WorldWideScience

Sample records for plant mitochondrial mat-r

  1. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  2. Mitochondrial Energy and Redox Signaling in Plants

    Science.gov (United States)

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  3. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Science.gov (United States)

    2010-01-01

    Background Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests

  4. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Directory of Open Access Journals (Sweden)

    Hao Weilong

    2010-12-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native

  5. Mitochondrial Iron Transport and Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2013-09-01

    Full Text Available Iron (Fe is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.

  6. Mitochondrial Electron Transport and Plant Stress

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Møller, Ian Max

    2011-01-01

    Due to the sessile nature of plants, it is crucial for their survival and growth that they can handle a constantly changing, and thus stressful, ambient environment by modifying their structure and metabolism. The central metabolism of plants is characterized by many alternative options...... for metabolic pathways, which allow a wide range of adjustments of metabolic processes in response to environmental variations. Many of the metabolic pathways in plants involve the processing of redox compounds and the use of adenylates. They converge at the mitochondrial electron transport chain (ETC) where...... redox compounds from carbon degradation are used for powering ATP synthesis. The standard ETC contains three sites of energy conservation in complexes I, III, and IV, which are in common with most other eukaryotes. However, the complexity of the plant metabolic system is mirrored in the ETC. In addition...

  7. Mitochondrial redox biology and homeostasis in plants.

    Science.gov (United States)

    Noctor, Graham; De Paepe, Rosine; Foyer, Christine H

    2007-03-01

    Mitochondria are key players in plant cell redox homeostasis and signalling. Earlier concepts that regarded mitochondria as secondary to chloroplasts as the powerhouses of photosynthetic cells, with roles in cell proliferation, death and ageing described largely by analogy to animal paradigms, have been replaced by the new philosophy of integrated cellular energy and redox metabolism involving mitochondria and chloroplasts. Thanks to oxygenic photosynthesis, plant mitochondria often operate in an oxygen- and carbohydrate-rich environment. This rather unique environment necessitates extensive flexibility in electron transport pathways and associated NAD(P)-linked enzymes. In this review, mitochondrial redox metabolism is discussed in relation to the integrated cellular energy and redox function that controls plant cell biology and fate.

  8. Is plant mitochondrial RNA editing a source of phylogenetic incongruence? An answer from in silico and in vivo data sets

    Directory of Open Access Journals (Sweden)

    Quagliariello Carla

    2008-03-01

    Full Text Available Abstract Background In plant mitochondria, the post-transcriptional RNA editing process converts C to U at a number of specific sites of the mRNA sequence and usually restores phylogenetically conserved codons and the encoded amino acid residues. Sites undergoing RNA editing evolve at a higher rate than sites not modified by the process. As a result, editing sites strongly affect the evolution of plant mitochondrial genomes, representing an important source of sequence variability and potentially informative characters. To date no clear and convincing evidence has established whether or not editing sites really affect the topology of reconstructed phylogenetic trees. For this reason, we investigated here the effect of RNA editing on the tree building process of twenty different plant mitochondrial gene sequences and by means of computer simulations. Results Based on our simulation study we suggest that the editing ‘noise’ in tree topology inference is mainly manifested at the cDNA level. In particular, editing sites tend to confuse tree topologies when artificial genomic and cDNA sequences are generated shorter than 500 bp and with an editing percentage higher than 5.0%. Similar results have been also obtained with genuine plant mitochondrial genes. In this latter instance, indeed, the topology incongruence increases when the editing percentage goes up from about 3.0 to 14.0%. However, when the average gene length is higher than 1,000 bp (rps3, matR and atp1 no differences in the comparison between inferred genomic and cDNA topologies could be detected. Conclusions Our findings by the here reported in silico and in vivo computer simulation system seem to strongly suggest that editing sites contribute in the generation of misleading phylogenetic trees if the analyzed mitochondrial gene sequence is highly edited (higher than 3.0% and reduced in length (shorter than 500 bp. In the current lack of direct experimental evidence the results

  9. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Science.gov (United States)

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  10. The mitochondrial genome of an aquatic plant, Spirodela polyrhiza.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt genome could provide clues for the understanding of the evolution of mt genomes in plant. METHODS: Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method. CONCLUSIONS: This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs cover 71,783 bp (31.0% of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1% of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot

  11. MitoSatPlant: mitochondrial microsatellites database of viridiplantae.

    Science.gov (United States)

    Kumar, Manjeet; Kapil, Aditi; Shanker, Asheesh

    2014-11-01

    Microsatellites also known as simple sequence repeats (SSRs) consist of 1-6 nucleotide long repeating units. The importance of mitochondrial SSRs (mtSSRs) in fields like population genetics, plant phylogenetics and genome mapping motivated us to develop MitoSatPlant, a repository of plant mtSSRs. It contains information for perfect, imperfect and compound SSRs mined from 92 mitochondrial genomes of green plants, available at NCBI (as of 1 Feb 2014). A total of 72,798 SSRs were found, of which PCR primers were designed for 72,495 SSRs. Among all sequences, tetranucleotide repeats (26,802) were found to be most abundant whereas hexanucleotide repeats (2751) were detected with least frequency. MitoSatPlant was developed using SQL server 2008 and can be accessed through a front end designed in ASP.Net. It is an easy to use, user-friendly database and will prove to be a useful resource for plant scientists. To the best of our knowledge MitoSatPlant is the only database available for plant mtSSRs and can be freely accessed at http://compubio.in/mitosatplant/. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  12. The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees

    Directory of Open Access Journals (Sweden)

    Renner Susanne S

    2010-07-01

    Full Text Available Abstract Background Of the c. 450 families of flowering plants, only two are left "unplaced" in the most recent APG classification of angiosperms. One of these is the Apodanthaceae, a clade of c. 19 holoparasitic species in two or three genera occurring in North and South America, Africa, the Near East, and Australia. Because of lateral gene transfer between Apodanthaceae and their hosts it has been difficult to infer the family's true closest relatives. Results Here we report a phylogenetic analysis of 16 accessions representing six species of Apodanthaceae from the United States, Chile, Iran, and Australia, using the mitochondrial matR gene and the nuclear 18S gene. Data matrices include 190 matR sequences from up to 95 families in 39 orders of flowering plants and 197 18S sequences from 101 families representing the 16 orders of rosids. Analyses were performed at the nucleotide and at the amino acid level. Both gene trees agree with angiosperm phylogenies found in other studies using more genes. Apodanthaceae and the seven families of the order Cucurbitales form a clade with 100% bootstrap support from matR and 56% from 18 S. In addition, the Apodanthaceae and Cucurbitales matR gene sequences uniquely share two non-synonymous codon changes and one synonymous change, as well as a codon insertion, already found by Barkman et al. (2007. Conclusions Apodanthaceae belong in the Cucurbitales with which they share inferior ovaries, parietal placentation and a dioecious mating system, traits that are ancestral in Cucurbitales and which can now be interpreted as possible synapomorphies of an enlarged order Cucurbitales. The occurrence of Apodanthaceae in the Americas, Africa, the Near East, and Australia, and their adaptation to distantly related host species in the Fabaceae and Salicaceae suggest a long evolutionary history.

  13. The uniqueness of the plant mitochondrial potassium channel

    Directory of Open Access Journals (Sweden)

    Donato Pastore

    2013-08-01

    Full Text Available The ATP-inhibited Plant Mitochondrial K+ Channel (PmitoKATPwas discovered about fifteen years ago in Durum WheatMitochondria (DWM. PmitoKATP catalyses the electrophoreticK+ uniport through the inner mitochondrial membrane;moreover, the co-operation between PmitoKATP and K+/H+antiporter allows such a great operation of a K+ cycle tocollapse mitochondrial membrane potential (ΔΨ and ΔpH, thusimpairing protonmotive force (Δp. A possible physiological roleof such ΔΨ control is the restriction of harmful reactive oxygenspecies (ROS production under environmental/oxidative stressconditions. Interestingly, DWM lacking Δp were found to benevertheless fully coupled and able to regularly accomplish ATPsynthesis; this unexpected behaviour makes necessary to recastin some way the classical chemiosmotic model. In the whole,PmitoKATP may oppose to large scale ROS production bylowering ΔΨ under environmental/oxidative stress, but, whenstress is moderate, this occurs without impairing ATP synthesisin a crucial moment for cell and mitochondrial bioenergetics.[BMB Reports 2013; 46(8: 391-397

  14. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements.

    Directory of Open Access Journals (Sweden)

    Elina eWelchen

    2014-01-01

    Full Text Available Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light-dark cycles and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands.

  15. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements

    Science.gov (United States)

    Welchen, Elina; García, Lucila; Mansilla, Natanael; Gonzalez, Daniel H.

    2014-01-01

    Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number, and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light–dark cycles, and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands. PMID:24409193

  16. Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants?

    Directory of Open Access Journals (Sweden)

    Philippe eGiegé

    2012-09-01

    Full Text Available Mitochondria heavily depend on the coordinated expression of both mitochondrial and nuclear genomes because some of their most significant activities are held by multi-subunit complexes composed of both mitochondrial and nuclear encoded proteins. Thus, precise communication and signaling pathways are believed to exist between the two compartments. Proteins dual localized to both mitochondria and the nucleus make excellent candidates for a potential involvement in the envisaged communication. Here, we review the identified instances of dual localized nucleo-mitochondrial proteins with an emphasis on plant proteins and discuss their functions, which are seemingly mostly related to gene expression regulation. We discuss whether dual localization could be achieved by dual targeting and / or by re-localization and try to apprehend the signals required for the respective processes. Finally, we propose that in some instances, dual localized mitochondrial and nuclear proteins might act as retrograde signaling molecules for mitochondrial biogenesis.

  17. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants

    DEFF Research Database (Denmark)

    Zhang, Ning; Rao, R Shyama Prasad; Salvato, Fernanda

    2018-01-01

    -sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently......, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino...

  18. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2018-05-01

    Full Text Available Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org.

  19. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants.

    Science.gov (United States)

    Liu, Yang; Wang, Bin; Cui, Peng; Li, Libo; Xue, Jia-Yu; Yu, Jun; Qiu, Yin-Long

    2012-01-01

    Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.

  20. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.

    Science.gov (United States)

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K

    2016-03-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. The plant i-AAA protease controls the turnover of an essential mitochondrial protein import component.

    Science.gov (United States)

    Opalińska, Magdalena; Parys, Katarzyna; Murcha, Monika W; Jańska, Hanna

    2018-01-29

    Mitochondria are multifunctional organelles that play a central role in energy metabolism. Owing to the life-essential functions of these organelles, mitochondrial content, quality and dynamics are tightly controlled. Across the species, highly conserved ATP-dependent proteases prevent malfunction of mitochondria through versatile activities. This study focuses on a molecular function of the plant mitochondrial inner membrane-embedded AAA protease (denoted i -AAA) FTSH4, providing its first bona fide substrate. Here, we report that the abundance of the Tim17-2 protein, an essential component of the TIM17:23 translocase (Tim17-2 together with Tim50 and Tim23), is directly controlled by the proteolytic activity of FTSH4. Plants that are lacking functional FTSH4 protease are characterized by significantly enhanced capacity of preprotein import through the TIM17:23-dependent pathway. Taken together, with the observation that FTSH4 prevents accumulation of Tim17-2, our data point towards the role of this i -AAA protease in the regulation of mitochondrial biogenesis in plants. © 2018. Published by The Company of Biologists Ltd.

  2. Expression of kenaf mitochondrial chimeric genes HM184 causes male sterility in transgenic tobacco plants.

    Science.gov (United States)

    Zhao, Yanhong; Liao, Xiaofang; Huang, Zhipeng; Chen, Peng; Zhou, Bujin; Liu, Dongmei; Kong, Xiangjun; Zhou, Ruiyang

    2015-08-01

    Chimeric genes resulting from the rearrangement of a mitochondrial genome were generally thought to be a causal factor in the occurrence of cytoplasmic male sterility (CMS). In the study, earlier we reported that identifying a 47 bp deletion at 3'- flanking of atp9 that was linked to male sterile cytoplasm in kenaf. The truncated fragment was fused with atp9, a mitochondrial transit signal (MTS) and/or GFP, comprised two chimeric genes MTS-HM184-GFP and MTS-HM184. The plant expression vector pBI121 containing chimeric genes were then introduced to tobacco plants by Agrobacterium-mediated T-DNA transformation. The result showed that certain transgenic plants were male sterility or semi-sterility, while some were not. The expression analysis further demonstrated that higher level of expression were showed in the sterility plants, while no expression or less expression in fertility plants, the levels of expression of semi-sterility were in between. And the sterile plant (containing MTS-HM184-GFP) had abnormal anther produced malformed/shriveled pollen grains stained negative that failed to germinate (0%), the corresponding fruits was shrunken, the semi-sterile plants having normal anther shape produced about 10-50% normal pollen grains, the corresponding fruits were not full, and the germination rate was 58%. Meanwhile these transgenic plants which altered on fertility were further analyzed in phenotype. As a result, the metamorphosis leaves were observed in the seedling stage, the plant height of transgenic plants was shorter than wild type. The growth duration of transgenic tobacco was delayed 30-45 days compared to the wild type. The copy numbers of target genes of transgenic tobacco were analyzed using the real-time quantitative method. The results showed that these transgenic plants targeting-expression in mitochondrial containing MTS-HM184-GFP had 1 copy and 2 copies, the other two plants containing MTS-HM184 both had 3 copies, but 0 copy in wild type. In

  3. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach.

    Science.gov (United States)

    Opalińska, Magdalena; Parys, Katarzyna; Jańska, Hanna

    2017-11-18

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i -AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4's in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4's physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4) and Pam18-2) and known (Tim17-2) substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

  4. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach

    OpenAIRE

    Magdalena Opalińska; Katarzyna Parys; Hanna Jańska

    2017-01-01

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4’s in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we...

  5. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome.

    Science.gov (United States)

    Cuenca, Argelia; Ross, T Gregory; Graham, Sean W; Barrett, Craig F; Davis, Jerrold I; Seberg, Ole; Petersen, Gitte

    2016-08-03

    Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants

    Science.gov (United States)

    Mansilla, Natanael; Racca, Sofia; Gras, Diana E.; Gonzalez, Daniel H.

    2018-01-01

    Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution. PMID:29495437

  7. The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain.

    Science.gov (United States)

    Alber, Nicole A; Sivanesan, Hampavi; Vanlerberghe, Greg C

    2017-07-01

    The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Q i -site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Q o -site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate-grown wild-type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium-grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate-grown plants. Hence the ETC, likely the Q-cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non-energy-conserving electron sink upstream of Complex III. © 2016 John Wiley & Sons Ltd.

  8. Family-specific vs. universal PCR primers for the study of mitochondrial DNA in plants

    Directory of Open Access Journals (Sweden)

    Aleksić Jelena M.

    2016-01-01

    Full Text Available Mitochondrial genomes (mtDNAs or mitogenomes of seed plants are characterized by a notoriously unstable organization on account of which available so-called universal or consensus primers may fail to fulfil their foreseen function - amplification of various mtDNA regions in a broad range of plant taxa. Thus, the primers developed for groups assumed to have similar organization of their mitogenomes, such as families, may facilitate a broader usage of more variable non-coding portions of these genomes in group members. Using in silico PCR method and six available complete mitogenomes of Fabaceae, it has been demonstrated that only three out of 36 published universal primer and three Medicago sativa-specific primer pairs that amplify various mtDNA regions are suitable for six representatives of the Fabaceae family upon minor modifications, and develop 21 Fabaceae-specific primer pairs for amplification of all 14 cis-splicing introns in genes of NADH subunits (nad genes which represent the most commonly used non-coding mtDNA regions in various studies in plants. Using the same method and six available complete mitogenomes of representatives of related families Cucurbitaceae, Euphorbiaceae and Rosaceae and a model plant, Arabidopsis thaliana, it has further been demonstrated that applicability of newly developed primer pairs for amplification of nad introns in more or less related taxa was dependent not only on species evolutionary distances but also on their genome sizes. A reported set of 24 primer pairs is a valuable resource which may facilitate a broader usage of mtDNA variability in future studies at both intra- and inter-specific levels in Fabaceae, which is the third largest family of flowering plants rarely studied at the mtDNA level, and in other more or less related taxa. [Projekat Ministarstva nauke Republike Srbije, br. 173005

  9. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach

    Directory of Open Access Journals (Sweden)

    Magdalena Opalińska

    2017-11-01

    Full Text Available Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4’s in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4’s physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4 and Pam18-2 and known (Tim17-2 substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

  10. Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2017-03-01

    Full Text Available Willow is a widely used dioecious woody plant of Salicaceae family in China. Due to their high biomass yields, willows are promising sources for bioenergy crops. In this study, we assembled the complete mitochondrial (mt genome sequence of S. suchowensis with the length of 644,437 bp using Roche-454 GS FLX Titanium sequencing technologies. Base composition of the S. suchowensis mt genome is A (27.43%, T (27.59%, C (22.34%, and G (22.64%, which shows a prevalent GC content with that of other angiosperms. This long circular mt genome encodes 58 unique genes (32 protein-coding genes, 23 tRNA genes and 3 rRNA genes, and 9 of the 32 protein-coding genes contain 17 introns. Through the phylogenetic analysis of 35 species based on 23 protein-coding genes, it is supported that Salix as a sister to Populus. With the detailed phylogenetic information and the identification of phylogenetic position, some ribosomal protein genes and succinate dehydrogenase genes are found usually lost during evolution. As a native shrub willow species, this worthwhile research of S. suchowensis mt genome will provide more desirable information for better understanding the genomic breeding and missing pieces of sex determination evolution in the future.

  11. Involvement of Reactive Oxygen Species and Mitochondrial Proteins in Biophoton Emission in Roots of Soybean Plants under Flooding Stress.

    Science.gov (United States)

    Kamal, Abu Hena Mostafa; Komatsu, Setsuko

    2015-05-01

    To understand the mechanism of biophoton emission, ROS and mitochondrial proteins were analyzed in soybean plants under flooding stress. Enzyme activity and biophoton emission were increased in the flooding stress samples when assayed in reaction mixes specific for antioxidant enzymes and reactive oxygen species; although the level of the hydroxyl radicals was increased at day 4 (2 days of flooding) compared to nonflooding at day 4, the emission of biophotons did not change. Mitochondria were isolated and purified from the roots of soybean plants grown under flooding stress by using a Percoll gradient, and proteins were analyzed by a gel-free proteomic technique. Out of the 98 mitochondrial proteins that significantly changed abundance under flooding stress, 47 increased and 51 decreased at day 4. The mitochondrial enzymes fumarase, glutathione-S-transferase, and aldehyde dehydrogenase increased at day 4 in protein abundance and enzyme activity. Enzyme activity and biophoton emission decreased at day 4 by the assay of lipoxygenase under stress. Aconitase, acyl CoA oxidase, succinate dehydrogenase, and NADH ubiquinone dehydrogenase were up-regulated at the transcription level. These results indicate that oxidation and peroxide scavenging might lead to biophoton emission and oxidative damage in the roots of soybean plants under flooding stress.

  12. The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    Science.gov (United States)

    Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

  13. Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants.

    Science.gov (United States)

    Calderón, Aingeru; Sánchez-Guerrero, Antonio; Ortiz-Espín, Ana; Martínez-Alcalá, Isabel; Camejo, Daymi; Jiménez, Ana; Sevilla, Francisca

    2018-02-15

    In a changing environment, plants are able to acclimate to the new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here we studied a mitochondrial thioredoxin in wild type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in the absence or presence of 100 mM NaCl. Compared to WT plants, no evident phenotype was observed in the mutant plants in control condition, although they had higher number of stomata, loss of water, nitric oxide and carbonyl protein contents as well as higher activity of superoxide dismutase (SOD) and catalase enzymes than WT plants. Under salinity, the mutants presented lower water loss and higher stomatal closure, H 2 O 2 and lipid peroxidation levels accompanied by higher enzymatic activity of catalase and the different SOD isoenzymes compared to WT plants. These inductions may collaborate in the maintenance of plant integrity and growth observed under saline conditions, possibly as a way to compensate the lack of TRXo1. We discuss the potential of TRXo1 to influence the development of the whole plant under saline conditions, which have great value for the agronomy of plants growing under unfavourable environment. This article is protected by copyright. All rights reserved.

  14. Comparative Analysis of Putative Orthologues of Mitochondrial Import Motor Subunit: Pam18 and Pam16 in Plants

    OpenAIRE

    Chen, Xuejin; Ghazanfar, Bushra; Khan, Abdul Rehman; Hayat, Sikandar; Cheng, Zhihui

    2013-01-01

    Pam18/Tim14 and Pam16/Tim16, highly conserved proteins among eukaryotes, are two essential subunits of protein import motors localized in the inner mitochondrial membrane. The heterodimer formed by Pam18 and Pam16 via their J-type domains serves a regulatory function in protein translocation. Here, we report that thirty-one Pam18 and twenty-six Pam16 putative orthologues in twelve plant species were identified and analyzed through bioinformatics strategy. Results data revealed that Pam18 and ...

  15. EdiPy: a resource to simulate the evolution of plant mitochondrial genes under the RNA editing.

    Science.gov (United States)

    Picardi, Ernesto; Quagliariello, Carla

    2006-02-01

    EdiPy is an online resource appropriately designed to simulate the evolution of plant mitochondrial genes in a biologically realistic fashion. EdiPy takes into account the presence of sites subjected to RNA editing and provides multiple artificial alignments corresponding to both genomic and cDNA sequences. Each artificial data set can successively be submitted to main and widespread evolutionary and phylogenetic software packages such as PAUP, Phyml, PAML and Phylip. As an online bioinformatic resource, EdiPy is available at the following web page: http://biologia.unical.it/py_script/index.html.

  16. Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding

    NARCIS (Netherlands)

    Ros, V.I.D.; Breeuwer, J.A.J.

    2007-01-01

    The past 15 years have witnessed a number of molecular studies that aimed to resolve issues of species delineation and phylogeny of mites in the family Tetranychidae. The central part of the mitochondrial COI region has frequently been used for investigating intra- and interspecific variation. All

  17. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-01-01

    Full Text Available Sirtuin type 1 (SIRT1 belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs, as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP. The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1.

  18. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants

    Directory of Open Access Journals (Sweden)

    Greg C. Vanlerberghe

    2013-03-01

    Full Text Available Alternative oxidase (AOX is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.

  19. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available The mitochondrial phosphate transporter (MPT plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana.

  20. The Plant Decapeptide OSIP108 Can Alleviate Mitochondrial Dysfunction Induced by Cisplatin in Human Cells

    Directory of Open Access Journals (Sweden)

    Pieter Spincemaille

    2014-09-01

    Full Text Available We investigated the effect of the Arabidopsis thaliana-derived decapeptide OSIP108 on human cell tolerance to the chemotherapeutic agent cisplatin (Cp, which induces apoptosis and mitochondrial dysfunction. We found that OSIP108 increases the tolerance of HepG2 cells to Cp and prevents Cp-induced changes in basic cellular metabolism. More specifically, we demonstrate that OSIP108 reduces Cp-induced inhibition of respiration, decreases glycolysis and prevents Cp-uptake in HepG2 cells. Apart from its protective action against Cp in human cells, OSIP108 also increases the yeast Saccharomyces cerevisiae tolerance to Cp. A limited yeast-based study of OSIP108 analogs showed that cyclization does not severely affect its activity, which was further confirmed in HepG2 cells. Furthermore, the similarity in the activity of the D-stereoisomer (mirror image form of OSIP108 with the L-stereoisomer suggests that its mode of action does not involve binding to a stereospecific receptor. In addition, as OSIP108 decreases Cp uptake in HepG2 cells and the anti-Cp activity of OSIP108 analogs without free cysteine is reduced, OSIP108 seems to protect against Cp-induced toxicity only partly via complexation. Taken together, our data indicate that OSIP108 and its cyclic derivatives can protect against Cp-induced toxicity and, thus, show potential as treatment options for mitochondrial dysfunction- and apoptosis-related conditions.

  1. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids.

    Science.gov (United States)

    Park, Seongjun; Ruhlman, Tracey A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; Baeshen, Mohammed N; Sabir, Meshaal J; Baeshen, Nabih A; Jansen, Robert K

    2014-05-28

    Rhazya stricta is native to arid regions in South Asia and the Middle East and is used extensively in folk medicine to treat a wide range of diseases. In addition to generating genomic resources for this medicinally important plant, analyses of the complete plastid and mitochondrial genomes and a nuclear transcriptome from Rhazya provide insights into inter-compartmental transfers between genomes and the patterns of evolution among eight asterid mitochondrial genomes. The 154,841 bp plastid genome is highly conserved with gene content and order identical to the ancestral organization of angiosperms. The 548,608 bp mitochondrial genome exhibits a number of phenomena including the presence of recombinogenic repeats that generate a multipartite organization, transferred DNA from the plastid and nuclear genomes, and bidirectional DNA transfers between the mitochondrion and the nucleus. The mitochondrial genes sdh3 and rps14 have been transferred to the nucleus and have acquired targeting presequences. In the case of rps14, two copies are present in the nucleus; only one has a mitochondrial targeting presequence and may be functional. Phylogenetic analyses of both nuclear and mitochondrial copies of rps14 across angiosperms suggests Rhazya has experienced a single transfer of this gene to the nucleus, followed by a duplication event. Furthermore, the phylogenetic distribution of gene losses and the high level of sequence divergence in targeting presequences suggest multiple, independent transfers of both sdh3 and rps14 across asterids. Comparative analyses of mitochondrial genomes of eight sequenced asterids indicates a complicated evolutionary history in this large angiosperm clade with considerable diversity in genome organization and size, repeat, gene and intron content, and amount of foreign DNA from the plastid and nuclear genomes. Organelle genomes of Rhazya stricta provide valuable information for improving the understanding of mitochondrial genome evolution

  2. Interspecific Comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola

    Energy Technology Data Exchange (ETDEWEB)

    Millenbaugh, Bonnie A; Pangilinan, Jasmyn L.; Torriani, Stefano F.F.; Goodwin, Stephen B.; Kema, Gert H.J.; McDonald, Bruce A.

    2007-12-07

    The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960 bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of thirty-five additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.

  3. Mitochondrial Disease

    OpenAIRE

    Bulent Kurt; Turgut Topal

    2013-01-01

    Mitochondria are the major energy source of cells. Mitochondrial disease occurs due to a defect in mitochondrial energy production. A valuable energy production in mitochondria depend a healthy interconnection between nuclear and mitochondrial DNA. A mutation in nuclear or mitochondrial DNA may cause abnormalities in ATP production and single or multiple organ dysfunctions, secondarily. In this review, we summarize mitochondrial physiology, mitochondrial genetics, and clinical expression and ...

  4. Plant mitochondrial genome: “A sweet and safe home'' for transgene ...

    African Journals Online (AJOL)

    Transfer of transgene through pollens to related plant species is a big environmental concern. Mitochondrion is also a superb and putative aspirant for transgene containment like plastids. Having its own transcription and translation machinery, and maternal inheritance gives assurance of transgene containment with high ...

  5. Plant mitochondrial genome: “A sweet and safe home'' for transgene

    African Journals Online (AJOL)

    Aghogho

    2010-12-27

    Dec 27, 2010 ... mitochondria, transcription is mediated by at least one nuclear encoded RNA polymerase, having the RNA ... RNA editing was first discovered in plant mito- chondria (Covello and Gray, 1989; Heisel et al., ... yeast mitochondria lacking endogenous mtDNA. Proc. Natl. Acad. Sci. USA, 85: 7288-7292. Fox TD ...

  6. Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris.

    Science.gov (United States)

    Pellny, Till K; Van Aken, Olivier; Dutilleul, Christelle; Wolff, Tonja; Groten, Karin; Bor, Melike; De Paepe, Rosine; Reyss, Agnès; Van Breusegem, Frank; Noctor, Graham; Foyer, Christine H

    2008-06-01

    Mitochondrial electron transport pathways exert effects on carbon-nitrogen (C/N) relationships. To examine whether mitochondria-N interactions also influence plant growth and development, we explored the responses of roots and shoots to external N supply in wild-type (WT) Nicotiana sylvestris and the cytoplasmic male sterile II (CMSII) mutant, which has a N-rich phenotype. Root architecture in N. sylvestris seedlings showed classic responses to nitrate and sucrose availability. In contrast, CMSII showed an altered 'nitrate-sensing' phenotype with decreased sensitivity to C and N metabolites. The WT growth phenotype was restored in CMSII seedling roots by high nitrate plus sugars and in shoots by gibberellic acid (GA). Genome-wide cDNA-amplified fragment length polymorphism (AFLP) analysis of leaves from mature plants revealed that only a small subset of transcripts was altered in CMSII. Tissue abscisic acid content was similar in CMSII and WT roots and shoots, and growth responses to zeatin were comparable. However, the abundance of key transcripts associated with GA synthesis was modified both by the availability of N and by the CMSII mutation. The CMSII mutant maintained a much higher shoot/root ratio at low N than WT, whereas no difference was observed at high N. Shoot/root ratios were strikingly correlated with root amines/nitrate ratios, values of <1 being characteristic of high N status. We propose a model in which the amine/nitrate ratio interacts with GA signalling and respiratory pathways to regulate the partitioning of biomass between shoots and roots.

  7. Integrative response of plant mitochondrial electron transport chain to nitrogen source.

    Science.gov (United States)

    Hachiya, Takushi; Noguchi, Ko

    2011-02-01

    Nitrogen (N) availability is widely known as a determinant of plant growth and respiration rate. However, less attention has been paid to the effect of the type of N source (nitrate, nitrite or ammonium) on the respiratory system. This review summarizes the latest findings on this topic, with an emphasis on the effect of ammonium and nitric oxide (NO) on the respiratory system, and the physiological role of alternative oxidase (AOX). First, concentrated ammonium has been found to increase plant respiration rate (ammonium-dependent respiratory increase, ARI). We will introduce two hypotheses to explain ARI, futile ammonium cycling and excess reducing equivalents, and verify the validity of each hypothesis. We suggest that these two hypotheses are not necessarily mutually exclusive. Second, gene expression of AOX is suppressed when N is predominately available as nitrate instead of ammonium. We will discuss possible signaling pathways leading to this expression pattern. Third, while AOX expression is induced by NO, AOX activity itself is insensitive to NO. In contrast, activity of cytochrome c oxidase (COX) is sensitive to NO. We outline the NO production pathway, focusing on nitrite-dependent NO production, and discuss the physiological significance of the fact that AOX activity is insensitive to NO. Finally, this review aims to build an integrated scheme of the respiratory response to the type of N source, considering leaves in high light conditions or hypoxic roots.

  8. Effects of fluoride on mitochondrial activity in higher plants. [Glycine max, Zea mays

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J E; Miller, G W

    1974-01-01

    The effects of fluoride on respiration of plant tissue and mitochondria were investigated. Fumigation of young soybean plants (Glycine max Merr. cm. Hawkeye) with 9-12 ..mu..g x m/sup -3/ HF caused a stimulation of respiration at about 2 days of treatment followed by inhibition 2 days later. Mitochondria isolated from the stimulated tissue had higher respiration rates, greater ATPase activity, and lower P/O ratios, while in mitochondria from inhibited tissue, all three were reduced. Treatment of etiolated soybean hypocotyl sections in Hoagland's solution containing KF for 3 to 10 h only resulted in inhibition of respiration. Mitochondria isolated from this tissue elicited increased respiration rates with malate as substrate and inhibited respiration with succinate. With both substrates respiratory control and ADP/O ratios were decreased. Direct treatment of mitochondria from etiolated soybean hypocotyl tissue with fluoride resulted in inhibition of state 3 respiration and lower ADP/O ratios with the substrates succinate, malate, and NADH. Fluoride was also found to increase the amount of osmotically induced swelling and cause a more rapid leakage of protein with mitochondria isolated from etiolated corn shoots (Zea mays L. cv. Golden Cross Bantam). 40 references, 1 figure, 5 tables.

  9. Expression of the nuclear gene TaF(A)d is under mitochondrial retrograde regulation in anthers of male sterile wheat plants with timopheevii cytoplasm.

    Science.gov (United States)

    Xu, Pei; Yang, Yuwen; Zhang, Zhengzhi; Chen, Weihua; Zhang, Caiqin; Zhang, Lixia; Zou, Sixiang; Ma, Zhengqiang

    2008-01-01

    Alterations of mitochondrial-encoded subunits of the F(o)F(1)-ATP synthase are frequently associated with cytoplasmic male sterility (CMS) in plants; however, little is known about the relationship of the nuclear encoded subunits of this enzyme with CMS. In the present study, the full cDNA of the gene TaF(A)d that encodes the putative F(A)d subunit of the F(o)F(1)-ATP synthase was isolated from the wheat (Triticum aestivum) fertility restorer '2114' for timopheevii cytoplasm-based CMS. The deduced 238 amino acid polypeptide is highly similar to its counterparts in dicots and other monocots but has low homology to its mammalian equivalents. TaF(A)d is a single copy gene in wheat and maps to the short arm of the group 6 chromosomes. Transient expression of the TaF(A)d-GFP fusion in onion epidermal cells demonstrated TaF(A)d's mitochondrial location. TaF(A)d was expressed abundantly in stem, leaf, anther, and ovary tissues of 2114. Nevertheless, its expression was repressed in anthers of CMS plants with timopheevii cytoplasm. Genic male sterility did not affect its expression in anthers. The expression of the nuclear gene encoding the 20 kDa subunit of F(o) was down-regulated in a manner similar to TaF(A)d in the T-CMS anthers while that of genes encoding the 6 kDa subunit of F(o) and the gamma subunit of F(1) was unaffected. These observations implied that TaF(A)d is under mitochondrial retrograde regulation in the anthers of CMS plants with timopheevii cytoplasm.

  10. Mitochondrial myopathies.

    Science.gov (United States)

    DiMauro, Salvatore

    2006-11-01

    Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  11. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper

    We are testing the hypothesis that oxidized peptides are released from stressed mitochondria and contribute to retrograde signalling (Møller IM & Sweetlove LJ 2010 Trends Plant Sci 15, 370-374). However, there is a large gap between the number of experimentally verified mitochondrial proteins (~450......) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  12. Mitochondrial cardiomyopathies

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab

    2016-07-01

    Full Text Available Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA while more than 99% of them are encoded by nuclear DNA (nDNA. Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs of various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular noncompaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain (ETC complexes subunits and their assembly factors, mitochondrial tRNAs, rRNAs, ribosomal proteins, and translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  13. Mitochondrial Myopathies

    Science.gov (United States)

    ... noting “soft signs” in unaffected relatives. These include deaf- ness, short stature, migraine headaches and PEO. Muscle ... mitochondrial defects and provide valuable information for family planning. Perhaps most important, knowing the genetic defects that ...

  14. Subamolide B Isolated from Medicinal Plant Cinnamomum subavenium Induces Cytotoxicity in Human Cutaneous Squamous Cell Carcinoma Cells through Mitochondrial and CHOP-Dependent Cell Death Pathways

    Directory of Open Access Journals (Sweden)

    Shu-Yi Yang

    2013-01-01

    Full Text Available Subamolide B is a butanolide isolated from Cinnamomum subavenium, a medicinal plant traditionally used to treat various ailments including carcinomatous swelling. We herein reported for the first time that subamolide B potently induced cytotoxicity against diverse human skin cancer cell lines while sparing nonmalignant cells. Mechanistic studies on human cutaneous squamous cell carcinoma (SCC cell line SCC12 highlighted the involvement of apoptosis in subamolide B-induced cytotoxicity, as evidenced by the activation of caspases-8, -9, -4, and -3, the increase in annexin V-positive population, and the partial restoration of cell viability by cotreatment with the pan-caspase inhibitor z-VAD-fmk. Additionally, subamolide B evoked cell death pathways mediated by FasL/Fas, mitochondria, and endoplasmic reticulum (ER stress, as supported by subamolide B-induced FasL upregulation, BCL-2 suppression/cytosolic release of cytochrome c, and UPR activation/CHOP upregulation, respectively. Noteworthy, ectopic expression of c-FLIPL or dominant-negative mutant of FADD failed to impair subamolide B-induced cytotoxicity, whereas BCL-2 overexpression or CHOP depletion greatly rescued subamolide B-stimulated cells. Collectively, these results underscored the central role of mitochondrial and CHOP-mediated cell death pathways in subamolide B-induced cytotoxicity. Our findings further implicate the potential of subamolide B for cutaneous SCC therapy or as a lead compound for developing novel chemotherapeutic agents.

  15. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior. This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.

  16. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  17. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  18. The American cranberry mitochondrial genome reveals the presence of selenocysteine (tRNA-Sec and SECIS) insertion machinery in land plants

    Science.gov (United States)

    The American cranberry (Vaccinium macrocarpon Ait.) mitochondrial genome was assembled and reconstructed from whole genome 454 Roche GS-FLX and Illumina shotgun sequences. Compared with other Asterids, the reconstruction of the genome revealed an average size mitochondrion (459,678 nt) with comparat...

  19. A recombination point is conserved in the mitochondrial genome of higher plant species and located downstream from the cox2 pseudogene in Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Susely F.S. Tada

    2006-01-01

    Full Text Available The potato (Solanum tuberosum L. mitochondrial cox3/sdh4/pseudo-cox2 gene cluster has previously been identified by heterologous hybridization using a Marchantia polymorpha sdh4 probe. In our present study we used Southern blotting using sdh4 and cox2 probes to show that the sdh4 and cox2 genes are clustered in the mitochondria of potato, soybean and pea. Northern blotting revealed cotranscription of sdh4 and cox2 in potato but not in cauliflower, indicating that these genes are not clustered in cauliflower. A putative recombination point was detected downstream of the cox2 pseudogene (pseudo-cox2 in potato mitochondrial DNA (mtDNA. This sequence corresponds to a 32 bp sequence which appears to be well-conserved and is adjacent to the terminals of some mitochondrial genes in Citrullus lanatus, Beta vulgaris and Arabidopsis thaliana and is probably involved in the genic rearrangements. It is possible the potato mtDNA pseudo-cox2 gene was generated by recombination during evolution in the same way as that of several other mitochondrial genes and remains as an inactive partial copy of the functional cox2 which was also detected in potato mtDNA.

  20. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  1. Mitochondrial Myopathy

    Science.gov (United States)

    ... these disorders and to find ways to effectively treat, prevent, or potentially cure them. Information from the National Library of Medicine’s MedlinePlus ... neuromuscular diseases caused by damage to the mitochondria—small, energy-producing structures that serve as the cells' "power plants." Nerve cells in the brain and muscles ...

  2. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris

    Directory of Open Access Journals (Sweden)

    Olson Matthew S

    2010-01-01

    Full Text Available Abstract Background Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. Results We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. Conclusions Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris. Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.

  3. Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices

    NARCIS (Netherlands)

    Croll, D.; Wille, L.; Gamper, H.A.; Mathimaran, N.; Lammers, P.J.; Corradi, N.; Sanders, I.R.

    2008-01-01

    Arbuscular mycorrhizal fungi (AMF) are important symbionts of plants that improve plant nutrient acquisition and promote plant diversity. Although within-species genetic differences among AMF have been shown to differentially affect plant growth, very little is actually known about the degree of

  4. FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis.

    Science.gov (United States)

    El Zawily, Amr M; Schwarzländer, Markus; Finkemeier, Iris; Johnston, Iain G; Benamar, Abdelilah; Cao, Yongguo; Gissot, Clémence; Meyer, Andreas J; Wilson, Ken; Datla, Raju; Macherel, David; Jones, Nick S; Logan, David C

    2014-10-01

    Mitochondria are defining components of most eukaryotes. However, higher plant mitochondria differ biochemically, morphologically, and dynamically from those in other eukaryotes. FRIENDLY, a member of the CLUSTERED MITOCHONDRIA superfamily, is conserved among eukaryotes and is required for correct distribution of mitochondria within the cell. We sought to understand how disruption of FRIENDLY function in Arabidopsis (Arabidopsis thaliana) leads to mitochondrial clustering and the effects of this aberrant chondriome on cell and whole-plant physiology. We present evidence for a role of FRIENDLY in mediating intermitochondrial association, which is a necessary prelude to mitochondrial fusion. We demonstrate that disruption of mitochondrial association, motility, and chondriome structure in friendly affects mitochondrial quality control and leads to mitochondrial stress, cell death, and strong growth phenotypes. © 2014 American Society of Plant Biologists. All Rights Reserved.

  5. Supplementary data: A complete mitochondrial genome of wheat ...

    Indian Academy of Sciences (India)

    Supplementary data: A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants. Peng Cui, Huitao Liu, Qiang Lin, Feng Ding, Guoyin Zhuo, Songnian Hu, Dongcheng Liu, Wenlong Yang, Kehui Zhan,. Aimin Zhang and Jun Yu. J. Genet.

  6. Reversible infantile mitochondrial diseases.

    Science.gov (United States)

    Boczonadi, Veronika; Bansagi, Boglarka; Horvath, Rita

    2015-05-01

    Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

  7. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J.

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  8. ZmPUMP encodes a fully functional monocot plant uncoupling mitochondrial protein whose affinity to fatty acid is increased with the introduction of a His pair at the second matrix loop

    International Nuclear Information System (INIS)

    Favaro, Regiane Degan; Borecky, Jiri; Colombi, Debora; Maia, Ivan G.

    2006-01-01

    Uncoupling proteins (UCPs) are specialized mitochondrial transporter proteins that uncouple respiration from ATP synthesis. In this study, cDNA encoding maize uncoupling protein (ZmPUMP) was expressed in Escherichia coli and recombinant ZmPUMP reconstituted in liposomes. ZmPUMP activity was associated with a linoleic acid (LA)-mediated H + efflux with K m of 56.36 ± 0.27 μM and V max of 66.9 μmol H + min -1 (mg prot) -1 . LA-mediated H + fluxes were sensitive to ATP inhibition with K i of 2.61 ± 0.36 mM (at pH 7.2), a value similar to those for dicot UCPs. ZmPUMP was also used to investigate the importance of a histidine pair present in the second matrix loop of mammalian UCP1 and absent in plant UCPs. ZmPUMP with introduced His pair (Lys155His and Ala157His) displayed a 1.55-fold increase in LA-affinity while its activity remained unchanged. Our data indicate conserved properties of plant UCPs and suggest an enhancing but not essential role of the histidine pair in proton transport mechanism

  9. Mitochondrial shaping cuts.

    Science.gov (United States)

    Escobar-Henriques, Mafalda; Langer, Thomas

    2006-01-01

    A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.

  10. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin.

    Science.gov (United States)

    Sanjur, Oris I; Piperno, Dolores R; Andres, Thomas C; Wessel-Beaver, Linda

    2002-01-08

    We have investigated the phylogenetic relationships among six wild and six domesticated taxa of Cucurbita using as a marker an intron region from the mitochondrial nad1 gene. Our study represents one of the first successful uses of a mtDNA gene in resolving inter- and intraspecific taxonomic relationships in Angiosperms and yields several important insights into the origins of domesticated Cucurbita. First, our data suggest at least six independent domestication events from distinct wild ancestors. Second, Cucurbita argyrosperma likely was domesticated from a wild Mexican gourd, Cucurbita sororia, probably in the same region of southwest Mexico that gave rise to maize. Third, the wild ancestor of Cucurbita moschata is still unknown, but mtDNA data combined with other sources of information suggest that it will probably be found in lowland northern South America. Fourth, Cucurbita andreana is supported as the wild progenitor of Cucurbita maxima, but humid lowland regions of Bolivia in addition to warmer temperate zones in South America from where C. andreana was originally described should possibly be considered as an area of origin for C. maxima. Fifth, our data support other molecular results that indicate two separate domestications in the Cucurbita pepo complex. The potential zone of domestication for one of the domesticated subspecies, C. pepo subsp. ovifera, includes eastern North America and should be extended to northeastern Mexico. The wild ancestor of the other domesticated subspecies, C. pepo subsp. pepo, is undiscovered but is closely related to C. pepo subsp. fraterna and possibly will be found in southern Mexico.

  11. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin

    Science.gov (United States)

    Sanjur, Oris I.; Piperno, Dolores R.; Andres, Thomas C.; Wessel-Beaver, Linda

    2002-01-01

    We have investigated the phylogenetic relationships among six wild and six domesticated taxa of Cucurbita using as a marker an intron region from the mitochondrial nad1 gene. Our study represents one of the first successful uses of a mtDNA gene in resolving inter- and intraspecific taxonomic relationships in Angiosperms and yields several important insights into the origins of domesticated Cucurbita. First, our data suggest at least six independent domestication events from distinct wild ancestors. Second, Cucurbita argyrosperma likely was domesticated from a wild Mexican gourd, Cucurbita sororia, probably in the same region of southwest Mexico that gave rise to maize. Third, the wild ancestor of Cucurbita moschata is still unknown, but mtDNA data combined with other sources of information suggest that it will probably be found in lowland northern South America. Fourth, Cucurbita andreana is supported as the wild progenitor of Cucurbita maxima, but humid lowland regions of Bolivia in addition to warmer temperate zones in South America from where C. andreana was originally described should possibly be considered as an area of origin for C. maxima. Fifth, our data support other molecular results that indicate two separate domestications in the Cucurbita pepo complex. The potential zone of domestication for one of the domesticated subspecies, C. pepo subsp. ovifera, includes eastern North America and should be extended to northeastern Mexico. The wild ancestor of the other domesticated subspecies, C. pepo subsp. pepo, is undiscovered but is closely related to C. pepo subsp. fraterna and possibly will be found in southern Mexico. PMID:11782554

  12. Epilepsy and Mitochondrial Dysfunction

    Directory of Open Access Journals (Sweden)

    Russell P. Saneto DO, PhD

    2017-10-01

    Full Text Available Epilepsy is a common manifestation of mitochondrial disease. In a large cohort of children and adolescents with mitochondrial disease (n = 180, over 48% of patients developed seizures. The majority (68% of patients were younger than 3 years and medically intractable (90%. The electroencephalographic pattern of multiregional epileptiform discharges over the left and right hemisphere with background slowing occurred in 62%. The epilepsy syndrome, infantile spasms, was seen in 17%. Polymerase γ mutations were the most common genetic etiology of seizures, representing Alpers-Huttenlocher syndrome (14%. The severity of disease in those patients with epilepsy was significant, as 13% of patients experienced early death. Simply the loss of energy production cannot explain the development of seizures or all patients with mitochondrial dysfunction would have epilepsy. Until the various aspects of mitochondrial physiology that are involved in proper brain development are understood, epilepsy and its treatment will remain unsatisfactory.

