and maize on its grain yield and yield component of corn in Arak, an experiment was carried at the Agricultural Research Center of Markazi Province in 2013. A factorial experiment based on randomized complete block design with three replications was performed. Treatments were four levels of urea (N0= control, N1= 75 kg.ha-1, N2= 150 kg.ha-1, N3= 225 kg.ha-1) and mixed cropping with four levels (S1= planting corn, S2=...

  6. The impact of plant chemical diversity on plant-herbivore interactions at the community level.

    Science.gov (United States)

    Salazar, Diego; Jaramillo, Alejandra; Marquis, Robert J

    2016-08-01

    Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants.

  7. Short-Chain Chitin Oligomers: Promoters of Plant Growth

    Directory of Open Access Journals (Sweden)

    Alexander J. Winkler

    2017-02-01

    Full Text Available Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL enriched to 92% with dimers (2mer, trimers (3mer and tetramers (4mer was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%, radicle length (25% and total carbon and nitrogen content (6% and 8%, respectively. Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.

  8. Numerical methods for the prediction of thermal fatigue due to turbulent mixing

    International Nuclear Information System (INIS)

    Hannink, M.H.C.; Blom, F.J.

    2011-01-01

    Research highlights: → Thermal fatigue due to turbulent mixing is caused by moving temperature spots on the pipe wall. → Passing temperature spots cause temperature fluctuations of sinusoidal nature. → Input parameters for a sinusoidal model can be obtained by linking it with a coupled CFD-FEM model. → Overconservatism of the sinusoidal method can be reduced, having more knowledge on thermal loads. - Abstract: Turbulent mixing of hot and cold flows is one of the possible causes of thermal fatigue in piping systems. Especially in primary pipework of nuclear power plants this is an important, safety related issue. Since the frequencies of the involved temperature fluctuations are generally too high to be detected well by common plant instrumentation, accurate numerical simulations are indispensable for a proper fatigue assessment. In this paper, a link is made between two such numerical methods: a coupled CFD-FEM model and a sinusoidal model. By linking these methods, more insight is obtained in the physical phenomenon causing thermal fatigue due to turbulent mixing. Furthermore, useful knowledge is acquired on the determination of thermal loading parameters, essential for reducing overconservatism, as currently present in simplified fatigue assessment methods.

  9. Characterization of vertical mixing in oscillatory vegetated flows

    Science.gov (United States)

    Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.

    2016-02-01

    Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy

  10. Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers.

    Science.gov (United States)

    Shiojiri, Kaori; Karban, Richard

    2006-08-01

    Plants progress through a series of distinct stages during development, although the role of plant ontogeny in their defenses against herbivores is poorly understood. Recent work indicates that many plants activate systemic induced resistance after herbivore attack, although the relationship between resistance and ontogeny has not been a focus of this work. In addition, for sagebrush and a few other species, individuals near neighbors that experience simulated herbivory become more resistant to subsequent attack. Volatile, airborne cues are required for both systemic induced resistance among branches and for communication among individuals. We conducted experiments in stands of sagebrush of mixed ages to determine effects of plant age on volatile signaling between branches and individuals. Young and old control plants did not differ in levels of chewing damage that they experienced. Systemic induced resistance among branches was only observed for young plants. Young plants showed strong evidence of systemic resistance only if airflow was permitted among branches; plants with only vascular connections showed no systemic resistance. We also found evidence for volatile communication between individuals. For airborne communication, young plants were more effective emitters of cues as well as more responsive receivers of volatile cues.

  11. Evaluation of recycled hot mix asphalt concrete on Route 220 : final report.

    Science.gov (United States)

    1985-01-01

    This report describes the performance of an approximately 8-mi section of roadway on which the rod two layers of asphalt concrete were milled, recycled through a conventional asphalt batch plant, and relaid. The recycled mix consisted of about 40% re...

  12. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    Science.gov (United States)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  13. Floral contrivances and specialised pollination mechanism strongly influence mixed mating in Wrightia tomentosa (Apocynaceae).

    Science.gov (United States)

    Barman, C; Singh, V K; Das, S; Tandon, R

    2018-05-01

    Reproductive success of a plant species is largely influenced by the outcome of mating pattern in a population. It is believed that a significantly larger proportion of animal-pollinated plants have evolved a mixed-mating strategy, the extent of which may vary among species. It is thus pertinent to investigate the key contributors to mating success, especially to identify the reproductive constraints in depauperate populations of threatened plant species. We examined the contribution of floral architecture, pollination mechanism and breeding system on the extent of outcrossing rate in a near-threatened tree species, Wrightia tomentosa. The breeding system was ascertained from controlled pollination experiments. In order to determine outcrossing rate, 60 open-pollinated progeny were analysed using an AFLP markers. Although the trees are self-compatible, herkogamy and compartmentalisation of pollen and nectar in different chambers of the floral tube effectively prevent spontaneous autogamy. Pollination is achieved through specialised interaction with moths. Differential foraging behaviour of settling moths and hawkmoths leads to different proportions of geitonogamous and xenogamous pollen on the stigma. However, most open-pollinated progeny were the result of xenogamy (outcrossing rate, tm = 0.68). The study shows that floral contrivances and pollination system have a strong influence on mating pattern. The differential foraging behaviour of the pollinators causes deposition of a mixture of self- and cross-pollen to produce a mixed brood. Inbreeding depression and geitonogamy appear to play a significant role in sustaining mixed mating in this species. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  14. Modulation of ruminal and intestinal fermentation by medicinal plants and zinc from different sources.

    Science.gov (United States)

    Váradyová, Zora; Mravčáková, Dominika; Holodová, Monika; Grešáková, Ľubomira; Pisarčíková, Jana; Barszcz, Marcin; Taciak, Marcin; Tuśnio, Anna; Kišidayová, Svetlana; Čobanová, Klaudia

    2018-06-14

    Two experiments were conducted on sheep to determine the effect of dietary supplementation with zinc and a medicinal plant mixture on haematological parameters and microbial activity in the rumen and large intestine. In Experiment 1, 24 male lambs were randomly divided into four groups: One group was fed an unsupplemented basal diet (control), and three groups were fed a diet supplemented with 70 mg Zn/kg diet in the form of Zn sulphate (ZnSO 4 ), a Zn-chelate of glycine hydrate (Zn-Gly) or a Zn-proteinate (Zn-Pro), for five months. The ruminal content was collected separately from each lamb, and batch cultures of ruminal fluid were incubated in vitro with mixture of medicinal plants (Mix) with different roughage:concentrate ratios (800:200 and 400:600, w/w). Bioactive compounds in Mix were quantified by UPLC/MS/MS. In Experiment 2, four sheep were fed a diet consisting of meadow hay and barley grain (400:600, w/w), with Zn-Gly (70 mg Zn/kg diet), Mix (10% replacement of meadow hay) or Zn-Gly and Mix (Zn-Gly-Mix) as supplements in a Latin square design. Mix decreased total gas (p  0.05). The diets containing medicinal plants and organic zinc thus helped to modulate the characteristics of fermentation in ruminants. © 2018 Blackwell Verlag GmbH.

  15. Generation Mix Study Focusing on Nuclear Power by Practical Peak Forecast

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ho; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    The excessive underestimation can lead to a range of problem; expansion of LNG plant requiring short construction period, the following increase of electricity price, low reserve margin and inefficient configuration of power source. With regard to nuclear power, the share of the stable and economic base load plant, nuclear power, can reduce under the optimum level. Amongst varied factors which contribute to the underestimate, immoderate target for demand side management (DSM) including double deduction of the constraint amount by DSM from peak demand forecast is one of the causes. The hypothesis in this study is that the better optimum generation mix including the adequate share of nuclear power can be obtained under the condition of the peak demand forecast without deduction of DSM target because this forecast is closer to the actual peak demand. In this study, the hypothesis is verified with comparison between peak demand forecast before (or after) DSM target application and the actual peak demand in the 3{sup rd} through 5{sup th} BPE from 2006 to 2010. Furthermore, this research compares and analyzes several generation mix in 2027 focusing on the nuclear power by a few conditions using the WASP-IV program on the basis of the 6{sup th} BPE in 2013. According to the comparative analysis on the peak demand forecast and actual peak demand from 2006 to 2010, the peak demand forecasts without the deduction of the DSM target is closer to the actual peak demand than the peak demand forecasts considering the DSM target in the 3{sup th}, 4{sup th}, 5{sup th} entirely. In addition, the generation mix until 2027 is examined by the WASP-IV. As a result of the program run, when considering the peak demand forecast without DSM reflection, since the base load plants including nuclear power take up adequate proportion, stable and economic supply of electricity can be achieved. On the contrary, in case of planning based on the peak demand forecast with DSM reflected and then

  16. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bamberger, Judith A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-28

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from jets characteristic of pulse jet mixers (PJMs) has been analyzed, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell break through? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored.

  17. ESTIMATING HIGH LEVEL WASTE MIXING PERFORMANCE IN HANFORD DOUBLE SHELL TANKS

    International Nuclear Information System (INIS)

    Thien, M.G.; Greer, D.A.; Townson, P.

    2011-01-01

    The ability to effectively mix, sample, certify, and deliver consistent batches of high level waste (HLW) feed from the Hanford double shell tanks (DSTs) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. The Department of Energy's (DOE's) Tank Operations Contractor (TOC), Washington River Protection Solutions (WRPS) is currently demonstrating mixing, sampling, and batch transfer performance in two different sizes of small-scale DSTs. The results of these demonstrations will be used to estimate full-scale DST mixing performance and provide the key input to a programmatic decision on the need to build a dedicated feed certification facility. This paper discusses the results from initial mixing demonstration activities and presents data evaluation techniques that allow insight into the performance relationships of the two small tanks. The next steps, sampling and batch transfers, of the small scale demonstration activities are introduced. A discussion of the integration of results from the mixing, sampling, and batch transfer tests to allow estimating full-scale DST performance is presented.

  18. Radioactivity reveals how crisps mix

    Energy Technology Data Exchange (ETDEWEB)

    Parker, David [School of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom)

    2000-01-01

    Many of the ''fluids'' processed in the food industry have strange flow properties that cannot easily be predicted. This is an important question in industry, since engineers need to know how such systems flow through pipes in production plants or how different components mix together. To counter this lack of knowledge, the fluids are generally processed for longer than necessary, which often proves expensive and may affect the quality of the final product. The University of Birmingham Positron Imaging Centre has developed a powerful technique to study the behaviour of crisps, yoghurt and ice cream - together with many other granular materials and viscous fluids - in a variety of industrial processes. In one case, the group labelled a single crisp using a positron-emitting radioisotope and added it to a rotating drum full of crisps. By tracking the movement of the labelled crisp, they could determine how uniformly the crisps were exposed to the flavouring that was added in the mixing process. In this article the author describes the research at the university's Positron Imaging Centre. (UK)

  19. Radioactivity reveals how crisps mix

    International Nuclear Information System (INIS)

    Parker, David

    2000-01-01

    Many of the ''fluids'' processed in the food industry have strange flow properties that cannot easily be predicted. This is an important question in industry, since engineers need to know how such systems flow through pipes in production plants or how different components mix together. To counter this lack of knowledge, the fluids are generally processed for longer than necessary, which often proves expensive and may affect the quality of the final product. The University of Birmingham Positron Imaging Centre has developed a powerful technique to study the behaviour of crisps, yoghurt and ice cream - together with many other granular materials and viscous fluids - in a variety of industrial processes. In one case, the group labelled a single crisp using a positron-emitting radioisotope and added it to a rotating drum full of crisps. By tracking the movement of the labelled crisp, they could determine how uniformly the crisps were exposed to the flavouring that was added in the mixing process. In this article the author describes the research at the university's Positron Imaging Centre. (UK)

  20. Correlation of Steam Generator Mixing Parameters for Severe Accident Hot-Leg Natural Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yehong; Guentay, Salih [Paul Scherrer Institut, Villigen PSI, CH-5232 (Switzerland)

    2008-07-01

    Steam generator inlet plenum mixing phenomenon with hot-leg counter-current natural circulation during a PWR station blackout severe accident is one of the important processes governing which component will fail first as a result of thermal challenge from the circulating gas with high temperature and pressure. Since steam generator tube failure represents bypass release of fission product from the reactor to environment, study of inlet plenum mixing parameters is important to risk analysis. Probability distribution functions of individual mixing parameter should be obtained from experiments or calculated by analysis. In order to perform sensitivity studies of the synergetic effects of all mixing parameters on the severe accident-induced steam generator tube failure, the distribution and correlation of these mixing parameters must be known to remove undue conservatism in thermal-hydraulic calculations. This paper discusses physical laws governing three mixing parameters in a steady state and setups the correlation among these mixing parameters. The correlation is then applied to obtain the distribution of one of the mixing parameters that has not been given in the previous CFD analysis. Using the distributions and considering the inter-dependence of the three mixing parameters, three sensitivity cases enveloping the mixing parameter uncertainties are recommended for the plant analysis. (authors)

  1. Application of the REMIX thermal mixing calculation program for the Loviisa reactor

    International Nuclear Information System (INIS)

    Kokkonen, I.; Tuomisto, H.

    1987-08-01

    The REMIX computer program has been validated to be used in the pressurized thermal shock study of the Loviisa reactor pressure vessel. The program has been verified against the data from the thermal and fluid mixing experiments. These experiments have been carried out in Imatran voima Oy to study thermal mixing of the high-pressure safety injection water in the Loviisa VVER-440 type pressurized water reactor. The verified REMIX-versions were applied to reactor calculations in the probabilistic pressurized thermal shock study of the Loviisa Plant

  2. Leeuwpan fine coal dense medium plant

    CSIR Research Space (South Africa)

    Lundt, M

    2010-11-01

    Full Text Available Beneficiation 2010, 4–6 May 2010. 671The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 110 NOVEMBER 2010 L Leeuwpan fine coal dense medium plant mixed with magnetite in the launder and enters... with production. Plant equipment operational changes Cyclone spigot changes In an attempt to lower the cut-point density, the spigot on the L 672 NOVEMBER 2010 VOLUME 110 The Journal of The Southern African Institute of Mining and Metallurgy Figure 1...

  3. Techno-economic evaluation of high temperature pyrolysis processes for mixed plastic waste.

    NARCIS (Netherlands)

    Westerhout, R.W.J.; Westerhout, R.W.J.; van Koningsbruggen, M.P.; van der Ham, Aloysius G.J.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1998-01-01

    Three pyrolysis processes for Mixed Plastic Waste (MPW) with different reactors (Bubbling Fluidized Bed, Circulating Fluidized Bed and Rotating Cone Reactor, respectively BFB, CFB and RCR) were designed and evaluated. The estimated fixed capital investment for a 50 kton/year MPW pyrolysis plant

  4. Nutrient leaching when soil is part of plant growth media

    Science.gov (United States)

    Soils can serve as sorbents for phosphorus (P) within plant growth media, negating the need for artificial sorbents. The purpose of this study was to compare soils with different properties, as part of plant growth media, for their effect on nutrient levels in effluent. Four soils were mixed with sa...

  5. Fungi colonising the above-ground parts of fodder galega (Galega orientalis Lam. cultivated in pure sowing and mixed with smooth brome-grass (Bromus inermis Leyss.

    Directory of Open Access Journals (Sweden)

    Bożena Cwalina-Ambroziak

    2012-12-01

    Full Text Available Field experiments were carried out in 1999-2001 in the experimental field in Knopin near Dobre Miasto to determine the intensity of fodder galega diseases cultivated in pure sowing and mixed with smooth brome-grass (the Hillstrand and Auld' s modified scale, 1982. The fungi colonising the phyllosphere of fodder galega were analysed in a laboratory (Chruoeciak , 1974. The following symptoms were observed in fodder galega: ascochyta blight (Ascochyta sp., gray mould (Botrytis cinerea and plant wilting (Fusarium oxysporum.. The climatic conditions had an effect on the development of diseases. The greatest intensity of gray mould (Ii = 24.3% and plant wilting (17.9% of plants with the disease symptoms were observed in 2001. Ascochyta blight occurred with the lowest intensity and the highest infection index in 1999 in the cultivation of fodder galega mixed with smooth brome-grass was only 12.1%. The type of cultivation also modified fodder galega disease intensity. Gray mould and plant wilting developed better in pure sowing than in mixed sowing with smooth brome-grass. Throughout the entire experiment period the average infection index was 22.8% and 15.9% of plants with the wilt symptoms. Ascochyta blight found better conditions for development in plants cultivated in a mix with smooth brome-grass (average infection index - 10.0%. The fodder galega phyllosphere provided 4149 fungal isolates represented by 17 species and yeast-like fungi. Yeast-like fungi dominated (75.6% of the total isolates. The following species were less numerous: Botrytis cinerea, Humicola brevis, Acremonium strictum and Cladosporium cladosporioides. From the leaves of fodder galega cultivated in pure sowing, 3.8% more fungi were obtained than from the leaves of plants cultivated with a mix of smooth brome-grass, including more frequently isolated pathogenic fungi representing the genera of Fusarium and the species of Botrytis cinerea.

  6. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol.

    Science.gov (United States)

    Kim, Soo Rin; Ha, Suk-Jin; Wei, Na; Oh, Eun Joong; Jin, Yong-Su

    2012-05-01

    The lack of microbial strains capable of fermenting all sugars prevalent in plant cell wall hydrolyzates to ethanol is a major challenge. Although naturally existing or engineered microorganisms can ferment mixed sugars (glucose, xylose and galactose) in these hydrolyzates sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Therefore, numerous metabolic engineering approaches have been attempted to construct optimal microorganisms capable of co-fermenting mixed sugars simultaneously. Here, we present recent findings and breakthroughs in engineering yeast for improved ethanol production from mixed sugars. In particular, this review discusses new sugar transporters, various strategies for simultaneous co-fermentation of mixed sugars, and potential applications of co-fermentation for producing fuels and chemicals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Scaling Theory for Pulsed Jet Mixed Vessels, Sparging, and Cyclic Feed Transport Systems for Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, William L.; Rector, David R.; Rassat, Scot D.; Enderlin, Carl W.; Minette, Michael J.; Bamberger, Judith A.; Josephson, Gary B.; Wells, Beric E.; Berglin, Eric J.

    2013-09-27

    This document is a previously unpublished work based on a draft report prepared by Pacific Northwest National Laboratory (PNNL) for the Hanford Waste Treatment and Immobilization Plant (WTP) in 2012. Work on the report stopped when WTP’s approach to testing changed. PNNL is issuing a modified version of the document a year later to preserve and disseminate the valuable technical work that was completed. This document establishes technical bases for evaluating the mixing performance of Waste Treatment Plant (WTP) pretreatment process tanks based on data from less-than-full-scale testing, relative to specified mixing requirements. The technical bases include the fluid mechanics affecting mixing for specified vessel configurations, operating parameters, and simulant properties. They address scaling vessel physical performance, simulant physical performance, and “scaling down” the operating conditions at full scale to define test conditions at reduced scale and “scaling up” the test results at reduced scale to predict the performance at full scale. Essentially, this document addresses the following questions: • Why and how can the mixing behaviors in a smaller vessel represent those in a larger vessel? • What information is needed to address the first question? • How should the information be used to predict mixing performance in WTP? The design of Large Scale Integrated Testing (LSIT) is being addressed in other, complementary documents.

  8. Evolved Control of Natural Plants: Crossing the Reality Gap for User-Defined Steering of Growth and Motion

    DEFF Research Database (Denmark)

    Hofstadler, Daniel Nicolas; Wahby, Mostafa; Heinrich, Mary Katherine

    2017-01-01

    Mixing societies of natural and artificial systems can provide interesting and potentially fruitful research targets. Here we mix robotic setups and natural plants in order to steer the motion behavior of plants while growing. The robotic setup uses a camera to observe the plant and uses a pair...... of light sources to trigger phototropic response, steering the plant to user-defined targets. An evolutionary robotic approach is used to design a controller for the setup. Initially, preliminary experiments are performed with a simple predetermined controller and a growing bean plant. The plant behavior......-evolved controller in the real setup controlling a natural bean plant. The results demonstrate a successful crossing of the reality gap in the setup. The success of the approach allows for future extensions to more complex tasks including control of the shape of plants and pattern formation in multiple plant setups....

  9. Nuclear power - an inevitable component of a sustainable energy mix

    International Nuclear Information System (INIS)

    Mesarovic, M.

    2000-01-01

    Nuclear power plants already add consequential amounts of energy to the global energy supply and continue to offer advantages for large additions of capacity. If increased, the nuclear share in world's energy mix would reduce the environmental damages as well as the climate change threats caused by the use of fossil fuels, thus providing an essential element of sustainable development. Such a potential contribution of nuclear power on large scale in a sustainable energy mix is considered, with its actual burdens and challenges discussed. Sustainable energy development with or without nuclear power is presented, with public acceptance of nuclear energy and global warming issues discussed in more details. (author)

  10. Biomass in monospecific and mixed stands of eucalyptus and black wattle and corn in an agroforestry system

    Directory of Open Access Journals (Sweden)

    Márcio Viera

    2011-06-01

    Full Text Available This study aimed at quantifying the production and distribution of aboveground biomass from the plants in monospecific and mixed stands of eucalyptus (hybrid E. urophylla x E. grandis and black wattle (Acacia mearnsii and, of corn (Zea mays in agrosilvicultural systems. The biomass evaluation (leaf, branch, bark and wood from the forest species at 6 and 18 months of age were performed at the treatments: 100E (100% of eucalyptus + corn; - 100A (100% of black wattle + corn; - 50E:50A (50% of eucalyptus + 50% of black wattle + corn. The corn biomass evaluation (stem, leaves, straw, cob and grains was performed at treatments 100E; 100A; 50E:50A; 75E:25A (75% of eucalyptus + 25% of black wattle + corn; and - 25E:75A (25% of eucalyptus + 75% of black wattle + corn. The biomass production from eucalyptus and from the black wattle, in both monospecific and mixed planting, did not differ in any of the assessed ages but, when evaluated by plants compartments, it was verified an interspecific competitive interaction from the eucalyptus on the black wattle, reducing the formation of crown biomass. The total production of corn biomass in agrosilvicutural systems with eucalyptus and with black wattle in monospecific or mixed plantings did not differ in the studied treatments.

  11. Pulse Jet Mixing Tests With Noncohesive Solids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael K.; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2012-02-17

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.

  12. Assessment Of Local Tropical Plants For Phytoremediation Of ...

    African Journals Online (AJOL)

    Panicum maximum) and Water Leaf (Talinum triangulare) local plants under normal environmental conditions in remediating soil contaminated with a Nigerian crude oil sample. Composite soil sample obtained by mixing equal weight in ...

  13. Mixed infections may promote diversification of mutualistic symbionts: why are there ineffective rhizobia?

    Science.gov (United States)

    Friesen, M L; Mathias, A

    2010-02-01

    While strategy variation is a key feature of symbiotic mutualisms, little work focuses on the origin of this diversity. Rhizobia strategies range from mutualistic nitrogen fixers to parasitic nonfixers that hoard plant resources to increase their own survival in soil. Host plants reward beneficial rhizobia with higher nodule growth rates, generating a trade-off between reproduction in nodules and subsequent survival in soil. However, hosts might not discriminate between strains in mixed infections, allowing nonfixing strains to escape sanctions. We construct an adaptive dynamics model of symbiotic nitrogen-fixation and find general situations where symbionts undergo adaptive diversification, but in most situations complete nonfixers do not evolve. Social conflict in mixed infections when symbionts face a survival-reproduction trade-off can drive the origin of some coexisting symbiont strategies, where less mutualistic strains exploit benefits generated by better mutualists.

  14. Handling 78,000 drums of mixed-waste sludge

    International Nuclear Information System (INIS)

    Berry, J.B.; Harrington, E.S.; Mattus, A.J.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now known as the Oak Ridge K-25 Site) closed two mixed-waste surface impoundments by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage included delisting the stabilized sludge from hazardous to nonhazardous and disposing of the delisted monoliths as Class 1 radioactive waste. Because of schedule constraints and process design and control deficiencies, ∼46,000 drums of material in various stages of solidification and ∼32,000 barrels of unprocessed sludge are stored. The abandoned treatment facility still contains ∼16,000 gal of raw sludge. Such storage of mixed waste does not comply with the Resource Conservation and Recovery Act (RCRA) guidelines. This paper describes actions that are under way to bring the storage of ∼78,000 drums of mixed waste into compliance with RCRA. Remediation of this problem by treatment to meet regulatory requirements is the focus of the discussion. 3 refs., 2 figs., 4 tabs

  15. Effects of alien woody plant invasion on the birds of Mountain ...

    African Journals Online (AJOL)

    The density, biomass, species richness and composition of birds in plots in two Mountain Fynbos plant-species assemblages (Tall Mixed Fynbos and Restionaceous Tussock Marsh), infested with alien woody plants (mainly Australian Acacia spp.) at the Cape of Good Hope Nature Reserve, South Africa, were compared ...

  16. Developing a Planting Medium from Solid Waste Compost and Construction and Demolition Rubble for Use in Quarry Rehabilitation

    Science.gov (United States)

    Assaf, E. A.

    2015-12-01

    The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on Lebanon and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. This research aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots). The plant species used are Mathiolla crassifolia and Zea mays (Corn). Results have shown successful growth of both corn and Mathiolla seedlings in the mixes with higher amounts of construction rubble and compost i.e. Rubble: Soil: Compost Ratio of 2:1:1 and 1:0:1. However treatments with no compost and with less quantities of rubble demonstrated the inability of the soil used to sustain plant growth alone (1:1:1 and 1:1:0). Last but not least, the control consisting of soil only ended up being the weakest mix with yellow corn leaves and small Mathiolla seedlings fifty days after planting and fertilizing. Additionally, soil analysis, rubble and compost analysis were conducted. The samples were tested for heavy metals, nutrient availability and values of pH and EC. No contamination has been reported and an abundance of macronutrients and micronutrients was documented for the soil and compost. High alkalinity is due to the presence of concrete and the high percentage of Calcium Carbonate in Lebanese soils. Accordingly, the most adequate mixes for planting are treatments A (2:1:1) and B (1:0:1) and they should be pursued for a pilot scale study to test their potential use in quarry rehabilitation and

  17. Patterns of chasmogamy and cleistogamy, a mixed-mating strategy in an endangered perennial.

    Science.gov (United States)

    Koontz, Stephanie M; Weekley, Carl W; Haller Crate, Sarah J; Menges, Eric S

    2017-11-01

    Cleistogamy (CL) in angiosperms historically has been understudied; however, its co-occurrence with chasmogamy (CH) across many plant species suggests a fitness advantage to maintaining this mixed-mating strategy. Maintenance of mixed-mating has been attributed to reproductive assurance, resource allocation or genetic trade-offs. Our goals were to explore patterns of CH and CL, quantify reproductive contributions measured by fruit production and determine how CL is maintained in the endangered perennial Polygala lewtonii. This species exhibits CH and both above-ground cleistogamy (CL-AG) and below-ground cleistogamy (CL-BG). In monthly censuses from 2008 to 2012, we documented flowering patterns by counting CH flowering stems, CL-AG fruits and CL-BG rhizomes per plant. Monitoring of buds on CH flowering stems in 2004 provided an estimate of CH fruits per plant. Plant excavations in 2005 of CL-BG rhizomes provided an estimate of CL-BG fruits per plant. Floral morphs were temporally separated with CH flowers observed from January to May and CL flowers from June to February. Overall, 17.5 % of plants flowered; most plants expressed CH first in spring months (63.4 %) and the rest initiated CL-AG in fall months. Reproductive output was dominated by CH (median 26 fruits) compared to combined CL (median 3.5 fruits). Annual reproductive effort of CL-AG was positively correlated with plant age while CH had no relation. Our research shows CH as the dominant form of reproductive effort with most individuals expressing CH and through greater reproductive contributions. CL appears limited by plant size or resources based on the positive relationship with plant age. CL dependency on resource availability is common in other species found in dry or low-quality habitats; however, CL contributions in this species are comparatively low. This raises more questions related to energy requirements of both floral morphs, how this affects the production of viable progeny and why CL

  18. Mixing ratio sensor for alcohol mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Shigeru; Matsubara, Yoshihiro

    1987-08-24

    In order to improve the combustion efficiency of an internal combustion engine using gasoline-alcohol mixed fuel and to reduce harmful substance in its exhaust gas, it is necessary to control strictly the air-fuel ratio to be supplied and the ignition timing. In order to detect the mixing ratio of the mixed fuel, a mixing ratio sensor has so far been proposed to detect the above mixing ratio by casting a ray of light to the mixed fuel and utilizing a change of critical angle associated with the change of the composition of the fluid of the mixed fuel. However, because of the arrangement of its transparent substance in the fuel passage with the sealing material in between, this sensor invited the leakage of the fluid due to deterioration of the sealing material, etc. and its cost became high because of too many parts to be assembled. In view of the above, in order to reduce the number of parts, to lower the cost of parts and the assembling cost and to secure no fluid leakage from the fuel passage, this invention formed the above fuel passage and the above transparent substance both concerning the above mixing ratio sensor in an integrated manner using light transmitting resin. (3 figs)

  19. Scenarios for low carbon and low water electric power plant ...

    Science.gov (United States)

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  20. Environmental impact assessment of coal power plants in operation

    OpenAIRE

    Bartan Ayfer; Kucukali Serhat; Ar Irfan

    2017-01-01

    Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly as...

  1. Isolation of Retroelement from Plant Genomic DNA

    OpenAIRE

    sprotocols

    2014-01-01

    Author: Pat Heslop-Harrison ### Abstract: Retroelements and their derivatives are an ubiquitous and abundant component of plant genomes. From the 1990s, PCR based techniques have been developed to isolate the elements from genomic DNA of different plants, and the methods and primers used are presented here. Major classes of retroelements include the Ty1-copia, the Ty3-gypsy and the LINE (non-LTR) groups. Mixed PCR products representing the full heterogeneous pool of retrotransposo...

  2. Multiple Estimation Architecture in Discrete-Time Adaptive Mixing Control

    Directory of Open Access Journals (Sweden)

    Simone Baldi

    2013-05-01

    Full Text Available Adaptive mixing control (AMC is a recently developed control scheme for uncertain plants, where the control action coming from a bank of precomputed controller is mixed based on the parameter estimates generated by an on-line parameter estimator. Even if the stability of the control scheme, also in the presence of modeling errors and disturbances, has been shown analytically, its transient performance might be sensitive to the initial conditions of the parameter estimator. In particular, for some initial conditions, transient oscillations may not be acceptable in practical applications. In order to account for such a possible phenomenon and to improve the learning capability of the adaptive scheme, in this paper a new mixing architecture is developed, involving the use of parallel parameter estimators, or multi-estimators, each one working on a small subset of the uncertainty set. A supervisory logic, using performance signals based on the past and present estimation error, selects the parameter estimate to determine the mixing of the controllers. The stability and robustness properties of the resulting approach, referred to as multi-estimator adaptive mixing control (Multi-AMC, are analytically established. Besides, extensive simulations demonstrate that the scheme improves the transient performance of the original AMC with a single estimator. The control scheme and the analysis are carried out in a discrete-time framework, for easier implementation of the method in digital control.

  3. Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability.

    Science.gov (United States)

    Djian-Caporalino, Caroline; Palloix, Alain; Fazari, Ariane; Marteu, Nathalie; Barbary, Arnaud; Abad, Pierre; Sage-Palloix, Anne-Marie; Mateille, Thierry; Risso, Sabine; Lanza, Roger; Taussig, Catherine; Castagnone-Sereno, Philippe

    2014-02-22

    Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens.

  4. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model

    Energy Technology Data Exchange (ETDEWEB)

    Koa, A.S.; Chang, N.B. [University of Central Florida, Orlando, FL (United States). Dept. for Civil & Environmental Engineering

    2008-07-15

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO{sub 2}) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To case the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  5. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model.

    Science.gov (United States)

    Ko, Andi Setiady; Chang, Ni-Bin

    2008-07-01

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  6. Simulation of mixing effects in a VVER-1000 reactor

    International Nuclear Information System (INIS)

    Ulrich Bieder; Gauthier Fauchet; Sylvie Betin; Nikola Kolev; Dimitar Popov

    2005-01-01

    Full text of publication follows: The work presented has been performed in the framework of the OECD/NEA thermalhydraulic benchmark V1000CT-2. This benchmark is related to fluid mixing in the reactor vessel during a MSLB accident scenario in a VVER-1000 reactor. The purpose of the first exercise is to test the capability of CFD codes to represent the coolant mixing in the reactor vessel, in particular in the downcomer and the lower plenum. Coolant mixing in a VVER-1000 V320 reactor was investigated in plant experiments during the commissioning of Kozloduy Unit 5 and 6. Starting from nearly symmetric states, asymmetric loop operation in different combinations was caused by disturbing the steam flow from one or more steam generators. Non-uniform and asymmetric loop flow mixing in the reactor vessel has been observed in the event of asymmetric loop operation. For certain flow patterns there is a shift (swirl) of the main loop flows with respect to the cold leg axes. This azimuthal shift as well as mixing coefficients from cold legs to the fuel assembly inlets have been measured. The presented reference problem is a pure TH problem with given boundary conditions and power distributions. During a stabilization phase, the thermal power of the reactor was 281 MW i.e. 9.36% of the nominal power according to primary balance. Then, a transient was initiated by closing the steam isolation valve of the steam generator one (SG-1) and isolating SG-1 from feed water. The coolant temperature in the cold and hot legs of Loop no 1 rose by 13-13.5 C. After about 20 minutes a stabilized state was reached which is considered as 'final state'. This final state has been analysed with the Trio-U code. Trio-U is a CFD code developed by the CEA Grenoble, aimed to supply an efficient computational tool to simulate transient thermalhydraulic mono-phase turbulent flows encountered in nuclear systems as well as in industrial processes. For the presented study, a LES approach was used. Therefore

  7. Sesquiterpene lactone mix as a diagnostic tool for Asteraceae allergic contact dermatitis: chemical explanation for its poor performance and Sesquiterpene lactone mix II as a proposed improvement.

    Science.gov (United States)

    Jacob, Mathias; Brinkmann, Jürgen; Schmidt, Thomas J

    2012-05-01

    Two preparations are currently in use for the diagnosis of allergic contact dermatitis caused by Asteraceae: (i) Sesquiterpene lactone (SL) mix [three pure sesquiterpene lactones (STLs)], whose use has been questioned, owing to an insufficient rate of true-positive results; and (ii) Compositae mix, consisting of five Asteraceae extracts, which is problematic because of lack of standardization and questionable reproducibility. To analyse the reasons for the narrow sensitivity of SL mix from a chemoinformatic point of view, and to propose a solution by rational selection of alternative constituents for a new SL mix II covering a broader cohort of allergic patients. Structural and biological information on allergenic STLs was retrieved from databases and the literature, and molecular modelling and chemoinformatic computations were performed. An explanation for the insufficient hit rate of SL mix is that the three constituents possess extremely similar molecular structures/properties and do not represent well the structural diversity of allergenic STLs. STLs that are known as constituents of Compositae mix plants show much a wider diversity, which explains the higher positive rate. On the basis of their positions in chemical property space, a new collection of STLs that more evenly cover the overall structural diversity spectrum is proposed. SL mix II is likely to detect a larger number of patients sensitized to Asteraceae. © 2012 John Wiley & Sons A/S.

  8. White snakeroot poisoning in goats: Variations in toxicity with different plant chemotypes

    Science.gov (United States)

    White Snakeroot is a toxic plant that causes human and livestock diseases known as the trembles and milk sickness and historically devastated entire settlements. White snakeroot toxins, which differ significantly in plant populations, were initially identified as tremetol which is thought to be mix...

