WorldWideScience

Sample records for plant lipid-associated fibrillin

  1. FIBRILLINS IN TENDON

    Directory of Open Access Journals (Sweden)

    Betti Giusti

    2016-10-01

    Full Text Available Tendons among connective tissue, mainly collagen, contain also elastic fibres made of fibrillin 1, fibrillin 2 and elastin that are broadly distributed in tendons and represent 1-2% of the dried mass of the tendon. Only in the last years, studies on structure and function of elastic fibres in tendons have been performed. Aim of this review is to revise data on the organization of elastic fibres in tendons, in particular fibrillin structure and function, and on the clinical manifestations associated to alterations of elastic fibres in tendons. Indeed, microfibrils may contribute to tendon mechanics; therefore, their alterations may cause joint hypermobility and contractures which have been found to be clinical features in patients with Marfan syndrome and Beals syndrome. The two diseases are caused by mutations in genes FBN1 and FBN2 encoding fibrillin 1 and fibrillin 2, respectively.

  2. Fibrillin 5 Is Essential for Plastoquinone-9 Biosynthesis by Binding to Solanesyl Diphosphate Synthases in Arabidopsis

    Science.gov (United States)

    Kim, Eun-Ha; Lee, Yongjik

    2015-01-01

    Fibrillins are lipid-associated proteins in plastids and are ubiquitous in plants. They accumulate in chromoplasts and sequester carotenoids during the development of flowers and fruits. However, little is known about the functions of fibrillins in leaf tissues. Here, we identified fibrillin 5 (FBN5), which is essential for plastoquinone-9 (PQ-9) biosynthesis in Arabidopsis thaliana. Homozygous fbn5-1 mutations were seedling-lethal, and XVE:FBN5-B transgenic plants expressing low levels of FBN5-B had a slower growth rate and were smaller than wild-type plants. In chloroplasts, FBN5-B specifically interacted with solanesyl diphosphate synthases (SPSs) 1 and 2, which biosynthesize the solanesyl moiety of PQ-9. Plants containing defective FBN5-B accumulated less PQ-9 and its cyclized product, plastochromanol-8, but the levels of tocopherols were not affected. The reduced PQ-9 content of XVE:FBN5-B transgenic plants was consistent with their lower photosynthetic performance and higher levels of hydrogen peroxide under cold stress. These results indicate that FBN5-B is required for PQ-9 biosynthesis through its interaction with SPS. Our study adds FBN5 as a structural component involved in the biosynthesis of PQ-9. FBN5 binding to the hydrophobic solanesyl moiety, which is generated by SPS1 and SPS2, in FBN5-B/SPS homodimeric complexes stimulates the enzyme activity of SPS1 and SPS2. PMID:26432861

  3. Fibrillin abnormalities and prognosis in Marfan syndrome and related disorders

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, T.; Furthmayr, H.; Francke, U.; Gasner, C. [Stanford Univ. Medical Center, CA (United States)

    1995-08-28

    Marfan syndrome (MFS), a multisystem autosomal-dominant disorder, is characterized by mutations of the fibrillin-1 (FBN1) gene and by abnormal patterns of synthesis, secretion, and matrix deposition of the fibrillin protein. To determine the sensitivity and specificity of fibrillin protein abnormalities in the diagnosis of MFS, we studied dermal fibroblasts from 57 patients with classical MFS, 15 with equivocal MFS, 8 with single-organ manifestations, and 16 with other connective tissue disorders including homocystinuria and Ehlers-Danlos syndrome. Abnormal fibrillin metabolism was identified in 70 samples that were classified into four different groups based on quantitation of fibrillin synthesis and matrix deposition. Significant correlations were found for phenotypic features including arachnodactyly, striae distensae, cardiovascular manifestations, and fibrillin groups II and IV, which included 70% of the MFS patients. In addition, these two groups were associated with shortened {open_quotes}event-free{close_quotes} survival and more severe cardiovascular complications than groups I and III. The latter included most of the equivocal MFS/single manifestation patients with fibrillin abnormalities. Our results indicate that fibrillin defects at the protein level per se are not specific for MFS, but that the drastically reduced fibrillin deposition, caused by a dominant-negative effect of abnormal fibrillin molecules in individuals defined as groups II and IV, is of prognostic and possibly diagnostic significance. 25 refs., 3 figs., 6 tabs.

  4. Is There a Relationship Between Pelvic Organ Prolapse and Tissue Fibrillin-1 Levels?

    Directory of Open Access Journals (Sweden)

    Ayla Eser

    2015-09-01

    Full Text Available Purpose: Pelvic organ prolapse is a multifactorial disorder in which extracellular matrix defects are implicated. Fibrillin-1 level is reduced in stress urinary incontinence. In Marfan syndrome, which is associated with mutations in Fibrillin-1, pelvic floor disorders are commonly observed. We hypothesize that Fibrillin-1 gene expression is altered in pelvic organ prolapse. Methods: Thirty women undergoing colporrhaphy or hysterectomy because of cystocele, rectocele, cystorectocele, or uterine prolapse were assigned to a pelvic prolapse study group, and thirty women undergone hysterectomy for nonpelvic prolapse conditions were assigned to a control group. Real-time polymerase chain reaction was conducted on vaginal tissue samples to measure the expression of Fibrillin-1. Expression levels were compared between study and control groups by Mann-Whitney U test with Bonferroni revision. Results: Fibrillin-1 gene expression was not significantly lower in the study group than in the control group. Similarly, no significant correlation between Fibrillin-1 levels and grade of pelvic prolapse was found. Age over 40 years (P=0.018 and menopause (P=0.027 were both associated with reduced Fibrillin-1 levels in the pelvic prolapse group, whereas the delivery of babies weighing over 3,500 g at birth was associated with increased Fibrillin-1 expression (P=0.006. Conclusions: The results did not indicate a significant reduction in Fibrillin-1 gene expression in pelvic prolapse disorders; however, reduced Fibrillin-1 may contribute to increased pelvic organ prolapse risk with age and menopause. Increased Fibrillin-1 gene expression may be a compensatory mechanism in cases of delivery of babies with high birth weight. Further studies are needed for a better understanding of these observations.

  5. Immunohistochemical abnormalities of fibrillin in cardiovascular tissues in Marfan's syndrome.

    Science.gov (United States)

    Fleischer, K J; Nousari, H C; Anhalt, G J; Stone, C D; Laschinger, J C

    1997-04-01

    Molecular defects in the glycoprotein fibrillin are believed to be responsible for impaired structural integrity of cardiovascular, skeletal, and ocular tissues in Marfan's syndrome (MFS). Traditionally, excellent results have been achieved with the Bentall composite graft repair of aneurysms of the ascending aorta in MFS. However, because of the potential complications associated with prosthetic valves, there is growing interest in techniques that preserve the native aortic valve. Between May 1994 and February 1995, 15 patients with a history of concomitant or remote aortic root aneurysms or dissection underwent operation for valvular heart disease. Specimens of aortic valve, ascending aortic wall, and mitral valve were obtained specifically to observe differences in fibrillin content and architecture between patients with (n = 9) and without (n = 6) MFS. In addition, control specimens of aortic valve, aortic wall, and mitral valve were obtained from 4 patients with isolated valvular or coronary artery disease but no evidence of connective tissue disorders or other aortic pathologic conditions. Fibrillin immunostaining using indirect immunofluorescence was used. Specimens were coded and graded by a blinded observer to determine quantity, homogeneity, and fragmentation of fibrillin. Observed fibrillin abnormalities in MFS and control patients were limited to the midportion (elastin-associated microfibrils) of the aortic valve, aortic wall, and mitral valve tissues. Fibrillin abnormalities of aortic valve, aortic wall, and mitral valve tissues were seen in all patients with MFS and were most severe in those older than 20 years. Similar fibrillin abnormalities of aortic valve and aortic wall specimens were observed in control patients more than 60 years old. Even in the setting of a normal-appearing aortic valve, the current rationale for widespread use of valve-sparing repairs of aortic root aneurysms in patients with MFS and patients older than 60 years should be

  6. Identification of a new class of lipid droplet-associated proteins in plants

    Science.gov (United States)

    Lipid droplets in plants (also known as oil bodies, lipid bodies or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets ...

  7. Fibrillin-1 genotype and risk of prevalent hypertension

    DEFF Research Database (Denmark)

    Jeppesen, Jørgen; Berg, Nikolaj D; Torp-Pedersen, Christian

    2012-01-01

    Objective. Mutations in the fibrillin-1 gene are the cause of Marfan syndrome. We wanted to investigate the relationship between a mutation in this gene and risk of prevalent hypertension. Methods. In a cross-sectional study, the effect of a G-A substitution in intron 27 in the fibrillin-1 gene (rs...

  8. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    Science.gov (United States)

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis.

    Science.gov (United States)

    Gansner, John M; Madsen, Erik C; Mecham, Robert P; Gitlin, Jonathan D

    2008-10-01

    Recent studies demonstrate that lysyl oxidase cuproenzymes are critical for zebrafish notochord formation, but the molecular mechanisms of copper-dependent notochord morphogenesis are incompletely understood. We, therefore, conducted a forward genetic screen for zebrafish mutants that exhibit notochord sensitivity to lysyl oxidase inhibition, yielding a mutant with defects in notochord and vascular morphogenesis, puff daddygw1 (pfdgw1). Meiotic mapping and cloning reveal that the pfdgw1 phenotype results from disruption of the gene encoding the extracellular matrix protein fibrillin-2, and the spatiotemporal expression of fibrillin-2 is consistent with the pfdgw1 phenotype. Furthermore, each aspect of the pfdgw1 phenotype is recapitulated by morpholino knockdown of fibrillin-2. Taken together, the data reveal a genetic interaction between fibrillin-2 and the lysyl oxidases in notochord formation and demonstrate the importance of fibrillin-2 in specific early developmental processes in zebrafish. Copyright (c) 2008 Wiley-Liss, Inc.

  10. Prenatal diagnosis and a donor splice site mutation in fibrillin in a family with Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, M.; Vandemark, N.; Wang, M.; Han, J.; Rao, V.H. (Univ. of Nebraska Medical Center, Omaha (United States)); Velinov, M.; Tsipouras, P. (Univ. of Connecticut Health Sciences Center, Farmington (United States)); Wargowski, D.; Becker, J.; Robertson, W.; Droste, S. (Univ. of Wisconsin, Madison (United States))

    1993-08-01

    The Marfan syndrome, an autosomal dominant connective tissue disorder, is manifested by abnormalities in the cardiovascular, skeletal, and ocular systems. Recently, fibrillin, an elastic-associated microfibrillar glycoprotein, has been linked to the Marfan syndrome, and fibrillin mutations in affected individuals have been documented. In this study, genetic linkage analysis with fibrillin-specific markers was used to establish the prenatal diagnosis in an 11-wk-gestation fetus in a four-generation Marfan kindred. At birth, skeletal changes suggestive of the Marfan syndrome were observed. Reverse transcription-PCR amplification of the fibrillin gene mRNA detected a deletion of 123 bp in one allele in affected relatives. This deletion corresponds to an exon encoding an epidermal growth factor-like motif. Examination of genomic DNA showed a G[yields]C transversion at the +1 consensus donor splice site. 45 refs., 7 figs.

  11. Aortic dilatation in Marfan syndrome: role of arterial stiffness and fibrillin-1 variants.

    Science.gov (United States)

    Salvi, Paolo; Grillo, Andrea; Marelli, Susan; Gao, Lan; Salvi, Lucia; Viecca, Maurizio; Di Blasio, Anna Maria; Carretta, Renzo; Pini, Alessandro; Parati, Gianfranco

    2018-01-01

    Marfan syndrome (MFS) is an autosomal dominant genetic disorder characterized by aortic root dilation and dissection and an abnormal fibrillin-1 synthesis. In this observational study, we evaluated aortic stiffness in MFS and its association with ascending aorta diameters and fibrillin-1 genotype. A total of 116 Marfan adult patients without history of cardiovascular surgery, and 144 age, sex, blood pressure and heart rate matched controls were enrolled. All patients underwent arterial stiffness evaluation through carotid-femoral pulse wave velocity (PWV) and central blood pressure waveform analysis (PulsePen tonometer). Fibrillin-1 mutations were classified based on the effect on the protein, into 'dominant negative' and 'haploinsufficient' mutations. PWV and central pulse pressure were significantly higher in MFS patients than in controls [respectively 7.31 (6.81-7.44) vs. 6.69 (6.52-6.86) m/s, P = 0.0008; 41.3 (39.1-43.5) vs. 34.0 (32.7-35.3) mmHg, P < 0.0001], with a higher age-related increase of PWV in MFS (β 0.062 vs. 0.036). Pressure amplification was significantly reduced in MFS [18.2 (15.9-20.5) vs. 33.4 (31.6-35.2)%, P < 0.0001]. Central pressure profile was altered even in MFS patients without aortic dilatation. Multiple linear regression models showed that PWV independently predicted aortic diameters at the sinuses of Valsalva (ß = 0.243, P = 0.002) and at the sinotubular junction (ß = 0.186, P = 0.048). PWV was higher in 'dominant negative' than 'haploinsufficient' fibrillin-1 mutations [7.37 (7.04-7.70) vs. 6.60 (5.97-7.23) m/s, P = 0.035], although this difference was not significant after adjustment. Aortic stiffness is increased in MFS, independently from fibrillin-1 genotype and is associated with diameters of ascending aorta. Alterations in central hemodynamics are present even when aortic diameter is within normal limits. Our findings suggest an accelerated arterial aging in MFS.