  13. Mitochondrial signaling in health and disease

    National Research Council Canada - National Science Library

    Orrenius, Sten; Packer, Lester; Cadenas, Enrique

    2012-01-01

    .... The text covers themes essential for the maintenance of mitochondrial activity, including electron transport and energy production, mitochondrial biogenesis and dynamics, mitochondrial signaling...

  14. Mitochondrial dysfunction in obesity.

    Science.gov (United States)

    de Mello, Aline Haas; Costa, Ana Beatriz; Engel, Jéssica Della Giustina; Rezin, Gislaine Tezza

    2018-01-01

    Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Multifunctional Mitochondrial AAA Proteases.

    Science.gov (United States)

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  16. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice

    OpenAIRE

    Wei Tong; Qiang He; Yong-Jin Park

    2017-01-01

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucle...

  17. Selective Gene Delivery for Integrating Exogenous DNA into Plastid and Mitochondrial Genomes Using Peptide-DNA Complexes.

    Science.gov (United States)

    Yoshizumi, Takeshi; Oikawa, Kazusato; Chuah, Jo-Ann; Kodama, Yutaka; Numata, Keiji

    2018-05-14

    Selective gene delivery into organellar genomes (mitochondrial and plastid genomes) has been limited because of a lack of appropriate platform technology, even though these organelles are essential for metabolite and energy production. Techniques for selective organellar modification are needed to functionally improve organelles and produce transplastomic/transmitochondrial plants. However, no method for mitochondrial genome modification has yet been established for multicellular organisms including plants. Likewise, modification of plastid genomes has been limited to a few plant species and algae. In the present study, we developed ionic complexes of fusion peptides containing organellar targeting signal and plasmid DNA for selective delivery of exogenous DNA into the plastid and mitochondrial genomes of intact plants. This is the first report of exogenous DNA being integrated into the mitochondrial genomes of not only plants, but also multicellular organisms in general. This fusion peptide-mediated gene delivery system is a breakthrough platform for both plant organellar biotechnology and gene therapy for mitochondrial diseases in animals.

  18. Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.

    Science.gov (United States)

    Sebastián, David; Palacín, Manuel; Zorzano, Antonio

    2017-03-01

    Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mitochondrial Recombination and Introgression during Speciation by Hybridization.

    Science.gov (United States)

    Leducq, Jean-Baptiste; Henault, Mathieu; Charron, Guillaume; Nielly-Thibault, Lou; Terrat, Yves; Fiumera, Heather L; Shapiro, B Jesse; Landry, Christian R

    2017-08-01

    Genome recombination is a major source of genotypic diversity and contributes to adaptation and speciation following interspecies hybridization. The contribution of recombination in these processes has been thought to be largely limited to the nuclear genome because organelles are mostly uniparentally inherited in animals and plants, which prevents recombination. Unicellular eukaryotes such as budding yeasts do, however, transmit mitochondria biparentally, suggesting that during hybridization, both parents could provide alleles that contribute to mitochondrial functions such as respiration and metabolism in hybrid populations or hybrid species. We examined the dynamics of mitochondrial genome transmission and evolution during speciation by hybridization in the natural budding yeast Saccharomyces paradoxus. Using population-scale mitochondrial genome sequencing in two endemic North American incipient species SpB and SpC and their hybrid species SpC*, we found that both parental species contributed to the hybrid mitochondrial genome through recombination. We support our findings by showing that mitochondrial recombination between parental types is frequent in experimental crosses that recreate the early step of this speciation event. In these artificial hybrids, we observed that mitochondrial genome recombination enhances phenotypic variation among diploid hybrids, suggesting that it could play a role in the phenotypic differentiation of hybrid species. Like the nuclear genome, the mitochondrial genome can, therefore, also play a role in hybrid speciation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Mitochondrial Dysfunction in Gliomas

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Anni, H.; Dráber, Pavel

    2013-01-01

    Roč. 20, č. 3 (2013), s. 216-227 ISSN 1071-9091 R&D Projects: GA MŠk LH12050 Institutional support: RVO:68378050 Keywords : gliomas * mitochondrial dysfunction * microtubule proteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.883, year: 2013

  1. Mitochondrial dysfunction in epilepsy

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava; Kunz, W.S.

    2012-01-01

    Roč. 12, č. 1 (2012), s. 35-40 ISSN 1567-7249 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR GA309/08/0292 Institutional research plan: CEZ:AV0Z50110509 Keywords : epilepsy * mitochondrial dysfunction * neurodegeneration Subject RIV: FH - Neurology Impact factor: 4.025, year: 2012

  2. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats.

    Directory of Open Access Journals (Sweden)

    Andrew J Alverson

    2011-01-01

    Full Text Available The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean, and show that despite its unexceptional size (401,262 nt, the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.

  3. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  4. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    Directory of Open Access Journals (Sweden)

    Hirotaka Yamamoto

    2016-01-01

    Full Text Available Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  5. Monitoring wheat mitochondrial compositional and respiratory changes using Fourier transform mid-infrared spectroscopy in response to agrochemical treatments

    Science.gov (United States)

    Fungicides and plant growth regulators can impact plant growth outside of their effects on fungal pathogens. Although many of these chemicals are inhibitors of mitochondrial oxygen uptake, information remains limited as to whether they are able tomodify other mitochondrial constituents. Fourier tran...

  6. MitBASE : a comprehensive and integrated mitochondrial DNA database. The present status

    NARCIS (Netherlands)

    Attimonelli, M.; Altamura, N.; Benne, R.; Brennicke, A.; Cooper, J. M.; D'Elia, D.; Montalvo, A.; Pinto, B.; de Robertis, M.; Golik, P.; Knoop, V.; Lanave, C.; Lazowska, J.; Licciulli, F.; Malladi, B. S.; Memeo, F.; Monnerot, M.; Pasimeni, R.; Pilbout, S.; Schapira, A. H.; Sloof, P.; Saccone, C.

    2000-01-01

    MitBASE is an integrated and comprehensive database of mitochondrial DNA data which collects, under a single interface, databases for Plant, Vertebrate, Invertebrate, Human, Protist and Fungal mtDNA and a Pilot database on nuclear genes involved in mitochondrial biogenesis in Saccharomyces

  7. Mitochondrial uncoupling proteins in unicellular eukaryotes.

    Science.gov (United States)

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Antos-Krzeminska, Nina; Sluse, Francis E

    2010-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species. Copyright © 2009 Elsevier B.V. All rights reserved.

  8. Mitochondrial disease and endocrine dysfunction.

    Science.gov (United States)

    Chow, Jasmine; Rahman, Joyeeta; Achermann, John C; Dattani, Mehul T; Rahman, Shamima

    2017-02-01

    Mitochondria are critical organelles for endocrine health; steroid hormone biosynthesis occurs in these organelles and they provide energy in the form of ATP for hormone production and trafficking. Mitochondrial diseases are multisystem disorders that feature defective oxidative phosphorylation, and are characterized by enormous clinical, biochemical and genetic heterogeneity. To date, mitochondrial diseases have been found to result from >250 monogenic defects encoded across two genomes: the nuclear genome and the ancient circular mitochondrial genome located within mitochondria themselves. Endocrine dysfunction is often observed in genetic mitochondrial diseases and reflects decreased intracellular production or extracellular secretion of hormones. Diabetes mellitus is the most frequently described endocrine disturbance in patients with inherited mitochondrial diseases, but other endocrine manifestations in these patients can include growth hormone deficiency, hypogonadism, adrenal dysfunction, hypoparathyroidism and thyroid disease. Although mitochondrial endocrine dysfunction frequently occurs in the context of multisystem disease, some mitochondrial disorders are characterized by isolated endocrine involvement. Furthermore, additional monogenic mitochondrial endocrine diseases are anticipated to be revealed by the application of genome-wide next-generation sequencing approaches in the future. Understanding the mitochondrial basis of endocrine disturbance is key to developing innovative therapies for patients with mitochondrial diseases.

  9. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  10. MITOCHONDRIAL NEUROGASTROINTESTINAL ENCEPHALOMYOPATHY (MNGIE

    Directory of Open Access Journals (Sweden)

    P. Ayatollahi

    2006-06-01

    Full Text Available Mitochondrial neurogastrointestinal encephalo-myopathy (MNGIE is a rare autosomal recessive disease caused by thymidine phosphorylase (TP gene mutation. Here we report a patient with MNGIE in whom sensorimotor polyneuropathy was the first presenting symptom and had a fluctuating course. This 26-year-old female patient developed acute-onset demyelinating polyneuropathy from the age of 6 with two relapses later on. In addition, she had gastrointestinal symptoms (diarrhea, recurrent abdominal pain, progressive weight loss and ophthalmoparesis. Brain magnetic resonance imaging showed white matter abnormalities, and muscle biopsy showed ragged red fibers. This constellation of clinical and laboratory findings raised the diagnosis of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE. This report highlights the uncommon clinical characteristics of this rare disease.

  11. The mitochondrial uncoupling proteins

    OpenAIRE

    Ledesma, Amalia; de Lacoba, Mario García; Rial, Eduardo

    2002-01-01

    The uncoupling proteins (UCPs) are transporters, present in the mitochondrial inner membrane, that mediate a regulated discharge of the proton gradient that is generated by the respiratory chain. This energy-dissipatory mechanism can serve functions such as thermogenesis, maintenance of the redox balance, or reduction in the production of reactive oxygen species. Some UCP homologs may not act as true uncouplers, however, and their activity has yet to be defined. The UCPs are integral membrane...

  12. MITOCHONDRIAL BKCa CHANNEL

    Directory of Open Access Journals (Sweden)

    Enrique eBalderas

    2015-03-01

    Full Text Available Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS, voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.

  13. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  14. Mitochondrial functionality in female reproduction

    Directory of Open Access Journals (Sweden)

    Łukasz Gąsior

    2017-01-01

    Full Text Available In most animal species female germ cells are the source of mitochondrial genome for the whole body of individuals. As a source of mitochondrial DNA for future generations the mitochondria in the female germ line undergo dynamic quantitative and qualitative changes. In addition to maintaining the intact template of mitochondrial genome from one generation to another, mitochondrial role in oocytes is much more complex and pleiotropic. The quality of mitochondria determines the ability of meiotic divisions, fertilization ability, and activation after fertilization or sustaining development of a new embryo. The presence of normal number of functional mitochondria is also crucial for proper implantation and pregnancy maintaining. This article addresses issues of mitochondrial role and function in mammalian oocyte and presents new approaches in studies of mitochondrial function in female germ cells.

  15. Molecular basis for mitochondrial signaling

    CERN Document Server

    2017-01-01

    This book covers recent advances in the study of structure, function, and regulation of metabolite, protein and ion translocating channels, and transporters in mitochondria. A wide array of cutting-edge methods are covered, ranging from electrophysiology and cell biology to bioinformatics, as well as structural, systems, and computational biology. At last, the molecular identity of two important channels in the mitochondrial inner membrane, the mitochondrial calcium uniporter and the mitochondrial permeability transition pore have been established. After years of work on the physiology and structure of VDAC channels in the mitochondrial outer membrane, there have been multiple discoveries on VDAC permeation and regulation by cytosolic proteins. Recent breakthroughs in structural studies of the mitochondrial cholesterol translocator reveal a set of novel unexpected features and provide essential clues for defining therapeutic strategies. Molecular Basis for Mitochondrial Signaling covers these and many more re...

  16. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    Science.gov (United States)

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID

  17. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  18. A complete mitochondrial genome of wheat (Triticum aestivum cv ...

    Indian Academy of Sciences (India)

    role in the development and reproduction of the plant. They occupy a specific ... for biosynthetic pathways relative to their free-living cousins. (Gray et al. 1999; Itoh ... A mitochondrial genome BAC library was constructed fol- lowing a previously ...

  19. Expression of a transferred nuclear gene in a mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  20. A multipartite mitochondrial genome in the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Armstrong, M R; Blok, V C; Phillips, M S

    2000-01-01

    The mitochondrial genome (mtDNA) of the plant parasitic nematode Globodera pallida exists as a population of small, circular DNAs that, taken individually, are of insufficient length to encode the typical metazoan mitochondrial gene complement. As far as we are aware, this unusual structural organization is unique among higher metazoans, although interesting comparisons can be made with the multipartite mitochondrial genome organizations of plants and fungi. The variation in frequency between populations displayed by some components of the mtDNA is likely to have major implications for the way in which mtDNA can be used in population and evolutionary genetic studies of G. pallida.

  1. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  2. Understanding mitochondrial myopathies: a review

    Directory of Open Access Journals (Sweden)

    Abhimanyu S. Ahuja

    2018-05-01

    Full Text Available Mitochondria are small, energy-producing structures vital to the energy needs of the body. Genetic mutations cause mitochondria to fail to produce the energy needed by cells and organs which can cause severe disease and death. These genetic mutations are likely to be in the mitochondrial DNA (mtDNA, or possibly in the nuclear DNA (nDNA. The goal of this review is to assess the current understanding of mitochondrial diseases. This review focuses on the pathology, causes, risk factors, symptoms, prevalence data, symptomatic treatments, and new research aimed at possible preventions and/or treatments of mitochondrial diseases. Mitochondrial myopathies are mitochondrial diseases that cause prominent muscular symptoms such as muscle weakness and usually present with a multitude of symptoms and can affect virtually all organ systems. There is no cure for these diseases as of today. Treatment is generally supportive and emphasizes symptom management. Mitochondrial diseases occur infrequently and hence research funding levels tend to be low in comparison with more common diseases. On the positive side, quite a few genetic defects responsible for mitochondrial diseases have been identified, which are in turn being used to investigate potential treatments. Speech therapy, physical therapy, and respiratory therapy have been used in mitochondrial diseases with variable results. These therapies are not curative and at best help with maintaining a patient’s current abilities to move and function.

  3. Mitochondrial DNA repair and aging

    International Nuclear Information System (INIS)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-01-01

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis

  4. Mitochondrial Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    P. C. Keane

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD. This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc of PD patients and to highlight the important need for further research in this area.

  5. Mitochondrial DNA repair and aging

    Energy Technology Data Exchange (ETDEWEB)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-11-30

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.

  6. Endocrine disorders in mitochondrial disease.

    Science.gov (United States)

    Schaefer, Andrew M; Walker, Mark; Turnbull, Douglass M; Taylor, Robert W

    2013-10-15

    Endocrine dysfunction in mitochondrial disease is commonplace, but predominantly restricted to disease of the endocrine pancreas resulting in diabetes mellitus. Other endocrine manifestations occur, but are relatively rare by comparison. In mitochondrial disease, neuromuscular symptoms often dominate the clinical phenotype, but it is of paramount importance to appreciate the multi-system nature of the disease, of which endocrine dysfunction may be a part. The numerous phenotypes attributable to pathogenic mutations in both the mitochondrial (mtDNA) and nuclear DNA creates a complex and heterogeneous catalogue of disease which can be difficult to navigate for novices and experts alike. In this article we provide an overview of the endocrine disorders associated with mitochondrial disease, the way in which the underlying mitochondrial disorder influences the clinical presentation, and how these factors influence subsequent management. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics

    Science.gov (United States)

    Tan, Dun-Xian; Manchester, Lucien C.; Qin, Lilan; Reiter, Russel J.

    2016-01-01

    Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria. PMID:27999288

  8. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  9. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae)

    Science.gov (United States)

    Shannon C.K. Straub; Richard C. Cronn; Christopher Edwards; Mark Fishbein; Aaron. Liston

    2013-01-01

    Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae...

  10. Mitochondrial contribution to lipofuscin formation

    Directory of Open Access Journals (Sweden)

    Jeannette König

    2017-04-01

    Moreover, we observed that Lon protease downregulation is linked to a higher lipofuscinogenesis whereas the application of the mitochondrial-targeted antioxidant mitoTEMPO is able to prevent the accumulation of this protein aggregate.

  11. Mitochondrial PKA mediates sperm motility.

    Science.gov (United States)

    Mizrahi, Rashel; Breitbart, Haim

    2014-12-01

    Mitochondria are the major source of ATP to power sperm motility. Phosphorylation of mitochondrial proteins has been proposed as a major regulatory mechanism for mitochondrial bioenergetics. Sperm motility was measured by a computer-assisted analyzer, protein detection by western blotting, membrane potential by tetramethylrhodamine, cellular ATP by luciferase assay and localization of PKA by immuno-electron microscopy. Bicarbonate is essential for the creation of mitochondrial electro-chemical gradient, ATP synthesis and sperm motility. Bicarbonate stimulates PKA-dependent phosphorylation of two 60kDa proteins identified as Tektin and glucose-6-phosphate isomerase. This phosphorylation was inhibited by respiration inhibition and phosphorylation could be restored by glucose in the presence of bicarbonate. However, this effect of glucose cannot be seen when the mitochondrial ATP/ADP exchanger was inhibited indicating that glycolytic-produced ATP is transported into the mitochondria and allows PKA-dependent protein phosphorylation inside the mitochondria. Bicarbonate activates mitochondrial soluble adenylyl cyclase (sAC) which catalyzes cAMP production leading to the activation of mitochondrial PKA. Glucose can overcome the lack of ATP in the absence of bicarbonate but it cannot affect the mitochondrial sAC/PKA system, therefore the PKA-dependent phosphorylation of the 60kDa proteins does not occur in the absence of bicarbonate. Production of CO2 in Krebs cycle, which is converted to bicarbonate is essential for sAC/PKA activation leading to mitochondrial membrane potential creation and ATP synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  13. Mitochondrial dysfunction and organophosphorus compounds

    International Nuclear Information System (INIS)

    Karami-Mohajeri, Somayyeh; Abdollahi, Mohammad

    2013-01-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP

  14. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Salvato, Fernanda; Havelund, Jesper Foged; Chen, Mingjie

    2014-01-01

    Mitochondria are called the powerhouses of the cell. To better understand the role of mitochondria in maintaining and regulating metabolism in storage tissues, highly purified mitochondria were isolated from dormant potato tubers (Solanum tuberosum 'Folva') and their proteome investigated. Proteins...... manner using normalized spectral counts including as many as 5-fold more "extreme" proteins (low mass, high isoelectric point, hydrophobic) than previous mitochondrial proteome studies. We estimate that this compendium of proteins represents a high coverage of the potato tuber mitochondrial proteome...

  15. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  16. Melatonin and human mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    Reza Sharafati-Chaleshtori

    2017-01-01

    Full Text Available Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function.

  17. Mitochondrial Metabolism in Aging Heart

    Science.gov (United States)

    Lesnefsky, Edward J.; Chen, Qun; Hoppel, Charles L.

    2016-01-01

    Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area there is an approximate 50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction. PMID:27174952

  18. Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome

    Science.gov (United States)

    2017-01-01

    Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology. PMID:28680532

  19. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  20. Mitochondrial quality control pathways as determinants of metabolic health

    NARCIS (Netherlands)

    Held, Ntsiki M.; Houtkooper, Riekelt H.

    2015-01-01

    Mitochondrial function is key for maintaining cellular health, while mitochondrial failure is associated with various pathologies, including inherited metabolic disorders and age-related diseases. In order to maintain mitochondrial quality, several pathways of mitochondrial quality control have

  1. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    International Nuclear Information System (INIS)

    Palmeira, Carlos M.; Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-01-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes

  2. Prospects for therapeutic mitochondrial transplantation.

    Science.gov (United States)

    Gollihue, Jenna L; Rabchevsky, Alexander G

    2017-07-01

    Mitochondrial dysfunction has been implicated in a multitude of diseases and pathological conditions- the organelles that are essential for life can also be major players in contributing to cell death and disease. Because mitochondria are so well established in our existence, being present in all cell types except for red blood cells and having the responsibility of providing most of our energy needs for survival, then dysfunctional mitochondria can elicit devastating cellular pathologies that can be widespread across the entire organism. As such, the field of "mitochondrial medicine" is emerging in which disease states are being targeted therapeutically at the level of the mitochondrion, including specific antioxidants, bioenergetic substrate additions, and membrane uncoupling agents. New and compelling research investigating novel techniques for mitochondrial transplantation to replace damaged or dysfunctional mitochondria with exogenous healthy mitochondria has shown promising results, including tissue sparing accompanied by increased energy production and decreased oxidative damage. Various experimental techniques have been attempted and each has been challenged to accomplish successful transplantation. The purpose of this review is to present the history of mitochondrial transplantation, the different techniques used for both in vitro and in vivo delivery, along with caveats and pitfalls that have been discovered along the way. Results from such pioneering studies are promising and could be the next big wave of "mitochondrial medicine" once technical hurdles are overcome. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  3. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  4. Lack of mitochondrial MutS homolog 1 in Toxoplasma gondii disrupts maintenance and fidelity of mitochondrial DNA and reveals metabolic plasticity.

    Directory of Open Access Journals (Sweden)

    Tamila Garbuz

    Full Text Available The importance of maintaining the fidelity of the mitochondrial genome is underscored by the presence of various repair pathways within this organelle. Presumably, the repair of mitochondrial DNA would be of particular importance in organisms that possess only a single mitochondrion, like the human pathogens Plasmodium falciparum and Toxoplasma gondii. Understanding the machinery that maintains mitochondrial DNA in these parasites is of particular relevance, as mitochondrial function is a validated and effective target for anti-parasitic drugs. We previously determined that the Toxoplasma MutS homolog TgMSH1 localizes to the mitochondrion. MutS homologs are key components of the nuclear mismatch repair system in mammalian cells, and both yeast and plants possess MutS homologs that localize to the mitochondria where they regulate DNA stability. Here we show that the lack of TgMSH1 results in accumulation of single nucleotide variations in mitochondrial DNA and a reduction in mitochondrial DNA content. Additionally, parasites lacking TgMSH1 function can survive treatment with the cytochrome b inhibitor atovaquone. While the Tgmsh1 knockout strain has several missense mutations in cytochrome b, none affect amino acids known to be determinants of atovaquone sensitivity and atovaquone is still able to inhibit electron transport in the Tgmsh1 mutants. Furthermore, culture of Tgmsh1 mutant in the presence atovaquone leads to parasites with enhanced atovaquone resistance and complete shutdown of respiration. Thus, parasites lacking TgMSH1 overcome the disruption of mitochondrial DNA by adapting their physiology allowing them to forgo the need for oxidative phosphorylation. Consistent with this idea, the Tgmsh1 mutant is resistant to mitochondrial inhibitors with diverse targets and exhibits reduced ability to grow in the absence of glucose. This work shows TgMSH1 as critical for the maintenance and fidelity of the mitochondrial DNA in Toxoplasma

  5. The mitochondrial gene encoding ribosomal protein S12 has been translocated to the nuclear genome in Oenothera.

    Science.gov (United States)

    Grohmann, L; Brennicke, A; Schuster, W

    1992-01-01

    The Oenothera mitochondrial genome contains only a gene fragment for ribosomal protein S12 (rps12), while other plants encode a functional gene in the mitochondrion. The complete Oenothera rps12 gene is located in the nucleus. The transit sequence necessary to target this protein to the mitochondrion is encoded by a 5'-extension of the open reading frame. Comparison of the amino acid sequence encoded by the nuclear gene with the polypeptides encoded by edited mitochondrial cDNA and genomic sequences of other plants suggests that gene transfer between mitochondrion and nucleus started from edited mitochondrial RNA molecules. Mechanisms and requirements of gene transfer and activation are discussed. Images PMID:1454526

  6. RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats.

    Directory of Open Access Journals (Sweden)

    Masaki Odahara

    2015-03-01

    Full Text Available Maintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P. patens homolog of bacterial RecG helicase, RECG, some of which is localized in both plastid and mitochondrial nucleoids. RECG partially complements recG deficiency in Escherichia coli cells. A knockout (KO mutation of RECG caused characteristic phenotypes including growth delay and developmental and mitochondrial defects, which are similar to those of the RECA1 KO mutant. The RECG KO cells showed heterogeneity in these phenotypes. Analyses of RECG KO plants showed that mitochondrial genome was destabilized due to a recombination between 8-79 bp repeats and the pattern of the recombination partly differed from that observed in the RECA1 KO mutants. The mitochondrial DNA (mtDNA instability was greater in severe phenotypic RECG KO cells than that in mild phenotypic ones. This result suggests that mitochondrial genomic instability is responsible for the defective phenotypes of RECG KO plants. Some of the induced recombination caused efficient genomic rearrangements in RECG KO mitochondria. Such loci were sometimes associated with a decrease in the levels of normal mtDNA and significant decrease in the number of transcripts derived from the loci. In addition, the RECG KO mutation caused remarkable plastid abnormalities and induced recombination between short repeats (12-63 bp in the plastid DNA. These results suggest that RECG plays a role in the maintenance of both plastid and mitochondrial genome stability by suppressing aberrant recombination between dispersed short repeats; this role is crucial for plastid and mitochondrial functions.

  7. Advances in genetics. Volume 22: Molecular genetics of plants

    International Nuclear Information System (INIS)

    Scandalios, J.G.; Caspari, E.W.

    1984-01-01

    This book contains the following four chapters: Structural Variation in Mitochondrial DNA; The Structure and Expression of Nuclear Genes in Higher Plants; Chromatin Structure and Gene Regulation in Higher Plants; and The Molecular Genetics of Crown Gall Tumorigenesis

  8. Mitochondrial role in cell aging

    Science.gov (United States)

    Miquel, J.; Fleming, J.; Economos, A. C.; Johnson, J. E., Jr.

    1980-01-01

    The experimental studies on the mitochondria of insect and mammalian cells are examined with a view to an analysis of intrinsic mitochondrial senescence, and its relation to the age-related changes in other cell organelles. The fine structural and biochemical data support the concept that the mitochondria of fixed postmitotic cells may be the site of intrinsic aging because of the attack by free radicals and lipid peroxides originating in the organelles as a by-product of oxygen reduction during respiration. Although the cells have numerous mechanisms for counteracting lipid peroxidation injury, there is a slippage in the antioxidant protection. Intrinsic mitochondrial aging could thus be considered as a specific manifestation of oxygen toxicity. It is proposed that free radical injury renders an increasing number of the mitochondria unable to divide, probably because of damage to the lipids of the inner membrane and to mitochondrial DNA.

  9. Redox Regulation of Mitochondrial Function

    Science.gov (United States)

    Handy, Diane E.

    2012-01-01

    Abstract Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367. PMID:22146081

  10. Genetics of mitochondrial dysfunction and infertility.

    Science.gov (United States)

    Demain, L A M; Conway, G S; Newman, W G

    2017-02-01

    Increasingly, mitochondria are being recognized as having an important role in fertility. Indeed in assisted reproductive technologies mitochondrial function is a key indicator of sperm and oocyte quality. Here, we review the literature regarding mitochondrial genetics and infertility. In many multisystem disorders caused by mitochondrial dysfunction death occurs prior to sexual maturity, or the clinical features are so severe that infertility may be underreported. Interestingly, many of the genes linked to mitochondrial dysfunction and infertility have roles in the maintenance of mitochondrial DNA or in mitochondrial translation. Studies on populations with genetically uncharacterized infertility have highlighted an association with mitochondrial DNA deletions, whether this is causative or indicative of poor functioning mitochondria requires further examination. Studies on the impact of mitochondrial DNA variants present conflicting data but highlight POLG as a particularly interesting candidate gene for both male and female infertility. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Mitochondrial DNA and Cancer Epidemiology Workshop

    Science.gov (United States)

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  12. Beyond toxicity: a regulatory role for mitochondrial cyanide.

    Science.gov (United States)

    García, Irene; Gotor, Cecilia; Romero, Luis C

    2014-01-01

    In non-cyanogenic plants, cyanide is a co-product of ethylene and camalexin biosynthesis. To maintain cyanide at non-toxic levels, Arabidopsis plants express the mitochondrial β-cyanoalanine synthase CYS-C1. CYS-C1 knockout leads to an increased level of cyanide in the roots and leaves and a severe defect in root hair morphogenesis, suggesting that cyanide acts as a signaling factor in root development. During compatible and incompatible plant-bacteria interactions, cyanide accumulation and CYS-C1 gene expression are negatively correlated. Moreover, CYS-C1 mutation increases both plant tolerance to biotrophic pathogens and their susceptibility to necrotrophic fungi, indicating that cyanide could stimulate the salicylic acid-dependent signaling pathway of the plant immune system. We hypothesize that CYS-C1 is essential for maintaining non-toxic concentrations of cyanide in the mitochondria to facilitate cyanide's role in signaling.

  13. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage

    OpenAIRE

    Bachmann, Rosilla F.; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K.

    2009-01-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially media...

  14. Mitochondrial quality control in cardiac diseases.

    Directory of Open Access Journals (Sweden)

    Juliane Campos

    2016-10-01

    Full Text Available Disruption of mitochondrial homeostasis is a hallmark of cardiac diseases. Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for cardiomyocyte survival. In this review, we discuss the most recent findings on the central role of mitochondrial quality control processes including regulation of mitochondrial redox balance, aldehyde metabolism, proteostasis, dynamics and clearance in cardiac diseases, highlighting their potential as therapeutic targets.

  15. Mitochondrial fusion through membrane automata.

    Science.gov (United States)

    Giannakis, Konstantinos; Andronikos, Theodore

    2015-01-01

    Studies have shown that malfunctions in mitochondrial processes can be blamed for diseases. However, the mechanism behind these operations is yet not sufficiently clear. In this work we present a novel approach to describe a biomolecular model for mitochondrial fusion using notions from the membrane computing. We use a case study defined in BioAmbient calculus and we show how to translate it in terms of a P automata variant. We combine brane calculi with (mem)brane automata to produce a new scheme capable of describing simple, realistic models. We propose the further use of similar methods and the test of other biomolecular models with the same behaviour.

  16. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Science.gov (United States)

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  17. Mitochondrial mutations drive prostate cancer aggression

    DEFF Research Database (Denmark)

    Hopkins, Julia F.; Sabelnykova, Veronica Y.; Weischenfeldt, Joachim

    2017-01-01

    Nuclear mutations are well known to drive tumor incidence, aggression and response to therapy. By contrast, the frequency and roles of mutations in the maternally inherited mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes of 384 localized prostate cancer...... in prostate cancer, and suggest interplay between nuclear and mitochondrial mutational profiles in prostate cancer....

  18. Recent Advances in the Composition and Heterogeneity of the Arabidopsis Mitochondrial Proteome

    Directory of Open Access Journals (Sweden)

    Chun Pong eLee

    2013-01-01

    Full Text Available Mitochondria are important organelles for providing the ATP and carbon skeletons required to sustain cell growth. While these organelles also participate in other key metabolic functions across species, they have a specialized role in plants of optimizing photosynthesis through participating in photorespiration. It is therefore critical to map the protein composition of mitochondria in plants to gain a better understanding of their regulation and define the uniqueness of their metabolic networks. To date, less than 30% of the predicted number of mitochondrial proteins has been verified experimentally by proteomics and/or GFP localization studies. In this mini-review, we will provide an overview of the advances in mitochondrial proteomics in the model plant Arabidopsis thaliana over the past five years. The ultimate goal of mapping the mitochondrial proteome in Arabidopsis is to discover novel mitochondrial components that are critical during development in plants as well as genes involved in developmental abnormalities, such as those implicated in mitochondrial-linked cytoplasmic male sterility.

  19. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica.

    Science.gov (United States)

    Yang, J; Liu, G; Zhao, N; Chen, S; Liu, D; Ma, W; Hu, Z; Zhang, M

    2016-05-01

    The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  1. Renal disease and mitochondrial genetics.

    Science.gov (United States)

    Rötig, Agnès

    2003-01-01

    Respiratory chain (RC) deficiencies have long been regarded as neuromuscular diseases mainly originating from mutations in the mitochondrial DNA. Oxidative phosphorylation, i.e. adenosine triphosphate (ATP) synthesis-coupled electron transfer from substrate to oxygen through the RC, does not occur only in the neuromuscular system. Therefore, a RC deficiency can theoretically give rise to any symptom, in any organ or tissue, at any age and with any mode of inheritance, owing to the dual genetic origin of RC enzymes (nuclear DNA and mitochondrial DNA). Mitochondrial diseases can give rise to various syndromes or association, namely, neurologic and neuromuscular diseases, cardiac, renal, hepatic, hematological and endocrin or dermatological presentations. The most frequent renal symptom is proximal tubular dysfunction with a more or less complete de Toni-Debre-Fanconi Syndrome. A few patients have been reported with tubular acidosis, Bartter Syndrome, chronic tubulointerstitial nephritis or nephrotic syndrome. The diagnosis of a RC deficiency is difficult when only renal symptoms are present, but should be easier when another, seemingly unrelated symptom is observed. Metabolic screening for abnormal oxidoreduction status in plasma, including lactate/pyruvate and ketone body molar ratios, can help to identify patients for further investigations. These include the measurement of oxygen consumption by mitochondria and the assessment of mitochondrial respiratory enzyme activities by spectrophotometric studies. Any mode of inheritance can be observed: sporadic, autosomal dominant or recessive, or maternal inheritance.

  2. Mitochondrial function, ornamentation, and immunocompetence.

    Science.gov (United States)

    Koch, Rebecca E; Josefson, Chloe C; Hill, Geoffrey E

    2017-08-01

    Understanding the mechanisms that link ornamental displays and individual condition is key to understanding the evolution and function of ornaments. Immune function is an aspect of individual quality that is often associated with the expression of ornamentation, but a general explanation for why the expression of some ornaments seems to be consistently linked to immunocompetence remains elusive. We propose that condition-dependent ornaments may be linked to key aspects of immunocompetence through co-dependence on mitochondrial function. Mitochondrial involvement in immune function is rarely considered outside of the biomedical literature, but the role of mitochondria as the primary energy producers of the cell and the centres of biosynthesis, the oxidative stress response, and cellular signalling place them at the hub of a variety of immune pathways. A promising new mechanistic explanation for correlations between a wide range of ornamental traits and the properties of individual quality is that mitochondrial function may be the 'shared pathway' responsible for links between ornament production and individual condition. Herein, we first review the role of mitochondria as both signal transducers and metabolic regulators of immune function. We then describe connections between hormonal pathways and mitochondria, with implications for both immune function and the expression of ornamentation. Finally, we explore the possibility that ornament expression may link directly to mitochondrial function. Considering condition-dependent traits within the framework of mitochondrial function has the potential to unify central tenets within the study of sexual selection, eco-immunology, oxidative stress ecology, stress and reproductive hormone biology, and animal physiology. © 2016 Cambridge Philosophical Society.

  3. Mitochondrial rejuvenation after induced pluripotency.

    Directory of Open Access Journals (Sweden)

    Steven T Suhr

    2010-11-01

    Full Text Available As stem cells of the early embryo mature and differentiate into all tissues, the mitochondrial complement undergoes dramatic functional improvement. Mitochondrial activity is low to minimize generation of DNA-damaging reactive oxygen species during pre-implantation development and increases following implantation and differentiation to meet higher metabolic demands. It has recently been reported that when the stem cell type known as induced pluripotent stem cells (IPSCs are re-differentiated for several weeks in vitro, the mitochondrial complement progressively re-acquires properties approximating input fibroblasts, suggesting that despite the observation that IPSC conversion "resets" some parameters of cellular aging such as telomere length, it may have little impact on other age-affected cellular systems such as mitochondria in IPSC-derived cells.We have examined the properties of mitochondria in two fibroblast lines, corresponding IPSCs, and fibroblasts re-derived from IPSCs using biochemical methods and electron microscopy, and found a dramatic improvement in the quality and function of the mitochondrial complement of the re-derived fibroblasts compared to input fibroblasts. This observation likely stems from two aspects of our experimental design: 1 that the input cell lines used were of advanced cellular age and contained an inefficient mitochondrial complement, and 2 the re-derived fibroblasts were produced using an extensive differentiation regimen that may more closely mimic the degree of growth and maturation found in a developing mammal.These results - coupled with earlier data from our laboratory - suggest that IPSC conversion not only resets the "biological clock", but can also rejuvenate the energetic capacity of derived cells.

  4. Mitochondrial Band-7 family proteins: scaffolds for respiratory chain assembly?

    Directory of Open Access Journals (Sweden)

    Bernadette eGehl

    2014-04-01

    Full Text Available The band-7 protein family comprises a diverse set of membrane-bound proteins characterised by the presence of a conserved domain. The exact function of this band-7 domain remains elusive, but examples from animal and bacterial stomatin-type proteins demonstrate binding to lipids and the ability to assemble into membrane-bound oligomers that form putative scaffolds. Some members, such as prohibitins and human stomatin-like protein 2 (HsSLP2, localise to the mitochondrial inner membrane where they function in cristae formation and hyperfusion. In Arabidopsis, the band-7 protein family has diversified and includes plant-specific members. Mitochondrial-localised members include prohibitins (AtPHBs and two stomatin-like proteins (AtSLP1 and -2. Studies into PHB function in plants have demonstrated an involvement in root meristem proliferation and putative scaffold formation for mAAA proteases, but it remains unknown how these roles are achieved at the molecular level. In this minireview we summarise the current status of band-7 protein functions in Arabidopsis, and speculate how the mitochondrial members might recruit specific lipids to form microdomains that could shape the organisation and functioning of the respiratory chain.

  5. Human skeletal muscle mitochondrial capacity.

    Science.gov (United States)

    Rasmussen, U F; Rasmussen, H N

    2000-04-01

    Under aerobic work, the oxygen consumption and major ATP production occur in the mitochondria and it is therefore a relevant question whether the in vivo rates can be accounted for by mitochondrial capacities measured in vitro. Mitochondria were isolated from human quadriceps muscle biopsies in yields of approximately 45%. The tissue content of total creatine, mitochondrial protein and different cytochromes was estimated. A number of activities were measured in functional assays of the mitochondria: pyruvate, ketoglutarate, glutamate and succinate dehydrogenases, palmitoyl-carnitine respiration, cytochrome oxidase, the respiratory chain and the ATP synthesis. The activities involved in carbohydrate oxidation could account for in vivo oxygen uptakes of 15-16 mmol O2 min-1 kg-1 or slightly above the value measured at maximal work rates in the knee-extensor model of Saltin and co-workers, i.e. without limitation from the cardiac output. This probably indicates that the maximal oxygen consumption of the muscle is limited by the mitochondrial capacities. The in vitro activities of fatty acid oxidation corresponded to only 39% of those of carbohydrate oxidation. The maximal rate of free energy production from aerobic metabolism of glycogen was calculated from the mitochondrial activities and estimates of the DeltaG or ATP hydrolysis and the efficiency of the actin-myosin reaction. The resultant value was 20 W kg-1 or approximately 70% of the maximal in vivo work rates of which 10-20% probably are sustained by the anaerobic ATP production. The lack of aerobic in vitro ATP synthesis might reflect termination of some critical interplay between cytoplasm and mitochondria.

  6. Mitochondrial disorders in congenital myopathies

    Directory of Open Access Journals (Sweden)

    D. A. Kharlamov

    2014-01-01

    Full Text Available The literature review gives data on the role of mitochondrial disorders in the pathogenesis of congenital myopathies: congenital muscular dystrophies and congenital structural myopathies. It describes changes in congenital muscular dystrophies with type VI collagen, in myodystrophy with giant mitochondria, in congenital central core myopathies, myotubular myopathy, etc. Clinical and experimental findings are presented. Approaches to therapy for energy disorders in congenital myopathies are depicted.

  7. Mitochondrial Drugs for Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Xiongwei Zhu

    2009-12-01

    Full Text Available Therapeutic strategies for Alzheimer disease (AD have yet to offer a diseasemodifying effect to stop the debilitating progression of neurodegeneration and cognitive decline. Rather, treatments thus far are limited to agents that slow disease progression without halting it, and although much work towards a cure is underway, a greater understanding of disease etiology is certainly necessary for any such achievement. Mitochondria, as the centers of cellular metabolic activity and the primary generators of reactive oxidative species in the cell, received particular attention especially given that mitochondrial defects are known to contribute to cellular damage. Furthermore, as oxidative stress has come to the forefront of AD as a causal theory, and as mitochondrial damage is known to precede much of the hallmark pathologies of AD, it seems increasingly apparent that this metabolic organelle is ultimately responsible for much, if not all of disease pathogenesis. In this review, we review the role of neuronal mitochondria in the pathogenesis of AD and critically assess treatment strategies that utilize this upstream access point as a method for disease prevention. We suspect that, with a revived focus on mitochondrial repair and protection, an effective and realistic therapeutic agent can be successfully developed.

  8. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    Science.gov (United States)

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  9. Return of the mitochondrial DNA : Case study of mitochondrial genome evolution in the genus Fusarium

    NARCIS (Netherlands)

    Brankovics, Balázs

    2018-01-01

    Mitochondrial DNA played a prominent role in the fields of population genetics, systematics and evolutionary biology, due to its favorable characteristics, such as, uniparental inheritance, fast evolution and easy accessibility. However, the mitochondrial sequences have been mostly neglected in

  10. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor.

    Science.gov (United States)

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-11-28

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3'-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF.

  11. Mitochondrial Stress Signaling Promotes Cellular Adaptations

    Directory of Open Access Journals (Sweden)

    Jayne Alexandra Barbour

    2014-01-01

    Full Text Available Mitochondrial dysfunction has been implicated in the aetiology of many complex diseases, as well as the ageing process. Much of the research on mitochondrial dysfunction has focused on how mitochondrial damage may potentiate pathological phenotypes. The purpose of this review is to draw attention to the less well-studied mechanisms by which the cell adapts to mitochondrial perturbations. This involves communication of stress to the cell and successful induction of quality control responses, which include mitophagy, unfolded protein response, upregulation of antioxidant and DNA repair enzymes, morphological changes, and if all else fails apoptosis. The mitochondrion is an inherently stressful environment and we speculate that dysregulation of stress signaling or an inability to switch on these adaptations during times of mitochondrial stress may underpin mitochondrial dysfunction and hence amount to pathological states over time.

  12. Mitochondrial DNA mutations in human tumor cells

    OpenAIRE

    LI, HUI; HONG, ZE-HUI

    2012-01-01

    Mitochondria play significant roles in cellular energy metabolism, free radical generation and apoptosis. The dysfunction of mitochondria is correlated with the origin and progression of tumors; thus, mutations in the mitochondrial genome that affect mitochondrial function may be one of the causal factors of tumorigenesis. Although the role of mitochondrial DNA (mtDNA) mutations in carcinogenesis has been investigated extensively by various approaches, the conclusions remain controversial to ...

  13. Habitual physical activity in mitochondrial disease.

    Directory of Open Access Journals (Sweden)

    Shehnaz Apabhai

    Full Text Available Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype.Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI.Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001. 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001 and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001. After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s = -0.49; 95% CI -0.33, -0.63, P<0.01. There were no systematic differences in physical activity between different genotypes mitochondrial disease.These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  14. Mitochondrial Diseases: Clinical Features- Management of Patients

    Directory of Open Access Journals (Sweden)

    Filiz Koc

    2003-02-01

    Full Text Available Mitochondria are unique organells which their own DNA in cells. Human mitochondrial DNA is circular, double-stranded molecule and small. Because all mitochondria are contributed by the ovum during the formation of the zygote, the mitochondrial genom is transmitted by maternal inheritance. Multisystem disorders such as deafness, cardiomyopathy, miyopathy can be seen in mitochondrial diseases. [Archives Medical Review Journal 2003; 12(0.100: 14-31

  15. Habitual physical activity in mitochondrial disease.

    Science.gov (United States)

    Apabhai, Shehnaz; Gorman, Grainne S; Sutton, Laura; Elson, Joanna L; Plötz, Thomas; Turnbull, Douglass M; Trenell, Michael I

    2011-01-01

    Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype. Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI. Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001). 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001) and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001). After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s) = -0.49; 95% CI -0.33, -0.63, Pphysical activity between different genotypes mitochondrial disease. These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  16. Piracetam improves mitochondrial dysfunction following oxidative stress

    OpenAIRE

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging.Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction fol...

  17. Mitochondrial Dynamics in Cardiovascular Health and Disease

    OpenAIRE

    Ong, Sang-Bing; Hall, Andrew R.; Hausenloy, Derek J.

    2013-01-01

    Significance: Mitochondria are dynamic organelles capable of changing their shape and distribution by undergoing either fission or fusion. Changes in mitochondrial dynamics, which is under the control of specific mitochondrial fission and fusion proteins, have been implicated in cell division, embryonic development, apoptosis, autophagy, and metabolism. Although the machinery for modulating mitochondrial dynamics is present in the cardiovascular system, its function there has only recently be...

  18. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.

    Science.gov (United States)

    Bachmann, Rosilla F; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K

    2009-07-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia.

  19. Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network

    Science.gov (United States)

    Cui, Jian; Liu, Jinghua; Li, Yuhua; Shi, Tieliu

    2011-01-01

    Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome. PMID:21297957

  20. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species.

    Science.gov (United States)

    Lassiter, Erica S; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda C; Olarte, Rodrigo A; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L; Ristaino, Jean B

    2015-11-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.