  9. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into

  10. Medicinal Plants in the Broad-Leaf Mixed Coniferous Forest of Tshothang Chiwog, Bhutan: Floristic Attributes, Vegetation Structure, Ethnobotany, and Socioeconomic Aspects

    Directory of Open Access Journals (Sweden)

    Ngawang Jamba

    2018-01-01

    Full Text Available The Himalayan Kingdom of Bhutan, located in one of the global biodiversity hotspots, is endowed with abundant floral wealth, including a wide array of medicinal plants (MPs. However, over-exploitation of these resources is widespread, and only a few studies have assessed the richness and diversity of Bhutanese forests and in particular about the MP resources. A vegetation survey was conducted in Tshothang Chiwog, south-eastern Bhutan to characterize the floristic structure of the broad-leaf mixed coniferous forests with a special focus on MPs. A questionnaire survey involving 40 farmers was also conducted to assess the ethnobotanical and socioeconomic aspects of MP extraction. A total of 157 plant species (38 trees, 19 shrubs, 85 herbs and ferns, and 15 climbers, representing 74 families and 137 genera were identified from the study area, of which 69 species (14 trees, 10 shrubs, 38 herbs and ferns, and seven climbers, belonging to 41 families and 69 genera were medicinally important. The most species-rich families of medicinal plants were: Asteraceae (eight spp., Apiaceae (four spp., Polygonaceae, Brassicaceae, Zingiberaceae, and Urticaceae (three species each. Herbaceous flora exhibited the highest diversity (Simpson diversity index, D = 0.97 and Shannon-Weiner index, H′ = 5.82, followed by trees and shrubs (D = 0.95 and 0.92 and H′ = 4.86 and 3.97, respectively. All but one herb showed abundance-to-frequency ratio (A/F ≥0.05, signifying a contagious distribution pattern (large aggregated distribution. Girth class distribution of trees followed an inverse J-shaped pattern. Results of the ethnobotanic study documented 55 MPs. MP collection, as reported by the interviewees, generally improved the socioeconomic status of the people of Tshothang Chiwog. Apart from improving the livelihood security of the local people, aspects relating to health care and culture are also important. Respondents were also concerned about the declining MP wealth

  11. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    Science.gov (United States)

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Criticality safety philosophy for the Sellafield MOX plant

    International Nuclear Information System (INIS)

    Edge, Jane; Gulliford, Jim

    2003-01-01

    The Sellafield MOX Plant (SMP) has been operational since 2001, blending plutonium dioxide from THORP reprocessing operations, with uranium dioxide to produce Mixed Oxide (MOX) fuel elements. In handling the quantities of fuel associated with a commercial fuel fabrication plant, it is necessary to impose criticality controls. Plutonium dioxide (PuO 2 ), uranium dioxide (UO 2 ) and recycled MOX are mixed together in batches. An Engineered Protection System (EPS) prevents the production of MOX powder in excess of 20w/o Pu(fissile)/(Pu+U), achieved through the combination of a weight-based' system and a diverse 'neutron monitoring' radiometric system. The 'neutron monitoring' component of the EPS determines the fissile enrichment of the batch of MOX powder, based on pessimistic isotopic requirements of the PuO 2 feedstock powder. Guaranteeing the maximum MOX enrichment of 20w/o Pu(fissile)/(Pu + U) at an early stage of the fuel manufacturing process enables the criticality safety assessor to demonstrate that normal operations are deterministically safe. This paper describes in detail the EPS at the front end of plant and the engineered and operational protection in downstream areas. In addition plant operational experience in producing the first fuel assemblies is discussed. (author)

  13. Facility for processing the condensates from nuclear power plants (BWR and PWR)

    International Nuclear Information System (INIS)

    Lucker, Georges.

    1975-01-01

    A plant for the processing of the condensates from boiling water or pressurized water nuclear power plants is presented. A series of couples of units for the processing of the condensates through mixed beds of ion exchange resins simultaneously ensures the filtration and demineralization of the condensates. When the resins are saturated, each mixed bed is transferred into a unit of regeneration of said resins. Each processing unit is a sphere made of a stainless material, and provided with a plurality of air and water pipes allowing the admission and evacuation of the various elements to be successively controlled [fr

  14. Critical analysis of the socialist proposition to reduce the nuclear share to 50% of the electric mix by 2025

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2011-01-01

    After having recalled the situation of the French energy mix in 2010, this paper analyses the consequences of the different options which can be chosen to balance a reduction of the nuclear share in this mix. These different scenarios are: replacement by fossil (gas or coal) energy plants, replacement by renewable energies (here comes a discussion of wind energy limitations), decrease of energy consumption and increase of gas-based energy production. The author also discusses a comparison between the use of a direct gas or fuel heating and the use of electricity produced by gas power plants

  15. Early survival and growth of planted Douglas-fir with red alder in four mixed regimes.

    Science.gov (United States)

    Marshall D. Murray; Richard E. Miller

    1986-01-01

    To quantify between-species interactions, we measured and compared survival and growth of planted Douglas-fir and associated planted and volunteer red alder at a location on the west side of the Cascade Range in Washington. The planted alder were wildlings dug either from a nearby area or from a distant, coastal site and interplanted into a 3-year-old Douglas-fir...

  16. Investigating the Lateral Mixing Coefficient in a Compound Channel with Emergent Vegetation over the Floodplain

    OpenAIRE

    Hossein hamidifar; Mohammad hossein Ommid; Mehdi Bahrami; Mohammad javad Amiri

    2017-01-01

    Introduction: Water quality control is very important for people, animals and plants. Predicting the spread of contaminants is important for managing and protecting rivers and streams to the balance of the ecosystem. Pollutants are introduced into waterways, though a variety of sources such as point and non-point sources. Under steady state conditions, where longitudinal mixing is not significant, studying the lateral mixing is essential in evaluating the influence of pollutants on water qual...

  17. Ecology and conservation of threatened plants in Tapkeshwari Hill ranges in the Kachchh Island, Gujarat, India

    Directory of Open Access Journals (Sweden)

    P.N. Joshi

    2012-02-01

    Full Text Available The survey was conducted in Tapkeshwari Hill Range (THR areas, wherever threatened plant species were said to exist, based on secondary information in literature. Thirteen plant species categorized as ‘Threatened’ by the World Conservation Monitoring centre (WCMC 1994 and also listed under various threat categories in the Red Data Book of Indian Plants (Nayar & Sastry 1988 were surveyed in the THR. All the RET plants reported from the study area occupied eight major habitat types. Thorn mixed forests harbored the highest number of individuals (560 of all RET plants, followed by open scrubs (345 individuals, Acacia senegal forests (328 and thorn mixed scrubs (293. Field observations showed that except Helichrysum cutchicum, all the other RET plant species were reported with very low seedlings and regeneration ratio. This paper discusses the status, distribution and threats faced and the conservation implications at border regions of some of the threatened plants of the arid Kachchh district.

  18. One year of operation of the Belgonucleaire (Dessel) plutonium fuel fabrication plant

    International Nuclear Information System (INIS)

    Leblanc, J.M.

    1975-01-01

    Based on experience with plutonium since 1958, Belgonucleaire has successively launched a pilot plant and then a fuel fabrication plant for mixed uranium and plutonium oxides in 1968 and 1973 respectively. After describing briefly the plants and the most important stages in the planning, construction and operation of the Dessel plant, the present document describes the principal problems which were met during the course of operation of the plant and their direct incidence on the capacity and quality of the production of fuel elements

  19. Extrusion-mixing compared with hand-mixing of polyether impression materials?

    Science.gov (United States)

    McMahon, Caroline; Kinsella, Daniel; Fleming, Garry J P

    2010-12-01

    The hypotheses tested were two-fold (a) whether altering the base:catalyst ratio influences working time, elastic recovery and strain in compression properties of a hand-mixed polyether impression material and (b) whether an extrusion-mixed polyether impression material would have a significant advantage over a hand-mixed polyether impression material mixed to the optimum base:catalyst ratio. The polyether was hand-mixed at the optimum (manufacturers recommended) base:catalyst ratios (7:1) and further groups were made by increasing or decreasing the catalyst length by 25%. Additionally specimens were also made from an extrusion-mixed polyether impression material and compared with the optimum hand-mixed base:catalyst ratio. A penetrometer assembly was used to measure the working time (n=5). Five cylindrical specimens for each hand-mixed and extrusion mixed group investigated were employed for elastic recovery and strain in compression testing. Hand-mixing polyether impression materials with 25% more catalyst than that recommended significantly decreased the working time while hand-mixing with 25% less catalyst than that recommended significantly increased the strain in compression. The extrusion-mixed polyether impression material provided similar working time, elastic recovery and strain in compression to the hand-mixed polyether mixed at the optimum base:catalyst ratio.

  20. Initial Investigation of Waste Feed Delivery Tank Mixing and Sampling Issues

    International Nuclear Information System (INIS)

    Fort, James A.; Bamberger, Judith A.; Meyer, Perry A.; Stewart, Charles W.

    2007-01-01

    The Hanford tank farms contractor will deliver waste to the Waste Treatment Plant (WTP) from a staging double-shell tank. The WTP broadly classifies waste it receives in terms of 'Envelopes,' each with different limiting properties and composition ranges. Envelope A, B, and C wastes are liquids that can include up to 4% entrained solids that can be pumped directly from the staging DST without mixing. Envelope D waste contains insoluble solids and must be mixed before transfer. The mixing and sampling issues lie within Envelope D solid-liquid slurries. The question is how effectively these slurries are mixed and how representative the grab samples are that are taken immediately after mixing. This report summarizes the current state of knowledge concerning jet mixing of wastes in underground storage tanks. Waste feed sampling requirements are listed, and their apparent assumption of uniformity by lack of a requirement for sample representativeness is cited as a significant issue. The case is made that there is not an adequate technical basis to provide such a sampling regimen because not enough is known about what can be achieved in mixing and distribution of solids by use of the baseline submersible mixing pump system. A combined mixing-sampling test program is recommended to fill this gap. Historical Pacific Northwest National Laboratory project and tank farms contractor documents are used to make this case. A substantial investment and progress are being made to understand mixing issues at the WTP. A summary of the key WTP activities relevant to this project is presented in this report. The relevant aspects of the WTP mixing work, together with a previously developed scaled test strategy for determining solids suspension with submerged mixer pumps (discussed in Section 3) provide a solid foundation for developing a path forward

  1. Usability of Particle Film Technology and Water Holding Materials to Improve Drought Tolerance in Gossypium hirsutum L. Plants

    Science.gov (United States)

    Roy, K.; Zwieniecki, M.

    2017-12-01

    Cotton (Gossypium hirsutum L.) is relatively drought resistant and thus is planted widely in many semi-arid and arid parts of the world, many of which are usually deprived of modern water management technologies. Since the productivity of cotton plants depends on water availability, we carried out the present research aiming at testing two different low cost and arid-environment friendly water efficient techniques: application of particle film technology on leaves to reduce the transpiration rate (kaolin dust), and use of organic material to improve the soil water holding capacity (cotton wool). In details, kaolin (3% and 5%; weight:volume) mixed in water was sprayed on the upper surface of the leaves of young plants, and small amounts of cotton wool (0.1%, 0.3% and 0.5%; weight:weight) were mixed into the soils. The study showed that kaolin spray was useful as a transpiration reducing agent only if plants have adequate water in the soil (well irrigated) but not under water stress conditions. In addition, mixing a small amount of cotton wool into the soil can significantly increase the amount of water available to the plants, and extend the benefit of kaolin application on plants.

  2. Biodegradation of sulfamethoxazole by individual and mixed bacteria.

    Science.gov (United States)

    Larcher, Simone; Yargeau, Viviane

    2011-07-01

    Antibiotic compounds, like sulfamethoxazole (SMX), have become a concern in the aquatic environment due to the potential development of antibacterial resistances. Due to excretion and disposal, SMX has been frequently detected in wastewaters and surface waters. SMX removal in conventional wastewater treatment plants (WWTPs) ranges from 0% to 90%, and there are opposing results regarding its biodegradability at lab scale. The objective of this research was to determine the ability of pure cultures of individual and mixed consortia of bacteria (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas putida, Rhodococcus equi, Rhodococcus erythropolis, Rhodococcus rhodocrous, and Rhodococcus zopfii) known to exist in WWTP activated sludge to remove SMX. Results showed that R. equi alone had the greatest ability to remove SMX leading to 29% removal (with glucose) and the formation of a metabolite. Degradation pathways and metabolite structures have been proposed based on the potential enzymes produced by R. equi. When R. equi was mixed with other microorganisms, a positive synergistic effect was not observed and the maximum SMX removal achieved was 5%. This indicates that pure culture results cannot be extrapolated to mixed culture conditions, and the methodology developed here to study the biodegradability of compounds under controlled mixed culture conditions offers an alternative to conventional studies using pure bacterial cultures or inocula from activated sludge sources consisting of unknown and variable microbial populations.

  3. Engineering Molecular Immunity Against Plant Viruses

    KAUST Repository

    Zaidi, Syed Shan-e-Ali; Tashkandi, Manal; Mahfouz, Magdy M.

    2017-01-01

    Genomic engineering has been used to precisely alter eukaryotic genomes at the single-base level for targeted gene editing, replacement, fusion, and mutagenesis, and plant viruses such as Tobacco rattle virus have been developed into efficient vectors for delivering genome-engineering reagents. In addition to altering the host genome, these methods can target pathogens to engineer molecular immunity. Indeed, recent studies have shown that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems that target the genomes of DNA viruses can interfere with viral activity and limit viral symptoms in planta, demonstrating the utility of this system for engineering molecular immunity in plants. CRISPR/Cas9 can efficiently target single and multiple viral infections and confer plant immunity. Here, we discuss the use of site-specific nucleases to engineer molecular immunity against DNA and RNA viruses in plants. We also explore how to address the potential challenges encountered when producing plants with engineered resistance to single and mixed viral infections.

  4. Engineering Molecular Immunity Against Plant Viruses

    KAUST Repository

    Zaidi, Syed Shan-e-Ali

    2017-04-26

    Genomic engineering has been used to precisely alter eukaryotic genomes at the single-base level for targeted gene editing, replacement, fusion, and mutagenesis, and plant viruses such as Tobacco rattle virus have been developed into efficient vectors for delivering genome-engineering reagents. In addition to altering the host genome, these methods can target pathogens to engineer molecular immunity. Indeed, recent studies have shown that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems that target the genomes of DNA viruses can interfere with viral activity and limit viral symptoms in planta, demonstrating the utility of this system for engineering molecular immunity in plants. CRISPR/Cas9 can efficiently target single and multiple viral infections and confer plant immunity. Here, we discuss the use of site-specific nucleases to engineer molecular immunity against DNA and RNA viruses in plants. We also explore how to address the potential challenges encountered when producing plants with engineered resistance to single and mixed viral infections.

  5. Deep amplicon sequencing reveals mixed phytoplasma infection within single grapevine plants

    DEFF Research Database (Denmark)

    Nicolaisen, Mogens; Contaldo, Nicoletta; Makarova, Olga

    2011-01-01

    The diversity of phytoplasmas within single plants has not yet been fully investigated. In this project, deep amplicon sequencing was used to generate 50,926 phytoplasma sequences from 11 phytoplasma-infected grapevine samples from a PCR amplicon in the 5' end of the 16S region. After clustering ...

  6. Harmattan gas plant compressor conversion

    Energy Technology Data Exchange (ETDEWEB)

    Temple, K. [Altagas Ltd., Calgary, AB (Canada)

    2009-07-01

    The Harmattan Gas Plant located near the town of Didsbury, Alberta has typical processing units such as amine treating, sulfur recovery, refrigeration, and dehydration. In 1999, a deep cut turbo expander train was added for the extraction of ethane and in 2003 a spec carbon dioxide unit was added. Since its construction in 1961, the plant has undergone many modifications. As such, the plant is a mix of new and old equipment. A 3500 kW Solar Centaur 50LS gas turbine compressor with waste heat recovery was installed at the plant in 2008. This paper reviewed the project from concept to execution and demonstrated how reciprocating compressors were economically replaced with a gas turbine. Altagas had an incentive to invest in the project to lower operating and maintenance costs. Altagas was able to economically replace aging reciprocating compressors with a single turbine driving a centrifugal compressor without any producer subsidies or contract revisions. 2 tabs., 5 figs.

  7. Flora and fauna associated with prairie dog colonies and adjacent ungrazed mixed-grass prairie in western South Dakota

    Science.gov (United States)

    William Agnew; Daniel W. Uresk; Richard M. Hansen

    1986-01-01

    Vegetation, small rodents, and birds were sampled during the growing seasons of 2 years on prairie dog (Cynomys ludovicianus) colonies and adjacent mixed-grass prairie in western South Dakota. Prairie dog grazing decreased mulch cover, maximum height of vegetation, plant species richness, and tended to decrease live plant canopy cover compared to...

  8. The influence of humic acids derived from earthworm-processed organic wastes on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Atiyeh, R.M.; Lee, S.; Edwards, C.A.; Arancon, N.Q.; Metzger, J.D. [Ohio State University, Columbus, OH (United States). Soil Ecology Lab.

    2002-08-01

    Some effects of humic acids, formed during the breakdown of organic wastes by earthworms (vermicomposting), on plant growth were evaluated. In the first experiment, humic acids were extracted from pig manure vermicompost using the classic alkali/acid fractionation procedure and mixed with a soilless container medium (Metro-Mix 360), to provide a range of 0, 50, 100, 150, 200, 250, 500, 1000, 2000 and 4000 mg of humate per kg of dry weight of container medium, and tomato seedlings were grown in the mixtures. In the second experiment, humates extracted from pig manure and food wastes vermicomposts were mixed with vermiculite to provide a range of 0, 50, 125, 250, 500, 1000 and 4000 mg of humate per kg of dry weight of the container medium, and cucumber seedlings were grown in the mixtures. Both tomato and cucumber seedlings were watered daily with a solution containing all nutrients required to ensure that any differences in growth responses were not nutrient-mediated. The incorporation of both types of vermicompost-derived humic acids, into either type of soilless plant growth media, increased the growth of tomato and cucumber plants significantly, in terms of plant heights, leaf areas, shoot and root dry weights. Plant growth increased with increasing concentrations of humic acids incorporated into the medium up to a certain proportion, but this differed according to the plant species, the source of the vermicompost, and the nature of the container medium. Plant growth tended to be increased by treatments of the plants with 50-500 mg/kg humic acids, but often decreased significantly when the concentrations of humic acids derived in the container medium exceeded 500-1000 mg/kg. These growth responses were most probably due to hormone-like activity of humic acids from the vermicomposts or could have been due to plant growth hormones adsorbed onto the humates. (author)

  9. Application of a radioactive sourced semi portable X-ray spectrometer to the solution of binary mix compositions

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1988-01-01

    In many cases it is far more economically viable to transport individual constituents to a blending plant and produce a series of custom made products than to manufacture at site. This situation exists in many heavy chemical industries or on large building sites. In the cement industry inter-mixed or interground blends containing slag, fly ash, or limestone are produced. These mixes are designed to enhance certain physical properties and to reduce costs. This paper summarises experience of the application of portable isotope source X-ray analysers in achieving quality control of binary mixes

  10. Bimaximal fermion mixing from the quark and leptonic mixing matrices

    International Nuclear Information System (INIS)

    Ohlsson, Tommy

    2005-01-01

    In this Letter, we show how the mixing angles of the standard parameterization add when multiplying the quark and leptonic mixing matrices, i.e., we derive explicit sum rules for the quark and leptonic mixing angles. In this connection, we also discuss other recently proposed sum rules for the mixing angles assuming bimaximal fermion mixing. In addition, we find that the present experimental and phenomenological data of the mixing angles naturally fulfill our sum rules, and thus, give rise to bilarge or bimaximal fermion mixing

  11. Mechanical performance assessment of half warm recycled asphalt mixes containing up to 100 % RAP

    International Nuclear Information System (INIS)

    Lizárraga, J. M.; Jiménez del Barco-Carrión, A.; Ramírez, A.; Díaz, P.; Moreno-Navarro, F.; Rubio, M.C.

    2017-01-01

    The use of Half Warm Mixes with high Reclaimed Asphalt content (HWMRA) has the potential to generate significant environmental advantages such as the reduction in consumption of natural resources and the emission of gases into the atmosphere. This paper therefore focuses on demonstrating the viability of using these types of mixes in wearing courses. For this purpose, an HWMRA with 70 % and 100 % Reclaimed Asphalt Pavement (RAP) and emulsion were designed in the laboratory. The performance of the mixes was then assessed and compared with that of conventional Hot Mix Asphalt. In a second stage, the mixes were manufactured in-plant, and laid and compacted in an Accelerated Pavement Test track. The cores were then extracted and tested for stiffness modulus and resistance to fatigue. The results from the tests conducted with both the laboratory specimens and the cores showed that the performance of HWMRA is comparable to that of HMA. These findings encourage greater confidence in promoting the use of these types of sustainable asphalt mixes. [es

  12. Mechanical performance assessment of half warm recycled asphalt mixes containing up to 100 % RAP

    Directory of Open Access Journals (Sweden)

    J. M. Lizárraga

    2017-07-01

    Full Text Available The use of Half Warm Mixes with high Reclaimed Asphalt content (HWMRA has the potential to generate significant environmental advantages such as the reduction in consumption of natural resources and the emission of gases into the atmosphere. This paper therefore focuses on demonstrating the viability of using these types of mixes in wearing courses. For this purpose, an HWMRA with 70 % and 100 % Reclaimed Asphalt Pavement (RAP and emulsion were designed in the laboratory. The performance of the mixes was then assessed and compared with that of conventional Hot Mix Asphalt. In a second stage, the mixes were manufactured in-plant, and laid and compacted in an Accelerated Pavement Test track. The cores were then extracted and tested for stiffness modulus and resistance to fatigue. The results from the tests conducted with both the laboratory specimens and the cores showed that the performance of HWMRA is comparable to that of HMA. These findings encourage greater confidence in promoting the use of these types of sustainable asphalt mixes.

  13. Advanced mixed waste treatment project draft environmental impact statement

    International Nuclear Information System (INIS)

    1998-07-01

    The AMWTP DEIS assesses the potential environmental impacts associated with four alternatives related to the construction and operation of a proposed waste treatment facility at the INEEL. Four alternatives were analyzed: The No Action Alternative, the Proposed Action, the Non-Thermal Treatment Alternative, and the Treatment and Storage Alternative. The proposed AMWTP facility would treat low-level mixed waste, alpha-contaminated low-level mixed waste, and transuranic waste in preparation for disposal. Transuranic waste would be disposed of at the Waste isolation Pilot Plant in New Mexico. Low-level mixed waste would be disposed of at an approval disposal facility depending on decisions to be based on DOE's Final Waste Management Programmatic Environmental Impact Statement. Evaluation of impacts on land use, socio-economics, cultural resources, aesthetic and scenic resources, geology, air resources, water resources, ecological resources, noise, traffic and transportation, occupational and public health and safety, INEEL services, and environmental justice were included in the assessment. The AMWTP DEIS identifies as the Preferred Alternative the Proposed Action, which is the construction and operation of the AMWTP facility

  14. EFFECT OF PLANTING MEDIA ON THE GROWTH OF Shorea pinanga Scheff. SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Diana Prameswari

    2004-11-01

    Full Text Available Shoreapinanga Scheff.   is a major tropical plant species which has an important  economic  value not  only for timber,  but also as illipe nut  (called tengkawang  in local  name production.   This species   is suggested   for  land  rehabilitation    and  forest  conservation.    In rehabilitation   action, S. pi11a11ga is usually   planted   on the poor  and degraded  area.   Application   of  chemical  fertilizer and compost  is used to increase  the survival  and growth  of  the  seedlings.  Excessive chemical fertilizer  input  to soil, however,  may cause  negative  effect on  soil,  plant  and  environment. Conversely,  compost  may improve soil porosity, soil aggregate,  water absorption   and soil fertility. The objective  of  the study  was  to examine  effect  of  planting  media  on growth  of  S. pinanga  seedlings. Complete  randomized  design has been arranged with 5 treatments,  e.g. soil mixed with husk  (at the proportion   of  1:1, soil mixed with acacia compost  (1:1,   soil mixed with charcoal of  rice husk (1:1   and soil mixed with humic acid (1:1.    Another  treatment  was  soil alone  used as control.   The  result showed that  growth  of  both  stem  height   and  diameter,  and  index  of seedling  quality  were affected  significantly   by planting  media.    The mixture  of  soil and  acacia compost  (1 :1  was the best  planting media for the growth  of S. pinanga seedlings,  which resulted in the growth  of height  (24.19   cm and stem diameter  (0.246 cm.  Meanwhile, soil mixed with rice husk charcoal (1:1  gave the best result to the index of  seedling quality (ISQ = 1.34   and total dry weight (TOW=   15.93  g.

  15. Arthropod consumption by small mammals on prairie dog colonies and adjacent ungrazed mixed grass prairie in western South Dakota

    Science.gov (United States)

    W. Agnew; Daniel W. Uresk; R. M. Hansen

    1988-01-01

    The percentage of arthropods and plants in the diets of seven small rodents captured on prairie dog colonies and adjacent mixed grasslands were estimated by microhistological techniques. Arthropod composition over the two year study averaged 51% and 37% on prairie dog colonies and mixed grasslands, respectively. Composition of arthropods on prairie dog colonies was...

  16. System for the Reduction of Substances in Reject Water from Reed-Bed Sludge Mineralization Plants

    DEFF Research Database (Denmark)

    2004-01-01

    The invention is a system for the reduction of substances in reject water from reed-bed sludge mineralization plants (also referred to as sludge dewatering reed-beds). The systems utilizes the composition of substances in reject water from reed-beds and that of sludge to reduce substance mass from...... the reject water via recirculation into a mixed reactor and back onto the reed-beds. The mixed rector consists of a container in which sludge (that is typically loaded directly on to reed-beds) is mixed with recirculated reject water from reed-beds. The sludge mixture has a definable hydraulic retention time...... of by sending it back to the head of a wastewater treatment plant. The system has proven to reduce the mass of nitrogen, COD, and water in the reject water, and can possibly reduce phosphorus and other substances. The overall effect is a reduction in the substance recycle within a wastewater treatment plant...

  17. Tree plantings in depression wetland restorations show mixed success (South Carolina)

    Science.gov (United States)

    Rebecca R. Sharitz; Christopher D. Barton; Diane De Steven

    2006-01-01

    Studies of bottomland forest restoration in the southeastern United States indicate that success can be improved by protecting planted tree seedlings from herbivores and controlling competing vegetation. Reforesting “isolated” depressional wetlands may present different challenges: growing-season ponding may expose seedlings to flooding stress, and competition control...

  18. Uncertain pollination environment promotes the evolution of a stable mixed reproductive system in the self-incompatible Hypochaeris salzmanniana (Asteraceae).

    Science.gov (United States)

    Arista, M; Berjano, R; Viruel, J; Ortiz, M Á; Talavera, M; Ortiz, P L

    2017-09-01

    The transition from outcrossing to selfing is a repeated pattern in angiosperm diversification and according to general theory this transition should occur quickly and mixed reproductive systems should be infrequent. However, a large proportion of flowering plants have mixed reproductive systems, even showing inbreeding depression. Recently, several theoretical studies have shown that mixed mating systems can be stable, but empirical studies supporting these assumptions are still scarce. Hypochaeris salzmanniana, an annual species with populations differing in their self-incompatibility expression, was used as a study case to assess the stability of its mixed reproductive system. Here a descriptive study of the pollination environment was combined with measurements of the stability of the self-incompatibility system, outcrossing rate, reproductive assurance and inbreeding depression in four populations for two consecutive years. The reproductive system of populations exhibited a geographical pattern: the proportion of plants decreased from west to east. Pollinator environment also varied geographically, being less favourable from west to east. The self-incompatibility expression of some populations changed markedly in only one year. After selfing, progeny was mainly self-compatible, while after outcrossing both self-incompatible and self-compatible plants were produced. In general, both reproductive assurance and high inbreeding depression were found in all populations and years. The lowest values of inbreeding depression were found in 2014 in the easternmost populations, which experienced a marked increase in self-compatibility in 2015. The mixed reproductive system of H. salzmanniana seems to be an evolutionarily stable strategy, with selfing conferring reproductive assurance when pollinator attendance is low, but strongly limited by inbreeding depression. The fact that the highest frequencies of self-compatible plants appeared in the environments most

  19. The effect of mixed oxidants and powdered activated carbon on the removal of natural organic matter.

    Science.gov (United States)

    Alvarez-Uriarte, Jon I; Iriarte-Velasco, Unai; Chimeno-Alanís, Noemí; González-Velasco, Juan R

    2010-09-15

    Present paper studies the influence of electrochemically generated mixed oxidants on the physicochemical properties of natural organic matter, and especially from the disinfection by-products formation point of view. The study was carried out in a full scale water treatment plant. Results indicate that mixed oxidants favor humic to non-humic conversion of natural organic matter. Primary treatment preferentially removes the more hydrophobic fraction. This converted the non-humic fraction in an important source of disinfection by-products with a 20% contribution to the final trihalomethane formation potential (THMFP(F)) of the finished water. Enhanced coagulation at 40 mg l(-1) of polyaluminium chloride with a moderate mixing intensity (80 rpm) and pH of 6.0 units doubled the removal efficiency of THMFP(F) achieved at full scale plant. However, gel permeation chromatography data revealed that low molecular weight fractions were still hardly removed. Addition of small amounts of powdered activated carbon, 50 mg l(-1), allowed reduction of coagulant dose by 50% whereas removal of THMFP(F) was maintained or even increased. In systems where mixed oxidants are used addition of powdered activated carbon allows complementary benefits by a further reduction in the THMFP(F) compared to the conventional only coagulation-flocculation-settling process. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Ashes from biofuels and mixed fuels - amount and qualities

    International Nuclear Information System (INIS)

    Bjurstroem, Henrik; Ilskog, Elisabeth; Berg, Magnus

    2003-04-01

    In this study, ashes from biofuels used in the energy utilities, the pulp and paper industry and the wood-working industries have been inventoried. The selection of plants to which enquiries were addressed consists of about 50 utilities, all pulp and paper plants and about 20 wood-working industries (e.g. sawmills). The purpose of the study was to estimate the quantities of bio ashes that are recycled to the forests and those that could be recycled. The background to this study is that logging slash is harvested from ca 30,000 ha per year, while ash is recycled only to 2 to 4,000 ha per year. A working hypothesis has been that logging slash or clean wooden fuels are mixed with other fuels to such an extent that the ash is too contaminated to be recycled. The consequence would be that there is a shortage of suitable ash. Therefore, it was desirable that motives for mixing fuels be chartered. In Sweden, approximately one million ton ashes are produced each year and the share of the three industries that have been studied is estimated as: 200 - 340,000 tons from utilities about 275,000 tons from the pulp and paper industry and 100,000 tons from the woodworking industry. These quantities include unburned carbon, water added when the ash is extracted from the boilers etc. Additional quantities of ash are those produced by waste combustion (447,000 tons), wood-burning in residential buildings (50 - 100,000 tons) etc. In all, ash that may be recycled should total about 300,000 tons (Recyclable ash in t/a: Utilities - 80,000; Pulp and Paper Industry - 100-130,000; Woodworking Industry 100,000). Logging slash is seldom burned alone in the boilers at the utilities, but are almost always mixed with other wood fuel fractions such as waste from sawmills. The mixtures can be very complex. Clean mixtures of wood fuel fractions represent ca 4,500 GWh of the ca 7,800 GWh in this study. Other fuels that are often used in mixtures are peat and Salix, which does not necessarily lead

  1. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1.

    Science.gov (United States)

    Zhang, Yuanyuan; Liu, Junhong; Zhou, Yuanming; Gong, Tingyun; Wang, Jing; Ge, Yinlin

    2013-09-15

    Soil contamination is a global environmental problem and many efforts have been made to find efficient remediation methods over the last decade. Moreover, remediation of mixed contaminated soils are more difficult. In the present study, transgenic alfalfa plants pKHCG co-expressing glutathione S-transferase (GST) and human P450 2E1 (CYP2E1) genes were used for phytoremediation of mixed mercury (Hg)-trichloroethylene (TCE) contaminants. Simultaneous expression of GST and CYP2E1 may produce a significant synergistic effect, and leads to improved resistance and accumulation to heavy metal-organic complex contaminants. Based on the tolerance and accumulation assays, pKHCG transgenic plants were more resistant to Hg/TCE complex pollutants and many folds higher in Hg/TCE-accumulation than the non-transgenic control plants in mixed contaminated soil. It is confirmed that GST and CYP2E1 co-expression may be a useful strategy to help achieve mixed heavy metal-organic pollutants phytoremediation. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Summary report of bioassays for the city of Hollywood water plant membrane reject water as it mixed with WWTP effluent in an ocean outfall environment

    Energy Technology Data Exchange (ETDEWEB)

    Fergen, R.E.; Vinci, P.; Bloetscher, F.

    1999-07-01

    A special bioassay study was conducted to review the impact of the City of Hollywood's Membrane Softening Water Treatment Plant (WRP) reject water as it mixes with the City's Wastewater Treatment Plant (WWTP) effluent. Three sampling periods occurred during 1997. The purpose of this study was to determine potential toxicity of the WTP reject water, pre-chlorinated effluent, and combined effluent, and to demonstrate if the combined effluent was acceptable for ocean discharge on the basis of no potential toxicity. Effluent was acceptable for ocean discharge on the basis of no potential toxicity. Effluent samples were collected at six sampling points; three were in the plant, while the other three were along the outfall pipeline. Definitive, static renewal bioassay tests were performed using Mysidopsis bahia and Menidia beryllina as indicators of potential toxicity. The bioassay tests at 30% effluent concentration indicate that there is not potential toxicity for the pre-chlorinated WTP effluent, WTP reject water, dechlorinate combined effluent at the plant, and chlorinated combined effluent at Holland Park, the riser, and the terminus. The results indicate that the WTP reject water (100%) is not toxic to Menidia beryllina but was toxic to Mysidopsis bahia. When combined with the WWRP effluent, the reject water's impact on the potential toxicity of the commingled effluent was insignificant. All of the tests indicate the combined effluents are not toxic to the species tested at the 30% effluent level. Therefore, potential toxicity concerns were not demonstrated for this outfall discharge and did not prevent FDEP from issuing a permit to the City of Hollywood for the disposal of the combined effluent. Furthermore, these results, in combination with the previous results, indicated that individual bioassay testing for the reject water for regulatory compliance is not required.

  3. Electrokinetic Amendment in Phytoremediation of Mixed Contaminated Soil

    International Nuclear Information System (INIS)

    Chirakkara, Reshma A.; Reddy, Krishna R.; Cameselle, Claudio

    2015-01-01

    This study examines the effects of electrokinetic amendments for phytoremediation of mixed contaminated soil where typical silty clay soil was spiked with organic contaminants (naphthalene and phenanthrene) and heavy metal (lead, cadmium and chromium). The contaminated soil was treated with compost and placed in electrokinetic cells, which were seeded with oat plant or sunflower. Thirty days after germination, 25 V alternating current was applied to selected cells using graphite electrodes for 3 h per day. The plants were harvested after a growth period of 61 days. One cell remained unplanted to evaluate the effect of the electric current on the soil, alone. The results confirm a significant reduction of heavy metals and organic contaminants in soil. However, there was no noticeable improvement of heavy metal phytoextraction or PAH degradation due to the application of electric field despite the increase in biomass production by the plants subjected to the electric current. The electric potential application time and frequency are suggested to be increased to have noticeable effects in heavy metal uptake and PAHs degradation.