  12. Immobilisation of a fibrillin-1 fragment enhances the biocompatibility of PTFE.

    Science.gov (United States)

    Hajian, Hamid; Wise, Steven G; Bax, Daniel V; Kondyurin, Alexey; Waterhouse, Anna; Dunn, Louise L; Kielty, Cay M; Yu, Young; Weiss, Anthony S; Bilek, Marcela M M; Bannon, Paul G; Ng, Martin K C

    2014-04-01

    Current vascular biomaterials exhibit poor biocompatibility characterised by failure to promote endothelialisation, predisposition to neoinitmal hyperplasia and excessive thrombogenicity. Fibrillin-1, a major constituent of microfibrils is associated with elastic fibres in the arterial wall. Fibrillin-1 binds to endothelial cells through an RGD cell adhesion motif in the fourth TB module. The RGD motif is present in PF8, a recombinant fibrillin-1 fragment. We investigated the potential of PF8 to improve the biocompatibility of PTFE. PF8 enhanced endothelial cell attachment and cell proliferation to a greater extent than fibronectin (pPTFE using plasma immersion ion implantation (PIII), retained these favourable cell interactive properties, again promoting endothelial cell attachment and proliferation. The thrombogenicity of covalently bound PF8 on PTFE was assessed in both static and dynamic conditions. In static conditions, uncoated PIII treated PTFE was more thrombogenic than untreated PTFE, while PF8 coating reduced thrombogenicity. Under flow, there was no difference in the thrombogenicity of PF8 coated PTFE and untreated PTFE. Immobilised PF8 shows a striking ability to promote attachment and growth of endothelial cells on PTFE, while providing a non-thrombogenic surface. These features make PF8 a promising candidate to improve the biocompatibility of current synthetic vascular grafts. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  13. Heparan sulfate regulates fibrillin-1 N- and C-terminal interactions

    DEFF Research Database (Denmark)

    Cain, Stuart A; Baldwin, Andrew K; Mahalingam, Yashithra

    2008-01-01

    Fibrillin-1 N- and C-terminal heparin binding sites have been characterized. An unprocessed monomeric N-terminal fragment (PF1) induced a very high heparin binding response, indicating heparin-mediated multimerization. Using PF1 deletion and short fragments, a heparin binding site was localized w......-terminal interactions with heparin/heparan sulfate directly influence cell behavior, whereas C-terminal interactions with heparin/heparan sulfate regulate elastin deposition. These data highlight how heparin/heparan sulfate controls fibrillin-1 interactions....

  14. Abnormal secretion or extracellular matrix incorporation of fibrillin by dermal fibroblasts from patients with thoracic aortic aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Milewicz, D.; Cao, S.; Cosselli, J. [Univ. of Texas Medical School, Houston, TX (United States)

    1994-09-01

    Abnormal synthesis, secretion, and extracellular matrix incorporation of fibrillin is observed in the majority of fibroblast cell strains obtained from individuals with the Marfan syndrome (>85%). These fibrillin protein abnormalities are due to mutations in the FBN1 gene. We have screened fibroblast cell strains from patients with thoracic aortic aneurysms (TAA) without skeletal or ocular features of the Marfan syndrome for defects in fibrillin synthesis or processing. Dermal fibroblasts obtained from biopsies were pulse labeled with [{sup 35}S]cysteine for 30 minutes and then chased for 0, 4, and 20 hours. The media, cell lysate and extracellular matrix were harvested separately, then analyzed by SDS-PAGE. We selected fibroblasts from 17 TAA patients to study based on the development of a TAA at a young age or a family history of TAAs. Cells from 3 patients synthesized and secreted fibrillin normally, but did not incorporate the fibrillin in the extracellular matrix. None of the cell strains were found to have diminished synthesis of fibrillin when compared with control cells. We were unable to detect abnormalities in the synthesis, secretion, or matrix incorporation of fibrillin by cells from 9 of the 17 patients. These results indicate that fibrillin protein defects are found in a significant number of patients with TAAs who are young or have a family history of TAAs. Analysis of the FBN1 gene for mutations in these patients with fibrillin protein defects will determine if the observed protein abnormalities are the result of FBN1 gene mutations.

  15. Fibrillin mutations in the Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Price, C.E.; Wang, M.; Wang, J.; Godfrey, M. [Univ. of Nebraska Medical Center, Omaha, NE (United States)

    1994-09-01

    The Marfan syndrome (MFS) is an autosomal dominant heritable disorder of connective tissue manifested by variable and pleiotropic defect in the skeletal, ocular, and cardiovascular systems. We have recently begun to use intron-specific primers that have become available through the International Marfan Syndrome Consortium to screen for fibrillin mutations in MFS patients. Using the genomic PCR-based approach in addition to RT-PCR methodologies, we have identified several novel mutations. A single base insertion was identified in all affected individuals of one family. The insertion of an {open_quote}A{close_quote} at position 1891 in exon 15 causes a premature stop codon and thus a truncated polypeptide. The truncated protein of 617 amino acids has an expected molecular weight of 63 kD. Metabolic labeling and immunoprecipitation studies are in progress. A C{r_arrow}T transition at position 1634 in exon 12 causing a 5th position Cys to Phe substitution in an EGF-like motif was observed in another MFS patient. Finally, we have identified a G{r_arrow}A transition at the +1 position of the donor splice site that causes the deletion of fibrillin exon 32 in a patient with the neonatal form of MFS. Exon 32 is a precursor EGF-like calcium binding motif that is located in a single stretch of 12 similar domains. We had previously identified the skipping of this exon due to an A{r_arrow}T transversion at the -2 position of the consensus acceptor splice site in another patient with neonatal MFS. The reason that the skipping of exon 32 causes a neonatal lethal MFS phenotype is presently unclear. These studies will help elucidate the role of diverse regions of fibrillin.

  16. Characterization of Microfibrillar-associated Protein 4 (MFAP4) as a Tropoelastin- and Fibrillin-binding Protein Involved in Elastic Fiber Formation

    DEFF Research Database (Denmark)

    Pilecki, Bartosz; Holm, Anne T; Schlosser, Anders

    2016-01-01

    primarily assembles into trimeric and hexameric structures of homodimers. Binding analysis revealed that MFAP4 specifically binds tropoelastin and fibrillin-1 and -2, as well as the elastin cross-linking amino acid desmosine, and that it co-localizes with fibrillin-1-positive fibers in vivo. Site......-directed mutagenesis disclosed residues Phe(241) and Ser(203) in MFAP4 as being crucial for type I collagen, elastin, and tropoelastin binding. Furthermore, we found that MFAP4 actively promotes tropoelastin self-assembly. In conclusion, our data identify MFAP4 as a new ligand of microfibrils and tropoelastin involved...

  17. Raman microspectroscopy as a diagnostic tool for the non-invasive analysis of fibrillin-1 deficiency in the skin and in the in vitro skin models.

    Science.gov (United States)

    Brauchle, Eva; Bauer, Hannah; Fernes, Patrick; Zuk, Alexandra; Schenke-Layland, Katja; Sengle, Gerhard

    2017-04-01

    Fibrillin microfibrils and elastic fibers are critical determinants of elastic tissues where they define as tissue-specific architectures vital mechanical properties such as pliability and elastic recoil. Fibrillin microfibrils also facilitate elastic fiber formation and support the association of epithelial cells with the interstitial matrix. Mutations in fibrillin-1 (FBN1) are causative for the Marfan syndrome, a congenital multisystem disorder characterized by progressive deterioration of the fibrillin microfibril/ elastic fiber architecture in the cardiovascular, musculoskeletal, ocular, and dermal system. In this study, we utilized Raman microspectroscopy in combination with principal component analysis (PCA) to analyze the molecular consequences of fibrillin-1 deficiency in skin of a mouse model (GT8) of Marfan syndrome. In addition, full-thickness skin models incorporating murine wild-type and Fbn1 GT8/GT8 fibroblasts as well as human HaCaT keratinocytes were generated and analyzed. Skin models containing GT8 fibroblasts showed an altered epidermal morphology when compared to wild-type models indicating a new role for fibrillin-1 in dermal-epidermal crosstalk. Obtained Raman spectra together with PCA allowed to discriminate between healthy and deficient microfibrillar networks in murine dermis and skin models. Interestingly, results obtained from GT8 dermis and skin models showed similar alterations in molecular signatures triggered by fibrillin-1 deficiency such as amide III vibrations and decreased levels of glycan vibrations. Overall, this study indicates that Raman microspectroscopy has the potential to analyze subtle changes in fibrillin-1 microfibrils and elastic fiber networks. Therefore Raman microspectroscopy may be utilized as a non-invasive and sensitive diagnostic tool to identify connective tissue disorders and monitor their disease progression. Mutations in building blocks of the fibrillin microfibril/ elastic fiber network manifest in disease

  18. Keratinocytes express fibrillin and assemble microfibrils: implications for dermal matrix organization.

    Science.gov (United States)

    Haynes, S L; Shuttleworth, C A; Kielty, C M

    1997-07-01

    Fibrillin-containing microfibrils are key architectural structures of the upper dermis and integral components of the dermal elastic fibre network. Microfibril bundles intercalate into the dermal-epithelial junction and provide an elastic connection between the dermal elastic fibre network and the epidermis. Immunohistochemical studies have suggested that they are laid down both at the dermal-epithelial junction and in the deep dermis. While dermal fibroblasts are responsible for deposition of the elastin and microfibrillar components that comprise the elastic fibres of the deep dermis, the cellular origin of the microfibril bundles that extrude from the dermal-epithelial junction is not well defined. We have used fresh tissues, freshly isolated epidermis and primary human and porcine keratinocyte cultures to investigate the possibility that keratinocytes are responsible for deposition of these microfibrils. We have shown that keratinocytes in vivo and in vitro synthesize both fibrillin-1 and fibrillin-2, and assemble beaded microfibrils concurrently with expression of basement membrane collagen. These observations suggest that keratinocytes co-ordinate the secretion, deposition and assembly of these distinct structural elements of the dermal matrix, and have important implications for skin remodelling.

  19. Severe neonatal marfan syndrome resulting from a De Novo 3-bp insertion into the fibrillin gene on chromosome 15

    Energy Technology Data Exchange (ETDEWEB)

    Milewicz, D.M.; Duvic, M. (Univ. of Texas Medical School, Houston, TX (United States))

    1994-03-01

    Severe neonatal Marfan syndrome has features of the Marfan syndrome and congenital contractural arachnodactyly present at birth, along with unique features such as loose, redundant skin and pulmonary emphysema. Since the Marfan syndrome and congenital contractural arachnodactyly are due to mutations in different genes, it has been uncertain whether neonatal Marfan syndrome is due to mutations in the fibrillin gene on chromosome 15 or in another gene. The authors studied an infant with severe neonatal Marfan syndrome. Dermal fibroblasts were metabolically labeled and found to secrete fibrillin inefficiently when compared with control cells. Reverse transcription and amplification of the proband's fibroblast RNA was used to identify a 3-bp insertion between nucleotides 480-481 or 481-482 of the fibrillin cDNA. The insertion maintains the reading frame of the protein and inserts a cysteine between amino acids 160 and 161 in an epidermal growth-factor-like motif of fibrillin. This 3-bp insertion was not found in the fibrillin gene in 70 unrelated, unaffected individuals and 11 unrelated individuals with the Maran syndrome. The authors conclude that neonatal Marfan syndrome is the result of mutations in the fibrillin gene on chromosome 15 and is part of the Marfan syndrome spectrum. 32 refs., 3 figs.

  20. FBN1 gene mutation defines the profibrillin to fibrillin processing site and segregates with tall stature in a family

    Energy Technology Data Exchange (ETDEWEB)

    Grossfield, J.; Cao, S.; Milewicz, D. [Univ. of Texas Medical School, Houston, TX (United States)] [and others

    1994-09-01

    Dermal fibroblasts from a 13-year-old boy with skeletal features of the Marfan syndrome were used to study fibrillin synthesis and processing. Synthesis and secretion of profibrillin was normal but only half of the secreted profibrillin was converted to fibrillin, an extracellular proteolytic processing that removes a 20 kDa fragment from the protein. All the secreted profibrillin was processed to fibrillin in control cells. Only the processed form of fibrillin was deposited into the extracellular matrix in both the proband`s and the control cells. Electron microscopic examination of rotary shadowed microfibrils made by the proband`s fibroblasts were indistinguishable from control cells. Screening exons in the 3{prime} end of the FBN1 gene revealed a heterozygous C to T transition at nucleotide 5482 of the FBN1 cDNA changing R 1828 to W. This mutation disrupts a known consensus sequence recognized by a cellular protease and is located in the carboxy terminus at a site predicted to remove a 19 kD fragment. The proband and his 22-year-old brother, also heterozygous for the mutation, have had normal echocardiograms and ophthalmologic exams. The mutation segregated in the proband`s three generation family with autosomal dominant inheritance of height (> 90th percentile) and no known cardiovascular or ocular problems, including the 67-year-old grandmother (exams pending). The mutation was not found in 90 chromosomes from unrelated individuals. In summary, (1) the mutation identifies the cleavage site for the conversion of profibrillin to fibrillin; (2) the characterized mutation segregates in the family with tall stature without known cardiovascular or ocular problems; (3) this mutation potentially defines the phenotype associated with a {open_quotes}null{close_quotes} allele for the FBN1 gene.

  1. A Variant in the Fibrillin-3 Gene is Associated with TGF-β and Inhibin B Levels in Women with Polycystic Ovary Syndrome

    OpenAIRE

    Raja-Khan, Nazia; Kunselman, Allen R.; Demers, Laurence M.; Ewens, Kathryn G.; Spielman, Richard S.; Legro, Richard S.

    2010-01-01

    In an attempt to evaluate the association between Allele 8 (A8) of D19S884 in the fibrillin-3 gene and circulating TGF-β and inhibin levels in women with polycystic ovary syndrome (PCOS), we studied 120 similarly aged women from families with PCOS and compared 40 women with PCOS who did not have A8 (A8− PCOS) to 40 women with PCOS who had A8 (A8+ PCOS) and 40 normally menstruating women who did not have either PCOS or A8 (A8− Non-PCOS). A8−PCOS is associated with higher levels of TGF-β1 compa...

  2. Fibrillin levels in a severely affected Marfan syndrome patient with a null allele

    Energy Technology Data Exchange (ETDEWEB)

    Boxer, M.; Withers, A.P.; Al-Ghaban, Z. [Univ. of Wales, Cardiff (United Kingdom)]|[Ninewells Hospital and Medical School, Dundee (United Kingdom)] [and others

    1994-09-01

    Marfan syndrome is an autosomal dominantly inherited connective tissue disorder characterized by defects in the cardiovascular, skeletal and ocular systems. A patient was first examined in 1992 having survived an acute sortic dissection with subsequent composite repair and insertion of a prosthetic aortic valve. Clinical examination revealed arachnodactyly, narrow, high arched palate with dental crowding, an arm span exceeding her height by 10.5 cm, joint laxity and bilateral lens subluxation. Analysis of the family showed affected members in three generations and the fibrillin gene, FBN1, was shown to segregate with the disease when using polymorphic markers including an RsaI polymorphism in the 3{prime}-untranslated region of the gene. Analysis of patient mRNA for this RsaI polymorphism by RT-PCR (reverse transcriptase-PCR) amplification and restriction enzyme digestion of the PCR products showed that the copy of the gene segregating with the disease was not transcribed. No low level expression of this allele was observed despite RT-PCR amplification incorporating radioactively labelled dCTP, thus revealing a null allele phenotype. Western blotting analysis of fibrillin secreted by the patient`s dermal fibroblasts using fibrillin-specific antibodies showed only normal sized fibrillin protein. However, immunohistochemical studies of the patient`s tissue and fibroblasts showed markedly lowered levels in staining of microfibrillar structures compared with age-matched controls. This low level of expression of the protein affected in Marfan syndrome in a patient with such severe clinical manifestations is surprising since current understanding would suggest that this molecular phenotype should lead to a mild clinical disorder.