  1. Mitochondrial DNA: A Blind Spot in Neuroepigenetics.

    Science.gov (United States)

    Manev, Hari; Dzitoyeva, Svetlana; Chen, Hu

    2012-04-01

    Neuroepigenetics, which includes nuclear DNA modifications such as 5-methylcytosine and 5-hydoxymethylcytosine and modifications of nuclear proteins such as histones, is emerging as the leading field in molecular neuroscience. Historically, a functional role for epigenetic mechanisms, including in neuroepigenetics, has been sought in the area of the regulation of nuclear transcription. However, one important compartment of mammalian cell DNA, different from nuclear but equally important for physiological and pathological processes (including in the brain), mitochondrial DNA has for the most part not had a systematic epigenetic characterization. The importance of mitochondria and mitochondrial DNA (particularly its mutations) in central nervous system physiology and pathology has long been recognized. Only recently have mechanisms of mitochondrial DNA methylation and hydroxymethylation, including the discovery of mitochondrial DNA-methyltransferases and the presence and the functionality of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (e.g., in modifying the transcription of mitochondrial genome), been unequivocally recognized as a part of mammalian mitochondrial physiology. Here we summarize for the first time evidence supporting the existence of these mechanisms and we propose the term "mitochondrial epigenetics" to be used when referring to them. Currently, neuroepigenetics does not include mitochondrial epigenetics - a gap that we expect to close in the near future.

  2. Role of polyhydroxybutyrate in mitochondrial calcium uptake

    Science.gov (United States)

    Smithen, Matthew; Elustondo, Pia A.; Winkfein, Robert; Zakharian, Eleonora; Abramov, Andrey Y.; Pavlov, Evgeny

    2013-01-01

    Polyhydroxybutyrate (PHB) is a biological polymer which belongs to the class of polyesters and is ubiquitously present in all living organisms. Mammalian mitochondrial membranes contain PHB consisting of up to 120 hydroxybutyrate residues. Roles played by PHB in mammalian mitochondria remain obscure. It was previously demonstrated that PHB of the size similar to one found in mitochondria mediates calcium transport in lipid bilayer membranes. We hypothesized that the presence of PHB in mitochondrial membrane might play a significant role in mitochondrial calcium transport. To test this, we investigated how the induction of PHB hydrolysis affects mitochondrial calcium transport. Mitochondrial PHB was altered enzymatically by targeted expression of bacterial PHB hydrolyzing enzyme (PhaZ7) in mitochondria of mammalian cultured cells. The expression of PhaZ7 induced changes in mitochondrial metabolism resulting in decreased mitochondrial membrane potential in HepG2 but not in U87 and HeLa cells. Furthermore, it significantly inhibited mitochondrial calcium uptake in intact HepG2, U87 and HeLa cells stimulated by the ATP or by the application of increased concentrations of calcium to the digitonin permeabilized cells. Calcium uptake in PhaZ7 expressing cells was restored by mimicking calcium uniporter properties with natural electrogenic calcium ionophore - ferutinin. We propose that PHB is a previously unrecognized important component of the mitochondrial calcium uptake system. PMID:23702223

  3. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  4. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS mediated cardiomyocyte hypertrophy

    NARCIS (Netherlands)

    Tigchelaar, Wardit; Yu, Hongjuan; De Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Sillje, Herman H W

    2015-01-01

    Recently, a genetic variant in the mitochondrial exo/endo nuclease EXOG, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and

  5. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  6. Pyraclostrobin Impairs Energetic Mitochondrial Metabolism and Productive Performance of Silkworm (Lepidoptera: Bombycidae) Caterpillars.

    Science.gov (United States)

    Nicodemo, Daniel; Mingatto, Fábio Ermínio; Carvalho, Amanda de; Bizerra, Paulo Francisco Veiga; Tavares, Marco Aurélio; Balieira, Kamila Vilas Boas; Bellini, William Cesar

    2018-03-09

    Silkworm cocoon production has been reduced due to a number of problems other than those inherent in sericulture, such as diseases, malnutrition, and inappropriate management. The use of pesticides in areas surrounding mulberry fields can contaminate these plants and consequently harm caterpillars. The aim of this study was to evaluate whether the application of the fungicide pyraclostrobin in mulberry plants interferes with the mitochondrial bioenergetics and the productive performance of silkworms. Mulberry plants were treated with pyraclostrobin (0, 100, 200, and 300 g ha-1). After 30 d of fungicide application, fifth instar caterpillars were fed with leaves from the treated plants. We evaluated in vitro and in vivo mitochondrial bioenergetics of mitochondria from the head and intestines, as well as the feed intake and mortality rate of the caterpillars and the weight of fresh cocoons and cocoons shells. At doses of 50 µM (in vitro) and 200 g ha-1 (in vivo), pyraclostrobin inhibited oxygen consumption in state 3, dissipated membrane potential, and inhibited ATP synthesis in mitochondria. Pyraclostrobin acted as a respiratory chain inhibitor, affecting mitochondrial bioenergetics. The fungicide did not interfere with food consumption but negatively affected mortality rate and weight of cocoons. Mulberry leaves contaminated with pyraclostrobin negatively impact the mitochondrial bioenergetics of silkworms and cocoon production.

  7. Mitochondrial DNA variation in brood stocks of the lake trout

    International Nuclear Information System (INIS)

    Grewe, P.M.; Hebert, P.D.N.

    1986-01-01

    Efforts are in progress to restore lake trout populations in the Great Lakes from hatchery stocks. In most cases, plantings include a variety of brood stocks that originated from different portions of the Great Lakes. Members of the various stocks can be differentially fin clipped to permit comparison of their survival success, but this does not allow assessment of their reproductive capability in the wild. Assessment of reproductive success requires the existence of genetic markers between brook stocks which will ideally persist over many generations. Efforts to identify allozyme differences between brood stocks have met with little success. The present investigation has employed an alternative technique to identify genetic markers--the restriction analysis of mitochondrial DNA. Mitochondiral DNA analysis of 7 lake trout brood stocks has revealed the existence of 10 mitochondrial clones falling into 3 major groups. The results indicate that mt-DNA markers have great potential for brood stock management. Genetic variability in the nuclear genome of each stock can be maintained by utilizing a large number of male parents, while restricting female parents to members of a single mitochondrial clone. Genetically marked fry could then be produced with only minor shifts in hatchery management

  8. Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization.

    Directory of Open Access Journals (Sweden)

    Annalisa Cossu

    Full Text Available The cardiovascular benefits associated with diets rich in fruit and vegetables are thought to be due to phytochemicals contained in fresh plant material. However, whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed apricots were isolated and their presence confirmed by colorimetric analysis and browning index. Oxidative injury of endothelial cells (ECs is the key step for the onset and progression of cardiovascular diseases (CVD, therefore the potential protective effect of apricot melanoidins on hydrogen peroxide-induced oxidative mitochondrial damage and cell death was explored in human ECs. The redox state of cytoplasmic and mitochondrial compartments was detected by using the redox-sensitive, fluorescent protein (roGFP, while the mitochondrial membrane potential (MMP was assessed with the fluorescent dye, JC-1. ECs exposure to hydrogen peroxide, dose-dependently induced mitochondrial and cytoplasmic oxidation. Additionally detected hydrogen peroxide-induced phenomena were MMP dissipation and ECs death. Pretreatment of ECs with apricot melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide-induced intracellular oxidation, mitochondrial depolarization and cell death. In this regard, our current results clearly indicate that melanoidins derived from heat-processed apricots, protect human ECs against oxidative stress.

  9. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.

    Science.gov (United States)

    Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang

    2015-10-01

    Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.

  10. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  11. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance : Transgenic TK2, mtDNA, and Antiretrovirals

    OpenAIRE

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK...

  12. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  13. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  14. Deconstructing Mitochondrial Dysfunction in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Vega García-Escudero

    2013-01-01

    Full Text Available There is mounting evidence showing that mitochondrial damage plays an important role in Alzheimer disease. Increased oxygen species generation and deficient mitochondrial dynamic balance have been suggested to be the reason as well as the consequence of Alzheimer-related pathology. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. The contribution of these factors to mitochondrial dysfunction is reviewed in this paper. Due to the relevance of mitochondrial alterations in Alzheimer disease, recent works have suggested the therapeutic potential of mitochondrial-targeted antioxidant. On the other hand, autophagy has been demonstrated to play a fundamental role in Alzheimer-related protein stress, and increasing data shows that this pathway is altered in the disease. Moreover, mitochondrial alterations have been related to an insufficient clearance of dysfunctional mitochondria by autophagy. Consequently, different approaches for the removal of damaged mitochondria or to decrease the related oxidative stress in Alzheimer disease have been described. To understand the role of mitochondrial function in Alzheimer disease it is necessary to generate human cellular models which involve living neurons. We have summarized the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result.

  15. Mitochondrial encephalomyopathy (MELAS) with mental disorder

    International Nuclear Information System (INIS)

    Suzuki, T.; Koizumi, J.; Shiraishi, H.; Ofuku, K.; Sasaki, M.; Hori, T.; Ishikawa, N.; Anno, I.; Ohkoshi, N.

    1990-01-01

    A case of mitochondrial encephalomyopathy (MELAS) with mental disorder is reported. The SPECT study using 123 I-iodoamphetamine (IMP) and MRI study revealed abnormality in the left parieto-occipital areas without abnormality in the brain CT or brain scintigram. These findings suggest a localized dysfunction of the brain capillary endothelium in association with the cerebral involvement of mitochondrial encephalomyopathy. (orig.)

  16. Emerging Therapeutic Approaches to Mitochondrial Diseases

    Science.gov (United States)

    Wenz, Tina; Williams, Sion L.; Bacman, Sandra R.; Moraes, Carlos T.

    2010-01-01

    Mitochondrial diseases are very heterogeneous and can affect different tissues and organs. Moreover, they can be caused by genetic defects in either nuclear or mitochondrial DNA as well as by environmental factors. All of these factors have made the development of therapies difficult. In this review article, we will discuss emerging approaches to…

  17. Mitochondrial epigenetics : an overlooked layer of regulation?

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; Rots, Marianne G.

    Despite decades of research, mitochondrial epigenetics remains a controversial notion. Recent findings, however, indicate that dysfunctional mitochondrial DNA (mtDNA) methylation could underlie aging and disease. Unraveling such a level of regulation will be essential in the understanding of and in

  18. Mitochondrial dynamics in mammalian health and disease.

    Science.gov (United States)

    Liesa, Marc; Palacín, Manuel; Zorzano, Antonio

    2009-07-01

    The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.

  19. Mitochondrial dysfunction and human immunodeficiency virus ...

    African Journals Online (AJOL)

    Human immunodeficiency virus (HIV) infection and the pharmacological treatment thereof have both been shown to affect mitochondrial function in a number of tissues, and each may cause specific organ pathology through specific mitochondrial pathways. HIV has been shown to kill various tissue cells by activation of ...

  20. Mitochondrial Mutations in Subjects with Psychiatric Disorders

    NARCIS (Netherlands)

    V. Sequeira (Vasco); S.M. Rollins; C. Magnan (Christophe); M. van Oven (Mannis); P. Baldi (Pierre); R.M. Myers (Richard M.); J.D. Barchas (Jack D.); A.F. Schatzberg (Alan F); S.J. Watson (Stanley J); H. Akil (Huda); W.E. Bunney (William E.); M.P. Vawter (Marquis)

    2015-01-01

    textabstractA considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear

  1. Mitochondrial mutations and polymorphisms in psychiatric disorders

    NARCIS (Netherlands)

    V. Sequeira (Vasco); M.V. Martin (Maureen); S.M. Rollins; E.A. Moon (Emily); W.E. Bunney (William E); F. MacCiardi (Fabio); S. Lupoli (Sara); G.D. Smith; J. Kelsoe (John); C.N. Magnan (Christophe); M. van Oven (Mannis); P. Baldi (Pierre); D.C. Wallace; M.P. Vawter (Marquis)

    2012-01-01

    textabstractMitochondrial deficiencies with unknown causes have been observed in schizophrenia (SZ) and bipolar disorder (BD) in imaging and postmortem studies. Polymorphisms and somatic mutations in mitochondrial DNA (mtDNA) were investigated as potential causes with next generation sequencing of

  2. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  3. Nucleotide sequence preservation of human mitochondrial DNA

    International Nuclear Information System (INIS)

    Monnat, R.J. Jr.; Loeb, L.A.

    1985-01-01

    Recombinant DNA techniques have been used to quantitate the amount of nucleotide sequence divergence in the mitochondrial DNA population of individual normal humans. Mitochondrial DNA was isolated from the peripheral blood lymphocytes of five normal humans and cloned in M13 mp11; 49 kilobases of nucleotide sequence information was obtained from 248 independently isolated clones from the five normal donors. Both between- and within-individual differences were identified. Between-individual differences were identified in approximately = to 1/200 nucleotides. In contrast, only one within-individual difference was identified in 49 kilobases of nucleotide sequence information. This high degree of mitochondrial nucleotide sequence homogeneity in human somatic cells is in marked contrast to the rapid evolutionary divergence of human mitochondrial DNA and suggests the existence of mechanisms for the concerted preservation of mammalian mitochondrial DNA sequences in single organisms

  4. Loss of Mitochondrial Function Impairs Lysosomes.

    Science.gov (United States)

    Demers-Lamarche, Julie; Guillebaud, Gérald; Tlili, Mouna; Todkar, Kiran; Bélanger, Noémie; Grondin, Martine; Nguyen, Angela P; Michel, Jennifer; Germain, Marc

    2016-05-06

    Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Sleep disorders associated with primary mitochondrial diseases.

    Science.gov (United States)

    Ramezani, Ryan J; Stacpoole, Peter W

    2014-11-15

    Primary mitochondrial diseases are caused by heritable or spontaneous mutations in nuclear DNA or mitochondrial DNA. Such pathological mutations are relatively common in humans and may lead to neurological and neuromuscular complication that could compromise normal sleep behavior. To gain insight into the potential impact of primary mitochondrial disease and sleep pathology, we reviewed the relevant English language literature in which abnormal sleep was reported in association with a mitochondrial disease. We examined publication reported in Web of Science and PubMed from February 1976 through January 2014, and identified 54 patients with a proven or suspected primary mitochondrial disorder who were evaluated for sleep disturbances. Both nuclear DNA and mitochondrial DNA mutations were associated with abnormal sleep patterns. Most subjects who underwent polysomnography had central sleep apnea, and only 5 patients had obstructive sleep apnea. Twenty-four patients showed decreased ventilatory drive in response to hypoxia and/ or hyperapnea that was not considered due to weakness of the intrinsic muscles of respiration. Sleep pathology may be an underreported complication of primary mitochondrial diseases. The probable underlying mechanism is cellular energy failure causing both central neurological and peripheral neuromuscular degenerative changes that commonly present as central sleep apnea and poor ventilatory response to hyperapnea. Increased recognition of the genetics and clinical manifestations of mitochondrial diseases by sleep researchers and clinicians is important in the evaluation and treatment of all patients with sleep disturbances. Prospective population-based studies are required to determine the true prevalence of mitochondrial energy failure in subjects with sleep disorders, and conversely, of individuals with primary mitochondrial diseases and sleep pathology. © 2014 American Academy of Sleep Medicine.

  6. Horizontal Transfer of DNA from the Mitochondrial to the Plastid Genome and Its Subsequent Evolution in Milkweeds (Apocynaceae)

    Science.gov (United States)

    Straub, Shannon C.K.; Cronn, Richard C.; Edwards, Christopher; Fishbein, Mark; Liston, Aaron

    2013-01-01

    Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae]) and found evidence of intracellular HGT for a 2.4-kb segment of mitochondrial DNA to the rps2–rpoC2 intergenic spacer of the plastome. The transferred region contains an rpl2 pseudogene and is flanked by plastid sequence in the mitochondrial genome, including an rpoC2 pseudogene, which likely provided the mechanism for HGT back to the plastome through double-strand break repair involving homologous recombination. The plastome insertion is restricted to tribe Asclepiadeae of subfamily Asclepiadoideae, whereas the mitochondrial rpoC2 pseudogene is present throughout the subfamily, which confirms that the plastid to mitochondrial HGT event preceded the HGT to the plastome. Although the plastome insertion has been maintained in all lineages of Asclepiadoideae, it shows minimal evidence of transcription in A. syriaca and is likely nonfunctional. Furthermore, we found recent gene conversion of the mitochondrial rpoC2 pseudogene in Asclepias by the plastid gene, which reflects continued interaction of these genomes. PMID:24029811

  7. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    Science.gov (United States)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  8. Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research

    Directory of Open Access Journals (Sweden)

    Norman Moullan

    2015-03-01

    Full Text Available In recent years, tetracyclines, such as doxycycline, have become broadly used to control gene expression by virtue of the Tet-on/Tet-off systems. However, the wide range of direct effects of tetracycline use has not been fully appreciated. We show here that these antibiotics induce a mitonuclear protein imbalance through their effects on mitochondrial translation, an effect that likely reflects the evolutionary relationship between mitochondria and proteobacteria. Even at low concentrations, tetracyclines induce mitochondrial proteotoxic stress, leading to changes in nuclear gene expression and altered mitochondrial dynamics and function in commonly used cell types, as well as worms, flies, mice, and plants. Given that tetracyclines are so widely applied in research, scientists should be aware of their potentially confounding effects on experimental results. Furthermore, these results caution against extensive use of tetracyclines in livestock due to potential downstream impacts on the environment and human health.

  9. The expanding phenotype of mitochondrial myopathy.

    Science.gov (United States)

    DiMauro, Salvatore; Gurgel-Giannetti, Juliana

    2005-10-01

    Our understanding of mitochondrial diseases (defined restrictively as defects in the mitochondrial respiratory chain) continues to progress apace. In this review we provide an update of information regarding disorders that predominantly or exclusively affect skeletal muscle. Most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency, and mutations in genes that control mitochondrial DNA (mtDNA) abundance and structure such as POLG and TK2. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with altered lipid composition of the inner mitochondrial membrane, but a putative secondary impairment of the respiratory chain remains to be documented. Concerning the 'other genome', the role played by mutations in protein encoding genes of mtDNA in causing isolated myopathies has been confirmed. It has also been confirmed that mutations in tRNA genes of mtDNA can cause predominantly myopathic syndromes and - contrary to conventional wisdom - these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, myalgia, cramps, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  10. The proline metabolism intermediate Δ1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast.

    Science.gov (United States)

    Nishimura, Akira; Nasuno, Ryo; Takagi, Hiroshi

    2012-07-30

    The proline metabolism intermediate Δ(1)-pyrroline-5-carboxylate (P5C) induces cell death in animals, plants and yeasts. To elucidate how P5C triggers cell death, we analyzed P5C metabolism, mitochondrial respiration and superoxide anion generation in the yeast Saccharomyces cerevisiae. Gene disruption analysis revealed that P5C-mediated cell death was not due to P5C metabolism. Interestingly, deficiency in mitochondrial respiration suppressed the sensitivity of yeast cells to P5C. In addition, we found that P5C inhibits the mitochondrial respiration and induces a burst of superoxide anions from the mitochondria. We propose that P5C regulates cell death via the inhibition of mitochondrial respiration. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Mitochondrial base excision repair assays

    DEFF Research Database (Denmark)

    Maynard, Scott; de Souza-Pinto, Nadja C; Scheibye-Knudsen, Morten

    2010-01-01

    The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur....... Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA...... glycosylases, AP endonuclease, DNA polymerase (POLgamma in mitochondria) and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene...

  12. Parkin suppresses Drp1-independent mitochondrial division

    International Nuclear Information System (INIS)

    Roy, Madhuparna; Itoh, Kie; Iijima, Miho; Sesaki, Hiromi

    2016-01-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson’s disease-associated protein—parkin, which biochemically and genetically interacts with Drp1—in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. -- Highlights: •A Drp1-mediated mechanism accounts for ∼95% of mitochondrial division. •Parkin controls the connectivity of mitochondria via a mechanism that is independent of Drp1. •In the absence of Drp1, connected mitochondria transiently depolarize. •The transient depolarization is independent of calcium signaling and uncoupling protein 2.

  13. Parkin suppresses Drp1-independent mitochondrial division

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Madhuparna, E-mail: mroy17@jhmi.edu; Itoh, Kie, E-mail: kito5@jhmi.edu; Iijima, Miho, E-mail: miijima@jhmi.edu; Sesaki, Hiromi, E-mail: hsesaki@jhmi.edu

    2016-07-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson’s disease-associated protein—parkin, which biochemically and genetically interacts with Drp1—in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. -- Highlights: •A Drp1-mediated mechanism accounts for ∼95% of mitochondrial division. •Parkin controls the connectivity of mitochondria via a mechanism that is independent of Drp1. •In the absence of Drp1, connected mitochondria transiently depolarize. •The transient depolarization is independent of calcium signaling and uncoupling protein 2.

  14. Aspirin increases mitochondrial fatty acid oxidation

    International Nuclear Information System (INIS)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2017-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.

  15. From Isolated to Networked: A Paradigmatic Shift in Mitochondrial Physiology

    OpenAIRE

    Aon, Miguel A.

    2010-01-01

    A new paradigm of mitochondrial function in networks is emerging which includes, without undermining, the glorious and still useful paradigm of the isolated mitochondrion. The mitochondrial network paradigm introduces new concepts, tools, and analytical techniques. Among them is that mitochondrial function in networks exhibits interdependence and multiplicative effects based on synchronization mechanisms, which involve communication between mitochondrial neighbors. The collective dynamics of ...

  16. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), prespiration rates were normalized by CS (respiration...... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  17. Study on the Mitochondrial Genome of Sea Island Cotton (Gossypium barbadense) by BAC Library Screening

    Institute of Scientific and Technical Information of China (English)

    SU Ai-guo; LI Shuang-shuang; LIU Guo-zheng; LEI Bin-bin; KANG Ding-ming; LI Zhao-hu; MA Zhi-ying; HUA Jin-ping

    2014-01-01

    The plant mitochondrial genome displays complex features, particularly in terms of cytoplasmic male sterility (CMS). Therefore, research on the cotton mitochondrial genome may provide important information for analyzing genome evolution and exploring the molecular mechanism of CMS. In this paper, we present a preliminary study on the mitochondrial genome of sea island cotton (Gossypium barbadense) based on positive clones from the bacterial artiifcial chromosome (BAC) library. Thirty-ifve primers designed with the conserved sequences of functional genes and exons of mitochondria were used to screen positive clones in the genome library of the sea island cotton variety called Pima 90-53. Ten BAC clones were obtained and veriifed for further study. A contig was obtained based on six overlapping clones and subsequently laid out primarily on the mitochondrial genome. One BAC clone, clone 6 harbored with the inserter of approximate 115 kb mtDNA sequence, in which more than 10 primers fragments could be ampliifed, was sequenced and assembled using the Solexa strategy. Fifteen mitochondrial functional genes were revealed in clone 6 by gene annotation. The characteristics of the syntenic gene/exon of the sequences and RNA editing were preliminarily predicted.

  18. MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content

    Directory of Open Access Journals (Sweden)

    Elisa Balboa

    2017-08-01

    Full Text Available MLN64 is a late endosomal cholesterol-binding membrane protein that has been implicated in cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria, in toxin-induced resistance, and in mitochondrial dysfunction. Down-regulation of MLN64 in Niemann-Pick C1 deficient cells decreased mitochondrial cholesterol content, suggesting that MLN64 functions independently of NPC1. However, the role of MLN64 in the maintenance of endosomal cholesterol flow and intracellular cholesterol homeostasis remains unclear. We have previously described that hepatic MLN64 overexpression increases liver cholesterol content and induces liver damage. Here, we studied the function of MLN64 in normal and NPC1-deficient cells and we evaluated whether MLN64 overexpressing cells exhibit alterations in mitochondrial function. We used recombinant-adenovirus-mediated MLN64 gene transfer to overexpress MLN64 in mouse liver and hepatic cells; and RNA interference to down-regulate MLN64 in NPC1-deficient cells. In MLN64-overexpressing cells, we found increased mitochondrial cholesterol content and decreased glutathione (GSH levels and ATPase activity. Furthermore, we found decreased mitochondrial membrane potential and mitochondrial fragmentation and increased mitochondrial superoxide levels in MLN64-overexpressing cells and in NPC1-deficient cells. Consequently, MLN64 expression was increased in NPC1-deficient cells and reduction of its expression restore mitochondrial membrane potential and mitochondrial superoxide levels. Our findings suggest that MLN64 overexpression induces an increase in mitochondrial cholesterol content and consequently a decrease in mitochondrial GSH content leading to mitochondrial dysfunction. In addition, we demonstrate that MLN64 expression is increased in NPC cells and plays a key role in cholesterol transport into the mitochondria.

  19. Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells

    Czech Academy of Sciences Publication Activity Database

    Tauber, Jan; Dlasková, Andrea; Šantorová, Jitka; Smolková, Katarína; Alán, Lukáš; Špaček, Tomáš; Plecitá-Hlavatá, Lydie; Ježek, Petr

    2013-01-01

    Roč. 45, č. 3 (2013), s. 593-603 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204; GA ČR(CZ) GAP305/12/1247 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : mitochondrial DNA nucleoids * mitochondrial fission * mitochondrial network fragmentation * mitochondrial network reintegration Subject RIV: ED - Physiology Impact factor: 4.240, year: 2013

  20. Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission

    International Nuclear Information System (INIS)

    Bowes, Timothy; Gupta, Radhey S.

    2008-01-01

    Mitochondrial dynamics play an important role in a large number of cellular processes. Previously, we reported that treatment of mammalian cells with the cysteine-alkylators, N-ethylmaleimide and ethacrynic acid, induced rapid mitochondrial fusion forming a large reticulum approximately 30 min after treatment. Here, we further investigated this phenomenon using a number of techniques including live-cell confocal microscopy. In live cells, drug-induced fusion coincided with a cessation of fast mitochondrial movement which was dependent on microtubules. During this loss of movement, thin mitochondrial tubules extending from mitochondria were also observed, which we refer to as 'mitochondrial extensions'. The formation of these mitochondrial extensions, which were not observed in untreated cells, depended on microtubules and was abolished by pretreatment with nocodazole. In this study, we provide evidence that these extensions result from of a block in mitochondrial fission combined with continued application of motile force by microtubule-dependent motor complexes. Our observations strongly suggest the existence of a link between microtubule-based mitochondrial trafficking and mitochondrial fission

  1. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  2. Selenium supplementation induces mitochondrial biogenesis in trophoblasts

    Czech Academy of Sciences Publication Activity Database

    Khera, A.; Dong, L. F.; Holland, O.; Vanderlelie, J.; Pasdar, E.A.; Neužil, Jiří; Perkins, A.V.

    2015-01-01

    Roč. 36, č. 8 (2015), s. 363-369 ISSN 0143-4004 Institutional support: RVO:86652036 Keywords : Selenium * Reactive oxygen species * Mitochondrial biogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.972, year: 2015

  3. Genetics Home Reference: mitochondrial neurogastrointestinal encephalopathy disease

    Science.gov (United States)

    ... Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens ... JA, Hirano M. Mitochondrial neurogastrointestinal encephalomyopathy and thymidine metabolism: results and hypotheses. Mitochondrion. 2002 Nov;2(1- ...

  4. DNA Precursor Metabolism and Mitochondrial Genome Stability

    National Research Council Canada - National Science Library

    Mathews, Christopher K

    2003-01-01

    ...) metabolism and mutagenesis in the mitochondrial genome. Specific contributions include: (1) We found that conditions altering the normal balance among the four dNTP pools within the mitochondrion stimulate both point and deletion mutagenesis...

  5. Complete sequence of the mitochondrial genome of ...

    Indian Academy of Sciences (India)

    products were purified using the DNA Gel Extraction Kit. (Tiangen, Shanghai, China). The purified products obtained ..... Base composition of O. rubicundus mitochondrial genome. .... the help of fish sampled and identified by morphology.

  6. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  7. Autism Spectrum Disorder and Mitochondrial Disease

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Autism Spectrum Disorder (ASD) Note: Javascript is disabled or is not ... with a mitochondrial disease: may also have an autism spectrum disorder, may have some of the symptoms/signs of ...

  8. Mitochondrial dysfunction underlying outer retinal diseases

    DEFF Research Database (Denmark)

    Lefevere, Evy; Toft-Kehler, Anne Katrine; Vohra, Rupali

    2017-01-01

    Dysfunction of photoreceptors, retinal pigment epithelium (RPE) or both contribute to the initiation and progression of several outer retinal disorders. Disrupted Müller glia function might additionally subsidize to these diseases. Mitochondrial malfunctioning is importantly associated with outer...

  9. Unusual mitochondrial genome structures throughout the Euglenozoa

    Czech Academy of Sciences Publication Activity Database

    Roy, J.; Faktorová, Drahomíra; Lukeš, Julius; Burger, G.

    2007-01-01

    Roč. 158, č. 3 (2007), s. 385-396 ISSN 1434-4610 R&D Projects: GA ČR GA204/06/1558; GA MŠk 2B06129 Grant - others:Canadian Institutes of Health Research(CA) MOP-79309 Institutional research plan: CEZ:AV0Z60220518 Keywords : euglenozoan protists * mitochondrial chromosomes * mitochondrial ultrastructure Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.102, year: 2007

  10. Altered Mitochondrial Dynamics and TBI Pathophysiology

    Directory of Open Access Journals (Sweden)

    Tara Diane Fischer

    2016-03-01

    Full Text Available Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS, and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1, which translocates to the mitochondrial outer membrane to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 hours post-injury, followed by a significant decrease in length at 72 hours. Post-TBI administration of Mdivi-1, a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the hippocampus and improved

  11. Piracetam improves mitochondrial dysfunction following oxidative stress

    Science.gov (United States)

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  12. Cerebral energy metabolism during induced mitochondrial dysfunction

    DEFF Research Database (Denmark)

    Nielsen, T H; Bindslev, TT; Pedersen, S M

    2013-01-01

    In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes...... in brain tissue oxygen tension (PbtO(2)) and cerebral cytoplasmatic redox state. The study describes cerebral energy metabolism during mitochondrial dysfunction induced by sevoflurane in piglets....

  13. Mosaic origins of a complex chimeric mitochondrial gene in Silene vulgaris.

    Directory of Open Access Journals (Sweden)

    Helena Storchova

    Full Text Available Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1. We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.

  14. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers.

    Science.gov (United States)

    Park, Seongjun; Grewe, Felix; Zhu, Andan; Ruhlman, Tracey A; Sabir, Jamal; Mower, Jeffrey P; Jansen, Robert K

    2015-10-01

    The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Mario de la Mata

    2016-10-01

    Full Text Available Lysosomal storage diseases (LSDs describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS, where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm, diminished ATP production and increased generation of reactive oxygen species (ROS. Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD, the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase. Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer and glucosylsphingosine (GlcSph in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

  16. Protein Carbonylation and Adipocyte Mitochondrial Function*

    Science.gov (United States)

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  17. Protein carbonylation and adipocyte mitochondrial function.

    Science.gov (United States)

    Curtis, Jessica M; Hahn, Wendy S; Stone, Matthew D; Inda, Jacob J; Droullard, David J; Kuzmicic, Jovan P; Donoghue, Margaret A; Long, Eric K; Armien, Anibal G; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J; Bernlohr, David A

    2012-09-21

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte.

  18. Pharmacological modulation of mitochondrial calcium homeostasis.

    Science.gov (United States)

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  19. How do yeast sense mitochondrial dysfunction?

    Directory of Open Access Journals (Sweden)

    Dmitry A. Knorre

    2016-09-01

    Full Text Available Apart from energy transformation, mitochondria play important signaling roles. In yeast, mitochondrial signaling relies on several molecular cascades. However, it is not clear how a cell detects a particular mitochondrial malfunction. The problem is that there are many possible manifestations of mitochondrial dysfunction. For example, exposure to the specific antibiotics can either decrease (inhibitors of respiratory chain or increase (inhibitors of ATP-synthase mitochondrial transmembrane potential. Moreover, even in the absence of the dysfunctions, a cell needs feedback from mitochondria to coordinate mitochondrial biogenesis and/or removal by mitophagy during the division cycle. To cope with the complexity, only a limited set of compounds is monitored by yeast cells to estimate mitochondrial functionality. The known examples of such compounds are ATP, reactive oxygen species, intermediates of amino acids synthesis, short peptides, Fe-S clusters and heme, and also the precursor proteins which fail to be imported by mitochondria. On one hand, the levels of these molecules depend not only on mitochondria. On the other hand, these substances are recognized by the cytosolic sensors which transmit the signals to the nucleus leading to general, as opposed to mitochondria-specific, transcriptional response. Therefore, we argue that both ways of mitochondria-to-nucleus communication in yeast are mostly (if not completely unspecific, are mediated by the cytosolic signaling machinery and strongly depend on cellular metabolic state.

  20. Mitochondrial oxidative stress causes hyperphosphorylation of tau.

    Directory of Open Access Journals (Sweden)

    Simon Melov

    2007-06-01

    Full Text Available Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD: tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2 die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576 with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.

  1. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function

    Directory of Open Access Journals (Sweden)

    Abou-Rached Charbel

    2008-04-01

    Full Text Available Abstract Background StWhy1, a member of the plant-specific Whirly single-stranded DNA-binding protein family, was first characterized as a transcription factor involved in the activation of the nuclear PR-10a gene following defense-related stress in potato. In Arabidopsis thaliana, Whirlies have recently been shown to be primarily localized in organelles. Two representatives of the family, AtWhy1 and AtWhy3 are imported into plastids while AtWhy2 localizes to mitochondria. Their function in organelles is currently unknown. Results To understand the role of mitochondrial Whirlies in higher plants, we produced A. thaliana lines with altered expression of the atwhy2 gene. Organellar DNA immunoprecipitation experiments demonstrated that AtWhy2 binds to mitochondrial DNA. Overexpression of atwhy2 in plants perturbs mitochondrial function by causing a diminution in transcript levels and mtDNA content which translates into a low activity level of respiratory chain complexes containing mtDNA-encoded subunits. This lowered activity of mitochondria yielded plants that were reduced in size and had distorted leaves that exhibited accelerated senescence. Overexpression of atwhy2 also led to early accumulation of senescence marker transcripts in mature leaves. Inactivation of the atwhy2 gene did not affect plant development and had no detectable effect on mitochondrial morphology, activity of respiratory chain complexes, transcription or the amount of mtDNA present. This lack of phenotype upon abrogation of atwhy2 expression suggests the presence of functional homologues of the Whirlies or the activation of compensating mechanisms in mitochondria. Conclusion AtWhy2 is associated with mtDNA and its overexpression results in the production of dysfunctional mitochondria. This report constitutes the first evidence of a function for the Whirlies in organelles. We propose that they could play a role in the regulation of the gene expression machinery of organelles.

  2. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA.

    Science.gov (United States)

    Das Banerjee, Tania; Dagda, Raul Y; Dagda, Marisela; Chu, Charleen T; Rice, Monica; Vazquez-Mayorga, Emmanuel; Dagda, Ruben K

    2017-08-01

    Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity. © 2017 International Society for Neurochemistry.

  3. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    International Nuclear Information System (INIS)

    Watanabe, Tomoyuki; Saotome, Masao; Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Funaki, Makoto; Hayashi, Hideharu

    2014-01-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ m ) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H 2 O 2 ), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ m depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H 2 O 2 -induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ m depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS

  4. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  5. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction.

    Science.gov (United States)

    Atamna, Hani; Mackey, Jeanette; Dhahbi, Joseph M

    2012-01-01

    Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  6. Minisequencing mitochondrial DNA pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2008-04-01

    Full Text Available Abstract Background There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. Methods We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. Results We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain patients carrying haplogroup J lineages (Fisher's Exact test, P-value Conclusion We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories.

  7. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN

    Directory of Open Access Journals (Sweden)

    Annalisa Canta

    2015-06-01

    Full Text Available The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN. This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy.

  8. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN)

    Science.gov (United States)

    Canta, Annalisa; Pozzi, Eleonora; Carozzi, Valentina Alda

    2015-01-01

    The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy. PMID:29056658

  9. Evolution of gastropod mitochondrial genome arrangements

    Directory of Open Access Journals (Sweden)

    Zardoya Rafael

    2008-02-01

    Full Text Available Abstract Background Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Hence, gastropod mitochondrial genomes constitute a good model system to study patterns, rates, and mechanisms of mitochondrial genome rearrangement. However, this kind of evolutionary comparative analysis requires a robust phylogenetic framework of the group under study, which has been elusive so far for gastropods in spite of the efforts carried out during the last two decades. Here, we report the complete nucleotide sequence of five mitochondrial genomes of gastropods (Pyramidella dolabrata, Ascobulla fragilis, Siphonaria pectinata, Onchidella celtica, and Myosotella myosotis, and we analyze them together with another ten complete mitochondrial genomes of gastropods currently available in molecular databases in order to reconstruct the phylogenetic relationships among the main lineages of gastropods. Results Comparative analyses with other mollusk mitochondrial genomes allowed us to describe molecular features and general trends in the evolution of mitochondrial genome organization in gastropods. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (ME, MP, ML, BI arrived at a single topology, which was used to reconstruct the evolution of mitochondrial gene rearrangements in the group. Conclusion Four main lineages were identified within gastropods: Caenogastropoda, Vetigastropoda, Patellogastropoda, and Heterobranchia. Caenogastropoda and Vetigastropoda are sister taxa, as well as, Patellogastropoda and Heterobranchia. This result rejects the validity of the derived clade Apogastropoda (Caenogastropoda + Heterobranchia. The position of Patellogastropoda remains unclear likely due to long-branch attraction biases. Within Heterobranchia, the most heterogeneous group of gastropods, neither Euthyneura (because of the inclusion of P

  10. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    Directory of Open Access Journals (Sweden)

    Khushbu Jain

    2015-01-01

    Full Text Available Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH. The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult.

  11. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    Science.gov (United States)

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  12. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L., E-mail: cmedin.uri@gmail.com

    2017-01-15

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  13. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake

    NARCIS (Netherlands)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    Mitochondrial calcium ([Ca(2+)]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner

  14. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    International Nuclear Information System (INIS)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L.

    2017-01-01

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  15. Mitochondrial matters: Mitochondrial bottlenecks, self-assembling structures, and entrapment in the female germline

    Directory of Open Access Journals (Sweden)

    Florence L. Marlow

    2017-05-01

    Full Text Available Mitochondrial replacement therapy, a procedure to generate embryos with the nuclear genome of a donor mother and the healthy mitochondria of a recipient egg, has recently emerged as a promising strategy to prevent transmission of devastating mitochondrial DNA diseases and infertility. The procedure may produce an embryo that is free of diseased mitochondria. A recent study addresses important fundamental questions about the mechanisms underlying maternal inheritance and translational questions regarding the transgenerational effectiveness of this promising therapeutic strategy. This review considers recent advances in our understanding of maternal inheritance of mitochondria, implications for fertility and mitochondrial disease, and potential roles for the Balbiani body, an ancient oocyte structure, in mitochondrial selection in oocytes, with emphasis on therapies to remedy mitochondrial disorders.

  16. Ubiquitination of specific mitochondrial matrix proteins

    International Nuclear Information System (INIS)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G.; Ciechanover, Aaron

    2016-01-01

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  17. Current perspectives on mitochondrial inheritance in fungi

    Directory of Open Access Journals (Sweden)

    Xu J

    2015-08-01

    Full Text Available Jianping Xu,1,2 He Li2 1Department of Biology, McMaster University, Hamilton, Canada; 2The Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Federal Ministry of Education, Central South University of Forestry and Technology, Changsha, People’s Republic of China Abstract: The mitochondrion is an essential organelle of eukaryotes, generating the universal energy currency, adenosine triphosphate, through oxidative phosphorylation. However, aside from generation of adenosine triphosphate, mitochondria have also been found to impact a diversity of cellular functions and organ system health in humans and other eukaryotes. Thus, inheriting and maintaining functional mitochondria are essential for cell health. Due to the relative ease of conducting genetic and molecular biological experiments using fungi, they (especially the budding yeast Saccharomyces cerevisiae have been used as model organisms for investigating the patterns of inheritance and intracellular dynamics of mitochondria and mitochondrial DNA. Indeed, the diversity of mitochondrial inheritance patterns in fungi has contributed to our broad understanding of the genetic, cellular, and molecular controls of mitochondrial inheritance and their evolutionary implications. In this review, we briefly summarize the patterns of mitochondrial inheritance in fungi, describe the genes and processes involved in controlling uniparental mitochondrial DNA inheritance in sexual crosses in basidiomycete yeasts, and provide an overview of the molecular and cellular processes governing mitochondrial inheritance during asexual budding in S. cerevisiae. Together, these studies reveal that complex regulatory networks and molecular processes are involved in ensuring the transmission of healthy mitochondria to the progeny. Keywords: uniparental inheritance, biparental inheritance, mating type, actin cable, mitochore, mitochondrial partition 

  18. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  19. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  20. The mitochondrial genome, a growing interest inside an organelle

    Directory of Open Access Journals (Sweden)

    Marco Crimi

    2008-03-01

    Full Text Available Marco Crimi1, Roberta Rigolio21National Institute of Molecular Genetics (INGM, Functional Genomics Unit, Milan, Italy; 2Department of Neurosciences and Biomedical Technologies, University of Milan Bicocca, Monza, ItalyAbstract: Mitochondria are semi-autonomously reproductive organelles within eukaryotic cells carrying their own genetic material, called the mitochondrial genome (mtDNA. Until some years ago, mtDNA had primarily been used as a tool in population genetics. As scientists began associating mtDNA mutations with dozens of mysterious disorders, as well as the aging process and a variety of chronic degenerative diseases, it became increasingly evident that the information contained in this genome had substantial potential applications to improve human health. Today, mitochondria research covers a wide range of disciplines, including clinical medicine, biochemistry, genetics, molecular cell biology, bioinformatics, plant sciences and physiology. The present review intends to present a summary of the most exiting fields of the mitochondrial research bringing together several contributes in terms of original prospective and future applications.Keywords: mtDNA, heteroplasmy, molecular diagnostics, mitochondriopathies, nanogenomics

  1. Biomarkers for Detecting Mitochondrial Disorders

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2018-01-01

    Full Text Available (1 Objectives: Mitochondrial disorders (MIDs are a genetically and phenotypically heterogeneous group of slowly or rapidly progressive disorders with onset from birth to senescence. Because of their variegated clinical presentation, MIDs are difficult to diagnose and are frequently missed in their early and late stages. This is why there is a need to provide biomarkers, which can be easily obtained in the case of suspecting a MID to initiate the further diagnostic work-up. (2 Methods: Literature review. (3 Results: Biomarkers for diagnostic purposes are used to confirm a suspected diagnosis and to facilitate and speed up the diagnostic work-up. For diagnosing MIDs, a number of dry and wet biomarkers have been proposed. Dry biomarkers for MIDs include the history and clinical neurological exam and structural and functional imaging studies of the brain, muscle, or myocardium by ultrasound, computed tomography (CT, magnetic resonance imaging (MRI, MR-spectroscopy (MRS, positron emission tomography (PET, or functional MRI. Wet biomarkers from blood, urine, saliva, or cerebrospinal fluid (CSF for diagnosing MIDs include lactate, creatine-kinase, pyruvate, organic acids, amino acids, carnitines, oxidative stress markers, and circulating cytokines. The role of microRNAs, cutaneous respirometry, biopsy, exercise tests, and small molecule reporters as possible biomarkers is unsolved. (4 Conclusions: The disadvantages of most putative biomarkers for MIDs are that they hardly meet the criteria for being acceptable as a biomarker (missing longitudinal studies, not validated, not easily feasible, not cheap, not ubiquitously available and that not all MIDs manifest in the brain, muscle, or myocardium. There is currently a lack of validated biomarkers for diagnosing MIDs.

  2. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae).

    Science.gov (United States)

    Alverson, Andrew J; Wei, XiaoXin; Rice, Danny W; Stern, David B; Barry, Kerrie; Palmer, Jeffrey D

    2010-06-01

    The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.

  3. Deoxyribonucleoside kinases in mitochondrial DNA depletion.

    Science.gov (United States)

    Saada-Reisch, Ann

    2004-10-01

    Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non-replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible to TK2 deficiency. The precise pathophysiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.

  4. Atypical mitochondrial inheritance patterns in eukaryotes.

    Science.gov (United States)

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  5. Maintaining ancient organelles: mitochondrial biogenesis and maturation.

    Science.gov (United States)

    Vega, Rick B; Horton, Julie L; Kelly, Daniel P

    2015-05-22

    The ultrastructure of the cardiac myocyte is remarkable for the high density of mitochondria tightly packed between sarcomeres. This structural organization is designed to provide energy in the form of ATP to fuel normal pump function of the heart. A complex system comprised of regulatory factors and energy metabolic machinery, encoded by both mitochondrial and nuclear genomes, is required for the coordinate control of cardiac mitochondrial biogenesis, maturation, and high-capacity function. This process involves the action of a transcriptional regulatory network that builds and maintains the mitochondrial genome and drives the expression of the energy transduction machinery. This finely tuned system is responsive to developmental and physiological cues, as well as changes in fuel substrate availability. Deficiency of components critical for mitochondrial energy production frequently manifests as a cardiomyopathic phenotype, underscoring the requirement to maintain high respiration rates in the heart. Although a precise causative role is not clear, there is increasing evidence that perturbations in this regulatory system occur in the hypertrophied and failing heart. This review summarizes current knowledge and highlights recent advances in our understanding of the transcriptional regulatory factors and signaling networks that serve to regulate mitochondrial biogenesis and function in the mammalian heart. © 2015 American Heart Association, Inc.

  6. [Two patients with mitochondrial respiratory chain disease].

    Science.gov (United States)

    Bangma, H R; Smit, G P A; Kuks, J B M; Grevink, R G; Wolffenbuttel, B H R

    2008-10-18

    A 23-year-old woman and a 13-year-old boy were diagnosed with mitochondrial respiratory chain disease. The woman had muscle pain, fatigue and bilateral ophthalmoplegia--symptoms consistent with Kearns-Sayre syndrome. The boy had aspecific symptoms; eventually, reduced activity of complex 1 was found to be the cause of the mitochondrial respiratory chain disease in the boy and his mother, who had suffered from unexplained fatigue and muscle pain for 15 years. Mitochondrial diseases often involve several organ systems. Diagnosis can be difficult, because laboratory tests such as serum and urinary lactate and creatine kinase have low sensitivity and specificity. Biochemical assessment of muscle biopsy can reveal reduced oxidation ATP synthesis and sometimes specific abnormalities in individual protein complexes. DNA analysis may be helpful in demonstrating mitochondrial or nuclear mutations or deletions. The goal of treatment is to increase mitochondrial ATP production, improve clinical symptoms and enhance stamina. Replacement of the following substances (also referred to as cofactors) may be attempted: co-enzyme Q10, antioxidants (lipoic acid, vitamins C and E), riboflavin, thiamine, creatine and carnitine. Evidence regarding the optimal treatment approach is lacking; one usually has to rely on observing effects in the individual patient.