  4. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 3, Site specific---Illinois through New York

    International Nuclear Information System (INIS)

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE's mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: Argonne National Laboratory-East; Site A/plot M in Palos Forest Preserve, Illinois; Ames Laboratory; Paducah Gaseous Diffusion Plant; Portsmouth Naval Shipyard; Kansas City Plant; University of Missouri; Weldon Springs Site, St. Charles, Missouri; Nevada Test Site; Middlesex Sampling Plant, Middlesex, New Jersey; Princeton Plasma Physics Laboratory; LANL; Sandia national laboratory; Brookhaven National Laboratory; Colonie Interim Storage Site, Colonie, New York; Knolls Atomic Power Laboratory; Knolls Atomic Power Laboratory-Kesselring Site; and West Valley Demonstration Project

  5. Plutonium Finishing Plant (PFP) Treatment and Storage Unit Waste Analysis Plan

    International Nuclear Information System (INIS)

    PRIGNANO, A.L.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Plutonium Finishing Plant Treatment and Storage Unit (PFP Treatment and Storage Unit) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (4)(a) and (5). The PFP Treatment and Storage Unit is an interim status container management unit for plutonium bearing mixed waste radiologically managed as transuranic (TRU) waste. TRU mixed (TRUM) waste managed at the PFP Treatment and Storage Unit is destined for the Waste Isolation Pilot Plant (WIPP) and therefore is not subject to land disposal restrictions [WAC 173-303-140 and 40 CFR 268]. The PFP Treatment and Storage Unit is located in the 200 West Area of the Hanford Facility, Richland Washington (Figure 1). Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  6. European mixed forests

    DEFF Research Database (Denmark)

    Bravo-Oviedo, Andres; Pretzsch, Hans; Ammer, Christian

    2014-01-01

    Aim of study: We aim at (i) developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii) review the research perspectives in mixed forests. Area of study: The definition is developed in Europe but can be tested worldwide. Material...... and Methods: Review of existent definitions of mixed forests based and literature review encompassing dynamics, management and economic valuation of mixed forests. Main results: A mixed forest is defined as a forest unit, excluding linear formations, where at least two tree species coexist at any...... density in mixed forests, (iii) conversion of monocultures to mixed-species forest and (iv) economic valuation of ecosystem services provided by mixed forests. Research highlights: The definition is considered a high-level one which encompasses previous attempts to define mixed forests. Current fields...

  7. Pulse Jet Mixing Tests With Noncohesive Solids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro; Bailey, Sharon A.; Bower, John C.; Denslow, Kayte M.; Eakin, David E.; Elmore, Monte R.; Gauglitz, Phillip A.; Guzman, Anthony D.; Hatchell, Brian K.; Hopkins, Derek F.; Hurley, David E.; Johnson, Michael D.; Kirihara, Leslie J.; Lawler, Bruce D.; Loveland, Jesse S.; Mullen, O Dennis; Pekour, Mikhail S.; Peters, Timothy J.; Robinson, Peter J.; Russcher, Michael S.; Sande, Susan; Santoso, Christian; Shoemaker, Steven V.; Silva, Steve M.; Smith, Devin E.; Su, Yin-Fong; Toth, James J.; Wiberg, John D.; Yu, Xiao-Ying; Zuljevic, Nino

    2009-05-11

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important to release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy

  8. Single and mixed formulations of inoculants with diazotrophic bacteria, under different nitrogen rates and on the paddy rice crop

    Directory of Open Access Journals (Sweden)

    Paula Bianchet

    2013-12-01

    Full Text Available The use of diazotrophic bacteria as a biological input for the production of paddy rice can reduce nitrogen fertilizer applications and contribute to plant development. The use of mixed inoculants’ formulations can increase the efficiency of nitrogen fixation biological process. The objective of this study was to evaluate the effect of single and mixed formulations of inoculants with diazotrophic bacteria on the initial growth of paddy rice plants under different levels of N. The experiment was set in a greenhouse. Treatments consisted of four types of inoculation (no inoculation, inoculation with the isolated AI UDESC 27, inoculation with the isolated FE UDESC 22, and inoculation with the mixed formulation of isolated AI UDESC UDESC 27 and FE UDESC 22; and two levels of mineral nitrogen (30 and 60 mg kg-1 of N. The cultivar used was Epagri 109, which presents late maturity (over 140 days and high yield potential. Treatments were arranged in a factorial design (4 x 2 with five replicates. The experimental design was completely randomized. Inoculation with diazotrophic bacteria reduced by 18% and 26% shoot and root dry matter of rice plants, respectively. Plants also presented lower root area and volume when they were inoculated. There was no significant effect of inoculation and nitrogen rates on the number of leaves and tillers produced per plant or shoot nitrogen accumulation. The results showed that the isolated used in this work were not effective to stimulate shoot and root growth of cv Epagri 109, regardless of formulation type and rate of N.

  9. Planning of fuel coal imports using a mixed integer programming method

    Energy Technology Data Exchange (ETDEWEB)

    Shih, L.H. [National Cheng Kung University, Tainan (Taiwan). Dept. of Mineral and Petroleum Engineering

    1997-12-31

    In the public utility and commercial fuel industries, commodities from multiple supply sources are sometimes blended before use to reduce costs and assure quality. A typical example of these commodities is the fuel coal used in coal fired power plants. The diversity of the supply sources for these plants makes the planning and scheduling of fuel coal logistics difficult, especially for a power company that has more than one power plant. This study proposes a mixed integer programming model that provides planning and scheduling of coal imports from multiple suppliers for the Taiwan Power Company. The objective is to minimize total inventory cost by minimizing procurement cost, transportation cost and holding cost. Constraints on the system include company procurement policy, power plant demand, harbor unloading capacity, inventory balance equations, blending requirements, and safety stock. An example problem is presented using the central coal logistics system of the Taiwan Power Company to demonstrate the validity of the proposed model.

  10. Planning of fuel coal imports using a mixed integer programming method

    International Nuclear Information System (INIS)

    Shih, L.H.

    1997-01-01

    In the public utility and commercial fuel industries, commodities from multiple supply sources are sometimes blended before use to reduce costs and assure quality. A typical example of these commodities is the fuel coal used in coal fired power plants. The diversity of the supply sources for these plants makes the planning and scheduling of fuel coal logistics difficult, especially for a power company that has more than one power plant. This study proposes a mixed integer programming model that provides planning and scheduling of coal imports from multiple suppliers for the Taiwan Power Company. The objective is to minimize total inventory cost by minimizing procurement cost, transportation cost and holding cost. Constraints on the system include company procurement policy, power plant demand, harbor unloading capacity, inventory balance equations, blending requirements, and safety stock. An example problem is presented using the central coal logistics system of the Taiwan Power Company to demonstrate the validity of the proposed model

  11. Radionuclide emissions from a coal-fired power plant

    International Nuclear Information System (INIS)

    Amin, Y.M.; Uddin Khandaker, Mayeen; Shyen, A.K.S.; Mahat, R.H.; Nor, R.M.; Bradley, D.A.

    2013-01-01

    Current study concerns measurement of radioactivity levels in areas surrounding a 2420 MW thermal power plant fueled predominantly by bituminous coal. The concentrations of 226 Ra, 232 Th and 40 K in onsite bottom-ash were found to be 139 Bq/kg, 108 Bq/kg and 291 Bq/kg, respectively, the levels for these radiolnuclides in soil decreasing with distance from the power plant. At the plant perimeter the respective radionuclide concentrations were 87 Bq/kg, 74 Bq/kg and 297 Bq/kg. In a nearby town, the corresponding concentrations were 104 Bq/kg, 52 Bq/kg and 358 Bq/kg, suggestive of use of TENORM affected soils. The mean radium equivalent activities (Ra eq ) in soil and ash sample in the town were 205 Bq/kg and 316 Bq/kg, respectively. The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste. For the prevailing levels of exposure and a worst case senario, the predicted committed effective dose due to ingestion and inhalation for intake durations of 1- and 30 years would be 4.2 μSv and 220 μSv, respectively. - Highlights: • Detailed studies on naturally occuring radionuclide emissions due to a 2420 MW coal-fired power plant in Malaysia. • Assessment of radiation exposures to the public around the power plant due to an intake of the radionuclides. • The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. • The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste

  12. Mediated electrochemical oxidation as an alternative to incineration for mixed wastes

    International Nuclear Information System (INIS)

    Chiba, Z.; Schumacher, B.; Lewis, P.; Murguia, L.

    1995-02-01

    Mediated Electrochemical Oxidation (MEO) is an aqueous process which oxidizes organics electrochemically at low temperatures and ambient pressures. The process can be used to treat mixed wastes containing hazardous organics by destroying the organic components of the wastes. The radioactive components of the wastes are dissolved in the electrolyte where they can be recovered if desired, or immobilized for disposal. The process of destroying organics is accomplished via a mediator, which is in the form of metallic ions in solution. At Lawrence Livermore National Laboratory (LLNL) we have worked with worked with several mediators, including silver, cobalt and cerium. We have tested mediators in nitric as well as sulfuric acids. We have recently completed extensive experimental studies on cobalt-sulfuric acid and silver-nitric acid systems for destroying the major organic components of Rocky Flats Plant combustible mixed wastes. Organics tested were: Trimsol (a cutting oil), cellulose (including paper and cloth), rubber (latex), plastics (Tyvek, polyethylene and polyvinyl chloride) and biomass (bacteria). The process was capable of destroying almost all of the organics tested, attaining high destruction efficiencies at reasonable coulombic efficiencies. The only exception was polyvinyl chloride, which was destroyed very slowly resulting in poor coulombic efficiencies. Besides the process development work mentioned above, we are working on the design of a pilot-plant scale integrated system to be installed in the Mixed Waste Management Facility (MWMF) at LLNL. The system will also be completely integrated with upstream and downstream processes (for example, feed preparation, off-gas and water treatment, and final forms encapsulation). The conceptual design for the NEO-MWMF system has been completed and preliminary design work has been initiated. Demonstration of the process with low-level mixed wastes is expected to commence in 1998

  13. EFFECT OF MULCH AND MIXED CROPPING GRASS - LEGUME AT SALINE SOIL ON GROWTH, FORAGE YIELD AND NUTRITIONAL QUALITY OF GUINEA GRASS

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The research was conducted to evaluate the effect of mulch and mixed cropping grass – legume atsaline soil on growth, forage yield and nutritional quality of guinea grass. Saline soil used in thisresearch was classified into strongly saline soil with low soil fertility. The research was arrranged inrandomized complete block design with 3 blocks. The treatments were : M1 = guinea grassmonoculture, without mulch; M2 = guinea grass monoculture, 3 ton/ha mulch; M3 = guinea grassmonoculture, 6 ton/ha mulch, M4 = mixed cropping grass with Sesbania grandiflora, without mulch;M5 = mixed cropping grass with Sesbania grandiflora, 3 ton/ha mulch; M6 = mixed cropping grass withSesbania grandiflora, 6 ton/ha mulch. Data were analyzed using analysis of variance, then followed byDuncan's Multiple Range Test. The highest soil moisture content was achieved at mixed cropping grasslegumewith 6 ton/ha of mulch. The effect of mulch at saline soil significantly increased plant growth,forage yield and nutritional quality of guinea grass. Application of 3 ton/ha mulch increased plantgrowth, forage yield and nutritional quality of guinea grass. Plant growth, forage yield and nutritionalquality of guinea grass were not affected by monoculture or mixed cropping with Sesbania at saline soil.

  14. Experimental and computational fluid dynamic studies of mixing for complex oral health products

    Science.gov (United States)

    Garcia, Marti Cortada; Mazzei, Luca; Angeli, Panagiota

    2015-11-01

    Mixing high viscous non-Newtonian fluids is common in the consumer health industry. Sometimes this process is empirical and involves many pilot plants trials which are product specific. The first step to study the mixing process is to build on knowledge on the rheology of the fluids involved. In this research a systematic approach is used to validate the rheology of two liquids: glycerol and a gel formed by polyethylene glycol and carbopol. Initially, the constitutive equation is determined which relates the viscosity of the fluids with temperature, shear rate, and concentration. The key variable for the validation is the power required for mixing, which can be obtained both from CFD and experimentally using a stirred tank and impeller of well-defined geometries at different impeller speeds. A good agreement between the two values indicates a successful validation of the rheology and allows the CFD model to be used for the study of mixing in the complex vessel geometries and increased sizes encountered during scale up.

  15. Use of mixed labelling in kinetic studies of phosphorus metabolism in plants

    International Nuclear Information System (INIS)

    Hanker, I.

    1984-01-01

    A modified method of mixed labelling with radionuclides 33 P and 32 P (a modification of ''pulse chase-labelling'') is briefly described. After separation of the different fractions of phosphorus or individual Psub(i)-metabolites and after measurement of their activities, the ratios 32 P/ 33 P (i.e., their relative specific activities, RSA) were determined. The RSA values obtained under suitable experimental conditions yield information on the metabolic turnover of the P-compound or P-fraction under investigation. (author)

  16. A mixing-model approach to quantifying sources of organic matter to salt marsh sediments

    Science.gov (United States)

    Bowles, K. M.; Meile, C. D.

    2010-12-01

    Salt marshes are highly productive ecosystems, where autochthonous production controls an intricate exchange of carbon and energy among organisms. The major sources of organic carbon to these systems include 1) autochthonous production by vascular plant matter, 2) import of allochthonous plant material, and 3) phytoplankton biomass. Quantifying the relative contribution of organic matter sources to a salt marsh is important for understanding the fate and transformation of organic carbon in these systems, which also impacts the timing and magnitude of carbon export to the coastal ocean. A common approach to quantify organic matter source contributions to mixtures is the use of linear mixing models. To estimate the relative contributions of endmember materials to total organic matter in the sediment, the problem is formulated as a constrained linear least-square problem. However, the type of data that is utilized in such mixing models, the uncertainties in endmember compositions and the temporal dynamics of non-conservative entitites can have varying affects on the results. Making use of a comprehensive data set that encompasses several endmember characteristics - including a yearlong degradation experiment - we study the impact of these factors on estimates of the origin of sedimentary organic carbon in a saltmarsh located in the SE United States. We first evaluate the sensitivity of linear mixing models to the type of data employed by analyzing a series of mixing models that utilize various combinations of parameters (i.e. endmember characteristics such as δ13COC, C/N ratios or lignin content). Next, we assess the importance of using more than the minimum number of parameters required to estimate endmember contributions to the total organic matter pool. Then, we quantify the impact of data uncertainty on the outcome of the analysis using Monte Carlo simulations and accounting for the uncertainty in endmember characteristics. Finally, as biogeochemical processes

  17. Analysis and modelling of the energy consumption of chemical batch plants

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes two different approaches for the energy analysis and modelling of chemical batch plants. A top-down model consisting of a linear equation based on the specific energy consumption per ton of production output and the base consumption of the plant is postulated. The model is shown to be applicable to single and multi-product batches for batch plants with constant production mix and multi-purpose batch plants in which only similar chemicals are produced. For multipurpose batch plants with highly varying production processes and changing production mix, the top-down model produced inaccurate results. A bottom-up model is postulated for such plants. The results obtained are discussed that show that the electricity consumption for infrastructure equipment was significant and responsible for about 50% of total electricity consumption. The specific energy consumption for the different buildings was related to the degree of automation and the production processes. Analyses of the results of modelling are presented. More detailed analyses of the energy consumption of this apparatus group show that about 30 to 40% of steam energy is lost and thus a large potential for optimisation exists. Various potentials for making savings, ranging from elimination of reflux conditions to the development of a new heating/cooling-system for a generic batch reactor, are identified.

  18. Mineralization of Surfactants by Microbiota of Aquatic Plants

    OpenAIRE

    Federle, Thomas W.; Schwab, Burney S.

    1989-01-01

    The biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) by the microbiota associated with duckweed (Lemna minor) and the roots of cattail (Typha latifolia) was investigated. Plants were obtained from a pristine pond and a pond receiving wastewater from a rural laundromat. Cattail roots and duckweed plants were incubated in vessels containing sterile water amended with [14C]LAS, [14C]LAE, or 14C-labeled mixed amino acids (MAA). Evolution of 14CO2 was deter...

  19. Hybrid electrokinetic method applied to mix contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, H.; Maria, E. [Dept. of Building Civil and Environmental Engineering, Concordia Univ., Montreal (Canada)

    2001-07-01

    Several industrials and municipal areas in North America are contaminated with heavy metals and petroleum products. This mix contamination presents a particularly difficult task for remediation when is exposed in clayey soil. The objective of this research was to find a method to cleanup mix contaminated clayey soils. Finally, a multifunctional hybrid electrokinetic method was investigated. Clayey soil was contaminated with lead and nickel (heavy metals) at the level of 1000 ppm and phenanthrene (PAH) of 600 ppm. Electrokinetic surfactant supply system was applied to mobilize, transport and removal of phenanthrene. A chelation agent (EDTA) was also electrokinetically supplied to mobilize heavy metals. The studies were performed on 8 lab scale electrokinetic cells. The mix contaminated clayey soil was subjected to DC total voltage gradient of 0.3 V/cm. Supplied liquids (surfactant and EDTA) were introduced in different periods of time (22 days, 42 days) in order to optimize the most excessive removal of contaminants. The ph, electrical parameters, volume supplied, and volume discharged was monitored continuously during each experiment. At the end of these tests soil and cathalyte were subjected to physico-chemical analysis. The paper discusses results of experiments including the optimal energy use, removal efficiency of phenanthrene, as well, transport and removal of heavy metals. The results of this study can be applied for in-situ hybrid electrokinetic technology to remediate clayey sites contaminated with petroleum product mixed with heavy metals (e.g. manufacture Gas Plant Sites). (orig.)

  20. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria

    Directory of Open Access Journals (Sweden)

    Xuezhu Zhu

    2016-08-01

    Full Text Available Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P1 (Stenotrophomonas sp. and P3 (Pseudomonas sp., which degraded more than 90% of phenanthrene (PHE within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP, PHE, fluorene (FLR, pyrene (PYR, and benzo(apyrene (B(aP as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P1 degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(aP, and strain P3 degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(aP. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days. Compared with strain P1, strain P3 has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria.

  1. Pressure suppression pool mixing in passive advanced BWR plants

    International Nuclear Information System (INIS)

    Gamble, Robert E.; Nguyen, Thuy T.; Shiralkar, Bharat S.; Peterson, Per F.; Greif, Ralph; Tabata, H.

    2001-01-01

    In the SBWR passive boiling water reactor, the long-term post-accident containment pressure is determined by the combination of noncondensible gas pressure and steam pressure in the wetwell gas space. The suppression pool (SP) surface temperature, which determines the vapor partial pressure, is very important to overall containment performance. Therefore, the thermal stratification of the SP due to blowdown is of primary importance. This work looks at the various phases and phenomena present during the blowdown event and identifies those that are important to thermal stratification, and the scaling necessary to model them in reduced size tests. This is important in determining which of the large body of blowdown to SP data is adequate for application to the stratification problem. The mixing by jets from the main vents is identified as the key phenomena influencing the thermal response of the suppression pool and analytical models are developed to predict the jet influence on thermal stratification. The analytical models are implemented into a system simulation code, TRACG, and used to model thermal stratification behavior in a scaled test facility. The results show good general agreement with the test data

  2. MOBILE MORTAR CONCRETE PLANTS FOR BUILDING COMPLEX OF BELARUS: ADVANTAGES AND DISADVANTAGES

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2015-01-01

    Full Text Available The paper considers main advantages and disadvantages of mobile mortar concrete plants in comparison with stationary concrete mixing units. The main idea of the mobility is to provide quick movement. In its turn, this approach imposes some restrictions on dimensions and weights of concrete mixing equipment. However in the context of the concrete mixing equipment and construction site as whole the mobility concept is considered in the form of three components: minimum expenses on site preparation for assembly of a mortar concrete plant, transportability, reduction in installation and startand-adjustment periods. In this regard processing chain for production of concrete and mortar mixes is divided in separate complete operations. Then it is necessary to develop modules which are performing the required operations. Every module is developed in accordance with the size of a shipping container in order to make transportation convenient. Detachable connections are stipulated in the place of module linkages, electrical wiring, pipelines for supply water and chemical admixtures, pneumatics. Henceforth, these connections make it possible to reduce time for on-site assembly and disassembly of the equipment.The paper presents a mobile mortar concrete unit of block-module arrangement which has been developed within the framework of the State Scientific Research Programme at the BNTU. The unit has been manufactured using production capacities of JSC “Viprotekh” and it has been successfully introduced in production process. One of the promising directions is to use the mobile mortar concrete plants which are located and which are operating directly on construction sites. Their economic efficiency becomes higher with an increase of distance to the nearest stationary mortar concrete unit and scope of concreting works. Mobile mortar concrete plants are mainly intended for construction organizations which are realizing construction projects away from urban

  3. Absorption of ozone, sulfur dioxide, and nitrogen dioxide by petunia plants

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1981-01-01

    Petunia plants (Petunia hybrida Vilm.) of three varieties with differing air pollutant sensitivities were grown in controlled environments and the absorption rates of ozone (O/sub 3/), sulfur dioxide (SO/sub 2/) and nitrogen dioxide (NO/sub 2/) determined during single gas and mixed gas exposures. Additional experiments were conducted to evaluate effects of duration of exposure, leaf age, and plant growth stage on absorption of O/sub 3/. Absorption of all pollutants from single gases or the mixture was generally greater for the more sensitive varieties. Absorption from single gases was generally greater than from the mixed gases. Absorption rates tended to decrease gradually throughout the day and from day to day with continuous exposure. Absorption of O/sub 3/ was proportional to exposure concentration and decreased with time at differing rates for each variety. More O/sub 3/ was absorbed by older than younger leaves and by plants at the early vegetative stage compared with those in the prefloral stage.

  4. Mixing it but not mixed-up: mixed methods research in medical education (a critical narrative review).

    Science.gov (United States)

    Maudsley, Gillian

    2011-01-01

    Some important research questions in medical education and health services research need 'mixed methods research' (particularly synthesizing quantitative and qualitative findings). The approach is not new, but should be more explicitly reported. The broad search question here, of a disjointed literature, was thus: What is mixed methods research - how should it relate to medical education research?, focused on explicit acknowledgement of 'mixing'. Literature searching focused on Web of Knowledge supplemented by other databases across disciplines. Five main messages emerged: - Thinking quantitative and qualitative, not quantitative versus qualitative - Appreciating that mixed methods research blends different knowledge claims, enquiry strategies, and methods - Using a 'horses for courses' [whatever works] approach to the question, and clarifying the mix - Appreciating how medical education research competes with the 'evidence-based' movement, health services research, and the 'RCT' - Being more explicit about the role of mixed methods in medical education research, and the required expertise Mixed methods research is valuable, yet the literature relevant to medical education is fragmented and poorly indexed. The required time, effort, expertise, and techniques deserve better recognition. More write-ups should explicitly discuss the 'mixing' (particularly of findings), rather than report separate components.

  5. Influence of weight and type of planting material on fruit quality and its heterogeneity in pineapple [Ananas comosus (L.) Merrill].

    Science.gov (United States)

    Fassinou Hotegni, V Nicodème; Lommen, Willemien J M; Agbossou, Euloge K; Struik, Paul C

    2014-01-01

    Cultural practices can affect the quality of pineapple fruits and its variation. The objectives of this study were to investigate (a) effects of weight class and type of planting material on fruit quality, heterogeneity in quality and proportion and yield of fruits meeting European export standards, and (b) the improvement in quality, proportion and yield of fruits meeting export standards when flowering was induced at optimum time. Experiments were conducted in Benin with cvs Sugarloaf (a Perola type) and Smooth Cayenne. In cv. Sugarloaf, experimental factors were weight class of planting material (light, mixed, heavy) and time of flowering induction (farmers', optimum) (Experiment 1). In cv. Smooth Cayenne an additional experimental factor was the type of planting material (hapas, ground suckers, a mixture of the two) (Experiment 2). Fruits from heavy planting material had higher infructescence and fruit weights, longer infructescences, shorter crowns, and smaller crown: infructescence length than fruits from light planting material. The type of planting material in Experiment 2 did not significantly affect fruit quality except crown length: fruits from hapas had shorter crowns than those from ground suckers. Crops from heavy planting material had a higher proportion and yield of fruits meeting export standards than those from other weight classes in Experiment 1 only; also the type of planting material in Experiment 2 did not affect these variates. Heterogeneity in fruit quality was usually not reduced by selecting only light or heavy planting material instead of mixing weights; incidentally the coefficient of variation was significantly reduced in fruits from heavy slips only. Heterogeneity was also not reduced by not mixing hapas and ground suckers. Flowering induction at optimum time increased the proportion and yield of fruits meeting export standards in fruits from light and mixed slip weights and in those from the mixture of heavy hapas plus ground suckers.

  6. Community-level plant-soil feedbacks explain landscape distribution of native and non-native plants.

    Science.gov (United States)

    Kulmatiski, Andrew

    2018-02-01

    Plant-soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short-term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non-native species, or a mixed plant community in different plots in a common-garden experiment. After 4 years, plants were removed and one native and one non-native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non-native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non-native, Centaurea diffusa , and non-native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata . Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common-garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non-native plant community on non-native soils. In contrast, when PSF effects were removed, the model predicted that non-native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank-order abundance of native and non-native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors

  7. Generation of floor response spectra for mixed-oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Arthur, D.F.; Murray, R.C.; Tokarz, F.J.

    1975-01-01

    Floor or amplified response spectra are generally used as input motion for seismic analysis of critical equipment and piping in nuclear power plants and related facilities. The floor spectra are normally the result of a time-history calculation of building response to ground shaking. However, alternate approximate methods have been suggested by both Kapur and Biggs. As part of a study for the Nuclear Regulatory Commission horizontal floor response spectra were generated and compared by all three methods. The dynamic analyses were performed on a model of the Westinghouse Recycle Fuels Plant Manufacturing Building (MOFFP). Input to the time-history calculations was a synthesized accelerogram whose response spectrum is similar to that in Regulatory Guide 1.60. The response spectrum of the synthetic ground motion was used as input to the Kapur and Biggs methods. Calculations were performed for both hard (3500 fps) and soft (1500 fps) foundation soils. Results of comparison of the three methods indicate that although the approximate methods could easily be made acceptable from a safety standpoint, they would be overly conservative. The time-history method will yield floor spectra which are less uncertain and less conservative for a relatively modest additional effort. (auth)

  8. Computational Fluid Dynamics Modeling Of Scaled Hanford Double Shell Tank Mixing - CFD Modeling Sensitivity Study Results

    International Nuclear Information System (INIS)

    Jackson, V.L.

    2011-01-01

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

  9. Mixed waste characterization reference document

    International Nuclear Information System (INIS)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization

  10. Steam Reforming of Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  11. Mixing quality characterization in separations process tanks

    International Nuclear Information System (INIS)

    Hassan, N.M.

    1995-01-01

    An experimental study has been performed on distribution of a dilute immiscible organic liquid dispersed in an aqueous phase contained baffled, paddle-agitated vessel, fitted with cooling coils. Acceptable total liquid levels in the vessel and minimum impeller speed were established for plant scale operation. Axial and radial distributions of the dispersed organic phase as functions of total liquid height, impeller speed, and the number of impellers were examined and some recurring trends were identified. Four stages of dispersion of organic phase in predominantly aqueous phase were identified with increasing rotational speed of impeller(s). The stages were: (1) non-dispersion stage in which the organic layer was undisturbed, (2) the organic layer was decreasing with impeller speed until complete but nonuniform dispersion was attained, (3) the non-uniformity of the completely dispersed mixture decreased with increasing rotational speed of impeller(s), and (4) a grossly uniform dispersion in which the local volume fraction of dispersed phase (organic) in mixture was the same throughout the vessel. Scale-up relations were developed for reproducing a defined mixing quality on two geometrically similar scales of operation, for the attainable condition of complete but non-uniform dispersion. The mixing quality was observed to decrease with increasing liquid depth over acceptable range, but variations in the overall concentration of organic liquid appeared to have only slight effect on the mixing quality

  12. Stabilization of mixed waste - Rocky Flats solar ponds

    International Nuclear Information System (INIS)

    Bittner, T.A.; Mathew, S.A.; Henderson, W.C.

    1993-01-01

    Among the wastes that require disposal as part of the Department of Energy's (DOE's) Environmental Restoration Program are large amounts of contaminated sludge and inorganic wastes. Halliburton NUS Corporation was awarded a contract by EG ampersand G Rocky Flats in March 1991 to stabilize mixed waste sludge contained in five solar evaporator ponds and to reprocess billets of solidified waste called Pondcrete and Saltcrete at DOE's Rocky Flats Plant. The scope of the project consists of waste characterization and treatability studies for process development, followed by design, construction and operation of various process trains to remediate different waste forms ranging from solid Pondcrete/Saltcrete blocks to aqueous brine solutions. One of the significant advances made was the development of a durable and certifiable stabilization formulation capable of treating concentrated nitrate solution wastes. The project uses high-volume grout mixing and pumping technologies with process control techniques that accommodate the heterogeneity of the wastes. To comply with all relevant environmental regulations and to provide a safe working atmosphere for plant personnel, Halliburton NUS designed process trains such that all emissions were eliminated during the remediation process. Personnel protection equipment requirements have been downgraded due to safeguards incorporated in the design. The technical and regulatory issues that were encountered would be typical of stabilization efforts underway at other DOE sites. Thus the lessons learned and concepts developed can be expected to have widespread application

  13. Salmonella Radicidation of Dry Mixed Feeds and Feed Ingredients

    Energy Technology Data Exchange (ETDEWEB)

    Mossel, D. A.A. [Central Institute for Nutrition and Food Research TNO, Zeist (Netherlands); San Marcos University, Lima (Peru)

    1967-11-15

    Feed components contaminated with salmonellae act as vehicles in the transmission of these bacteria to slaughter animals and hence to meat and poultry. Terminal decontamination of ingredients or mixed feed seems required because sanitary improvements in processing, bagging and storage do not always appear effective in considerably reducing salmonella contamination rates. Experiments were carried out to assay the decontamination effect of pelletization of mixed feed. Enumeration of enterobacteriaceae was used as the analytical criterion. It appeared that a temperature over 80 Degree-Sign C generally led to five decimal reductions in enterobacteriaceae counts; however, also currently used lower temperatures may bring about two decimal reductions only. Following earlier experiments with fish meal, range finding tests on the decontamination of mixed feed with {sup 60}Co gamma rays were also performed. To achieve five decimal reductions in the counts of the most resistant enterobacteriaceae which were encountered about 0.5 Mrad was required; survival curves were generally not linear, so that overall effective dose had to be used as a parameter. Feeding experiments with rats, using 35% fish meal irradiated at 0.8 Mrad in the diet for two years, demonstrated that neither losses of nutritive value nor the occurrence of orally toxic factors is effected by such an irradiation treatment. It is recommended that pilot plant tests be carried out. In these tests an attempt should be made to combine improved sanitation and pelletizing with a terminal radiation treatment of the bagged material with the lowest dose required. Such tests should preferably be carried out in suitable areas of countries like Peru or Chile. A brief outline is given of the development work and training of scientific and technical staff that should be carried out during the installation of such a pilot plant. (author)

  14. Microbial Fuel Cells using Mixed Cultures of Wastewater for Electricity Generation

    International Nuclear Information System (INIS)

    Zain, S.M; Roslani, N.S.; Hashim, R.; Anuar, N.; Suja, F.; Basi, N.E.A.; Anuar, N.; Daud, W.R.W.

    2011-01-01

    Fossil fuels (petroleum, natural gas and coal) are the main resources for generating electricity. However, they have been major contributors to environmental problems. One potential alternative to explore is the use of microbial fuel cells (MFCs), which generate electricity using microorganisms. MFCs uses catalytic reactions activated by microorganisms to convert energy preserved in the chemical bonds between organic molecules into electrical energy. MFC has the ability to generate electricity during the wastewater treatment process while simultaneously treating the pollutants. This study investigated the potential of using different types of mixed cultures (raw sewage, mixed liquor from the aeration tank and return waste activated sludge) from an activated sludge treatment plant in MFCs for electricity generation and pollutant removals (COD and total kjeldahl nitrogen, TKN). The MFC in this study was designed as a dual-chambered system, in which the chambers were separated by a Nafion TM membrane using a mixed culture of wastewater as a bio catalyst. The maximum power density generated using activated sludge was 9.053 mW/ cm 2 , with 26.8 % COD removal and 40 % TKN removal. It is demonstrated that MFC offers great potential to optimize power generation using mixed cultures of wastewater. (author)

  15. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-06-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity

  16. Operation and Licensing of Mixed Cores in Water Cooled Reactors

    International Nuclear Information System (INIS)

    2013-11-01

    Nuclear fuel is a highly complex material that is subject to continuous development and is produced by a range of manufacturers. During operation of a nuclear power plant, the nuclear fuel is subject to extreme conditions of temperature, corroding environment and irradiation, and many different designs of fuel have been manufactured with differing fuel materials, cladding materials and assembly structure to ensure these conditions. The core of an operating power plant can contain hundreds of fuel assemblies, and where there is more than a single design of a fuel assembly in the core, whether through a change of fuel vendor, introduction of an improved design or for some other reason, the core is described as a mixed core. The task of ensuring that the different assembly types do not interact in a harmful manner, causing, for example, differing flow resistance resulting in under cooling, is an important part of ensuring nuclear safety. This report has compiled the latest information on the operational experience of mixed cores and the tools and techniques that are used to analyse the core operation and demonstrate that there are no safety related problems with its operation. This publication is a result of a technical meeting in 2011 and a series of consultants meetings

  17. Evapotranspiration in three plant communities of a Rhigozum ...

    African Journals Online (AJOL)

    Evapotranspiration losses in three Rhigozum trichotomum plant communities namely, pure grass, pure R. trichotomum and a mixed stand of grass and R. trichotomum were determined during the 1985-86 growing season. Three hydrologically isolated plots in each community type were irrigated and changes in soil water ...

  18. Study of thermal stratification and mixing using PIV

    International Nuclear Information System (INIS)

    Yamaji, B.; Szijarto, R.; Aszodi, A.

    2010-01-01

    Paks Nuclear Power Plant uses the REMIX code for the calculation of the coolant mixing in case of the use of high pressure injection system while stagnating flow is present. The use of the code for Russian type WWER-440 reactors needs strict conservative approach, and in several cases the accuracy and the reserves to safety margins cannot be determined now. In order to quantify and improve these characteristics experimental validation of the code is needed. An experimental program has been launched at Institute of Nuclear Techniques with the aim of investigating thermal stratification processes and the mixing of plumes in simple geometries. With the comparison and evaluation of measurement and computational fluid dynamics result computational models can be validated. For the experiments a simple hexahedral plexiglas tank (250 x 500 x 100 mm - H x L x D) was fabricated with five nozzles attached, which can be set up as inlets or outlets. With different inlet and outlet setups and temperature differences thermal stratification, plume mixing may be investigated using Particle Image Velocimetry. In the paper comparison of Particle Image Velocimetry measurements carried out on the plexiglas tank and the results of simulations will be presented. For the calculations the ANSYS CFX three-dimensional computational fluid dynamics code was used. (Authors)

  19. Effect of Mixing Process on Polypropylene Modified Bituminous Concrete Mix Properties

    OpenAIRE

    Noor Zainab Habib; Ibrahim Kamaruddin; Madzalan Napiah; Isa Mohd Tan

    2011-01-01

    This paper presents a research conducted to investigate the effect of mixing process on polypropylene (PP) modified bitumen mixed with well graded aggregate to form modified bituminous concrete mix. Two mode of mixing, namely dry and wet with different concentration of polymer polypropylene was used with 80/100 pen bitumen, to evaluate the bituminous concrete mix properties. Three percentages of polymer varying from 1-3% by the weight of bitumen was used in this study. Three mixes namely cont...