  3. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  4. Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation

    DEFF Research Database (Denmark)

    Bax, Daniel V; Mahalingam, Yashithra; Cain, Stuart

    2007-01-01

    We have defined the molecular basis of cell adhesion to fibrillin-1, the major structural component of extracellular microfibrils that are associated with elastic fibres. Using human dermal fibroblasts, and recombinant domain swap fragments containing the Arg-Gly-Asp motif, we have demonstrated...... a requirement for upstream domains for integrin-alpha(5)beta(1)-mediated cell adhesion and migration. An adjacent heparin-binding site, which supports focal adhesion formation, was mapped to the fibrillin-1 TB5 motif. Site-directed mutagenesis revealed two arginine residues that are crucial for heparin binding...

  5. A novel mutation of the fibrillin gene causing Ectopia lentis

    Energy Technology Data Exchange (ETDEWEB)

    Loennqvist, L.; Kainulainen, K.; Puhakka, L.; Peltonen, L. (National Public Health Institute, Helsinki (Finland)); Child, A. (St. George' s Hospital Medical School, London (United Kingdom)); Peltonen, L. (Duncan Guthrie Institute, Glasgow, Scotland (United Kingdom))

    1994-02-01

    Ectopia lentis (EL), a dominantly inherited connective tissue disorder, has been genetically linked to the fibrillin gene on chromosome 15 (FBN1) in earlier studies. Here, the authors report the first EL mutation in the FBN1 gene confirming that EL is caused by mutations of this gene. So far, several mutations in the FBN1 gene have been reported in patients with Marfan syndrome (MFS). EL and MFS are clinically related but distinct conditions with typical manifestations in the ocular and skeletal systems, the fundamental difference between them being the absence of cardiovascular involvement in EL. They report a point mutation, cosegregating with the disease in the described family, that displays EL over four generations. The mutation changes a conserved glutamic acid residue in an EGF-like motif, which is the major structural component of the fibrillin and is repeated throughout the polypeptide. In vitro mutagenetic studies have demonstrated the necessity of an analogous glutamic acid residue for calcium binding in an EGF-like repeat of human factor IX. This provides a possible explanation for the role of this mutation in the disease pathogenesis. 32 refs., 2 figs., 1 tab.

  6. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.

    Science.gov (United States)

    Halper, Jaroslava; Kjaer, Michael

    2014-01-01

    Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFβs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non

  7. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5[prime] end

    Energy Technology Data Exchange (ETDEWEB)

    Corson, G.M.; Chalberg, S.C.; Charbonneau, N.L.; Sakai, L.Y. (Oregon Health Sciences Univ., Portland (United States)); Dietz, H.C. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1993-08-01

    Fibrillin is an important structural protein of the extracellular matrix. It is a large cysteine-rich glycoprotein with extensive intrachain disulfide bonds, likely contributed by multiple EGF-like repeats. The authors have previously published 6.9 kb of FBN1 cDNA sequence. FBN1 cDNA clones that extend the sequence 3089 bp in the 5[prime] direction are described in this report. The deduced primary structure suggests that fibrillin in composed of multiple domains. The most predominant features the presence of 43 calcium binding EGF-like repeats. They demonstrate here that fibrillin molecules bind calcium. In addition, three alternatively spliced exons at the 5[prime] end are described. Analysis of 5.8 kb of surrounding genomic sequence revealed a 1.8-kb CpG island spanning the alternatively spliced exons and the next downstream exon. Since FBN1 is the gene responsible for Marfan syndrome, the information presented here will be useful in identifying new mutations and in understanding the function of fibrillin in the pathogenesis of the disease. 42 refs., 7 figs.

  8. Production of a Marfan cellular phenotype by expressing a mutant human fibrillin allele on a normal human or murine genetic background

    Energy Technology Data Exchange (ETDEWEB)

    Eldadah, Z.A.; Dietz, H.C. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States); Brenn, T. [Stanford Univ. Medical Center, CA (United States)] [and others

    1994-09-01

    The Marfan Syndrome (MFS) is a heritable disorder of connective tissue caused by defects in fibrillin (FBN1), a 350 kD glycoprotein and principal component of the extracellular microfibril. Previous correlations of mutant transcript level and disease severity suggested a dominant negative model of MFS pathogenesis. To address this hypothesis we assembled an expression construct containing the mutant allele from a patient with severe MFS. This mutation causes skipping of FBN1 exon 2 and a frame shift, leading to a premature termination codon in exon 4. The predicted peptide would thus consist of 55 wild type and 45 missense amino acids. The construct was stably transfected into cultured human and mouse fibroblasts, and several clonal cell populations were established. Human and mouse cells expressing the truncated peptide exhibited markedly diminished fibrillin deposition and disorganized microfibrillar architecture by immunofluorescence. Pulse-chase analysis of these cells demonstrated normal levels of fibrillin synthesis but substantially decreased fibrillin deposition into the extracellular matrix. These data illustrate that expression of a mutant FBN1 allele, on a background of two normal alleles, is sufficient to disrupt normal fibrillin aggregation and reproduce the MFS cellular phenotype. This provides confirmation of a dominant negative model of MFS pathogenesis and may offer mutant allele knockout as a strategy for gene therapy. In addition, these data underscore the importance of the FBN1 amino-terminus in normal multimer formation and suggest that expression of the human extreme 5{prime} FBN1 coding sequence may be sufficient, in isolation, to produce an animal model of MFS. Indeed, transgenic mice harboring this mutant allele have been produced, and phenotype analysis is currently in progress.

  9. Differential Effect of Plant Lipids on Membrane Organization

    Science.gov (United States)

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  10. Final Report: 17th international Symposium on Plant Lipids

    Energy Technology Data Exchange (ETDEWEB)

    Christoph Benning

    2007-03-07

    This meeting covered several emerging areas in the plant lipid field such as the biosynthesis of cuticle components, interorganelle lipid trafficking, the regulation of lipid homeostasis, and the utilization of algal models. Stimulating new insights were provided not only based on research reports based on plant models, but also due to several excellent talks by experts from the yeast field.

  11. 2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009

    Energy Technology Data Exchange (ETDEWEB)

    Kent D. Chapman

    2009-02-06

    The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and the community of plant lipid researchers will function more as a network of vested partners. This is important for the vitality of the research community and for the perceived value that will encourage conference attendance into the future.

  12. Involvement of lipid-protein complexes in plant-microorganism interactions

    Directory of Open Access Journals (Sweden)

    Blein Jean-Pierre

    2002-01-01

    Full Text Available Increasing concerns about the environmental impact of modern agricultural have prompted research for alternate practices to pesticide treatments, notably using plant defense mechanisms. Thus, isolation and characterization of plant defense elicitors have been the main step of studies in many groups. Moreover, in the global concept of interactions between organisms and their environment, a major concern is to discriminate recognition between exogenous and endogenous signals, notably during pathogenic or allergenic interactions involving small proteins, such as elicitins or lipid transfer proteins (LTPs. Elicitins and lipid transfer proteins (LTP are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defense mechanisms, the biological function of LTPs is still an enigma. They are ubiquitous plant proteins able to load and transfer hydrophobic molecules such as fatty acids or phospholipids. Among them, LTPs1 (type 1 lipid transfer proteins constitute a multigenic family of secreted plant lipid binding proteins that are constitutively expressed in specific tissues and/or induced in response to biotic and abiotic stress (for reviews [1-4]. Their biological function is still unknown, even if some data provide arguments for a role of these proteins in the assembly of extracellular hydrophobic polymers (i.e., cutin and suberin [2, 4] and/or in plant defense against fungal pathogens [1, 3]. Beside their involvement in plant defense, LTPs1 are also known to be pan-allergens of plant-derived foods [5]. Finally, the discovery of the sterol carrier-properties of elicitins has opened new perspectives dealing with the relationship between this function and the elicitor activity of these small cystein-rich proteins. Nevertheless, this elicitor activity is restrained to few plant species, and thus does not appear in accordance with a universal lipid transfer

  13. Biosynthesis and function of plant lipids

    International Nuclear Information System (INIS)

    Thomson, W.W.; Mudd, J.B.; Gibbs, M.

    1983-01-01

    The Sixth Annual Symposium in Botany and Plant Physiology was held January 13-15, 1983, at the University of California, Riverside. This volume comprises the papers that were presented. Subjects discussed at the symposium covered a wide range in the field of plant lipids. Biosynthesis of lipids occupied an important fraction of the presentations at the symposium. Subjects included detailed studies of the enzymes of fatty acid synthesis, several discussions of the incorporation of fatty acids into glycerolipids and the further modification of the fatty acids, and the synthesis of glycerolipids and desaturation of fatty acids in both maturing oilseeds and chloroplasts. The physicochemical studies of glycerolipids and sterols in artificial membranes have led to distinct conclusions about their behaviour which must be relevant in the biological membrane. Results on the functional consequences of modifying the galactolipid composition in the chloroplast were an encouraging sign of progress in the attempts to relate membrane lipid composition to physiological function

  14. New aspects of phloem-mediated long-distance lipid signaling in plants

    Directory of Open Access Journals (Sweden)

    Urs Florian Benning

    2012-03-01

    Full Text Available Plants are sessile and cannot move to appropriate hiding places or feeding grounds to escape adverse conditions. As a consequence, they evolved mechanisms to detect changes in their environment, communicate these to different organs, and adjust development accordingly. These adaptations include two long-distance transport systems which are essential in plants: the xylem and the phloem. The phloem serves as a major trafficking pathway for assimilates, viruses, RNA, plant hormones, metabolites, and proteins with functions ranging from synthesis to metabolism to signaling. The study of signaling compounds within the phloem is essential for our understanding of plant communication of environmental cues. Determining the nature of signals and the mechanisms by which they are communicated through the phloem will lead to a more complete understanding of plant development and plant responses to stress. In our analysis of Arabidopsis phloem exudates, we had identified several lipid-binding proteins as well as fatty acids and lipids. The latter are not typically expected in the aqueous environment of sieve elements. Hence, lipid transport in the phloem has been given little attention until now. Long-distance transport of hydrophobic compounds in an aqueous system is not without precedence in biological systems: a variety of lipids is found in human blood and are often bound to proteins. Some lipid-protein complexes are transported to other tissues for storage, use, modification, or degradation, others serve as messengers and modulate transcription factor activity. By simple analogy it raises the possibility that lipids and the respective lipid-binding proteins in the phloem serve similar functions in plants and play an important role in stress and developmental signaling. Here, we introduce the lipid-binding proteins and the lipids we found in the phloem and discuss the possibility that they may play an important role in developmental and stress signaling.

  15. Consequences of Marfan mutations to expression of fibrillin gene and to the structure of microfibrils

    Energy Technology Data Exchange (ETDEWEB)

    Peltonen, L.; Karttunen, L.; Rantamaeki, T. [NPHI, Helsinki (Finland)] [and others

    1994-09-01

    Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder which is caused by mutations in the fibrillin-1 gene (FBN1). Over 40 family-specific FBN1 mutations have been identified. We have characterized 18 different heterozygous mutations including amino acid substitutions, premature stop, and splicing defects leading to deletions or one insertion, and one compound heterozygote with two differently mutated FBN1 alleles inherited from his affected parents. To unravel the consequences of FBN1 mutations to the transcription of FBN1 gene, we have measured the steady state levels of mRNA transcribed from the normal and mutated alleles. The missense mutations do not affect the transcription of the allele while the nonsense mutation leads to lower steady state amount of mutated allele. For the dissection of molecular pathogenesis of FBN1 mutations we have performed rotary shadowing of the microfibrils produced by the cell cultures from MFS patients. The cells from the neonatal patients with established mutations produced only disorganized fibrillin aggregates but no clearly defined microfibrils could be detected, suggesting a major role of this gene region coding for exons 24-26 in stabilization and organization of the bead structure of microfibrils. From the cells of a rare compound heterozygote case carrying two different mutations, no detectable microfibrils could be detected whereas the cells of his parents with heterozygous mutations were able to form identifiable but disorganized microfibrils. In the cells of an MFS case caused by a premature stop removing the C-terminus of fibrillin, the microfibril assembly takes place but the appropriate packing of the microfibrils is disturbed suggesting that C-terminae are actually located within the interbead domain of the microfibrils.

  16. Preparation of labelled lipids by the use of plant cell cultures

    International Nuclear Information System (INIS)

    Mangold, H.K.

    1978-01-01

    The preparation of some radioacitvely labelled lipids by the use of plant cell cultures is discussed and further applications of the new method are suggested. Cell suspension cultures of rape (Brassica napus) and soya (Glycine max) have been used for the preparation of lipids labelled with radioisotopes. Radioactive acetic acid as well as various long-chain fatty acids are readily incorporated into the neutral and ionic lipids of plant cell cultures. In addition, 14 C-labelled glycerol, ethanolamine and choline are well utilized by the cells. Randomly labelled lipids have been obtained by incubating cell suspension cultures of rape and soya with [1- 14 C] acetic acid, and uniformly labelled lipids have been isolated from cultures that had been incubated with a mixture of [1- 14 C] acetic acid plus [2- 14 C] acetic acid. The use of techniques of plant cell cultures for the preparation of lipds labelled with stable or radioactive isotopesappears particularly rewarding because the uptake of precursors by the cells and their incorporation into various lipid compounds proceeds rapidly and often quanitatively.This new approach should be useful also for the biosynthesis of lipids whose acyl moieties contain a spn radical, a fluorescent group, or a light-sensitive label. Thus, plant cell cultures constitute valuable new tools for the biosynthetic preparation of a great variety of labelled lipids. (A.G.)

  17. Differential allelic expression of a fibrillin gene (FBNI) in patients with Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, D.; Lynch, J.; Sykes, B. [Univ. of Oxford (United Kingdom); Firth, H. [Churchill Hospital, Oxford (United Kingdom); Child, A. [St. George`s Hospital Medical School, London (United Kingdom)

    1994-09-01

    Marfan syndrome is a connective-tissue disorder affecting cardiovascular, skeletal, and ocular systems. The major Marfan locus has been identified as the FBN1 gene on chromosome 15; this codes for the extracellular-matrix protein fibrillin, a 350-kD constituent of the 8-10-nm elastin-associated microfibrils. The authors identified five MFS patients who were heterozygous for an RsaI restriction-site dimorphism in the 3{prime} UTR of the FBN1 gene. This expressed variation was used to distinguish the mRNA output from each of the two FBN1 alleles in fibroblast cultures from these five patients. Three of the patients were shown to produce <5% of the normal level of FBN1 transcripts from one of their alleles. This null-allele phenotype was not observed in 10 nonmarfanoid fibroblast cell lines. 26 refs., 4 figs.