  7. The mitochondrial genome of Toxocara canis.

    Science.gov (United States)

    Jex, Aaron R; Waeschenbach, Andrea; Littlewood, D Timothy J; Hu, Min; Gasser, Robin B

    2008-08-06

    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secementean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts.

  8. The mitochondrial genome of Toxocara canis.

    Directory of Open Access Journals (Sweden)

    Aaron R Jex

    2008-08-01

    Full Text Available Toxocara canis (Ascaridida: Nematoda, which parasitizes (at the adult stage the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secementean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida. The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts.

  9. The Mitochondrial Genome of Toxocara canis

    Science.gov (United States)

    Littlewood, D. Timothy J.; Hu, Min; Gasser, Robin B.

    2008-01-01

    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secernentean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts. PMID:18682828

  10. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    Directory of Open Access Journals (Sweden)

    Anthony L Luz

    Full Text Available Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors, carbonyl cyanide 4-(trifluoromethoxy phenylhydrazone (mitochondrial uncoupler and sodium azide (cytochrome c oxidase inhibitor, we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1-, fusion (fzo-1-, mitophagy (pdr-1, pink-1-, and electron transport chain complex III (isp-1-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  11. Mitochondrial oxidative function and type 2 diabetes

    DEFF Research Database (Denmark)

    Rabøl, Rasmus; Boushel, Robert; Dela, Flemming

    2006-01-01

    The cause of insulin resistance and type 2 diabetes is unknown. The major part of insulin-mediated glucose disposal takes place in the skeletal muscle, and increased amounts of intramyocellular lipid has been associated with insulin resistance and linked to decreased activity of mitochondrial...... oxidative phosphorylation. This review will cover the present knowledge and literature on the topics of the activity of oxidative enzymes and the electron transport chain (ETC) in skeletal muscle of patients with type 2 diabetes. Different methods of studying mitochondrial function are described, including...... biochemical measurements of oxidative enzyme and electron transport activity, isolation of mitochondria for measurements of respiration, and ATP production and indirect measurements of ATP production using nuclear magnetic resonance (NMR) - spectroscopy. Biochemical markers of mitochondrial content are also...

  12. Structural Studies of the Yeast Mitochondrial Degradosome

    DEFF Research Database (Denmark)

    Feddersen, Ane; Jonstrup, Anette Thyssen; Brodersen, Ditlev Egeskov

    The yeast mitochondrial degradosome/exosome (mtExo) is responsible for most RNA turnover in mitochondria and has been proposed to form a central part of a mitochondrial RNA surveillance system responsible for degradation of aberrant and unprocessed RNA ([1], [2]). In contrast to the cytoplasmic...... and nuclear exosome complexes, which consist of 10-12 different nuclease subunits, the mitochondrial degradosome is composed of only two large subunits - an RNase (Dss1p) and a helicase (Suv3p), belonging the Ski2 class of DExH box RNA helicases. Both subunits are encoded on the yeast nuclear genome...... and and Suv3p from the fission yeast, Schizosaccharomyces pombe, have been cloned for heterologous expression in E. coli. Of the two, we have succeeded in purifying the 73kDa Suv3p by Ni2+-affinity chromatography followed by cleavage of the N-terminal His-tag, cation exchange, and gel filtration. Crystals...

  13. Mitochondrial disorders in progressive muscular dystrophies

    Directory of Open Access Journals (Sweden)

    D. A. Kharlamov

    2014-01-01

    Full Text Available The literature review gives data on the role of mitochondrial disorders in the pathogenesis of different progressive muscular dystrophies. It describes changes in Duchenne, limb-girdle, facial scapulohumeral (Landuzi—Degerina muscular dystrophies. The review is based on both clinical and experimental animal studies. Along with the implication of mitochondria in the pathogenesis of the diseases, it describes muscular dystrophy treatment options compensating for energy disorders and overcoming oxidative stress and mitochondrial dysfunction. Mitochondrial studies in different muscle diseases hand physicians treatment modalities that fail to lead to recovery, but compensate for disorders caused by mutations in the genetic apparatus. 

  14. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure.

    Science.gov (United States)

    Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi

    2016-03-29

    Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload. © 2016 American Heart Association, Inc.

  15. Mitofilin complexes : conserved organizers of mitochondrial membrane architecture

    NARCIS (Netherlands)

    Zerbes, Ralf M.; van der Klei, Ida J.; Veenhuis, Marten; Pfanner, Nikolaus; van der Laan, Martin; Bohnert, Maria

    2012-01-01

    Mitofilin proteins are crucial organizers of mitochondrial architecture. They are located in the inner mitochondrial membrane and interact with several protein complexes of the outer membrane, thereby generating contact sites between the two membrane systems of mitochondria. Within the inner

  16. Trypanosoma brucei mitochondrial respiratome: Composition and organization in procyclic form

    KAUST Repository

    Acestor, Nathalie; Zí ková , Alena; Dalley, Rachel A.; Anupama, Atashi; Panigrahi, Aswini Kumar; Stuart, Kenneth D.

    2011-01-01

    The mitochondrial respiratory chain is comprised of four different protein complexes (I-IV), which are responsible for electron transport and generation of proton gradient in the mitochondrial intermembrane space. This proton gradient is then used

  17. Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis.

    Science.gov (United States)

    Renault, Thibaud T; Floros, Konstantinos V; Elkholi, Rana; Corrigan, Kelly-Ann; Kushnareva, Yulia; Wieder, Shira Y; Lindtner, Claudia; Serasinghe, Madhavika N; Asciolla, James J; Buettner, Christoph; Newmeyer, Donald D; Chipuk, Jerry E

    2015-01-08

    Proapoptotic BCL-2 proteins converge upon the outer mitochondrial membrane (OMM) to promote mitochondrial outer membrane permeabilization (MOMP) and apoptosis. Here we investigated the mechanistic relationship between mitochondrial shape and MOMP and provide evidence that BAX requires a distinct mitochondrial size to induce MOMP. We utilized the terminal unfolded protein response pathway to systematically define proapoptotic BCL-2 protein composition after stress and then directly interrogated their requirement for a productive mitochondrial size. Complementary biochemical, cellular, in vivo, and ex vivo studies reveal that Mfn1, a GTPase involved in mitochondrial fusion, establishes a mitochondrial size that is permissive for proapoptotic BCL-2 family function. Cells with hyperfragmented mitochondria, along with size-restricted OMM model systems, fail to support BAX-dependent membrane association and permeabilization due to an inability to stabilize BAXα9·membrane interactions. This work identifies a mechanistic contribution of mitochondrial size in dictating BAX activation, MOMP, and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. OXPHOS-Dependent Cells Identify Environmental Disruptors of Mitochondrial Function

    Science.gov (United States)

    Mitochondrial dysfunction is associated with numerous chronic diseases including metabolic syndrome. Environmental chemicals can impair mitochondrial function through numerous mechanisms such as membrane disruption, complex inhibition and electron transport chain uncoupling. Curr...

  19. Mitochondrial respiratory efficiency is positively correlated with human sperm motility.

    Science.gov (United States)

    Ferramosca, Alessandra; Provenzano, Sara Pinto; Coppola, Lamberto; Zara, Vincenzo

    2012-04-01

    To correlate sperm mitochondrial respiratory efficiency with variations in sperm motility and with sperm morphologic anomalies. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically-treated sperm cells. A possible relationship among sperm mitochondrial respiratory efficiency, sperm motility, and morphologic anomalies was investigated. Mitochondrial respiratory efficiency was positively correlated with sperm motility and negatively correlated with the percentage of immotile spermatozoa. Moreover, midpiece defects impaired mitochondrial functionality. Our data indicate that an increase in sperm motility requires a parallel increase in mitochondrial respiratory capacity, thereby supporting the fundamental role played by mitochondrial oxidative phosphorylation in sperm motility of normozoospermic subjects. These results are of physiopathological relevance because they suggest that disturbances of sperm mitochondrial function and of energy production could be responsible for asthenozoospermia. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Felhi, Rahma; Tabebi, Mouna [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Alila-Fersi, Olfa; Chamkha, Imen [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Maalej, Marwa; Ammar, Marwa [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Kammoun, Fatma [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Keskes, Leila [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Hachicha, Mongia [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Fakhfakh, Faiza, E-mail: faiza.fakhfakh02@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia)

    2016-04-29

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes of complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.

  1. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity

    Directory of Open Access Journals (Sweden)

    William Dott

    2014-01-01

    Full Text Available Mitochondrial toxicity is increasingly being implicated as a contributing factor to many xenobiotic-induced organ toxicities, including skeletal muscle toxicity. This has necessitated the need for predictive in vitro models that are able to sensitively detect mitochondrial toxicity of chemical entities early in the research and development process. One such cell model involves substituting galactose for glucose in the culture media. Since cells cultured in galactose are unable to generate sufficient ATP from glycolysis they are forced to rely on mitochondrial oxidative phosphorylation for ATP generation and consequently are more sensitive to mitochondrial perturbation than cells grown in glucose. The aim of this study was to characterise cellular growth, bioenergetics and mitochondrial toxicity of the L6 rat skeletal muscle cell line cultured in either high glucose or galactose media. L6 myoblasts proliferated more slowly when cultured in galactose media, although they maintained similar levels of ATP. Galactose cultured L6 cells were significantly more sensitive to classical mitochondrial toxicants than glucose-cultured cells, confirming the cells had adapted to galactose media. Analysis of bioenergetic function with the XF Seahorse extracellular flux analyser demonstrated that oxygen consumption rate (OCR was significantly increased whereas extracellular acidification rate (ECAR, a measure of glycolysis, was decreased in cells grown in galactose. Mitochondria operated closer to state 3 respiration and had a lower mitochondrial membrane potential and basal mitochondrial O2·– level compared to cells in the glucose model. An antimycin A (AA dose response revealed that there was no difference in the sensitivity of OCR to AA inhibition between glucose and galactose cells. Importantly, cells in glucose were able to up-regulate glycolysis, while galactose cells were not. These results confirm that L6 cells are able to adapt to growth in a

  2. Clinical case of Mitochondrial DNA Depletion

    Directory of Open Access Journals (Sweden)

    A. V. Degtyareva

    2017-01-01

    Full Text Available The article reports clinical case of early neonatal manifestation of a rare genetic disease – mitochondrial DNA depletion syndrome, confirmed in laboratory in Russia. Mutations of FBXL4, which encodes an orphan mitochondrial F-box protein, involved in the maintenance of mitochondrial DNA (mtDNA, ultimately leading to disruption of mtDNA replication and decreased activity of mitochondrial respiratory chain complexes. It’s a reason of abnormalities in clinically affected tissues, most of all the muscular system and the brain. In our case hydronephrosis on the right, subependimal cysts of the brain, partial intestinal obstruction accompanied by polyhydramnios were diagnosed antenatal. Baby’s condition at birth was satisfactory and worsened dramatically towards the end of the first day of life. Clinical presentation includes sepsis-like symptom complex, neonatal depression, muscular hypotonia, persistent decompensated lactic acidosis, increase in the concentration of mitochondrial markers in blood plasma and urine, and changes in the basal ganglia of the brain. Imaging of the brain by magnetic resonance imaging (MRI demonstrated global volume loss particularly the subcortical and periventricular white matter with significant abnormal signal in bilateral basal ganglia and brainstem with associated delayed myelination. Differential diagnosis was carried out with hereditary diseases that occur as a «sepsis-like» symptom complex, accompanied by lactic acidosis: a group of metabolic disorders of amino acids, organic acids, β-oxidation defects of fatty acids, respiratory mitochondrial chain disorders and glycogen storage disease. The diagnosis was confirmed after sequencing analysis of 62 mytochondrial genes by NGS (Next Generation Sequencing. Reported disease has an unfavorable prognosis, however, accurate diagnosis is very important for genetic counseling and helps prevent the re-birth of a sick child in the family.

  3. Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo.

    Science.gov (United States)

    Harms, Floor A; Voorbeijtel, Wilhelmina J; Bodmer, Sander I A; Raat, Nicolaas J H; Mik, Egbert G

    2013-09-01

    Progress in diagnosis and treatment of mitochondrial dysfunction in chronic and acute disease could greatly benefit from techniques for monitoring of mitochondrial function in vivo. In this study we demonstrate the feasibility of in vivo respirometry in skin. Mitochondrial oxygen measurements by means of oxygen-dependent delayed fluorescence of protoporphyrin IX are shown to provide a robust basis for measurement of local oxygen disappearance rate (ODR). The fundamental principles behind the technology are described, together with an analysis method for retrievel of respirometry data. The feasibility and reproducibility of this clinically useful approach are demonstrated in a series of rats. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. The importance of mitochondrial DNA in aging and cancer

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Espersen, Maiken Lise Marcker; Singh, Keshav K

    2011-01-01

    Mitochondrial dysfunction has been implicated in premature aging, age-related diseases, and tumor initiation and progression. Alterations of the mitochondrial genome accumulate both in aging tissue and tumors. This paper describes our contemporary view of mechanisms by which alterations...... of the mitochondrial genome contributes to the development of age- and tumor-related pathological conditions. The mechanisms described encompass altered production of mitochondrial ROS, altered regulation of the nuclear epigenome, affected initiation of apoptosis, and a limiting effect on the production...

  5. SNP-finding in pig mitochondrial ESTs

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Cirera Salicio, Susanna; Gilchrist, M.J.

    2008-01-01

    The Sino-Danish pig genome project produced 685 851 ESTs (Gorodkin et al. 2007), of which 41 499 originated from the mitochondrial genome. In this study, the mitochondrial ESTs were assembled, and 374 putative SNPs were found. Chromatograms for the ESTs containing SNPs were manually inspected, an......, and 112 total (52 non-synonymous) SNPs were found to be of high confidence (five of them are close to disease-causing SNPs in humans). Nine of the high-confidence SNPs were tested experimentally, and eight were confirmed. The SNPs can be accessed online at http://pigest.ku.dk/more.mito...

  6. A role of taurine in mitochondrial function

    DEFF Research Database (Denmark)

    Hansen, Svend Høime; Andersen, Mogens Larsen; Cornett, Claus

    2010-01-01

    The mitochondrial pH gradient across the inner-membrane is stabilised by buffering of the matrix. A low-molecular mass buffer compound has to be localised in the matrix to maintain its alkaline pH value. Taurine is found ubiquitously in animal cells with concentrations in the millimolar range...... enzymes, which are pivotal for beta-oxidation of fatty acids, are demonstrated to have optimal activity in a taurine buffer. By application of the model presented, taurine depletion caused by hyperglycemia could provide a link between mitochondrial dysfunction and diabetes....

  7. Evidence of mitochondrial dysfunction in obese adolescents

    DEFF Research Database (Denmark)

    Wilms, L; Larsen, J; Pedersen, P L

    2010-01-01

    Abstract Aim: Although obesity and weight gain generally are anticipated to be caused by an imbalance between energy intake and energy expenditure, the significance of thyroid hormones (TH) remains unclear. Examination of mitochondrial function may reflect intracellular thyroid hormone effect...... and elucidate whether a lower metabolic rate is present. Methods: In a group of 34 obese adolescents (age ... and mitochondrial function in peripheral blood monocytes was determined by flow cytometry. Results: Significant increase in TSH (3.06 +/- 1.56 mU/L vs. 2.33 +/- 0.91 mU/L, p obese adolescents...

  8. Unravelling Mitochondrial Dysfunction in Rheumatoid Arthritis patients

    Directory of Open Access Journals (Sweden)

    Shweta Khanna

    2017-10-01

    Full Text Available Rheumatoid arthritis (RA is a chronic, inflammatory, autoimmune disease associated with systemic, extra-articular and articular effects, causing permanent disability, early morbidity; making the patient compromised with a worldwide prevalence of 0.8%, commonly effecting women with a rate of 0.7% in India. With improved and developing therapeutics, this disease needs special focus for improved diagnosis and better treatment. The hyperactivity of immune cells is responsible for pathogenesis and progression of the disease. This study unravels the changes in mitochondria of RA patients which may be a potential reason for abnormal functioning of immune cells against self-antigens and occurrence of the disease. In this study we examine the following aspects of mitochondrial functions in the peripheral blood mononuclear cells (PBMCs of patients and their paired control samples: 1 Change in mitochondrial membrane potential (MMP; 2 mitochondrial mass; 3 mitochondrial superoxide and 4 ATP levels. Patients satisfying the 2010 ACR/EULAR classification criteria for RA diagnosis were enrolled in this study. PBMCs of RA patients and controls were collected by differential gradient centrifugation. MMP, mass and superoxide levels were measured using respective commercially available dye using flow cytometry. ATP levels were measured by lysing equal number of cells from patients and controls using ATP measurement kit. In our case control cohort, we found a significant decrease in MMP (p<0.005 in PBMCs of RA patients where the change in mitochondrial mass was insignificant. The mitochondrial superoxide levels were found to be significantly low (p<0.05 in PBMCs of RA patients with significantly low (p<0.005 total cellular ATP as compared to controls. Our results indicate reduced potential and mitochondrial superoxides with decreased total cellular ATP. Reduced potential will disturb proper functioning of mitochondria in PBMCs which may affect most important

  9. Mitochondrial genome diversity in dagger and needle nematodes (Nematoda: Longidoridae).

    Science.gov (United States)

    Palomares-Rius, J E; Cantalapiedra-Navarrete, C; Archidona-Yuste, A; Blok, V C; Castillo, P

    2017-02-02

    Dagger and needle nematodes included in the family Longidoridae (viz. Longidorus, Paralongidorus, and Xiphinema) are highly polyphagous plant-parasitic nematodes in wild and cultivated plants and some of them are plant-virus vectors (nepovirus). The mitochondrial (mt) genomes of the dagger and needle nematodes, Xiphinema rivesi, Xiphinema pachtaicum, Longidorus vineacola and Paralongidorus litoralis were sequenced in this study. The four circular mt genomes have an estimated size of 12.6, 12.5, 13.5 and 12.7 kb, respectively. Up to date, the mt genome of X. pachtaicum is the smallest genome found in Nematoda. The four mt genomes contain 12 protein-coding genes (viz. cox1-3, nad1-6, nad4L, atp6 and cob) and two ribosomal RNA genes (rrnL and rrnS), but the atp8 gene was not detected. These mt genomes showed a gene arrangement very different within the Longidoridae species sequenced, with the exception of very closely related species (X. americanum and X. rivesi). The sizes of non-coding regions in the Longidoridae nematodes were very small and were present in a few places in the mt genome. Phylogenetic analysis of all coding genes showed a closer relationship between Longidorus and Paralongidorus and different phylogenetic possibilities for the three Xiphinema species.

  10. Toxins in botanical dietary supplements: blue cohosh components disrupt cellular respiration and mitochondrial membrane potential.

    Science.gov (United States)

    Datta, Sandipan; Mahdi, Fakhri; Ali, Zulfiqar; Jekabsons, Mika B; Khan, Ikhlas A; Nagle, Dale G; Zhou, Yu-Dong

    2014-01-24

    Certain botanical dietary supplements have been associated with idiosyncratic organ-specific toxicity. Similar toxicological events, caused by drug-induced mitochondrial dysfunction, have forced the withdrawal or U.S. FDA "black box" warnings of major pharmaceuticals. To assess the potential mitochondrial liability of botanical dietary supplements, extracts from 352 authenticated plant samples used in traditional Chinese, Ayurvedic, and Western herbal medicine were evaluated for the ability to disrupt cellular respiration. Blue cohosh (Caulophyllum thalictroides) methanol extract exhibited mitochondriotoxic activity. Used by some U.S. midwives to help induce labor, blue cohosh has been associated with perinatal stroke, acute myocardial infarction, congestive heart failure, multiple organ injury, and neonatal shock. The potential link between mitochondrial disruption and idiosyncratic herbal intoxication prompted further examination. The C. thalictroides methanol extract and three saponins, cauloside A (1), saponin PE (2), and cauloside C (3), exhibited concentration- and time-dependent mitochondriotoxic activities. Upon treatment, cell respiration rate rapidly increased and then dramatically decreased within minutes. Mechanistic studies revealed that C. thalictroides constituents impair mitochondrial function by disrupting membrane integrity. These studies provide a potential etiological link between this mitochondria-sensitive form of cytotoxicity and idiosyncratic organ damage.

  11. Toxins in Botanical Dietary Supplements: Blue Cohosh Components Disrupt Cellular Respiration and Mitochondrial Membrane Potential

    Science.gov (United States)

    Datta, Sandipan; Mahdi, Fakhri; Ali, Zulfiqar; Jekabsons, Mika B.; Khan, Ikhlas A.; Nagle, Dale G.; Zhou, Yu-Dong

    2014-01-01

    Certain botanical dietary supplements have been associated with idiosyncratic organ-specific toxicity. Similar toxicological events, caused by drug-induced mitochondrial dysfunction, have forced the withdrawal or U.S. FDA “Black Box” warnings of major pharmaceuticals. To assess the potential mitochondrial liability of botanical dietary supplements, extracts from 352 authenticated plant samples used in traditional Chinese, Ayurvedic, and Western herbal medicine were evaluated for the ability to disrupt cellular respiration. Blue cohosh (Caulophyllum thalictroides) methanol extract exhibited mitochondriotoxic activity. Used by some U.S. midwives to help induce labor, blue cohosh has been associated with perinatal stroke, acute myocardial infarction, congestive heart failure, multiple organ injury, and neonatal shock. The potential link between mitochondrial disruption and idiosyncratic herbal intoxication prompted further examination. The C. thalictroides methanol extract and three saponins, cauloside A (1), saponin PE (2), and cauloside C (3) exhibited concentration- and time-dependent mitochondriotoxic activities. Upon treatment, cell respiration rate rapidly increased and then dramatically decreased within minutes. Mechanistic studies revealed that C. thalictroides constituents impair mitochondrial function by disrupting membrane integrity. These studies provide a potential etiological link between this mitochondria-sensitive form of cytotoxicity and idiosyncratic organ damage. PMID:24328138

  12. Norgal: extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data.

    Science.gov (United States)

    Al-Nakeeb, Kosai; Petersen, Thomas Nordahl; Sicheritz-Pontén, Thomas

    2017-11-21

    Whole-genome sequencing (WGS) projects provide short read nucleotide sequences from nuclear and possibly organelle DNA depending on the source of origin. Mitochondrial DNA is present in animals and fungi, while plants contain DNA from both mitochondria and chloroplasts. Current techniques for separating organelle reads from nuclear reads in WGS data require full reference or partial seed sequences for assembling. Norgal (de Novo ORGAneLle extractor) avoids this requirement by identifying a high frequency subset of k-mers that are predominantly of mitochondrial origin and performing a de novo assembly on a subset of reads that contains these k-mers. The method was applied to WGS data from a panda, brown algae seaweed, butterfly and filamentous fungus. We were able to extract full circular mitochondrial genomes and obtained sequence identities to the reference sequences in the range from 98.5 to 99.5%. We also assembled the chloroplasts of grape vines and cucumbers using Norgal together with seed-based de novo assemblers. Norgal is a pipeline that can extract and assemble full or partial mitochondrial and chloroplast genomes from WGS short reads without prior knowledge. The program is available at: https://bitbucket.org/kosaidtu/norgal .

  13. Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Sorensen, Martin M; Hvitby, Christina Poulsen

    2010-01-01

    in genomic maintenance and transcriptome regulation. By immunocytochemistry, mitochondrial fractionation, and Western blotting, we demonstrate that CSB localizes to mitochondria in different types of cells, with increased mitochondrial distribution following menadione-induced oxidative stress. Moreover, our...

  14. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction.

    Science.gov (United States)

    Resseguie, Emily A; Staversky, Rhonda J; Brookes, Paul S; O'Reilly, Michael A

    2015-08-01

    High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced cell death through downstream targets p53 and p21. Evidence for its role in regulating mitochondrial function is emerging, yet it has not been determined if mitochondrial dysfunction or ROS activates ATM. Because ATM maintains mitochondrial homeostasis, we hypothesized that hyperoxia induces both mitochondrial dysfunction and ROS that activate ATM. In A549 lung epithelial cells, hyperoxia decreased mitochondrial respiratory reserve capacity at 12h and basal respiration by 48 h. ROS were significantly increased at 24h, yet mitochondrial DNA double strand breaks were not detected. ATM was not required for activating p53 when mitochondrial respiration was inhibited by chronic exposure to antimycin A. Also, ATM was not further activated by mitochondrial ROS, which were enhanced by depleting manganese superoxide dismutase (SOD2). In contrast, ATM dampened the accumulation of mitochondrial ROS during exposure to hyperoxia. Our findings suggest that hyperoxia-induced mitochondrial dysfunction and ROS do not activate ATM. ATM more likely carries out its canonical response to nuclear DNA damage and may function to attenuate mitochondrial ROS that contribute to oxygen toxicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Mitochondrial Causes of Epilepsy: Evaluation, Diagnosis, and Treatment.

    Science.gov (United States)

    Steele, Hannah E; Chinnery, Patrick F

    2015-06-01

    Mitochondrial disorders are frequently associated with seizures. In this review, the authors discuss the seizure patterns and distinguishing features of mitochondrial epilepsy, alongside the indications for investigating, and how to investigate epilepsy from a mitochondrial perspective. Finally, they discuss management strategies for this complex group of patients. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.

    Science.gov (United States)

    Yamamori, Tohru; Yasui, Hironobu; Yamazumi, Masayuki; Wada, Yusuke; Nakamura, Yoshinari; Nakamura, Hideo; Inanami, Osamu

    2012-07-15

    Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that

  17. Three dimensional reconstruction of the human skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization

    DEFF Research Database (Denmark)

    Dahl, Rannvá; Larsen, Steen; Dohlmann, Tine L

    2015-01-01

    a method to visualize mitochondrial networks in high resolution and assess mitochondrial volume. Methods: Confocal fluorescence microscopy imaging of mitochondrial network stains in human vastus lateralis single muscle fibers and, focused ion beam scanning electron microscopy (FIB/SEM) imaging, combined...... mitochondrial dynamics in response to life-style interventions and/or in certain pathologies. Our results question the classification of mitochondria into subsarcolemmal and intermyofibrillar pools, since they are physically interconnected. This article is protected by copyright. All rights reserved....

  18. Neurodegenerative and Fatiguing Illnesses, Infections and Mitochondrial Dysfunction: Use of Natural Supplements to Improve Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Garth L. Nicolson

    2014-01-01

    Full Text Available Background: Many chronic diseases and illnesses are associated with one or more chronic infections, dysfunction of mitochondria and reduced production of ATP. This results in fatigue and other symptoms that occur in most if not all chronic conditions and diseases. Methods: This is a review of the published literature on chronic infections in neurodegenerative diseases and fatiguing illnesses that are also typified by mitochondrial dysfunction. This contribution also reviews the use of natural supplements to enhance mitochondrial function and reduce the effects of chronic infections to improve overall function in various chronic illnesses. Results: Mitochondrial function can be enhanced by the use of various natural supplements, notably Lipid Replacement Therapy (LRT using glyerolphospholipids and other mitochondrial supplements. In various chronic illnesses that are characterized by the presence of chronic infections, such as intracellular bacteria (Mycoplasma, Borrelia, Chlamydia and other infections and viruses, LRT has proven useful in multiple clinical trials. For example, in clinical studies on chronic fatigue syndrome, fibromyalgia syndrome and other chronic fatiguing illnesses where a large majority of patients have chronic infections, LRT significantly reduced fatigue by 35-43% in different clinical trials and increased mitochondrial function. In clinical trials on patients with multiple intracellular bacterial infections and intractable fatigue LRT plus other mitochondrial supplements significantly decreased fatigue and improved mood and cognition. Conclusions: LRT formulations designed to improve mitochondrial function appear to be useful as non-toxic dietary supplements for reducing fatigue and restoring mitochondrial and other cellular membrane functions in patients with chronic illnesses and multiple chronic infections.

  19. Mitochondrial transcription factor A protects human retinal ...

    African Journals Online (AJOL)

    Purpose: To investigate the impact of mitochondrial transcription factor A (TFAM), as a modulator of NF-κB, on proliferation of hypoxia-induced human retinal endothelial cell (HREC), and the probable mechanism. Methods: After exposure to hypoxia (1 % O2) for 5 days, cell proliferation and cell cycle of HREC were ...

  20. Mitochondrial Contribution to Parkinson's Disease Pathogenesis

    Directory of Open Access Journals (Sweden)

    Anthony H. V. Schapira

    2011-01-01

    Full Text Available The identification of the etiologies and pathogenesis of Parkinson's disease (PD should play an important role in enabling the development of novel treatment strategies to prevent or slow the progression of the disease. The last few years have seen enormous progress in this respect. Abnormalities of mitochondrial function and increased free radical mediated damage were described in post mortem PD brain before the first gene mutations causing familial PD were published. Several genetic causes are now known to induce loss of dopaminergic cells and parkinsonism, and study of the mechanisms by which these mutations produce this effect has provided important insights into the pathogenesis of PD and confirmed mitochondrial dysfunction and oxidative stress pathways as central to PD pathogenesis. Abnormalities of protein metabolism including protein mis-folding and aggregation are also crucial to the pathology of PD. Genetic causes of PD have specifically highlighted the importance of mitochondrial dysfunction to PD: PINK1, parkin, DJ-1 and most recently alpha-synuclein proteins have been shown to localise to mitochondria and influence function. The turnover of mitochondria by autophagy (mitophagy has also become a focus of attention. This review summarises recent discoveries in the contribution of mitochondrial abnormalities to PD etiology and pathogenesis.

  1. A Mitochondrial Power Play in Lymphoma

    OpenAIRE

    DeBerardinis, Ralph J.

    2012-01-01

    Deregulated energetics is a hallmark of malignancy, but metabolic heterogeneity among individual tumors is unknown. A study by Caro et al. in this issue of Cancer Cell demonstrates that a subset of lymphomas is defined by reliance on mitochondrial energy generation and is selectively killed when this pathway is impaired.

  2. Mitochondrial DNA sequence evolution in shorebird populations

    NARCIS (Netherlands)

    Wenink, P.W.

    1994-01-01

    This thesis describes the global molecular population structure of two shorebird species, in particular of the dunlin, Calidris alpina, by means of comparative sequence analysis of the most variable part of the mitochondrial DNA (mtDNA) genome. There are several reasons

  3. Mitochondrial haplogroups in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Duhn, Pernille Hurup; Sode, Jacob; Hagen, Christian Munch

    2017-01-01

    Objective To describe the distribution of specific mitochondrial DNA (mtDNA) haplogroups (hgs) in a cohort of patients with rheumatoid arthritis (RA). Methods Two-hundred nineteen consecutive patients with RA had mtDNA isolated from their blood, sequenced and haplotyped. Patients were diagnosed...

  4. Parkinson's disease and mitochondrial gene variations

    DEFF Research Database (Denmark)

    Andalib, Sasan; Vafaee, Manouchehr Seyedi; Gjedde, Albert

    2014-01-01

    Parkinson's disease (PD) is a common disorder of the central nervous system in the elderly. The pathogenesis of PD is a complex process, with genetics as an important contributing factor. This factor may stem from mitochondrial gene variations and mutations as well as from nuclear gene variations...

  5. Social and ethical issues in mitochondrial donation.

    Science.gov (United States)

    Dimond, Rebecca

    2015-09-01

    The UK is at the forefront of mitochondrial science and is currently the only country in the world to legalize germ-line technologies involving mitochondrial donation. However, concerns have been raised about genetic modification and the 'slippery slope' to designer babies. This review uses academic articles, newspaper reports and public documents. Mitochondrial donation offers women with mitochondrial disease an opportunity to have healthy, genetically related children. Key areas of disagreement include safety, the creation of three-parent babies, impact on identity, implications for society, definitions of genetic modification and reproductive choice. The UK government legalized the techniques in March 2015. Scientific and medical communities across the world followed the developments with interest. It is expected that the first cohort of 'three parent' babies will be born in the UK in 2016. Their health and progress will be closely monitored. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Genetic defects in patients with mitochondrial encephalomyopathies

    NARCIS (Netherlands)

    I.F.M. de Coo (René)

    2005-01-01

    textabstractDit proefschrift is een bijdrage aan het snel groeiende kennisgebied gewijd aan de verbetering van de diagnostiek op DNA-niveau bij patiënten met mitochondriële encephalomyopathieën en is onder andere geïnspireerd door de hypothese van de communicatie over en weer tussen het kerngenoom

  7. Mitochondrial phylogenomics of modern and ancient equids

    DEFF Research Database (Denmark)

    Mouatt, Julia Thidamarth Vilstrup; Seguin-Orlando, Andaine; Stiller, Mathias

    2013-01-01

    The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial...

  8. Mitochondrially targeted anti-cancer agents

    Czech Academy of Sciences Publication Activity Database

    Biasutto, L.; Dong, L.A.; Zoratti, M.; Neužil, Jiří

    2010-01-01

    Roč. 10, č. 6 (2010), s. 670-681 ISSN 1567-7249 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitochondrial targeting * pro-oxidant effect * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.238, year: 2010

  9. Genetics Home Reference: mitochondrial complex I deficiency

    Science.gov (United States)

    ... the energy from food into a form that cells can use. Complex I is the first of five mitochondrial ... maternal inheritance. Because egg cells, but not sperm cells, contribute ... only from their mother. These disorders can appear in every generation of ...

  10. PREVENTION OF PHOSPHATE - INDUCED MITOCHONDRIAL SWELLING

    Science.gov (United States)

    Kroll, Arnold J.; Kuwabara, Toichiro

    1962-01-01

    The prevention of phosphate-induced mitochondrial swelling in the whole retina of the rabbit was studied with the electron microscope. It was found that a mixture of ATP, Mg++, and bovine serum albumin protected the mitochondria in vitro. This finding confirmed the results obtained spectrophotometrically with isolated rat liver mitochondria by Lehninger. PMID:13927020

  11. Varicocele Negatively Affects Sperm Mitochondrial Respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Albani, Denise; Coppola, Lamberto; Zara, Vincenzo

    2015-10-01

    To evaluate the effect of varicocele on oxidative stress, sperm mitochondrial respiratory efficiency, sperm morphology, and semen parameters. A total of 20 patients with varicocele and 20 normozoospermic subjects without varicocele (control group) were recruited from a medical center for reproductive biology. The levels of serum reactive oxygen metabolites and seminal lipid peroxides were assessed for both control and varicocele subjects. Sperm deoxyribonucleic acid fragmentation was measured by sperm chromatin dispersion test. Mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. In this study, varicocele patients were compared with men without varicoceles. Oxidative stress was observed in the serum and seminal fluid of varicocele patients. These patients showed an increase of 59% (P <.05) in serum reactive oxygen metabolites and a 3-fold increase in the level of sperm lipid peroxides. A parallel and significant increase (a 2-fold increase; P <.05) in the degree of sperm deoxyribonucleic acid fragmentation was also observed. Varicocele patients showed a 27% decrease (P <.05) in mitochondrial respiratory activity in comparison to the control group. A 32% increase (P <.05) in sperm midpiece defects and a 41% decrease (P <.05) in sperm concentration and motility were also observed. Men with varicocele have increased markers of oxidative stress and decreased mitochondrial respiratory activity. These results correlated with abnormalities in semen parameters. For morphology, these correlated with midpiece defects. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Congenital central hypoventilation syndrome mimicking mitochondrial disease.

    Science.gov (United States)

    Rojnueangnit, Kitiwan; Descartes, Maria

    2018-03-01

    Later-onset congenital central hypoventilation syndrome (LO-CCHS) does not present only breathing problems but can be present as episodic multiple organs involvement. Our unique case demonstrated LO-CCHS should be considered in the differential diagnosis of mitochondrial diseases and having nontypical polysomnography result.

  13. Mitochondrial replacement techniques: egg donation, genealogy and eugenics.

    Science.gov (United States)

    Palacios-González, César

    2016-03-01

    Several objections against the morality of researching or employing mitochondrial replacement techniques have been advanced recently. In this paper, I examine three of these objections and show that they are found wanting. First I examine whether mitochondrial replacement techniques, research and clinical practice, should not be carried out because of possible harms to egg donors. Next I assess whether mitochondrial replacement techniques should be banned because they could affect the study of genealogical ancestry. Finally, I examine the claim that mitochondrial replacement techniques are not transferring mitochondrial DNA but nuclear DNA, and that this should be prohibited on ethical grounds.

  14. Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency.

    Science.gov (United States)

    Saada, Ann; Ben-Shalom, Efrat; Zyslin, Rivka; Miller, Chaya; Mandel, Hanna; Elpeleg, Orly

    2003-10-24

    Deficiency of mitochondrial thymidine kinase (TK2) is associated with mitochondrial DNA (mtDNA) depletion and manifests by severe skeletal myopathy in infancy. In order to elucidate the pathophysiology of this condition, mitochondrial deoxyribonucleoside triphosphate (dNTP) pools were determined in patients' fibroblasts. Despite normal mtDNA content and cytochrome c oxidase (COX) activity, mitochondrial dNTP pools were imbalanced. Specifically, deoxythymidine triphosphate (dTTP) content was markedly decreased, resulting in reduced dTTP:deoxycytidine triphosphate ratio. These findings underline the importance of balanced mitochondrial dNTP pools for mtDNA synthesis and may serve as the basis for future therapeutic interventions.

  15. Mitochondrial Dynamics in Type 2 Diabetes and Cancer

    Directory of Open Access Journals (Sweden)

    Michelle Williams

    2018-04-01

    Full Text Available Mitochondria are bioenergetic, biosynthetic, and signaling organelles that control various aspects of cellular and organism homeostasis. Quality control mechanisms are in place to ensure maximal mitochondrial function and metabolic homeostasis at the cellular level. Dysregulation of these pathways is a common theme in human disease. In this mini-review, we discuss how alterations of the mitochondrial network influences mitochondrial function, focusing on the molecular regulators of mitochondrial dynamics (organelle’s shape and localization. We highlight similarities and critical differences in the mitochondrial network of cancer and type 2 diabetes, which may be relevant for treatment of these diseases.

  16. Reactive Oxygen Species-Mediated Control of Mitochondrial Biogenesis

    Directory of Open Access Journals (Sweden)

    Edgar D. Yoboue

    2012-01-01

    Full Text Available Mitochondrial biogenesis is a complex process. It necessitates the contribution of both the nuclear and the mitochondrial genomes and therefore crosstalk between the nucleus and mitochondria. It is now well established that cellular mitochondrial content can vary according to a number of stimuli and physiological states in eukaryotes. The knowledge of the actors and signals regulating the mitochondrial biogenesis is thus of high importance. The cellular redox state has been considered for a long time as a key element in the regulation of various processes. In this paper, we report the involvement of the oxidative stress in the regulation of some actors of mitochondrial biogenesis.

  17. A Mitochondrial Genome of Rhyparochromidae (Hemiptera: Heteroptera) and a Comparative Analysis of Related Mitochondrial Genomes.

    Science.gov (United States)

    Li, Teng; Yang, Jie; Li, Yinwan; Cui, Ying; Xie, Qiang; Bu, Wenjun; Hillis, David M

    2016-10-19

    The Rhyparochromidae, the largest family of Lygaeoidea, encompasses more than 1,850 described species, but no mitochondrial genome has been sequenced to date. Here we describe the first mitochondrial genome for Rhyparochromidae: a complete mitochondrial genome of Panaorus albomaculatus (Scott, 1874). This mitochondrial genome is comprised of 16,345 bp, and contains the expected 37 genes and control region. The majority of the control region is made up of a large tandem-repeat region, which has a novel pattern not previously observed in other insects. The tandem-repeats region of P. albomaculatus consists of 53 tandem duplications (including one partial repeat), which is the largest number of tandem repeats among all the known insect mitochondrial genomes. Slipped-strand mispairing during replication is likely to have generated this novel pattern of tandem repeats. Comparative analysis of tRNA gene families in sequenced Pentatomomorpha and Lygaeoidea species shows that the pattern of nucleotide conservation is markedly higher on the J-strand. Phylogenetic reconstruction based on mitochondrial genomes suggests that Rhyparochromidae is not the sister group to all the remaining Lygaeoidea, and supports the monophyly of Lygaeoidea.

  18. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Science.gov (United States)

    Warren, Emily Booth; Aicher, Aidan Edward; Fessel, Joshua Patrick; Konradi, Christine

    2017-01-01

    Mitochondrial DNA (mtDNA), the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD) patients who had developed L-DOPA Induced Dyskinesia (LID), compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr) treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  19. Neuroradiologic findings in children with mitochondrial disorder: correlation with mitochondrial respiratory chain defects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinna; Lee, Seung-Koo; Kim, Dong Ik [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Seoul (Korea); Kim, Eung Yeop [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Brain Korea 21 Project for Medical Science, Seoul (Korea); Lee, Young-Mock; Lee, Joon Soo [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Kim, Heung Dong [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Yonsei University College of Medicine, Department of Pediatrics, Seoul (Korea)

    2008-08-15

    Mitochondrial disorders are a heterogeneous group of disorders affecting energy metabolism that can present at any age with a wide variety of clinical symptoms. We investigated brain magnetic resonance (MR) findings in 40 children with defects of the mitochondrial respiratory chain (MRC) complex and correlated them with the type of MRC defects. Enrolled were 40 children with MRC defects in biochemical enzyme assay of the muscle specimen. Twenty-one children were found to have classical syndromes of mitochondrial disorders and 19 children presented nonspecific mitochondrial encephalomyopathies. Their brain MR imaging findings were retrospectively reviewed and correlated with the biochemical defect in the MRC complex. Children with MRC defects showed various neuroradiologic features on brain MR imaging that resulted from a complex genetic background and a heterogeneous phenotype. Rapid progression of atrophy involving all structures of the brain with variable involvement of deep gray and white matter are the most frequent MR findings in children with MRC defects in both classical syndromes of mitochondrial disorder and nonspecific mitochondrial encephalomyopathies. The type of biochemical defect in the MRC complex enzyme did not correlate with brain MR findings in child patients. (orig.)

  20. Neuroradiologic findings in children with mitochondrial disorder: correlation with mitochondrial respiratory chain defects

    International Nuclear Information System (INIS)

    Kim, Jinna; Lee, Seung-Koo; Kim, Dong Ik; Kim, Eung Yeop; Lee, Young-Mock; Lee, Joon Soo; Kim, Heung Dong

    2008-01-01

    Mitochondrial disorders are a heterogeneous group of disorders affecting energy metabolism that can present at any age with a wide variety of clinical symptoms. We investigated brain magnetic resonance (MR) findings in 40 children with defects of the mitochondrial respiratory chain (MRC) complex and correlated them with the type of MRC defects. Enrolled were 40 children with MRC defects in biochemical enzyme assay of the muscle specimen. Twenty-one children were found to have classical syndromes of mitochondrial disorders and 19 children presented nonspecific mitochondrial encephalomyopathies. Their brain MR imaging findings were retrospectively reviewed and correlated with the biochemical defect in the MRC complex. Children with MRC defects showed various neuroradiologic features on brain MR imaging that resulted from a complex genetic background and a heterogeneous phenotype. Rapid progression of atrophy involving all structures of the brain with variable involvement of deep gray and white matter are the most frequent MR findings in children with MRC defects in both classical syndromes of mitochondrial disorder and nonspecific mitochondrial encephalomyopathies. The type of biochemical defect in the MRC complex enzyme did not correlate with brain MR findings in child patients. (orig.)

  1. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNAVal mutation

    International Nuclear Information System (INIS)

    Mezghani, Najla; Mnif, Mouna; Kacem, Maha; Mkaouar-Rebai, Emna; Hadj Salem, Ikhlass; Kallel, Nozha; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-01-01

    Highlights: → We report a young Tunisian patient with clinical features of MELAS syndrome. → Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. → We described a novel m.1640A>G mutation in the tRNA Val gene which was absent in 150 controls. → Mitochondrial deletions and POLG1 gene mutations were absent. → The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA Val . This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  2. Cold acclimation increases mitochondrial oxidative capacity without inducing mitochondrial uncoupling in goldfish white skeletal muscle

    Directory of Open Access Journals (Sweden)

    Reinaldo Sousa Dos Santos

    2012-11-01

    Goldfish have been used for cold acclimation studies, which have focused on changes in glycolytic and oxidative enzymes or alterations in lipid composition in skeletal muscle. Here we examine the effects of cold acclimation on the functional properties of isolated mitochondria and permeabilized fibers from goldfish white skeletal muscle, focusing on understanding the types of changes that occur in the mitochondrial respiratory states. We observed that cold acclimation promoted a significant increase in the mitochondrial oxygen consumption rates. Western blot analysis showed that UCP3 was raised by ∼1.5-fold in cold-acclimated muscle mitochondria. Similarly, we also evidenced a rise in the adenine nucleotide translocase content in cold-acclimated muscle mitochondria compared to warm-acclimated mitochondria (0.96±0.05 vs 0.68±0.02 nmol carboxyatractyloside mg−1 protein. This was followed by a 2-fold increment in the citrate synthase activity, which suggests a higher mitochondrial content in cold-acclimated goldfish. Even with higher levels of UCP3 and ANT, the effects of activator (palmitate and inhibitors (carboxyatractyloside and GDP on mitochondrial parameters were similar in both warm- and cold-acclimated goldfish. Thus, we propose that cold acclimation in goldfish promotes an increase in functional oxidative capacity, with higher mitochondrial content without changes in the mitochondrial uncoupling pathways.