  20. Large eddy simulation on thermal fluid mixing in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, R.; Laurien, E. [Stuttgart Univ. (Germany). Inst fuer Kernenergie und Energiesysteme (IKE)

    2014-11-15

    High cycle thermal fatigue damage caused in piping systems is an important problem encountered in the context of nuclear safety and lifetime management of a Nuclear Power Plant (NPP). The T-junction piping system present in the Residual Heat Removal System (RHRS) is more vulnerable to thermal fatigue cracking. In this numerical study, thermal mixing of fluids at temperature difference (?T) of 117 K between the mixing fluids is analyzed. Large Eddy Simulation (LES) is performed with conjugate heat transfer between the fluid and structure. LES is performed based on the Fluid-Structure Interaction (FSI) test facility at University of Stuttgart. The results show an intense turbulent mixing of fluids downstream of T-junction. Amplitude of temperature fluctuations near the wall region and its corresponding frequency distribution is analyzed. LES is performed using commercial CFD software ANSYS CFX 14.0.

  1. Symbiotic dinitrogen fixation measurement in vetch-barley mixed swards using {sup 15} N methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kurdali, F; Sharabi, N E [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Radiation Agriculture

    1995-01-01

    Field experiment on vetch and barley grown in monoculture and in mixed culture (3:1) under rain-fed conditions was conducted in 1991-1992 and 1992-1993 growing season. Three harvests were effectuated on one treatment throughout the growing season. Our results showed the importance of mixed cropping system of vetch and barley grown under rain fed conditions in terms of dry matter production, total nitrogen content and land use efficiency expressed as land equivalent ration (L.E.R). This advantage is clear in the plants harvested once at the end of the season. Therefore, it is important to grow legumes and cereals under rain fed conditions and to be left until late stage of growth and fed by animals directly. On the other hand, only two harvests could be done in the season with no additional harvests because this may weaken the plant growth, and as a result of the last approach we obtained poor production due to unpredicated an appropriate rain fall after the second harvest (April). Nitrogen fixation efficiency in vetch measured by {sup 1 5} N isotope dilution method varied with the number of harvests and the procedure adopted in culture. Comparing the results of %Ndfa of vetch between monoculture and mixed culture showed that the values in most cases were higher in mixed culture. The competition between vetch and barley in the mixed stand for soil N-uptake made the barley supplements its N requirements from soil. The poor competitiveness of vetch capability for soil N-uptake enhanced it to fix more nitrogen. On the other hand, N residual after harvest was higher in the mixed treatment than the others. Positive and high final nitrogen balance were observed with the inclusion of vetch in the mixture. We excluded, under the current experimental conditions, the possibility of N-transfer from vetch to barley due to the insignificant differences in the value of {sup 1 5} N atom excess for barley between the two types of farming. 35 refs., 2 figs., 15 tabs.

  2. Coupled large-eddy simulation of thermal mixing in a T-junction

    International Nuclear Information System (INIS)

    Kloeren, D.; Laurien, E.

    2011-01-01

    Analyzing thermal fatigue due to thermal mixing in T-junctions is part of the safety assessment of nuclear power plants. Results of two large-eddy simulations of mixing flow in a T-junction with coupled and adiabatic boundary condition are presented and compared. The temperature difference is set to 100 K, which leads to strong stratification of the flow. The main and the branch pipe intersect horizontally in this simulation. The flow is characterized by steady wavy pattern of stratification and temperature distribution. The coupled solution approach shows highly reduced temperature fluctuations in the near wall region due to thermal inertia of the wall. A conjugate heat transfer approach is necessary in order to simulate unsteady heat transfer accurately for large inlet temperature differences. (author)

  3. Do rock fragments participate to plant water and mineral nutrition?

    Science.gov (United States)

    Korboulewsky, Nathalie; Tétégan, Marion; Besnault, Adeline; Cousin, Isabelle

    2010-05-01

    Rock fragments modify soil properties, and can be a potential reservoir of water. Besides, recent studies showed that this coarse soil fraction is chemically active, release nutrients, and could therefore be involved in biogeochemical nutrient cycles. However, these studies carried out on rock fragments, crushed pebbles or mineral particles do not answer the question whether the coarse soil fraction has significant nutritive functions. Only a couple of studies were conducted on plants, one on grass and the other on coniferous seedlings. This present work attempted to assess if pebbles may act as water and nutrient sources for poplar saplings, a deciduous species. Remoulded soils were set up in 5 L-pots with three percentages of pebbles: 0, 20, and 40% in volume. We used, as substrate either fine earth or sand (quartz), and as rock fragments either calcareous or inert pebbles (quartz). Additional modalities were settled with sand mixed with 20 and 40% pebbles enriched with nutrients. Both fine earth and calcareous pebbles were collected from the Ap horizon of a calcareous lacustrine limestone silty soil located in the central region of France. After cleaning, all pebbles were mixed to reach a bulk density in pots of 1.1 g/cm3 for the fine earth and 1.5 g/cm3 for the sand. Ten replicates were settled per modality, and one cutting of Populus robusta was planted in each. The experiment was conducted under controlled conditions. All pots were saturated at the beginning of the experiment, then irrigated by capillarity and controlled to maintain a moderate water stress. Growth and evapotranspiration were followed regularly, while water stress status was measured by stomatal conductivity every day during two drying periods of 10 days. After three months, plants were collected, separated in below- and above-ground parts for biomass and cation analysis (Ca, Mg, K). Results showed that pebbles can participate to plant nutrition, but no reduction of water stress was observed

  4. Dissolution studies with pilot plant and actual INTEC calcines

    International Nuclear Information System (INIS)

    Herbst, R.S.; Garn, T.G.

    1999-01-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive Al(NO 3 ) 3 solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated >95 wt.% of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt.% dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt.% dissolution, a result consistent with previous studies using other similar types of pilot plant calcines

  5. Process auditing and performance improvement in a mixed wastewater-aqueous waste treatment plant.

    Science.gov (United States)

    Collivignarelli, Maria Cristina; Bertanza, Giorgio; Abbà, Alessandro; Damiani, Silvestro

    2018-02-01

    The wastewater treatment process is based on complex chemical, physical and biological mechanisms that are closely interconnected. The efficiency of the system (which depends on compliance with national regulations on wastewater quality) can be achieved through the use of tools such as monitoring, that is the detection of parameters that allow the continuous interpretation of the current situation, and experimental tests, which allow the measurement of real performance (of a sector, a single treatment or equipment) and comparison with the following ones. Experimental tests have a particular relevance in the case of municipal wastewater treatment plants fed with a strong industrial component and especially in the case of plants authorized to treat aqueous waste. In this paper a case study is presented where the application of management tools such as careful monitoring and experimental tests led to the technical and economic optimization of the plant: the main results obtained were the reduction of sludge production (from 4,000 t/year w.w. (wet weight) to about 2,200 t/year w.w.) and operating costs (e.g. from 600,000 €/year down to about 350,000 €/year for reagents), the increase of resource recovery and the improvement of the overall process performance.

  6. Mixed-mode modelling mixing methodologies for organisational intervention

    CERN Document Server

    Clarke, Steve; Lehaney, Brian

    2001-01-01

    The 1980s and 1990s have seen a growing interest in research and practice in the use of methodologies within problem contexts characterised by a primary focus on technology, human issues, or power. During the last five to ten years, this has given rise to challenges regarding the ability of a single methodology to address all such contexts, and the consequent development of approaches which aim to mix methodologies within a single problem situation. This has been particularly so where the situation has called for a mix of technological (the so-called 'hard') and human­ centred (so-called 'soft') methods. The approach developed has been termed mixed-mode modelling. The area of mixed-mode modelling is relatively new, with the phrase being coined approximately four years ago by Brian Lehaney in a keynote paper published at the 1996 Annual Conference of the UK Operational Research Society. Mixed-mode modelling, as suggested above, is a new way of considering problem situations faced by organisations. Traditional...

  7. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 2, Site specific---California through Idaho

    International Nuclear Information System (INIS)

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provide site-specific information on DOE's mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: eight California facilities which are Energy Technology engineering Center, General Atomics, General Electric Vallecitos Nuclear Center, Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, Laboratory for Energy-Related Health Research, Mare Island Naval Shipyard, and Sandia national Laboratories; Grand Junction Project Office; Rocky Flats Plant; Knolls Atomic Power Laboratory-Windsor Site; Pinellas Plant; Pearl Harbor Naval Shipyard; Argonne National Laboratory-West; and Idaho National Engineering Laboratory

  8. Harmonisation and updatability based on valid fundamental data of the German electricity mix. 3. rev. ed.

    International Nuclear Information System (INIS)

    Viebahn, Peter; Patyk, Andreas; Fritsche, Uwe R.

    2008-01-01

    Almost every product requires electricity for its manufacture, and the electricity mix used for this is a point of interest in life cycle assessments. Energy-related processes play an important role in life cycle assessments, which in turn are of major significance for product valuations. The Life Cycle Data Network has now carried out a study dedicated to generating a fundamental data record on ''Germany's electricity mix'' which describes the electricity mix supplied by German public power plants. This is the first time that a standardised data record has been made available which was compiled by common accord of all players concerned, whose data stem from quality assured sources and which can be updated year by year. (orig./GL)

  9. Effect of planting patterns on dinitrogen fixation of alfalfa and transfer of N fixed

    International Nuclear Information System (INIS)

    Yao Yunyin; Chen Ming; Zhang Xizhong

    1993-01-01

    Contribution of symbiotic nitrogen fixation of alfalfa grown with different planting patterns was studied in a field experiment. %Ndfa and Ndfa in alfalfa and N transferred from alfalfa in meadow fescue were examined by 2 kinds of 15 N tracer techniques. The superiority of mixed culture of legumes with grasses to monoculture was influenced by planting patterns. Biomass in a mixed culture was related to proportion of alfalfa in it. The proportion of alfalfa was in close relationship not only with ratio of their seeds, but also with planting patterns. Row seeding in mixed seeds was better than broadcasting or intercropping in hay yield, total N yield and %Ndfa and Ndfa. It was also higher than the average of corresponding item of alfalfa and meadow fescue in monoculture each equal area. There was no significantly difference (P 15 N isotope dilution method and natural 1 '5N abundance method. N in meadow fescue transferred from alfalfa could be accurately determined by 15 N isotope diffusion method, but 15 N abundance method gave underestimates, even could not examined N in grasses transferred from associated legumes

  10. Assimilation of ammonium and nitrate nitrogen by bean plants

    International Nuclear Information System (INIS)

    Volk, R.J.; Chaillou, S.; Morot-Gaudry, J.F.; Mariotti, A.

    1989-01-01

    Enhanced growth is often observed in plants growing on combined ammonium and nitrate nutrition. The physiological basis for such enhancement was examined by exposing non-nodulated bean (Phaseolus vulgaris L.) plants to 15 N-labeled, 1.0 mM N solutions containing 0, 33, 67 or 100% of the N as ammonium, the balance being nitrate. Maximal total N uptake and biomass production were attained by plants receiving 33% ammonium. A higher proportion of incoming ammonium than nitrate was incorporated into root protein. This was accompanied by increased partitioning of plant biomass to roots. It was concluded that as a consequence of greater N metabolism in the root under mixed ammonium and nitrate nutrition, the root became a more active sink for photosynthate. Concurrently, the augmented supply of N to the shoot enhanced net photosynthesis as reflected in increased plant biomass

  11. Radioactive air emissions notice of construction and application for approval to construct the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    1992-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy, Richland Field Office. The Hanford Site manages and produces dangerous waste and mixed waste. (containing both radioactive and dangerous components). The US Department of Energy, Richland Field Office, currently stores mixed waste, resulting from various processing operations, in underground storage tanks. The Hanford Waste Vitrification Plant will be constructed and operated to process the high-activity fraction of mixed waste stored in these underground tanks. The Hanford Waste Vitrification Plant will solidify pretreated tank waste into a glass product that will be packaged for disposal in a national repository. Emissions from the Hanford Waste Vitrification Plant will be regulated by both the federal and state Clean Air Acts. The proposed Hanford Waste Vitrification Plant represents a new source of radioactive air emissions. Construction of the plant will require approval from both federal and state agencies. The Notice of Construction and Application for Approval to Construct the Hanford Waste Vitrification Plant contains information required under Title 40 of the Code of Federal Regulations, Chapter 61; and Chapter 246-247 of the Washington Administrative Code for a proposed new source of radioactive air emissions. The document contents are based on information contained in the Hanford Waste Vitrification Plant Reference Conceptual Design Report, the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report, Revision 0, and subsequent design changes made before August 1, 1992. The contents of this document may be modified to include more specific information generated during subsequent detailed design phases. Modifications will be submitted for regulatory review and approval, as appropriate

  12. Regeneration in mixed conifer shelterwood cuttings in the Cascade Range of eastern Oregon.

    Science.gov (United States)

    K.W. Seidel

    1979-01-01

    A survey of shelterwood cuttings in mixed conifer forests in the eastern Oregon Cascade Range showed that, on the average, shelterwood units were well stocked with a mixture of advance, natural subsequent, and planted reproduction of a number of species. Because of slow invasion by understory vegetation, frequent heavy seed crops, and adequate density of the overstory...

  13. Long-Acting Composite Systems Based on Powdered Medicinal Plants and Nanosilica

    Directory of Open Access Journals (Sweden)

    Turov, V.V.

    2017-03-01

    Full Text Available The state of water in the powdered plant materials (calendula, hibiscus and their composite systems with A-300 nanosilicas having different bulk density has been studied by low-temperature 1H NMR spectroscopy method. The change in bulk density has been found to significantly affect the radius of inner cavities in fibrillar space of plant components. The composite systems based on wetting-drying compaction of nanosilica and plant powder have been showed to form a mix with high interaction energy of heterogeneous particles. This results in the effective retention of plant bioactive complex by composite, which enables the development of long-acting herbal drugs.

  14. Inferences from new plant design from fast flux test facility operation

    International Nuclear Information System (INIS)

    Peterson, R.E.; Peckinpaugh, C.L.; Simpson, D.E.

    1985-04-01

    Experience gained through operation of the Fast Flux Test Facility (FFTF) is now sufficiently extensive that this experience can be utilized in designing the next generation of liquid metal fast reactors. Experience with FFTF core and plant components is cited which can result in design improvements to achieve inherently safe, economic reactor plants. Of particular interest is the mixed oxide fuel system which has demonstrated large design margins. Other plant components have also demonstrated high reliability and offer capital cost reduction opportunities through design simplifications. The FFTF continues to be a valuable US resource which affords prototypic development and demonstration, contributing to public acceptability of future plants

  15. Particle–Mixing Simulations Using DEM and Comparison of the Performance of Mixing Indices

    International Nuclear Information System (INIS)

    Cho, Migyung

    2017-01-01

    Mixing of molecular grains having different characteristics is very important in many industries such as the food and pharmaceutical industries. With the development of computer simulations, it is common practice to find the optimal mixing conditions through a simulation before the actual mixing task to estimate the proper level of mixing. Accordingly, there has been an increasing need for a mixing index to measure the mix of particles in the simulation process. Mixing indices, which have been widely used so far, can largely be classified into two types: first is the statistical-based mixing index, which is prepared using the sampling method, and the second is the mixing index that is prepared using all the particles. In this paper, we calculated mixing indices in different ways for the data in the course of mixing the particles using the DEM simulation. Additionally, we compared the performance, advantages, and disadvantages of each mixing index. Therefore, I propose a standard that can be used to select an appropriate mixing index.

  16. Particle–Mixing Simulations Using DEM and Comparison of the Performance of Mixing Indices

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Migyung [Tongmyong Univ., Busan (Korea, Republic of)

    2017-02-15

    Mixing of molecular grains having different characteristics is very important in many industries such as the food and pharmaceutical industries. With the development of computer simulations, it is common practice to find the optimal mixing conditions through a simulation before the actual mixing task to estimate the proper level of mixing. Accordingly, there has been an increasing need for a mixing index to measure the mix of particles in the simulation process. Mixing indices, which have been widely used so far, can largely be classified into two types: first is the statistical-based mixing index, which is prepared using the sampling method, and the second is the mixing index that is prepared using all the particles. In this paper, we calculated mixing indices in different ways for the data in the course of mixing the particles using the DEM simulation. Additionally, we compared the performance, advantages, and disadvantages of each mixing index. Therefore, I propose a standard that can be used to select an appropriate mixing index.

  17. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  18. Cover and liner system designs for mixed-waste disposal

    International Nuclear Information System (INIS)

    MacGregor, A.

    1994-01-01

    Land disposal of mixed waste is subject to a variety of regulations and requirements. Landfills will continue to be a part of waste management plans at virtually all facilities. New landfills are planned to serve the ongoing needs of the national laboratories and US Department of Energy (DOE) facilities, and environmental restoration wastes will ultimately need to be disposed in these landfills. This paper reviews the basic objectives of mixed-waste disposal and summarizes key constraints facing planners and designers of these facilities. Possible objectives of cover systems include infiltration reduction; maximization of evapotranspiration; use of capillary barriers or low-permeability layers (or combinations of all these); lateral drainage transmission; plant, animal, and/or human intrusion control; vapor/gas control; and wind and water erosion control. Liner system objectives will be presented, and will be compared to the US Environmental Protection Agency-US Nuclear Regulatory Commission guidance for mixed-waste landfills. The measures to accomplish each objective will be reviewed. Then, the design of several existing or planned mixed-waste facilities (DOE and commercial) will be reviewed to illustrate the application of the various functional objectives. Key issues will include design life and performance period as compared/contrasted to postclosure care periods, the use (or avoidance) of geosynthetics or clays, intermediate or interim cover systems, and soil erosion protection in contrast to vegetative enhancement. Possible monitoring approaches to cover systems and landfill installations will be summarized as well

  19. Symbiotic dinitrogen fixation measurement in vetch-barley mixed swards using 15 N methodology

    International Nuclear Information System (INIS)

    Kurdali, F.; Sharabi, N.E.

    1995-01-01

    Field experiment on vetch and barley grown in monoculture and in mixed culture (3:1) under rain-fed conditions was conducted in 1991-1992 and 1992-1993 growing season. Three harvests were effectuated on one treatment throughout the growing season. While, other plots were harvested once at physiological maturity stage. Our results showed the importance of mixed cropping system of vetch and barley grown under rain fed conditions in terms of dry matter production, total nitrogen content and land use efficiency expressed as land equivalent ration (L.E.R). This advantage is clear in the plants harvested once at the end of the season. Therefore, it is important to grow legumes and cereals under rain fed conditions and to be left until late stage of growth and fed by animals directly. On the other hand, only two harvests could be done in the season with no additional harvests because this may weaken the plant growth, and as a result of the last approach we will obtained poor production due to unpredicated an appropriate rain fall after the second harvest (April). Nitrogen fixation efficiency in vetch measured by sup 1 sup 5 N isotop dilution method varied with the number of harvests and the procedure adopted in culture. Comparing the results of %Ndfa of vetch between monoculture and mixed culture showed that the values in most cases were higher in mixed culture. The competition between vetch and barley in the mixed stand for soil N-uptake made the barley supplements its N requirements from soil. The poor competitiveness of vetch capability for soil N-uptake enhanced it to fix more nitrogen. On the other hand, N residual after harvest was higher in the mixed treatment than the others. Positive and high final nitrogen balance were observed with the inclusion of vetch in the mixture. We excluded, under the current experimental conditions, the possibility of N-transfer from vetch to barley due to the insignificant differences in the value of sup 1 sup 5 N atom excess for

  20. Density meter algorithm and system for estimating sampling/mixing uncertainty

    International Nuclear Information System (INIS)

    Shine, E.P.

    1986-01-01

    The Laboratories Department at the Savannah River Plant (SRP) has installed a six-place density meter with an automatic sampling device. This paper describes the statistical software developed to analyze the density of uranyl nitrate solutions using this automated system. The purpose of this software is twofold: to estimate the sampling/mixing and measurement uncertainties in the process and to provide a measurement control program for the density meter. Non-uniformities in density are analyzed both analytically and graphically. The mean density and its limit of error are estimated. Quality control standards are analyzed concurrently with process samples and used to control the density meter measurement error. The analyses are corrected for concentration due to evaporation of samples waiting to be analyzed. The results of this program have been successful in identifying sampling/mixing problems and controlling the quality of analyses

  1. Density meter algorithm and system for estimating sampling/mixing uncertainty

    International Nuclear Information System (INIS)

    Shine, E.P.

    1986-01-01

    The Laboratories Department at the Savannah River Plant (SRP) has installed a six-place density meter with an automatic sampling device. This paper describes the statisical software developed to analyze the density of uranyl nitrate solutions using this automated system. The purpose of this software is twofold: to estimate the sampling/mixing and measurement uncertainties in the process and to provide a measurement control program for the density meter. Non-uniformities in density are analyzed both analytically and graphically. The mean density and its limit of error are estimated. Quality control standards are analyzed concurrently with process samples and used to control the density meter measurement error. The analyses are corrected for concentration due to evaporation of samples waiting to be analyzed. The results of this program have been successful in identifying sampling/mixing problems and controlling the quality of analyses

  2. Quality control of concrete structures in nuclear power plant, (4)

    International Nuclear Information System (INIS)

    Takahashi, Hisao; Kawaguchi, Tohru; Oike, Takeshi; Morimoto, Shoichi; Takeshita, Shigetoshi.

    1979-01-01

    This report describes the result of an investigation to clarify the effect of concrete temperature as mixed in the summer season on the strength gain characteristics of mass concrete such as used in construction of nuclear power plants. It is pointed out that the low strength gain of control cylinders in summer is caused by two main factors, viz., the absence of water modification in the mix design according to concrete temperature as mixed and high curing temperature after placing up to mold removal rather than concrete temperature itself as mixed. On the other hand, it has been clarified that high strength gain in mass concrete can be realized by lowering concrete temperature as mixed so as to lower the subsequent curing temperature at early age. Furthermore, it is explained that the larger the size of the member is, the more effect can be expected from lowering concrete temperature. The effect of concrete temperature as mixed on high strength concrete to be used in PCCV is discussed in the Appendix. (author)

  3. ADVANCED MIXING MODELS

    International Nuclear Information System (INIS)

    Lee, S; Richard Dimenna, R; David Tamburello, D

    2008-01-01

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and

  4. ADVANCED MIXING MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Richard Dimenna, R; David Tamburello, D

    2008-11-13

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and

  5. Diffuse-Illumination Systems for Growing Plants

    Science.gov (United States)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  6. Comparative assessment of plant diversity and utilization patterns of ...

    African Journals Online (AJOL)

    Home gardens are small land units or acreage of land for food production, usually within the homestead in traditional communities worldwide. These gardens are important component of subsistence living, sometimes a cash resource and repository sites for uncommon and common plant species of mixed life cycles.

  7. Effects of coexistence between the blue mussel Mytilus edulis and eelgrass Zostera marina on sediment biogeochemistry and plant performance

    DEFF Research Database (Denmark)

    Vinther, H.F.; Norling, P.; Kristensen, Per Sand

    2012-01-01

    The habitat-modifying suspension-feeding mussel, Mytilus edulis, may have facilitating or inhibiting effects on seagrass meadows depending on the environmental conditions. We investigated the effects of M. edulis on sediment biogeochemistry in Zostera marina meadows under eutrophic conditions...... in Flensborg fjord, Denmark. Sediment and plant samples were collected at ten stations; five with Z. marina (Eelgrass) and five with Z. marina and M. edulis (Mixed) and at two unvegetated stations; one with mussels (Mussel) and one with sand (Sand). The Mixed sediment was enriched in fine particles (2-3 times...... significantly reduced at Mixed stations suggesting inhibiting effect of M. edulis on Z. marina. Negative correlations between eelgrass measures and sediment sulphide at Mixed stations indicate that presence of mussels increase sulphide invasion in the plants. A survey of 318 stations in Danish fjords suggests...

  8. Fluid mixing III

    International Nuclear Information System (INIS)

    Harnby, N.

    1988-01-01

    Covering all aspects of mixing, this work presents research and developments in industrial applications, flow patterns and mixture analysis, mixing of solids into liquids, and mixing of gases into liquids

  9. Chevilly Larue, L'Hay les Roses: twin geothermal plants

    International Nuclear Information System (INIS)

    Jeanson, E.

    1995-01-01

    The Chevilly Larue/L'Hay les Roses (Paris region, France) low energy geothermal plants are interconnected and thus represent the greatest geothermal heat network in Europe. The two plants are 2.5 km apart and supply 13000 collective lodgings in energy using a 60 km network with a 75 MW power. Gas or fuel auxiliary heating systems are used in winter to increase water temperature up to 105 C, but the part of energy released by geothermics remains of about 70 to 80%. The network will be extended in the next years to Fresnes and Villejuif neighbouring towns. In 1996, the SEMHACH company, which manage the two plants, will put into service a mixed electricity and heat production plant in L'Hay les Roses. (J.S.). 2 photos

  10. Sylgard® Mixing Study

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Mollie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Welch, Cynthia F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodwin, Lynne Alese [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keller, Jennie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-08-22

    Sylgard® 184 and Sylgard® 186 silicone elastomers form Dow Corning® are used as potting agents across the Nuclear Weapons Complex. A standardized mixing procedure is required for filled versions of these products. The present study is a follow-up to a mixing study performed by MST-7 which established the best mixing procedure to use when adding filler to either 184 or 186 base resins. The most effective and consistent method of mixing resin and curing agent for three modified silicone elastomer recipes is outlined in this report. For each recipe, sample size, mixing type, and mixing time was varied over 10 separate runs. The results show that the THINKY™ Mixer gives reliable mixing over varying batch sizes and mixing times. Hand Mixing can give improved mixing, as indicated by reduced initial viscosity; however, this method is not consistent.

  11. Host Selection Behavior and the Fecundity of Plutella xylostella (Lepidoptera: Plutellidae) on Multiple Host Plants

    Science.gov (United States)

    Huang, Bin; Shi, Zhanghong; Hou, Youming

    2014-01-01

    Abstract Insect herbivores often have higher densities on host plants grown in monocultures than those in diverse environments. The underlying mechanisms are thought to be that polyphagous insects have difficulty in selecting food or oviposition sites when multiple host plants exist. However, this hypothesis needs to be extensively investigated. Our field experiments revealed that the population of the diamondback moths, Plutella xylostella (L.) (Lepidoptera: Plutellidae), significantly decreased in a mixed cropping field compared with a monoculture. To determine the reasons for the reduction in population in the mixed cropping field, the takeoff behavior and fecundity of females in no-choice and free-choice laboratory environments were compared by video recordings of host selection by P. xylostella . Adults displayed a significantly higher takeoff frequency in free-choice environments than those in no-choice treatments and preferred landing on Brassica campestris (L.) or Brassica juncea (Coss) plants in contrast with Brassica oleracea (L.). Female adults in the free-choice environment also laid fewer eggs compared with the monoculture. Olfaction experiments demonstrated orientation by P. xylostella to host volatiles when presented with a choice between plant odors and clean air, but females showed no preference when odors from three Brassicaceae species were presented simultaneously. We conclude that mixed cropping alters the host-finding behavior of P. xylostella resulting in reduced oviposition. PMID:25527573

  12. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives

    Directory of Open Access Journals (Sweden)

    A. M. Rodríguez-Alloza

    2017-04-01

    Full Text Available Warm Mix Asphalt (WMA refers to technologies that reduce manufacturing and compaction temperatures of asphalt mixtures allowing lower energy consumption and reducing greenhouse gas emissions from asphalt plants. These benefits, combined with the effective reuse of a solid waste product, make asphalt rubber (AR mixtures with WMA additives an excellent environmentally-friendly material for road construction. The effect of WMA additives on rubberized mixtures has not yet been established in detail and the lower mixing/compaction temperatures of these mixtures may result in insufficient compaction. In this sense, the present study uses a series of laboratory tests to evaluate the volumetric characteristics and compactability of AR mixtures with organic additives when production/compaction temperatures are decreased. The results of this study indicate that the additives selected can decrease the mixing/compaction temperatures without compromising the volumetric characteristics and compactability.

  13. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives

    International Nuclear Information System (INIS)

    Rodríguez-Alloza, A.M.; Gallego, J.

    2017-01-01

    Warm Mix Asphalt (WMA) refers to technologies that reduce manufacturing and compaction temperatures of asphalt mixtures allowing lower energy consumption and reducing greenhouse gas emissions from asphalt plants. These benefits, combined with the effective reuse of a solid waste product, make asphalt rubber (AR) mixtures with WMA additives an excellent environmentally-friendly material for road construction. The effect of WMA additives on rubberized mixtures has not yet been established in detail and the lower mixing/compaction temperatures of these mixtures may result in insufficient compaction. In this sense, the present study uses a series of laboratory tests to evaluate the volumetric characteristics and compactability of AR mixtures with organic additives when production/compaction temperatures are decreased. The results of this study indicate that the additives selected can decrease the mixing/compaction temperatures without compromising the volumetric characteristics and compactability. [es

  14. Analysis of integrated plant upgrading/life extension programs

    International Nuclear Information System (INIS)

    McCutchan, D.A.; Massie, H.W. Jr.; McFetridge, R.H.

    1988-01-01

    A present-worth generating cost model has been developed and used to evaluate the economic value of integrated plant upgrading life extension project in nuclear power plants. This paper shows that integrated plant upgrading programs can be developed in which a mix of near-term availability, power rating, and heat rate improvements can be obtained in combination with life extension. All significant benefits and costs are evaluated from the viewpoint of the utility, as measured in discounted revenue requirement differentials between alternative plans which are equivalent in system generating capacity. The near-term upgrading benefits are shown to enhance the benefit picture substantially. In some cases the net benefit is positive, even if the actual life extension proves to be less than expected

  15. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    NARCIS (Netherlands)

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation

  16. Elevated nitrogen allows the weak invasive plant Galinsoga quadriradiata to become more vigorous with respect to inter-specific competition.

    Science.gov (United States)

    Liu, Gang; Yang, Ying-Bo; Zhu, Zhi-Hong

    2018-02-16

    Elevated nitrogen associated with global change is believed to promote the invasion of many vigorous exotic plants. However, it is unclear how a weak exotic plant will respond to elevated nitrogen in the future. In this study, the competitive outcome of a weak invasive plant (Galinsoga quadriradiata) and two non-invasive plants was detected. The plants were subjected to 3 types of culture (mixed, monoculture or one-plant), 2 levels of nitrogen (ambient or elevated at a rate of 2 g m -2 yr -1 ) and 2 levels of light (65% shade or full sunlight). The results showed that elevated nitrogen significantly promoted the growth of both the weak invader and the non-invasive plants in one-plant pots; however, growth promotion was not observed for the non-invasive species in the mixed culture pots. The presence of G. quadriradiata significantly inhibited the growth of the non-invasive plants, and a decreased negative species interaction was detected as a result of elevated nitrogen. Our results suggest that competitive interactions between G. quadriradiata and the non-invasive plants were altered by elevated nitrogen. It provides exceptional evidence that an initially weak invasive plant can become an aggressive invader through elevated nitrogen deposition.

  17. Crystallisation of Gypsum and Prevention of Foaming in Wet Flue Gas Desulphurisation (FGD) Plants

    DEFF Research Database (Denmark)

    Hansen, Brian Brun

    The aim of this project is to investigate two operational problems, which have been experienced during wet flue gas desulphurisation (FGD) operation, i.e. poor gypsum dewatering properties and foaming. The results of this work can be used for the optimization of wet FGD-plants in terms of reliabi......The aim of this project is to investigate two operational problems, which have been experienced during wet flue gas desulphurisation (FGD) operation, i.e. poor gypsum dewatering properties and foaming. The results of this work can be used for the optimization of wet FGD-plants in terms....... Experiments in a falling film wet FGD pilot plant have shown a strong non-linear behaviour (in a ln(n(l)) vs. l plot) at the lower end of the particle size range, compared to the well-known linear “mixed suspension mixed product removal (MSMPR)” model. A transient population balance model, fitted...

  18. Detection of regulated herbs and plants in plant food supplements and traditional medicines using infrared spectroscopy.

    Science.gov (United States)

    Deconinck, E; Djiogo, C A Sokeng; Bothy, J L; Courselle, P

    2017-08-05

    The identification of a specific toxic or regulated plant in herbal preparations or plant food supplements is a real challenge, since they are often powdered, mixed with other herbal or synthetic powders and compressed into tablets or capsules. The classical identification approaches based on micro- and macroscopy are therefore not possible anymore. In this paper infrared spectroscopy, combined with attenuated total reflectance was evaluated for the screening of plant based preparations for nine specific plants (five regulated and four common plants for herbal supplements). IR and NIR spectra were recorded for a series of self-made triturations of the targeted plants. After pretreatment of the spectral data chemometric classification techniques were applied to both data sets (IR and NIR) separately and the combination of both. The results show that the screening of herbal preparations or plant food supplements for specific plants, using infrared spectroscopy, is feasible. The best model was obtained with the Mid-IR data, using SIMCA as modelling technique. During validation of the model, using an external test set, 21 of 25 were correctly classified and six of the nine targeted plants showed no misclassifications for the selected test set. For the other three a success rate of 50% was obtained. Mid-IR combined with SIMCA can therefore be applied as a first step in the screening of unknown samples, before applying more sophisticated fingerprint approaches or identification tests described in several national and international pharmacopoeia. As a proof of concept five real suspicious samples were successfully screened for the targeted regulated plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The use of "mixing" procedure of mixed methods in health services research.

    Science.gov (United States)

    Zhang, Wanqing; Creswell, John

    2013-08-01

    Mixed methods research has emerged alongside qualitative and quantitative approaches as an important tool for health services researchers. Despite growing interest, among health services researchers, in using mixed methods designs, little has been done to identify the procedural aspects of doing so. To describe how mixed methods researchers mix the qualitative and quantitative aspects of their studies in health services research. We searched the PubMed for articles, using mixed methods in health services research, published between January 1, 2006 and December 30, 2010. We identified and reviewed 30 published health services research articles on studies in which mixed methods had been used. We selected 3 articles as illustrations to help health services researcher conceptualize the type of mixing procedures that they were using. Three main "mixing" procedures have been applied within these studies: (1) the researchers analyzed the 2 types of data at the same time but separately and integrated the results during interpretation; (2) the researchers connected the qualitative and quantitative portions in phases in such a way that 1 approach was built upon the findings of the other approach; and (3) the researchers mixed the 2 data types by embedding the analysis of 1 data type within the other. "Mixing" in mixed methods is more than just the combination of 2 independent components of the quantitative and qualitative data. The use of "mixing" procedure in health services research involves the integration, connection, and embedding of these 2 data components.

  20. Regeneration in mixed conifer and Douglas-fir shelterwood cuttings in the Cascade Range of Washington.

    Science.gov (United States)

    K.W. Seidel

    1983-01-01

    A survey of shelterwood cuttings in mixed conifer and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests in the Cascade Range in Washington showed that, on the average, shelterwood units were adequately-stocked with a mixture of advance, natural postharvest, and planted reproduction of a number of species. Shelterwood cuttings in the...

  1. Effect of mixing digested slurry on the rate of biogas production from dairy manure in batch fermenter

    Energy Technology Data Exchange (ETDEWEB)

    Kalia, A.K.; Singh, S.P.