  18. Optimization of 14C liquid scintillation counting of plant and soil lipids to trace short term formation, translocation and degradation of lipids

    International Nuclear Information System (INIS)

    Wiesenberg, G.L.B.; Gocke, M.; Yakov Kuzyakov

    2010-01-01

    Two powerful approaches are frequently used to trace incorporation and degradation of plant derived C in soil: 14 C labelling/chasing and analysis of lipid composition. In this study, we coupled these approaches in order to trace short term incorporation of plant derived lipids into rhizosphere and non-rhizosphere soil. Methodological optimization was required and implied 14 C liquid scintillation counting improvement for plant lipid extracts taking into account organic solvents, solvent-to-scintillation cocktail ratio, and amount of lipids. Following method optimization, 14 C data of fatty acids indicated a notable contribution of root derived lipids to rhizosphere and non-rhizosphere soil. Coupling of 14 C labelling/chasing with lipid analysis is a powerful and cheap approach for tracing of root derived C in soil allowing for estimation of C budget, for determination of C formation and translocation within plants and from plant to soil, as well as for identification of short term dynamics of specific compound classes within soil. (author)

  19. Truncated C-terminus of fibrillin-1 induces Marfanoid-progeroid-lipodystrophy (MPL) syndrome in rabbit.

    Science.gov (United States)

    Chen, Mao; Yao, Bing; Yang, Qiangbing; Deng, Jichao; Song, Yuning; Sui, Tingting; Zhou, Lina; Yao, HaoBing; Xu, Yuanyuan; Ouyang, Hongsheng; Pang, Daxin; Li, Zhanjun; Lai, Liangxue

    2018-04-09

    Various clinical differences have been observed between patients with the FBN1 gene mutation and those with the classical Marfan phenotype. Although FBN1 knockout (KO) or dominant-negative mutant mice are widely used as an animal model for Marfan syndrome (MFS), these mice cannot recapitulate the genotype/phenotype relationship of Marfanoid-progeroid-lipodystrophy (MPL) syndrome, which is caused by a mutation in the C-terminus of fibrillin-1, the penultimate exon of the FBN1 gene. Here, we describe the generation of a rabbit MPL model with C-terminal truncation of fibrillin-1 using a CRISPR/Cas9 system. FBN1 heterozygous ( FBN1 Het) rabbits faithfully recapitulated the phenotypes of MFS, including muscle wasting and impaired connective tissue, ocular syndrome and aortic dilation. Moreover, skin symptoms, lipodystrophy, growth retardation and dysglycemia were also seen in these FBN1 Het rabbits, and have not been reported in other animal models. In conclusion, this novel rabbit model mimics the histopathological changes and functional defects of MPL syndrome, and could become a valuable model for studies of pathogenesis and drug screening for MPL syndrome. © 2018. Published by The Company of Biologists Ltd.

  20. [Review: plant polyphenols modulate lipid metabolism and related molecular mechanism].

    Science.gov (United States)

    Dai, Yan-li; Zou, Yu-xiao; Liu, Fan; Li, Hong-zhi

    2015-11-01

    Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms.

  1. Lipid Droplet Formation Is Dispensable for Endoplasmic Reticulum-associated Degradation*

    Science.gov (United States)

    Olzmann, James A.; Kopito, Ron R.

    2011-01-01

    Proteins that fail to fold or assemble in the endoplasmic reticulum (ER) are destroyed by cytoplasmic proteasomes through a process known as ER-associated degradation. Substrates of this pathway are initially sequestered within the ER lumen and must therefore be dislocated across the ER membrane to be degraded. It has been proposed that generation of bicellar structures during lipid droplet formation may provide an “escape hatch” through which misfolded proteins, toxins, and viruses can exit the ER. We have directly tested this hypothesis by exploiting yeast strains defective in lipid droplet formation. Our data demonstrate that lipid droplet formation is dispensable for the dislocation of a plant toxin and the degradation of both soluble and integral membrane glycoproteins. PMID:21693705

  2. Membrane Lipid Oscillation: An Emerging System of Molecular Dynamics in the Plant Membrane.

    Science.gov (United States)

    Nakamura, Yuki

    2018-03-01

    Biological rhythm represents a major biological process of living organisms. However, rhythmic oscillation of membrane lipid content is poorly described in plants. The development of lipidomic technology has led to the illustration of precise molecular profiles of membrane lipids under various growth conditions. Compared with conventional lipid signaling, which produces unpredictable lipid changes in response to ever-changing environmental conditions, lipid oscillation generates a fairly predictable lipid profile, adding a new layer of biological function to the membrane system and possible cross-talk with the other chronobiological processes. This mini review covers recent studies elucidating membrane lipid oscillation in plants.

  3. [Lipids from fossil plants and their relation to modern plants. Example s of Cenomanian flora from Anjou and Bohemia].

    Science.gov (United States)

    Thanh, T N; Derenne, S; Largeau, C; Pons, D; Broutin, J; Mariotti, A; Bocherens, H

    2000-01-01

    Comparative analyses of lipids from fossil plants and from their extant counterparts were undertaken in order to test the taxonomic significance of lipids in palaeobotany. The comparison between lipids from a fossil Ginkgoaceae, Eretmophyllum andegavense, and its extant counterpart, Ginkgo biloba, revealed the presence of original molecules, dimethoxyalkylcoumarins, in lipids from both plants. Such compounds confirm, on chemical grounds the relationship between these extant and fossil Ginkgoaceaes. Moreover, differences in n-alkane distribution between E. andegavense and E. obtusum which are very similar morphologically, confirm that these fossil plants do not belong to the same species. Furthermore, comparative analyses of a fossil Cheirolepidiaceae, Frenelopsis alata, and its extant counterpart, the Cupressaceae Tetraclinis articulata, revealed some similarities between these two species although they do not belong to the same family. Otherwise, comparative analyses of fungi-infected and uninfected samples of F. alata demonstrated that these micro-organisms can significantly affect the chemical composition of fossil plant lipids. In conclusion, even if chemical analyses alone are not sufficient to determine the genus or species of a given fossil plant, they can precise the taxonomy of some specimens that have been previously studied by palaeobotanists.

  4. Arabidopsis lipid droplet-associated protein (LDAP)–interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds

    Science.gov (United States)

    Cytoplasmic lipid droplets (LDs) are found in all types of plant cells where they are derived from the endoplasmic reticulum and function as a repository for neutral lipids, as well as serving in lipid remodelling and signalling. However, the mechanisms underlying the formation and functioning of pl...

  5. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase.

    Science.gov (United States)

    Morales-Cedillo, Francisco; González-Solís, Ariadna; Gutiérrez-Angoa, Lizbeth; Cano-Ramírez, Dora Luz; Gavilanes-Ruiz, Marina

    2015-04-01

    Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.

  6. Relationship between fibrillin-1 genotype and severity of cardiovascular involvement in Marfan syndrome.

    Science.gov (United States)

    Franken, Romy; Teixido-Tura, Gisela; Brion, Maria; Forteza, Alberto; Rodriguez-Palomares, Jose; Gutierrez, Laura; Garcia Dorado, David; Pals, Gerard; Mulder, Barbara Jm; Evangelista, Artur

    2017-11-01

    The effect of FBN1 mutation type on the severity of cardiovascular manifestations in patients with Marfan syndrome (MFS) has been reported with disparity results. This study aims to determine the impact of the FBN1 mutation type on aortic diameters, aortic dilation rates and on cardiovascular events (ie, aortic dissection and cardiovascular mortality). MFS patients with a pathogenic FBN1 mutation followed at two specialised units were included. FBN1 mutations were classified as being dominant negative (DN; incorporation of non-mutated and mutated fibrillin-1 in the extracellular matrix) or having haploinsufficiency (HI; only incorporation of non-mutated fibrillin-1, thus a decreased amount of fibrillin-1 protein). Aortic diameters and the aortic dilation rate at the level of the aortic root, ascending aorta, arch, descending thoracic aorta and abdominal aorta by echocardiography and clinical endpoints comprising dissection and death were compared between HI and DN patients. Two hundred and ninety patients with MFS were included: 113 (39%) with an HI- FBN1 mutation and 177 (61%) with a DN- FBN1 . At baseline, patients with HI- FBN1 had a larger aortic root diameter than patients with DN- FBN1 (HI: 39.3±7.2 mm vs DN: 37.3±6.8 mm, p=0.022), with no differences in age or body surface area. After a mean follow-up of 4.9±2.0 years, aortic root and ascending dilation rates were increased in patients with HI- FBN1 (HI: 0.57±0.8 vs DN: 0.28±0.5 mm/year, p=0.004 and HI: 0.59±0.9 vs DN: 0.30±0.7 mm/year, p=0.032, respectively). Furthermore, patients with HI- FBN1 tended to be at increased risk for the combined endpoint of dissection and death compared with patients with DN- FBN1 (HR: 3.3, 95% CI 1.0 to 11.4, p=0.060). Patients with an HI mutation had a more severely affected aortic phenotype, with larger aortic root diameters and a more rapid dilation rate, and tended to have an increased risk of death and dissections compared with patients with a DN

  7. Gene expression in plant lipid metabolism in Arabidopsis seedlings.

    Directory of Open Access Journals (Sweden)

    An-Shan Hsiao

    Full Text Available Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3, DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1 and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6 in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1 and LATE ELONGATED HYPOCOTYL (LHY from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis.

  8. Learning the lipid language of plant signalling.

    NARCIS (Netherlands)

    van Leeuwen, W.; Okresz, L.; Bogre, L.; Munnik, T.

    2004-01-01

    Plant cells respond to different biotic and abiotic stresses by producing various uncommon phospholipids that are believed to play key roles in cell signalling. We can predict how they work because animal and yeast proteins have been shown to have specific lipid-binding domains, which act as docking

  9. A Novel Fibrillin-1 Gene Mutation Leading to Marfan Syndrome in a Korean Girl.

    Science.gov (United States)

    Nam, Hyo-Kyoung; Nam, Myung-Hyun; Ha, Kee-Soo; Rhie, Young-Jun; Lee, Kee-Hyoung

    2017-03-01

    Marfan syndrome is an autosomal dominant genetic disorder caused by a connective tissue defect. A nine-year-old girl was referred to our pediatric endocrinology clinic for tall stature. Physical examination revealed a lens dislocation with strabismus, high palate, positive wrist and thumb signs, joint hypermobility, and pes planus. Transthoracic echocardiography revealed dilatation of the aortic root. She was diagnosed with Marfan syndrome based on the revised Ghent diagnostic criteria. Molecular investigation identified a heterozygous c.2810G >A variation in the FBN1 gene in the patient, but not in her parents. To our knowledge, this sequence variant has been reported as a polymorphism (rs113602180), but it is the first report identifying it as the genetic cause of Marfan syndrome. We hypothesize that this de novo novel missense FBN1 mutation disrupts fibrillin-1 function and is probably involved in the development of Marfan syndrome in this patient. © 2017 by the Association of Clinical Scientists, Inc.

  10. ENU mutagenesis reveals a novel phenotype of reduced limb strength in mice lacking fibrillin 2.

    Directory of Open Access Journals (Sweden)

    Gaynor Miller

    2010-02-01

    Full Text Available Fibrillins 1 (FBN1 and 2 (FBN2 are components of microfibrils, microfilaments that are present in many connective tissues, either alone or in association with elastin. Marfan's syndrome and congenital contractural arachnodactyly (CCA result from dominant mutations in the genes FBN1 and FBN2 respectively. Patients with both conditions often present with specific muscle atrophy or weakness, yet this has not been reported in the mouse models. In the case of Fbn1, this is due to perinatal lethality of the homozygous null mice making measurements of strength difficult. In the case of Fbn2, four different mutant alleles have been described in the mouse and in all cases syndactyly was reported as the defining phenotypic feature of homozygotes.As part of a large-scale N-ethyl-N-nitrosourea (ENU mutagenesis screen, we identified a mouse mutant, Mariusz, which exhibited muscle weakness along with hindlimb syndactyly. We identified an amber nonsense mutation in Fbn2 in this mouse mutant. Examination of a previously characterised Fbn2-null mutant, Fbn2(fp, identified a similar muscle weakness phenotype. The two Fbn2 mutant alleles complement each other confirming that the weakness is the result of a lack of Fbn2 activity. Skeletal muscle from mutants proved to be abnormal with higher than average numbers of fibres with centrally placed nuclei, an indicator that there are some regenerating muscle fibres. Physiological tests indicated that the mutant muscle produces significantly less maximal force, possibly as a result of the muscles being relatively smaller in Mariusz mice.These findings indicate that Fbn2 is involved in integrity of structures required for strength in limb movement. As human patients with mutations in the fibrillin genes FBN1 and FBN2 often present with muscle weakness and atrophy as a symptom, Fbn2-null mice will be a useful model for examining this aspect of the disease process further.

  11. Cuticular Lipids as a Cross-Talk among Ants, Plants and Butterflies.

    Science.gov (United States)

    Barbero, Francesca

    2016-11-24

    Even though insects and plants are distantly related organisms, they developed an integument which is functionally and structurally similar. Besides functioning as a physical barrier to cope with abiotic and biotic stress, this interface, called cuticle, is also a source of chemical signaling. Crucial compounds with this respect are surface lipids and especially cuticular hydrocarbons (CHCs). This review is focused on the role of CHCs in fostering multilevel relationships among ants, plants and Lepidoptera (primarily butterflies). Indeed, particular traits of ants as eusocial organisms allowed the evolution and the maintenance of a variety of associations with both plants and animals. Basic concepts of myrmecophilous interactions and chemical deception strategies together with chemical composition, biosynthetic pathways and functions of CHCs as molecular cues of multitrophic systems are provided. Finally, the need to adopt a multidisciplinary and comprehensive approach in the survey of complex models is discussed.

  12. Cuticular Lipids as a Cross-Talk among Ants, Plants and Butterflies

    Directory of Open Access Journals (Sweden)

    Francesca Barbero

    2016-11-01

    Full Text Available Even though insects and plants are distantly related organisms, they developed an integument which is functionally and structurally similar. Besides functioning as a physical barrier to cope with abiotic and biotic stress, this interface, called cuticle, is also a source of chemical signaling. Crucial compounds with this respect are surface lipids and especially cuticular hydrocarbons (CHCs. This review is focused on the role of CHCs in fostering multilevel relationships among ants, plants and Lepidoptera (primarily butterflies. Indeed, particular traits of ants as eusocial organisms allowed the evolution and the maintenance of a variety of associations with both plants and animals. Basic concepts of myrmecophilous interactions and chemical deception strategies together with chemical composition, biosynthetic pathways and functions of CHCs as molecular cues of multitrophic systems are provided. Finally, the need to adopt a multidisciplinary and comprehensive approach in the survey of complex models is discussed.