  3. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Directory of Open Access Journals (Sweden)

    Emily Booth Warren

    Full Text Available Mitochondrial DNA (mtDNA, the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD patients who had developed L-DOPA Induced Dyskinesia (LID, compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  4. Mitochondrial-epigenetic crosstalk in environmental toxicology.

    Science.gov (United States)

    Weinhouse, Caren

    2017-11-01

    Crosstalk between the nuclear epigenome and mitochondria, both in normal physiological function and in responses to environmental toxicant exposures, is a developing sub-field of interest in environmental and molecular toxicology. The majority (∼99%) of mitochondrial proteins are encoded in the nuclear genome, so programmed communication among nuclear, cytoplasmic, and mitochondrial compartments is essential for maintaining cellular health. In this review, we will focus on correlative and mechanistic evidence for direct impacts of each system on the other, discuss demonstrated or potential crosstalk in the context of chemical insult, and highlight biological research questions for future study. We will first review the two main signaling systems: nuclear signaling to the mitochondria [anterograde signaling], best described in regulation of oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis in response to environmental signals received by the nucleus, and mitochondrial signals to the nucleus [retrograde signaling]. Both signaling systems can communicate intracellular energy needs or a need to compensate for dysfunction to maintain homeostasis, but both can also relay inappropriate signals in the presence of dysfunction in either system and contribute to adverse health outcomes. We will first review these two signaling systems and highlight known or biologically feasible epigenetic contributions to both, then briefly discuss the emerging field of epigenetic regulation of the mitochondrial genome, and finally discuss putative "crosstalk phenotypes", including biological phenomena, such as caloric restriction, maintenance of stemness, and circadian rhythm, and states of disease or loss of function, such as cancer and aging, in which both the nuclear epigenome and mitochondria are strongly implicated. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination

    KAUST Repository

    Blomme, Jonas

    2017-04-19

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gainand loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.

  6. Comparative analysis of the mitochondrial genome of the fungus Colletotrichum lindemuthianum, the causal agent of anthracnose in common beans.

    Science.gov (United States)

    de Queiroz, Casley Borges; Santana, Mateus Ferreira; Pereira Vidigal, Pedro M; de Queiroz, Marisa Vieira

    2018-03-01

    Fungi of the genus Colletotrichum are economically important and are used as models in plant-pathogen interaction studies. In this study, the complete mitochondrial genomes of two Colletotrichum lindemuthianum isolates were sequenced and compared with the mitochondrial genomes of seven species of Colletotrichum. The mitochondrial genome of C. lindemuthianum is a typical circular molecule 37,446 bp (isolate 89 A 2 2-3) and 37,440 bp (isolate 83.501) in length. The difference of six nucleotides between the two genomes is the result of a deletion in the ribosomal protein S3 (rps3) gene in the 83.501 isolate. In addition, substitution of adenine for guanine within the rps3 gene in the mitochondrial genome of the 83.501 isolate was observed. Compared to the previously sequenced C. lindemuthianum mitochondrial genome, an exon no annotated in the cytochrome c oxidase I (cox1) gene and a non-conserved open reading frame (ncORF) were observed. The size of the mitochondrial genomes of the seven species of Colletotrichum was highly variable, being attributed mainly to the ncORF, ranging from one to 10 and also from introns ranging from one to 11 and which encode a total of up to nine homing endonucleases. This paper reports for the first time by means of transcriptome that then ncORFs are transcribed in Colletotrichum spp. Phylogeny data revealed that core mitochondrial genes could be used as an alternative in phylogenetic relationship studies in Colletotrichum spp. This work contributes to the genetic and biological knowledge of Colletotrichum spp., which is of great economic and scientific importance.

  7. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Susana Rovira-Llopis

    2017-04-01

    Full Text Available Mitochondria play a key role in maintaining cellular metabolic homeostasis. These organelles have a high plasticity and are involved in dynamic processes such as mitochondrial fusion and fission, mitophagy and mitochondrial biogenesis. Type 2 diabetes is characterised by mitochondrial dysfunction, high production of reactive oxygen species (ROS and low levels of ATP. Mitochondrial fusion is modulated by different proteins, including mitofusin-1 (MFN1, mitofusin-2 (MFN2 and optic atrophy (OPA-1, while fission is controlled by mitochondrial fission 1 (FIS1, dynamin-related protein 1 (DRP1 and mitochondrial fission factor (MFF. PARKIN and (PTEN-induced putative kinase 1 (PINK1 participate in the process of mitophagy, for which mitochondrial fission is necessary. In this review, we discuss the molecular pathways of mitochondrial dynamics, their impairment under type 2 diabetes, and pharmaceutical approaches for targeting mitochondrial dynamics, such as mitochondrial division inhibitor-1 (mdivi-1, dynasore, P110 and 15-oxospiramilactone. Furthermore, we discuss the pathophysiological implications of impaired mitochondrial dynamics, especially in type 2 diabetes.

  8. Mitochondrial bioenergetics decay in aging: beneficial effect of melatonin.

    Science.gov (United States)

    Paradies, Giuseppe; Paradies, Valeria; Ruggiero, Francesca M; Petrosillo, Giuseppe

    2017-11-01

    Aging is a biological process characterized by progressive decline in physiological functions, increased oxidative stress, reduced capacity to respond to stresses, and increased risk of contracting age-associated disorders. Mitochondria are referred to as the powerhouse of the cell through their role in the oxidative phosphorylation to generate ATP. These organelles contribute to the aging process, mainly through impairment of electron transport chain activity, opening of the mitochondrial permeability transition pore and increased oxidative stress. These events lead to damage to proteins, lipids and mitochondrial DNA. Cardiolipin, a phospholipid of the inner mitochondrial membrane, plays a pivotal role in several mitochondrial bioenergetic processes as well as in mitochondrial-dependent steps of apoptosis and in mitochondrial membrane stability and dynamics. Cardiolipin alterations are associated with mitochondrial bienergetics decline in multiple tissues in a variety of physiopathological conditions, as well as in the aging process. Melatonin, the major product of the pineal gland, is considered an effective protector of mitochondrial bioenergetic function. Melatonin preserves mitochondrial function by preventing cardiolipin oxidation and this may explain, at least in part, the protective role of this compound in mitochondrial physiopathology and aging. Here, mechanisms through which melatonin exerts its protective role against mitochondrial dysfunction associated with aging and age-associated disorders are discussed.

  9. Towards a functional definition of the mitochondrial human proteome

    Directory of Open Access Journals (Sweden)

    Mauro Fasano

    2016-03-01

    Full Text Available The mitochondrial human proteome project (mt-HPP was initiated by the Italian HPP group as a part of both the chromosome-centric initiative (C-HPP and the “biology and disease driven” initiative (B/D-HPP. In recent years several reports highlighted how mitochondrial biology and disease are regulated by specific interactions with non-mitochondrial proteins. Thus, it is of great relevance to extend our present view of the mitochondrial proteome not only to those proteins that are encoded by or transported to mitochondria, but also to their interactors that take part in mitochondria functionality. Here, we propose a graphical representation of the functional mitochondrial proteome by retrieving mitochondrial proteins from the NeXtProt database and adding to the network their interactors as annotated in the IntAct database. Notably, the network may represent a reference to map all the proteins that are currently being identified in mitochondrial proteomics studies.

  10. Mitochondrial Dysfunction: Different Routes to Alzheimer’s Disease Therapy

    Directory of Open Access Journals (Sweden)

    Pasquale Picone

    2014-01-01

    Full Text Available Mitochondria are dynamic ATP-generating organelle which contribute to many cellular functions including bioenergetics processes, intracellular calcium regulation, alteration of reduction-oxidation potential of cells, free radical scavenging, and activation of caspase mediated cell death. Mitochondrial functions can be negatively affected by amyloid β peptide (Aβ, an important component in Alzheimer’s disease (AD pathogenesis, and Aβ can interact with mitochondria and cause mitochondrial dysfunction. One of the most accepted hypotheses for AD onset implicates that mitochondrial dysfunction and oxidative stress are one of the primary events in the insurgence of the pathology. Here, we examine structural and functional mitochondrial changes in presence of Aβ. In particular we review data concerning Aβ import into mitochondrion and its involvement in mitochondrial oxidative stress, bioenergetics, biogenesis, trafficking, mitochondrial permeability transition pore (mPTP formation, and mitochondrial protein interaction. Moreover, the development of AD therapy targeting mitochondria is also discussed.

  11. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Plastome Sequencing of Ten Nonmodel Crop Species Uncovers a Large Insertion of Mitochondrial DNA in Cashew.

    Science.gov (United States)

    Rabah, Samar O; Lee, Chaehee; Hajrah, Nahid H; Makki, Rania M; Alharby, Hesham F; Alhebshi, Alawiah M; Sabir, Jamal S M; Jansen, Robert K; Ruhlman, Tracey A

    2017-11-01

    In plant evolution, intracellular gene transfer (IGT) is a prevalent, ongoing process. While nuclear and mitochondrial genomes are known to integrate foreign DNA via IGT and horizontal gene transfer (HGT), plastid genomes (plastomes) have resisted foreign DNA incorporation and only recently has IGT been uncovered in the plastomes of a few land plants. In this study, we completed plastome sequences for l0 crop species and describe a number of structural features including variation in gene and intron content, inversions, and expansion and contraction of the inverted repeat (IR). We identified a putative in cinnamon ( J. Presl) and other sequenced Lauraceae and an apparent functional transfer of to the nucleus of quinoa ( Willd.). In the orchard tree cashew ( L.), we report the insertion of an ∼6.7-kb fragment of mitochondrial DNA into the plastome IR. BLASTn analyses returned high identity hits to mitogenome sequences including an intact open reading frame. Using three plastome markers for five species of , we generated a phylogeny to investigate the distribution and timing of the insertion. Four species share the insertion, suggesting that this event occurred <20 million yr ago in a single clade in the genus. Our study extends the observation of mitochondrial to plastome IGT to include long-lived tree species. While previous studies have suggested possible mechanisms facilitating IGT to the plastome, more examples of this phenomenon, along with more complete mitogenome sequences, will be required before a common, or variable, mechanism can be elucidated. Copyright © 2017 Crop Science Society of America.

  13. Laccase-13 Regulates Seed Setting Rate by Affecting Hydrogen Peroxide Dynamics and Mitochondrial Integrity in Rice

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-07-01

    Full Text Available Seed setting rate is one of the most important components of rice grain yield. To date, only several genes regulating setting rate have been identified in plant. In this study, we showed that laccase-13 (OsLAC13, a member of laccase family genes which are known for their roles in modulating phenylpropanoid pathway and secondary lignification in cell wall, exerts a regulatory function in rice seed setting rate. OsLAC13 expressed in anthers and promotes hydrogen peroxide production both in vitro and in the filaments and anther connectives. Knock-out of OsLAC13 showed significantly increased seed setting rate, while overexpression of this gene exhibited induced mitochondrial damage and suppressed sugar transportation in anthers, which in turn affected seed setting rate. OsLAC13 also induced H2O2 production and mitochondrial damage in the root tip cells which caused the lethal phenotype. We also showed that high abundant of OsmiR397, the suppressor of OsLAC13 mRNA, increased the seed setting rate of rice plants, and restrains H2O2 accumulation in roots during oxidative stress. Our results suggested a novel regulatory role of OsLAC13 gene in regulating seed setting rate by affecting H2O2 dynamics and mitochondrial integrity in rice.

  14. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    Science.gov (United States)

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  15. Co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins in the lactation-induced mitochondrial hypotrophy of rat brown fat.

    Science.gov (United States)

    Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F

    1995-01-01

    The relative abundance of the mitochondrial-encoded mRNAs for cytochrome c oxidase subunit II and NADH dehydrogenase subunit I was lower in brown adipose tissue (BAT) from lactating rats than in virgin controls. This decrease was in parallel with a significant decrease in mitochondrial 16 S rRNA levels and in the relative content of mitochondrial DNA in the tissue. BAT from lactating rats showed lowered mRNA expression of the nuclear-encoded genes for the mitochondrial uncoupling protein, subunit IV of cytochrome c oxidase and the adenine nucleotide translocase isoforms ANT1 and ANT2, whereas mRNA levels for the ATP synthase beta-subunit were unchanged. However, the relative content of this last protein was lower in BAT mitochondria from lactating rats than in virgin controls. It is concluded that lactation-induced mitochondrial hypotrophy in BAT is associated with a co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins. This decrease is caused by regulatory events acting at different levels, including pre- and post-transcriptional regulation. BAT appears to be a useful model with which to investigate the molecular mechanisms involved in the co-ordination of the expression of the mitochondrial and nuclear genomes during mitochondrial biogenesis. Images Figure 1 Figure 2 PMID:8948428

  16. Mitochondrial Dysfunction Causes Oxidative Stress and Tapetal Apoptosis in Chemical Hybridization Reagent-Induced Male Sterility in Wheat

    Directory of Open Access Journals (Sweden)

    Shuping Wang

    2018-01-01

    Full Text Available Male sterility in plants has been strongly linked to mitochondrial dysfunction. Chemical hybridization agent (CHA-induced male sterility is an important tool in crop heterosis. Therefore, it is important to better understand the relationship between mitochondria and CHA-induced male sterility in wheat. This study reports on the impairment of mitochondrial function duo to CHA-SQ-1, which occurs by decreasing cytochrome oxidase and adenosine triphosphate synthase protein levels and theirs activities, respiratory rate, and in turn results in the inhibition of the mitochondrial electron transport chain (ETC, excessive production of reactive oxygen species (ROS and disruption of the alternative oxidase pathway. Subsequently, excessive ROS combined with MnSOD defects results in damage to the mitochondrial membrane, followed by ROS release into the cytoplasm. The microspores underwent severe oxidative stress during pollen development. Furthermore, chronic oxidative stress, together with the overexpression of type II metacaspase, triggered premature tapetal apoptosis, which resulted in pollen abortion. Accordingly, we propose a metabolic pathway for mitochondrial-mediated male sterility in wheat, which provides information on the molecular events underlying CHA-SQ-1-induced abortion of anthers and may serve as an additional guide to the practical application of hybrid breeding.

  17. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development, and suppresses plant innate immunity

    Science.gov (United States)

    Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.

    2009-01-01

    Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557

  18. Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes.

    Science.gov (United States)

    Hughey, Jeffery R; Gabrielson, Paul W; Rohmer, Laurence; Tortolani, Jacquie; Silva, Mayra; Miller, Kathy Ann; Young, Joel D; Martell, Craig; Ruediger, Erik

    2014-06-04

    Plant species, including algae and fungi, are based on type specimens to which the name of a taxon is permanently attached. Applying a scientific name to any specimen therefore requires demonstrating correspondence between the type and that specimen. Traditionally, identifications are based on morpho-anatomical characters, but recently systematists are using DNA sequence data. These studies are flawed if the DNA is isolated from misidentified modern specimens. We propose a genome-based solution. Using 4 × 4 mm(2) of material from type specimens, we assembled 14 plastid and 15 mitochondrial genomes attributed to the red algae Pyropia perforata, Py. fucicola, and Py. kanakaensis. The chloroplast genomes were fairly conserved, but the mitochondrial genomes differed significantly among populations in content and length. Complete genomes are attainable from 19(th) and early 20(th) century type specimens; this validates the effort and cost of their curation as well as supports the practice of the type method.

  19. Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes

    Science.gov (United States)

    Hughey, Jeffery R.; Gabrielson, Paul W.; Rohmer, Laurence; Tortolani, Jacquie; Silva, Mayra; Miller, Kathy Ann; Young, Joel D.; Martell, Craig; Ruediger, Erik

    2014-01-01

    Plant species, including algae and fungi, are based on type specimens to which the name of a taxon is permanently attached. Applying a scientific name to any specimen therefore requires demonstrating correspondence between the type and that specimen. Traditionally, identifications are based on morpho-anatomical characters, but recently systematists are using DNA sequence data. These studies are flawed if the DNA is isolated from misidentified modern specimens. We propose a genome-based solution. Using 4 × 4 mm2 of material from type specimens, we assembled 14 plastid and 15 mitochondrial genomes attributed to the red algae Pyropia perforata, Py. fucicola, and Py. kanakaensis. The chloroplast genomes were fairly conserved, but the mitochondrial genomes differed significantly among populations in content and length. Complete genomes are attainable from 19th and early 20th century type specimens; this validates the effort and cost of their curation as well as supports the practice of the type method. PMID:24894641

  20. Choosing and Using a Plant DNA Barcode

    Science.gov (United States)

    Hollingsworth, Peter M.; Graham, Sean W.; Little, Damon P.

    2011-01-01

    The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1) mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance. PMID:21637336

  1. Choosing and using a plant DNA barcode.

    Directory of Open Access Journals (Sweden)

    Peter M Hollingsworth

    Full Text Available The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1 mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance.

  2. Analysis of regional brain mitochondrial bioenergetics and susceptibility to mitochondrial inhibition utilizing a microplate based system

    Science.gov (United States)

    Sauerbeck, Andrew; Pandya, Jignesh; Singh, Indrapal; Bittman, Kevin; Readnower, Ryan; Bing, Guoying; Sullivan, Patrick

    2012-01-01

    The analysis of mitochondrial bioenergetic function typically has required 50–100 μg of protein per sample and at least 15 min per run when utilizing a Clark-type oxygen electrode. In the present work we describe a method utilizing the Seahorse Biosciences XF24 Flux Analyzer for measuring mitochondrial oxygen consumption simultaneously from multiple samples and utilizing only 5 μg of protein per sample. Utilizing this method we have investigated whether regionally based differences exist in mitochondria isolated from the cortex, striatum, hippocampus, and cerebellum. Analysis of basal mitochondrial bioenergetics revealed that minimal differences exist between the cortex, striatum, and hippocampus. However, the cerebellum exhibited significantly slower basal rates of Complex I and Complex II dependent oxygen consumption (p < 0.05). Mitochondrial inhibitors affected enzyme activity proportionally across all samples tested and only small differences existed in the effect of inhibitors on oxygen consumption. Investigation of the effect of rotenone administration on Complex I dependent oxygen consumption revealed that exposure to 10 pM rotenone led to a clear time dependent decrease in oxygen consumption beginning 12 min after administration (p < 0.05). These studies show that the utilization of this microplate based method for analysis of mitochondrial bioenergetics is effective at quantifying oxygen consumption simultaneously from multiple samples. Additionally, these studies indicate that minimal regional differences exist in mitochondria isolated from the cortex, striatum, or hippocampus. Furthermore, utilization of the mitochondrial inhibitors suggests that previous work indicating regionally specific deficits following systemic mitochondrial toxin exposure may not be the result of differences in the individual mitochondria from the affected regions. PMID:21402103

  3. An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2007-05-01

    Full Text Available Abstract Background The Streptophyta comprises all land plants and six groups of charophycean green algae. The scaly biflagellate Mesostigma viride (Mesostigmatales and the sarcinoid Chlorokybus atmophyticus (Chlorokybales represent the earliest diverging lineages of this phylum. In trees based on chloroplast genome data, these two charophycean green algae are nested in the same clade. To validate this relationship and gain insight into the ancestral state of the mitochondrial genome in the Charophyceae, we sequenced the mitochondrial DNA (mtDNA of Chlorokybus and compared this genome sequence with those of three other charophycean green algae and the bryophytes Marchantia polymorpha and Physcomitrella patens. Results The Chlorokybus genome differs radically from its 42,424-bp Mesostigma counterpart in size, gene order, intron content and density of repeated elements. At 201,763-bp, it is the largest mtDNA yet reported for a green alga. The 70 conserved genes represent 41.4% of the genome sequence and include nad10 and trnL(gag, two genes reported for the first time in a streptophyte mtDNA. At the gene order level, the Chlorokybus genome shares with its Chara, Chaetosphaeridium and bryophyte homologues eight to ten gene clusters including about 20 genes. Notably, some of these clusters exhibit gene linkages not previously found outside the Streptophyta, suggesting that they originated early during streptophyte evolution. In addition to six group I and 14 group II introns, short repeated sequences accounting for 7.5% of the genome were identified. Mitochondrial trees were unable to resolve the correct position of Mesostigma, due to analytical problems arising from accelerated sequence evolution in this lineage. Conclusion The Chlorokybus and Mesostigma mtDNAs exemplify the marked fluidity of the mitochondrial genome in charophycean green algae. The notion that the mitochondrial genome was constrained to remain compact during charophycean

  4. Transcriptome Analyses of Mosaic (MSC Mitochondrial Mutants of Cucumber in a Highly Inbred Nuclear Background

    Directory of Open Access Journals (Sweden)

    Tomasz L. Mróz

    2018-03-01

    Full Text Available Cucumber (Cucumis sativus L. has a large, paternally transmitted mitochondrial genome. Cucumber plants regenerated from cell cultures occasionally show paternally transmitted mosaic (MSC phenotypes, characterized by slower growth, chlorotic patterns on the leaves and fruit, lower fertility, and rearrangements in their mitochondrial DNAs (mtDNAs. MSC lines 3, 12, and 16 originated from different cell cultures all established using the highly inbred, wild-type line B. These MSC lines possess different rearrangements and under-represented regions in their mtDNAs. We completed RNA-seq on normalized and non-normalized cDNA libraries from MSC3, MSC12, and MSC16 to study their nuclear gene-expression profiles relative to inbred B. Results from both libraries indicated that gene expression in MSC12 and MSC16 were more similar to each other than MSC3. Forty-one differentially expressed genes (DEGs were upregulated and one downregulated in the MSC lines relative to B. Gene functional classifications revealed that more than half of these DEGs are associated with stress-response pathways. Consistent with this observation, we detected elevated levels of hydrogen peroxide throughout leaf tissue in all MSC lines compared to wild-type line B. These results demonstrate that independently produced MSC lines with different mitochondrial polymorphisms show unique and shared nuclear responses. This study revealed genes associated with stress response that could become selection targets to develop cucumber cultivars with increased stress tolerance, and further support of cucumber as a model plant to study nuclear-mitochondrial interactions.

  5. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia.

    Science.gov (United States)

    McCarthy, Cathal; Kenny, Louise C

    2016-09-08

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates.

  6. Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis.

    Science.gov (United States)

    Knuever, Jana; Poeggeler, Burkhard; Gáspár, Erzsébet; Klinger, Matthias; Hellwig-Burgel, Thomas; Hardenbicker, Celine; Tóth, Balázs I; Bíró, Tamás; Paus, Ralf

    2012-03-01

    Mitochondrial capacity and metabolic potential are under the control of hormones, such as thyroid hormones. The most proximal regulator of the hypothalamic-pituitary-thyroid (HPT) axis, TRH, is the key hypothalamic integrator of energy metabolism via its impact on thyroid hormone secretion. Here, we asked whether TRH directly modulates mitochondrial functions in normal, TRH-receptor-positive human epidermis. Organ-cultured human skin was treated with TRH (5-100 ng/ml) for 12-48 h. TRH significantly increased epidermal immunoreactivity for the mitochondria-selective subunit I of respiratory chain complex IV (MTCO1). This resulted from an increased MTCO1 transcription and protein synthesis and a stimulation of mitochondrial biogenesis as demonstrated by transmission electron microscopy and TRH-enhanced mitochondrial DNA synthesis. TRH also significantly stimulated the transcription of several other mitochondrial key genes (TFAM, HSP60, and BMAL1), including the master regulator of mitochondrial biogenesis (PGC-1α). TRH significantly enhanced mitochondrial complex I and IV enzyme activity and enhanced the oxygen consumption of human skin samples, which shows that the stimulated mitochondria are fully vital because the main source for cellular oxygen consumption is mitochondrial endoxidation. These findings identify TRH as a potent, novel neuroendocrine stimulator of mitochondrial activity and biogenesis in human epidermal keratinocytes in situ. Thus, human epidermis offers an excellent model for dissecting neuroendocrine controls of human mitochondrial biology under physiologically relevant conditions and for exploring corresponding clinical applications.

  7. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    Science.gov (United States)

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte

  8. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong; Yu, Rong [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden); Jin, Shao-Bo [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Han, Liwei [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden); Lendahl, Urban [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Zhao, Jian, E-mail: Jian.Zhao@ki.se [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden); Nistér, Monica [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden)

    2013-11-01

    Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and cause mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109–154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. - Highlights: • MIEF1 and MIEF2 recruit Drp1 to mitochondria and cause mitochondrial fusion. • MIEF2, like MIEF1, can interact with Drp1 and hFis1. • MIEF1 and MIEF2 are differentially expressed in human tissues during development. • MIEF2 exerts a stronger fusion

  9. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics

    International Nuclear Information System (INIS)

    Liu, Tong; Yu, Rong; Jin, Shao-Bo; Han, Liwei; Lendahl, Urban; Zhao, Jian; Nistér, Monica

    2013-01-01

    Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and cause mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109–154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. - Highlights: • MIEF1 and MIEF2 recruit Drp1 to mitochondria and cause mitochondrial fusion. • MIEF2, like MIEF1, can interact with Drp1 and hFis1. • MIEF1 and MIEF2 are differentially expressed in human tissues during development. • MIEF2 exerts a stronger fusion

  10. Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes.

    Science.gov (United States)

    Tuteja, Reetu; Saxena, Rachit K; Davila, Jaime; Shah, Trushar; Chen, Wenbin; Xiao, Yong-Li; Fan, Guangyi; Saxena, K B; Alverson, Andrew J; Spillane, Charles; Town, Christopher; Varshney, Rajeev K

    2013-10-01

    The hybrid pigeonpea (Cajanus cajan) breeding technology based on cytoplasmic male sterility (CMS) is currently unique among legumes and displays major potential for yield increase. CMS is defined as a condition in which a plant is unable to produce functional pollen grains. The novel chimeric open reading frames (ORFs) produced as a results of mitochondrial genome rearrangements are considered to be the main cause of CMS. To identify these CMS-related ORFs in pigeonpea, we sequenced the mitochondrial genomes of three C. cajan lines (the male-sterile line ICPA 2039, the maintainer line ICPB 2039, and the hybrid line ICPH 2433) and of the wild relative (Cajanus cajanifolius ICPW 29). A single, circular-mapping molecule of length 545.7 kb was assembled and annotated for the ICPA 2039 line. Sequence annotation predicted 51 genes, including 34 protein-coding and 17 RNA genes. Comparison of the mitochondrial genomes from different Cajanus genotypes identified 31 ORFs, which differ between lines within which CMS is present or absent. Among these chimeric ORFs, 13 were identified by comparison of the related male-sterile and maintainer lines. These ORFs display features that are known to trigger CMS in other plant species and to represent the most promising candidates for CMS-related mitochondrial rearrangements in pigeonpea.

  11. New progress in snake mitochondrial gene rearrangement.

    Science.gov (United States)

    Chen, Nian; Zhao, Shujin

    2009-08-01

    To further understand the evolution of snake mitochondrial genomes, the complete mitochondrial DNA (mtDNA) sequences were determined for representative species from two snake families: the Many-banded krait, the Banded krait, the Chinese cobra, the King cobra, the Hundred-pace viper, the Short-tailed mamushi, and the Chain viper. Thirteen protein-coding genes, 22-23 tRNA genes, 2 rRNA genes, and 2 control regions were identified in these mtDNAs. Duplication of the control region and translocation of the tRNAPro gene were two notable features of the snake mtDNAs. These results from the gene rearrangement comparisons confirm the correctness of traditional classification schemes and validate the utility of comparing complete mtDNA sequences for snake phylogeny reconstruction.

  12. Mitochondrial oxidative stress and cardiac ageing.

    Science.gov (United States)

    Martín-Fernández, Beatriz; Gredilla, Ricardo

    According with different international organizations, cardiovascular diseases are becoming the first cause of death in western countries. Although exposure to different risk factors, particularly those related to lifestyle, contribute to the etiopathogenesis of cardiac disorders, the increase in average lifespan and aging are considered major determinants of cardiac diseases events. Mitochondria and oxidative stress have been pointed out as relevant factors both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy and diabetic cardiomyopathy. During aging, cellular processes related with mitochondrial function, such as bioenergetics, apoptosis and inflammation are altered leading to cardiac dysfunction. Increasing our knowledge about the mitochondrial mechanisms related with the aging process, will provide new strategies in order to improve this process, particularly the cardiovascular ones. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Understanding D-Ribose and Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Diane E. Mahoney

    2018-02-01

    Full Text Available Mitochondria are important organelles referred to as cellular powerhouses for their unique properties of cellular energy production.  With many pathologic conditions and aging, mitochondrial function declines, and there is a reduction in the production of adenosine triphosphate. The energy carrying molecule generated by cellular respiration and by pentose phosphate pathway, an alternative pathway of glucose metabolism. D-ribose is a naturally occurring monosaccharide found in the cells and particularly in the mitochondria is essential in energy production. Without sufficient energy, cells cannot maintain integrity and function. Supplemental D-ribose has been shown to improve cellular processes when there is mitochondrial dysfunction. When individuals take supplemental D-ribose, it can bypass part of the pentose pathway to produce D-ribose-5-phosphate for the production of energy. In this article, we review how energy is produced by cellular respiration, the pentose pathway, and the use of supplemental D-ribose.

  14. Mitochondrial disfunction and apoptosis in leukemia cells

    Directory of Open Access Journals (Sweden)

    Annamaria PALLAG

    2008-05-01

    Full Text Available Apoptosis or programmed cell death is a process which involves the intentional degradation of the cell from the inside, the participation of the mitochondria to propagate the apoptotic signal, the alteration of the phospholipid cell membrane composition, the perturbation and alteration of the cell metabolism.The antineoplastic drugs is inducing the apoptotic process in the sensitive cells.It have been studied acute lymphoblastic leukemia cells. Using Annexin V-PE Apoptosis Detection Kit and flow cytometer, the amount of cells undergoing apoptosis, in various stages of the antineoplasic treatment, was detected. At the same time, were monitored, the serum level of malondialdehyde. The results obtained confirm the alteration of the mitochondrial metabolism. We can observed the mitochondrial dysfunction role in cell apoptosis.

  15. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics

    Science.gov (United States)

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E.; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F.G.; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER–mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  16. Mitochondrial DNA sequence-based phylogenetic relationship ...

    Indian Academy of Sciences (India)

    cophaga ranges from 0.037–0.106 and 0.049–0.207 for COI and ND5 genes, respectively (tables 2 and 3). Analysis of genetic distance on the basis of sequence difference for both the mitochondrial genes shows very little genetic difference. The discrepancy in the phylogenetic trees based on individ- ual genes may be due ...

  17. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis.

    OpenAIRE

    Mukhin, A G; Papadopoulos, V; Costa, E; Krueger, K E

    1989-01-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine bin...

  18. The Mitochondrial Genome of Toxocara canis

    OpenAIRE

    Jex, Aaron R.; Waeschenbach, Andrea; Littlewood, D. Timothy J.; Hu, Min; Gasser, Robin B.

    2008-01-01

    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provid...

  19. The mitochondrial genome in embryo technologies.

    Science.gov (United States)

    Hiendleder, S; Wolf, E

    2003-08-01

    The mammalian mitochondrial genome encodes for 37 genes which are involved in a broad range of cellular functions. The mitochondrial DNA (mtDNA) molecule is commonly assumed to be inherited through oocyte cytoplasm in a clonal manner, and apparently species-specific mechanisms have evolved to eliminate the contribution of sperm mitochondria after natural fertilization. However, recent evidence for paternal mtDNA inheritance in embryos and offspring questions the general validity of this model, particularly in the context of assisted reproduction and embryo biotechnology. In addition to normal mt DNA haplotype variation, oocytes and spermatozoa show remarkable differences in mtDNA content and may be affected by inherited or acquired mtDNA aberrations. All these parameters have been correlated with gamete quality and reproductive success rates. Nuclear transfer (NT) technology provides experimental models for studying interactions between nuclear and mitochondrial genomes. Recent studies demonstrated (i) a significant effect of mtDNA haplotype or other maternal cytoplasmic factors on the efficiency of NT; (ii) phenotypic differences between transmitochondrial clones pointing to functionally relevant nuclear-cytoplasmic interactions; and (iii) neutral or non-neutral selection of mtDNA haplotypes in heteroplasmic conditions. Mitochondria form a dynamic reticulum, enabling complementation of mitochondrial components and possibly mixing of different mtDNA populations in heteroplasmic individuals. Future directions of research on mtDNA in the context of reproductive biotechnology range from the elimination of adverse effects of artificial heteroplasmy, e.g. created by ooplasm transfer, to engineering of optimized constellations of nuclear and cytoplasmic genes for the production of superior livestock.

  20. Solar radiation and mitochondrial DNA damage

    International Nuclear Information System (INIS)

    Hill, H.Z.; Locitzer, J.; Nassrin, E.; Ogbonnaya, A.; Hubbard, K.

    2003-01-01

    The 16.6 kB human mitochondrial DNA contains two homologous 13 base pair direct repeats separated by about 5 kB. During asynchronous mitochondrial DNA replication, the distant repeat sequences are thought to anneal, resulting in the looping out of a portion of the non-template strand which is subsequently deleted as a result of interaction with reactive oxygen species (ROS). A normal daughter and a deleted daughter mitochondrion result from such insults. This deletion has been termed the common deletion as it is the most frequent of the known mitochondrial DNA deletions. The common deletion is present in high frequency in several mitochondrial disorders, accumulates with age in slow turnover tissues and is increased in sun-exposed skin. Berneburg, et al. (Photochem. Photobiol. 66: 271, 1997) induced the common deletion in normal human fibroblasts after repeated exposures to UVA. In this study, the common deletion has been shown to be induced by repeated non-lethal exposures to FS20 sunlamp irradiation. Increases in the common deletion were demonstrated using nested PCR which produced a 303 bp product that was compared to a 324 bp product that required the presence of the undeleted 5 kB region. The cells were exposed to 10 repeated doses ranging from 0.5 (UVB) - 0.24 (UVA) J/sq m to 14.4 (UVB) - 5.8 J/sq m (UVA) measured using a UVX digital radiometer and UVB and UVA detectors respectively. Comparison with the earlier study by Berneberg, et al. suggests that this type of simulated solar damage is considerably more effective in fewer exposures than UVA radiation alone. The common deletion provides a cytoplasmic end-point for ROS damage produced by low dose chronic irradiations and other low level toxic exposures and should prove useful in evaluating cytoplasmic damage produced by ionizing radiation as well

  1. Mitochondrial DNA diagnosis for taeniasis and cysticercosis.

    Science.gov (United States)

    Yamasaki, Hiroshi; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Sato, Marcello Otake; Ito, Akira

    2006-01-01

    Molecular diagnosis for taeniasis and cysticercosis in humans on the basis of mitochondrial DNA analysis was reviewed. Development and application of three different methods, including restriction fragment length polymorphism analysis, base excision sequence scanning thymine-base analysis and multiplex PCR, were described. Moreover, molecular diagnosis of cysticerci found in specimens submitted for histopathology and the molecular detection of taeniasis using copro-DNA were discussed.

  2. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis

    International Nuclear Information System (INIS)

    Mukhin, A.G.; Papadopoulos, V.; Costa, E.; Krueger, K.E.

    1989-01-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine binding sites were tested for their effects on a well-established steroidogenic model system, the Y-1 mouse adrenal tumor cell line. 4'-Chlorodiazepam, PK 11195, and PK 14067 stimulated steroid production by 2-fold in Y-1 cells, whereas diazepam, flunitrazepam, zolpidem, and PK 14068 displayed a lower (1.2- to 1.5-fold) maximal stimulation. In contrast, clonazepam and flumazenil did not stimulate steroid synthesis. The potencies of these compounds to inhibit 3 H-labeled PK 11195 binding to peripheral-type benzodiazepine recognition sites correlated with their potencies to stimulate steroid production. Similar findings were observed in bovine and rat adrenocortical cell preparations. These results suggest that ligands of the peripheral-type benzodiazepine recognition site acting on this mitochondrial receptor can enhance steroid production. This action may contribute specificity to the pharmacological profile of drugs preferentially acting on the benzodiazepine recognition site associated with the outer membrane of certain mitochondrial populations

  3. The mitochondrial free radical theory of aging.

    Science.gov (United States)

    Barja, Gustavo

    2014-01-01

    The mitochondrial free radical theory of aging is reviewed. Only two parameters currently correlate with species longevity in the right sense: the mitochondrial rate of reactive oxygen species (mitROS) production and the degree of fatty acid unsaturation of tissue membranes. Both are low in long-lived animals. In addition, the best-known manipulation that extends longevity, dietary restriction, also decreases the rate of mitROS production and oxidative damage to mtDNA. The same occurs during protein restriction as well as during methionine restriction. These two manipulations also increase maximum longevity in rodents. The decrease in mitROS generation and oxidative stress that takes place in caloric restriction seems to be due to restriction of a single dietary substance: methionine. The information available supports a mitochondrial free radical theory of aging focused on low generation of endogenous damage and low sensitivity of membranes to oxidation in long-lived animals. © 2014 Elsevier Inc. All rights reserved.

  4. Sugarcane genes related to mitochondrial function

    Directory of Open Access Journals (Sweden)

    Fonseca Ghislaine V.

    2001-01-01

    Full Text Available Mitochondria function as metabolic powerhouses by generating energy through oxidative phosphorylation and have become the focus of renewed interest due to progress in understanding the subtleties of their biogenesis and the discovery of the important roles which these organelles play in senescence, cell death and the assembly of iron-sulfur (Fe/S centers. Using proteins from the yeast Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana we searched the sugarcane expressed sequence tag (SUCEST database for the presence of expressed sequence tags (ESTs with similarity to nuclear genes related to mitochondrial functions. Starting with 869 protein sequences, we searched for sugarcane EST counterparts to these proteins using the basic local alignment search tool TBLASTN similarity searching program run against 260,781 sugarcane ESTs contained in 81,223 clusters. We were able to recover 367 clusters likely to represent sugarcane orthologues of the corresponding genes from S. cerevisiae, H. sapiens and A. thaliana with E-value <= 10-10. Gene products belonging to all functional categories related to mitochondrial functions were found and this allowed us to produce an overview of the nuclear genes required for sugarcane mitochondrial biogenesis and function as well as providing a starting point for detailed analysis of sugarcane gene structure and physiology.

  5. Mitochondrial Protein Synthesis, Import, and Assembly

    Science.gov (United States)

    Fox, Thomas D.

    2012-01-01

    The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes. PMID:23212899

  6. Mitochondrial Dysfunction in Metabolic Syndrome and Asthma

    Science.gov (United States)

    Mabalirajan, Ulaganathan; Ghosh, Balaram

    2013-01-01

    Though severe or refractory asthma merely affects less than 10% of asthma population, it consumes significant health resources and contributes significant morbidity and mortality. Severe asthma does not fell in the routine definition of asthma and requires alternative treatment strategies. It has been observed that asthma severity increases with higher body mass index. The obese-asthmatics, in general, have the features of metabolic syndrome and are progressively causing a significant burden for both developed and developing countries thanks to the westernization of the world. As most of the features of metabolic syndrome seem to be originated from central obesity, the underlying mechanisms for metabolic syndrome could help us to understand the pathobiology of obese-asthma condition. While mitochondrial dysfunction is the common factor for most of the risk factors of metabolic syndrome, such as central obesity, dyslipidemia, hypertension, insulin resistance, and type 2 diabetes, the involvement of mitochondria in obese-asthma pathogenesis seems to be important as mitochondrial dysfunction has recently been shown to be involved in airway epithelial injury and asthma pathogenesis. This review discusses current understanding of the overlapping features between metabolic syndrome and asthma in relation to mitochondrial structural and functional alterations with an aim to uncover mechanisms for obese-asthma. PMID:23840225

  7. Mitigating Mitochondrial Genome Erosion Without Recombination.

    Science.gov (United States)

    Radzvilavicius, Arunas L; Kokko, Hanna; Christie, Joshua R

    2017-11-01

    Mitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller's ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely-segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed. Copyright © 2017 by the Genetics Society of America.

  8. Mangiferin Accelerates Glycolysis and Enhances Mitochondrial Bioenergetics

    Directory of Open Access Journals (Sweden)

    Zhongbo Liu

    2018-01-01

    Full Text Available One of the main causes of hyperglycemia is inefficient or impaired glucose utilization by skeletal muscle, which can be exacerbated by chronic high caloric intake. Previously, we identified a natural compound, mangiferin (MGF that improved glucose utilization in high fat diet (HFD-induced insulin resistant mice. To further identify the molecular mechanisms of MGF action on glucose metabolism, we conducted targeted metabolomics and transcriptomics studies of glycolyic and mitochondrial bioenergetics pathways in skeletal muscle. These data revealed that MGF increased glycolytic metabolites that were further augmented as glycolysis proceeded from the early to the late steps. Consistent with an MGF-stimulation of glycolytic flux there was a concomitant increase in the expression of enzymes catalyzing glycolysis. MGF also increased important metabolites in the tricarboxylic acid (TCA cycle, such as α-ketoglutarate and fumarate. Interestingly however, there was a reduction in succinate, a metabolite that also feeds into the electron transport chain to produce energy. MGF increased succinate clearance by enhancing the expression and activity of succinate dehydrogenase, leading to increased ATP production. At the transcriptional level, MGF induced mRNAs of mitochondrial genes and their transcriptional factors. Together, these data suggest that MGF upregulates mitochondrial oxidative capacity that likely drives the acceleration of glycolysis flux.

  9. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  10. Limitations of mitochondrial gene barcoding in Octocorallia.

    Science.gov (United States)

    McFadden, Catherine S; Benayahu, Yehuda; Pante, Eric; Thoma, Jana N; Nevarez, P Andrew; France, Scott C

    2011-01-01

    The widespread assumption that COI and other mitochondrial genes will be ineffective DNA barcodes for anthozoan cnidarians has not been well tested for most anthozoans other than scleractinian corals. Here we examine the limitations of mitochondrial gene barcoding in the sub-class Octocorallia, a large, diverse, and ecologically important group of anthozoans. Pairwise genetic distance values (uncorrected p) were compared for three candidate barcoding regions: the Folmer region of COI; a fragment of the octocoral-specific mitochondrial protein-coding gene, msh1; and an extended barcode of msh1 plus COI with a short, adjacent intergenic region (igr1). Intraspecific variation was barcodes, and there was no discernible barcoding gap between intra- and interspecific p values. In a case study to assess regional octocoral biodiversity, COI and msh1 barcodes each identified 70% of morphospecies. In a second case study, a nucleotide character-based analysis correctly identified 70% of species in the temperate genus Alcyonium. Although interspecific genetic distances were 2× greater for msh1 than COI, each marker identified similar numbers of species in the two case studies, and the extended COI + igr1 + msh1 barcode more effectively discriminated sister taxa in Alcyonium. Although far from perfect for species identification, a COI + igr1 + msh1 barcode nonetheless represents a valuable addition to the depauperate set of characters available for octocoral taxonomy. © 2010 Blackwell Publishing Ltd.

  11. Mitochondrial phylogenomics of modern and ancient equids.

    Science.gov (United States)

    Vilstrup, Julia T; Seguin-Orlando, Andaine; Stiller, Mathias; Ginolhac, Aurelien; Raghavan, Maanasa; Nielsen, Sandra C A; Weinstock, Jacobo; Froese, Duane; Vasiliev, Sergei K; Ovodov, Nikolai D; Clary, Joel; Helgen, Kristofer M; Fleischer, Robert C; Cooper, Alan; Shapiro, Beth; Orlando, Ludovic

    2013-01-01

    The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy's zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya).

  12. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mukhin, A.G.; Papadopoulos, V.; Costa, E.; Krueger, K.E. (Georgetown Univ. School of Medicine, Washington, DC (USA))

    1989-12-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine binding sites were tested for their effects on a well-established steroidogenic model system, the Y-1 mouse adrenal tumor cell line. 4{prime}-Chlorodiazepam, PK 11195, and PK 14067 stimulated steroid production by 2-fold in Y-1 cells, whereas diazepam, flunitrazepam, zolpidem, and PK 14068 displayed a lower (1.2- to 1.5-fold) maximal stimulation. In contrast, clonazepam and flumazenil did not stimulate steroid synthesis. The potencies of these compounds to inhibit {sup 3}H-labeled PK 11195 binding to peripheral-type benzodiazepine recognition sites correlated with their potencies to stimulate steroid production. Similar findings were observed in bovine and rat adrenocortical cell preparations. These results suggest that ligands of the peripheral-type benzodiazepine recognition site acting on this mitochondrial receptor can enhance steroid production. This action may contribute specificity to the pharmacological profile of drugs preferentially acting on the benzodiazepine recognition site associated with the outer membrane of certain mitochondrial populations.

  13. Mitochondrial Phylogenomics of Modern and Ancient Equids

    Science.gov (United States)

    Vilstrup, Julia T.; Seguin-Orlando, Andaine; Stiller, Mathias; Ginolhac, Aurelien; Raghavan, Maanasa; Nielsen, Sandra C. A.; Weinstock, Jacobo; Froese, Duane; Vasiliev, Sergei K.; Ovodov, Nikolai D.; Clary, Joel; Helgen, Kristofer M.; Fleischer, Robert C.; Cooper, Alan; Shapiro, Beth; Orlando, Ludovic

    2013-01-01

    The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy’s zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya). PMID:23437078

  14. Mitochondrial phylogenomics of modern and ancient equids.

    Directory of Open Access Journals (Sweden)

    Julia T Vilstrup

    Full Text Available The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy's zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga. Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya.

  15. Mitochondrial uncoupling proteins and energy metabolism

    Directory of Open Access Journals (Sweden)

    Rosa Anna Busiello

    2015-02-01

    Full Text Available Understanding the metabolic factors that contribute to energy metabolism (EM is critical for the development of new treatments for obesity and related diseases. Mitochondrial oxidative phosphorylation is not perfectly coupled to ATP synthesis, and the process of proton-leak plays a crucial role. Proton-leak accounts for a significant part of the resting metabolic rate and therefore enhancement of this process represents a potential target for obesity treatment. Since their discovery, uncoupling proteins have stimulated great interest due to their involvement in mitochondrial-inducible proton-leak. Despite the widely accepted uncoupling/thermogenic effect of uncoupling protein one (UCP1, which was the first in this family to be discovered, the reactions catalyzed by its homologue UCP3 and the physiological role remain under debate.This review provides an overview of the role played by UCP1 and UCP3 in mitochondrial uncoupling/functionality as well as EM and suggests that they are a potential therapeutic target for treating obesity and its related diseases such as type II diabetes mellitus.