    2001-09-01

    Forty kilograms of pure cattle dung and cattle dung mixed with 10% digested slurry obtained from a field biogas plant was batch fermented in horizontal biogas digesters for 15 weeks under field conditions with mean ambient temperature 20-23{sup o}C. Compared to 821 l of biogas from digester I, containing cattle dung alone, 1457 l of biogas was obtained from digester II, containing cattle dung mixed with 10% digested slurry. Mixing of slurry not only speeded up the gas production but also enhanced its rate from 108 l/kg dry matter to 158 l/kg dry matter. It also resulted in 36.1% distraction of total volatile solid in digester II, compared to 23.93% observed in digester I. Mixing digested slurry is recommended for raising biogas production from cattle dung in dry fermenters. (author)

  2. Potensi Pengembangan Bahan Ajar: Handout Pada Pembelajaran IPA SMP Berbasis Penelitian Pengaruh Konsentrasi Nutrisi Ab Mix Pada Pertumbuhan Tanaman Bayam (Amaranthus Tricolor L.) Dengan Teknik Hidroponik Sistem Wick

    OpenAIRE

    Putra, Rayshatico Perdana; Wulandari, Sri; Fauziah, Yuslim

    2017-01-01

    This study was conducted to determine the effect of nutrient concentrations on plant growth AB Mix the spinach with hydroponic techniques wick system as well as the design for the development of learning handout on SMP IPA in March-May 2016. The study was carried out by two phases: an experiment: the effect of nutrient concentrations AB Mix the spinach plant growth (Amaranthus tricolor L.) with hydroponic techniques and the wick system design stage handout science teaching junior high school....

  3. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    Science.gov (United States)

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  4. Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine

    Science.gov (United States)

    Krumhansl, James L; Nenoff, Tina M

    2013-02-26

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  5. Impacts of Extreme Events on Phenology: Drought-Induced Changes in Productivity of Mixed Woody-Herbaceous Ecosystems

    Science.gov (United States)

    Rich, P. M.; Breshears, D. D.; White, A. B.

    2006-12-01

    Ecosystem responses to key climate drivers are reflected in phenological dynamics such as the timing and degree of "greenup" that integrate responses over spatial scales from individual plants to ecosystems. This integration is clearest in ecosystems dominated by a single species or life form, such as seasonally dynamic grasslands or more temporally constant evergreen forests. Yet many ecosystems have substantial contribution of cover from both herbaceous and woody evergreen plants. Responses of mixed woody- herbaceous ecosystems to climate are of increasing concern due to their extensive nature, the potential for such systems to yield more complex responses than those dominated by a single life form, and projections that extreme climate and weather events will increase in frequency and intensity with global warming. We present responses of a mixed woody-herbaceous ecosystem type to an extreme event: regional scale piñon pine mortality following an extended drought and the subsequent herbaceous greenup following the first wet period after the drought. This example highlights how reductions in greenness of the slower, more stable evergreen woody component can rapidly be offset by increases associated with resources made available to the relatively more responsive herbaceous component. We hypothesize that such two-phase phenological responses to extreme events are characteristic of many mixed woody-herbaceous ecosystems.

  6. Critical analysis of the proposition of reduction of the nuclear share to 50% of the electric mix by 2025

    International Nuclear Information System (INIS)

    2011-01-01

    This paper briefly comments different evolution options regarding the French electric mix (replacement of nuclear plants by natural gas plants, maximum development of photovoltaic and wind energy, drastic reduction of electricity consumption) and of their consequences in terms of CO 2 emissions. As none of these options is acceptable with respect to climatic and economic requirements, another option is proposed: keeping the nuclear at its current level, increasing electricity production by means of natural gas plants, and increasing heat production. The benefits of this solution are briefly outlined

  7. The effect of adding phosphogypsum to cracking soil on plant growth and radionuclides accumulation

    International Nuclear Information System (INIS)

    Al-Oudat, M.

    1999-11-01

    Many studies have reported the positive effects of phosphogypsum applications on physical and chemical properties of agriculture soils and on plant yield. Hence, there is some concern that application of phosphogypsum may result in plant uptake of radionuclides. phosphogypsum, which has radioactivity of 430 Bq/Kg,was mixed with salty-loam soil, at different rates (0, 10, 20, 40, and 80 t/ha), to monitor the effects of mixing phosphogypsum on the cracking, chemical properties of the soil, wheat yield, efficiency of water use, and radionuclides accumulation. The experiments were conducted in two seasons (1997 and 1998) in two sites.The results show that mixing phosphogypsum with the soil increased the Ce, SO 4 , Mg, Ca and P available in the saturated extracts, and decreased the cracking of the soil by 17 - 45%. Also adding phosphogypsum increased grain yield (by 23 - 45%) and water use efficiency. The radioactivity of shoots and grain of wheat were below the detection level (0.1 Bq/Kg/dry weight). (author)

  8. Demands on thermal power plants in the liberalised energy market

    International Nuclear Information System (INIS)

    Hein, D.; Kwanka, K.; Fischer, T.

    2005-01-01

    In the liberalised energy market, a diversified set (''mix'') of power plants will be needed. By investigating present and anticipated future criteria in detail, available technologies and outlines of further development are identified and discussed. Among them, concepts for efficiency-optimised base load plants as well as units with an improved cycling operation capability are both attributed to a specific valued benefit. Following the demand for a significant reduction of the overall greenhouse gas emissions, centralised power plants fed by fossil fuels and modified for retention of CO 2 are needed to guarantee a supply of energy at moderate costs in the 21st century. (author)

  9. Technical improvement of ATE system of Ling'ao Nuclear Power Plant Phase II

    International Nuclear Information System (INIS)

    Zhu Xingbao; Xiong Jingchuan; Liang Qiaohong

    2009-01-01

    In order to solve the problem that the content of SO 4 2- in Steam Generator significantly increased beyond the criteria after the use of the condensate treatment (ATE) system in Daya Bay Nuclear Power Plant and Ling'ao Nuclear Power Plant Phase I, technical improvement have been conducted on the sizes of the fore cation bed and the mixed bed, water distributing devices, ion exchange resins and separation facility. The effectiveness for the ion exchange of the mixed bed is improved, the resolved substance of cation resin is decreased; it is more impossible for fragments and powder which would lead high SO 4 2- content in Steam Generator. Finally, the quality of the steam-water could be improved and ensured. (authors)

  10. Recycling of fresh concrete exceeding and wash water in concrete mixing plants

    Directory of Open Access Journals (Sweden)

    Férriz Papí, J. A.

    2014-03-01

    Full Text Available The exceeding concrete and washing equipment water are a matter to solve in concrete production. This paper explains several possibilities for recycling and analyses the products obtained with one recycling equipment. The objective of this work is to study the possibility to increase the percentage of recycling in new mixes. The developed study relates wash water density and fine particles content. Besides, mortar and concrete samples were tested introducing different quantities of these fine particles, substituting cement, sand or only as an addition. Consistency, compressive strength, setting time, absorption, and capillarity were tested. The results indicated an improvement of the studied properties in some percentages when substituting sand. It confirms the possibility to introduce larger quantities of wash water in new concrete mixes, with corrections in sand quantity depending on water density.Los hormigones frescos sobrantes y aguas procedentes de la limpieza de equipos son un inconveniente a resolver en las plantas de hormigón. Este artículo explica varias posibilidades de reciclado y analiza los productos obtenidos en un equipo reciclador concreto, con el objetivo de estudiar el incremento del porcentaje de reciclaje en nuevas amasadas. El estudio realizado relaciona la densidad del agua de lavado y el contenido de partículas finas. Además, ensaya muestras de mortero y hormigón realizando sustituciones de estas partículas finas por cemento, arena o simplemente como adición. Determina consistencia, resistencia a compresión, principio y fin de fraguado, absorción y capilaridad. Los resultados indicaron un incremento general de las propiedades estudiadas en algunos porcentajes de sustitución por arena. Ello confirma la posibilidad de introducir mayores cantidades de agua de lavado en nuevas amasadas de hormigón, mediante correcciones en la dosificación de arena en función de la densidad del agua.

  11. Energy and emergy analysis of mixed crop-livestock farming

    Science.gov (United States)

    Kuczuk, Anna; Pospolita, Janusz; Wacław, Stefan

    2017-10-01

    This paper contains substance and energy balances of mixed crop-livestock farming. The analysis involves the period between 2012 and 2015. The structure of the presentation in the paper includes: crops and their structure, details of the use of plants with a beneficial effect on soil and stocking density per 1ha of agricultural land. Cumulative energy intensity of agricultural animal and plant production was determined, which is coupled the discussion of the energy input in the production of a grain unit obtained from plant and animal production. This data was compared with the data from the literature containing examples derived from intensive and organic production systems. The environmental impact of a farm was performed on the basis of emergy analysis. Emergy fluxes were determined on the basis of renewable and non-renewable sources. As a consequence, several performance indicators were established: Emergy Yield Ratio EYR, Environmental Loading Ratio ELR and ratio of emergy from renewable sources R! . Their values were compared with the parameters characterizing other production patterns followed in agricultural production. As a consequence, conclusions were derived, in particular the ones concerning environmental sustainability of production systems in the analyzed farm.

  12. K‑Doped Co−Mn−Al Mixed Oxide Catalyst for N2O Abatement from\

    Czech Academy of Sciences Publication Activity Database

    Pacultová, K.; Karásková, K.; Kovanda, F.; Jirátová, Květa; Šrámek, J.; Kustrovski, P.; Kotarba, A.; Chromčáková, Ž.; Kočí, K.; Obalová, L.

    2016-01-01

    Roč. 55, č. 26 (2016), s. 7076-7084 ISSN 0888-5885 R&D Projects: GA ČR GA14-13750S; GA TA ČR TA01020336 Institutional support: RVO:67985858 Keywords : Co-Mn-Al mixed oxide * N2O decomposition * HNO3 pilot plant Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.843, year: 2016

  13. Recent trends in post-wildfire seeding in western US forests: costs and seed mixes

    Science.gov (United States)

    Donna L. Peppin; Peter Z. Fule; Carolyn Hull Sieg; Jan L. Beyers; Molly E. Hunter; Pete Robichaud

    2011-01-01

    Broadcast seeding is one of the most commonly used post-fire rehabilitation treatments to establish ground cover for erosion control and mitigation of non-native plant species invasions. Little quantitative information is available on overall trends of post-fire seeding expenditures and seed mixes used over time in forested ecosystems in the western USA. We reviewed...

  14. Effect of mixing on biogas production during mesophilic anaerobic digestion of screened dairy manure in a Pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Rico, Carlos; Tejero, Inaki [Department of Sciences and Techniques of Water and Environment, University of Cantabria, Santander (Spain); Rico, Jose Luis; Munoz, Noelia; Gomez, Beatriz [Department of Chemical Engineering and Inorganic Chemistry, University of Cantabria, Santander (Spain)

    2011-10-15

    The effect of mixing on biogas production of a 1.5-m{sup 3} pilot continuous stirred tank reactor (CSTR) processing screened dairy manure was evaluated. Mixing was carried out by recirculation of reactor content with a mono pump. The experiment was conducted at a controlled temperature of 37{+-}1 C and hydraulic retention times (HRTs) of 20 and 10 days. The effect of continuous and intermittent operation of the recirculation pump on biogas production was studied. At 10 days of HRT, the results showed a minimal influence of recirculation rate on biogas production and that continuous recirculation did not improve reactor performance. At 20 days of HRT, the recirculation rate did not affect reactor performance. Combination of low solid content in feed animal slurry and long HRTs results in minimal mixing requirements for anaerobic digestion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. The Flexitarian Flip™ : Testing the Modalities of Flavor as Sensory Strategies to Accomplish the Shift from Meat-Centered to Vegetable-Forward Mixed Dishes.

    Science.gov (United States)

    Spencer, Molly; Guinard, Jean-Xavier

    2018-01-01

    The American diet is lacking in plant-based foods and vegetables, higher in protein than necessary, and too centered on meat and poultry. Two major dietary shifts recommended by the 2015-2020 U.S. Dietary Guidelines are to increase vegetable intake and to increase the variety of protein food sources. One suggested strategy for doing this is to partially replace meat and poultry with vegetables and plant-based ingredients in mixed dishes. This research tested the potential of flavor modalities (taste, aroma, trigeminal, and their combination) as strategies to increase the sensory appeal of plant-forward dishes. Consumer testing (n = 141) was conducted in a cross-sectional design in a laboratory setting on 24 recipe variations. Three factors were tested: cuisine (Latin American, Mediterranean, and Asian), meat proportion (high-meat/low-vegetable versus low-meat/high-vegetable), and flavor strategy (taste, aroma, trigeminal, and a reduced-intensity trimodal combination). Statistical analysis was performed in R and XLSTAT-Sensory ® 2017. Four consumer preference segments were uncovered. The low-meat dishes achieved parity or higher in consumer acceptance across all recipes and flavor strategies. The taste and trigeminal strategies both had higher overall acceptability scores than the aroma strategy, and the differences were significant (P meat with vegetables in mixed dishes. The trigeminal and trimodal combination strategies were found to be the most promising flavor modalities to use to implement this shift. There is little knowledge of American consumer preferences regarding vegetables in mixed dishes. Mixed dishes are a strategy recommended by the U.S. Dietary Guidelines to increase vegetable consumption and variety of protein sources. This research explores various flavor and culinary strategies with which to carry out the mixed dish meat-vegetable swap and to test the potential of the Flexitarian Flip ™ (the shift from meat-centric to plant-centric diets

  16. ICF's Plant Compliance Assessment System

    International Nuclear Information System (INIS)

    Baker, S.M.

    1989-01-01

    Government and private industrial facilities must manage wastes that are both radioactive and (chemically) hazardous. Until recently, these mixed wastes have been managed under rules established under the Atomic Energy Act (AEA) and the Low-Level Waste Policy At, and rules that derive from environmental legislation have not been applied. Both sets of rules now apply to mixed wastes, creating situations in which significant changes to waste steams must be made in order to bring them into compliance with environmental regulations. The first step in bringing waste streams into compliance is to determine their status with respect to the newly-applicable regulations. This process of compliance assessment is difficult because requirements to minimize human exposure to radiation can conflict with requirements of environmental regulations, many regulations are potentially applicable, the regulations are changing rapidly, and because waste streams designed to operate under AEA rules frequently cannot be easily modified to incorporate the additional regulations. Modern personal computer (PC) tools are being developed to help regulatory analysts manage the large amounts of information required to asses the compliance status of complex process plants. This paper presents the Plant Compliance Assessment System (PCAS), which performs this function by relating a database containing references to regulatory requirements to databases created to describe relevant aspects of the facility to be assessed

  17. The Value of Mixed Methods Research: A Mixed Methods Study

    Science.gov (United States)

    McKim, Courtney A.

    2017-01-01

    The purpose of this explanatory mixed methods study was to examine the perceived value of mixed methods research for graduate students. The quantitative phase was an experiment examining the effect of a passage's methodology on students' perceived value. Results indicated students scored the mixed methods passage as more valuable than those who…

  18. ADVANCED MIXING MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Dimenna, R; Tamburello, D

    2011-02-14

    The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay and the turbulent flow evolution for the farfield region from the pump. Literature results for a turbulent jet flow are reviewed, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. The work described in this report suggests a basis for further development of the theory leading to the identified mixing indicators, with benchmark analyses demonstrating their consistency with widely accepted correlations. Although the indicators are somewhat generic in nature, they are applied to Savannah River Site (SRS) waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in

  19. Mixing phenomena of interest to boron dilution during small break LOCAs in PWRs

    International Nuclear Information System (INIS)

    Nourbakhsh, H.P.; Cheng, Z.

    1995-01-01

    This paper presents the results of a study of mixing phenomena related to boron dilution during small break loss of coolant accidents (LOCAs)in pressurized water reactors (PWRs). Boron free condensate can accumulate in the cold leg loop seals when the reactor is operating in a reflux/boiler-condenser mode. A problem may occur when subsequent change in flow conditions such as loop seal clearing or re-establishment of natural circulation flow drive the diluted water in the loop seals into the reactor core without sufficient mixing with the highly borated water in the reactor downcomer and lower plenum. The resulting low boron concentration coolant entering the core may cause a power excursion leading to fuel failure. The mixing processes associated with a slow moving stream of diluted water through the loop seal to the core are examined in this paper. Bounding calculations for boron concentration of coolant entering the core during a small break LOCA in a typical Westinghouse-designed four-loop plant are also presented

  20. The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste

    International Nuclear Information System (INIS)

    Lindmark, Johan; Eriksson, Per; Thorin, Eva

    2014-01-01

    Highlights: • Effects of mixing on the anaerobic digestion of municipal solid waste. • Digestion of fresh substrate and post-digestion at three mixing intensities were evaluated. • Mixing performed at 150 RPM, 25 RPM and minimally intermittently. • Increased biogas production rates and yields at lower mixing intensities. - Abstract: Mixing inside an anaerobic digester is often continuous and is not actively controlled. The selected mixing regime can however affect both gas production and the energy efficiency of the biogas plant. This study aims to evaluate these effects and compare three different mixing regimes, 150 RPM and 25 RPM continuous mixing and minimally intermittent mixing for both digestion of fresh substrate and post-digestion of the organic fraction of municipal solid waste. The results show that a lower mixing intensity leads to a higher biogas production rate and higher total biogas production in both cases. 25 RPM continuous mixing and minimally intermittent mixing resulted in similar biogas production after process stabilization, while 150 RPM continuous mixing resulted in lower production throughout the experiment. The lower gas production at 150 RPM could not be explained by the inhibition of volatile fatty acids. Cumulative biogas production until day 31 was 295 ± 2.9, 317 ± 1.9 and 304 ± 2.8 N ml/g VS added during digestion of fresh feed and 113 ± 1.3, 134 ± 1.1 and 130 ± 2.3 N ml/g VS added during post digestion for the 150 RPM, 25 RPM and minimally mixed intensities respectively. As well as increasing gas production, optimal mixing can improve the energy efficiency of the anaerobic digestion process

  1. The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Johan, E-mail: Johan.lindmark@mdh.se; Eriksson, Per; Thorin, Eva, E-mail: Eva.Thorin@mdh.se

    2014-08-15

    Highlights: • Effects of mixing on the anaerobic digestion of municipal solid waste. • Digestion of fresh substrate and post-digestion at three mixing intensities were evaluated. • Mixing performed at 150 RPM, 25 RPM and minimally intermittently. • Increased biogas production rates and yields at lower mixing intensities. - Abstract: Mixing inside an anaerobic digester is often continuous and is not actively controlled. The selected mixing regime can however affect both gas production and the energy efficiency of the biogas plant. This study aims to evaluate these effects and compare three different mixing regimes, 150 RPM and 25 RPM continuous mixing and minimally intermittent mixing for both digestion of fresh substrate and post-digestion of the organic fraction of municipal solid waste. The results show that a lower mixing intensity leads to a higher biogas production rate and higher total biogas production in both cases. 25 RPM continuous mixing and minimally intermittent mixing resulted in similar biogas production after process stabilization, while 150 RPM continuous mixing resulted in lower production throughout the experiment. The lower gas production at 150 RPM could not be explained by the inhibition of volatile fatty acids. Cumulative biogas production until day 31 was 295 ± 2.9, 317 ± 1.9 and 304 ± 2.8 N ml/g VS added during digestion of fresh feed and 113 ± 1.3, 134 ± 1.1 and 130 ± 2.3 N ml/g VS added during post digestion for the 150 RPM, 25 RPM and minimally mixed intensities respectively. As well as increasing gas production, optimal mixing can improve the energy efficiency of the anaerobic digestion process.

  2. Ergonomics aspects of tree-planting using 'multipot' technology.

    Science.gov (United States)

    Giguère, D; Bélanger, R; Gauthier, J M; Larue, C

    1993-08-01

    The highlights of a descriptive study on the ergonomics and occupational health and safety aspects of tree-planting in Québec are presented. The study was planned to consider the most representative geographical sites, planting technologies, and planting organizations. Semi-directed interviews were made with a mixed group of 48 male and female tree-planters and physiological measurements were made on four male planters. Tools and other equipment were also examined. An analysis of the work identified the main elements of the planting cycle, and the high cardiac rate in the working planters was related more to his manual transportation of seedlings and travel on rough paths than to planting per se. A tree-planter will typically travel 2.4 km carrying 16.8 kg of material and equipment in order to plant an average of 1245 seedlings daily. One out of two interviewed planters reported having a work-related accident or incident during his or her lifetime planting career. The body parts reported most frequently injured were the lower extremities (knee, foot, ankle), the skin, the eyes, and the wrist. Recommendations on the development of appropriate tools and footwear for tree-planters and for further research on repetitive strain injury induced by tree-planting have been made.

  3. Deriving a Planting Medium from Solid Waste Compost and Construction, Demolition and Excavation Waste

    Science.gov (United States)

    Farajalla, Nadim; Assaf, Eleni; Bashour, Issam; Talhouk, Salma

    2014-05-01

    Lebanon's very high population density has been increasing since the end of the war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which were locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been followed by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste problem. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Matiolla, a native Lebanese plant and Zea mays, which is commonly known used as an indicator plant due to its sensitivity to environmental conditions. To ensure sustainability and environmental friendliness of the mix, its physical and chemical characteristics are monitored

  4. Strategy for introduction of quality guarantee in the supporting infrastructure to nucleoenergetics for a mixed association

    International Nuclear Information System (INIS)

    Jimenez, P.; Fernandez, R.

    1993-01-01

    The work consists in raising and proposing and integral strategy for the assimilation of the quality guarantee by all national enterprises, companies and institutions that participate in the nucleoenergetics program and specially for a mixed association to conclude the construction, starting-up and operation of Juragua nuclear power plants

  5. Mixing Ventilation. Guide on mixing air distribution design

    DEFF Research Database (Denmark)

    Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...

  6. Demonstration of a full-scale plant using an UASB followed by a ceramic MBR for the reclamation of industrial wastewater.

    Science.gov (United States)

    Niwa, Terutake; Hatamoto, Masashi; Yamashita, Takuya; Noguchi, Hiroshi; Takase, Osamu; Kekre, Kiran A; Ang, Wui Seng; Tao, Guihe; Seah, Harry; Yamaguchi, Takashi

    2016-10-01

    This study comprehensively evaluated the performance of a full-scale plant (4550m(3)d(-1)) using a UASB reactor followed by a ceramic MBR for the reclamation and reuse of mixed industrial wastewater containing many inorganics, chemical, oil and greases. This plant was demonstrated as the first full-scale system to reclaim the mixed industrial wastewater in the world. During 395days of operation, influent chemical oxygen demand (COD) fluctuated widely, but this system achieved COD removal rate of 91% and the ceramic MBR have operated flux of 21-25LMH stably. This means that this system adsorbed the feed water fluctuation and properly treated the water. Energy consumption of this plant was achieved 0.76kWhmm(-3) and this value is same range of domestic sewage MBR system. The combination of an UASB reactor and ceramic MBR is the most economical and feasible solution for water reclamation of mixed industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Design and Construction of the Advanced Mixed Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Harrop, G.

    2003-02-27

    The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site

  8. The Design and Construction of the Advanced Mixed Waste Treatment Facility

    International Nuclear Information System (INIS)

    Harrop, G.

    2003-01-01

    The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site

  9. Um estudo da implantação de um otimizador de mix para o setor agropecuário Study of the implementation of a production mix optimizer for the beef sector

    Directory of Open Access Journals (Sweden)

    Guilherme Luís Roehe Vaccaro

    2006-05-01

    Full Text Available O presente trabalho descreve uma abordagem de implantação de um otimizador de mix de produção em empresas do setor agropecuário, mais propriamente em frigoríficos. A implantação de um otimizador de mix envolve diversas áreas da organização, uma vez que esta é uma ferramenta sistêmica e que tem por objetivo gerar um plano mestre de produção orientado ao mercado, respeitando capacidades finitas agregadas e otimizando a lucratividade da empresa. O artigo discute as dimensões envolvidas na implantação de um projeto dessa natureza, bem como os principais benefícios de sua implantação.This paper proposes the implementation of a mix optimization tool for the beef sector, particularly for meat packing plants. The implementation of a mix optimization tool involves different areas of the organization, since this is a systemic tool for creating a market-oriented master production plan based on aggregate finite capacities, which optimizes the company's profitability. The article discusses the dimensions involved in the implementation of such a project and the main benefits resulting from it.

  10. Your home needs a gas plant

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, C N

    1956-05-01

    A gas plant which daily receives 45.5 kg of cow manure mixed with an equal amount of water, producing on the average 2.83 m/sup 3/ gas/day, is described. A design and parts list for the construction of the plant are given. The tank is sunk 3.65 m into the ground, being 1.72 meters diameter in the upper portion and 1.47 meters in diameter for the lower 2.43 meters, built of brick. A counter-weighted sheet metal gasholder covers the top of the tank. Fresh manure is gravity fed near the bottom of the tank, spent slurry overflows, and gas is removed through a fixed pipe which enters through the wall of the tank and rises into the gasholder.

  11. Mixed colonies of Aspergillus niger and Aspergillus oryzae cooperatively degrading wheat bran.

    Science.gov (United States)

    Benoit-Gelber, I; Gruntjes, T; Vinck, A; van Veluw, J G; Wösten, H A B; Boeren, S; Vervoort, J J M; de Vries, R P

    2017-05-01

    In both natural and man-made environments, microorganisms live in mixed populations, while in laboratory conditions monocultures are mainly used. Microbial interactions are often described as antagonistic, but can also be neutral or cooperative, and are generally associated with a metabolic change of each partner and cause a change in the pattern of produced bioactive molecules. A. niger and A. oryzae are two filamentous fungi widely used in industry to produce various enzymes (e.g. pectinases, amylases) and metabolites (e.g. citric acid). The co-cultivation of these two fungi in wheat bran showed an equal distribution of the two strains forming mixed colonies with a broad range of carbohydrate active enzymes produced. This stable mixed microbial system seems suitable for subsequent commercial processes such as enzyme production. XlnR knock-out strains for both aspergilli were used to study the influence of plant cell wall degrading enzyme production on the fitness of the mixed culture. Microscopic observation correlated with quantitative PCR and proteomic data suggest that the XlnR Knock-out strain benefit from the release of sugars by the wild type strain to support its growth. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. A dynamic analysis of interfuel substitution for Swedish heating plants

    International Nuclear Information System (INIS)

    Braennlund, R.; Lundgren, T.

    2000-01-01

    This paper estimates a dynamic model of interfuel substitution for Swedish heating plants. We use the cost share linear logit model developed by Considine and Mount. All estimated own-price elasticities are negative and all cross-price elasticities are positive. The estimated dynamic adjustment rate parameter is small, however increasing with the size of the plant and time, indicating fast adjustments in the fuel mix when changing relative fuel prices. The estimated model is used to illustrate the effects of two different policy changes

  13. Wild vegetable mixes sold in the markets of Dalmatia (southern Croatia).

    Science.gov (United States)

    Łuczaj, Łukasz; Zovkokončić, Marijana; Miličević, Tihomir; Dolina, Katija; Pandža, Marija

    2013-01-03

    Dalmatia is an interesting place to study the use of wild greens as it lies at the intersection of influence of Slavs, who do not usually use many species of wild greens, and Mediterranean culinary culture, where the use of multiple wild greens is common. The aim of the study was to document the mixtures of wild green vegetables which are sold in all the vegetable markets of Dalmatia. All vendors (68) in all 11 major markets of the Dalmatian coast were interviewed. The piles of wild vegetables they sold were searched and herbarium specimens taken from them. The mean number of species in the mix was 5.7. The most commonly sold wild plants are: Sonchus oleraceus L., Allium ampeloprasum L., Foeniculum vulgare Mill., Urospermum picroides F.W.Schmidt, Papaver rhoeas L., Daucus carota L., Taraxacum sp., Picris echioides L., Silene latifolia Poir. and Crepis spp. Also the cultivated beet (Beta vulgaris L.) and a few cultivated Brassicaceae varieties are frequent components. Wild vegetables from the mix are usually boiled for 20-30 minutes and dressed with olive oil and salt. Altogether at least 37 wild taxa and 13 cultivated taxa were recorded.Apart from the mixes, Asparagus acutifolius L. and Tamus communis L. shoots are sold in separate bunches (they are usually eaten with eggs), as well as some Asteraceae species, the latter are eaten raw or briefly boiled. The rich tradition of eating many wild greens may result both from strong Venetian and Greek influences and the necessity of using all food resources available in the barren, infertile land in the past. Although the number of wild-collected green vegetables is impressive we hypothesize that it may have decreased over the years, and that further in-depth local ethnobotanical studies are needed in Dalmatia to record the disappearing knowledge of edible plants.

  14. Concentrating solar power plant investment and operation decisions under different price and support mechanisms

    International Nuclear Information System (INIS)

    Kost, Christoph; Flath, Christoph M.; Möst, Dominik

    2013-01-01

    The dispatch opportunities provided by storage-enhanced Concentrating Solar Power (CSP) plants have direct implications on the investment decisions as not only nameplate capacity but also the storage capacity and the solar multiple play a crucial role for the viability of the plant investment. By integrating additional technical aspects and operation strategies, this paper extends the optimization model proposed by Madaeni et al., How Thermal Energy Storage Enhances the Economic Viability of Concentrating Solar Power. Using a mixed integer maximization approach the paper yields both the optimal layout decision and the operation of CSP plants. Subsequently, the economic value of CSP storage is analyzed via energy modeling of a Spanish plant location under the respective wholesale market prices as well as the local feed-in tariff. The analysis shows that investment incentives for CSP plants with storage need to appropriately account for the interdependency between the price incentives and the plant operating strategy. As the resulting revenue characteristics influence the optimal size of solar field and storage differing operating strategies also give rise to differing optimal plant layouts. Most noteworthy, the current Spanish support scheme offers only limited incentives for larger thermal storage capacity. - Highlights: • Dispatch opportunities of CSP have direct implications on both investment and operational decisions. • Valuation approach with a single mixed integer maximization problem. • Profitability of CSP plants under the premium feed-in tariff in Spain was assessed. • Layout decision and storage size are influenced by remuneration scheme. • Discuss alternative remuneration schemes for “dispatchable” RE technologies

  15. Pilot incineration plant for solid, combustible, and low-level wastes

    International Nuclear Information System (INIS)

    Francioni, W.M.

    Radioactively contaminated wastes are formed in the handling of radioactive materials at the Federal Institute for Reactor Research (FIRR) and in other facilities, hospitals, sanitoria, industry, and nuclear power plants. A large part of the wastes are combustible and only very slightly radioactive. Incineration of these wastes is obvious. A pilot incineration plant, henceforth called the PIP, for radioactive combustible wastes of the FIRR is surveyed. The plant and its individual components are described. The production costs of the plant and experience gained in operation available at present are reviewed. Solid combustible radioactive waste can be incinerated in the PIP. The maximum possible reduction in volume of these wastes is achieved by incineration. Subsequently the chemically sterile ashes can be consolidated in a stable block suitable for long-term storage mixing with cement

  16. Optimal offering strategy for a concentrating solar power plant

    International Nuclear Information System (INIS)

    Dominguez, R.; Baringo, L.; Conejo, A.J.

    2012-01-01

    Highlights: ► Concentrating solar power (CSP) plants are becoming economically viable. ► CSP production is positively correlated with the demand. ► CSP plants can be made dispatchable by using molten salt storage facilities. ► Integrating CSP plants in a market constitutes a relevant challenge. -- Abstract: This paper provides a methodology to build offering curves for a concentrating solar power plant. This methodology takes into account the uncertainty in the thermal production from the solar field and the volatility of market prices. The solar plant owner is a price-taker producer that participates in a pool-based electricity market with the aim of maximizing its expected profit. To enhance the value of the concentrating solar power plant, a molten salt heat storage is considered, which allows producing electricity during periods without availability of the solar resource. To derive offering curves, a mixed-integer linear programming model is proposed, which is robust from the point of view of the uncertainty associated with the thermal production of the solar field and stochastic from the point of view of the uncertain market prices.

  17. Sneutrino mixing

    International Nuclear Information System (INIS)

    Grossman, Y.

    1997-10-01

    In supersymmetric models with nonvanishing Majorana neutrino masses, the sneutrino and antisneutrino mix. The conditions under which this mixing is experimentally observable are studied, and mass-splitting of the sneutrino mass eigenstates and sneutrino oscillation phenomena are analyzed

  18. Discussion on the planting patterns of alfalfa and meadow fescue in mixed culture and evaluation for their contribution from N2 fixation

    International Nuclear Information System (INIS)

    Yao Yunyin; Zhang Xizhong; Chen Ming

    1996-01-01

    Effects of planting patterns on dry weight, N yield and dinitrogen fixation in alfalfa-meadow fescue pasture are studied by using split plot design in the field for two successive years. The results show that the pattern of row seeding in mixture (RM) is superior to the pattern of broadcasting in mixture (BM) and intercropping (TC), and advantageous to develop the superiority of legume-grass mixed pasture. The annual average of dry weight for RM, BM and TC is 1535.9 g/m 2 , 1208.8 g/m 2 and 1249.3 g/m 2 respectively. The annual average of N yield of them is 50.83 g(N)/m 2 , 36.65 g(N)/m 2 and 36.86 g(N)/m 2 . The annual average Ndfa is 42.37 g(N)/m 2 , 28.21 g(N)/m 2 and 28.42 g(N)/m 2 , and %Ndfa is 83.4%, 77.0% and 77.1% for RM, BM and TC respectively. The comparison of 15 N isotope dilution method, natural 15 N abundance method and total N difference method to measure %Ndfa of herbage for all the treatments are made

  19. Effect of Applying Molasses and Propionic Acid on Fermentation Quality and Aerobic Stability of Total Mixed Ration Silage Prepared with Whole-plant Corn in Tibet

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2014-03-01

    Full Text Available The objective of this study was to evaluate the effects of molasses and propionic acid on the fermentation quality and aerobic stability of total mixed ration (TMR silages prepared with whole-plant corn in Tibet. TMR (354 g/kg DM was ensiled with four different treatments: no additive (control, molasses (M, propionic acid (P, and molasses+propionic acid (PM, in laboratory silos (250 mL and fermented for 45 d. Silos were opened and silages were subjected to an aerobic stability test for 12 days, in which chemical and microbiological parameters of TMR silages were measured to determined the aerobic deterioration. After 45 d of ensiling, the four TMR silages were of good quality with low pH value and ammonia/total N (AN, and high lactic acid (LA content and V-scores. M silage showed the highest (p105 cfu/g FM, however, it appeared to be more stable as indicated by a delayed pH value increase. P and PM silages showed fewer yeasts (<105 cfu/g FM (p<0.05 and were more stable than the control and M silages during aerobic exposure. It was concluded that M application increased LA content and improved aerobic stability of TMR silage prepared with whole-plant corn in Tibet. P application inhibited lactic acid production during ensiling, and apparently preserved available sugars which stimulated large increases in lactic acid during aerobic exposure stage, which resulted in greater aerobic stability of TMR silage.

  20. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    OpenAIRE

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) w...

  1. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    OpenAIRE

    Timmers, Ruud A.; Rothballer, Michael; Strik, David P. B. T. B.; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode–rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) w...

  2. Is There Any Future For Coal Power Plants In Europe?

    Directory of Open Access Journals (Sweden)

    A. V. Zimakov

    2017-01-01

    Full Text Available The article deals with the policies of EU countries towards coal power plants as well as practical steps taken by their governments. Coal power plants are widely considered to be environmentally harmful which confronts with environmental policies of the EU suggesting Europe-wide cuts of greenhouse gas emissions. Based on that assumption a number of EU countries such asBelgium,Austria,Portugal,Dania,Finland,SwedenandUKare striving to phase out coal power plants and achieved significant progress on this path replacing coal with other generation sources. On the other hand, other EU members are lagging behind as coal phase-out is not an urgent item of their political agenda. This situation is typical forIreland,Netherlands,Italy,Croatia,SloveniaandSlovakia. Domestic coal extracting industry can pose a significant hindering factor for a coal power plants phase-out and can effectively block the process. This is the case inBulgaria,Romania,Hungary,CzechRepublic,GreeceandPoland. ButGermany, which also has a well-developed coal industry, transforms its energy sector towards a green one cutting the share of coal in the generation mix. If this effort of the German government proves successful it will deliver a positive transformation model for other EU countries with a large share of coal in generation-mix due to domestic coal extraction industry. The analysis of the political and economic (both macro and micro processes leads to conclusion that there is no unity among EU member states in their approach towards coal fired power plants phase-out. This will allow for coal power plants to retain their market share in a short to medium term. But in the longer run one can expect a significant decrease of coal fired generation inEurope, even in the countries traditionally dependent on coal.