  13. 2013 plant lipids Gordon Research conference and Gordon Research Seminar (January 27 - February 1, 2013 - Hotel Galvez, Galveston, TX)

    Energy Technology Data Exchange (ETDEWEB)

    Welti, Ruth

    2012-11-01

    Presenters will discuss the latest advances in plant and algal lipid metabolism, oil synthesis, lipid signaling, lipid visualization, lipid biotechnology and its applications, the physiological and developmental roles of lipids, and plant lipids in health. Sessions include: Producing Nutritional Lipids; Metabolic biochemistry in the next decade; Triacylglycerols: Metabolism, function, and as a target for engineering; Lipids in Protection, Reproduction, and Development; Genetic and Lipidomic Approaches to Understanding Lipid Metabolism and Signaling; Lipid Signaling in Stress Responses; New Insights on the Path to Triacylglycerols; Membrane Lipid Signaling; Lipid Visualization; Development of Biofuels and Industrial Lipids.

  14. Neonatal Marfan syndrome caused by an exon 25 mutation of the fibrillin-1 gene.

    Science.gov (United States)

    Elçioglu, N H; Akalin, F; Elçioglu, M; Comeglio, P; Child, A H

    2004-01-01

    Neonatal Marfan syndrome caused by an exon 25 mutation of the Fibrillin-1 gene: We describe a male infant with severe arachnodactyly, hypermobility of the fingers, flexion contractures of elbows, wrists, hips, and knees, microretrognathia, crumpled ears, rockerbottom feet, loose redundant skin, and lens dislocations. Cardiac valve insufficiency and aortic dilatation resulted in cardiac failure, decompensated with digitalisation and death occurred at the age of 4 months. This case represents the severe end of the clinical spectrum of Marfan syndrome, namely neonatal Marfan syndrome. Molecular diagnostic analyses confirmed a de novo exon 25 mutation in the FBN1 gene.

  15. Lipidomics Unravels the Role of Leaf Lipids in Thyme Plant Response to Drought Stress

    Directory of Open Access Journals (Sweden)

    Parviz Moradi

    2017-09-01

    Full Text Available Thymus is one of the best known genera within the Labiatae (Lamiaceae family, with more than 200 species and many medicinal and culinary uses. The effects of prolonged drought on lipid profile were investigated in tolerant and sensitive thyme plants (Thymus serpyllum L. and Thymus vulgaris L., respectively. Non-targeted non-polar metabolite profiling was carried out using Fourier transform ion cyclotron resonance (FT-ICR mass spectrometry with one-month-old plants exposed to drought stress, and their morpho-physiological parameters were also evaluated. Tolerant and sensitive plants exhibited clearly different responses at a physiological level. In addition, different trends for a number of non-polar metabolites were observed when comparing stressed and control samples, for both sensitive and tolerant plants. Sensitive plants showed the highest decrease (55% in main lipid components such as galactolipids and phospholipids. In tolerant plants, the level of lipids involved in signaling increased, while intensities of those induced by stress (e.g., oxylipins dramatically decreased (50–60%, in particular with respect to metabolites with m/z values of 519.3331, 521.3488, and 581.3709. Partial least square discriminant analysis separated all the samples into four groups: tolerant watered, tolerant stressed, sensitive watered and sensitive stressed. The combination of lipid profiling and physiological parameters represented a promising tool for investigating the mechanisms of plant response to drought stress at non-polar metabolome level.

  16. Sex-Specific Associations Between Thyrotropin and Serum Lipid Profiles

    DEFF Research Database (Denmark)

    Meisinger, Christa; Ittermann, Till; Tiller, Daniel

    2014-01-01

    BACKGROUND: Population-based studies investigating the sex-specific association between thyrotropin (TSH) levels and serum lipid concentrations are scarce. We examined the association between TSH and total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL......) cholesterol, and triglycerides in men and women from the general population. Furthermore, the association with TSH outside and within the reference range and lipid levels was studied. METHODS: Individual data of 13,571 men and women without lipid medication of four population-based studies conducted...... in Western European adults were pooled for cross-sectional analyses. The association between TSH levels and lipid concentrations were analyzed by calculating sex-specific multivariable median regression models. RESULTS: In the pooled population, serum TSH levels were significantly positively associated...

  17. Effects of radiation and apolipoprotein E on lipid profile among workers of nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Ki-Eun Moon; Mee-Seon Jung; Suk-Hee Sung; Youn-Koun Chang; Il-Keun Park; Yun-Mi Paek; Tae-In Choi; Soo-Geun Kim

    2007-01-01

    Complete text of publication follows. Several studies reported that the radiation was positively related to fatty liver, low HDL cholesterol, and hypertriglyceridemia. Genetic polymorphism affect prevalence of chronic disease by molecular epidemiology studies. Apolipoprotein E is an important genetic determinant of cardiovascular disease (CVD), namely through its influence on lipid metabolism. Thus, we investigated whether radiation and apo E polymorphism, and environmental factors contribute to the lipid profile in workers of nuclear power plants in Korea. DNA was extracted from the whole blood of 6896 study subjects (6357 males and 359 females), and apo E polymorphism was investigated using PCR. Plasma lipid profiles were measured by standardized enzymatic procedures and radiation dose was measured by the thermoluminescence dosemeter (TLD). Environmental factors such as exercise, smoking were measured from health management database of KHNP. Total of 6802 subjects (aged 20-58) were investigated and radiation exposure dose was 168.51±463.94 mSv in the recent 1-year dose and 248.24±559.21 mSv in the total accumulative dose. In addition, Apo E polymorphism was associated with significant differences in total cholesterol, HDL cholesterol, radiation dose, AI but others no significant. The multiple regression model showed that total cholesterol was positively correlated with age, SBP, BMI, AI, fasting glucose. HDL cholesterol was negatively correlated with AI. LDL cholesterol was positively correlated with age, BMI, fasting glucose. And triglyceride was significantly correlated in the BMI, AI, somking dose, vegetables but others no significant. Metabolic syndrome did not show any relation to the others; only age, SBP, DBP, BMI, fasting glucose, HOMA-IR influenced. However, there was no significant association between radiation dose and lipid profile. In conclusion, Apo E and well-known variables such as SBP, BMI were significantly associated with lipid profile level

  18. Autosomal dominant Marfan-like connective-tissue disorder with aortic dilation and skeletal anomaslies not linked to the Fibrillin genes

    Energy Technology Data Exchange (ETDEWEB)

    Boileau, C.; Coulon, M.; Alexandre, J.-A.; Junien, C. (Laboratorie Central de Biochimie et de Genetique Moleculaire (France)); Jondeau, G.; Delorme, G.; Dubourg, O.; Bourdarias, J.-P. (CHU Ambroise Pare, Boulogne (France)); Babron, M.-C.; Bonaieti-Pellie, C. (INSERM, Chateau de Longchamp, Paris (France)); Sakai, L. (Shriners' Hospital for Crippled Children, Portland, OR (United States)); Melki, J. (Hopital Necker-Enfants Malades, Paris (France))

    1993-07-01

    The authors describe a large family with a connective-tissue disorder that exhibits some of the skeletal and cardiovascular features seen in Marfan syndrome. However, none of the 19 affected individuals displayed ocular abnormalities and therefore did not comply with recognized criteria for this disease. These patients could alternatively be diagnosed as MASS (mitral valve, aorta, skeleton, and skin) phenotype patients or represent a distinct clinical entity, i.e., a new autosomal dominant connective-tissue disorder. The fibrillin genes located on chromosomes 15 and 5 are clearly involved in the classic form of Marfan syndrome and a clinically related disorder (congenital contractural arachnodactyly), respectively. To test whether one of these genes was also implicated in this French family, the authors performed genetic analyses. Blood samples were obtained for 56 family members, and four polymorphic fibrillin gene markers, located on chromosomes 15 (Fib15) and 5 (Fib5), respectively, were tested. Linkage between the disease allele and the markers of these two genes was excluded with lod scores of [minus]11.39 (for Fib15) and [minus]13.34 (for Fib5), at 0 = .001, indicating that the mutation is at a different locus. This phenotype thus represents a new connective-tissue disorder, overlapping but different from classic Marfan syndrome. 33 refs., 1 fig. 2 tabs.

  19. Relationships between the daily intake of unsaturated plant lipids and the contents of major milk fatty acids in dairy goats

    Energy Technology Data Exchange (ETDEWEB)

    Martínez Marín, A.L.; Núñez Sánchez, N.; Garzón Sigler, A. I.; Peña Blanco, F.; Fuente, M.A. de la

    2015-07-01

    A meta-regression of the effects of the amount of plant lipids consumed by dairy goats on the contents of some milk fat fatty acids (FA) was carried out. Fourteen peer-reviewed published papers reporting 17 experiments were used in the study. Those experiments compared control diets without added fat with diets that included plant lipids rich in unsaturated FA, summing up to 64 treatments. The results showed that increasing daily intake of plant lipids linearly reduced the contents of all medium chain saturated FA in milk fat. Moreover, it was observed that the longer the chain of the milk saturated FA, the greater the negative effect of the plant lipid intake on their contents. On the other hand, the contents of stearic acid and the sum of oleic, linoleic and α-linolenic acids in milk fat linearly increased as daily plant lipid intake rose. The results obtained corroborate previous reports on the effects of feeding dairy goats with increasing amounts of unsaturated plant lipids on milk FA profile. (Author)

  20. The Clinical Spectrum of Missense Mutations of the First Aspartic Acid of cbEGF-like Domains in Fibrillin-1 Including a Recessive Family

    NARCIS (Netherlands)

    Hilhorst-Hofstee, Yvonne; Rijlaarsdam, Marry E. B.; Scholte, Arthur J. H. A.; Swart-van den Berg, Marietta; Versteegh, Michel I. M.; van der Schoot-van Velzen, Iris; Schaebitz, Hans-Joachim; Bijlsma, Emilia K.; Baars, Marieke J.; Kerstjens-Frederikse, Wilhelmina S.; Giltay, Jacques C.; Hamel, Ben C.; Breuning, Martijn H.; Pals, Gerard

    2010-01-01

    Marfan syndrome (MFS) is a dominant disorder with a recognizable phenotype. In most patients with the classical phenotype mutations are found in the fibrillin-1 gene (FBN1) on chromosome 15q21. It is thought that most mutations act in a dominant negative way or through haploinsufficiency. In 9 index

  1. The clinical spectrum of missense mutations of the first aspartic acid of cbEGF-like domains in fibrillin-1 including a recessive family

    NARCIS (Netherlands)

    Hilhorst-Hofstee, Yvonne; Rijlaarsdam, Marry E. B.; Scholte, Arthur J. H. A.; Swart-van den Berg, Marietta; Versteegh, Michel I. M.; van der Schoot-van Velzen, Iris; Schäbitz, Hans-Joachim; Bijlsma, Emilia K.; Baars, Marieke J.; Kerstjens-Frederikse, Wilhelmina S.; Giltay, Jacques C.; Hamel, Ben C.; Breuning, Martijn H.; Pals, Gerard

    2010-01-01

    Marfan syndrome (MFS) is a dominant disorder with a recognizable phenotype. In most patients with the classical phenotype mutations are found in the fibrillin-1 gene (FBN1) on chromosome 15q21. It is thought that most mutations act in a dominant negative way or through haploinsufficiency. In 9 index

  2. A Gly1127Ser mutation in an EGF-like domain of the Fibrillin-I gene is a risk factor for ascending aortic aneurysm and dissection

    Energy Technology Data Exchange (ETDEWEB)

    Francke, U.; Berg, M.A.; Tynan, K. [Stanford Univ. Medical Center, CA (United States)] [and others

    1995-06-01

    Ascending aortic disease, ranging from mild aortic root enlargement to aneurysm and/or dissection, has been identified in 10 individuals of a kindred, none of whom had classical Marfan syndrome (MFS). Single-strand conformation analysis of the entire fibrillin-1 (FBN1) cDNA of an affected family member revealed a G-to-A transition at nucleotide 3379, predicting a Gly1127Ser substitution. The glycine in this position is highly conserved in EGF-like domains of FBN1 and other proteins. This mutation was present in 9 of 10 affected family members and in 1 young unaffected member but was not found in other unaffected members, in 168 chromsomes from normal controls, and in 188 chromosomes from other individuals with MFS or related phenotypes. FBN1 intragenic marker haplotypes ruled out the possibility that the other allele played a significant role in modulating the phenotype in this family. Pulse-chase studies revealed normal fibrillin synthesis but reduced fibrillin deposition into the extracellular matrix in cultured fibroblasts from a Gly1127Ser carrier. We postulate that the Gly1127Ser FBN1 mutation is responsible for reduced matrix deposition. We suggest that mutations such as this one may disrupt EFG-like domain folding less drastically than do substitutions of cysteine or of other amino acids important for calcium-binding that cause classical MFS. The Gly 1127Ser mutation, therefore, produces a mild form of autosomal dominantly inherited weakness of elastic tissue, which predisposes to ascending aortic aneurysm and dissection later in life. 33 refs., 6 figs.

  3. Acyl-Lipid Metabolism

    Science.gov (United States)

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  4. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    Science.gov (United States)

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  5. Serum lipid profiles are associated with semen quality

    Directory of Open Access Journals (Sweden)

    Chin-Yu Liu

    2017-01-01

    Full Text Available We aimed to explore the associations between different lipid profiles and semen quality in a large-scale general male population. Sperm concentration, total sperm motility, progressive motility, and normal sperm morphology of total 7601 participants were recorded. The association of these semen parameters with the triglyceride, total cholesterol, high-density lipoprotein, low-density lipoprotein, and very low-density lipoprotein of serum lipid profiles was analyzed. Sperm concentration was statistically positively correlated with triglyceride and very low-density lipoprotein (adjusted P = 0.001 and P = 0.005, respectively. Total sperm motility and progressive motility were statistically increased with increasing low-density lipoprotein and cholesterol levels (both adjusted P = 0.008 and P < 0.001, respectively. The similar J-shaped associations (high-low-low-high were noted between individual lipid profile and normal sperm morphology, especially low-density lipoprotein and cholesterol with statistical significance (adjusted P = 0.017 and P = 0.021, respectively. The prevalence of abnormal total sperm motility and progressive motility was decreased in participants with high levels of cholesterol (P = 0.008 and P = 0.019, respectively, and the reverse J-shaped associations (low-high-high-low were noted between high-density lipoprotein, triglyceride, very low-density lipoprotein, and the prevalence of abnormal normal sperm morphology (P = 0.010, P = 0.037, and P = 0.025, respectively. A high cholesterol level was associated with better sperm motility. Similar J-shaped associations were noted between all lipid profiles and normal sperm morphology; meanwhile, the reverse J-shaped trends were identified between them and abnormal normal sperm morphology prevalence.