  16. Loss of mitochondrial transmembrane potential and caspase-9 activation during apoptosis induced by the novel styryl-lactone goniothalamin in HL-60 leukemia cells.

    Science.gov (United States)

    Inayat-Hussain, S H; Annuar, B O; Din, L B; Ali, A M; Ross, D

    2003-08-01

    Styryl-lactones such as goniothalamin represent a new class of compounds with potential anti-cancer properties. In this study, we investigated the mechanisms of goniothalamin (GTN), a plant styryl-lactone induced apoptosis in human promyelocytic leukemia HL-60 cells. This plant extract resulted in apoptosis in HL-60 cells as assessed by the externalisation of phosphatidylserine. Using the mitochondrial membrane dye (DIOC(6)) in conjunction with flow cytometry, we found that GTN treated HL-60 cells demonstrated a loss of mitochondrial transmembrane potential (Deltapsi(m)). Further immunoblotting on these cells showed activation of initiator caspase-9 and the executioner caspases-3 and -7. Pretreatment with the pharmacological caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) abrogated apoptosis as assessed by all of the apoptotic features in this study. In summary, our results demonstrate that goniothalamin-induced apoptosis occurs via the mitochondrial pathway in a caspase dependent manner.

  17. Ischemic preconditioning improves mitochondrial tolerance to experimental calcium overload.

    Science.gov (United States)

    Crestanello, Juan A; Doliba, Nicolai M; Babsky, Andriy M; Doliba, Natalia M; Niibori, Koki; Whitman, Glenn J R; Osbakken, Mary D

    2002-04-01

    Ca(2+) overload leads to mitochondrial uncoupling, decreased ATP synthesis, and myocardial dysfunction. Pharmacologically opening of mitochondrial K(ATP) channels decreases mitochondrial Ca(2+) uptake, improving mitochondrial function during Ca(2+) overload. Ischemic preconditioning (IPC), by activating mitochondrial K(ATP) channels, may attenuate mitochondrial Ca(2+) overload and improve mitochondrial function during reperfusion. The purpose of these experiments was to study the effect of IPC (1) on mitochondrial function and (2) on mitochondrial tolerance to experimental Ca(2+) overload. Rat hearts (n = 6/group) were subjected to (a) 30 min of equilibration, 25 min of ischemia, and 30 min of reperfusion (Control) or (b) two 5-min episodes of ischemic preconditioning, 25 min of ischemia, and 30 min of reperfusion (IPC). Developed pressure (DP) was measured. Heart mitochondria were isolated at end-Equilibration (end-EQ) and at end-Reperfusion (end-RP). Mitochondrial respiratory function (state 2, oxygen consumption with substrate only; state 3, oxygen consumption stimulated by ADP; state 4, oxygen consumption after cessation of ADP phosphorylation; respiratory control index (RCI, state 3/state 4); rate of oxidative phosphorylation (ADP/Deltat), and ADP:O ratio) was measured with polarography using alpha-ketoglutarate as a substrate in the presence of different Ca(2+) concentrations (0 to 5 x 10(-7) M) to simulate Ca(2+) overload. IPC improved DP at end-RP. IPC did not improve preischemic mitochondrial respiratory function or preischemic mitochondrial response to Ca(2+) loading. IPC improved state 3, ADP/Deltat, and RCI during RP. Low Ca(2+) levels (0.5 and 1 x 10(-7) M) stimulated mitochondrial function in both groups predominantly in IPC. The Control group showed evidence of mitochondrial uncoupling at lower Ca(2+) concentrations (1 x 10(-7) M). IPC preserved state 3 at high Ca(2+) concentrations. The cardioprotective effect of IPC results, in part, from

  18. Extensive structural variations between mitochondrial genomes of CMS and normal peppers (Capsicum annuum L.) revealed by complete nucleotide sequencing.

    Science.gov (United States)

    Jo, Yeong Deuk; Choi, Yoomi; Kim, Dong-Hwan; Kim, Byung-Dong; Kang, Byoung-Cheorl

    2014-07-04

    Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. Although large portion of sequence context was

  19. Are Synonymous Substitutions in Flowering Plant Mitochondria Neutral?

    Science.gov (United States)

    Wynn, Emily L; Christensen, Alan C

    2015-10-01

    Angiosperm mitochondrial genes appear to have very low mutation rates, while non-gene regions expand, diverge, and rearrange quickly. One possible explanation for this disparity is that synonymous substitutions in plant mitochondrial genes are not truly neutral and selection keeps their occurrence low. If this were true, the explanation for the disparity in mutation rates in genes and non-genes needs to consider selection as well as mechanisms of DNA repair. Rps14 is co-transcribed with cob and rpl5 in most plant mitochondrial genomes, but in some genomes, rps14 has been duplicated to the nucleus leaving a pseudogene in the mitochondria. This provides an opportunity to compare neutral substitution rates in pseudogenes with synonymous substitution rates in the orthologs. Genes and pseudogenes of rps14 have been aligned among different species and the mutation rates have been calculated. Neutral substitution rates in pseudogenes and synonymous substitution rates in genes are significantly different, providing evidence that synonymous substitutions in plant mitochondrial genes are not completely neutral. The non-neutrality is not sufficient to completely explain the exceptionally low mutation rates in land plant mitochondrial genomes, but selective forces appear to play a small role.

  20. Mitochondrial morphology transitions and functions: implications for retrograde signaling?

    Science.gov (United States)

    Picard, Martin; Shirihai, Orian S.; Gentil, Benoit J.

    2013-01-01

    In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment. PMID:23364527

  1. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  2. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Yajin Liao

    2017-02-01

    Full Text Available The mitochondrial calcium uniporter (MCU—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP; however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders.

  3. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity

    DEFF Research Database (Denmark)

    Croteau, Deborah L; Rossi, Marie L; Canugovi, Chandrika

    2012-01-01

    in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present...... in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial......Q helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity....

  4. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    Directory of Open Access Journals (Sweden)

    Antonio eZorzano

    2015-06-01

    Full Text Available Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1 cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy. Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.

  5. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore.

    Science.gov (United States)

    Rottenberg, Hagai; Hoek, Jan B

    2017-10-01

    Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging-related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro-apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. Mitochondrial replacement techniques: egg donation, genealogy and eugenics

    OpenAIRE

    Palacios-Gonz?lez, C?sar

    2016-01-01

    Several objections against the morality of researching or employing mitochondrial replacement techniques have been advanced recently. In this paper, I examine three of these objections and show that they are found wanting. First I examine whether mitochondrial replacement techniques, research and clinical practice, should not be carried out because of possible harms to egg donors. Next I assess whether mitochondrial replacement techniques should be banned because they could affect the study o...

  7. Impaired mitochondrial function in chronically ischemic human heart

    DEFF Research Database (Denmark)

    Stride, Nis Ottesen; Larsen, Steen; Hey-Mogensen, Martin

    2013-01-01

    , and finally to assess myocardial antioxidant levels. Mitochondrial respiration in biopsies from ischemic and nonischemic regions from the left ventricle of the same heart was compared in nine human subjects. Maximal oxidative phosphorylation capacity in fresh muscle fibers was lower in ischemic compared.......05), and the levels of antioxidant protein expression was lower. Diminished mitochondrial respiration capacity and excessive ROS production demonstrate an impaired mitochondrial function in ischemic human heart muscle. No chronic ischemic preconditioning effect was found....

  8. Mitochondrial Plasticity With Exercise Training and Extreme Environments

    DEFF Research Database (Denmark)

    Boushel, Robert; Lundby, Carsten; Qvortrup, Klaus

    2014-01-01

    Mitochondria form a reticulum in skeletal muscle. Exercise training stimulates mitochondrial biogenesis, yet an emerging hypothesis is that training also induces qualitative regulatory changes. Substrate oxidation, oxygen affinity and biochemical coupling efficiency may be differentially regulated...... with training and exposure to extreme environments. Threshold training doses inducing mitochondrial up-regulation remain to be elucidated considering fitness level. SUMMARY: Muscle mitochondrial are responsive to training and environment, yet thresholds for volume vs. regulatory changes and their physiological...

  9. Control of lipid oxidation at the mitochondrial level

    DEFF Research Database (Denmark)

    Sahlin, Kent

    2009-01-01

    , but the mechanisms regulating fuel preferences remain unclear. During intense exercise, oxidation of long-chain fatty acids (LCFAs) decreases, and the major control is likely to be at the mitochondrial level. Potential mitochondrial sites for control of lipid oxidation include transport of LCFAs into mitochondrial......-oxidation by redox state is thought to be an important mechanism for the slowing of lipid oxidation during intensive exercise....

  10. [Diagnosis of mitochondrial disorders in children with next generation sequencing].

    Science.gov (United States)

    Liu, Zhimei; Fang, Fang; Ding, Changhong; Zhang, Weihua; Li, Jiuwei; Yang, Xinying; Wang, Xiaohui; Wu, Yun; Wang, Hongmei; Liu, Liying; Han, Tongli; Wang, Xu; Chen, Chunhong; Lyu, Junlan; Wu, Husheng

    2015-10-01

    To explore the application value of next generation sequencing (NGS) in the diagnosis of mitochondrial disorders. According to mitochondrial disease criteria, genomic DNA was extracted using standard procedure from peripheral venous blood of patients with suspected mitochondrial disease collected from neurological department of Beijing Children's Hospital Affiliated to Capital Medical University between October 2012 and February 2014. Targeted NGS to capture and sequence the entire mtDNA and exons of the 1 000 nuclear genes related to mitochondrial structure and function. Clinical data were collected from patients diagnosed at a molecular level, then clinical features and the relationship between genotype and phenotype were analyzed. Mutation was detected in 21 of 70 patients with suspected mitochondrial disease, in whom 10 harbored mtDNA mutation, while 11 nuclear DNA (nDNA) mutation. In 21 patients, 1 was diagnosed congenital myasthenic syndrome with episodic apnea due to CHAT gene p.I187T homozygous mutation, and 20 were diagnosed mitochondrial disease, in which 10 were Leigh syndrome, 4 were mitochondrial encephalomyopathy with lactic acidosis and stroke like episodes syndrome, 3 were Leber hereditary optic neuropathy (LHON) and LHON plus, 2 were mitochondrial DNA depletion syndrome and 1 was unknown. All the mtDNA mutations were point mutations, which contained A3243G, G3460A, G11778A, T14484C, T14502C and T14487C. Ten mitochondrial disease patients harbored homozygous or compound heterozygous mutations in 5 genes previously shown to cause disease: SURF1, PDHA1, NDUFV1, SUCLA2 and SUCLG1, which had 14 mutations, and 7 of the 14 mutations have not been reported. NGS has a certain application value in the diagnosis of mitochondrial diseases, especially in Leigh syndrome atypical mitochondrial syndrome and rare mitochondrial disorders.

  11. Mitochondrial Bioenergetics During Ischemia and Reperfusion.

    Science.gov (United States)

    Consolini, Alicia E; Ragone, María I; Bonazzola, Patricia; Colareda, Germán A

    2017-01-01

    During ischemia and reperfusion (I/R) mitochondria suffer a deficiency to supply the cardiomyocyte with chemical energy, but also contribute to the cytosolic ionic alterations especially of Ca 2+ . Their free calcium concentration ([Ca 2+ ]m) mainly depends on mitochondrial entrance through the uniporter (UCam) and extrusion in exchange with Na + (mNCX) driven by the electrochemical gradient (ΔΨm). Cardiac energetic is frequently estimated by the oxygen consumption, which determines metabolism coupled to ATP production and to the maintaining of ΔΨm. Nevertheless, a better estimation of heart energy consumption is the total heat release associated to ATP hydrolysis, metabolism, and binding reactions, which is measurable either in the presence or the absence of oxygenation or perfusion. Consequently, a mechano-calorimetrical approach on isolated hearts gives a tool to evaluate muscle economy. The mitochondrial role during I/R depends on the injury degree. We investigated the role of the mitochondrial Ca 2+ transporters in the energetic of hearts stunned by a model of no-flow I/R in rat hearts. This chapter explores an integrated view of previous and new results which give evidences to the mitochondrial role in cardiac stunning by ischemia o hypoxia, and the influence of thyroid alterations and cardioprotective strategies, such as cardioplegic solutions (high K-low Ca, pyruvate) and the phytoestrogen genistein in both sex. Rat ventricles were perfused in a flow-calorimeter at either 30 °C or 37 °C to continuously measure the left ventricular pressure (LVP) and total heat rate (Ht). A pharmacological treatment was done before exposing to no-flow I and R. The post-ischemic contractile (PICR as %) and energetical (Ht) recovery and muscle economy (Eco: P/Ht) were determined during stunning. The functional interaction between mitochondria (Mit) and sarcoplasmic reticulum (SR) was evaluated with selective mitochondrial inhibitors in hearts reperfused with Krebs-10 m

  12. Mitochondrial DNA depletion, mitochondrial mutations and high TFAM expression in hepatocellular carcinoma

    OpenAIRE

    Qiao, Lihua; Ru, Guoqing; Mao, Zhuochao; Wang, Chenghui; Nie, Zhipeng; Li, Qiang; Huang-yang, Yiyi; Zhu, Ling; Liang, Xiaoyang; Yu, Jialing; Jiang, Pingping

    2017-01-01

    We investigated the role of mitochondrial genetic alterations in hepatocellular carcinoma by directly comparing the mitochondrial genomes of 86 matched pairs of HCC and non-tumor liver samples. Substitutions in 637 mtDNA sites were detected, comprising 89.80% transitions and 6.60% transversions. Forty-six somatic variants, including 15 novel mutations, were identified in 40.70% of tumor tissues. Of those, 21 were located in the non-coding region and 25 in the protein-coding region. Twenty-two...

  13. Involvement of the mitochondrial compartment in human NCL fibroblasts

    International Nuclear Information System (INIS)

    Pezzini, Francesco; Gismondi, Floriana; Tessa, Alessandra; Tonin, Paola; Carrozzo, Rosalba; Mole, Sara E.; Santorelli, Filippo M.; Simonati, Alessandro

    2011-01-01

    Highlights: ► Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. ► Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. ► Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  14. Targeting mitochondrial respiration as a therapeutic strategy for cervical cancer.

    Science.gov (United States)

    Tian, Shenglan; Chen, Heng; Tan, Wei

    2018-05-23

    Targeting mitochondrial respiration has been documented as an effective therapeutic strategy in cancer. However, the impact of mitochondrial respiration inhibition on cervical cancer cells are not well elucidated. Using a panel of cervical cancer cell lines, we show that an existing drug atovaquone is active against the cervical cancer cells with high profiling of mitochondrial biogenesis. Atovaquone inhibited proliferation and induced apoptosis with varying efficacy among cervical cancer cell lines regardless of HPV infection, cellular origin and their sensitivity to paclitaxel. We further demonstrated that atovaquone acts on cervical cancer cells via inhibiting mitochondrial respiration. In particular, atovaquone specifically inhibited mitochondrial complex III but not I, II or IV activity, leading to respiration inhibition and energy crisis. Importantly, we found that the different sensitivity of cervical cancer cell lines to atovaquone were due to their differential level of mitochondrial biogenesis and dependency to mitochondrial respiration. In addition, we demonstrated that the in vitro observations were translatable to in vivo cervical cancer xenograft mouse model. Our findings suggest that the mitochondrial biogenesis varies among patients with cervical cancer. Our work also suggests that atovaquone is a useful addition to cervical cancer treatment, particularly to those with high dependency on mitochondrial respiration. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Neurotrophin Therapy of Neurodegenerative Disorders with Mitochondrial Dysfunction

    National Research Council Canada - National Science Library

    Bambrick, Linda L

    2007-01-01

    This research program will determine whether accelerated neuron death due to increased oxidative stress resulting from mitochondrial dysfunction can be compensated or corrected by neurotrophin stimulation...

  16. Neurotrophin Therapy of Neurodegenerative Disorders with Mitochondrial Dysfunction

    National Research Council Canada - National Science Library

    Bambrick, Linda L

    2006-01-01

    This research program will determine whether accelerated neuron death due to increased oxidative stress resulting from mitochondrial dysfunction can be compensated or corrected by neurotrophin stimulation...

  17. Neurotrophin Therapy of Neurodegenerative Disorders with Mitochondrial Dysfunction

    National Research Council Canada - National Science Library

    Bambrick, Linda L

    2004-01-01

    This research program will determine whether accelerated neuron death due to increased oxidative stress resulting from mitochondrial dysfunction can be compensated or corrected by neurotrophin stimulation...

  18. Neurotrophin Therapy of Neurodegenerative Disorders With Mitochondrial Dysfunction

    National Research Council Canada - National Science Library

    Bambrick, Linda L

    2005-01-01

    This research program will determine whether accelerated neuron death due to increased oxidative stress resulting from mitochondrial dysfunction can be compensated or corrected by neurotrophin stimulation...

  19. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA?

    Science.gov (United States)

    Schuster, W; Brennicke, A

    1987-01-01

    We describe an open reading frame (ORF) with high homology to reverse transcriptase in the mitochondrial genome of Oenothera. This ORF displays all the characteristics of an active plant mitochondrial gene with a possible ribosome binding site and 39% T in the third codon position. It is located between a sequence fragment from the plastid genome and one of nuclear origin downstream from the gene encoding subunit 5 of the NADH dehydrogenase. The nuclear derived sequence consists of 528 nucleotides from the small ribosomal RNA and contains an expansion segment unique to nuclear rRNAs. The plastid sequence contains part of the ribosomal protein S4 and the complete tRNA(Ser). The observation that only transcribed sequences have been found i more than one subcellular compartment in higher plants suggests that interorganellar transfer of genetic information may occur via RNA and subsequent local reverse transcription and genomic integration. PMID:14650433

  20. m-AAA Complexes Are Not Crucial for the Survival of Arabidopsis Under Optimal Growth Conditions Despite Their Importance for Mitochondrial Translation.

    Science.gov (United States)

    Kolodziejczak, Marta; Skibior-Blaszczyk, Renata; Janska, Hanna

    2018-05-01

    For optimal mitochondrial activity, the mitochondrial proteome must be properly maintained or altered in response to developmental and environmental stimuli. Based on studies of yeast and humans, one of the key players in this control are m-AAA proteases, mitochondrial inner membrane-bound ATP-dependent metalloenzymes. This study focuses on the importance of m-AAA proteases in plant mitochondria, providing their first experimentally proven physiological substrate. We found that the Arabidopsis m- AAA complexes composed of AtFTSH3 and/or AtFTSH10 are involved in the proteolytic maturation of ribosomal subunit L32. Consequently, in the double Arabidopsis ftsh3/10 mutant, mitoribosome biogenesis, mitochondrial translation and functionality of OXPHOS (oxidative phosphorylation) complexes are impaired. However, in contrast to their mammalian or yeast counterparts, plant m-AAA complexes are not critical for the survival of Arabidopsis under optimal conditions; ftsh3/10 plants are only slightly smaller in size at the early developmental stage compared with plants containing m-AAA complexes. Our data suggest that a lack of significant visible morphological alterations under optimal growth conditions involves mechanisms which rely on existing functional redundancy and induced functional compensation in Arabidopsis mitochondria.

  1. Genetics Home Reference: RRM2B-related mitochondrial DNA depletion syndrome, encephalomyopathic form with renal ...

    Science.gov (United States)

    ... Additional NIH Resources (1 link) National Institute of Neurological Disorders and Stroke: Mitochondrial Myopathy Information Page Educational Resources (7 links) Cincinnati Children's Hospital: Mitochondrial Diseases Disease InfoSearch: Mitochondrial DNA depletion ...

  2. Genetics Home Reference: FBXL4-related encephalomyopathic mitochondrial DNA depletion syndrome

    Science.gov (United States)

    ... Additional NIH Resources (1 link) National Institute of Neurological Disorders and Stroke: Mitochondrial Myopathy Information Page Educational Resources (3 links) Cincinnati Children's Hospital: Mitochondrial Diseases Kennedy Krieger Institute: Mitochondrial Disorders ...

  3. Disruption of the GABA shunt affects mitochondrial respiration and virulence in the cereal pathogen Fusarium graminearum.

    Science.gov (United States)

    Bönnighausen, Jakob; Gebhard, Daniel; Kröger, Cathrin; Hadeler, Birgit; Tumforde, Thomas; Lieberei, Reinhard; Bergemann, Jörg; Schäfer, Wilhelm; Bormann, Jörg

    2015-12-01

    The cereal pathogen Fusarium graminearum threatens food and feed production worldwide. It reduces the yield and poisons the remaining kernels with mycotoxins, notably deoxynivalenol (DON). We analyzed the importance of gamma-aminobutanoic acid (GABA) metabolism for the life cycle of this fungal pathogen. GABA metabolism in F. graminearum is partially regulated by the global nitrogen regulator AreA. Genetic disruption of the GABA shunt by deletion of two GABA transaminases renders the pathogen unable to utilize the plant stress metabolites GABA and putrescine. The mutants showed increased sensitivity against oxidative stress, GABA accumulation in the mycelium, downregulation of two key enzymes of the TCA cycle, disturbed potential gradient in the mitochondrial membrane and lower mitochondrial oxygen consumption. In contrast, addition of GABA to the wild type resulted in its rapid turnover and increased mitochondrial steady state oxygen consumption. GABA concentrations are highly upregulated in infected wheat tissues. We conclude that GABA is metabolized by the pathogen during infection increasing its energy production, whereas the mutants accumulate GABA intracellularly resulting in decreased energy production. Consequently, the GABA mutants are strongly reduced in virulence but, because of their DON production, are able to cross the rachis node. © 2015 John Wiley & Sons Ltd.

  4. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris)

    Science.gov (United States)

    Moffat, Christopher; Pacheco, Joao Goncalves; Sharp, Sheila; Samson, Andrew J.; Bollan, Karen A.; Huang, Jeffrey; Buckland, Stephen T.; Connolly, Christopher N.

    2015-01-01

    The global decline in the abundance and diversity of insect pollinators could result from habitat loss, disease, and pesticide exposure. The contribution of the neonicotinoid insecticides (e.g., clothianidin and imidacloprid) to this decline is controversial, and key to understanding their risk is whether the astonishingly low levels found in the nectar and pollen of plants is sufficient to deliver neuroactive levels to their site of action: the bee brain. Here we show that bumblebees (Bombus terrestris audax) fed field levels [10 nM, 2.1 ppb (w/w)] of neonicotinoid accumulate between 4 and 10 nM in their brains within 3 days. Acute (minutes) exposure of cultured neurons to 10 nM clothianidin, but not imidacloprid, causes a nicotinic acetylcholine receptor-dependent rapid mitochondrial depolarization. However, a chronic (2 days) exposure to 1 nM imidacloprid leads to a receptor-dependent increased sensitivity to a normally innocuous level of acetylcholine, which now also causes rapid mitochondrial depolarization in neurons. Finally, colonies exposed to this level of imidacloprid show deficits in colony growth and nest condition compared with untreated colonies. These findings provide a mechanistic explanation for the poor navigation and foraging observed in neonicotinoid treated bumblebee colonies.—Moffat, C., Pacheco, J. G., Sharp, S., Samson, A. J., Bollan, K. A., Huang, J., Buckland, S. T., Connolly, C. N. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris). PMID:25634958

  5. Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression.

    Science.gov (United States)

    Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2017-08-01

    Mitochondria have their own gene expression system that is independent of the nuclear system, and control cellular functions in cooperation with the nucleus. While a number of useful technologies for achieving nuclear transgene expression have been reported, only a few have focused on mitochondria. In this study, we validated the utility of an artificial mitochondrial DNA vector with a virus promoter on mitochondrial transgene expression. We designed and constructed pCMV-mtLuc (CGG) that contains a CMV promotor derived from Cytomegalovirus and an artificial mitochondrial genome with a NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. Nluc luciferase activity measurements showed that the pCMV-mtLuc (CGG) efficiently produced the Nluc luciferase protein in human HeLa cells. Moreover, we optimized the mitochondrial transfection of pCMV-mtLuc (CGG) using a MITO-Porter system, a liposome-based carrier for mitochondrial delivery via membrane fusion. As a result, we found that transfection of pCMV-mtLuc (CGG) by MITO-Porter modified with the KALA peptide (cationic amphipathic cell-penetrating peptide) showed a high mitochondrial transgene expression. The developed mitochondrial transgene expression system represents a potentially useful tool for the fields of nanoscience and nanotechnology for controlling the intracellular microenvironment via the regulation of mitochondrial function and promises to open additional innovative research fields of study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. From Proteomics to Structural Studies of Cytosolic/Mitochondrial-Type Thioredoxin Systems in Barley Seeds

    DEFF Research Database (Denmark)

    Shahpiri, Azar; Svensson, Birte; Finnie, Christine

    2009-01-01

    Thioredoxins (Trx) are ubiquitous proteins that participate in thiol disulfide reactions via two active site cysteine residues, allowing Trx to reduce disulfide bonds in target proteins. Recent progress in proteome analysis has resulted in identification of a wide range of potential target proteins...... for Trx, indicating that Trx plays a key role in several aspects of cell metabolism. In contrast to other organisms, plants contain multiple forms of Trx that are classified based on their primary structures and sub-cellular localization. The reduction of cytosolic and mitochondrial types of Trx...

  7. Complete mitochondrial genome sequence of the common bean anthracnose pathogen Colletotrichum lindemuthianum.

    Science.gov (United States)

    Gutiérrez, Pablo; Alzate, Juan; Yepes, Mauricio Salazar; Marín, Mauricio

    2016-01-01

    Colletotrichum lindemuthianum is the causal agent of anthracnose in common bean (Phaseolus vulgaris), one of the most limiting factors for this crop in South and Central America. In this work, the mitochondrial sequence of a Colombian isolate of C. lindemuthianum obtained from a common bean plant (var. Cargamanto) with anthracnose symptoms is presented. The mtDNA codes for 13 proteins of the respiratory chain, 1 ribosomal protein, 2 homing endonucleases, 2 ribosomal RNAs and 28 tRNAs. This is the first report of a complete mtDNA genome sequence from C. lindemuthianum.

  8. Identification of two products of mitochondrial protein synthesis associated with mitochondrial adenosine triphosphatase from Neurospora crassa

    International Nuclear Information System (INIS)

    Jackl, G.; Sebald, W.

    1975-01-01

    Soluble mitochondrial ATPase (F 1 ) isolated from Neurospora crassa is resolved by dodecyl-sulfate-gel electrophoresis into five polypeptide bands with apparent molecular weights of 59,000, 55,000, 36,000, 15,000 and 12,000. At least nine further polypeptides remain associated with ATPase after disintegration of mitochondria with Triton X-100 as shown by the analysis of an immunoprecipitate obtained with antiserum to F 1 ATPase. Two of the associated polypeptides with apparent molecular weights of 19,000 and 11,000 are translated on mitochondrial ribosomes, as demonstrated by incorporation in vivo of radioactive leucine in the presence of specific inhibitors of mitochondrial (chloramphenicol) and extramitochondrial (cycloheximide) protein synthesis. The appearance of mitochondrial translation products in the immunoprecipitated ATPase complex is inhibited by cycloheximide. The same applies for some of the extramitochondrial translation products in the presence of chloramphenicol. This suggests that both types of polypeptides are necessary for the assembly of the ATPase complex. (orig.) [de

  9. Impaired cardiac mitochondrial oxidative phosphorylation and enhanced mitochondrial oxidative stress in feline hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Christiansen, Liselotte Bruun; Dela, Flemming; Koch, Jørgen

    2015-01-01

    respiration with complex I-linked nonfatty acid substrates and with fatty acid substrates, respectively, was significantly lower in the hearts of HCM cats compared with control cats. Mitochondrial ROS release during state 3 with complex I-linked substrates and thiobarbituric acid-reactive substances...

  10. Analysis of Mitochondrial Network Morphology in Cultured Myoblasts from Patients with Mitochondrial Disorders

    Czech Academy of Sciences Publication Activity Database

    Sládková, J.; Spáčilová, J.; Čapek, Martin; Tesařová, M.; Hansíková, H.; Honzík, T.; Martínek, J.; Zámečník, J.; Kostková, O.; Zeman, J.

    2015-01-01

    Roč. 39, č. 5 (2015), s. 340-350 ISSN 0191-3123 R&D Projects: GA ČR(CZ) GB14-36804G; GA MŠk(CZ) LH13028 Institutional support: RVO:67985823 Keywords : cristae * Fiji * image analysis * mitochondrial disorders * myoblasts * ultrastructure Subject RIV: EA - Cell Biology Impact factor: 0.828, year: 2015

  11. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    Science.gov (United States)

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  12. The Mitochondrial Protein Atlas: A Database of Experimentally Verified Information on the Human Mitochondrial Proteome.

    Science.gov (United States)

    Godin, Noa; Eichler, Jerry

    2017-09-01

    Given its central role in various biological systems, as well as its involvement in numerous pathologies, the mitochondrion is one of the best-studied organelles. However, although the mitochondrial genome has been extensively investigated, protein-level information remains partial, and in many cases, hypothetical. The Mitochondrial Protein Atlas (MPA; URL: lifeserv.bgu.ac.il/wb/jeichler/MPA ) is a database that provides a complete, manually curated inventory of only experimentally validated human mitochondrial proteins. The MPA presently contains 911 unique protein entries, each of which is associated with at least one experimentally validated and referenced mitochondrial localization. The MPA also contains experimentally validated and referenced information defining function, structure, involvement in pathologies, interactions with other MPA proteins, as well as the method(s) of analysis used in each instance. Connections to relevant external data sources are offered for each entry, including links to NCBI Gene, PubMed, and Protein Data Bank. The MPA offers a prototype for other information sources that allow for a distinction between what has been confirmed and what remains to be verified experimentally.

  13. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak.

    Directory of Open Access Journals (Sweden)

    Jan Trnka

    Full Text Available The lipophilic positively charged moiety of triphenylphosphonium (TPP+ has been used to target a range of biologically active compounds including antioxidants, spin-traps and other probes into mitochondria. The moiety itself, while often considered biologically inert, appears to influence mitochondrial metabolism.We used the Seahorse XF flux analyzer to measure the effect of a range of alkylTPP+ on cellular respiration and further analyzed their effect on mitochondrial membrane potential and the activity of respiratory complexes. We found that the ability of alkylTPP+ to inhibit the respiratory chain and decrease the mitochondrial membrane potential increases with the length of the alkyl chain suggesting that hydrophobicity is an important determinant of toxicity.More hydrophobic TPP+ derivatives can be expected to have a negative impact on mitochondrial membrane potential and respiratory chain activity in addition to the effect of the biologically active moiety attached to them. Using shorter linker chains or adding hydrophilic functional groups may provide a means to decrease this negative effect.

  14. Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Andersen, Kasper Røjkjær; Kjær, Karina Hansen

    2011-01-01

    . Interestingly, 2′-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease–endonuclease–phosphatase family of deadenylases. Here we show that 2′-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3′–5′ exoribonuclease exhibiting a preference...

  15. The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease.

    NARCIS (Netherlands)

    Nijtmans, L.G.J.; Artal-Sanz, M.; Grivell, L.A.; Coates, P.J.

    2002-01-01

    Although originally identified as putative negative regulators of the cell cycle, recent studies have demonstrated that the PHB proteins act as a chaperone in the assembly of subunits of mitochondrial respiratory chain complexes. The two PHB proteins, Phblp and Phb2p, are located in the

  16. CaMKII determines mitochondrial stress responses in heart

    Science.gov (United States)

    Joiner, Mei-ling A.; Koval, Olha M.; Jingdong, Li; He, B. Julie; Allamargot, Chantal; Gao, Zhan; Luczak, Elizabeth D.; Hall, Duane D.; Fink, Brian D.; Chen, Biyi; Yang, Jinying; Moore, Steven A.; Scholz, Thomas D.; Strack, Stefan; Mohler, Peter J.; Sivitz, William I.; Song, Long-Sheng; Anderson, Mark E.

    2012-01-01

    Myocardial cell death is initiated by excessive mitochondrial Ca2+ entry, causing Ca2+ overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (ΔΨm)1,2. However, the signaling pathways that control mitochondrial Ca2+ entry through the inner membrane mitochondrial Ca2+ uniporter (MCU)3–5 are not known. The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is activated in ischemia reperfusion (I/R), myocardial infarction (MI) and neurohumoral injury, common causes of myocardial death and heart failure, suggesting CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (IMCU). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A (CsA), an mPTP antagonist with clinical efficacy in I/R injury6, equivalently prevent mPTP opening, ΔΨm deterioration and diminish mitochondrial disruption and programmed cell death in response to I/R injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition are resistant to I/R injury, MI and neurohumoral injury, suggesting pathological actions of CaMKII are substantially mediated by increasing IMCU. Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca2+ entry and suggest mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure dysfunction in response to common experimental forms of pathophysiological stress. PMID:23051746

  17. Vimar Is a Novel Regulator of Mitochondrial Fission through Miro.

    Directory of Open Access Journals (Sweden)

    Lianggong Ding

    2016-10-01

    Full Text Available As fundamental processes in mitochondrial dynamics, mitochondrial fusion, fission and transport are regulated by several core components, including Miro. As an atypical Rho-like small GTPase with high molecular mass, the exchange of GDP/GTP in Miro may require assistance from a guanine nucleotide exchange factor (GEF. However, the GEF for Miro has not been identified. While studying mitochondrial morphology in Drosophila, we incidentally observed that the loss of vimar, a gene encoding an atypical GEF, enhanced mitochondrial fission under normal physiological conditions. Because Vimar could co-immunoprecipitate with Miro in vitro, we speculated that Vimar might be the GEF of Miro. In support of this hypothesis, a loss-of-function (LOF vimar mutant rescued mitochondrial enlargement induced by a gain-of-function (GOF Miro transgene; whereas a GOF vimar transgene enhanced Miro function. In addition, vimar lost its effect under the expression of a constitutively GTP-bound or GDP-bound Miro mutant background. These results indicate a genetic dependence of vimar on Miro. Moreover, we found that mitochondrial fission played a functional role in high-calcium induced necrosis, and a LOF vimar mutant rescued the mitochondrial fission defect and cell death. This result can also be explained by vimar's function through Miro, because Miro's effect on mitochondrial morphology is altered upon binding with calcium. In addition, a PINK1 mutant, which induced mitochondrial enlargement and had been considered as a Drosophila model of Parkinson's disease (PD, caused fly muscle defects, and the loss of vimar could rescue these defects. Furthermore, we found that the mammalian homolog of Vimar, RAP1GDS1, played a similar role in regulating mitochondrial morphology, suggesting a functional conservation of this GEF member. The Miro/Vimar complex may be a promising drug target for diseases in which mitochondrial fission and fusion are dysfunctional.

  18. Hepatocellular toxicity of benzbromarone: Effects on mitochondrial function and structure

    International Nuclear Information System (INIS)

    Felser, Andrea; Lindinger, Peter W.; Schnell, Dominik; Kratschmar, Denise V.; Odermatt, Alex; Mies, Suzette; Jenö, Paul; Krähenbühl, Stephan

    2014-01-01

    Highlights: • Benzbromarone impairs the electron transport chain and uncouples mitochondria. • Benzbromarone impairs mitochondrial β-oxidation by inhibiting fatty acid activation. • Benzbromarone disrupts the mitochondrial network and induces apoptosis. - Abstract: Benzbromarone is an uricosuric structurally related to amiodarone and a known mitochondrial toxicant. The aim of the current study was to improve our understanding in the molecular mechanisms of benzbromarone-associated hepatic mitochondrial toxicity. In HepG2 cells and primary human hepatocytes, ATP levels started to decrease in the presence of 25–50 μM benzbromarone for 24–48 h, whereas cytotoxicity was observed only at 100 μM. In HepG2 cells, benzbromarone decreased the mitochondrial membrane potential starting at 50 μM following incubation for 24 h. Additionally, in HepG2 cells, 50 μM benzbromarone for 24 h induced mitochondrial uncoupling,and decreased mitochondrial ATP turnover and maximal respiration. This was accompanied by an increased lactate concentration in the cell culture supernatant, reflecting increased glycolysis as a compensatory mechanism to maintain cellular ATP. Investigation of the electron transport chain revealed a decreased activity of all relevant enzyme complexes. Furthermore, treatment with benzbromarone was associated with increased cellular ROS production, which could be located specifically to mitochondria. In HepG2 cells and in isolated mouse liver mitochondria, benzbromarone also reduced palmitic acid metabolism due to an inhibition of the long-chain acyl CoA synthetase. In HepG2 cells, benzbromarone disrupted the mitochondrial network, leading to mitochondrial fragmentation and a decreased mitochondrial volume per cell. Cell death occurred by both apoptosis and necrosis. The study demonstrates that benzbromarone not only affects the function of mitochondria in HepG2 cells and human hepatocytes, but is also associated with profound changes in mitochondrial

  19. The pathophysiology of mitochondrial disease as modeled in the mouse.

    Science.gov (United States)

    Wallace, Douglas C; Fan, Weiwei

    2009-08-01

    It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.

  20. Abnormal mitochondrial respiration in failed human myocardium.

    Science.gov (United States)

    Sharov, V G; Todor, A V; Silverman, N; Goldstein, S; Sabbah, H N

    2000-12-01

    Chronic heart failure (HF) is associated with morphologic abnormalities of cardiac mitochondria including hyperplasia, reduced organelle size and compromised structural integrity. In this study, we examined whether functional abnormalities of mitochondrial respiration are also present in myocardium of patients with advanced HF. Mitochondrial respiration was examined using a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles obtained from myocardium of failed explanted human hearts due to ischemic (ICM, n=9) or idiopathic dilated (IDC, n=9) cardiomyopathy. Myocardial specimens from five normal donor hearts served as controls (CON). Basal respiratory rate, respiratory rate after addition of the substrates glutamate and malate (V(SUB)), state 3 respiration (after addition of ADP, V(ADP)) and respiration after the addition of atractyloside (V(AT)) were measured in scar-free muscle bundles obtained from the subendocardial (ENDO) and subepicardial (EPI) thirds of the left ventricular (LV) free wall, interventricular septum and right ventricular (RV) free wall. There were no differences in basal and substrate-supported respiration between CON and HF regardless of etiology. V(ADP)was significantly depressed both in ICM and IDC compared to CON in all the regions studied. The respiratory control ratio, V(ADP)/V(AT), was also significantly decreased in HF compared to CON. In both ICM and IDC, V(ADP)was significantly lower in ENDO compared to EPI. The results indicate that mitochondrial respiration is abnormal in the failing human heart. The findings support the concept of low myocardial energy production in HF via oxidative phosphorylation, an abnormality with a potentially impact on global cardiac performance. Copyright 2000 Academic Press.

  1. Decidual cell polyploidization necessitates mitochondrial activity.

    Directory of Open Access Journals (Sweden)

    Xinghong Ma

    Full Text Available Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation.

  2. Mitochondrial dysfunction in lyssavirus-induced apoptosis.

    Science.gov (United States)

    Gholami, Alireza; Kassis, Raïd; Real, Eléonore; Delmas, Olivier; Guadagnini, Stéphanie; Larrous, Florence; Obach, Dorothée; Prevost, Marie-Christine; Jacob, Yves; Bourhy, Hervé

    2008-05-01

    Lyssaviruses are highly neurotropic viruses associated with neuronal apoptosis. Previous observations have indicated that the matrix proteins (M) of some lyssaviruses induce strong neuronal apoptosis. However, the molecular mechanism(s) involved in this phenomenon is still unknown. We show that for Mokola virus (MOK), a lyssavirus of low pathogenicity, the M (M-MOK) targets mitochondria, disrupts the mitochondrial morphology, and induces apoptosis. Our analysis of truncated M-MOK mutants suggests that the information required for efficient mitochondrial targeting and dysfunction, as well as caspase-9 activation and apoptosis, is held between residues 46 and 110 of M-MOK. We used a yeast two-hybrid approach, a coimmunoprecipitation assay, and confocal microscopy to demonstrate that M-MOK physically associates with the subunit I of the cytochrome c (cyt-c) oxidase (CcO) of the mitochondrial respiratory chain; this is in contrast to the M of the highly pathogenic Thailand lyssavirus (M-THA). M-MOK expression induces a significant decrease in CcO activity, which is not the case with M-THA. M-MOK mutations (K77R and N81E) resulting in a similar sequence to M-THA at positions 77 and 81 annul cyt-c release and apoptosis and restore CcO activity. As expected, the reverse mutations, R77K and E81N, introduced in M-THA induce a phenotype similar to that due to M-MOK. These features indicate a novel mechanism for energy depletion during lyssavirus-induced apoptosis.

  3. Evolution of the metazoan mitochondrial replicase.

    Science.gov (United States)

    Oliveira, Marcos T; Haukka, Jani; Kaguni, Laurie S

    2015-03-03

    The large number of complete mitochondrial DNA (mtDNA) sequences available for metazoan species makes it a good system for studying genome diversity, although little is known about the mechanisms that promote and/or are correlated with the evolution of this organellar genome. By investigating the molecular evolutionary history of the catalytic and accessory subunits of the mtDNA polymerase, pol γ, we sought to develop mechanistic insight into its function that might impact genome structure by exploring the relationships between DNA replication and animal mitochondrial genome diversity. We identified three evolutionary patterns among metazoan pol γs. First, a trend toward stabilization of both sequence and structure occurred in vertebrates, with both subunits evolving distinctly from those of other animal groups, and acquiring at least four novel structural elements, the most important of which is the HLH-3β (helix-loop-helix, 3 β-sheets) domain that allows the accessory subunit to homodimerize. Second, both subunits of arthropods and tunicates have become shorter and evolved approximately twice as rapidly as their vertebrate homologs. And third, nematodes have lost the gene for the accessory subunit, which was accompanied by the loss of its interacting domain in the catalytic subunit of pol γ, and they show the highest rate of molecular evolution among all animal taxa. These findings correlate well with the mtDNA genomic features of each group described above, and with their modes of DNA replication, although a substantive amount of biochemical work is needed to draw conclusive links regarding the latter. Describing the parallels between evolution of pol γ and metazoan mtDNA architecture may also help in understanding the processes that lead to mitochondrial dysfunction and to human disease-related phenotypes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Contribution of liver mitochondrial membrane-bound glutathione transferase to mitochondrial permeability transition pores

    International Nuclear Information System (INIS)

    Hossain, Quazi Sohel; Ulziikhishig, Enkhbaatar; Lee, Kang Kwang; Yamamoto, Hideyuki; Aniya, Yoko

    2009-01-01

    We recently reported that the glutathione transferase in rat liver mitochondrial membranes (mtMGST1) is activated by S-glutathionylation and the activated mtMGST1 contributes to the mitochondrial permeability transition (MPT) pore and cytochrome c release from mitochondria [Lee, K.K., Shimoji, M., Quazi, S.H., Sunakawa, H., Aniya, Y., 2008. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxcol. Appl. Pharmacol. 232, 109-118]. In the present study we investigated the effect of reactive oxygen species (ROS), generator gallic acid (GA) and GST inhibitors on mtMGST1 and the MPT. When rat liver mitochondria were incubated with GA, mtMGST1 activity was increased to about 3 fold and the increase was inhibited with antioxidant enzymes and singlet oxygen quenchers including 1,4-diazabicyclo [2,2,2] octane (DABCO). GA-mediated mtMGST1 activation was prevented by GST inhibitors such as tannic acid, hematin, and cibacron blue and also by cyclosporin A (CsA). In addition, GA induced the mitochondrial swelling which was also inhibited by GST inhibitors, but not by MPT inhibitors CsA, ADP, and bongkrekic acid. GA also released cytochrome c from the mitochondria which was inhibited completely by DABCO, moderately by GST inhibitors, and somewhat by CsA. Ca 2+ -mediated mitochondrial swelling and cytochrome c release were inhibited by MPT inhibitors but not by GST inhibitors. When the outer mitochondrial membrane was isolated after treatment of mitochondria with GA, mtMGST1 activity was markedly increased and oligomer/aggregate of mtMGST1 was observed. These results indicate that mtMGST1 in the outer mitochondrial membrane is activated by GA through thiol oxidation leading to protein oligomerization/aggregation, which may contribute to the formation of ROS-mediated, CsA-insensitive MPT pore, suggesting a novel mechanism for regulation of the MPT by mtMGST1

  5. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction.