  3. Plant root proliferation in nitrogen-rich patches confers competitive advantage

    Science.gov (United States)

    Robinson, D.; Hodge, A.; Griffiths, B. S.; Fitter, A. H.

    1999-01-01

    Plants respond strongly to environmental heterogeneity, particularly below ground, where spectacular root proliferations in nutrient-rich patches may occur. Such 'foraging' responses apparently maximize nutrient uptake and are now prominent in plant ecological theory. Proliferations in nitrogen-rich patches are difficult to explain adaptively, however. The high mobility of soil nitrate should limit the contribution of proliferation to N capture. Many experiments on isolated plants show only a weak relation between proliferation and N uptake. We show that N capture is associated strongly with proliferation during interspecific competition for finite, locally available, mixed N sources, precisely the conditions under which N becomes available to plants on generally infertile soils. This explains why N-induced root proliferation is an important resource-capture mechanism in N-limited plant communities and suggests that increasing proliferation by crop breeding or genetic manipulation will have a limited impact on N capture by well-fertilized monocultures.

  4. Plant genotypic diversity reduces the rate of consumer resource utilization.

    Science.gov (United States)

    McArt, Scott H; Thaler, Jennifer S

    2013-07-07

    While plant species diversity can reduce herbivore densities and herbivory, little is known regarding how plant genotypic diversity alters resource utilization by herbivores. Here, we show that an invasive folivore--the Japanese beetle (Popillia japonica)--increases 28 per cent in abundance, but consumes 24 per cent less foliage in genotypic polycultures compared with monocultures of the common evening primrose (Oenothera biennis). We found strong complementarity for reduced herbivore damage among plant genotypes growing in polycultures and a weak dominance effect of particularly resistant genotypes. Sequential feeding by P. japonica on different genotypes from polycultures resulted in reduced consumption compared with feeding on different plants of the same genotype from monocultures. Thus, diet mixing among plant genotypes reduced herbivore consumption efficiency. Despite positive complementarity driving an increase in fruit production in polycultures, we observed a trade-off between complementarity for increased plant productivity and resistance to herbivory, suggesting costs in the complementary use of resources by plant genotypes may manifest across trophic levels. These results elucidate mechanisms for how plant genotypic diversity simultaneously alters resource utilization by both producers and consumers, and show that population genotypic diversity can increase the resistance of a native plant to an invasive herbivore.

  5. Does interspecific competition alter effects of early season ozone exposure on plants from wet grasslands? Results of a three-year experiment in open-top chambers.

    Science.gov (United States)

    Tonneijck, A E G; Franzaring, J; Brouwer, G; Metselaar, K; Dueck, Th A

    2004-09-01

    Chronic effects of ozone on wet grassland species early in the growing season might be altered by interspecific competition. Individual plants of Holcus lanatus, Lychnis flos-cuculi, Molinia caerulea and Plantago lanceolata were grown in monocultures and in mixed cultures with Agrostis capillaris. Mesocosms were exposed to charcoal-filtered air plus 25 nl l(-1) ozone (CF+25), non-filtered air (NF), non-filtered air plus 25 nl l(-1) ozone (NF+25) and non-filtered air plus 50 nl l(-1) ozone (NF+50) early in the growing seasons of 2000 through 2002. Ozone-enhanced senescence and visible foliar injury were recorded on some of the target plants in the first year only. Ozone effects on biomass production were minimal and plant response to ozone did not differ between monocultures and mixed cultures. After three years, above-ground biomass of the plants in mixed culture compared to monocultures was three times greater for H. lanatus and two to four times smaller for the other species.

  6. Does interspecific competition alter effects of early season ozone exposure on plants from wet grasslands? Results of a three-year experiment in open-top chambers

    International Nuclear Information System (INIS)

    Tonneijck, A.E.G.; Franzaring, J.; Brouwer, G.; Metselaar, K.; Dueck, Th.A.

    2004-01-01

    Chronic effects of ozone on wet grassland species early in the growing season might be altered by interspecific competition. Individual plants of Holcus lanatus, Lychnis flos-cuculi, Molinia caerulea and Plantago lanceolata were grown in monocultures and in mixed cultures with Agrostis capillaris. Mesocosms were exposed to charcoal-filtered air plus 25 nl l -1 ozone (CF + 25), non-filtered air (NF), non-filtered air plus 25 nl l -1 ozone (NF + 25) and non-filtered air plus 50 nl l -1 ozone (NF + 50) early in the growing seasons of 2000 through 2002. Ozone-enhanced senescence and visible foliar injury were recorded on some of the target plants in the first year only. Ozone effects on biomass production were minimal and plant response to ozone did not differ between monocultures and mixed cultures. After three years, above-ground biomass of the plants in mixed culture compared to monocultures was three times greater for H. lanatus and two to four times smaller for the other species

  7. Mixing ventilation guide on mixing air distribution design

    CERN Document Server

    Kandzia, Claudia; Kosonen, Risto; Krikor Melikov, Arsen; Nielsen, Peter Vilhelm

    2013-01-01

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection of air diffusers and exhaust openings.

  8. Enhanced fertilization effect of a compost obtained from mixed herbs waste inoculated with novel strains of mesophilic bacteria

    Directory of Open Access Journals (Sweden)

    Dimitrijević Snežana M.

    2017-01-01

    Full Text Available Mixed medicinal plant waste was composted with addition of novel bacterial strains belonging to the genera Streptomyces, Paenybacillus, Bacillus and Hymenobacter. The composting was followed by assessment of chemical and biological parameters including C/N ratio, loss of organic matter, phosphorous and potassium content as well as CO2 generation and dehydrogenase activity during 164 days. The selected mesophilic bacterial starters had a potential to significantly reduce the period of mixed herb waste decomposition, from about 6 months to about 2.5 months. Based on the seed germination index of four plants (Fagopirum esculentum, Thymus vulgaris, Cynara scolimus and Lavandula officinalis the germination and radial root growth of the investigated plants was improved by the inoculated compost. The germination index of all tested species on the mature inoculated composts was in average 60% higher compared to the control compost. The research indicates that the mesophilic starter addition into the herbs waste can contribute to the speed of waste decomposition and lead to the improvement of biofertilization effect of the obtained compost. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 31035

  9. Potential for Producing Biogas from Agricultural Waste in Rural Plants in Poland

    Directory of Open Access Journals (Sweden)

    Magdalena Muradin

    2014-08-01

    Full Text Available This article is an overview of the current situation as well as future prospects for biogas production in rural plants in Poland. Our research has focused on the management of agricultural waste. While Poland’s agriculture and its local food industry have substantial potential, many barriers persist to the development not only of biogas plants but also in every other renewable source of energy. The main obstacles have to do with politically motivated economic factors. Our interest has been in larger plants having sufficient capacities to produce in excess of 500 kW of electricity. The paper also presents a case study of a biogas plant supply by organic, agrifood waste mixed with silage.

  10. Continuous mixing of solids

    NARCIS (Netherlands)

    Raouf, M.S.

    1963-01-01

    The most important literature on theoretical aspects of mixing solids was reviewed.

    Only when the mixed materials showed no segregation it was possible to analyse the mixing process quantitatively. In this case the mixture could be described by the 'χ' Square test. Longitudinal mixing could be

  11. Contemplating case mix: A primer on case mix classification and management.

    Science.gov (United States)

    Costa, Andrew P; Poss, Jeffery W; McKillop, Ian

    2015-01-01

    Case mix classifications are the frameworks that underlie many healthcare funding schemes, including the so-called activity-based funding. Now more than ever, Canadian healthcare administrators are evaluating case mix-based funding and deciphering how they will influence their organization. Case mix is a topic fraught with technical jargon and largely relegated to government agencies or private industries. This article provides an abridged review of case mix classification as well as its implications for management in healthcare. © 2015 The Canadian College of Health Leaders.

  12. Vestas Power Plant Solutions Integrating Wind, Solar PV and Energy Storage

    DEFF Research Database (Denmark)

    Petersen, Lennart; Hesselbæk, Bo; Martinez, Antonio

    2018-01-01

    This paper addresses a value proposition and feasible system topologies for hybrid power plant solutions integrating wind, solar PV and energy storage and moreover provides insights into Vestas hybrid power plant projects. Seen from the perspective of a wind power plant developer, these hybrid...... solutions provide a number of benefits that could potentially reduce the Levelized Cost of Energy and enable entrance to new markets for wind power and facilitate the transition to a more sustainable energy mix. First, various system topologies are described in order to distinguish the generic concepts...... for the electrical infrastructure of hybrid power plants. Subsequently, the benefits of combining wind and solar PV power as well as the advantages of combining variable renewable energy sources with energy storage are elaborated. Finally, the world’s first utility-scale hybrid power plant combining wind, solar PV...

  13. On interrelations of Sr90 contents in the soil-forage plants-milk chain under natural conditions

    International Nuclear Information System (INIS)

    Chupka, Sh.

    1975-01-01

    Observations were made on 150 soil damples, 58 plant root samples, and 98 milk samples. Four types of soil from western Slovakia (chernozem, brown, sandy, and carbonate) and two types of plant roots (alfalfa and mixed grasses) were studied. A relation was shown between the type of soil, its physico-chemical properties, the Sr 90 accumulation in the plant roots, and the degree of contamination of milk by this radionuclide. (V.A.P.)

  14. Power plants 2009. Lectures

    International Nuclear Information System (INIS)

    2009-01-01

    Within the Annual Conference 2009 of the VGB PowerTech e.V. (Essen, Federal Republic of Germany) from 23rd to 25th May, 2009, in Lyon (France) the following lectures were held: (1) Electricity demand, consequences of the financial and economic crisis - Current overview 2020 for the EU-27 (Hans ten Berge); (2) Status and perspectives of the electricity generation mix in France (Bernard Dupraz); (3) European electricity grid - status and perspective (Dominique Maillard); (4) Technologies and acceptance in the European energy market (Gordon MacKerran); (5) EPR construction in Finland, China, France, (Claude Jaouen); (6) EPR Flamanville 3: A project on the path towards nuclear revival (Jacques Alary); (7) Worldwide nuclear Revival and acceptance (Luc Geraets); (8) An overview on the status of final disposal of radioactive wastes worldwide (Piet Zuidema); (9) Who needs pumped storage plants? PSP are partner to grid stability and renewable energies (Hans-Christoph Funke); (10) Sustainable use of water resources to generate electricity safely and efficiently (Patrick Tourasse); (11) The growth strategy of RWE Innogy - Role of RES in RWE strategy (Fritz Vahrenholt); (12) Solar technologies towards grid parity - key factors and timeframe (G. Gigliucci); (13) Overview on CCS technologies and results of Vattenfalls oxyfuel pilot plant (Philippe Paelinck); (14) Development perspectives of lignite-based IGCC-plants with CCS (Dietmar Keller); (15) Post combustion capture plants - concept and plant integration (Wolfgang Schreier); (16) CCS fossil power generation in a carbon constraint world (Daniel Hofmann); (17) CEZ group strategy in Central and South Eastern Europe (Jan Zizka); (18) Strategy and projects of DONG Energy (Jens Erik Pedersen); (19) E.ON coal-based power generation of the future - The highly efficient power plant and downstream separation of carbon dioxide (Gerhard Seibel); (20) Final sage of first supercritical 460 MW e l. CFB Boiler construction - firs

  15. Waste Treatment Plant LAW Evaporation: Antifoam Performance

    International Nuclear Information System (INIS)

    BAICH, MARKA

    2004-01-01

    This report describes the work performed to determine the performance and fate of several commercial antifoams during evaporation of various simulants of Envelope A, B, and C mixed with simulated River Protection Project Waste Treatment Plant (RPP-WTP) recycle streams. Chemical and radiation stability of selected antifoams was also investigated.Contributors to this effort include: Illinois Institute of Technology (IIT), DOW Corning Analytical, and Savannah River Technology Center (SRTC)

  16. Branch Development of Five-Year-Old Betula alnoides Plantations in Response to Planting Density

    Directory of Open Access Journals (Sweden)

    Chun-Sheng Wang

    2018-01-01

    Full Text Available Branch development in the lower part of stem is critical to both early stem growth and wood quality of the most valuable section of tree, and its regulation through planting density has always been greatly concerned. Here the effect of planting density on branch development was examined in a five-year-old plantation of Betula alnoides with six planting densities (625, 833, 1111, 1250, 1667, and 2500 stems per hectare (sph in Guangdong Province, South China. Branch quantity (number, proportion, and density, morphology (diameter, length, and angle, position (height and orientation, and branch status (dead or alive were investigated for 54 dominant or co-dominant trees under six treatments of planting density after the growth of each tree was measured. Factors influencing branch development were also explored by mixed modelling. The results showed that the mean tree heights of 1250 and 1667 sph treatments were higher than those of other planting density treatments. The quantity of live branches decreased with increasing planting density. However, planting density had no significant effect on the number of all branches, and there existed no remarkable difference in branch number and proportion among four orientations. As for branch morphology, only the largest branch diameter had a significantly negative correlation with planting density. In addition, high planting density significantly increased the height of the largest branch within the crown. Mixed effects models indicated that branch diameter, length, and angle were closely correlated with each other, and they were all in positively significant correlation to the branch height at the stem section below six meters. It was concluded that properly increasing planting density will promote natural pruning, improve early branch control, and be beneficial for wood production from the most valuable section of the stem.

  17. Thermal power plant operating regimes in future British power systems with increasing variable renewable penetration

    International Nuclear Information System (INIS)

    Edmunds, Ray; Davies, Lloyd; Deane, Paul; Pourkashanian, Mohamed

    2015-01-01

    Highlights: • This work investigates thermal power operating regimes in future power systems. • Gas plants have low utilisation in the scenarios considered. • Ramping intensity increases for gas plants and pumped storage. • Coal plants frequently operate at minimum stable levels and start-ups increase. • Grid emission intensity and total emission production remains substantial. - Abstract: This work investigates the operational requirements of thermal power plants in a number of potential future British power systems with increasing variable renewable penetration. The PLEXOS Integrated Energy Model has been used to develop the market models, with PLEXOS employing mixed integer programming to solve the unit commitment and economic dispatch problem, subject to a number of constraints. Initially, a model of the British power system was developed and validated. Subsequently, a 2020 test model was developed to analyse a number of future system structures with differing fuel and carbon prices and generation mixes. The study has found that in three of the four scenarios considered, the utilisation of gas power plants will be relatively low, but remains fundamental to the security of supply. Also, gas plants will be subject to more intense ramping. The findings have consequent implications for energy policy as expensive government interventions may be required to prevent early decommissioning of gas capacity, should the prevailing market conditions not guarantee revenue adequacy.

  18. Inference of ICF Implosion Core Mix using Experimental Data and Theoretical Mix Modeling

    International Nuclear Information System (INIS)

    Welser-Sherrill, L.; Haynes, D.A.; Mancini, R.C.; Cooley, J.H.; Tommasini, R.; Golovkin, I.E.; Sherrill, M.E.; Haan, S.W.

    2009-01-01

    The mixing between fuel and shell materials in Inertial Confinement Fusion (ICF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model performed well in predicting trends in the width of the mix layer. With these results, we have contributed to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increased our confidence in the methods used to extract mixing information from experimental data.

  19. Effect of feeding some evergreen tropical browse plant leaves on ...

    African Journals Online (AJOL)

    A feeding trial was conducted with thirty (30) weaner rabbits to investigate the nutritive potentials of some evergreen tropical browse plant leaves (Ficcus thoningii, Vitex doniana, Daniela oliveri, Sarcocephalus latifolia). Mixed breed rabbits were used and randomly assigned to five (5) treatments (T1 - T5). The rabbits in ...

  20. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    Science.gov (United States)

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  1. Improvement of incineration efficiency of spent ion exchange resins on the incinerator at nuclear power plants. Manufacturing the solids of the resins mixed with paraffin wax and their incinerating test results on actual incinerator

    International Nuclear Information System (INIS)

    Izumi, Takeshi; Ohtsu, Takashi; Inagawa, Hirofumi; Kawakami, Takashi; Hagiwara, Masahiro; Ino, Takao; Ishiyama, Yuji

    2011-01-01

    In nuclear power plants, ion exchange resins are used at water purification systems such as condensate demineralizers. After usage, used ion exchange resins are stored at plants as low level radioactive wastes. Ion exchange resins contain water and so, those are flame resistant materials. At present, ion exchange resins are incinerated with other inflammable materials at incinerators. Furthermore, ion exchange resins are fine particle beads and are easy to be scattered in all directions, so operators must pay attentions for treatment. Then, we have developed the new solidification system of ion exchange resins with paraffin wax. Ion exchange resins are mixed and extruded with paraffin wax and these solids are enabled to incinerate at existing incinerators. In order to demonstrate this new method, we made the large amount of solids and incinerated them at actual incinerator. From these results, we have estimated to be able to incinerate the solids only at actual incinerator. (author)

  2. Mixing Ventilation

    DEFF Research Database (Denmark)

    Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...

  3. The Effects of Cropping Regimes on Fungal and Bacterial Communities of Wheat and Faba Bean in a Greenhouse Pot Experiment Differ between Plant Species and Compartment

    Directory of Open Access Journals (Sweden)

    Sandra Granzow

    2017-05-01

    Full Text Available Many bacteria and fungi in the plant rhizosphere and endosphere are beneficial to plant nutrient acquisition, health, and growth. Although playing essential roles in ecosystem functioning, our knowledge about the effects of multiple cropping regimes on the plant microbiome and their interactions is still limited. Here, we designed a pot experiment simulating different cropping regimes. For this purpose, wheat and faba bean plants were grown under controlled greenhouse conditions in monocultures and in two intercropping regimes: row and mixed intercropping. Bacterial and fungal communities in bulk and rhizosphere soils as well as in the roots and aerial plant parts were analyzed using large-scale metabarcoding. We detected differences in microbial richness and diversity between the cropping regimes. Generally, observed effects were attributed to differences between mixed and row intercropping or mixed intercropping and monoculture. Bacterial and fungal diversity were significantly higher in bulk soil samples of wheat and faba bean grown in mixed compared to row intercropping. Moreover, microbial communities varied between crop species and plant compartments resulting in different responses of these communities toward cropping regimes. Leaf endophytes were not affected by cropping regime but bacterial and fungal community structures in bulk and rhizosphere soil as well as fungal community structures in roots. We further recorded highly complex changes in microbial interactions. The number of negative inter-domain correlations between fungi and bacteria decreased in bulk and rhizosphere soil in intercropping regimes compared to monocultures due to beneficial effects. In addition, we observed plant species-dependent differences indicating that intra- and interspecific competition between plants had different effects on the plant species and thus on their associated microbial communities. To our knowledge, this is the first study investigating

  4. Dilute chemical decontamination resins and the mixed waste issue

    International Nuclear Information System (INIS)

    Denault, R.P.; Hallman, J.T.

    1988-01-01

    The decontamination of reactor primary systems, sub-systems and components is an important method used to reduce the occupational radiation exposure of nuclear plant personnel. The waste produced by the application of this technology is mainly solid in the form of ion exchange resins. As a result of a recent agreement between the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC), all radioactive waste must meet EPA burial criteria. The chemicals used in a decontamination and certain metals dissolved during the process, primarily chromium, could render the waste hazardous as well as radioactive or more commonly called a mixed waste. This paper defines mixed waste as described in the EPA directive 9432.00-2, and examine the criteria by which waste is categorized as hazardous. The decontamination waste resin generated by two processes, the CAN-DEREM and the LOMI process, is described in detail. Waste data obtained from decontaminations performed by LN Technologies Corporation including chemical, metal and radionuclide loadings on resins from both PWR and BWR applications are presented

  5. Influence of neighboring plants on shading stress resistance and recovery of eelgrass, Zostera marina L.

    Directory of Open Access Journals (Sweden)

    Camilla Gustafsson

    Full Text Available Stressful environments may enhance the occurrence of facilitative interspecific interactions between plants. In several regions, Zostera marina occurs in mixed assemblages. However, the potential effects of plant diversity on stress responses and stability properties of Z. marina are poorly understood. We investigated the resistance and recovery of Z. marina subjected to shading (1 mo in a field experiment lasting 2.5 mo. We shaded Z. marina planted in mono- and polycultures (Potamogeton perfoliatus, P. pectinatus, P. filiformis in a factorial design (Shading×Richness at 2 m depth. We estimated the resistance and recovery of Z. marina by measuring four response variables. Polyculture Z. marina lost proportionally less biomass than monocultures, thus having a greater resistance to shading. In contrast, after a 1 mo recovery period, monocultures exhibited higher biomass gain, and a faster recovery than polycultures. Our results suggest that plant species richness enhances the resistance of Z. marina through facilitative mechanisms, while the faster recovery in monocultures is possibly due to interspecific competition. Our results highlight the need of a much better understanding of the effects of interspecific interactions on ecosystem processes in mixed seagrass meadows, and the preservation of diverse plant assemblages to maintain ecosystem functioning.

  6. Analysis of energy consumption at the Rzeszów Wastewater Treatment Plant

    OpenAIRE

    Masłoń Adam

    2017-01-01

    Wastewater treatment plants can be classified as energy-intensive facilities, as they account for up to 35 percent of municipal energy consumption. Pumps and aeration systems consume a significant portion of energy within the wastewater plants in particular. The cost of energy consumption for wastewater treatment processes reaches up to 40% of the total operating cost. In case of the WWTPs with the activated sludge systems, about 50% of energy is used for aeration and mixing purposes. At WWTP...

  7. Present status of fuel reprocessing plant in PNC

    International Nuclear Information System (INIS)

    Koyama, Kenji

    1981-01-01

    In the fuel reprocessing plant of the Power Reactor and Nuclear Fuel Development Corporation, its hot test has now been completed. For starting its full-scale operation duly, the data are being collected on the operation performance and safety. The construction was started in June, 1971, and completed in October, 1974. In July, 1977, spent fuel was accepted in the plant, and the hot test was started. In September, the same year, the first fuel shearing was made. So far, a total of about 31 t U from both BWR and PWR plants has been processed, thus the hot test was entirely completed. The following matters are described: hot test and its results, research on Pu and U mixed extraction, utilization of product plutonium, development of safeguard technology, and repair work on the acid recovery evaporation tank. (J.P.N.)

  8. Waste incinerating plant

    Energy Technology Data Exchange (ETDEWEB)

    1972-12-01

    This plant is provided with a NKK-Ferunst type reciprocating stage fire lattice which has a good ventilating effect and a proper stirring and loosening effect, achieving a high combustion rate, and has also a gas flow system by which gas can flow in the reverse direction to adjust its flow for seasonal variations in the quality of waste. Also, a room in which the exhaust gas is mixed is provided in this plant as a help for the complete neutralization and combustion of acid gas such as hydrogen chloride and imperfect combustion gas from plastic waste contained in wastes. In this system, waste can accept a sufficient radiant heat from the combustion gas, the furnace wall, and the ceiling; even on the post combustion fire lattice the ashes are given heat enough to complete the post combustion, so that it can be completely reduced to ashes. For these reasons, this type of incinerator is suitable for the combustion of low-calorie wastes such as city wastes. The harmful gases resulting from the combustion of wastes are treated completely by desulfurization equipment which can remove the oxides of sulfur. This type of plant also can dispose of a wide variety of wastes, and is available in several capacities from 30 tons per 8 hr to 1,200 tons per 24 hr.

  9. Mixed twistor D-modules

    CERN Document Server

    Mochizuki, Takuro

    2015-01-01

    We introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem, and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular.  .

  10. State-of-the-art of large scale biogas plants

    International Nuclear Information System (INIS)

    Prisum, J.M.; Noergaard, P.

    1992-01-01

    A survey of the technological state of large scale biogas plants in Europe treating manure is given. 83 plants are in operation at present. Of these, 16 are centralised digestion plants. Transport costs at centralised digestion plants amounts to between 25 and 40 percent of the total operational costs. Various transport equipment is used. Most large scale digesters are CSTRs, but serial, contact, 2-step, and plug-flow digesters are also found. Construction materials are mostly steel and concrete. Mesophilic digestion is most common (56%), thermophilic digestion is used in 17% of the plants, combined mesophilic and thermophilic digestion is used in 28% of the centralised plants. Mixing of digester content is performed with gas injection, propellers, and gas-liquid displacement. Heating is carried out using external or internal heat exchangers. Heat recovery is only used in Denmark. Gas purification equipment is commonplace, but not often needed. Several plants use separation of the digested manure, often as part of a post-treatment/-purification process or for the production of 'compost'. Screens, sieve belt separaters, centrifuges and filter presses are employed. The use of biogas varies considerably. In some cases, combined heat and power stations are supplying the grid and district heating systems. Other plants use only either the electricity or heat. (au)

  11. Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations.

    Science.gov (United States)

    Wang, D; Salah El-Basyoni, I; Stephen Baenziger, P; Crossa, J; Eskridge, K M; Dweikat, I

    2012-11-01

    Though epistasis has long been postulated to have a critical role in genetic regulation of important pathways as well as provide a major source of variation in the process of speciation, the importance of epistasis for genomic selection in the context of plant breeding is still being debated. In this paper, we report the results on the prediction of genetic values with epistatic effects for 280 accessions in the Nebraska Wheat Breeding Program using adaptive mixed least absolute shrinkage and selection operator (LASSO). The development of adaptive mixed LASSO, originally designed for association mapping, for the context of genomic selection is reported. The results show that adaptive mixed LASSO can be successfully applied to the prediction of genetic values while incorporating both marker main effects and epistatic effects. Especially, the prediction accuracy is substantially improved by the inclusion of two-locus epistatic effects (more than onefold in some cases as measured by cross-validation correlation coefficient), which is observed for multiple traits and planting locations. This points to significant potential in using non-additive genetic effects for genomic selection in crop breeding practices.

  12. Mixed Waste Integrated Program: A technology assessment for mercury-containing mixed wastes

    International Nuclear Information System (INIS)

    Perona, J.J.; Brown, C.H.

    1993-03-01

    The treatment of mixed wastes must meet US Environmental Protection Agency (EPA) standards for chemically hazardous species and also must provide adequate control of the radioactive species. The US Department of Energy (DOE) Office of Technology Development established the Mixed Waste Integrated Program (MWIP) to develop mixed-waste treatment technology in support of the Mixed Low-Level Waste Program. Many DOE mixed-waste streams contain mercury. This report is an assessment of current state-of-the-art technologies for mercury separations from solids, liquids, and gases. A total of 19 technologies were assessed. This project is funded through the Chemical-Physical Technology Support Group of the MWIP

  13. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala.

    Science.gov (United States)

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration.

  14. POTENTIAL IMPACTS OF CLIMATE CHANGE ON PLANT DIVERSITY OF HILLY AREAS OF AZAD KASHMIR AND THEIR MITIGATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    K. F. Akbar

    2017-08-01

    Full Text Available Azad Kashmir has variety of mountain ecosystems which are rich in floral and faunal diversity. These ecosystems are fragile and are under stress due to various natural and anthropogenic pressures. Mountain ecosystems of Azad Kashmir are more vulnerable to global warming and are expected to show its impacts rapidly. Climate change may cause major changes in distribution ranges of different vegetation types. As a result of climate change, the area of three vegetation groups (alpine, grassland/arid woodlands and deserts is expected to decrease and the areas of five types (cold conifer/mixed woodland, cold conifer/mixed forests, temperate conifer/mixed forests, warm conifer/mixed forests, and steppe/arid shrub lands are expected to increase. Climate change is going to affect conservation of plant species and ecosystems by causing direct loss of plant species and intensify the effects of existing threats such as habitat degradation, deforestation and over-harvesting of plants by local communities, pollution and invasive species. These stresses, acting individually and collectively on species, communities and ecosystems, are depleting and will continue to deplete biodiversity. The negative impacts of climate change are multi-dimensional and wide-ranging. Their mitigation requires an integrated and coordinated policy response for conservation of plant resources. These measures include a regular monitoring and observation system, restoration of degraded habitats and forests, identifying new solutions involving cross-sectoral linkages to conserve biological diversity of Azad Kashmir by supporting the intricate and complex responses of species and ecosystems to climate change.

  15. Mixed

    Directory of Open Access Journals (Sweden)

    Pau Baya

    2011-05-01

    Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.

  16. Dynamic real-time substrate feed optimization of anaerobic co-digestion plants

    NARCIS (Netherlands)

    Gaida, Daniel

    2014-01-01

    In anaerobic co-digestion plants a mix of organic materials is converted to biogas using the anaerobic digestion process. These organic materials, called substrates, can be crops, sludge, manure, organic wastes and many more. They are fed on a daily basis and significantly affect the biogas

  17. A process for the recovery of mixed rare-earth oxides from monazite

    International Nuclear Information System (INIS)

    Te Riele, W.A.M.

    1982-01-01

    A simple process has been demonstrated in the laboratory for the production of mixed rare-earth oxides from monazite concentrate. The product is substantially free from radioactive materials and has a purity of more than 98 per cent. The process involves leaching, filtration, ion exchange by use of a cation resin, precipitation, and calcination. The design, materials, consumption and cost of chemicals, and labor requirements are discussed, and a recommendation is made for pilot-plant tests

  18. Estimating CO2 gas exchange in mixed age vegetable plant communities grown on soil-like substrates for life support systems

    Science.gov (United States)

    Velichko, V. V.; Tikhomirov, A. A.; Ushakova, S. A.

    2018-02-01

    If soil-like substrate (SLS) is to be used in human life support systems with a high degree of mass closure, the rate of its gas exchange as a compartment for mineralization of plant biomass should be understood. The purpose of this study was to compare variations in CO2 gas exchange of vegetable plant communities grown on the soil-like substrate using a number of plant age groups, which determined the so-called conveyor interval. Two experimental plant communities were grown as plant conveyors with different conveyor intervals. The first plant community consisted of conveyors with intervals of 7 days for carrot and beet and 14 days for chufa sedge. The conveyor intervals in the second plant community were 14 days for carrot and beet and 28 days for chufa sedge. This study showed that increasing the number of age groups in the conveyor and, thus, increasing the frequency of adding plant waste to the SLS, decreased the range of variations in CO2 concentration in the "plant-soil-like substrate" system. However, the resultant CO2 gas exchange was shifted towards CO2 release to the atmosphere of the plant community with short conveyor intervals. The duration of the conveyor interval did not significantly affect productivity and mineral composition of plants grown on the SLS.

  19. The Role of Cohesive Particle Interactions on Solids Uniformity and Mobilization During Jet Mixing: Testing Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Wells, Beric E.; Bamberger, Judith A.; Fort, James A.; Chun, Jaehun; Jenks, Jeromy WJ

    2010-04-01

    Radioactive waste that is currently stored in large underground tanks at the Hanford Site will be staged in selected double-shell tanks (DSTs) and then transferred to the Waste Treatment and Immobilization Plant (WTP). Before being transferred, the waste will be mixed, sampled, and characterized to determine if the waste composition and meets the waste feed specifications. Washington River Protection Solutions is conducting a Tank Mixing and Sampling Demonstration Program to determine the mixing effectiveness of the current baseline mixing system that uses two jet mixer pumps and the adequacy of the planned sampling method. The overall purpose of the demonstration program is to mitigate the technical risk associated with the mixing and sampling systems meeting the feed certification requirements for transferring waste to the WTP.The purpose of this report is to analyze existing data and evaluate whether scaled mixing tests with cohesive simulants are needed to meet the overall objectives of the small-scale mixing demonstration program. This evaluation will focus on estimating the role of cohesive particle interactions on various physical phenomena that occur in parts of the mixing process. A specific focus of the evaluation will be on the uniformity of suspended solids in the mixed region. Based on the evaluation presented in this report and the absence of definitive studies, the recommendation is to conduct scaled mixing tests with cohesive particles and augment the initial testing with non-cohesive particles. In addition, planning for the quantitative tests would benefit from having test results from some scoping experiments that would provide results on the general behavior when cohesive inter-particle forces are important.

  20. Unitarity constraints on trimaximal mixing

    International Nuclear Information System (INIS)

    Kumar, Sanjeev

    2010-01-01

    When the neutrino mass eigenstate ν 2 is trimaximally mixed, the mixing matrix is called trimaximal. The middle column of the trimaximal mixing matrix is identical to tribimaximal mixing and the other two columns are subject to unitarity constraints. This corresponds to a mixing matrix with four independent parameters in the most general case. Apart from the two Majorana phases, the mixing matrix has only one free parameter in the CP conserving limit. Trimaximality results in interesting interplay between mixing angles and CP violation. A notion of maximal CP violation naturally emerges here: CP violation is maximal for maximal 2-3 mixing. Similarly, there is a natural constraint on the deviation from maximal 2-3 mixing which takes its maximal value in the CP conserving limit.

  1. Strictly NO3- Nutrition Alleviates Iron Deficiency Chlorosis in Arabidopsis thaliana Plants

    Directory of Open Access Journals (Sweden)

    Najoua Msilini

    2014-03-01

    Full Text Available The effects of NO3- nutrition on iron deficiency responses were investigated in Arabidopsis thaliana. Plants were grown with or without 5 µM Fe, and with NO3- alone or a mixture of NO3- and NH4+. The results indicated that, NO3- nutrition induced higher dry matter production, regardless the Fe concentration. Fe deficiency reduced growth activity, photosynthetic pigment concentration and Fe content of plants, whatever the N forms. This decrease was more pronounced in plants grown with mixed N source; those plants presented the highest EL and MDA and anthocyanin contents compared to plants grown under Fe sufficient conditions. In iron free-solutions, with NO3- as the sole nitrogen source, enhanced FC-R activity in the roots was observed. However, in the presence of NH4+, plants displayed some decrease in in FC-R and PEPC activities. The presence of NH4+ modified typical Fe stress responses in Arabidopsis thaliana plants.

  2. Mixing vane grid spacer

    International Nuclear Information System (INIS)

    Patterson, J.F.; Galbraith, K.P.

    1978-01-01

    An improved mixing vane grid spacer having enhanced flow mixing capability by virtue of mixing vanes being positioned at welded intersecting joints of the spacer wherein each mixing vane has an opening or window formed therein substantially directly over the welded joint to provide improved flow mixing capability is described. Some of the vanes are slotted, depending on their particular location in the spacers. The intersecting joints are welded by initially providing consumable tabs at and within each window, which are consumed during the welding of the spacer joints

  3. Effect of Different Treatments of Mixed and Row Intercropping on Yield and Yield Components of Sesame and Bean

    Directory of Open Access Journals (Sweden)

    Sh Ghale Noyee

    2017-12-01

    Full Text Available Introduction Intercropping is a kind of multi-culture system where two or more plants are cultivated in a piece of land simultaneously. The aim of intercropping is optimizing the use of space, time and physical resources in both the top and under of the soil surface through maximizing positive relationship and minimizing negative relationship between the components of agricultural ecosystems. In intercropping due to better use of available resources such as land, labor, time, light, water and nutrients, as well as reducing damages caused by pests and diseases and socio-economic advantages, increase in production per unit area can be expected. In this study, yield and yield components of sesame and bean in additive and replacement intercropping with mixed and row planting type was evaluated and the possible advantages of intercropping to monoculture as well as the types of intercropping were compared. Materials and Methods This experiment was conducted in Agricultural Research Station of Ferdowsi University of Mashhad, located in 10 kilometers south-east of the city of Mashhad, Iran (latitude 36° 17′ N, longitude 59° 35′ E and 985 m elevation in 2013 and 2014. Climate of the area is cold and dry. A Split-Plot experiment based on randomized complete block design with three replications was used with the factor of cropping system (as main plot and intercropping proportions (as sub plot. The cropping system was included; mixed and row cropping and intercropping proportions were included; monoculture of bean (100b, 25% sesame- 75% bean (25s75b, 50% sesame- 50% bean (50s50b, 75% sesame- 25% bean (75s25b, monoculture of sesame (100s, 10% bean- 100% sesame (10b100s, 20% bean- 100% sesame (20b100s, 30% bean- 100% sesame (30b100s, 100% bean- 10% sesame (100b10s, 100% bean- 20% sesame (100b20s, and 100% bean- 30% sesame (100b30s. Planting was done using common varieties of the region (Esfarayen and Derakhshan varieties for sesame and bean

  4. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

    Science.gov (United States)

    Badhan, Ajay; Wang, Yu-Xi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim A

    2015-01-01

    Identification of recalcitrant factors that limit digestion of forages and the development of enzymatic approaches that improve hydrolysis could play a key role in improving the efficiency of meat and milk production in ruminants. Enzyme fingerprinting of barley silage fed to heifers and total tract indigestible fibre residue (TIFR) collected from feces was used to identify cell wall components resistant to total tract digestion. Enzyme fingerprinting results identified acetyl xylan esterases as key to the enhanced ruminal digestion. FTIR analysis also suggested cross-link cell wall polymers as principal components of indigested fiber residues in feces. Based on structural information from enzymatic fingerprinting and FTIR, enzyme pretreatment to enhance glucose yield from barley straw and alfalfa hay upon exposure to mixed rumen-enzymes was developed. Prehydrolysis effects of recombinant fungal fibrolytic hydrolases were analyzed using microassay in combination with statistical experimental design. Recombinant hemicellulases and auxiliary enzymes initiated degradation of plant structural polysaccharides upon application and improved the in vitro saccharification of alfalfa and barley straw by mixed rumen enzymes. The validation results showed that microassay in combination with statistical experimental design can be successfully used to predict effective enzyme pretreatments that can enhance plant cell wall digestion by mixed rumen enzymes.