  6. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: EXECUTIVE SUMMARY.

    Science.gov (United States)

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2-part scientific statement examines the potential lipid benefits of bariatric procedures and represents contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on data published through June 2015. Part 1 of this 2-part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on cardiovascular disease; and finally (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the executive summary of part 1. Copyright © 2016 National Lipid Association. All rights reserved.

  7. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: FULL REPORT.

    Science.gov (United States)

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2 part scientific statement examines the potential lipid benefits of bariatric procedures and represents the contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on published data through June 2015. Part 1 of this 2 part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the full report of part 1. Copyright © 2016 National Lipid Association. All rights reserved.

  8. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    Science.gov (United States)

    Quon, Evan; Beh, Christopher T.

    2015-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

  9. Ion Channels Induced by Antimicrobial Agents in Model Lipid Membranes are Modulated by Plant Polyphenols Through Surrounding Lipid Media.

    Science.gov (United States)

    Efimova, Svetlana S; Zakharova, Anastasiia A; Medvedev, Roman Ya; Ostroumova, Olga S

    2018-03-16

    The potential therapeutic applications of plant polyphenols in various neurological, cardiovascular, metabolic and malignant disorders determine the relevance of studying the molecular mechanisms of their action on the cell membranes. Here, the quantitative changes in the physical parameters of model bilayer lipid membranes upon the adsorption of plant polyphenols were evaluated. It was shown that butein and naringenin significantly decreased the intrinsic dipole potential of cholesterol-free and cholesterol-enriched membranes. Cardamonin, 4'-hydroxychalcone, licochalcone A and liquiritigenin demonstrated the average efficiency, while resveratrol did not characterized by the ability to modulate the bilayer electrostatics. At the same time, the tested polyphenols affected melting of phospholipids with saturated acyl chains. The effects were attributed to the lipid disordering and a promotion of the positive curvature stress. According to DSC data and results of measurements of the threshold voltages that cause bilayer breakdown licochalcone A is the most effective agent. Furthermore, the role of the polyphenol induced changes in the electric and elastic properties of lipid host in the regulation of reconstituted ion channels was examined. The ability of the tested polyphenols to decrease the conductance of single ion channels produced by the antifungal cyclic lipopeptide syringomycin E was in agreement with their effects on the dipole potential of the lipid bilayers. The greatest effect of licochalcone A on the steady-state membrane conductance induced by the antifungal polyene macrolide antibiotic nystatin correlated with its greatest efficacy to induce the positive curvature stress. We also found that butein and naringenin bind specifically to a single pore formed by α-hemolysin from Staphylococcus aureus.

  10. Lipid antioxidant and galactolipid remodeling under temperature stress in tomato plants

    Directory of Open Access Journals (Sweden)

    Livia eSpicher

    2016-02-01

    Full Text Available Increased temperatures are a major scenario in climate change and present a threat to plant growth and agriculture. Plant growth depends on photosynthesis. To function optimally the photosynthetic machinery at the thylakoid membrane in chloroplasts continuously adapts to changing conditions. Here, we set out to discover the most important changes arising at the lipid level under high temperature (38°C in comparison to mild (20°C and moderately cold temperature (10°C using a non-targeted lipidomics approach. To our knowledge, no comparable experiment at the level of the whole membrane system has been documented. Here, 791 molecular species were detected by mass spectrometry and ranged from membrane lipids, prenylquinones (tocopherols, phylloquinone, plastoquinone, plastochromanol, carotenoids (β-carotene, xanthophylls to numerous unidentified compounds. At high temperatures, the most striking changes were observed for the prenylquinones (α-tocopherol and plastoquinone/-ol and the degree of saturation of fatty acids in galactolipids and phosphatidyl ethanolamine. Photosynthetic efficiency at high temperature was not affected but at moderately cold temperature mild photoinhibition occurred. The results indicate that the thylakoid membrane is remodeled with regard to fatty acid saturation in galactolipids and lipid antioxidant concentrations under high temperature stress. The data strongly suggest that massively increased concentrations of α-tocopherol and plastoquinone are important for protection against high temperature stress and proper function of the photosynthetic apparatus.

  11. Species- and age-dependent sensitivity to ozone in young plants of pea, wheat and spinach. Effects on acyl lipid and pigment content and metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, A.S.; Wallin, G.; Sandelius, A.S.

    1996-11-01

    Acyl lipids and pigments were analyzed in young plants of garden pea, spring wheat and spinach exposed to < 5 or 65 nl l{sup -1} ozone 12 h per day for 5 days, in one set of experiments, the plants were exposed to {sup 14}CO{sub 2} for 2 h 3 days prior to ozone exposure. The plants responded differently to the moderately enhanced level of ozone used. Spinach was not at all sensitive while in both pea and wheat, leaves of different ages differed in ozone sensitivity. In pea, ozone sensitivity increased with leaf age. In the second and third oldest leaves, the amounts of galactolipids per leaf area and the proportions of 18:3 of the total lipid extract and of phosphatidylglycerol decreased. In the second oldest leaf, ozone also caused a decreased proportion of 18:3 of monogalactosyldiacylglycerol. In the fourth oldest leaf, lipid composition and galactolipid unsaturation was unaffected, but ozone caused decreased leaf expansion resulting in increased acyl lipid content per leaf area. In both the first and second leaves of wheat, ozone fumigation caused a marked decrease in the content of monogalactosyldiacylglycerol and in the first leaf, the contents of phosphatidylcholine and phosphatidylethanolamine increased. The proportion of 18:3 in phosphatidylcholine was larger in ozone-fumigated than in control plants, while the reverse applied for phosphatidylglycerol. In the oldest sampled leaves of pea and wheat, ozone caused an increase in the radioactivity associated with {beta}-carotene, indicting increased turnover. Thus, while spinach was unaffected, in both pea and whet ozone caused a decrease in the proportion of chloroplast membrane lipids to non-chloroplast membrane lipids in older leaves while younger leaves were less sensitive. (au) 21 refs.

  12. Ageing mechanisms and associated lipid changes.

    Science.gov (United States)

    Kolovou, Genovefa; Katsiki, Niki; Pavlidis, Antonis; Bilianou, Helen; Goumas, George; Mikhailidis, Dimitri P

    2014-01-01

    Ageing is related to slowdown/breakdown of the somatotropic axis (i.e. the somatopause) leading to many physiological changes. The somatopause is accompanied by DNA and other macromolecule damage, and is characterized by a progressive decline in vitality and tissue function. We still do not have a definitive understanding of the mechanism( s) of ageing. Several overlapping theories have been proposed such as: 1) The free radical theory, 2) Mitochondrial Ageing, 3) The Glycation Theory, 4) Protein Damage and Maintenance in Ageing, and, 5) DNA Damage and Repair. Furthermore, several models of ageing were introduced such as genetically programmed senescence, telomere shortening, genomic instability, heterochromatin loss, altered epigenetic patterns and long lived cells. There are certain lipid modifications associated with the somatopause, characterized mainly by an increase in total cholesterol and triglyceride levels in both genders. In this review we consider the mechanisms of ageing and the associated changes in lipid metabolism according to gender.

  13. Production of n-alkyl lipids in living plants and implications for the geologic past

    Science.gov (United States)

    Diefendorf, Aaron F.; Freeman, Katherine H.; Wing, Scott L.; Graham, Heather V.

    2011-12-01

    Leaf waxes (i.e., n-alkyl lipids or n-alkanes) are land-plant biomarkers widely used to reconstruct changes in climate and the carbon isotopic composition of the atmosphere. There is little information available, however, on how the production of leaf waxes by different kinds of plants might influence the abundance and isotopic composition of n-alkanes in sedimentary archives. This lack of information increases uncertainty in interpreting n-alkyl lipid abundance and δ 13C signals in ancient settings. We provide here n-alkyl abundance distributions and carbon isotope fractionation data for deciduous and evergreen angiosperm and gymnosperm leaves from 46 tree species, representing 24 families. n-Alkane abundances are significantly higher in angiosperms than gymnosperms; many of the gymnosperm species investigated did not produce any n-alkanes. On average, deciduous angiosperms produce 200 times more n-alkanes than deciduous gymnosperms. Although differences between angiosperms and gymnosperms dominate the variance in n-alkane abundance, leaf life-span is also important, with higher n-alkane abundances in longer-lived leaves. n-Alkanol abundances covary with n-alkanes, but n-alkanoic acids have similar abundances across all plant groups. Isotopic fractionation between leaf tissue and individual alkanes ( ɛlipid) varies by as much as 10‰ among different chain lengths. Overall, ɛlipid values are slightly lower (-4.5‰) for angiosperm than for gymnosperm (-2.5‰) n-alkanes. Angiosperms commonly express slightly higher Δleaf (photosynthetic discrimination) relative to gymnosperms under similar growth conditions. As a result, angiosperm n-alkanes are expected to be generally 3-5‰ more depleted in 13C relative to gymnosperm alkanes for the same locality. Differences in n-alkane production indicate the biomarker record will largely (but not exclusively) reflect angiosperms if both groups were present, and also that evergreen plants will likely be overrepresented

  14. Clinical symptoms in fibromyalgia are associated to overweight and lipid profile.

    Science.gov (United States)

    Cordero, Mario D; Alcocer-Gómez, Elísabet; Cano-García, Francisco J; Sánchez-Domínguez, Benito; Fernández-Riejo, Patricia; Moreno Fernández, Ana M; Fernández-Rodríguez, Ana; De Miguel, Manuel

    2014-03-01

    In order to analyze the association between body mass index (BMI), lipid profile and clinical symptoms in patients with fibromyalgia, we assessed BMI levels, lipid profile and its association with clinical symptoms in 183 patients with fibromyalgia. The patients were evaluated using tender points, FIQ and Visual Analogue Scales of pain (VAS). Serum lipid profile analysis (total cholesterol, triglyceride, HDL, LDL and VLDL), and biochemical parameters were measured in the biochemistry laboratory. The BMI distribution of the nonobese, overweight and obese patients' groups were relatively even with 37.7, 35.5 and 26.8%, respectively, with a mean BMI of 27.3 ± 4.9. The number of tender points showed significantly positive correlation with higher BMI (P BMI, total cholesterol and triglycerides showed high association with some clinical parameters. Overweight and lipid profile could be associated with fibromyalgia symptoms. A treatment program with weight loss strategies, and control in diet and increased physical activity is advised to patients.

  15. Molecular dynamics simulations of the interactions of medicinal plant extracts and drugs with lipid bilayer membranes

    DEFF Research Database (Denmark)

    Kopec, Wojciech; Telenius, Jelena; Khandelia, Himanshu

    2013-01-01

    Several small drugs and medicinal plant extracts, such as the Indian spice extract curcumin, have a wide range of useful pharmacological properties that cannot be ascribed to binding to a single protein target alone. The lipid bilayer membrane is thought to mediate the effects of many such molecu......Several small drugs and medicinal plant extracts, such as the Indian spice extract curcumin, have a wide range of useful pharmacological properties that cannot be ascribed to binding to a single protein target alone. The lipid bilayer membrane is thought to mediate the effects of many...

  16. Association of Polymorphisms of Genes Involved in Lipid Metabolism with Blood Pressure and Lipid Values in Mexican Hypertensive Individuals

    Directory of Open Access Journals (Sweden)

    Blanca Estela Ríos-González

    2014-01-01

    Full Text Available Hypertension and dyslipidemia exhibit an important clinical relationship because an increase in blood lipids yields an increase in blood pressure (BP. We analyzed the associations of seven polymorphisms of genes involved in lipid metabolism (APOA5 rs3135506, APOB rs1042031, FABP2 rs1799883, LDLR rs5925, LIPC rs1800588, LPL rs328, and MTTP rs1800591 with blood pressure and lipid values in Mexican hypertensive (HT patients. A total of 160 HT patients and 160 normotensive individuals were included. Genotyping was performed through PCR-RFLP, PCR-AIRS, and sequencing. The results showed significant associations in the HT group and HT subgroups classified as normolipemic and hyperlipemic. The alleles FABP2 p.55T, LIPC −514T, and MTTP −493T were associated with elevated systolic BP. Five alleles were associated with lipids. LPL p.474X and FABP2 p.55T were associated with decreased total cholesterol and LDL-C, respectively; APOA5 p.19W with increased HDL-C; APOA5 p.19W and FABP2 p.55T with increased triglycerides; and APOB p.4181K and LDLR c.1959T with decreased triglycerides. The APOB p.E4181K polymorphism increases the risk for HT (OR = 1.85, 95% CI: 1.17–2.93; P=0.001 under the dominant model. These findings indicate that polymorphisms of lipid metabolism genes modify systolic BP and lipid levels and may be important in the development of essential hypertension and dyslipidemia in Mexican HT patients.

  17. Correlations of carotenoid content and transcript abundances for fibrillin and carotenogenic enzymes in Capsicum annum fruit pericarp.

    Science.gov (United States)

    Kilcrease, James; Rodriguez-Uribe, Laura; Richins, Richard D; Arcos, Juan Manuel Garcia; Victorino, Jesus; O'Connell, Mary A

    2015-03-01

    The fruits of Capsicum spp. are especially rich sites for carotenoid synthesis and accumulation, with cultivar-specific carotenoid accumulation profiles. Differences in chromoplast structure as well as carotenoid biosynthesis are correlated with distinct carotenoid accumulations and fruit color. In the present study, the inheritance of chromoplast shape, carotenoid accumulation profiles, and transcript levels of four genes were measured. Comparisons of these traits were conducted using fruit from contrasting variants, Costeño Amarillo versus Costeño Red, and from F1 hybrids; crosses between parental lines with novel versions of these traits. Intermediate chromoplast shapes were observed in the F1, but no association between specific carotenoid accumulation and chromoplast shape was detected. Increased total carotenoid content was associated with increased β-carotene and violaxanthin content. Transcript levels for phytoene synthase (Psy) and β-carotene hydroxylase (CrtZ-2) were positively correlated with increased levels of specific carotenoids. No correlation was detected between transcript levels of capsanthin/capsorubin synthase (Ccs) and carotenoid composition or chromoplast shape. Transcript levels of fibrillin, were differentially correlated with specific carotenoids, negatively correlated with accumulation of capsanthin, and positively correlated with violaxanthin. The regulation of carotenoid accumulation in chromoplasts in Capsicum fruit continues to be a complex process with multiple steps for control. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling

    Directory of Open Access Journals (Sweden)

    Allison Marie Barbaglia

    2016-04-01

    Full Text Available Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho- lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012. Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I a putative GDSL-motif lipase (II a PIG-P-like protein, with a possible receptor-like function; (III and PLAFP (phloem lipid-associated family protein, a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH, which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while

  19. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2015-01-01

    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  20. GDSL lipases modulate immunity through lipid homeostasis in rice.