    Directory of Open Access Journals (Sweden)

    Raquel Montero

    Full Text Available We previously described increased levels of growth and differentiation factor 15 (GDF-15 in skeletal muscle and serum of patients with mitochondrial diseases. Here we evaluated GDF-15 as a biomarker for mitochondrial diseases affecting children and compared it to fibroblast-growth factor 21 (FGF-21. To investigate the mechanism of GDF-15 induction in these pathologies we measured its expression and secretion in response to mitochondrial dysfunction.We analysed 59 serum samples from 48 children with mitochondrial disease, 19 samples from children with other neuromuscular diseases and 33 samples from aged-matched healthy children. GDF-15 and FGF-21 circulating levels were determined by ELISA.Our results showed that in children with mitochondrial diseases GDF-15 levels were on average increased by 11-fold (mean 4046pg/ml, 1492 SEM relative to healthy (350, 21 and myopathic (350, 32 controls. The area under the curve for the receiver-operating-characteristic curve for GDF-15 was 0.82 indicating that it has a good discriminatory power. The overall sensitivity and specificity of GDF-15 for a cut-off value of 550pg/mL was 67.8% (54.4%-79.4% and 92.3% (81.5%-97.9%, respectively. We found that elevated levels of GDF-15 and or FGF-21 correctly identified a larger proportion of patients than elevated levels of GDF-15 or FGF-21 alone. GDF-15, as well as FGF-21, mRNA expression and protein secretion, were significantly induced after treatment of myotubes with oligomycin and that levels of expression of both factors significantly correlated.Our data indicate that GDF-15 is a valuable serum quantitative biomarker for the diagnosis of mitochondrial diseases in children and that measurement of both GDF-15 and FGF-21 improves the disease detection ability of either factor separately. Finally, we demonstrate for the first time that GDF-15 is produced by skeletal muscle cells in response to mitochondrial dysfunction and that its levels correlate in vitro with FGF

  6. The prevention of curcumin against rat liver mitochondrial swelling induced by tert-butylhydroperoxide

    Directory of Open Access Journals (Sweden)

    S. Susilowati

    2006-09-01

    Full Text Available Liver diseases have been a medical problem which is difficult to manage. Some of the problems in the treatment of these diseases lie in the lack of reliable drug available. Curcumin, an active ingredient of the rhizomes of plant Curcuma has been investigated in the treatment of various disorders incuding liver diseases. The therapeutic effects of curcumin on liver diseases have been thought to be associated to its antioxidative properties. In the present study, we investigated the effects of curcumin on mitochondrial swelling in vitro induced by tert-butylhydroperoxide (t-BuOOH. Liver mitochondria were homogeneously isolated from Sprague-Dawley rats (the relative specific activity of succinate dehydrogenase was 35.73 ± 2.78. Addition of 90 µM of t-BuOOH caused a typical 2-phase swelling of the mitochondria. The pattern of swelling was influenced by various factors such as buffer composition, concentrations of t-BuOOH, amount of isolation buffer and mitochondrial proteins and incubation temperature.The swelling could be reduced by as much as 85 ± 3% by 2.50 µM of curcumin. At lower (1.25 µM or higher (5.00 µM concentrations, the protection against swelling by curcumin were less effective (respectively were 41 ± 3% and 77 ± 6%. Swelling might occur due to the opening of mitochondrial transition pore and could be an initial indication in the cascade process leading to cell death. The inhibition of t-BuOOH-induced mitochondrial swelling by curcumin might be because of the antioxidant effects of the compound. (Med J Indones 2006; 15:131-6 Keywords: mitochondria, swelling, tert-butylhydroperoxide, curcumin

  7. Nuclear genetic defects of mitochondrial ATP synthase

    Czech Academy of Sciences Publication Activity Database

    Hejzlarová, Kateřina; Mráček, Tomáš; Vrbacký, Marek; Kaplanová, Vilma; Karbanová, Vendula; Nůsková, Hana; Pecina, Petr; Houštěk, Josef

    2014-01-01

    Roč. 63, Suppl.1 (2014), S57-S71 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP303/11/0970; GA ČR GAP303/12/1363; GA MZd(CZ) NT12370; GA MZd(CZ) NT14050 Grant - others:Univerzita Karlova(CZ) 370411 Institutional support: RVO:67985823 Keywords : mitochondrial diseases * TMEM70 * ATPAF1 * ATP5A1 * ATP5E Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.293, year: 2014

  8. Specificity of DNA import into isolated mitochondria from plants and mammals

    Directory of Open Access Journals (Sweden)

    Koulintchenko M. V.

    2014-01-01

    Full Text Available Aim. Investigation of different features of DNA import into plant and human mitochondria, for a better understanding of mitochondrial genetics and generation of biotechnological tools. Methods. DNA up-take experiments with isolated plant mitochondria, using as substrates various sequences associated or not with the specific terminal inverted repeats (TIRs present at each end of the plant mitochondrial linear plasmids. Results. It was established that the DNA import efficiency has a non-linear dependence on DNA size. It was shown that import into plant mitochondria of DNA molecules of «medium» sizes, i. e. between 4 and 7 kb, barely has any sequence specificity: neither TIRs from the 11.6 kb Brassica plasmid, nor TIRs from the Zea mays S-plasmids influenced DNA import into Solanum tuberosum mitochondria. Conclusions. The data obtained support the hypothesis about species-specific import mechanism operating under the mitochondrial linear plasmids transfer into plant mitochondria.

  9. The efficiency of mitochondrial DNA markers in constructing genetic ...

    African Journals Online (AJOL)

    The efficiency of mitochondrial DNA markers in constructing genetic relationship among Oryx species. ... These data were used to provide the genetic kinship among different Oryx species. The complete cytochrome b gene ... Key words: Conservation, endangered species, Oryx, mitochondrial DNA (mtDNA) markers.

  10. Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation.

    Science.gov (United States)

    Escobar-Henriques, Mafalda; Anton, Fabian

    2013-01-01

    Mitochondrial fusion is a fundamental process driven by dynamin related GTPase proteins (DRPs), in contrast to the general SNARE-dependence of most cellular fusion events. The DRPs Mfn1/Mfn2/Fzo1 and OPA1/Mgm1 are the key effectors for fusion of the mitochondrial outer and inner membranes, respectively. In order to promote fusion, these two DRPs require post-translational modifications and proteolysis. OPA1/Mgm1 undergoes partial proteolytic processing, which results in a combination between short and long isoforms. In turn, ubiquitylation of mitofusins, after oligomerization and GTP hydrolysis, promotes and positively regulates mitochondrial fusion. In contrast, under conditions of mitochondrial dysfunction, negative regulation by proteolysis on these DRPs results in mitochondrial fragmentation. This occurs by complete processing of OPA1 and via ubiquitylation and degradation of mitofusins. Mitochondrial fragmentation contributes to the elimination of damaged mitochondria by mitophagy, and may play a protective role against Parkinson's disease. Moreover, a link of Mfn2 to Alzheimer's disease is emerging and mutations in Mfn2 or OPA1 cause Charcot-Marie-Tooth type 2A neuropathy or autosomal-dominant optic atrophy. Here, we summarize our current understanding on the molecular mechanisms promoting or inhibiting fusion of mitochondrial membranes, which is essential for cellular survival and disease control. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The radiation bystander effect is a cellular process whereby cells not directly exposed to radiation display cellular alterations similar to directly irradiated cells. Cellular targets including mitochondria have been postulated to play a significant role in this process. In this study, we utilized the Random Mutation Capture assay to quantify the levels of random mutations and deletions in the mitochondrial genome of bystander cells. A significant increase in the frequency of random mitochondrial mutations was found at 24 h in bystander cells exposed to conditioned media from irradiated tumor explants (p = 0.018). CG:TA mutations were the most abundant lesion induced. A transient increase in the frequency of random mitochondrial deletions was also detected in bystander cells exposed to conditioned media from tumor but not normal tissue at 24 h (p = 0.028). The increase in both point mutations and deletions was transient and not detected at 72 h. To further investigate mitochondrial dysfunction, mitochondrial membrane potential and reactive oxygen species were assessed in these bystander cells. There was a significant reduction in mitochondrial membrane potential and this was positively associated with the frequency of random point mutation and deletions in bystander cells treated with conditioned media from tumor tissue (r = 0.71, p = 0.02). This study has shown that mitochondrial genome alterations are an acute consequence of the radiation bystander effect secondary to mitochondrial dysfunction and suggests that this cannot be solely attributable to changes in ROS levels alone.

  12. Betaine is a positive regulator of mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro. Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.

  13. Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion Injury

    Science.gov (United States)

    Camara, Amadou K. S.; Bienengraeber, Martin; Stowe, David F.

    2011-01-01

    The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury. PMID:21559063

  14. VALSARTAN REGULATES MYOCARDIAL AUTOPHAGY AND MITOCHONDRIAL TURNOVER IN EXPERIMENTAL HYPERTENSION

    Science.gov (United States)

    Zhang, Xin; Li, Zi-Lun; Crane, John A.; Jordan, Kyra L.; Pawar, Aditya S.; Textor, Stephen C.; Lerman, Amir; Lerman, Lilach O.

    2014-01-01

    Renovascular hypertension alters cardiac structure and function. Autophagy is activated during left ventricular hypertrophy and linked to adverse cardiac function. The Angiotensin II receptor blocker Valsartan lowers blood pressure and is cardioprotective, but whether it modulates autophagy in the myocardium is unclear. We hypothesized that Valsartan would alleviate autophagy and improve left ventricular myocardial mitochondrial turnover in swine renovascular hypertension. Domestic pigs were randomized to control, unilateral renovascular hypertension, and renovascular hypertension treated with Valsartan (320 mg/day) or conventional triple therapy (Reserpine+hydralazine+hydrochlorothiazide) for 4 weeks post 6-weeks of renovascular hypertension (n=7 each group). Left ventricular remodeling, function and myocardial oxygenation and microcirculation were assessed by multi-detector computer tomography, blood-oxygen-level-dependent magnetic resonance imaging and microcomputer tomography. Myocardial autophagy, markers for mitochondrial degradation and biogenesis, and mitochondrial respiratory-chain proteins were examined ex vivo. Renovascular hypertension induced left ventricular hypertrophy and myocardial hypoxia, enhanced cellular autophagy and mitochondrial degradation, and suppressed mitochondrial biogenesis. Valsartan and triple therapy similarly decreased blood pressure, but Valsartan solely alleviated left ventricular hypertrophy, ameliorated myocardial autophagy and mitophagy, and increased mitochondrial biogenesis. In contrast, triple therapy only slightly attenuated autophagy and preserved mitochondrial proteins, but elicited no improvement in mitophagy. These data suggest a novel potential role of Valsartan in modulating myocardial autophagy and mitochondrial turnover in renovascular hypertension-induced hypertensive heart disease, which may possibly bolster cardiac repair via a blood pressure-independent manner. PMID:24752430

  15. Mitochondrial DNA Mutations in Epithelial Ovarian Tumor Progression

    Science.gov (United States)

    2007-12-01

    Panici PL, Fazio VM: Mutations of D310 mitochondrial mononu- cleotide repeat in primary tumors and cytological speci- mens . Cancer Lett 2003, 190:73...BR: Detection of LOH and mitochondrial DNA alter- ations in ductal lavage and nipple aspirate fluids from high- risk patients. Breast Cancer Res

  16. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    The aims of this research were to study mitochondrial DNA hypervariable region III and establish the degree of variation characteristic of a fragment. The mitochondrial DNA (mtDNA) is a small circular genome located within the mitochondria in the cytoplasm of the cell and a smaller 1.2 kb pair fragment, called the control ...

  17. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer.

    Science.gov (United States)

    Paliwal, Swati; Chaudhuri, Rituparna; Agrawal, Anurag; Mohanty, Sujata

    2018-03-30

    The past decade has witnessed an upsurge in studies demonstrating mitochondrial transfer as one of the emerging mechanisms through which mesenchymal stem cells (MSCs) can regenerate and repair damaged cells or tissues. It has been found to play a critical role in healing several diseases related to brain injury, cardiac myopathies, muscle sepsis, lung disorders and acute respiratory disorders. Several studies have shown that various mechanisms are involved in mitochondrial transfer that includes tunnel tube formation, micro vesicle formation, gap junctions, cell fusion and others modes of transfer. Few studies have investigated the mechanisms that contribute to mitochondrial transfer, primarily comprising of signaling pathways involved in tunnel tube formation that facilitates tunnel tube formation for movement of mitochondria from one cell to another. Various stress signals such as release of damaged mitochondria, mtDNA and mitochondrial products along with elevated reactive oxygen species levels trigger the transfer of mitochondria from MSCs to recipient cells. However, extensive cell signaling pathways that lead to mitochondrial transfer from healthy cells are still under investigation and the changes that contribute to restoration of mitochondrial bioenergetics in recipient cells remain largely elusive. In this review, we have discussed the phenomenon of mitochondrial transfer from MSCs to neighboring stressed cells, and how this aids in cellular repair and regeneration of different organs such as lung, heart, eye, brain and kidney. The potential scope of mitochondrial transfer in providing novel therapeutic strategies for treatment of various pathophysiological conditions has also been discussed.

  18. Mitochondrial dysfunction in type 2 diabetes and obesity

    DEFF Research Database (Denmark)

    Højlund, Kurt; Mogensen, Martin; Sahlin, Kent

    2008-01-01

    for mitochondrial dysfunction in skeletal muscle of type 2 diabetic and prediabetic subjects, primarily due to a lower content of mitochondria (mitochondrial biogenesis) and possibly to a reduced functional capacity per mitochondrion. This article discusses the latest advances in the understanding of the molecular...

  19. Impaired Mitochondrial Dynamics Underlie Axonal Defects in Hereditary Spastic Paraplegias.

    Science.gov (United States)

    Denton, Kyle; Mou, Yongchao; Xu, Chong-Chong; Shah, Dhruvi; Chang, Jaerak; Blackstone, Craig; Li, Xue-Jun

    2018-05-02

    Mechanisms by which long corticospinal axons degenerate in hereditary spastic paraplegia (HSP) are largely unknown. Here, we have generated induced pluripotent stem cells (iPSCs) from patients with two autosomal recessive forms of HSP, SPG15 and SPG48, which are caused by mutations in the ZFYVE26 and AP5Z1 genes encoding proteins in the same complex, the spastizin and AP5Z1 proteins, respectively. In patient iPSC-derived telencephalic glutamatergic and midbrain dopaminergic neurons, neurite number, length and branching are significantly reduced, recapitulating disease-specific phenotypes. We analyzed mitochondrial morphology and noted a significant reduction in both mitochondrial length and their densities within axons of these HSP neurons. Mitochondrial membrane potential was also decreased, confirming functional mitochondrial defects. Notably, mdivi-1, an inhibitor of the mitochondrial fission GTPase DRP1, rescues mitochondrial morphology defects and suppresses the impairment in neurite outgrowth and late-onset apoptosis in HSP neurons. Furthermore, knockdown of these HSP genes causes similar axonal defects, also mitigated by treatment with mdivi-1. Finally, neurite outgrowth defects in SPG15 and SPG48 cortical neurons can be rescued by knocking down DRP1 directly. Thus, abnormal mitochondrial morphology caused by an imbalance of mitochondrial fission and fusion underlies specific axonal defects and serves as a potential therapeutic target for SPG15 and SPG48.

  20. Complete mitochondrial genome of a Asian lion (Panthera leo goojratensis).

    Science.gov (United States)

    Li, Yu-Fei; Wang, Qiang; Zhao, Jian-ning

    2016-01-01

    The entire mitochondrial genome of this Asian lion (Panthera leo goojratensis) was 17,183 bp in length, gene composition and arrangement conformed to other lions, which contained the typical structure of 22 tRNAs, 2 rRNAs, 13 protein-coding genes and a non-coding region. The characteristic of the mitochondrial genome was analyzed in detail.

  1. BID links ferroptosis to mitochondrial cell death pathways

    Directory of Open Access Journals (Sweden)

    Sandra Neitemeier

    2017-08-01

    Full Text Available Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the Xc- system or inhibition of glutathione peroxidase 4 (Gpx4 to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation.In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by Xc- inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death. Keywords: Ferroptosis, BID, Mitochondria, CRISPR, Oxytosis, Neuronal death

  2. Diagnostic Approach in Infants and Children with Mitochondrial Diseases

    Directory of Open Access Journals (Sweden)

    Ching-Shiang Chi

    2015-02-01

    The purpose of this study is to review the molecular classification scheme and associated phenotypes in infants and children with mitochondrial diseases, in addition to providing an overview of the basic biochemical reactions and genetic characteristics in the mitochondrion, clinical manifestations, and diagnostic methods. A diagnostic algorithm for identifying mitochondrial disorders in pediatric neurology patients is proposed.

  3. Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Gnaiger, Erich; Calbet, Jose A L

    2011-01-01

    Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial respira...

  4. Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury

    Directory of Open Access Journals (Sweden)

    Amadou K.S. Camara

    2011-04-01

    Full Text Available The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g. ischemic heart disease, alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury.

  5. [MELAS: Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes].

    Science.gov (United States)

    Murakami, Hidetomo; Ono, Kenjiro

    2017-02-01

    Mitochondrial disease is caused by a deficiency in the energy supply to cells due to mitochondrial dysfunction. Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) is a mitochondrial disease that presents with stroke-like episodes such as acute onset of neurological deficits and characteristic imaging findings. Stroke-like episodes in MELAS have the following features: 1) neurological deficits due to localization of lesions in the brain, 2) episodes often accompany epilepsy, 3) lesions do not follow the vascular supply area, 4) lesions are more often seen in the posterior brain than in the anterior brain, 5) lesions spread to an adjacent area in the brain, and 6) neurological symptoms often disappear together with imaging findings, but later relapse. About 80% of patients with MELAS have an A-to-G transition mutation at the nucleotide pair 3243 in the dihydrouridine loop of mitochondrial tRNALeu(UUR), which causes the absence of posttranscriptional taurine modification at the wobble nucleotide of mitochondrial tRNALeu(UUR) and disrupts protein synthesis. However, the precise pathophysiology of stroke-like episodes is under investigation, with possible hypotheses for these episodes including mitochondrial angiopathy, mitochondrial cytopathy, and neuron-astrocyte uncoupling. With regard to treatment, L-arginine and taurine have recently been suggested for relief of clinical symptoms.

  6. Assembled Plastid and Mitochondrial Genomes, as well as Nuclear Genes, Place the Parasite Family Cynomoriaceae in the Saxifragales.

    Science.gov (United States)

    Bellot, Sidonie; Cusimano, Natalie; Luo, Shixiao; Sun, Guiling; Zarre, Shahin; Gröger, Andreas; Temsch, Eva; Renner, Susanne S

    2016-08-03

    Cynomoriaceae, one of the last unplaced families of flowering plants, comprise one or two species or subspecies of root parasites that occur from the Mediterranean to the Gobi Desert. Using Illumina sequencing, we assembled the mitochondrial and plastid genomes as well as some nuclear genes of a Cynomorium specimen from Italy. Selected genes were also obtained by Sanger sequencing from individuals collected in China and Iran, resulting in matrices of 33 mitochondrial, 6 nuclear, and 14 plastid genes and rDNAs enlarged to include a representative angiosperm taxon sampling based on data available in GenBank. We also compiled a new geographic map to discern possible discontinuities in the parasites' occurrence. Cynomorium has large genomes of 13.70-13.61 (Italy) to 13.95-13.76 pg (China). Its mitochondrial genome consists of up to 49 circular subgenomes and has an overall gene content similar to that of photosynthetic angiosperms, while its plastome retains only 27 of the normally 116 genes. Nuclear, plastid and mitochondrial phylogenies place Cynomoriaceae in Saxifragales, and we found evidence for several horizontal gene transfers from different hosts, as well as intracellular gene transfers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats.

    Science.gov (United States)

    Karadjian, Gregory; Hassanin, Alexandre; Saintpierre, Benjamin; Gembu Tungaluna, Guy-Crispin; Ariey, Frederic; Ayala, Francisco J; Landau, Irene; Duval, Linda

    2016-08-30

    Haemosporidia parasites have mostly and abundantly been described using mitochondrial genes, and in particular cytochrome b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria parasites isolated from Nycteridae bats has been recently reported. Bats are hosts to a diverse and profuse array of Haemosporidia parasites that remain largely unstudied. There is a need to obtain more molecular data from chiropteran parasites. Such data would help to better understand the evolutionary history of Haemosporidia, which notably include the Plasmodium parasites, malaria's agents. We use next-generation sequencing to obtain the complete mitochondrial genome of Nycteria parasites from African Nycteris grandis (Nycteridae) and Rhinolophus alcyone (Rhinolophidae) and Asian Megaderma spasma (Megadermatidae). We report four complete mitochondrial genomes, including two rearranged mitochondrial genomes within Haemosporidia. Our results open outlooks into potentially undiscovered Haemosporidian diversity.

  8. Mitofilin complexes: conserved organizers of mitochondrial membrane architecture.

    Science.gov (United States)

    Zerbes, Ralf M; van der Klei, Ida J; Veenhuis, Marten; Pfanner, Nikolaus; van der Laan, Martin; Bohnert, Maria

    2012-11-01

    Mitofilin proteins are crucial organizers of mitochondrial architecture. They are located in the inner mitochondrial membrane and interact with several protein complexes of the outer membrane, thereby generating contact sites between the two membrane systems of mitochondria. Within the inner membrane, mitofilins are part of hetero-oligomeric protein complexes that have been termed the mitochondrial inner membrane organizing system (MINOS). MINOS integrity is required for the maintenance of the characteristic morphology of the inner mitochondrial membrane, with an inner boundary region closely apposed to the outer membrane and cristae membranes, which form large tubular invaginations that protrude into the mitochondrial matrix and harbor the enzyme complexes of the oxidative phosphorylation machinery. MINOS deficiency comes along with a loss of crista junction structures and the detachment of cristae from the inner boundary membrane. MINOS has been conserved in evolution from unicellular eukaryotes to humans, where alterations of MINOS subunits are associated with multiple pathological conditions.

  9. Interaction of butylated hydroxyanisole with mitochondrial oxidative phosphorylation.

    Science.gov (United States)

    Fusi, F; Sgaragli, G; Murphy, M P

    1992-03-17

    The antioxidant, butylated hydroxyanisole (BHA), has a number of effects on mitochondrial oxidative phosphorylation. In this study we apply the novel approach developed by Brand (Brand MD, Biochim Biophys Acta 1018: 128-133, 1990) to investigate the site of action of BHA on oxidative phosphorylation in rat liver mitochondria. Using this approach we show that BHA increases the proton leak through the mitochondrial inner membrane and that it also inhibits the delta p (proton motive force across the mitochondrial inner membrane) generating system, but has no effect on the phosphorylation system. This demonstrates that compounds having pleiotypic effects on mitochondrial oxidative phosphorylation in vitro can be analysed and their many effects distinguished. This approach is of general use in analysing many other compounds of pharmacological interest which interact with mitochondria. The implications of these results for the mechanism of interaction of BHA with mitochondrial oxidative phosphorylation are discussed.

  10. Congenital and acquired mitochondrial disorders of the central nervous system

    Directory of Open Access Journals (Sweden)

    V. V. Nikitina

    2014-01-01

    Full Text Available Clinical presentations of disorders of the nervous system manifest in young and middle-aged patients with congenital and acquired mitochondrial dysfunctions and cognitive disorders manifest in patients with mitochondrial diseases more often. Nowadays the effective methods of initial diagnosing of these conditions are neurological and neuropsychological examination of patients, using of biochemical markers of mitochondrial diseases: the indices of lactate, total homocysteine in plasma and liquor. Neuro-visual study (Magnetic resonance imaging of the brain, MR spectroscopy, tractography, diffusion-weighted magnetic resonance imaging of the brain, mitochondrial DNA typing is actually used for the differential diagnosing of mitochondrial diseases with other disorders that are accompanied by demyelinating disorders.

  11. Skeletal Muscle Mitochondrial Function in Polycystic Ovarian Syndrome

    DEFF Research Database (Denmark)

    Rabøl, Rasmus; Svendsen, Pernille Maj; Skovbro, Mette

    2011-01-01

    Hyperinsulinemic euglycemic clamps (40 mU/min/m2) and muscle biopsies were performed on 23 women with PCOS (9 lean (body mass index (BMI) 25 kg/m2)) and 17 age- and weight-matched controls (6 lean and 11 obese). Western blotting and high-resolution respirometry was used to determine mitochondrial function. Results......Objective Polycystic ovarian syndrome (PCOS) is associated with skeletal muscle insulin resistance, which has been linked to decreased mitochondrial function. We measured mitochondrial respiration in lean and obese women with and without PCOS using high-resolution respirometry. Methods...... Insulin sensitivity decreased with PCOS and increasing body weight. Mitochondrial respiration with substrates for complex I and complex I+II were similar in all groups, and PCOS was not associated with a decrease in mitochondrial content as measured by mtDNA/genomicDNA. We found no correlation between...

  12. Mitochondrial uncouplers with an extraordinary dynamic range.

    Science.gov (United States)

    Lou, Phing-How; Hansen, Birgit S; Olsen, Preben H; Tullin, Søren; Murphy, Michael P; Brand, Martin D

    2007-10-01

    We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 10(6) in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy.

  13. A mitochondrial stratigraphy for island southeast Asia.

    Science.gov (United States)

    Hill, Catherine; Soares, Pedro; Mormina, Maru; Macaulay, Vincent; Clarke, Dougie; Blumbach, Petya B; Vizuete-Forster, Matthieu; Forster, Peter; Bulbeck, David; Oppenheimer, Stephen; Richards, Martin

    2007-01-01

    Island Southeast Asia (ISEA) was first colonized by modern humans at least 45,000 years ago, but the extent to which the modern inhabitants trace their ancestry to the first settlers is a matter of debate. It is widely held, in both archaeology and linguistics, that they are largely descended from a second wave of dispersal, proto-Austronesian-speaking agriculturalists who originated in China and spread to Taiwan approximately 5,500 years ago. From there, they are thought to have dispersed into ISEA approximately 4,000 years ago, assimilating the indigenous populations. Here, we demonstrate that mitochondrial DNA diversity in the region is extremely high and includes a large number of indigenous clades. Only a fraction of these date back to the time of first settlement, and the majority appear to mark dispersals in the late-Pleistocene or early-Holocene epoch most likely triggered by postglacial flooding. There are much closer genetic links to Taiwan than to the mainland, but most of these probably predated the mid-Holocene "Out of Taiwan" event as traditionally envisioned. Only approximately 20% at most of modern mitochondrial DNAs in ISEA could be linked to such an event, suggesting that, if an agriculturalist migration did take place, it was demographically minor, at least with regard to the involvement of women.

  14. Identification of the Mitochondrial Heme Metabolism Complex.

    Science.gov (United States)

    Medlock, Amy E; Shiferaw, Mesafint T; Marcero, Jason R; Vashisht, Ajay A; Wohlschlegel, James A; Phillips, John D; Dailey, Harry A

    2015-01-01

    Heme is an essential cofactor for most organisms and all metazoans. While the individual enzymes involved in synthesis and utilization of heme are fairly well known, less is known about the intracellular trafficking of porphyrins and heme, or regulation of heme biosynthesis via protein complexes. To better understand this process we have undertaken a study of macromolecular assemblies associated with heme synthesis. Herein we have utilized mass spectrometry with coimmunoprecipitation of tagged enzymes of the heme biosynthetic pathway in a developing erythroid cell culture model to identify putative protein partners. The validity of these data obtained in the tagged protein system is confirmed by normal porphyrin/heme production by the engineered cells. Data obtained are consistent with the presence of a mitochondrial heme metabolism complex which minimally consists of ferrochelatase, protoporphyrinogen oxidase and aminolevulinic acid synthase-2. Additional proteins involved in iron and intermediary metabolism as well as mitochondrial transporters were identified as potential partners in this complex. The data are consistent with the known location of protein components and support a model of transient protein-protein interactions within a dynamic protein complex.

  15. Structural Basis of Mitochondrial Transcription Initiation.

    Science.gov (United States)

    Hillen, Hauke S; Morozov, Yaroslav I; Sarfallah, Azadeh; Temiakov, Dmitry; Cramer, Patrick

    2017-11-16

    Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Tanaka Yoshiyuki

    2012-07-01

    Full Text Available Abstract Background Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. Although the gene orf138 has been isolated as a determinant of Ogura-type CMS, no homologous sequence to orf138 has been found in public databases. Therefore, how orf138 sequence was created is a mystery. In this study, we determined the complete nucleotide sequence of two radish mitochondrial genomes, namely, Ogura- and normal-type genomes, and analyzed them to reveal the origin of the gene orf138. Results Ogura- and normal-type mitochondrial genomes were assembled to 258,426-bp and 244,036-bp circular sequences, respectively. Normal-type mitochondrial genome contained 33 protein-coding and three rRNA genes, which are well conserved with the reported mitochondrial genome of rapeseed. Ogura-type genomes contained same genes and additional atp9. As for tRNA, normal-type contained 17 tRNAs, while Ogura-type contained 17 tRNAs and one additional trnfM. The gene orf138 was specific to Ogura-type mitochondrial genome, and no sequence homologous to it was found in normal-type genome. Comparative analysis of the two genomes revealed that radish mitochondrial genome consists of 11 syntenic regions (length >3 kb, similarity >99.9%. It was shown that short repeats and overlapped repeats present in the edge of syntenic regions were involved in recombination events during evolution to interconvert two types of mitochondrial genome. Ogura-type mitochondrial genome has four unique regions (2,803 bp, 1,601 bp, 451 bp and 15,255 bp in size that are non-syntenic to normal-type genome, and the gene orf138

  17. Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available BACKGROUND AND PURPOSE: Mitochondrial dysfunction has been implicated in the cell death observed after cerebral ischemia, and several mechanisms for this dysfunction have been proposed. Reperfusion after transient cerebral ischemia may cause continued and even more severe damage to the brain. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. The purpose of this study was to observe the features of mitochondrial dysfunction in isolated mitochondria during the reperfusion period following focal cerebral ischemia. METHODS: Male Wistar rats were subjected to focal cerebral ischemia. Mitochondria were isolated using Percoll density gradient centrifugation. The isolated mitochondria were fixed for electron microscopic examination; calcium-induced mitochondrial swelling was quantified using spectrophotometry. Cyclophilin D was detected by Western blotting. Fluorescent probes were used to selectively stain mitochondria to measure their membrane potential and to measure reactive oxidative species production using flow cytometric analysis. RESULTS: Signs of damage were observed in the mitochondrial morphology after exposure to reperfusion. The mitochondrial swelling induced by Ca(2+ increased gradually with the increasing calcium concentration, and this tendency was exacerbated as the reperfusion time was extended. Cyclophilin D protein expression peaked after 24 hours of reperfusion. The mitochondrial membrane potential was decreased significantly during the reperfusion period, with the greatest decrease observed after 24 hours of reperfusion. The surge in mitochondrial reactive oxidative species occurred after 2 hours of reperfusion and was maintained at a high level during the reperfusion period. CONCLUSIONS: Reperfusion following focal cerebral ischemia induced significant mitochondrial morphological damage and Ca(2+-induced mitochondrial swelling. The mechanism of this swelling may be mediated by

  18. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    International Nuclear Information System (INIS)

    Yasuzaki, Yukari; Yamada, Yuma; Harashima, Hideyoshi

    2010-01-01

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we provide a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.

  19. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury.

    Science.gov (United States)

    Jia, Zhi-Qiang; Li, San-Qiang; Qiao, Wei-Qiang; Xu, Wen-Zhong; Xing, Jian-Wu; Liu, Jian-Tao; Song, Hui; Gao, Zhong-Yang; Xing, Bing-Wen; He, Xi-Jing

    2018-05-04

    Ebselen is a fat-soluble small molecule and organic selenium compound that regulates the activity of glutathione peroxidase to alleviate mitochondrial oxidative stress and improve mitochondrial function. In the present study, we aimed to investigate the effects of ebselen on mitochondrial oxidative stress response, mitochondrial apotosis, and motor behaviors after spinal cord injury (SCI). We found that ebselen significantly increased the BBB score in motor behavior, thus suggesting a rescue effect of ebselen on motor function after SCI in rats. Meanwhile, we revealed that ebselen can increase glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities after SCI-this suggests ebselen has an antioxidant effect. Furthermore, the ATP content and Na + -K + -ATPase activity in mitochondria were increased by ebselen after SCI, while the mitochondrial membrane potential (MMP) was decreased by ebselen. The Cytochrome C and Smac release from mitochondria were reduced by ebselen after SCI, thus indicating improved membrane permeability by ebselen. Moreover, the alterations in caspase-3, Bax and Bcl-2 protein expression, as well as the proportion of cell apoptosis were improved by ebselen treatment, which together suggested that ebselen has an inhibitory effect on mitochondrial apotosis pathways after SCI. Taken together, our results suggest that ebselen can inhibit secondary damage caused by spinal cord injury. Indeed it plays a neuroprotective role in spinal cord injury perhaps by improving mitochondrial function and inhibiting the mitochondrial apoptosis pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses.

    Science.gov (United States)

    Zhu, Qiang; Dugardeyn, Jasper; Zhang, Chunyi; Mühlenbock, Per; Eastmond, Peter J; Valcke, Roland; De Coninck, Barbara; Oden, Sevgi; Karampelias, Michael; Cammue, Bruno P A; Prinsen, Els; Van Der Straeten, Dominique

    2014-02-01

    Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.

  1. Mitochondrial ORF79 levels determine pollen abortion in cytoplasmic male sterile rice.

    Science.gov (United States)

    Kazama, Tomohiko; Itabashi, Etsuko; Fujii, Shinya; Nakamura, Takahiro; Toriyama, Kinya

    2016-03-01

    Cytoplasmic male sterility (CMS) is an important agricultural trait characterized by lack of functional pollen, and caused by ectopic and defective mitochondrial gene expression. The pollen function in CMS plants is restored by the presence of nuclear-encoded restorer of fertility (Rf) genes. Previously, we cloned Rf2, which restores the fertility of Lead Rice (LD)-type CMS rice. However, neither the function of Rf2 nor the identity of the mitochondrial gene causing CMS has been determined in LD-CMS rice. Here, we show that the mitochondrial gene orf79 acts as a CMS-associated gene in LD-CMS rice, similar to its role in BT-CMS rice originating from Chinsurah Boro II, and Rf2 weakly restores fertility in BT-CMS rice. We also show that RF2 promotes degradation of atp6-orf79 RNA in a different manner from that of RF1, which is the Rf gene product in BT-CMS rice. The amount of ORF79 protein in LD-CMS rice was one-twentieth of the amount in BT-CMS rice. The difference in ORF79 protein levels probably accounts for the mild and severe pollen defects in LD-CMS and BT-CMS rice, respectively. In the presence of Rf2, accumulation of ORF79 was reduced to almost zero and 25% in LD-CMS and BT-CMS rice, respectively, which probably accounts for the complete and weak fertility restoration abilities of Rf2 in LD-CMS and BT-CMS rice, respectively. These observations indicate that the amount of ORF79 influences the pollen fertility in two strains of rice in which CMS is induced by orf79. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. First description of a novel mitochondrial mutation in the MT-TI gene associated with multiple mitochondrial DNA deletion and depletion in family with severe dilated mitochondrial cardiomyopathy.

    Science.gov (United States)

    Alila-Fersi, Olfa; Tabebi, Mouna; Maalej, Marwa; Belguith, Neila; Keskes, Leila; Mkaouar-Rebai, Emna; Fakhfakh, Faiza

    2018-03-18

    Mitochondria are essential for early cardiac development and impaired mitochondrial function was described associated with heart diseases such as hypertrophic or dilated mitochondrial cardiomyopathy. In this study, we report a family including two individuals with severe dilated mitochondrial cardiomyopathy. The whole mitochondrial genome screening showed the presence of several variations and a novel homoplasmic mutation m.4318-4322delC in the MT-TI gene shared by the two patients and their mother and leading to a disruption of the tRNA Ile secondary structure. In addition, a mitochondrial depletion was present in blood leucocyte of the two affected brother whereas a de novo heteroplasmic multiple deletion in the major arc of mtDNA was present in blood leucocyte and mucosa of only one of them. These deletions in the major arc of the mtDNA resulted to the loss of several protein-encoding genes and also some tRNA genes. The mtDNA deletion and depletion could result to an impairment of the oxidative phosphorylation and energy metabolism in the respiratory chain in the studied patients. Our report is the first description of a family with severe lethal dilated mitochondrial cardiomyopathy and presenting several mtDNA abnormalities including punctual mutation, deletion and depletion. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Mutation in the novel nuclear-encoded mitochondrial protein CHCHD10 in a family with autosomal dominant mitochondrial myopathy.

    Science.gov (United States)

    Ajroud-Driss, Senda; Fecto, Faisal; Ajroud, Kaouther; Lalani, Irfan; Calvo, Sarah E; Mootha, Vamsi K; Deng, Han-Xiang; Siddique, Nailah; Tahmoush, Albert J; Heiman-Patterson, Terry D; Siddique, Teepu

    2015-01-01

    Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or nuclear genome. Only 5% of all mitochondrial disorders are autosomal dominant. We analyzed DNA from members of the previously reported Puerto Rican kindred with an autosomal dominant mitochondrial myopathy (Heimann-Patterson et al. 1997). Linkage analysis suggested a putative locus on the pericentric region of the long arm of chromosome 22 (22q11). Using the tools of integrative genomics, we established chromosome 22 open reading frame 16 (C22orf16) (later designated as CHCHD10) as the only high-scoring mitochondrial candidate gene in our minimal candidate region. Sequence analysis revealed a double-missense mutation (R15S and G58R) in cis in CHCHD10 which encodes a coiled coil-helix-coiled coil-helix protein of unknown function. These two mutations completely co-segregated with the disease phenotype and were absent in 1,481 Caucasian and 80 Hispanic (including 32 Puerto Rican) controls. Expression profiling showed that CHCHD10 is enriched in skeletal muscle. Mitochondrial localization of the CHCHD10 protein was confirmed using immunofluorescence in cells expressing either wild-type or mutant CHCHD10. We found that the expression of the G58R, but not the R15S, mutation induced mitochondrial fragmentation. Our findings identify a novel gene causing mitochondrial myopathy, thereby expanding the spectrum of mitochondrial myopathies caused by nuclear genes. Our findings also suggest a role for CHCHD10 in the morphologic remodeling of the mitochondria.

  4. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2010-01-01

    Full Text Available Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p. for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways were examined.Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2 (*-. Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF.Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  5. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    Science.gov (United States)

    Guo, Rui; Ren, Jun

    2010-01-18

    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  6. The mitochondrial genome of Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) and comparative mitochondrial genomics of red algae.

    Science.gov (United States)

    DePriest, Michael S; Bhattacharya, Debashish; López-Bautista, Juan M

    2014-10-01

    Although red algae are economically highly valuable for their gelatinous cell wall compounds as well as being integral parts of marine benthic habitats, very little genome data are currently available. We present mitochondrial genome sequence data from the red alga Grateloupia taiwanensis S.-M. Lin & H.-Y. Liang. Comprising 28,906 nucleotide positions, the mitochondrial genome contig contains 25 protein-coding genes and 24 transfer RNA genes. It is highly similar to other red algal genomes in gene content as well as overall structure. An intron in the cox1 gene was found to be shared by G. taiwanensis and Grateloupia angusta (Okamura) S. Kawaguchi & H. W. Wang. We also used whole-genome alignments to compare G. taiwanensis to different groups of red algae, and these results are consistent with the currently accepted phylogeny of Rhodophyta. © 2014 Marine Biological Laboratory.

  7. Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt and mitochondrial biogenesis.

    Science.gov (United States)

    Cerqueira, Fernanda M; Laurindo, Francisco R M; Kowaltowski, Alicia J

    2011-03-31

    Enhanced mitochondrial biogenesis promoted by eNOS activation is believed to play a central role in the beneficial effects of calorie restriction (CR). Since treatment of mice with dinitrophenol (DNP) promotes health and lifespan benefits similar to those observed in CR, we hypothesized that it could also impact biogenesis. We found that DNP and CR increase citrate synthase activity, PGC-1α, cytochrome c oxidase and mitofusin-2 expression, as well as fasting plasma levels of NO• products. In addition, eNOS and Akt phosphorylation in skeletal muscle and visceral adipose tissue was activated in fasting CR and DNP animals. Overall, our results indicate that systemic mild uncoupling activates eNOS and Akt-dependent pathways leading to mitochondrial biogenesis.

  8. Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt and mitochondrial biogenesis.

    Directory of Open Access Journals (Sweden)

    Fernanda M Cerqueira

    2011-03-01

    Full Text Available Enhanced mitochondrial biogenesis promoted by eNOS activation is believed to play a central role in the beneficial effects of calorie restriction (CR. Since treatment of mice with dinitrophenol (DNP promotes health and lifespan benefits similar to those observed in CR, we hypothesized that it could also impact biogenesis. We found that DNP and CR increase citrate synthase activity, PGC-1α, cytochrome c oxidase and mitofusin-2 expression, as well as fasting plasma levels of NO• products. In addition, eNOS and Akt phosphorylation in skeletal muscle and visceral adipose tissue was activated in fasting CR and DNP animals. Overall, our results indicate that systemic mild uncoupling activates eNOS and Akt-dependent pathways leading to mitochondrial biogenesis.

  9. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences.

    Science.gov (United States)

    Malik, Afshan N; Czajka, Anna; Cunningham, Phil

    2016-07-01

    Mitochondria contain an extra-nuclear genome in the form of mitochondrial DNA (MtDNA), damage to which can lead to inflammation and bioenergetic deficit. Changes in MtDNA levels are increasingly used as a biomarker of mitochondrial dysfunction. We previously reported that in humans, fragments in the nuclear genome known as nuclear mitochondrial insertion sequences (NumtS) affect accurate quantification of MtDNA. In the current paper our aim was to determine whether mouse NumtS affect the quantification of MtDNA and to establish a method designed to avoid this. The existence of NumtS in the mouse genome was confirmed using blast N, unique MtDNA regions were identified using FASTA, and MtDNA primers which do not co-amplify NumtS were designed and tested. MtDNA copy numbers were determined in a range of mouse tissues as the ratio of the mitochondrial and nuclear genome using real time qPCR and absolute quantification. Approximately 95% of mouse MtDNA was duplicated in the nuclear genome as NumtS which were located in 15 out of 21 chromosomes. A unique region was identified and primers flanking this region were used. MtDNA levels differed significantly in mouse tissues being the highest in the heart, with levels in descending order (highest to lowest) in kidney, liver, blood, brain, islets and lung. The presence of NumtS in the nuclear genome of mouse could lead to erroneous data when studying MtDNA content or mutation. The unique primers described here will allow accurate quantification of MtDNA content in mouse models without co-amplification of NumtS. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  10. Chaperone-protease networks in mitochondrial protein homeostasis.

    Science.gov (United States)

    Voos, Wolfgang

    2013-02-01

    As essential organelles, mitochondria are intimately integrated into the metabolism of a eukaryotic cell. The maintenance of the functional integrity of the mitochondrial proteome, also termed protein homeostasis, is facing many challenges both under normal and pathological conditions. First, since mitochondria are derived from bacterial ancestor cells, the proteins in this endosymbiotic organelle have a mixed origin. Only a few proteins are encoded on the mitochondrial genome, most genes for mitochondrial proteins reside in the nuclear genome of the host cell. This distribution requires a complex biogenesis of mitochondrial proteins, which are mostly synthesized in the cytosol and need to be imported into the organelle. Mitochondrial protein biogenesis usually therefore comprises complex folding and assembly processes to reach an enzymatically active state. In addition, specific protein quality control (PQC) processes avoid an accumulation of damaged or surplus polypeptides. Mitochondrial protein homeostasis is based on endogenous enzymatic components comprising a diverse set of chaperones and proteases that form an interconnected functional network. This review describes the different types of mitochondrial proteins with chaperone functions and covers the current knowledge of their roles in protein biogenesis, folding, proteolytic removal and prevention of aggregation, the principal reactions of protein homeostasis. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Caffeine and acetaminophen association: Effects on mitochondrial bioenergetics.

    Science.gov (United States)

    Gonçalves, Débora F; de Carvalho, Nelson R; Leite, Martim B; Courtes, Aline A; Hartmann, Diane D; Stefanello, Sílvio T; da Silva, Ingrid K; Franco, Jéferson L; Soares, Félix A A; Dalla Corte, Cristiane L

    2018-01-15

    Many studies have been demonstrating the role of mitochondrial function in acetaminophen (APAP) hepatotoxicity. Since APAP is commonly consumed with caffeine, this work evaluated the effects of the combination of APAP and caffeine on hepatic mitochondrial bioenergetic function in mice. Mice were treated with caffeine (20mg/kg, intraperitoneal (i.p.)) or its vehicle and, after 30minutes, APAP (250mg/kg, i.p.) or its vehicle. Four hours later, livers were removed, and the parameters associated with mitochondrial function and oxidative stress were evaluated. Hepatic cellular oxygen consumption was evaluated by high-resolution respirometry (HRR). APAP treatment decreased cellular oxygen consumption and mitochondrial complex activities in the livers of mice. Additionally, treatment with APAP increased swelling of isolated mitochondria from mice livers. On the other hand, caffeine administered with APAP was able to improve hepatic mitochondrial bioenergetic function. Treatment with APAP increased lipid peroxidation and reactive oxygen species (ROS) production and decreased glutathione levels in the livers of mice. Caffeine administered with APAP was able to prevent lipid peroxidation and the ROS production in mice livers, which may be associated with the improvement of mitochondrial function caused by caffeine treatment. We suggest that the antioxidant effects of caffeine and/or its interactions with mitochondrial bioenergetics may be involved in its beneficial effects against APAP hepatotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mitochondrial modulation of phosphine toxicity and resistance in Caenorhabditis elegans.

    Science.gov (United States)

    Zuryn, Steven; Kuang, Jujiao; Ebert, Paul

    2008-03-01

    Phosphine is a fumigant used to protect stored commodities from infestation by pest insects, though high-level phosphine resistance in many insect species threatens the continued use of the fumigant. The mechanisms of toxicity and resistance are not clearly understood. In this study, the model organism, Caenorhabditis elegans, was employed to investigate the effects of phosphine on its proposed in vivo target, the mitochondrion. We found that phosphine rapidly perturbs mitochondrial morphology, inhibits oxidative respiration by 70%, and causes a severe drop in mitochondrial membrane potential (DeltaPsim) within 5 h of exposure. We then examined the phosphine-resistant strain of nematode, pre-33, to determine whether resistance was associated with any changes to mitochondrial physiology. Oxygen consumption was reduced by 70% in these mutant animals, which also had more mitochondrial genome copies than wild-type animals, a common response to reduced metabolic capacity. The mutant also had an unexpected increase in the basal DeltaPsim, which protected individuals from collapse of the membrane potential following phosphine treatment. We tested whether directly manipulating mitochondrial function could influence sensitivity toward phosphine and found that suppression of mitochondrial respiratory chain genes caused up to 10-fold increase in phosphine resistance. The current study confirms that phosphine targets the mitochondria and also indicates that direct alteration of mitochondrial function may be related to phosphine resistance.