  5. Mixed methods research.

    Science.gov (United States)

    Halcomb, Elizabeth; Hickman, Louise

    2015-04-08

    Mixed methods research involves the use of qualitative and quantitative data in a single research project. It represents an alternative methodological approach, combining qualitative and quantitative research approaches, which enables nurse researchers to explore complex phenomena in detail. This article provides a practical overview of mixed methods research and its application in nursing, to guide the novice researcher considering a mixed methods research project.

  6. Validation of mixing heights derived from the operational NWP models at the German weather service

    Energy Technology Data Exchange (ETDEWEB)

    Fay, B.; Schrodin, R.; Jacobsen, I. [Deutscher Wetterdienst, Offenbach (Germany); Engelbart, D. [Deutscher Wetterdienst, Meteorol. Observ. Lindenberg (Germany)

    1997-10-01

    NWP models incorporate an ever-increasing number of observations via four-dimensional data assimilation and are capable of providing comprehensive information about the atmosphere both in space and time. They describe not only near surface parameters but also the vertical structure of the atmosphere. They operate daily, are well verified and successfully used as meteorological pre-processors in large-scale dispersion modelling. Applications like ozone forecasts, emission or power plant control calculations require highly resolved, reliable, and routine values of the temporal evolution of the mixing height (MH) which is a critical parameter in determining the mixing and transformation of substances and the resulting pollution levels near the ground. The purpose of development at the German Weather Service is a straightforward mixing height scheme that uses only parameters derived from NWP model variables and thus automatically provides spatial and temporal fields of mixing heights on an operational basis. An universal parameter to describe stability is the Richardson number Ri. Compared to the usual diagnostic or rate equations, the Ri number concept of determining mixing heights has the advantage of using not only surface layer parameters but also regarding the vertical structure of the boundary layer resolved in the NWP models. (au)

  7. Study of the emission of low molecular weight organic compounds of various plants

    International Nuclear Information System (INIS)

    Steinbrecher, R.; Stahl, K.; Slemr, J.; Hahn, J.

    1992-01-01

    Biogenic hydrocarbons are known to act as important precursors in tropospheric photochemical ozone formation. Large uncertainties exist about the composition of the mix of volatile organic compounds, emitted by various plant species and the respective emission rates. The emission and deposition behavior of wheat plants, as far as C 2 to C 9 hydrocarbons (NMHC), formaldehyde, and acetaldehyde are concerned, was studied both in the field (BIATEX experimental site, Manndorf, Bavaria) and in the laboratory. Vertical flux rates of the different compounds ranged from -4 to +4 nmol C m -2 surface area s -1 . Aldehydeemission showed a seasonal trend with high rates in spring and lower towards the end of the vegetation period. Ambient temperature appears to control only the flux of ethane, ethene, propane and propene, whereas acetaldehyde emission by wheat plants as well as by Norway spruce is controlled by light. Over a spruce canopy (BIATEX experimental site Schachtenau, Bayerischer Wald, national park, FRG) the 12 most abundant NMHC exhibited no distinct diurnal cycle, and only small differences in mixing ratios were detected between two heights (31 and 51 m) revealing that the impact of the canopy on the abundances of the non-terpenoid NMHCs present in the air above the canopy was small. Aldehyde mixing ratios above a spruce canopy, however, may significantly be influenced either by direct emission of aldehydes from spruce or by production of aldehydes during photochemical degradation of precursors. (orig.). 87 refs., 4 tabs., 25 figs [de

  8. Overturning dogma: tolerance of insects to mixed-sterol diets is not universal.

    Science.gov (United States)

    Behmer, Spencer T

    2017-10-01

    Insects cannot synthesize sterols de novo, but like all eukaryotes they use them as cell membrane inserts where they influence membrane fluidity and rigidity. They also use a small amount for metabolic purposes, most notably as essential precursors for steroid hormones. It has been a long-held view that most insects require a small amount of specific sterol (often cholesterol) for metabolic purposes, but for membrane purposes (where the bulk of sterols are used) specificity in sterol structure was less important. Under this model, it was assumed that insects could tolerate mixed-sterol diets as long as a small amount of cholesterol was available. In the current paper this dogma is overturned, using data from plant-feeding insects that were fed mixed-sterol diets with different amounts and ratios of dietary sterols. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Multivariate mixed linear model analysis of longitudinal data: an information-rich statistical technique for analyzing disease resistance data

    Science.gov (United States)

    The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...

  10. Mixed Connective Tissue Disease

    Science.gov (United States)

    Mixed connective tissue disease Overview Mixed connective tissue disease has signs and symptoms of a combination of disorders — primarily lupus, scleroderma and polymyositis. For this reason, mixed connective tissue disease ...

  11. Environmental efficiency among corn ethanol plants

    International Nuclear Information System (INIS)

    Sesmero, Juan P.; Perrin, Richard K.; Fulginiti, Lilyan E.

    2012-01-01

    Economic viability of the US corn ethanol industry depends on prices, technical and economic efficiency of plants and the extent of policy support. Public policy support is tied to the environmental efficiency of plants measured as their impact on emissions of greenhouse gases. This study evaluates the environmental efficiency of seven recently constructed ethanol plants in the North Central region of the US, using nonparametric data envelopment analysis (DEA). The minimum feasible level of GHG emissions per unit of ethanol is calculated for each plant and this level is decomposed into its technical and allocative sources. Results show that, on average, plants in our sample may be able to reduce GHG emissions by a maximum of 6% or by 2.94 Gg per quarter. Input and output allocations that maximize returns over operating costs (ROOC) are also found based on observed prices. The environmentally efficient allocation, the ROOC-maximizing allocation, and the observed allocation for each plant are combined to calculate economic (shadow) cost of reducing greenhouse gas emissions. These shadow costs gauge the extent to which there is a trade off or a complementarity between environmental and economic targets. Results reveal that, at current activity levels, plants may have room for simultaneous improvement of environmental efficiency and economic profitability. -- Highlights: ► Environmental efficiency of ethanol plants in the North Central US is evaluated. ► Economic (shadow) cost of reducing greenhouse gas emissions is calculated. ► Feasible changes in the mix of inputs and byproducts can reduce GHG emissions. ► On average plants may be able to reduce GHG emissions by 2.94 Gg per quarter. ► GHG reductions may be achieved at a moderate or zero operating cost.

  12. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  13. Selecting elephant grass families and progenies to produce bioenergy through mixed models (REML/BLUP).

    Science.gov (United States)

    Rodrigues, E V; Daher, R F; Dos Santos, A; Vivas, M; Machado, J C; Gravina, G do A; de Souza, Y P; Vidal, A K; Rocha, A Dos S; Freitas, R S

    2017-05-18

    Brazil has great potential to produce bioenergy since it is located in a tropical region that receives high incidence of solar energy and presents favorable climatic conditions for such purpose. However, the use of bioenergy in the country is below its productivity potential. The aim of the current study was to select full-sib progenies and families of elephant grass (Pennisetum purpureum S.) to optimize phenotypes relevant to bioenergy production through mixed models (REML/BLUP). The circulating diallel-based crossing of ten elephant grass genotypes was performed. An experimental design using the randomized block methodology, with three repetitions, was set to assess both the hybrids and the parents. Each plot comprised 14-m rows, 1.40 m spacing between rows, and 1.40 m spacing between plants. The number of tillers, plant height, culm diameter, fresh biomass production, dry biomass rate, and the dry biomass production were assessed. Genetic-statistical analyses were performed through mixed models (REML/BLUP). The genetic variance in the assessed families was explained through additive genetic effects and dominance genetic effects; the dominance variance was prevalent. Families such as Capim Cana D'África x Guaçu/I.Z.2, Cameroon x Cuba-115, CPAC x Cuba-115, Cameroon x Guaçu/I.Z.2, and IAC-Campinas x CPAC showed the highest dry biomass production. The family derived from the crossing between Cana D'África and Guaçu/I.Z.2 showed the largest number of potential individuals for traits such as plant height, culm diameter, fresh biomass production, dry biomass production, and dry biomass rate. The individual 5 in the family Cana D'África x Guaçu/I.Z.2, planted in blocks 1 and 2, showed the highest dry biomass production.

  14. Investment scenarios for Chinese power plants

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    An analysis is provided of returns for investment in power plants in China and India. Three sample investment scenarios are compared to illustrate the relative merits of each financing arrangement. The best returns would seem to be offered by a mix of debt and equity financing. The potential problem of gradual currency depreciation can be overcome by early cash payments. Foreign investment in China's power generation industry would be more readily forthcoming if easier access to debt finance were available. (UK)

  15. MIXED AND MIXING SYSTEMS WORLDWIDE: A PREFACE

    Directory of Open Access Journals (Sweden)

    Seán Patrick Donlan

    2012-09-01

    Full Text Available This issue of the Potchefstroom Electronic Law Journal (South Africa sees thepublication of a selection of articles derived from the Third International Congress ofthe World Society of Mixed Jurisdiction Jurists (WSMJJ. That Congress was held atthe Hebrew University of Jerusalem, Israel in the summer of 2011. It reflected athriving Society consolidating its core scholarship on classical mixed jurisdictions(Israel, Louisiana, the Philippines, Puerto Rico, Quebec, Scotland, and South Africawhile reaching to new horizons (including Cyprus, Hong Kong and Macau, Malta,Nepal, etc. This publication reflects in microcosm the complexity of contemporaryscholarship on mixed and plural legal systems. This complexity is, of course, wellunderstoodby South African jurists whose system is derived both from the dominantEuropean traditions as well as from African customary systems, including both thosethat make up part of the official law of the state as well as those non-state norms thatcontinue to be important in the daily lives of many South Africans.

  16. Optimal load allocation of complex ship power plants

    International Nuclear Information System (INIS)

    Baldi, Francesco; Ahlgren, Fredrik; Melino, Francesco; Gabrielii, Cecilia; Andersson, Karin

    2016-01-01

    Highlights: • The optimal operation of the prime movers of hybrid ship power plants is addressed. • Both mechanical, electric and thermal power demand are considered. • The problem is modelled as a mixed integer-nonlinear programming problem. • Up to 3% savings can be achieved with hybrid power plants. • Including the thermal power demand improves the solution by up to 4%. - Abstract: In a world with increased pressure on reducing fuel consumption and carbon dioxide emissions, the cruise industry is growing in size and impact. In this context, further effort is required for improving the energy efficiency of cruise ship energy systems. In this paper, we propose a generic method for modelling the power plant of an isolated system with mechanical, electric and thermal power demands and for the optimal load allocation of the different components that are able to fulfil the demand. The optimisation problem is presented in the form of a mixed integer linear programming (MINLP) problem, where the number of engines and/or boilers running is represented by the integer variables, while their respective load is represented by the non-integer variables. The individual components are modelled using a combination of first-principle models and polynomial regressions, thus making the system nonlinear. The proposed method is applied to the load-allocation problem of a cruise ship sailing in the Baltic Sea, and used to compare the existing power plant with a hybrid propulsion plant. The results show the benefits brought by using the proposing method, which allow estimating the performance of the hybrid system (for which the load allocation is a non-trivial problem) while also including the contribution of the heat demand. This allows showing that, based on a reference round voyage, up to 3% savings could be achieved by installing the proposed system, compared to the existing one, and that a NPV of 11 kUSD could be achieved already 5 years after the installation of the

  17. CFD simulation for thermal mixing of a SMART flow mixing header assembly

    International Nuclear Information System (INIS)

    Kim, Young In; Bae, Youngmin; Chung, Young Jong; Kim, Keung Koo

    2015-01-01

    Highlights: • Thermal mixing performance of a FMHA installed in SMART is investigated numerically. • Effects of operating condition and discharge hole configuration are examined. • FMHA performance satisfies the design requirements under various abnormal conditions. - Abstract: A flow mixing header assembly (FMHA) is installed in a system-integrated modular advanced reactor (SMART) to enhance the thermal mixing capability and create a uniform core flow distribution under both normal operation and accident conditions. In this study, the thermal mixing characteristics of the FMHA are investigated for various steam generator conditions using a commercial CFD code. Simulations include investigations for the effects of FMHA discharge flow rate differences, turbulence models, and steam generator conditions. The results of the analysis show that the FMHA works effectively for thermal mixing in various conditions and makes the temperature difference at the core inlet decrease noticeably. We verified that the mixing capability of the FMHA is excellent and satisfies the design requirement in all simulation cases tested here

  18. Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes

    International Nuclear Information System (INIS)

    Xuegang Wang; Zhongkui Zhou

    2017-01-01

    We evaluated uranium bioleaching from low-grade, granite-type uranium ore using mixed acidophilic microbes from uranium mine leachate. A 4854-ton plant-scale heap bioleaching process achieved sustained leaching with a uranium leaching efficiency of 88.3% using a pH of 1.0-2.0 and an Fe"3"+ dosage of 3.0-5.5 g/L. Acid consumption amounted to 25.8 g H_2SO_4 kg"-"1 ore. Uranium bioleaching follows a diffusion-controlled kinetic model with a correlation coefficient of 0.9136. Almost all uranium was dissolved in aqueous solution, except those encapsulated in quartz particles. Therefore, heap bioleaching by mixed acidophilic microbes enables efficient, economical, large-scale recovery of uranium from low-grade ores. (author)

  19. Working-up sugar-beet molasses in the acetone-butyl alcohol plants in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Logotkin, I S; Zaritskii, I M

    1959-01-01

    The basic setup common to all Polish acetone and butanol plants is the addition of rye or wheat meal to the fermentation. A culture of Clostridium acetobutylicum, after spore formation, is mixed in a special apparatus with the meal, where it is kept for 18 hours at 37/sup 0/ and then treated with molasses; a culture is prepared which is used later in the fermentor. Independently a mixture of meal and molasses is mixed in an autoclave with H/sub 2/O, sterilized, and cooled. The resulting mash is mixed in the fermentor with the culture mentioned, where the fermentation liberates CO/sub 2/ and hydrogen which are recovered. The mixture is then heated, distilled, and rectified, where, in addition to slops, the desired products are obtained. The Polish plants figure that for each long ton of sugar contained in the molasses they recover butyl alcohol 178.0, acetone 83.7, and ethanol 7.3kg, and they use in addition to the molasses and bacilli cultures 58.4 tons of steam and 16 kg of NaOH long ton of the acetone-butyl alcohol mixture recovered.

  20. Evaluation of different hedging strategies for commodity price risks of industrial cogeneration plants

    International Nuclear Information System (INIS)

    Palzer, Andreas; Westner, Günther; Madlener, Reinhard

    2013-01-01

    In this paper, we design and evaluate eight different strategies for hedging commodity price risks of industrial cogeneration plants. Price developments are parameterized based on EEX data from 2008 to 2011. The probability distributions derived are used to determine the value-at-risk (VaR) of the individual strategies, which are in a final step combined in a mean-variance portfolio analysis for determining the most efficient hedging strategy. We find that the strategy adopted can have a marked influence on the remaining price risk. Quarter futures are found to be particularly well suited for reducing market price risk. In contrast, spot trading of CO 2 certificates is found to be preferable compared to forward market trading. Finally, portfolio optimization shows that a mix of various hedging strategies can further improve the profitability of a heat-based cogeneration plant. - Highlights: • Evaluation of commodity price risk hedging strategies for industrial cogeneration. • Value-at-risk analysis of eight different hedging strategies. • Mean-variance portfolio analysis for determining the optimal hedging strategy mix. • A mix of hedging strategies further improves profitability of heat-based CHP

  1. Modernization of the WWER 440/230 nuclear power plant environmental protection system

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, N.V.; Kamenskaya, A.N.; Kulyukhin, S.A.; Novichenko, V.L.; Rumer, I.A. [Russian Academy of Sciences, Institute of Physical Chemistry, Moscow (Russian Federation); Antonov, B.V.; Kornienko, A.G.; Meshkov, V.M.; Rogov, M.F. [Rosenergoatom Concern, Moscow (Russian Federation)

    2001-07-01

    The papers reports a new approach to the problem of increasing environmental protection during severe accidents at WWER 440/230 nuclear power plants. The environmental protection system that we propose has three, not two protection levels, and can be introduced with minor modernization of the equipment available at WWER 440/230 nuclear power plants: 1. a jet-vortex condenser; 2. the sprinkler system; 3. a sorption module. The proposed modernization not only makes it possible to avoid emergency discharge of radioactive air and steam mix into the environment under any accident scenario, but also would substantially contribute to the safety of WWER 440/230 nuclear power plants. (author)

  2. Guidelines for mixed waste minimization

    International Nuclear Information System (INIS)

    Owens, C.

    1992-02-01

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization

  3. Field trials with plant products to protect stored cowpea against insect damage

    NARCIS (Netherlands)

    Boeke, S.J.; Kossou, D.K.; Huis, van A.; Loon, van J.J.A.; Dicke, M.

    2004-01-01

    Plant products were evaluated under field conditions for their efficacy as insecticides against the cowpea beetle, Callosobruchus maculatus, on stored cowpea. Seeds, mixed with finely ground clay and three volatile oils were stored in air-tight jerry-cans and canisters. Pods were treated with leaf

  4. Occurrence of vesicular-arbuscular mycorrhizae in mixed overburden mine spoils of Texas

    Energy Technology Data Exchange (ETDEWEB)

    Mott, J.B.; Zuberer, D.A.

    1987-07-01

    Presently in east Texas, lignite surface mines are reclaimed and revegetated using mixed overburden materials which are equivalent to or better in physical-chemical properties than the poor topsoils removed during mining. Little information is available regarding the biological characteristics of levelled mixed overburden and the re-establishment of endomycorrhizal associations on revegetated mixed overburden sites. Therefore, the authors investigated the occurrence of infection of coastal bermudagrass (Cynodon dactylon), planted vegetatively on reclamation sites (1-10 years post-mining), with vesicular-arbuscular mycorrhizal (VAM) fungi. Numbers of spores were also monitored. For comparison, infection of coastal bermudagrass and spore numbers were determined for an unmined old field succession on soil typical of the region. VAM infection, measured as a percentage of root length infected or as a percentage of root segments exhibiting infection, returned to pre-mining levels by 3-7 years after disturbance. Intensity of infection was not altered by disturbance, age of reclaimed site, or season. Significantly greater numbers of spores (ca. 10-fold) were observed in the unmined soil and no differences were found between numbers of spores from variously aged mine spoil sites. 35 refs., 3 tabs.

  5. Does interspecific competition alter effects of early season ozone exposure on plants from wet grasslands? Results of a three-year experiment in open-top chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tonneijck, A.E.G.; Franzaring, J.; Brouwer, G.; Metselaar, K.; Dueck, Th.A

    2004-09-01

    Chronic effects of ozone on wet grassland species early in the growing season might be altered by interspecific competition. Individual plants of Holcus lanatus, Lychnis flos-cuculi, Molinia caerulea and Plantago lanceolata were grown in monocultures and in mixed cultures with Agrostis capillaris. Mesocosms were exposed to charcoal-filtered air plus 25 nl l{sup -1} ozone (CF + 25), non-filtered air (NF), non-filtered air plus 25 nl l{sup -1} ozone (NF + 25) and non-filtered air plus 50 nl l{sup -1} ozone (NF + 50) early in the growing seasons of 2000 through 2002. Ozone-enhanced senescence and visible foliar injury were recorded on some of the target plants in the first year only. Ozone effects on biomass production were minimal and plant response to ozone did not differ between monocultures and mixed cultures. After three years, above-ground biomass of the plants in mixed culture compared to monocultures was three times greater for H. lanatus and two to four times smaller for the other species.

  6. CFD modeling and experience of waste-to-energy plant burning waste wood

    DEFF Research Database (Denmark)

    Rajh, B.; Yin, Chungen; Samec, N.

    2013-01-01

    Computational Fluid Dynamics (CFD) is being increasingly used in industry for in-depth understanding of the fundamental mixing, combustion, heat transfer and pollutant formation in combustion processes and for design and optimization of Waste-to-Energy (WtE) plants. In this paper, CFD modeling...... the conversion of the waste wood in the fuel bed on the grate, which provides the appropriate inlet boundary condition for the freeboard 3D CFD simulation. The CFD analysis reveals the detailed mixing and combustion characteristics in the waste wood-fired furnace, pinpointing how to improve the design...

  7. Impact of soil amendments and the plant rhizosphere on PAH behaviour in soil

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E.C.; Mayer, Philipp

    2014-01-01

    Carbonaceous amendments reduce PAH dissolved concentrations (Cfree), limiting their uptake and toxicity. A soil contaminated with PAHs was mixed with activated carbon (AC), charcoal or compost and planted with radish (Raphanus sativus L.), and Cfree, chemical activities and diffusive uptake...

  8. Factors governing the ability of clean-up plant to remove settling particles from contaminants: theory for stable particles

    International Nuclear Information System (INIS)

    Longworth, J.P.

    1979-11-01

    Consideration is given to the processes by which particles are removed from fluid systems. In particular, it is noted that in tank, as opposed to loop, systems the natural process of gravitational settling competes with engineered removal systems. Calculational methods are given for estimating the relative amounts of settling and removal to clean-up plant for well-mixed fluids, unmixed fluids with horizontal or vertical flow, and turbulent diffusion with incomplete mixing. The criteria for complete mixing are discussed. (author)

  9. THE MARKETING MIX OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    SABOU FELICIA

    2014-02-01

    Full Text Available ing mix a particularly important issue is to choose the best combination of its variables, this lead to the achievement objectives, in time. Choosing the right marketing mix is possible only by reporting information to some clear benchmarks, these criteria a related to the objective of the company at the time of analyze. The study shows that the companies must give a great importance to optimize the marketing mix, because of how its combines and integrates company policies relating to the product, price, distribution and promotion, depends the success or the failure on its market. The practice has shown that if an element of the marketing mix is wrong implemented, marketing strategies and programs do not achieve their objectives, and the company can not generate the expected profit. To optimize the marketing mix, companies should consider the following issues: the resources (materials, financial and human, which will be properly allocated to all the elements of the marketing mix, the specific marketing tools and the relationship of interdependence of all the methods and tools used to optimize the marketing mix.

  10. Method of removing suspended impurity from mixed floor type filtering desalter

    International Nuclear Information System (INIS)

    Oya, Takashi; Morikawa, Yoshitake; Hagiwara, Masahiro; Kozu, Hideo; Izumi, Takeshi.

    1989-01-01

    In BWR type nuclear power plants, since the inside of a nuclear reactor has to be always kept clean, condensates flowing from a condensator to the inside of the reactor are cleaned-up by a condensate desalting tower into a highly cleaned-up state and then utilized as coolants for the inside of the reactor. Upon processing primary coolants, a mixed floor is formed with a resin in which the crosslinking rate of granular or powdery cationic exchange resins is reduced as from 7.5 to 3% of divinyl benzene (DVB) content. Crud separating effect is larger as the DVB content (%) is lower. However, if the DVB content is too small fracture strength and heat exchange capacity of the resins are decreased making it difficult for handling and, accordingly, practical lower limit is set to 3%. This enables sufficient removal of cruds upon eliminating suspended impurities in a mixed floor type filtering desalter. (T.M.)

  11. Optimal selection of major equipment in dual purpose plants

    International Nuclear Information System (INIS)

    Gabbrielli, E.

    1981-01-01

    Simulation of different operational conditions with the aid of a computer program is one of the best ways of assisting decision-makers in the selection of the most economic mix of equipment for a dual purpose plant. Using this approach this paper deals with the economic comparison of plants consisting of MSF desalinators and combustion gas or back pressure steam turbines coupled to low capacity electric power generators. The comparison is performed on the basis of the data made available by the OPTDIS computer program and the results are given in terms of yearly cost of production as the sum of capital, manpower, maintenance, fuel and chemical costs. (orig.)

  12. Analysis of operating costs a Low-Level Mixed Waste Incineration Facility

    International Nuclear Information System (INIS)

    Loghry, S.L.; Salmon, R.; Hermes, W.H.

    1995-01-01

    By definition, mixed wastes contain both chemically hazardous and radioactive components. These components make the treatment and disposal of mixed wastes expensive and highly complex issues because the different regulations which pertain to the two classes of contaminants frequently conflict. One method to dispose of low-level mixed wastes (LLMWs) is by incineration, which volatizes and destroys the organic (and other) hazardous contaminants and also greatly reduces the waste volume. The US Department of Energy currently incinerates liquid LLMW in its Toxic Substances Control Act (TSCA) Incinerator, located at the K-25 Site in Oak Ridge, Tennessee. This incinerator has been fully permitted since 1991 and to date has treated approximately 7 x 10 6 kg of liquid LLMW. This paper presents an analysis of the budgeted operating costs by category (e.g., maintenance, plant operations, sampling and analysis, and utilities) for fiscal year 1994 based on actual operating experience (i.e., a ''bottoms-up'' budget). These costs provide benchmarking guidelines which could be used in comparing incinerator operating costs with those of other technologies designed to dispose of liquid LLMW. A discussion of the current upgrade status and future activities are included in this paper. Capital costs are not addressed

  13. Mixed Waste Management Facility closure at the Savannah River Site

    International Nuclear Information System (INIS)

    Bittner, M.F.

    1991-08-01

    The Mixed Waste Management Facility of the Savannah River Plant received hazardous and solid low level radioactive wastes from 1972 until 1986. Because this facility did not have a permit to receive hazardous wastes, a Resource Conservation and Recovery Act closure was performed between 1987 and 1990. This closure consisted of dynamic compaction of the waste trenches and placement of a 3-foot clay cap, a 2-foot soil cover, and a vegetative layer. Operations of the waste disposal facility, tests performed to complete the closure design, and the construction of the closure cap are discussed herein

  14. Energy mix and sustainable development: Issues and challenges in Southern Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Osop, Inoray

    2010-09-15

    Southern Philippines utilizes different sources of energy and like any other areas for every increase in energy; major concerns and issues on its sustainable development sprung up. Methods used were quantitative and qualitative measures, experiment, exploratory and descriptive in findings: (1) each of the energy dimensions are compared economic ; On their environment and health of the end users and Social dimensions . The ideal energy mixes based on sustainable development are renewable and some fossil fuels with strict adherence to clean technology since Coal Plants in the country ignores environmental regulations and yet allowed to operate.

  15. Performance comparison of two efficient genomic selection methods (gsbay & MixP) applied in aquacultural organisms

    Science.gov (United States)

    Su, Hailin; Li, Hengde; Wang, Shi; Wang, Yangfan; Bao, Zhenmin

    2017-02-01

    Genomic selection is more and more popular in animal and plant breeding industries all around the world, as it can be applied early in life without impacting selection candidates. The objective of this study was to bring the advantages of genomic selection to scallop breeding. Two different genomic selection tools MixP and gsbay were applied on genomic evaluation of simulated data and Zhikong scallop ( Chlamys farreri) field data. The data were compared with genomic best linear unbiased prediction (GBLUP) method which has been applied widely. Our results showed that both MixP and gsbay could accurately estimate single-nucleotide polymorphism (SNP) marker effects, and thereby could be applied for the analysis of genomic estimated breeding values (GEBV). In simulated data from different scenarios, the accuracy of GEBV acquired was ranged from 0.20 to 0.78 by MixP; it was ranged from 0.21 to 0.67 by gsbay; and it was ranged from 0.21 to 0.61 by GBLUP. Estimations made by MixP and gsbay were expected to be more reliable than those estimated by GBLUP. Predictions made by gsbay were more robust, while with MixP the computation is much faster, especially in dealing with large-scale data. These results suggested that both algorithms implemented by MixP and gsbay are feasible to carry out genomic selection in scallop breeding, and more genotype data will be necessary to produce genomic estimated breeding values with a higher accuracy for the industry.

  16. Effect of mixing method on the mixing degree during the preparation of triturations.

    Science.gov (United States)

    Nakamura, Hitoshi; Yanagihara, Yoshitsugu; Sekiguchi, Hiroko; Komada, Fusao; Kawabata, Haruno; Ohtani, Michiteru; Saitoh, Yukiya; Kariya, Satoru; Suzuki, Hiroshi; Uchino, Katsuyoshi; Iga, Tatsuji

    2004-03-01

    By using lactose colored with erythrocin, we investigated the effects of mixing methods on mixing degree during the preparation of trituration with a mortar and pestle. The extent of powder dilution was set to 4 to 64 fold in the experiments. We compared the results obtained by using two methods: (1) one-step mixing of powders after addition of diluents and (2) gradual mixing of powders after addition of diluents. As diluents, we used crystallized lactose and powdered lactose for the preparation of trituration. In the preparation of 64-fold trituration, an excellent degree of mixing was obtained, with CV values of less than 6.08%, for both preparation methods and for the two kinds of diluents. The mixing of two kinds of powders whose distributions of particle sizes were similar resulted in much better degree of mixing, with CV values of less than 3.0%. However, the concentration of principal agents in 64-fold trituration was reduced by 20% due to the adsorption of dye to the apparatus. Under conditions in which a much higher dilution rate and/or much better degree of dilution was required, it must be necessary to dilute powders with considering their physicality and to determine the concentrations of principal agents after the mixing.

  17. Phytoplankton abundance and productivity in the vicinity of an operating power plant

    International Nuclear Information System (INIS)

    Poornima, E.H.; Rajadurai, M.; Venugopalan, V.P.; Narasimhan, S.V.; Rao, V.N.R.

    2007-01-01

    The impact of power plant operation on the abundance and productivity of phytoplankton was monitored over a period of fifteen months. Field studies showed that in spite of the consistent reduction in phytoplankton biomass and productivity at the Outfall where the heated effluent is discharged, stations close to the mixing point did not show any significant change in phytoplankton biomass or productivity. This suggested that at the Mixing point, mixing of the heated effluents with the ambient seawater was rapid and very extensive, ensuring recovery of phytoplankton biomass and their productivity potential. Field studies during low-dose, shock-dose and no-chlorination suggested that chlorination caused greater damage to phytoplankton chlorophyll than temperature. Laboratory experiments revealed that diatom growth was not much influenced by passage through the condenser cooling system and they were able to grow between 28 deg C and 40 deg C. Short term experiments indicated that chemical stress due to chlorination might be more important than temperature in reducing phytoplankton biomass and productivity. Combined treatment of temperature and chlorine showed little synergistic effect. The data suggest that formulation of condenser discharge criteria of power plants must consider the relative effects of both the stress factors viz., temperature and chlorine. (author)

  18. Multiple stress by repeated use of plant protection products in agricultural areas

    NARCIS (Netherlands)

    Luttik, R.; Zorn, M.I.; Brock, T.C.M.; Roex, E.W.M.; Linden, van der A.M.A.

    2017-01-01

    Current risk assessment of plant protection products is performed on a formulated-product-by-formulated-product basis and does not take into account the fact that products may be mixed and/or that different products are used sequentially within a growing season. This report evaluates three

  19. The mixing of fluids

    International Nuclear Information System (INIS)

    Ottino, J.M.

    1989-01-01

    What do the eruption of Krakatau, the manufacture of puff pastry and the brightness of stars have in common? Each involves some aspect of mixing. Mixing also plays a critical role in modern technology. Chemical engineers rely on mixing to ensure that substances react properly, to produce polymer blends that exhibit unique properties and to disperse drag-reducing agents in pipelines. Yet in spite of its of its ubiquity in nature and industry, mixing is only imperfectly under-stood. Indeed, investigators cannot even settle on a common terminology: mixing is often referred to as stirring by oceanographers and geophysicists, as blending by polymer engineers and as agitation by process engineers. Regardless of what the process is called, there is little doubt that it is exceedingly complex and is found in a great variety of systems. In constructing a theory of fluid mixing, for example, one has to take into account fluids that can be miscible or partially miscible and reactive or inert, and flows that are slow and orderly or very fast and turbulent. It is therefore not surprising that no single theory can explain all aspect of mixing in fluids and that straightforward computations usually fail to capture all the important details. Still, both physical experiments and computer simulations can provide insight into the mixing process. Over the past several years the authors and his colleague have taken both approaches in an effort to increase understanding of various aspect of the process-particularly of mixing involving slow flows and viscous fluids such as oils

  20. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States.

    Science.gov (United States)

    Williams, Neal M; Ward, Kimiora L; Pope, Nathaniel; Isaacs, Rufus; Wilson, Julianna; May, Emily A; Ellis, Jamie; Daniels, Jaret; Pence, Akers; Ullmann, Katharina; Peters, Jeff

    2015-12-01

    Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse

  1. Limits to fuel/coolant mixing

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.

    1985-01-01

    The vapor explosion process involves the mixing of fuel with coolant prior to the explosion. A number of analysts have identified limits to the amount of fuel/coolant mixing that could occur within the reactor vessel following a core melt accident. Past models are reviewed and a sim plified approach is suggested to estimate the upper limit on the amount of fuel/coolant mixing pos sible. The approach uses concepts first advanced by Fauske in a different way. The results indicat that water depth is an important parameter as well as the mixing length scale D /SUB mix/ , and for large values of D /SUB mix/ the fuel mass mixed is limited to <7% of the core mass

  2. Adaptive responses on chromosome aberration and DNA breakage of peripheral lymphocytes from workers exposed to thorium and rare earth mixed dust in Baotou steel plant

    International Nuclear Information System (INIS)

    Liu Qingjie; Feng Jiangbing; Lu Xue; Chen Deqing; Lv Huimin; Su Xu; Liu Yufei; Jia Kejun

    2008-01-01

    Objective: To explore if the occupational exposure to low dose thorium could induce adaptive response in peripheral lymphocytes. Methods: 40 individuals, who exposed to thorium and rare earth mixed dust (exposure group) or control in Baotou Steel Plant, were selected, and chromosome aberrations were analyzed. Then the peripheral blood samples were irradiated in vitro with 2 Gy 60 Co γ-rays, and unstable chromosome aberration or DNA stand breakage analysis using single cell gel electrophoresis was performed. Results: The dicentrics before 2 Gy exposure in exposure group was higher than that in control (P>0.05). But the dicentrics after 2 Gy exposure in exposure group was lower than that in control, but not significantly (P >0.05). The tricentrics in exposure group was significantly lower than that in control (U=3.1622, 0.001< P<0.002). The DNA strand breakage in control group was significantly higher than that in exposure group (t=25, P<0.001). Conclusions: Occupational exposure to low dose thorium could induce the adaptive response on chromosome aberration and DNA strand breakage in peripheral lymphocytes. (authors)

  3. Haematological malignancies in childhood in Croatia: Investigating the theories of depleted uranium, chemical plant damage and 'population mixing'

    International Nuclear Information System (INIS)

    Labar, B.; Rudan, I.; Ivankovic, D.; Biloglav, Z.; Mrsic, M.; Strnad, M.; Fucic, A.; Znaor, A.; Bradic, T.; Campbell, H.