    Science.gov (United States)

    Gao, Mingjun; Yin, Xin; Yang, Weibing; Lam, Sin Man; Tong, Xiaohong; Liu, Jiyun; Wang, Xin; Li, Qun; Shui, Guanghou; He, Zuhua

    2017-11-01

    Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity.

  1. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    OpenAIRE

    Evan Quon; Christopher T. Beh

    2016-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer...

  2. Identification of fibrillin 1 gene mutations in patients with bicuspid aortic valve (BAV) without Marfan syndrome

    Science.gov (United States)

    2014-01-01

    Background Bicuspid aortic valve (BAV) is the most frequent congenital heart disease with frequent involvement in thoracic aortic dilatation, aneurysm and dissection. Although BAV and Marfan syndrome (MFS) share some clinical features, and some MFS patients with BAV display mutations in FBN1, the gene encoding fibrillin-1, the genetic background of isolated BAV is poorly defined. Methods Ten consecutive BAV patients [8 men, age range 24–42 years] without MFS were clinically characterized. BAV phenotype and function, together with evaluation of aortic morphology, were comprehensively assessed by Doppler echocardiography. Direct sequencing of each FBN1 exon with flanking intron sequences was performed on eight patients. Results We detected three FBN1 mutations in two patients (aged 24 and 25 years) displaying aortic root aneurysm ≥50 mm and moderate aortic regurgitation. In particular, one patient had two mutations (p.Arg2726Trp and p.Arg636Gly) one of which has been previously associated with variable Marfanoid phenotypes. The other patient showed a pArg529Gln substitution reported to be associated with an incomplete MFS phenotype. Conclusions The present findings enlarge the clinical spectrum of isolated BAV to include patients with BAV without MFS who have involvement of FBN1 gene. These results underscore the importance of accurate phenotyping of BAV aortopathy and of clinical characterization of BAV patients, including investigation of systemic connective tissue manifestations and genetic testing. PMID:24564502

  3. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    Science.gov (United States)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    reveal that the slow relaxation rates of interfacial waters in the vicinity of lipids are originated from the chemical confinement of concerted hydrogen bond networks. The analysis suggests that the networks in the hydration layer of membranes dynamically facilitate the water mediated lipid-lipid associations which can provide insights on the thermodynamic stability of soft interfaces relevant to biological systems in the future.

  4. Discovery and refinement of loci associated with lipid levels

    DEFF Research Database (Denmark)

    Willer, C. J.; Schmidt, E. M.; Sengupta, S.

    2013-01-01

    Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individ...... of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.......Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188......,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry...

  5. Leaf lipids of some edible plants from north-west pakistan

    International Nuclear Information System (INIS)

    Imran, M.; Khan, R.; Talpur, F.N.

    2009-01-01

    The total lipid contents and distribution of fatty acids were determined in the leaves of 14 plant species, collected from north-west Pakistan. The amount of lipid, on fresh weight basis, varied from 0.26 +- 0.02 to 0.78 +- 0.06 %. The principal saturated fatty acid among all of the species was palmitic acid (15.55 +- 1.64 to 29.84 +- 2.32 %), while oleic acid; 18:1 omega9 (0.99 +- 0.04 to 10.30 +- 1.19 %) was highest in monounsaturated series. The presence of cis-trans isomers of 18:1 omega 9 were demonstrated in Stellaria media. The major polyenoic acids were linoleic; 18:2 omega 6 (6.17 +- 0.86 to 37.39 +- 1.31 %) and a linolenic; 18:3 omega3 (12.16 +- 1.89 to 45.60+- 2.80 %) acids but their relative proportions varied. Most of the plant species were low with regard to their saturated/18:3 omega3 while high in 18:3 omega3/18:3 omega 6 ratios. The green leafy vegetables studied in the present work were found to be good sources of essential fatty acids and are thus better supplements of these acids for human and animal nutrition. (author)

  6. Plant-derived phenolics inhibit the accrual of structurally characterised protein and lipid oxidative modifications.

    Directory of Open Access Journals (Sweden)

    Arantza Soler-Cantero

    Full Text Available Epidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine-protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins. Mass-spectrometry was then used, evidencing a heterogeneous effect on the accumulation of the structurally characterized protein carbonyl glutamic and aminoadipic semialdehydes as well as for malondialdehyde-lysine in LDL apoprotein. After TOF based lipidomics, we identified the most abundant differential lipids in Cu(++-incubated LDL as 1-palmitoyllysophosphatidylcholine and 1-stearoyl-sn-glycero-3-phosphocholine. Most of selected phenolic compounds prevented the accumulation of those phospholipids and the cellular impairment induced by oxidized LDL. Finally, to validate these effects in vivo, we evaluated the effect of the intake of a phenolic-enriched extract in plasma protein and lipid modifications in a well-established model of atherosclerosis (diet-induced hypercholesterolemia in hamsters. This showed that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake.

  7. Life-stage-associated remodelling of lipid metabolism regulation in Atlantic salmon.

    Science.gov (United States)

    Gillard, Gareth; Harvey, Thomas N; Gjuvsland, Arne; Jin, Yang; Thomassen, Magny; Lien, Sigbjørn; Leaver, Michael; Torgersen, Jacob S; Hvidsten, Torgeir R; Vik, Jon Olav; Sandve, Simen R

    2018-03-01

    Atlantic salmon migrates from rivers to sea to feed, grow and develop gonads before returning to spawn in freshwater. The transition to marine habitats is associated with dramatic changes in the environment, including water salinity, exposure to pathogens and shift in dietary lipid availability. Many changes in physiology and metabolism occur across this life-stage transition, but little is known about the molecular nature of these changes. Here, we use a long-term feeding experiment to study transcriptional regulation of lipid metabolism in Atlantic salmon gut and liver in both fresh- and saltwater. We find that lipid metabolism becomes significantly less plastic to differences in dietary lipid composition when salmon transitions to saltwater and experiences increased dietary lipid availability. Expression of genes in liver relating to lipogenesis and lipid transport decreases overall and becomes less responsive to diet, while genes for lipid uptake in gut become more highly expressed. Finally, analyses of evolutionary consequences of the salmonid-specific whole-genome duplication on lipid metabolism reveal several pathways with significantly different (p < .05) duplicate retention or duplicate regulatory conservation. We also find a limited number of cases where the whole-genome duplication has resulted in an increased gene dosage. In conclusion, we find variable and pathway-specific effects of the salmonid genome duplication on lipid metabolism genes. A clear life-stage-associated shift in lipid metabolism regulation is evident, and we hypothesize this to be, at least partly, driven by nondietary factors such as the preparatory remodelling of gene regulation and physiology prior to sea migration. © 2018 John Wiley & Sons Ltd.

  8. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi.

    Science.gov (United States)

    Toledo, Alvaro; Crowley, Jameson T; Coleman, James L; LaRocca, Timothy J; Chiantia, Salvatore; London, Erwin; Benach, Jorge L

    2014-03-11

    Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ospA, ospB, and ospC and a spontaneous gene mutant, strain B313, which does not express OspA and OspB, were used to establish their structural roles in the lipid rafts. All mutant strains used in this study produced detergent-resistant membranes, a common characteristic of lipid rafts, and had similar lipid and protein slot blot profiles. Lipoproteins OspA and OspB but not OspC were shown to be associated with lipid rafts by transmission electron microscopy. When the ability to form lipid rafts in live B. burgdorferi spirochetes was measured by fluorescence resonance energy transfer (FRET), strain B313 showed a statistically significant lower level of segregation into ordered and disordered membrane domains than did the wild-type and the other single-deletion mutants. The transformation of a B313 strain with a shuttle plasmid containing ospA restored the phenotype shared by the wild type and the single-deletion mutants, demonstrating that OspA and OspB have redundant functions. In contrast, a transformed B313 overexpressing OspC neither rescued the FRET nor colocalized with the lipid rafts. Because these lipoproteins are expressed at different stages of the life cycle of B. burgdorferi, their selective association is likely to have an important role in the structure of prokaryotic lipid rafts and in the organism's adaptation to changing environments. IMPORTANCE Lipid rafts are cholesterol-rich clusters within the membranes of cells. Lipid rafts contain proteins that have functions in sensing the cell environment and transmitting signals. Although selective proteins are present in

  9. Steroidal Compounds in Commercial Parenteral Lipid Emulsions

    Science.gov (United States)

    Xu, Zhidong; Harvey, Kevin A.; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P.; Siddiqui, Rafat A.

    2012-01-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn® II, Liposyn® III, Lipofundin® MCT, Lipofundin® N, Structolipid®, Intralipid®, Ivelip® and ClinOleic®. Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction. PMID:23016123

  10. Steroidal compounds in commercial parenteral lipid emulsions.

    Science.gov (United States)

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P; Siddiqui, Rafat A

    2012-08-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn(®) II, Liposyn(®) III, Lipofundin(®) MCT, Lipofundin(®) N, Structolipid(®), Intralipid(®), Ivelip(®) and ClinOleic(®). Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction.

  11. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants.

    Science.gov (United States)

    Singh, Vijayata; Singh, Praveen Kumar; Siddiqui, Adnan; Singh, Subaran; Banday, Zeeshan Zahoor; Nandi, Ashis Kumar

    2016-03-01

    Lipids are the major constituents of all membranous structures in plants. Plants possess two pathways for lipid biosynthesis: the prokaryotic pathway (i.e., plastidic pathway) and the eukaryotic pathway (i.e., endoplasmic-reticulum (ER) pathway). Whereas some plants synthesize galactolipids from diacylglycerol assembled in the plastid, others, including rice, derive their galactolipids from diacylglycerols assembled by the eukaryotic pathway. Arabidopsis thaliana glycerol-3-phosphate dehydrogenase (G3pDH), coded by SUPPRESSOR OF FATTY ACID DESATURASE 1 (SFD1; alias GLY1) gene, catalyzes the formation of glycerol 3-phosphate (G3p), the backbone of many membrane lipids. Here SFD1 was introduced to rice as a transgene. Arabidopsis SFD1 localizes in rice plastids and its over-expression increases plastidic membrane lipid content in transgenic rice plants without any major impact on ER lipids. The results suggest that over-expression of plastidic G3pDH enhances biosynthesis of plastid-localized lipids in rice. Lipid composition in the transgenic plants is consistent with increased phosphatidylglycerol synthesis in the plastid and increased galactolipid synthesis from diacylglycerol produced via the ER pathway. The transgenic plants show a higher photosynthetic assimilation rate, suggesting a possible application of this finding in crop improvement.

  12. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    Science.gov (United States)

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function. © 2013.

  13. Association between coffee consumption and serum lipid profile.

    Science.gov (United States)

    Karabudak, Efsun; Türközü, Duygu; Köksal, Eda

    2015-05-01

    The aim of the present study was to investigate the association between coffee consumption and serum lipid levels in a study population of 122 Turkish subjects (mean age, 41.4±12.69 years), including 48 males and 74 females. A questionnaire was compiled to determine baseline characteristics, and food and coffee consumption. Subjects were divided into three groups, which included non-drinkers, Turkish coffee and instant coffee drinkers, and anthropometric measurements were acquired, including weight, height and body mass index. Serum lipid levels were analyzed, including the total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and very low-density lipoprotein cholesterol (VLDL-C) levels. Of the population studied, 76.2% had consumed at least one cup of coffee per week over the previous year. Daily consumption values were 62.3±40.60 ml (0.7±0.50 cup) for Turkish coffee and 116.3±121.96 ml (0.7±0.81 cup) for instant coffee. No statistically significant differences were observed in the serum levels of TC, TG, LDL-C, HDL-C or VLDL-C among the three groups. In addition, no statistically significant differences were observed in the serum lipid levels when comparing individuals who consumed coffee with sugar/cream or who smoked and those who did not (P>0.05). Therefore, the present observations indicated no significant association between the consumption of Turkish or instant coffee and serum lipid levels.

  14. Plant adaptation to frequent alterations between high and low temperatures: remodeling of membrane lipids and maintenance of unsaturation levels

    OpenAIRE

    Zheng, Guowei; Tian, Bo; Zhang, Fujuan; Tao, Faqing; Li, Weiqi

    2011-01-01

    One major strategy by which plants adapt to temperature change is to decrease the degree of unsaturation of membrane lipids under high temperature and increase it under low temperature. We hypothesize that this strategy cannot be adopted by plants in ecosystems and environments with frequent alterations between high and low temperatures, because changes in lipid unsaturation are complex and require large energy inputs. To test this hypothesis, we used a lipidomics approach to profile changes ...

  15. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling.

    Science.gov (United States)

    Zhao, Jian

    2015-04-01

    Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Phytosterols, Lipid Administration, and Liver Disease During Parenteral Nutrition.

    Science.gov (United States)

    Zaloga, Gary P

    2015-09-01

    Phytosterols are plant-derived sterols that are structurally and functionally analogous to cholesterol in vertebrate animals. Phytosterols are found in many foods and are part of the normal human diet. However, absorption of phytosterols from the diet is minimal. Most lipid emulsions used for parenteral nutrition are based on vegetable oils. As a result, phytosterol administration occurs during intravenous administration of lipid. Levels of phytosterols in the blood and tissues may reach high levels during parenteral lipid administration and may be toxic to cells. Phytosterols are not fully metabolized by the human body and must be excreted through the hepatobiliary system. Accumulating scientific evidence suggests that administration of high doses of intravenous lipids that are high in phytosterols contributes to the development of parenteral nutrition-associated liver disease. In this review, mechanisms by which lipids and phytosterols may cause cholestasis are discussed. Human studies of the association of phytosterols with liver disease are reviewed. In addition, clinical studies of lipid/phytosterol reduction for reversing and/or preventing parenteral nutrition associated liver disease are discussed. © 2015 American Society for Parenteral and Enteral Nutrition.

  17. Hypoxia-Inducible Lipid Droplet-Associated Is Not a Direct Physiological Regulator of Lipolysis in Adipose Tissue

    DEFF Research Database (Denmark)

    Dijk, Wieneke; Mattijssen, Frits; de la Rosa Rodriguez, Montserrat

    2017-01-01

    Triglycerides are stored in specialized organelles called lipid droplets. Numerous proteins have been shown to be physically associated with lipid droplets and govern their function. Previously, the protein hypoxia-inducible lipid droplet-associated (HILPDA) was localized to lipid droplets and wa...