  13. Mechanisms of ER Stress-Mediated Mitochondrial Membrane Permeabilization.

    LENUS (Irish Health Repository)

    Gupta, Sanjeev

    2010-01-01

    During apoptosis, the process of mitochondrial outer membrane permeabilization (MOMP) represents a point-of-no-return as it commits the cell to death. Here we have assessed the role of caspases, Bcl-2 family members and the mitochondrial permeability transition pore on ER stress-induced MOMP and subsequent cell death. Induction of ER stress leads to upregulation of several genes such as Grp78, Edem1, Erp72, Atf4, Wars, Herp, p58ipk, and ERdj4 and leads to caspase activation, release of mitochondrial intermembrane proteins and dissipation of mitochondrial transmembrane potential (DeltaPsim). Mouse embryonic fibroblasts (MEFs) from caspase-9, -2 and, -3 knock-out mice were resistant to ER stress-induced apoptosis which correlated with decreased processing of pro-caspase-3 and -9. Furthermore, pretreatment of cells with caspase inhibitors (Boc-D.fmk and DEVD.fmk) attenuated ER stress-induced loss of DeltaPsim. However, only deficiency of caspase-9 and -2 could prevent ER stress-mediated loss of DeltaPsim. Bcl-2 overexpression or pretreatment of cells with the cell permeable BH4 domain (BH4-Tat) or the mitochondrial permeability transition pore inhibitors, bongkrekic acid or cyclosporine A, attenuated the ER stress-induced loss of DeltaPsim. These data suggest a role for caspase-9 and -2, Bcl-2 family members and the mitochondrial permeability transition pore in loss of mitochondrial membrane potential during ER stress-induced apoptosis.

  14. The bipartite mitochondrial genome of Ruizia karukerae (Rhigonematomorpha, Nematoda).

    Science.gov (United States)

    Kim, Taeho; Kern, Elizabeth; Park, Chungoo; Nadler, Steven A; Bae, Yeon Jae; Park, Joong-Ki

    2018-05-10

    Mitochondrial genes and whole mitochondrial genome sequences are widely used as molecular markers in studying population genetics and resolving both deep and shallow nodes in phylogenetics. In animals the mitochondrial genome is generally composed of a single chromosome, but mystifying exceptions sometimes occur. We determined the complete mitochondrial genome of the millipede-parasitic nematode Ruizia karukerae and found its mitochondrial genome consists of two circular chromosomes, which is highly unusual in bilateral animals. Chromosome I is 7,659 bp and includes six protein-coding genes, two rRNA genes and nine tRNA genes. Chromosome II comprises 7,647 bp, with seven protein-coding genes and 16 tRNA genes. Interestingly, both chromosomes share a 1,010 bp sequence containing duplicate copies of cox2 and three tRNA genes (trnD, trnG and trnH), and the nucleotide sequences between the duplicated homologous gene copies are nearly identical, suggesting a possible recent genesis for this bipartite mitochondrial genome. Given that little is known about the formation, maintenance or evolution of abnormal mitochondrial genome structures, R. karukerae mtDNA may provide an important early glimpse into this process.

  15. MitoMiner: a data warehouse for mitochondrial proteomics data.

    Science.gov (United States)

    Smith, Anthony C; Blackshaw, James A; Robinson, Alan J

    2012-01-01

    MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/) is a data warehouse for the storage and analysis of mitochondrial proteomics data gathered from publications of mass spectrometry and green fluorescent protein tagging studies. In MitoMiner, these data are integrated with data from UniProt, Gene Ontology, Online Mendelian Inheritance in Man, HomoloGene, Kyoto Encyclopaedia of Genes and Genomes and PubMed. The latest release of MitoMiner stores proteomics data sets from 46 studies covering 11 different species from eumetazoa, viridiplantae, fungi and protista. MitoMiner is implemented by using the open source InterMine data warehouse system, which provides a user interface allowing users to upload data for analysis, personal accounts to store queries and results and enables queries of any data in the data model. MitoMiner also provides lists of proteins for use in analyses, including the new MitoMiner mitochondrial proteome reference sets that specify proteins with substantial experimental evidence for mitochondrial localization. As further mitochondrial proteomics data sets from normal and diseased tissue are published, MitoMiner can be used to characterize the variability of the mitochondrial proteome between tissues and investigate how changes in the proteome may contribute to mitochondrial dysfunction and mitochondrial-associated diseases such as cancer, neurodegenerative diseases, obesity, diabetes, heart failure and the ageing process.

  16. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  17. The Role of Therapeutic Drugs on Acquired Mitochondrial Toxicity.

    Science.gov (United States)

    Morén, Constanza; Juárez-Flores, Diana Luz; Cardellach, Francesc; Garrabou, Glòria

    2016-01-01

    Certain therapeutic drugs used in medical practice may trigger mitochondrial toxicity leading to a wide range of clinical symptoms including deafness, neuropathy, myopathy, hyperlactatemia, lactic acidosis, pancreatitis and lipodystrophy, among others, which could even compromise the life of the patient. The aim of this work is to review the potential mitochondrial toxicity derived from drugs used in health care, including anesthetics, antiepileptics, neuroleptics, antidepressants, antivirals, antibiotics, antifungals, antimalarics, antineoplastics, antidiabetics, hypolipemiants, antiarrhythmics, anti-inflammatories and nitric oxide. We herein have reviewed data from experimental and clinical studies to document the molecular mitochondrial basis, potential biomarkers and putative clinical symptoms associated to secondary effects of drugs. One hundred and forty-five articles were selected and the information was organized by means of the primary target to which pharmacologic drugs were directed. Adverse toxic events were classified depending on the mitochondrial offtarget effect and whether they had been demonstrated in the experimental or clinical setting. Since treatment of acquired mitochondriopathies remains supportive and therapeutic interventions cannot be avoided, information of molecular and clinical consequences of toxic exposure becomes fundamental to assess riskbenefit imbalance of treatment prescription. Additionally, there is a crucial need to develop less mitochondrial toxic compounds, novel biomarkers to follow up mitochondrial toxicity (or implement those already proposed) and new approaches to prevent or revert unintended mitochondrial damage.

  18. Actin and myosin contribute to mammalian mitochondrial DNA maintenance

    Science.gov (United States)

    Reyes, A.; He, J.; Mao, C. C.; Bailey, L. J.; Di Re, M.; Sembongi, H.; Kazak, L.; Dzionek, K.; Holmes, J. B.; Cluett, T. J.; Harbour, M. E.; Fearnley, I. M.; Crouch, R. J.; Conti, M. A.; Adelstein, R. S.; Walker, J. E.; Holt, I. J.

    2011-01-01

    Mitochondrial DNA maintenance and segregation are dependent on the actin cytoskeleton in budding yeast. We found two cytoskeletal proteins among six proteins tightly associated with rat liver mitochondrial DNA: non-muscle myosin heavy chain IIA and β-actin. In human cells, transient gene silencing of MYH9 (encoding non-muscle myosin heavy chain IIA), or the closely related MYH10 gene (encoding non-muscle myosin heavy chain IIB), altered the topology and increased the copy number of mitochondrial DNA; and the latter effect was enhanced when both genes were targeted simultaneously. In contrast, genetic ablation of non-muscle myosin IIB was associated with a 60% decrease in mitochondrial DNA copy number in mouse embryonic fibroblasts, compared to control cells. Gene silencing of β-actin also affected mitochondrial DNA copy number and organization. Protease-protection experiments and iodixanol gradient analysis suggest some β-actin and non-muscle myosin heavy chain IIA reside within human mitochondria and confirm that they are associated with mitochondrial DNA. Collectively, these results strongly implicate the actomyosin cytoskeleton in mammalian mitochondrial DNA maintenance. PMID:21398640

  19. Peripheral neuropathy associated with mitochondrial disease in children.

    Science.gov (United States)

    Menezes, Manoj P; Ouvrier, Robert A

    2012-05-01

    Mitochondrial diseases in children are often associated with a peripheral neuropathy but the presence of the neuropathy is under-recognized because of the overwhelming involvement of the central nervous system (CNS). These mitochondrial neuropathies are heterogeneous in their clinical, neurophysiological, and histopathological characteristics. In this article, we provide a comprehensive review of childhood mitochondrial neuropathy. Early recognition of neuropathy may help with the identification of the mitochondrial syndrome. While it is not definite that the characteristics of the neuropathy would help in directing genetic testing without the requirement for invasive skin, muscle or liver biopsies, there appears to be some evidence for this hypothesis in Leigh syndrome, in which nuclear SURF1 mutations cause a demyelinating neuropathy and mitochondrial DNA MTATP6 mutations cause an axonal neuropathy. POLG1 mutations, especially when associated with late-onset phenotypes, appear to cause a predominantly sensory neuropathy with prominent ataxia. The identification of the peripheral neuropathy also helps to target genetic testing in the mitochondrial optic neuropathies. Although often subclinical, the peripheral neuropathy may occasionally be symptomatic and cause significant disability. Where it is symptomatic, recognition of the neuropathy will help the early institution of rehabilitative therapy. We therefore suggest that nerve conduction studies should be a part of the early evaluation of children with suspected mitochondrial disease. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  20. Mitochondrial genome evolution in Alismatales: Size reduction and extensive loss of ribosomal protein genes

    DEFF Research Database (Denmark)

    Petersen, Gitte; Cuenca, Argelia; Zervas, Athanasios

    2017-01-01

    The order Alismatales is a hotspot for evolution of plant mitochondrial genomes characterized by remarkable differences in genome size, substitution rates, RNA editing, retrotranscription, gene loss and intron loss. Here we have sequenced the complete mitogenomes of Zostera marina and Stratiotes...... aloides, which together with previously sequenced mitogenomes from Butomus and Spirodela, provide new evolutionary evidence of genome size reduction, gene loss and transfer to the nucleus. The Zostera mitogenome includes a large portion of DNA transferred from the plastome, yet it is the smallest known...... mitogenome from a non-parasitic plant. Using a broad sample of the Alismatales, the evolutionary history of ribosomal protein gene loss is analyzed. In Zostera almost all ribosomal protein genes are lost from the mitogenome, but only some can be found in the nucleus....

  1. Mitochondrial dysfunction and risk of cancer

    DEFF Research Database (Denmark)

    Lund, M; Melbye, M; Diaz, L J

    2015-01-01

    matrilineal relatives to a cohort member with a genetically confirmed maternally inherited mDNA mutation. Information on cancer was obtained by linkage to the Danish Cancer Register. Standardised incidence ratios (SIRs) were used to assess the relative risk of cancer. RESULTS: During 7334 person......-years of follow-up, 19 subjects developed a primary cancer. The corresponding SIR for any primary cancer was 1.06 (95% confidence interval 0.68-1.63). Subgroup analyses according to mutational subtype yielded similar results, for example, a SIR of 0.94 (95% CI 0.53 to 1.67) for the m.3243A>G maternally inherited...... mDNA mutation, cases=13. CONCLUSIONS: Patients with mitochondrial dysfunction do not appear to be at increased risk of cancer compared with the general population....

  2. Sequencing and comparing whole mitochondrial genomes ofanimals

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  3. Complete mitochondrial genome of the Loligo opalescence.

    Science.gov (United States)

    Jiang, Lihua; Liu, Wei; Zhu, Aiyi; Zhang, Jianshe; Wu, Changwen

    2016-09-01

    In this study, we determined the complete mitochondrial genome of the Loligo opalescence. The genome was 17,370 bp in length and contained 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 3 main non-coding regions. The composition and order of genes, were similar to most other invertebrates. The overall base composition of L. opalescence is A 38.62%, C 19.40%, T 32.37% and G 9.61%, with a highly A + T bias of 70.99%. All of the three control regions (CR) contain termination-associated sequences and conserved sequence blocks. This mitogenome sequence data would play an important role in the investigation of phylogenetic relationship, taxonomic resolution and phylogeography of the Loliginidae.

  4. Abolition of peroxiredoxin-5 mitochondrial targeting during canid evolution.

    Directory of Open Access Journals (Sweden)

    Valérie Van der Eecken

    Full Text Available In human, the subcellular targeting of peroxiredoxin-5 (PRDX5, a thioredoxin peroxidase, is dependent on the use of multiple alternative transcription start sites and two alternative in-frame translation initiation sites, which determine whether or not the region encoding a mitochondrial targeting sequence (MTS is translated. In the present study, the abolition of PRDX5 mitochondrial targeting in dog is highlighted and the molecular mechanism underlying the loss of mitochondrial PRDX5 during evolution is examined. Here, we show that the absence of mitochondrial PRDX5 is generalized among the extant canids and that the first events leading to PRDX5 MTS abolition in canids involve a mutation in the more 5' translation initiation codon as well as the appearance of a STOP codon. Furthermore, we found that PRDX5 MTS functionality is maintained in giant panda and northern elephant seal, which are phylogenetically closely related to canids. Also, the functional consequences of the restoration of mitochondrial PRDX5 in dog Madin-Darby canine kidney (MDCK cells were investigated. The restoration of PRDX5 mitochondrial targeting in MDCK cells, instead of protecting, provokes deleterious effects following peroxide exposure independently of its peroxidase activity, indicating that mitochondrial PRDX5 gains cytotoxic properties under acute oxidative stress in MDCK cells. Altogether our results show that, although mitochondrial PRDX5 cytoprotective function against oxidative stress has been clearly demonstrated in human and rodents, PRDX5 targeting to mitochondria has been evolutionary lost in canids. Moreover, restoration of mitochondrial PRDX5 in dog MDCK cells, instead of conferring protection against peroxide exposure, makes them more vulnerable.

  5. AKIP1 expression modulates mitochondrial function in rat neonatal cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Hongjuan Yu

    Full Text Available A kinase interacting protein 1 (AKIP1 is a molecular regulator of protein kinase A and nuclear factor kappa B signalling. Recent evidence suggests AKIP1 is increased in response to cardiac stress, modulates acute ischemic stress response, and is localized to mitochondria in cardiomyocytes. The mitochondrial function of AKIP1 is, however, still elusive. Here, we investigated the mitochondrial function of AKIP1 in a neonatal cardiomyocyte model of phenylephrine (PE-induced hypertrophy. Using a seahorse flux analyzer we show that PE stimulated the mitochondrial oxygen consumption rate (OCR in cardiomyocytes. This was partially dependent on PE mediated AKIP1 induction, since silencing of AKIP1 attenuated the increase in OCR. Interestingly, AKIP1 overexpression alone was sufficient to stimulate mitochondrial OCR and in particular ATP-linked OCR. This was also true when pyruvate was used as a substrate, indicating that it was independent of glycolytic flux. The increase in OCR was independent of mitochondrial biogenesis, changes in ETC density or altered mitochondrial membrane potential. In fact, the respiratory flux was elevated per amount of ETC, possibly through enhanced ETC coupling. Furthermore, overexpression of AKIP1 reduced and silencing of AKIP1 increased mitochondrial superoxide production, suggesting that AKIP1 modulates the efficiency of electron flux through the ETC. Together, this suggests that AKIP1 overexpression improves mitochondrial function to enhance respiration without excess superoxide generation, thereby implicating a role for AKIP1 in mitochondrial stress adaptation. Upregulation of AKIP1 during different forms of cardiac stress may therefore be an adaptive mechanism to protect the heart.

  6. Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine

    International Nuclear Information System (INIS)

    Velsor, Leonard W.; Kovacevic, Miro; Goldstein, Mark; Leitner, Heather M.; Lewis, William; Day, Brian J.

    2004-01-01

    The toxicity of nucleoside reverse transcriptase inhibitors (NRTIs) is linked to altered mitochondrial DNA (mtDNA) replication and subsequent disruption of cellular energetics. This manifests clinically as elevated concentrations of lactate in plasma. The mechanism(s) underlying how the changes in mtDNA replication lead to lactic acidosis remains unclear. It is hypothesized that mitochondrial oxidative stress links the changes in mtDNA replication to mitochondrial dysfunction and ensuing NRTIs toxicity. To test this hypothesis, changes in mitochondrial function, mtDNA amplification efficiency, and oxidative stress were assessed in HepG2-cultured human hepatoblasts treated with the NRTI stavudine (2',3'-didehydro-2',3'-deoxythymidine or d4T) for 48 h. d4T produced significant mitochondrial dysfunction with a 1.5-fold increase in cellular lactate to pyruvate ratios. In addition, d4T caused a dose-dependent decrease in mtDNA amplification and a correlative increase in abundance of markers of mitochondrial oxidative stress. Manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, MnTBAP, a catalytic antioxidant, ameliorated or reversed d4T-induced changes in cell injury, energetics, mtDNA amplification, and mitochondrial oxidative stress. In conclusion, d4T treatment elevates mitochondrial reactive oxygen species (ROS), enhances mitochondrial oxidative stress, and contributes mechanistically to NRTI-induced toxicity. These deleterious events may be potentiated in acquired immunodeficiency syndrome (AIDS) by human immunodeficiency virus (HIV) infection itself, coinfection (e.g., viral hepatitis), aging, substance, and alcohol use

  7. Nitric Oxide Regulates Seedling Growth and Mitochondrial Responses in Aged Oat Seeds

    Directory of Open Access Journals (Sweden)

    Chunli Mao

    2018-04-01

    Full Text Available Mitochondria are the source of reactive oxygen species (ROS in plant cells and play a central role in the mitochondrial electron transport chain (ETC and tricarboxylic acid cycle (TCA cycles; however, ROS production and regulation for seed germination, seedling growth, as well as mitochondrial responses to abiotic stress, are not clear. This study was conducted to obtain basic information on seed germination, embryo mitochondrial antioxidant responses, and protein profile changes in artificial aging in oat seeds (Avena sativa L. exposed to exogenous nitric oxide (NO treatment. The results showed that the accumulation of H2O2 in mitochondria increased significantly in aged seeds. Artificial aging can lead to a loss of seed vigor, which was shown by a decline in seed germination and the extension of mean germination time (MGT. Seedling growth was also inhibited. Some enzymes, including catalase (CAT, glutathione reductase (GR, dehydroascorbate reductase (DHAR, and monodehydroascorbate reductase (MDHAR, maintained a lower level in the ascorbate-glutathione (AsA-GSH scavenging system. Proteomic analysis revealed that the expression of some proteins related to the TCA cycle were down-regulated and several enzymes related to mitochondrial ETC were up-regulated. With the application of 0.05 mM NO in aged oat seeds, a protective effect was observed, demonstrated by an improvement in seed vigor and increased H2O2 scavenging ability in mitochondria. There were also higher activities of CAT, GR, MDHAR, and DHAR in the AsA-GSH scavenging system, enhanced TCA cycle-related enzymes (malate dehydrogenase, succinate-CoA ligase, fumarate hydratase, and activated alternative pathways, as the cytochrome pathway was inhibited. Therefore, our results indicated that seedling growth and seed germinability could retain a certain level in aged oat seeds, predominantly depending on the lower NO regulation of the TCA cycle and AsA-GSH. Thus, it could be concluded that the

  8. Mitochondrial mutations in subjects with psychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available A considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C. Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA.

  9. Developing a biological dosimeter based on mitochondrial DNA

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S; Carlisle, S M; Unrau, P; Deugau, K V [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    Direct measurement of deoxyribonucleic acid (DNA) damage from ionizing radiation may be advantageous in determining radiation radiation exposures and assessing their effects on atomic radiation workers. The mitochondrial DNA molecule is one potential cellular DNA target which is: fully defined and sequenced; present in many copies per cell; not vital to cellular survival; and less subject to DNA repair than nuclear DNA. A method is described to isolate and analyse normal mitochondrial DNA. We describe the developments needed to determine DNA damage in mitochondrial DNA. The target is to make a biological dosimeter. (author). 6 refs., 3 figs.

  10. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing

    Directory of Open Access Journals (Sweden)

    Tianhong Su

    2018-03-01

    Full Text Available Mitochondrial DNA (mtDNA mutations accumulate in somatic stem cells during ageing and cause mitochondrial dysfunction. In this review, we summarize the studies that link mtDNA mutations to stem cell ageing. We discuss the age-related behaviours of the somatic mtDNA mutations in stem cell populations and how they potentially contribute to stem cell ageing by altering mitochondrial properties in humans and in mtDNA-mutator mice. We also draw attention to the diverse fates of the mtDNA mutations with different origins during ageing, with potential selective pressures on the germline inherited but not the somatic mtDNA mutations.

  11. Developing a biological dosimeter based on mitochondrial DNA

    International Nuclear Information System (INIS)

    Adams, S.; Carlisle, S.M.; Unrau, P.; Deugau, K.V.

    1995-01-01

    Direct measurement of deoxyribonucleic acid (DNA) damage from ionizing radiation may be advantageous in determining radiation radiation exposures and assessing their effects on atomic radiation workers. The mitochondrial DNA molecule is one potential cellular DNA target which is: fully defined and sequenced; present in many copies per cell; not vital to cellular survival; and less subject to DNA repair than nuclear DNA. A method is described to isolate and analyse normal mitochondrial DNA. We describe the developments needed to determine DNA damage in mitochondrial DNA. The target is to make a biological dosimeter. (author). 6 refs., 3 figs

  12. The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice.

    Science.gov (United States)

    Peng, Xiaojue; Wang, Kun; Hu, Chaofeng; Zhu, Youlin; Wang, Ting; Yang, Jing; Tong, Jiping; Li, Shaoqing; Zhu, Yingguo

    2010-06-24

    Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open reading frames. The mitochondrial gene orfH79 is a candidate gene for causing the CMS trait in CMS-Honglian (CMS-HL) rice. However, whether the orfH79 expression can actually induce CMS in rice remains unclear. Western blot analysis revealed that the ORFH79 protein is mainly present in mitochondria of CMS-HL rice and is absent in the fertile line. To investigate the function of ORFH79 protein in mitochondria, this gene was fused to a mitochondrial transit peptide sequence and used to transform wild type rice, where its expression induced the gametophytic male sterile phenotype. In addition, excessive accumulation of reactive oxygen species (ROS) in the microspore, a reduced ATP/ADP ratio, decreased mitochondrial membrane potential and a lower respiration rate in the transgenic plants were found to be similar to those in CMS-HL rice. Moreover, retarded growth of primary and lateral roots accompanied by abnormal accumulation of ROS in the root tip was observed in both transgenic rice and CMS-HL rice (YTA). These results suggest that the expression of orfH79 in mitochondria impairs mitochondrial function, which affects the development of both male gametophytes and the roots of CMS-HL rice.

  13. Dicranostiga leptopodu (Maxim.) Fedde extracts attenuated CCl4-induced acute liver damage in mice through increasing anti-oxidative enzyme activity to improve mitochondrial function.

    Science.gov (United States)

    Tang, Deping; Wang, Fang; Tang, Jinzhou; Mao, Aihong; Liao, Shiqi; Wang, Qin

    2017-01-01

    Dicranostiga Leptodu (Maxim.) fedde (DLF), a poppy plant, has been reported have many benefits and medicinal properties, including free radicals scavenging and detoxifying. However, the protective effect of DLF extracts against carbon tetrachloride (CCl 4 )-induced damage in mice liver has not been elucidated. Here, we demonstrated that DLF extracts attenuated CCl 4 -induced liver damage in mice through increasing anti-oxidative enzyme activity to improve mitochondrial function. In this study, the mice liver damage evoked by CCl 4 was marked by morphology changes, significant rise in lipid peroxidation, as well as alterations of mitochondrial respiratory function. Interestingly, pretreatment with DLF extracts attenuated CCl 4 -induced morphological damage and increasing of lipid peroxidation in mice liver. Additionally, DLF extracts improved mitochondrial function by preventing the disruption of respiratory chain and suppression of mitochondrial Na + K + -ATPase and Ca 2+ -ATPase activity. Furthermore, administration with DLF extracts elevated superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels and maintained the balance of redox status. This results showed that toxic protection effect of DLF extracts on mice liver is mediated by improving mitochondrial respiratory function and keeping the balance of redox status, which suggesting that DLF extracts could be used as potential toxic protection agent for the liver against hepatotoxic agent. Copyright © 2016. Published by Elsevier Masson SAS.

  14. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    International Nuclear Information System (INIS)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh; Godbole, Madan M.

    2010-01-01

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1α, NRF-1α and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  15. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India); Godbole, Madan M., E-mail: madangodbole@yahoo.co.in [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India)

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  16. Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease.

    Science.gov (United States)

    Boczonadi, Veronika; King, Martin S; Smith, Anthony C; Olahova, Monika; Bansagi, Boglarka; Roos, Andreas; Eyassu, Filmon; Borchers, Christoph; Ramesh, Venkateswaran; Lochmüller, Hanns; Polvikoski, Tuomo; Whittaker, Roger G; Pyle, Angela; Griffin, Helen; Taylor, Robert W; Chinnery, Patrick F; Robinson, Alan J; Kunji, Edmund R S; Horvath, Rita

    2018-03-08

    PurposeTo understand the role of the mitochondrial oxodicarboxylate carrier (SLC25A21) in the development of spinal muscular atrophy-like disease.MethodsWe identified a novel pathogenic variant in a patient by whole-exome sequencing. The pathogenicity of the mutation was studied by transport assays, computer modeling, followed by targeted metabolic testing and in vitro studies in human fibroblasts and neurons.ResultsThe patient carries a homozygous pathogenic variant c.695A>G; p.(Lys232Arg) in the SLC25A21 gene, encoding the mitochondrial oxodicarboxylate carrier, and developed spinal muscular atrophy and mitochondrial myopathy. Transport assays show that the mutation renders SLC25A21 dysfunctional and 2-oxoadipate cannot be imported into the mitochondrial matrix. Computer models of central metabolism predicted that impaired transport of oxodicarboxylate disrupts the pathways of lysine and tryptophan degradation, and causes accumulation of 2-oxoadipate, pipecolic acid, and quinolinic acid, which was confirmed in the patient's urine by targeted metabolomics. Exposure to 2-oxoadipate and quinolinic acid decreased the level of mitochondrial complexes in neuronal cells (SH-SY5Y) and induced apoptosis.ConclusionMitochondrial oxodicarboxylate carrier deficiency leads to mitochondrial dysfunction and the accumulation of oxoadipate and quinolinic acid, which in turn cause toxicity in spinal motor neurons leading to spinal muscular atrophy-like disease.GENETICS in MEDICINE advance online publication, 8 March 2018; doi:10.1038/gim.2017.251.

  17. Complete mitochondrial genome of the aluminum-tolerant fungus Rhodotorula taiwanensis RS1 and comparative analysis of Basidiomycota mitochondrial genomes.

    Science.gov (United States)

    Zhao, Xue Qiang; Aizawa, Tomoko; Schneider, Jessica; Wang, Chao; Shen, Ren Fang; Sunairi, Michio

    2013-04-01

    The complete mitochondrial genome of Rhodotorula taiwanensis RS1, an aluminum-tolerant Basidiomycota fungus, was determined and compared with the known mitochondrial genomes of 12 Basidiomycota species. The mitochondrial genome of R. taiwanensis RS1 is a circular DNA molecule of 40,392 bp and encodes the typical 15 mitochondrial proteins, 23 tRNAs, and small and large rRNAs as well as 10 intronic open reading frames. These genes are apparently transcribed in two directions and do not show syntenies in gene order with other investigated Basidiomycota species. The average G+C content (41%) of the mitochondrial genome of R. taiwanensis RS1 is the highest among the Basidiomycota species. Two introns were detected in the sequence of the atp9 gene of R. taiwanensis RS1, but not in that of other Basidiomycota species. Rhodotorula taiwanensis is the first species of the genus Rhodotorula whose full mitochondrial genome has been sequenced; and the data presented here supply valuable information for understanding the evolution of fungal mitochondrial genomes and researching the mechanism of aluminum tolerance in microorganisms. © 2013 The Authors. Published by Blackwell Publishing Ltd.

  18. Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission.

    Science.gov (United States)

    Tsushima, Kensuke; Bugger, Heiko; Wende, Adam R; Soto, Jamie; Jenson, Gregory A; Tor, Austin R; McGlauflin, Rose; Kenny, Helena C; Zhang, Yuan; Souvenir, Rhonda; Hu, Xiao X; Sloan, Crystal L; Pereira, Renata O; Lira, Vitor A; Spitzer, Kenneth W; Sharp, Terry L; Shoghi, Kooresh I; Sparagna, Genevieve C; Rog-Zielinska, Eva A; Kohl, Peter; Khalimonchuk, Oleh; Schaffer, Jean E; Abel, E Dale

    2018-01-05

    Cardiac lipotoxicity, characterized by increased uptake, oxidation, and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes mellitus. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. Using a transgenic mouse model of cardiac lipotoxicity overexpressing ACSL1 (long-chain acyl-CoA synthetase 1) in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate-treated neonatal rat ventricular cardiomyocytes. Palmitate exposure to neonatal rat ventricular cardiomyocytes initially activates mitochondrial respiration, coupled with increased mitochondrial polarization and ATP synthesis. However, long-term exposure to palmitate (>8 hours) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of AKAP121 (A-kinase anchor protein 121) leading to reduced phosphorylation of DRP1 (dynamin-related protein 1) at Ser637 and altered proteolytic processing of OPA1 (optic atrophy 1). Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a

  19. Bioprotective carnitinoids: lipoic acid, butyrate, and mitochondria-targeting to treat radiation injury: mitochondrial drugs come of age.

    Science.gov (United States)

    Steliou, Kosta; Faller, Douglas V; Pinkert, Carl A; Irwin, Michael H; Moos, Walter H

    2015-06-01

    Preclinical Research Given nuclear-power-plant incidents such as the 2011 Japanese Fukushima-Daiichi disaster, an urgent need for effective medicines to protect against and treat the harmful biological effects of radiation is evident. To address such a challenge, we describe potential strategies herein including mitochondrial and epigenetic-driven methods using lipoic and butyric acid ester conjugates of carnitine. The antioxidant and other therapeutically beneficial properties of this class of agents may protect against ionizing radiation and resultant mitochondrial dysfunction. Recent studies of the compounds described herein reveal the potential-although further research and development is required to prove the effectiveness of this approach-to provide field-ready radiation-protective drugs. © 2015 Wiley Periodicals, Inc.

  20. Current Experience in Testing Mitochondrial Nutrients in Disorders Featuring Oxidative Stress and Mitochondrial Dysfunction: Rational Design of Chemoprevention Trials

    OpenAIRE

    Giovanni Pagano; Annarita Aiello Talamanca; Giuseppe Castello; Mario D. Cordero; Marco d'Ischia; Maria Nicola Gadaleta; Federico V. Pallardó; Sandra Petrović; Luca Tiano; Adriana Zatterale

    2014-01-01

    An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed “mitochondrial nutrients” (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluat...

  1. Anilinopyrimidine Resistance in Botrytis cinerea Is Linked to Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Andreas Mosbach

    2017-11-01

    Full Text Available Crop protection anilinopyrimidine (AP fungicides were introduced more than 20 years ago for the control of a range of diseases caused by ascomycete plant pathogens, and in particular for the control of gray mold caused by Botrytis cinerea. Although early mode of action studies suggested an inhibition of methionine biosynthesis, the molecular target of this class of fungicides was never fully clarified. Despite AP-specific resistance having been described in B. cinerea field isolates and in multiple other targeted species, the underlying resistance mechanisms were unknown. It was therefore expected that the genetic characterization of resistance mechanisms would permit the identification of the molecular target of these fungicides. In order to explore the widest range of possible resistance mechanisms, AP-resistant B. cinerea UV laboratory mutants were generated and the mutations conferring resistance were determined by combining whole-genome sequencing and reverse genetics. Genetic mapping from a cross between a resistant field isolate and a sensitive reference isolate was used in parallel and led to the identification of an additional molecular determinant not found from the characterized UV mutant collection. Together, these two approaches enabled the characterization of an unrivaled diversity of resistance mechanisms. In total, we report the elucidation of resistance-conferring mutations within nine individual genes, two of which are responsible for almost all instances of AP resistance in the field. All identified resistance-conferring genes encode proteins that are involved in mitochondrial processes, suggesting that APs primarily target the mitochondria. The functions of these genes and their possible interactions are discussed in the context of the potential mode of action for this important class of fungicides.

  2. Mitochondrial Profiles and the Anticonvulsant Effect of the Ketogenic Diet

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-09-01

    Full Text Available A study of the anticonvulsant effect of the ketogenic diet (KD in adolescent rats, at Emory University and other centers, found that the hippocampus responds by inducing mitochondrial biogenesis, enhancing metabolic gene expression, and increasing energy reserves.

  3. Salvianolic Acid-A Induces Apoptosis, Mitochondrial Membrane ...

    African Journals Online (AJOL)

    using Hoechst 33258 staining. The effect of the compound on mitochondrial membrane potential loss ... Fluorescence microscopy demonstrated that salvianolic acid-A induced dose- dependent ..... aggregation and anticancer properties. It has.

  4. Mitochondrial DNA depletion syndrome presenting with ataxia and ...

    African Journals Online (AJOL)

    Laila Selim

    2012-07-24

    Jul 24, 2012 ... Sequencing analysis of the TK2 gene revealed no sequence variation. ... the pathogenesis of the myopathic form of mitochondrial depletion syndrome should be ..... [39,40]. However, the biochemical evidence of deficiency of.

  5. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius.

    Directory of Open Access Journals (Sweden)

    Evgeny I Rogaev

    2006-03-01

    Full Text Available Phylogenetic relationships between the extinct woolly mammoth (Mammuthus primigenius, and the Asian (Elephas maximus and African savanna (Loxodonta africana elephants remain unresolved. Here, we report the sequence of the complete mitochondrial genome (16,842 base pairs of a woolly mammoth extracted from permafrost-preserved remains from the Pleistocene epoch--the oldest mitochondrial genome sequence determined to date. We demonstrate that well-preserved mitochondrial genome fragments, as long as approximately 1,600-1700 base pairs, can be retrieved from pre-Holocene remains of an extinct species. Phylogenetic reconstruction of the Elephantinae clade suggests that M. primigenius and E. maximus are sister species that diverged soon after their common ancestor split from the L. africana lineage. Low nucleotide diversity found between independently determined mitochondrial genomic sequences of woolly mammoths separated geographically and in time suggests that north-eastern Siberia was occupied by a relatively homogeneous population of M. primigenius throughout the late Pleistocene.

  6. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death.

    Science.gov (United States)

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A; Quest, Andrew F G; Lavandero, Sergio

    2013-08-01

    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Phylogenetic analysis of Tibetan mastiffs based on mitochondrial ...

    Indian Academy of Sciences (India)

    ZHANJUN REN

    sites were identified which defined eight haplotypes of which H4 and H8 were unique to Tibetan ... tion rate makes HVRI preferred to study molecular evolution ... Tibetan mastiffs; hypervariable region; genetic diversity; mitochondrial DNA.

  8. Mitochondrial transfer: Ethical, legal and social implications in ...

    African Journals Online (AJOL)

    2015-08-02

    Aug 2, 2015 ... female children can have completely different mtDNA make-up, especially if the .... standardisation of mitochondrial manipulation methods.[24] ... can easily be accessed to encourage information sharing of patient data.

  9. Mitochondrial alterations in children with chronic liver disease

    African Journals Online (AJOL)

    Rabah M. Shawky

    chondrial function and structure in livers from humans with chronic liver disease ... ease, 2 with lipid storage disease, one with type I autoimmune hepatitis, one ..... a classification scheme for mitochondrial hepatopathies into primary and ...

  10. Complete mitochondrial genome of threatened mahseer Tor tor ...

    Indian Academy of Sciences (India)

    A.

    In the present study, complete mitochondrial genome of Tor tor has been sequenced .... Most of the genes were encoded on the heavy strand (H- strand), whereas only .... 4 bp in the DHU stem (figure 5 in electronic supplementary material).

  11. Mitochondrial encephalopathy with lactic acidosis and stroke-like ...

    African Journals Online (AJOL)

    Laila Selim

    2013-04-12

    Apr 12, 2013 ... heteroplasmic A3243G mutation was detected in the blood of the patient and his mother. .... mitochondrial defects, such as lactic acidosis or Ragged Red ..... [48] Pulkes T, Eunson L, Patterson V, Siddiqui A, Wood NW, Nelson.

  12. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy

    NARCIS (Netherlands)

    Halter, Joerg P.; Schuepbach, W. Michael M.; Mandel, Hanna; Casali, Carlo; Orchard, Kim; Collin, Matthew; Valcarcel, David; Rovelli, Attilio; Filosto, Massimiliano; Dotti, Maria T.; Marotta, Giuseppe; Pintos, Guillem; Barba, Pere; Accarino, Anna; Ferra, Christelle; Illa, Isabel; Beguin, Yves; Bakker, Jaap A.; Boelens, Jaap J.; de Coo, Irenaeus F. M.; Fay, Keith; Sue, Carolyn M.; Nachbaur, David; Zoller, Heinz; Sobreira, Claudia; Simoes, Belinda Pinto; Hammans, Simon R.; Savage, David; Marti, Ramon; Chinnery, Patrick F.; Elhasid, Ronit; Gratwohl, Alois; Hirano, Michio

    2015-01-01

    Haematopoietic stem cell transplantation has been proposed as treatment for mitochondrial neurogastrointestinal encephalomyopathy, a rare fatal autosomal recessive disease due to TYMP mutations that result in thymidine phosphorylase deficiency. We conducted a retrospective analysis of all known

  13. Mitochondrial dysfunction: A potential link between neuroinflammation and neurodegeneration?

    NARCIS (Netherlands)

    Witte, M.E.; Geurts, J.J.G.; de Vries, H.E.; van der Valk, P.; van Horssen, J.

    2010-01-01

    Dysfunctional mitochondria are thought to play a cardinal role in the pathogenesis of various neurological disorders, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease and stroke. In addition, neuroinflammation is a common denominator of these diseases. Both mitochondrial

  14. Mitochondrial pathway of apoptosis and related proteins in placenta ...

    African Journals Online (AJOL)

    eclampsia (PE).This study aimed at evaluating the mitochondrial pathway of apoptosis in placenta of pregnant women with pre-eclampsia and correlate it with severity and pregnancy outcome . Apoptosis was assessed by measuring DNA ...

  15. CoMIC, the hidden dynamics of mitochondrial inner compartments.

    Science.gov (United States)

    Cho, Bongki; Sun, Woong

    2017-12-01

    Mitochondria have evolutionarily, functionally and structurally distinct outer- (OMM) and inner-membranes (IMM). Thus, mitochondrial morphology is controlled by independent but coordinated activity of fission and fusion of the OMM and IMM. Constriction and division of the OMM are mediated by endocytosis-like machineries, which include dynamin-related protein 1 with additional cytosolic vesicle scissoring machineries such as actin filament and Dynamin 2. However, structural alteration of the IMM during mitochondrial division has been poorly understood. Recently, we found that the IMM and the inner compartments undergo transient and reversible constriction prior to the OMM division, which we termed CoMIC, Constriction of Mitochondrial Inner Compartment. In this short review, we further discuss the evolutionary perspective and the regulatory mechanism of CoMIC during mitochondrial division. [BMB Reports 2017; 50(12): 597-598].

  16. Transcriptional changes of mitochondrial genes in irradiated cells ...

    Indian Academy of Sciences (India)

    to the increased oxidative stress in the mitochondria, DNA ... Keywords. mitochondrial gene expression; TK6 cells; radiation-induced effects. ..... This work was supported by an endowment fund, College of Nursing and Health Sciences,.

  17. MicroRNA as biomarkers of mitochondrial toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, Bethany R., E-mail: bethany.baumgart@bms.com [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Gray, Katherine L. [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Woicke, Jochen [Department of Pathology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Bunch, Roderick T.; Sanderson, Thomas P. [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Van Vleet, Terry R. [Department of Investigative Toxicology and Pathology, Abbvie, 1 N. Waukegan Rd., North Chicago, IL 60064-6123, USA. (United States)

    2016-12-01

    Mitochondrial toxicity can be difficult to detect as most cells can tolerate reduced activity as long as minimal capacity for function is maintained. However, once minimal capacity is lost, apoptosis or necrosis occurs quickly. Identification of more sensitive, early markers of mitochondrial toxicity was the objective of this work. Rotenone, a mitochondrial complex I inhibitor, and 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor, were administered daily to male Sprague–Dawley rats at subcutaneous doses of 0.1 or 0.3 mg/kg/day and intraperitoneal doses of 5 or 10 mg/kg/day, respectively, for 1 week. Samples of kidney, skeletal muscle (quadriceps femoris), and serum were collected for analysis of mitochondrial DNA (mtDNA) copy number and microRNA (miRNA) expression patterns. MtDNA was significantly decreased with administration of rotenone at 0.3 mg/kg/day and 3-NP at 5 and 10 mg/kg/day in the quadriceps femoris and with 3-NP at 10 mg/kg/day in the kidney. Additionally, rotenone and 3-NP treatment produced changes to miRNA expression that were similar in direction (i.e. upregulation, downregulation) to those previously linked to mitochondrial functions, such as mitochondrial damage and biogenesis (miR-122, miR-202-3p); regulation of ATP synthesis, abolished oxidative phosphorylation, and loss of membrane potential due to increased reactive oxygen species (ROS) production (miR-338-5p, miR-546, miR-34c); and mitochondrial DNA damage and depletion (miR-546). These results suggest that miRNAs may be sensitive biomarkers for early detection of mitochondrial toxicity. - Highlights: • MtDNA decreased after treatment with respiratory chain inhibitors rotenone and 3-NP. • Decrease in mtDNA is generally dose-related and indicative of mitochondrial toxicity. • Altered miRNA has reported roles in regulating mitochondrial function. • Induction of miR-338-5p in kidney and serum suggests potential as renal biomarker. • Induction of miR-122 implies

  18. Complete mitochondrial genome of a wild Siberian tiger.

    Science.gov (United States)

    Sun, Yujiao; Lu, Taofeng; Sun, Zhaohui; Guan, Weijun; Liu, Zhensheng; Teng, Liwei; Wang, Shuo; Ma, Yuehui

    2015-01-01

    In this study, the complete mitochondrial genome of Siberian tiger (Panthera tigris altaica) was sequenced, using muscle tissue obtained from a male wild tiger. The total length of the mitochondrial genome is 16,996 bp. The genome structure of this tiger is in accordance with other Siberian tigers and it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes, and 1 control region.

  19. Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis.

    Science.gov (United States)

    Zhang, Yong-Zhong; Ouyang, Ying-Chun; Hou, Yi; Schatten, Heide; Chen, Da-Yuan; Sun, Qing-Yuan

    2008-03-01

    The behavior of mitochondria during early oogenesis remains largely unknown in zebrafish. We used three mitochondrial probes (Mito Tracker Red CMXRos, Mito Tracker Green FM, and JC-1) to stain early zebrafish oocyte mitochondria, and confocal microscopy to analyze mitochondrial aggregation and distribution. By using fluorescence recovery after photobleaching (FRAP), we traced mitochondrial movement. The microtubule assembly inhibitor nocodazole and microfilament inhibitor cytochalasin B (CB) were used to analyze the role of microtubules and microfilaments on mitochondrial movement. By using the dual emission probe, JC-1, and oxidative phosphorylation uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), we determined the distribution of active and inactive (low-active) mitochondria. Green/red fluorescence ratios of different sublocations in different oocyte groups stained by JC-1 were detected in merged (green and red) images. Our results showed that mitochondria exhibited a unique distribution pattern in early zebrafish oocytes. They tended to aggregate into large clusters in early stage I oocytes, but in a threadlike state in latter stage I oocytes. We detected a lower density mitochondrial area and a higher density mitochondrial area on opposite sides of the germinal vesicle. The green/red fluorescence ratios in different sublocations in normal oocytes were about 1:1. This implies that active mitochondria were distributed in all sublocations. FCCP treatment caused significant increases in the ratios. CB and nocodazole treatment caused an increase of the ratios in clusters and mitochondrial cloud, but not in dispersed areas. Mitochondria in different sublocations underwent fast dynamic movement. Inhibition or disruption of microtubules or microfilaments resulted in even faster mitochondrial free movement.

  20. Changes in mitochondrial respiration in the human placenta over gestation.

    Science.gov (United States)

    Holland, Olivia J; Hickey, Anthony J R; Alvsaker, Anna; Moran, Stephanie; Hedges, Christopher; Chamley, Lawrence W; Perkins, Anthony V

    2017-09-01

    Placental mitochondria are subjected to micro-environmental changes throughout gestation, in particular large variations in oxygen. How placental mitochondrial respiration adapts to changing oxygen concentrations remains unexplored. Additionally, placental tissue is often studied in culture; however, the effect of culture on placental mitochondria is unclear. Placental tissue was obtained from first trimester and term (laboured and non-laboured) pregnancies, and selectively permeabilized to access mitochondria. Respirometry was used to compare respiration states and substrate use in mitochondria. Additionally, explants of placental tissue were cultured for four, 12, 24, 48, or 96 h and respiration measured. Mitochondrial respiration decreased at 11 weeks compared to earlier gestations (p = 0.05-0.001), and mitochondrial content increased at 12-13 weeks compared to 7-10 weeks (p = 0.042). In term placentae, oxidative phosphorylation (OXPHOS) through mitochondrial complex IV (p Respiration was increased (p ≤ 0.006-0.001) in laboured compared to non-laboured placenta. After four hours of culture, respiration was depressed compared to fresh tissue from the same placenta and continued to decline with time in culture. Markers of apoptosis were increased, while markers of autophagy, mitochondrial biogenesis, and mitochondrial membrane potential were decreased after four hours of culture. Respiration and mitochondrial content alter over gestation/with labour. Decreased respiration at 11 weeks and increased mitochondrial content at 12-13 weeks may relate to onset of maternal blood flow, and increased respiration as a result of labour may be an adaptation to ischaemia-reperfusion. At term, mitochondria were more susceptible to changes in respiratory function relative to first trimester when cultured in vitro, perhaps reflecting changes in metabolic demands as gestation progresses. Metabolic plasticity of placental mitochondria has relevance to placenta