    2004-01-01

    Some of potential causes proposed to explain the reported increase of haematological malignancies in childhood during or after the war period in several countries include depleted uranium, chemical pollution and population mixing theory. The aim of this study was to define the population of Croatian children aged 0-14 years who were potentially exposed to each of those risks during the war and to investigate any possible association between the exposure and the incidence of haematological malignancies. The authors analyzed the data reported by the Cancer Registry of Croatia during the pre-war period (1986-1990), war period (1991-1995) and post-war period (1996-1999). In the group of 10 counties potentially exposed to depleted uranium and two counties where chemical war damage occurred, no significant difference in incidence of the studied haematological malignancies was noted in comparison to pre-war period. The incidence of lymphatic leukaemia significantly increased in four counties where population mixing had occurred during the war period, supporting the 'mixing theory'. In those counties, the incidence of Hodgkin's lymphoma decreased during and after the war. In Croatia as a whole, decreases in incidence of myeloid leukaemias during war and non-Hodgkin lymphoma after the war were noted

  4. Effect of the mixed liquor suspended solid on permeate in a membrane bioreactor system applied for the treatment of sewage mixed with wastewater of the milk from the dairy industry.

    Science.gov (United States)

    Poyatos, José M; Molina-Muñoz, Marisa; Moreno, Begoña; González-López, Jesús; Hontoria, Ernesto

    2007-06-01

    The performance of a bench-scale submerged membrane bioreactor (MBR) equipped with ultrafiltration membranes (ZENON) was investigated at different mixed liquor suspended solid (MLSS) concentrations (3069, 4314 and 6204 mg/L). The pilot plant was located in the wastewater treatment plant of the city of Granada (Puente de los Vados, Granada, Spain), which receives the wastewater of the milk from the dairy industry of Granada. The results showed the capacity of the MBR systems to remove organic material (COD and BOD5), suspended solids, turbidity, color and microbial indicators such as E. coli and coliphages. Therefore, the results suggest that the transmembrane pressure (TMP) was influence by the MLSS concentration assayed. However, an increase in the MLSS concentration increases the nitrification processes and consequently the amount of NO3- in permeate.

  5. The effect of Sequoyah Nuclear Plant on dissolved oxygen in Chickamauga Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, S.R.; Shiao, M.C.; Yeager, B.L.

    1990-09-01

    During the summer of 1985, the Tennessee Division of Water Pollution Control and the Tennessee Wildlife Resources Agency measured dissolved oxygen (DO) concentrations downstream from the Sequoyah Nuclear Plant (SQN) discharge mixing zone that were below the state criterion for DO. The Tennessee General Water Quality Criteria'' specifies that DO should be a minimum of 5.0 mg/l measured at a depth of 5 feet for the protection of fish and aquatic life. The Tennessee Valley Authority developed the present study to answer general concerns about reservoir conditions and potential for adverse effects on aquatic biota. Four objectives were defined for this study: (1) to better define the extent and duration of the redistribution of DO in the reservoir, (2) to better understand DO dynamics within the mixing zone, (3) to determine whether DO is being lost (or added) as the condenser cooling water passes through the plant, and (4) to evaluate the potential for impact on aquatic life in the reservoir.

  6. The effect of Sequoyah Nuclear Plant on dissolved oxygen in Chickamauga Reservoir

    International Nuclear Information System (INIS)

    Butkus, S.R.; Shiao, M.C.; Yeager, B.L.

    1990-09-01

    During the summer of 1985, the Tennessee Division of Water Pollution Control and the Tennessee Wildlife Resources Agency measured dissolved oxygen (DO) concentrations downstream from the Sequoyah Nuclear Plant (SQN) discharge mixing zone that were below the state criterion for DO. The Tennessee ''General Water Quality Criteria'' specifies that DO should be a minimum of 5.0 mg/l measured at a depth of 5 feet for the protection of fish and aquatic life. The Tennessee Valley Authority developed the present study to answer general concerns about reservoir conditions and potential for adverse effects on aquatic biota. Four objectives were defined for this study: (1) to better define the extent and duration of the redistribution of DO in the reservoir, (2) to better understand DO dynamics within the mixing zone, (3) to determine whether DO is being lost (or added) as the condenser cooling water passes through the plant, and (4) to evaluate the potential for impact on aquatic life in the reservoir

  7. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants.

    Directory of Open Access Journals (Sweden)

    Yongchao Wang

    Full Text Available DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether and CCC (2-chloroethyltrimethyl- ammonium chloride have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012, using maize hybrid, Zhengdan 958 (ZD 958 at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68% from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69% and thousand kernel weight (TKW (by 8.57% and 6.55% from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs. In PCH-treated plants, bending strength and puncture strength were greater than other

  8. SPORT MARKETING MIX STRATEGIES

    OpenAIRE

    Alexandru Lucian MIHAI

    2013-01-01

    This paper presents a brief overview of a significant element of the sport marketing management model called the marketing mix. The marketing mix is crucial because it defines the sport business, and much of the sport marketer’s time is spent on various functions within the marketing mix. The marketing mix is the strategic combination of the product, price, place and promotion elements. These elements are typically called the four Ps of marketing. Decisions and strategies for each are importa...

  9. THE MARKETING MIX OPTIMIZATION

    OpenAIRE

    SABOU FELICIA

    2014-01-01

    The paper presents the marketing mix and the necessity of the marketing mix optimization. In the marketing mix a particularly important issue is to choose the best combination of its variables, this lead to the achievement objectives, in time. Choosing the right marketing mix is possible only by reporting information to some clear benchmarks, these criteria a related to the objective of the company at the time of analyze. The study shows that the companies must give a great importance to opti...

  10. VAC*TRAX - Thermal desorption for mixed wastes

    International Nuclear Information System (INIS)

    McElwee, M.J.; Palmer, C.R.

    1995-01-01

    The patented VAC*TRAX process was designed in response to the need to remove organic constituents from mixed waste, waste that contains both a hazardous (RCRA or TSCA regulated) component and a radioactive component. Separation of the mixed waste into its hazardous and radioactive components allows for ultimate disposal of the material at existing, permitted facilities. The VAC*TRAX technology consists of a jacketed vacuum dryer followed by a condensing train. Solids are placed in the dryer and indirectly heated to temperatures as high as 260 degrees C, while a strong vacuum (down to 50 mm Hg absolute pressure) is applied to the system and the dryer is purged with a nitrogen carrier gas. The organic contaminants in the solids are thermally desorbed, swept up in the carrier gas and into the condensing train where they are cooled and recovered. The dryer is fitted with a filtration system that keeps the radioactive constituents from migrating to the condensate. As such, the waste is separated into hazardous liquid and radioactive solid components, allowing for disposal of these streams at a permitted incinerator or a radioactive materials landfill, respectively. The VAC*TRAX system is designed to be highly mobile, while minimizing the operational costs with a simple, robust process. These factors allow for treatment of small waste streams at a reasonable cost. This paper describes the VAC*TRAX thermal desorption process, as well as results from the pilot testing program. Also, the design and application of the full-scale treatment system is presented. Materials tested to date include spiked soil and debris, power plant trash and sludge contaminated with solvents, PCB contaminated soil, solvent-contaminated uranium mill-tailings, and solvent and PCB-contaminated sludge and trash. Over 70 test runs have been performed using the pilot VAC*TRAX system, with more than 80% of the tests using mixed waste as the feed material

  11. Test program for closure activities at a mixed waste disposal site at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.; Harley, J.P. Jr.

    1988-01-01

    A 58-acre site at the Savannah River Plant which was used for disposal of low-level radioactive waste and quantities of the hazardous materials lead, cadmium, scintillation fluid, and oil will be the first large waste site at the Savannah River Plant to be permanently closed. The actions leading to closure of the facility will include surface stabilization and capping of the site. Test programs have been conducted to evaluate the effectiveness of dynamic compaction as a stabilization technique and the feasibility of using locally derived clay as a capping material

  12. MWIR-1995 DOE national mixed and TRU waste database users guide

    International Nuclear Information System (INIS)

    1995-11-01

    The Department of Energy (DOE) National 1995 Mixed Waste Inventory Report (MWIR-1995) Database Users Guide provides information on computer system requirements and describes installation, operation, and navigation through the database. The MWIR-1995 database contains a detailed, nationwide compilation of information on DOE mixed waste streams and treatment systems. In addition, the 1995 version includes data on non- mixed, transuranic (TRU) waste streams. These were added to the data set as a result of coordination of the 1995 update with the National Transuranic Program Office's (NTPO's) data needs to support the Waste Isolation Pilot Plant (WIPP) TRU Waste Baseline Inventory Report (WTWBIR). However, the information on the TRU waste streams is limited to that associated with the core mixed waste data requirements. The additional, non-core data on TRU streams collected specifically to support the WTWBIR is not included in the MWIR-1995 database. With respect to both the mixed and TRU waste stream data, the data set addresses open-quotes storedclose quotes streams. In this instance, open-quotes storedclose quotes streams are defined as (a) streams currently in storage at both EM-30 and EM-40 sites and (b) streams that have yet to be generated but are anticipated within the next five years from sources other than environmental restoration and decontamination and decommissioning (ER/D ampersand D) activities. Information on future ER/D ampersand D streams is maintained in the EM-40 core database. The MWIR-1995 database also contains limited information for both waste streams and treatment systems that have been removed or deleted since the 1994 MWIR. Data on these is maintained only through Section 2, Waste Stream Identification/Tracking/Source, to document the reason for removal from the data set

  13. The MIXED framework: A novel approach to evaluating mixed-methods rigor.

    Science.gov (United States)

    Eckhardt, Ann L; DeVon, Holli A

    2017-10-01

    Evaluation of rigor in mixed-methods (MM) research is a persistent challenge due to the combination of inconsistent philosophical paradigms, the use of multiple research methods which require different skill sets, and the need to combine research at different points in the research process. Researchers have proposed a variety of ways to thoroughly evaluate MM research, but each method fails to provide a framework that is useful for the consumer of research. In contrast, the MIXED framework is meant to bridge the gap between an academic exercise and practical assessment of a published work. The MIXED framework (methods, inference, expertise, evaluation, and design) borrows from previously published frameworks to create a useful tool for the evaluation of a published study. The MIXED framework uses an experimental eight-item scale that allows for comprehensive integrated assessment of MM rigor in published manuscripts. Mixed methods are becoming increasingly prevalent in nursing and healthcare research requiring researchers and consumers to address issues unique to MM such as evaluation of rigor. © 2017 John Wiley & Sons Ltd.

  14. Vitamin A-related potential of wild edible plants in a school ...

    African Journals Online (AJOL)

    This study explored the potential of promoting edible wild plants as source of vitamin A in a resource-limited rural, South African middle-school (grades 7-9) garden, using a mixed method approach of four parallel sub-studies in the rainy season of 2007. Gardening practices in the surrounding community were determined ...

  15. ICT Requirements and Challenges for Provision of Grid Services from Renewable Generation Plants

    DEFF Research Database (Denmark)

    Shahid, Kamal; Olsen, Rasmus Løvenstein; Petersen, Lennart

    2018-01-01

    The penetration of renewable energy into the electricity supply mix necessitates the traditional power grid to become more resilient, reliable and efficient. One way of ensuring this is to require renewable power plants to have similar regulating properties as conventional power plants...... applications – in terms of data payloads, sampling rates, latency and reliability. Therefore, this paper presents a brief survey on the control and communication architectures for controlling renewable power plants in the future power grid, including the communication network technologies, requirements...... and to coordinate their grid support services (GSS) as well. Among other requirements, the coordination of GSS will highly depend on the communication between renewable plants and system operators’ control rooms, thereby imposing high responsibility on the under lying communication infrastructure. Despite...

  16. Wild vegetable mixes sold in the markets of Dalmatia (southern Croatia

    Directory of Open Access Journals (Sweden)

    Łuczaj Łukasz

    2013-01-01

    Full Text Available Abstract Background Dalmatia is an interesting place to study the use of wild greens as it lies at the intersection of influence of Slavs, who do not usually use many species of wild greens, and Mediterranean culinary culture, where the use of multiple wild greens is common. The aim of the study was to document the mixtures of wild green vegetables which are sold in all the vegetable markets of Dalmatia. Methods All vendors (68 in all 11 major markets of the Dalmatian coast were interviewed. The piles of wild vegetables they sold were searched and herbarium specimens taken from them. Results The mean number of species in the mix was 5.7. The most commonly sold wild plants are: Sonchus oleraceus L., Allium ampeloprasum L., Foeniculum vulgare Mill., Urospermum picroides F.W.Schmidt, Papaver rhoeas L., Daucus carota L., Taraxacum sp., Picris echioides L., Silene latifolia Poir. and Crepis spp. Also the cultivated beet (Beta vulgaris L. and a few cultivated Brassicaceae varieties are frequent components. Wild vegetables from the mix are usually boiled for 20–30 minutes and dressed with olive oil and salt. Altogether at least 37 wild taxa and 13 cultivated taxa were recorded. Apart from the mixes, Asparagus acutifolius L. and Tamus communis L. shoots are sold in separate bunches (they are usually eaten with eggs, as well as some Asteraceae species, the latter are eaten raw or briefly boiled. Conclusions The rich tradition of eating many wild greens may result both from strong Venetian and Greek influences and the necessity of using all food resources available in the barren, infertile land in the past. Although the number of wild-collected green vegetables is impressive we hypothesize that it may have decreased over the years, and that further in-depth local ethnobotanical studies are needed in Dalmatia to record the disappearing knowledge of edible plants.

  17. Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert.

    Science.gov (United States)

    Godínez-Alvarez, H; Morín, C; Rivera-Aguilar, V

    2012-01-01

    Information about the effects of biological soil crusts (BSC) on germination, seedling survival and growth of vascular plants is controversial because they can have positive, neutral or negative effects. This controversy may be because most studies conducted until now have just analysed one or two recruitment stages independently. To understand the BSC effects on vascular plants, it is necessary to consider each stage of the recruitment process and synthesise all this information. The goal of this study was twofold. First, we analyse germination, seedling survival and growth of three vascular plants (Agave marmorata, Prosopis laevigata and Neobuxbaumia tetetzo) on BSC (cyanobacteria and mixed crust) from a tropical desert region of south-central México. Second, we synthesise the information to determine the total effect of BSC on plant species performance. We conducted experiments under controlled conditions to evaluate the proportion of germinated seeds, proportion of surviving seedlings and seedling dry weight in BSC and bare soil. Results showed that BSC have different effects on germination, seedling survival and growth of plant species. Plant species performance was qualitatively higher on BSC than bare soil. The highest performance of A. marmorata and P. laevigata was observed on cyanobacteria and mixed crusts, respectively. The highest performance of N. tetetzo was on both crust types. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Fuel staging tests at the Kymijaervi power plant

    International Nuclear Information System (INIS)

    Kivelae, M.; Rotter, H.; Virkki, J.

    1990-01-01

    The aim of this study was to measure nitrogen oxide (NO x ) emissions and find the methods to reduce them in plants using coal and natural gas as fuel. The tests involved were made at the Kymijaervi Power Plant, Lahti, Finland. Coal and natural gas was used alone or mixed. With natural gas when using flue gas recirculation, the NO x emission level dropped from 330 mg/m 3 down to 60 mg/m 3 . A negative side effect was that the flue gas temperature increased. At coal combustion and staged combustion, the flue gas recirculation had no significant effect on the NO x emission level. At coal combustion, the staging of combustion air halved the NO x emission but the combustibles increased strongly. With fuel staging, using coal as main fuel and gas as staging fuel, the NO x emission level was decreased from 340 mg/m 3 to 170 mg/m 3 . At the same time the combustibles increased 2 %- units. Also the flue gas temperature increased a little. At the tests, the proportion of natural gas was rather high, one third of the fuel energy input, but it could not be decreased, because the gas flow ratio was already too low to ensure good mixing

  19. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  20. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed conifer forest

    Science.gov (United States)

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  1. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt

    Science.gov (United States)

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage. PMID:25650127

  2. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt.

    Science.gov (United States)

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage.

  3. Experimental Study on Superfine Sand Concrete Mixed by Double Mixing Technology

    OpenAIRE

    yuqing zhao

    2013-01-01

    Traditional concept thought that medium sand and fine sand can be used to mix concrete, superfine sand can not used to mix concrete. This makes the source of superfine sand limited. With the shortage of medium sand and fine sand, it is imperative to exploit the resource of superfine sand. Superfine sand concrete is mixed by means of Double-doped Technology-ultra-fine fly ash and super plasticizer. Primary factor influencing superfine sand concrete strength is studied by orthogonal test, the o...

  4. Pilot and pilot-commercial plants for reprocessing spent fuels of FBR type reactors

    International Nuclear Information System (INIS)

    Shaldaev, V.S.; Sokolova, I.D.

    1988-01-01

    A review of modern state of investigations on the FBR mixed oxide uranium-plutonium fuel reprocessing abroad is given. Great Britain and France occupy the leading place in this field, operating pilot plants of 5 tons a year capacity. Technology of spent fuel reprocessing and specific features of certain stages of the technological process are considered. Projects of pilot and pilot-commercial plants of Great Britain, France, Japan, USA are described. Economic problems of the FBR fuel reprocessing are touched upon

  5. Wood and coal cofiring in Alaska—operational considerations and combustion gas effects for a grate-fired power plant

    Science.gov (United States)

    David Nicholls; Zackery Wright; Daisy. Huang

    2018-01-01

    Coal is the primary fuel source for electrical power generation in interior Alaska, with more than 600,000 tons burned annually at five different power plants. Woody biomass could be used as part of this fuel mix, offering potential environmental and economic benefits. In this research, debarked chips were cofired with locally mined coal at the Aurora Power Plant...

  6. Geographic variation in floral allometry suggests repeated transitions between selfing and outcrossing in a mixed mating plant.

    Science.gov (United States)

    Summers, Holly E; Hartwick, Sally M; Raguso, Robert A

    2015-05-01

    Isometric and allometric scaling of a conserved floral plan could provide a parsimonious mechanism for rapid and reversible transitions between breeding systems. This scaling may occur during transitions between predominant autogamy and xenogamy, contributing to the maintenance of a stable mixed mating system. We compared nine disjunct populations of the polytypic, mixed mating species Oenothera flava (Onagraceae) to two parapatric relatives, the obligately xenogamous species O. acutissima and the mixed mating species O. triloba. We compared floral morphology of all taxa using principal component analysis (PCA) and developmental trajectories of floral organs using ANCOVA homogeneity of slopes. The PCA revealed both isometric and allometric scaling of a conserved floral plan. Three principal components (PCs) explained 92.5% of the variation in the three species. PC1 predominantly loaded on measures of floral size and accounts for 36% of the variation. PC2 accounted for 35% of the variation, predominantly in traits that influence pollinator handling. PC3 accounted for 22% of the variation, primarily in anther-stigma distance (herkogamy). During O. flava subsp. taraxacoides development, style elongation was accelerated relative to anthers, resulting in positive herkogamy. During O. flava subsp. flava development, style elongation was decelerated, resulting in zero or negative herkogamy. Of the two populations with intermediate morphology, style elongation was accelerated in one population and decelerated in the other. Isometric and allometric scaling of floral organs in North American Oenothera section Lavauxia drive variation in breeding system. Multiple developmental paths to intermediate phenotypes support the likelihood of multiple mating system transitions. © 2015 Botanical Society of America, Inc.

  7. Overview of mixed waste issues at the Department of Energy defense installations

    International Nuclear Information System (INIS)

    Mezga, L.J.; Eisenhower, B.M.

    1988-01-01

    Due to the /open quotes/double hazard/close quotes/ associated with these waste materials, the ability to manage these mixed wastes has been somewhat limited. The unavailability of acceptable and proven treatment and/or disposal systems has forced the Department of Energy (DOE) installations to place these materials in storage. The limited capacity of permitted storage areas and the desire to move forward in the overall waste management cycle have placed an increased emphasis on the need to develop treatment/disposal technologies for mixed wastes. Programs have been initiated by contractors who operate the DOE installations to provide the technical basis for selecting technologies to render these wastes nonhazardous through treatment by destroying the hazardous constituent, to separate the hazardous constituents from the radioactive constituents, to treat the wastes and place them in a form that will meet EPA requirements to be classified as nonhazardous, and to provide facilities for the disposal of wastes which cannot be changed into a nonhazardous form. These wastes include a variety of materials such as chlorinated solvents and waste oils contaminated with uranium or fission products, liquid scintillation wastes, and sludges from wastewater treatment plants contaminated with uranium or fission products. By volume, the largest mixed waste streams are the contaminated wastewater treatment sludges. Plans for the management of the major categories of mixed waste are presented below. More detailed information on plans for specific waste streams is presented in the paper

  8. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification

    International Nuclear Information System (INIS)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program

  9. Handling 78,000 drums of mixed-waste sludge

    International Nuclear Information System (INIS)

    Berry, J.B.; Gilliam, T.M.; Harrington, E.S.; Youngblood, E.L.; Baer, M.B.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now know as the Oak Ridge K-25 Site) prepared two mixed-waste surface impoundments for closure by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage of the stabilized waste was planned until final disposition. The strategy for disposal included delisting the stabilized pond sludge from hazardous to nonhazardous and disposing of the delisted monoliths as radioactive waste. Because of schedule constraints and process design and control deficiencies, ∼46,000 drums of material in various stages of solidification and ∼32,000 drums of unprocessed sludge are presently being stored. In addition, the abandoned treatment facility still contains ∼16,000 gal of raw sludge. Such conditions do not comply with the requirements set forth by the Resource Conservation and Recovery Act (RCRA) for the storage of listed waste. Various steps are being taken to bring the storage of ∼78,000 drums of mixed waste into compliance with RCRA. This paper (1) reviews the current situation, (2) discusses the plan for remediation of regulatory noncompliances, including decanting liquid from stabilized waste and dewatering untreated waste, and (3) provides an assessment of alternative raw-waste treatment processes. 1 ref., 6 figs., 2 tabs

  10. The use of EDI to reduce the ammonia concentration in steam generators blowdown of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Calay, J.C.; Goffin, C.

    2000-01-01

    To be recycled, PWR steam generator blowdown must be purified by mechanical filters, followed by ion exchangers (mixed bed preceded by a cationic ion exchange resin). The cationic ion exchange resin eliminates the conditioning agent ammonia in order to lengthen the cycles of the mixed bed. In the Doel nuclear power plant, Laborelec performed tests on a pilot plant for continuous electrodeionization that might replace the cation exchanger. The test campaign lasted six months. It is concluded that ammonia is removed well (1,000 μg/kg in the feed vs. 3 - 4 μg/kg in the product). The electrodeionization removes also other impurities; the conductivity of the treated water amounts to nearly 0.07 μs/cm

  11. B Plant Complex generator dangerous waste storage areas inspection plan: Revision 1

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-01-01

    This document contains the inspection plan for the <90 day dangerous/mixed waste storage areas and satellite accumulation areas at B Plant Complex. This inspection plan is designed to comply with all applicable federal, state and US Department of Energy-Richland Operations Office training requirements. In particular, the requirements of WAC 173-303 ''Dangerous Waste Regulations'' are met by this inspection plan. This inspection plan is designed to provide B Plant Complex with the records and documentation showing that the waste storage and handling program is in compliance with applicable regulations. The plan also includes the requirements for becoming a qualified inspector of waste storage areas and the responsibilities of various individuals and groups at B Plant Complex

  12. Optimizing the strategic patient mix

    NARCIS (Netherlands)

    Vanberkel, P.T.; Boucherie, Richardus J.; Hans, Elias W.; Hurink, Johann L.

    In this paper we address the decision of choosing a patient mix for a hospital that leads to the most beneficial treatment case mix. We illustrate how capacity, case mix and patient mix decisions are interrelated and how understanding this complex relationship is crucial for achieving the maximum

  13. Using publicly available data to quantify plant–pollinator interactions and evaluate conservation seeding mixes in the Northern Great Plains

    Science.gov (United States)

    Otto, Clint R.; O'Dell, Samuel; Bryant, R. B.; Euliss, Ned H. Jr.; Bush, Rachel; Smart, Matthew

    2017-01-01

    Concern over declining pollinators has led to multiple conservation initiatives for improving forage for bees in agroecosystems. Using data available through the Pollinator Library (npwrc.usgs.gov/pollinator/), we summarize plant–pollinator interaction data collected from 2012–2015 on lands managed by the U.S. Fish and Wildlife Service and private lands enrolled in U.S. Department of Agriculture conservation programs in eastern North Dakota (ND). Furthermore, we demonstrate how plant–pollinator interaction data from the Pollinator Library and seed cost information can be used to evaluate hypothetical seeding mixes for pollinator habitat enhancements. We summarize records of 314 wild bee and 849 honey bee (Apis mellifera L.) interactions detected on 63 different plant species. The wild bee observations consisted of 46 species, 15 genera, and 5 families. Over 54% of all wild bee observations were represented by three genera―Bombus, Lassioglossum, and Melissodes. The most commonly visited forbs by wild bees were Monarda fistulosa, Sonchus arvensis, and Zizia aurea. The most commonly visited forbs by A. mellifera were Cirsium arvense, Melilotus officinalis, and Medicago sativa. Among all interactions, 13% of A. mellifera and 77% of wild bee observations were made on plants native to ND. Our seed mix evaluation shows that mixes may often need to be tailored to meet the unique needs of wild bees and managed honey bees in agricultural landscapes. Our evaluation also demonstrates the importance of incorporating both biologic and economic information when attempting to design cost-effective seeding mixes for supporting pollinators in a critically important part of the United States.

  14. Impact of chemistry on Standard High Solids Vessel Design mixing

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-02

    The plan for resolving technical issues regarding mixing performance within vessels of the Hanford Waste Treatment Plant Pretreatment Facility directs a chemical impact study to be performed. The vessels involved are those that will process higher (e.g., 5 wt % or more) concentrations of solids. The mixing equipment design for these vessels includes both pulse jet mixers (PJM) and air spargers. This study assesses the impact of feed chemistry on the effectiveness of PJM mixing in the Standard High Solids Vessel Design (SHSVD). The overall purpose of this study is to complement the Properties that Matter document in helping to establish an acceptable physical simulant for full-scale testing. The specific objectives for this study are (1) to identify the relevant properties and behavior of the in-process tank waste that control the performance of the system being tested, (2) to assess the solubility limits of key components that are likely to precipitate or crystallize due to PJM and sparger interaction with the waste feeds, (3) to evaluate the impact of waste chemistry on rheology and agglomeration, (4) to assess the impact of temperature on rheology and agglomeration, (5) to assess the impact of organic compounds on PJM mixing, and (6) to provide the technical basis for using a physical-rheological simulant rather than a physical-rheological-chemical simulant for full-scale vessel testing. Among the conclusions reached are the following: The primary impact of precipitation or crystallization of salts due to interactions between PJMs or spargers and waste feeds is to increase the insoluble solids concentration in the slurries, which will increase the slurry yield stress. Slurry yield stress is a function of pH, ionic strength, insoluble solids concentration, and particle size. Ionic strength and chemical composition can affect particle size. Changes in temperature can affect SHSVD mixing through its effect on properties such as viscosity, yield stress, solubility

  15. Economic potential of smaller-sized nuclear plants in today's economy

    International Nuclear Information System (INIS)

    Behrens, C.E.

    1984-01-01

    In this study, the cost of producing power was modelled for a utility with specified financial and production parameters. Two reference cases were considered: in one, it was assumed that the utility would build 400-megawatt nuclear units as necessary to meet its growth in load; in the second, that it would meet its load growth by building 1200-MW units. The smaller plants were assumed to cost 12 percent more per kilowatt than the larger units. The object was to see if the lower financing costs of the 400-megawatt units were enough to overcome the larger plants' economies of scale. In addition to the reference cases, the sensitivity of the cost measurement to changes in various parameters was modelled. The parameters tested included interest rates, fuel mix, cost differential between the 400-megawatt and 1200-megawatt plants, and the rate of growth in load. The results of these cases indicate strongly that small nuclear power plants could have a market

  16. TRACG-CFD analysis of ESBWR reactor water cleanup shutdown cooling system mixing coefficient

    International Nuclear Information System (INIS)

    Gallardo, J.; Marquino, W.; Mistreanu, A.; Yang, J.

    2015-09-01

    The ESBWR is a 1520 nominal [M We] Generation III+ natural circulation boiling water reactor designed to high levels of safety utilizing features that have been successfully used before in operating BWRs, as well as standard features common to A BWR. In September of 2014, the US NRC has certified the ESBWR design for use in the USA. The RWCU/Sdc is an auxiliary system for the ESBWR nuclear island. Basic functions it performs include purifying the reactor coolant during normal operation and shutdown and providing shutdown cooling and cooldown to cold shutdown conditions. The performance of the RWCU system during shutdown cooling is directly related to the temperature of the water removed through the outlets, which is coupled with the vessel and F W temperatures through a thermal mixing coefficient. The complex three-dimensional (3-D) geometry of the BWR downcomer and lower plenum has a great impact on the flow mixing. Only a fine mesh technique like CFD can predict the 3-D temperature distribution in the RPV during shutdown and provide the RWCU/Sdc system inlet temperature. Plant shutdown is an unsteady event by nature and was modeled as a succession of CFD steady-state simulations. It is required to establish the mixing coefficient (which is a function of the heat balance and the core flow) during the operation of the RWCU system in the multiple shutdown cooling modes, and therefore a range of core flows needs to be estimated using quasi steady states obtained with TRACG. The lower end of that range is obtained from a system with minimal power decay heat and core flow; while the higher end corresponds to the power at the beginning of RWCU/Sdc operation when the cooldown is transferred to the RWCU/Sdc after the initial depressurization via the turbine bypass valves. Because the ESBWR RWCU/Sdc return and suction designs provide good mixing, the uniform mixing energy balance was found to be an adequate alternative for deriving the mixing coefficient. The CFD mass flow

  17. TRACG-CFD analysis of ESBWR reactor water cleanup shutdown cooling system mixing coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J. [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Marquino, W.; Mistreanu, A.; Yang, J., E-mail: euqrop@hotmail.com [General Electric Hitachi Nuclear Energy, Wilmington, 28401 North Carolina (United States)

    2015-09-15

    The ESBWR is a 1520 nominal [M We] Generation III+ natural circulation boiling water reactor designed to high levels of safety utilizing features that have been successfully used before in operating BWRs, as well as standard features common to A BWR. In September of 2014, the US NRC has certified the ESBWR design for use in the USA. The RWCU/Sdc is an auxiliary system for the ESBWR nuclear island. Basic functions it performs include purifying the reactor coolant during normal operation and shutdown and providing shutdown cooling and cooldown to cold shutdown conditions. The performance of the RWCU system during shutdown cooling is directly related to the temperature of the water removed through the outlets, which is coupled with the vessel and F W temperatures through a thermal mixing coefficient. The complex three-dimensional (3-D) geometry of the BWR downcomer and lower plenum has a great impact on the flow mixing. Only a fine mesh technique like CFD can predict the 3-D temperature distribution in the RPV during shutdown and provide the RWCU/Sdc system inlet temperature. Plant shutdown is an unsteady event by nature and was modeled as a succession of CFD steady-state simulations. It is required to establish the mixing coefficient (which is a function of the heat balance and the core flow) during the operation of the RWCU system in the multiple shutdown cooling modes, and therefore a range of core flows needs to be estimated using quasi steady states obtained with TRACG. The lower end of that range is obtained from a system with minimal power decay heat and core flow; while the higher end corresponds to the power at the beginning of RWCU/Sdc operation when the cooldown is transferred to the RWCU/Sdc after the initial depressurization via the turbine bypass valves. Because the ESBWR RWCU/Sdc return and suction designs provide good mixing, the uniform mixing energy balance was found to be an adequate alternative for deriving the mixing coefficient. The CFD mass flow

  18. Mineralization of Surfactants by Microbiota of Aquatic Plants.

    Science.gov (United States)

    Federle, Thomas W; Schwab, Burney S

    1989-08-01

    The biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) by the microbiota associated with duckweed (Lemna minor) and the roots of cattail (Typha latifolia) was investigated. Plants were obtained from a pristine pond and a pond receiving wastewater from a rural laundromat. Cattail roots and duckweed plants were incubated in vessels containing sterile water amended with [C]LAS, [C]LAE, or C-labeled mixed amino acids (MAA). Evolution of CO(2) was determined over time. The microbiota of cattail roots from both ponds mineralized LAS, LAE, and MAA without lag periods, and the rates and extents of mineralization were not significantly affected by the source of the plants. Mineralization of LAS and LAE was more rapid in the rhizosphere than in nearby root-free sediments, which exhibited differences as a function of pond. The microbiota of duckweed readily mineralized LAE and MAA but not LAS. The rate and extent of mineralization were not affected by the source of the duckweed.

  19. Mineralization of surfactants by microbiota of aquatic plants

    International Nuclear Information System (INIS)

    Federle, T.W.; Schwab, B.S.

    1989-01-01

    The biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) by the microbiota associated with duckweed (Lemna minor) and the roots of cattail (Typha latifolia) was investigated. Plants were obtained from a pristine pond and a pond receiving wastewater from a rural laundromat. Cattail roots and duckweed plants were incubated in vessels containing sterile water amended with [ 14 C]LAS, [ 14 C]LAE, or 14 C-labeled mixed amino acids (MAA). Evolution of 14 CO 2 was determined over time. The microbiota of cattail roots from both ponds mineralized LAS, LAE, and MAA without lag periods, and the rates and extents of mineralization were not significantly affected by the source of the plants. Mineralization of LAS and LAE was more rapid in the rhizosphere than in nearby root-free sediments, which exhibited differences as a function of pond. The microbiota of duckweed readily mineralized LAE and MAA but not LAS. The rate and extent of mineralization were not affected by the source of the duckweed

  20. Project subsidized by the Sunshine Project in fiscal 1982. Report on achievements in the project commissioned from NEDO - development of a hot water utilizing power generation plant and development of a binary cycle power generation plant (Researches on corrosion preventive measures and the cycle optimum for the plant); 1982 nendo nessui riyo hatsuden plant no kaihatsu seika hokokusho. Binary cycle hatsuden plant no kaihatsu (fushoku taisaku no kenkyu oyobi plant saiteki cycle no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    As the element research on a 10-MW class geothermal binary cycle power plant to be built in the coming term, researches were made on corrosion preventive measures and the cycle optimum for the plant. This paper reports the achievements in fiscal 1982. In the research on corrosion preventive measures, different kinds of materials were buried in three locations having different soil natures to study corrosion due to soil. The corrosion rate of heat conducting pipes using the heat media R114 was estimated as very small as 1/40 of the corrosion rate in geothermal waters. In the research on the cycle optimum for the plant, experimental research was performed on thermo-dynamic properties and thermal stability of the mixed media using R114 as the main component. As a result, the R114/R112 system was found to have higher pressure than R114, but the media circulation amount is less, and the output at the power transmission terminal increased by 5 to 10%. The system showed the most excellent heat cycle characteristics. In the research of building a power plant installed with two different power generation systems, a computer program was prepared that calculates heat balances all at once for the case of installing a geothermal binary cycle power plant in a geothermal steam power plant. (NEDO)