  18. Association of alcohol consumption with lipid profile in hypertensive men.

    Science.gov (United States)

    Park, Hyejin; Kim, Kisok

    2012-01-01

    Alcohol consumption is known to be closely related with alterations in blood lipid levels as well as in blood pressure. The objective of this study was to evaluate the association between alcohol consumption and blood lipid levels in hypertensive men. A cross-sectional study involving participants (n = 2014) aged 20-69 years from the Korea National Health and Nutrition Examination Survey, 1998-2009. Demographic characteristics, dietary intake and medical history were obtained from the participants by questionnaire, and lipid levels were determined by analysis of blood samples. After adjusting for demographic and dietary factors, alcohol consumption was negatively associated with risk of low high-density lipoprotein cholesterol [HDL-C; odds ratio (OR): 0.29, 95% confidence interval (CI): 0.22-0.40 in heavy (≥30 g/day) drinkers; P for trend consumption (OR: 2.04, 95% CI: 1.53-2.72 in heavy drinkers; P for trend consumption. These data suggest that alcohol consumption differentially affected lipid measures according to the amount of alcohol intake in hypertensive men.

  19. Lipids and bariatric procedures Part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA).

    Science.gov (United States)

    Bays, Harold; Kothari, Shanu N; Azagury, Dan E; Morton, John M; Nguyen, Ninh T; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures generally improve dyslipidemia, sometimes substantially so. Bariatric procedures also improve other major cardiovascular risk factors. This 2-part Scientific Statement examines the lipid effects of bariatric procedures and reflects contributions from authors representing the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and the Obesity Medicine Association (OMA). Part 1 was published in the Journal of Clinical Lipidology, and reviewed the impact of bariatric procedures upon adipose tissue endocrine and immune factors, adipose tissue lipid metabolism, as well as the lipid effects of bariatric procedures relative to bile acids and intestinal microbiota. This Part 2 reviews: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies, that may occur after bariatric procedures. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  20. Steroidal Compounds in Commercial Parenteral Lipid Emulsions

    Directory of Open Access Journals (Sweden)

    Rafat A. Siddiqui

    2012-08-01

    Full Text Available Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn® II, Liposyn® III, Lipofundin® MCT, Lipofundin® N, Structolipid®, Intralipid®, Ivelip® and ClinOleic®. Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction.

  1. Association between tetrodotoxin resistant channels and lipid rafts regulates sensory neuron excitability.

    Directory of Open Access Journals (Sweden)

    Alessandro Pristerà

    Full Text Available Voltage-gated sodium channels (VGSCs play a key role in the initiation and propagation of action potentials in neurons. Na(V1.8 is a tetrodotoxin (TTX resistant VGSC expressed in nociceptors, peripheral small-diameter neurons able to detect noxious stimuli. Na(V1.8 underlies the vast majority of sodium currents during action potentials. Many studies have highlighted a key role for Na(V1.8 in inflammatory and chronic pain models. Lipid rafts are microdomains of the plasma membrane highly enriched in cholesterol and sphingolipids. Lipid rafts tune the spatial and temporal organisation of proteins and lipids on the plasma membrane. They are thought to act as platforms on the membrane where proteins and lipids can be trafficked, compartmentalised and functionally clustered. In the present study we investigated Na(V1.8 sub-cellular localisation and explored the idea that it is associated with lipid rafts in nociceptors. We found that Na(V1.8 is distributed in clusters along the axons of DRG neurons in vitro and ex vivo. We also demonstrated, by biochemical and imaging studies, that Na(V1.8 is associated with lipid rafts along the sciatic nerve ex vivo and in DRG neurons in vitro. Moreover, treatments with methyl-β-cyclodextrin (MβCD and 7-ketocholesterol (7KC led to the dissociation between rafts and Na(V1.8. By calcium imaging we demonstrated that the lack of association between rafts and Na(V1.8 correlated with impaired neuronal excitability, highlighted by a reduction in the number of neurons able to conduct mechanically- and chemically-evoked depolarisations. These findings reveal the sub-cellular localisation of Na(V1.8 in nociceptors and highlight the importance of the association between Na(V1.8 and lipid rafts in the control of nociceptor excitability.

  2. Common and Rare Variant Association Study for Plasma Lipids and Coronary Artery Disease.

    Science.gov (United States)

    Tada, Hayato; Kawashiri, Masa-aki; Konno, Tetsuo; Yamagishi, Masakazu; Hayashi, Kenshi

    2016-01-01

    Blood lipid levels are highly heritable and modifiable risk factors for coronary artery disease (CAD), and are the leading cause of death worldwide. These facts have motivated human genetic association studies that have the substantial potential to define the risk factors that are causal and to identify pathways and therapeutic targets for lipids and CAD.The success of the HapMap project that provided an extensive catalog of human genetic variations and the development of microarray based genotyping chips (typically containing variations with allele frequencies > 5%) facilitated common variant association study (CVAS; formerly termed genome-wide association study, GWAS) identifying disease-associated variants in a genome-wide manner. To date, 157 loci associated with blood lipids and 46 loci with CAD have been successfully identified, accounting for approximately 12%-14% of heritability for lipids and 10% of heritability for CAD. However, there is yet a major challenge termed "missing heritability problem," namely the observation that loci detected by CVAS explain only a small fraction of the inferred genetic variations. To explain such missing portions, focuses in genetic association studies have shifted from common to rare variants. However, it is challenging to apply rare variant association study (RVAS) in an unbiased manner because such variants typically lack the sufficient number to be identified statistically.In this review, we provide a current understanding of the genetic architecture mostly derived from CVAS, and several updates on the progress and limitations of RVAS for lipids and CAD.

  3. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation.

    Directory of Open Access Journals (Sweden)

    Yanxia Jia

    Full Text Available Senescence is the last phase of the plant life cycle and has an important role in plant development. Degradation of membrane lipids is an essential process during leaf senescence. Several studies have reported fundamental changes in membrane lipids and phospholipase D (PLD activity as leaves senesce. Suppression of phospholipase Dα1 (PLDα1 retards abscisic acid (ABA-promoted senescence. However, given the absence of studies that have profiled changes in the compositions of membrane lipid molecules during leaf senescence, there is no direct evidence that PLD affects lipid composition during the process. Here, we show that application of n-butanol, an inhibitor of PLD, and N-Acylethanolamine (NAE 12∶0, a specific inhibitor of PLDα1, retarded ABA-promoted senescence to different extents. Furthermore, phospholipase Dδ (PLDδ was induced in leaves treated with ABA, and suppression of PLDδ retarded ABA-promoted senescence in Arabidopsis. Lipid profiling revealed that detachment-induced senescence had different effects on plastidic and extraplastidic lipids. The accelerated degradation of plastidic lipids during ABA-induced senescence in wild-type plants was attenuated in PLDδ-knockout (PLDδ-KO plants. Dramatic increases in phosphatidic acid (PA and decreases in phosphatidylcholine (PC during ABA-induced senescence were also suppressed in PLDδ-KO plants. Our results suggest that PLDδ-mediated hydrolysis of PC to PA plays a positive role in ABA-promoted senescence. The attenuation of PA formation resulting from suppression of PLDδ blocks the degradation of membrane lipids, which retards ABA-promoted senescence.

  4. Molecular Simulations of Sequence-Specific Association of Transmembrane Proteins in Lipid Bilayers

    Science.gov (United States)

    Doxastakis, Manolis; Prakash, Anupam; Janosi, Lorant

    2011-03-01

    Association of membrane proteins is central in material and information flow across the cellular membranes. Amino-acid sequence and the membrane environment are two critical factors controlling association, however, quantitative knowledge on such contributions is limited. In this work, we study the dimerization of helices in lipid bilayers using extensive parallel Monte Carlo simulations with recently developed algorithms. The dimerization of Glycophorin A is examined employing a coarse-grain model that retains a level of amino-acid specificity, in three different phospholipid bilayers. Association is driven by a balance of protein-protein and lipid-induced interactions with the latter playing a major role at short separations. Following a different approach, the effect of amino-acid sequence is studied using the four transmembrane domains of the epidermal growth factor receptor family in identical lipid environments. Detailed characterization of dimer formation and estimates of the free energy of association reveal that these helices present significant affinity to self-associate with certain dimers forming non-specific interfaces.

  5. Circulating Irisin Concentrations Are Associated with a Favourable Lipid Profile in the General Population.

    Directory of Open Access Journals (Sweden)

    Simon Oelmann

    Full Text Available Irisin is a myokine, which is mainly inversely associated with the risk for non-communicable diseases. Irisin improves cellular energy metabolism by uncoupling the mitochondrial respiratory chain resulting in increased energy expenditure using lipids. To date potential associations between irisin concentration and lipid profile are poorly understood. Therefore, this investigation aimed to evaluate potential associations between irisin and lipid levels in the general population.Data of 430 men and 537 women from the population-based Study of Health in Pomerania (SHIP-TREND with available irisin and lipid concentrations were used. Analyses of variance, linear and logistic regression models adjusted for age, HBA1c, waist circumference, physical activity, smoking, alcohol consumption, systolic blood pressure, ALAT were calculated.We detected significantly inverse associations between irisin and circulating levels of total [beta coefficient 0.21 (standard error 0.08, p = 0.01], low-density cholesterol [-0.16 (0.07, p = 0.03] and triglycerides [-0.17 (0.08, p = 0.02] for men. Females without lipid lowering medication had an inverse association between irisin and total cholesterol [-0.12 (0.06, p = 0.05]. Further, male subjects with irisin concentrations in the third tertile had an increased odds for elevated low-density cholesterol [odds ratio 1.96 (95% confidence interval 1.07-3.48, p = 0.03 and triglyceride [1.95 (1.09-3.47, p = 0.02] levels, even after exclusion of subjects with lipid lowering medication. In addition, our data revealed an annual rhythm of serum irisin levels with peak levels arise in winter and summer months.This is the first investigation to report a significant association between circulating irisin and a favourable lipid profile in the general population. This may infer that higher irisin concentrations are associated with a reduced risk for non-communicable diseases.

  6. Plant phospholipase C family: Regulation and functional role in lipid signaling.

    Science.gov (United States)

    Singh, Amarjeet; Bhatnagar, Nikita; Pandey, Amita; Pandey, Girdhar K

    2015-08-01

    Phospholipase C (PLC), a major membrane phospholipid hydrolyzing enzyme generates signaling messengers such as diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) in animals, and their phosphorylated forms such as phosphatidic acid (PA) and inositol hexakisphosphate (IP6) are thought to regulate various cellular processes in plants. Based on substrate specificity, plant PLC family is sub-divided into phosphatidylinositol-PLC (PI-PLC) and phosphatidylcholine-PLC (PC-PLC) groups. The activity of plant PLCs is regulated by various factors and the major ones include, Ca(2+) concentration, phospholipid substrate, post-translational modifications and interacting proteins. Most of the PLC members have been localized at the plasma membrane, suited for their function of membrane lipid hydrolysis. Several PLC members have been implicated in various cellular processes and signaling networks, triggered in response to a number of environmental cues and developmental events in different plant species, which makes them potential candidates for genetically engineering the crop plants for stress tolerance and enhancing the crop productivity. In this review article, we are focusing mainly on the plant PLC signaling and regulation, potential cellular and physiological role in different abiotic and biotic stresses, nutrient deficiency, growth and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The association between lipid parameters and obesity in university students.

    Science.gov (United States)

    Hertelyova, Z; Salaj, R; Chmelarova, A; Dombrovsky, P; Dvorakova, M C; Kruzliak, P

    2016-07-01

    Abdominal obesity is associated with high plasma triglyceride and with low plasma high-density lipoprotein cholesterol levels. Objective of the study was to find an association between plasma lipid and lipoprotein levels and anthropometric parameters in abdominal obesity in Slovakian university students. Lipid profile and anthropometric parameters of obesity were studied in a sample of 419 probands, including 137 men and 282 women. Males had higher values of non-high-density lipoprotein cholesterol (non-HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG) and very low-density lipoprotein cholesterol (VLDL-C) than females, but these differences were not significant. Females had significantly (P obesity in young people, predominantly university students.

  8. In search of self-awareness: results of the National Lipid Association 2010 Lipid Pulse membership survey.

    Science.gov (United States)

    Orringer, Carl E; Robinson, Jennifer G; La Forge, Ralph; Seymour, Christopher R

    2011-01-01

    In 2010 a survey of the National Lipid Association (NLA) membership was developed and launched with the objective of exploring the demographics, practice patterns, and educational needs of the health professionals in our organization involved in the practice of clinical lipidology. To report the results of this survey and use this information to enable the organization to better serve the needs of our membership. A 30-question survey was administered to the NLA membership before and shortly after the Annual Scientific Sessions in May, 2010. Demographic information, test ordering patterns, educational needs and resources, and technology awareness of 640 valid respondents was assessed. The respondents represent a balanced mix of practitioners in rural and metropolitan population centers throughout the United States. Physicians represent 67%, nurse practitioners and physician assistants 16%, and pharmacists 8% of the respondents. Among physicians, 50% are internal medicine or family medicine specialists, 32% cardiologists, and 11% endocrinologists. Most working in lipid clinics reported that their clinic was financially solvent. The respondents believed that adjunctive lipoprotein testing was clinically useful in risk prediction. The greatest educational needs included statin intolerance; strategies for improving compliance; metabolic syndrome; and lipoprotein particle and apolipoprotein B concentration. The most important sources of lipid information were the Journal of Clinical Lipidology and the NLA Annual Scientific Sessions. The survey provided valuable information that may be used to better serve the practice and educational needs of the membership of the NLA. Copyright © 2011 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  9. Lipid raft-associated β-adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin.

    Science.gov (United States)

    Xu, Tingshuang; Liu, Wenai; Yang, Chen; Ba, Xueqing; Wang, Xiaoguang; Jiang, Yong; Zeng, Xianlu

    2015-02-01

    Lipid rafts, a liquid-ordered plasma membrane microdomain, are related to cell-surface receptor function. PSGL-1, a major surface receptor protein for leukocyte, also acts as a signaling receptor in leukocyte rolling. To investigate the role of lipid raft in PSGL-1 signaling in human neutrophils, we quantitatively analyzed lipid raft proteome of human promyelocytic leukemia cell line HL-60 cells and identified a lipid raft-associated protein β-adducin. PSGL-1 ligation induced dissociation of the raft-associated protein β-adducin from lipid rafts and actin, as well as phosphorylation of β-adducin, indicating a transient uncoupling of lipid rafts from the actin cytoskeleton. Knockdown of β-adducin greatly attenuated HL-60 cells rolling on P-selectin. We also showed that Src kinase is crucial for PSGL-1 ligation-induced β-adducin phosphorylation and relocation. Taken together, these results show that β-adducin is a pivotal lipid raft-associated protein in PSGL-1-mediated neutrophil rolling on P-selectin. © Society for Leukocyte Biology.

  10. Lipid droplets of arbuscular mycorrhizal fungi emerge in concert with arbuscule collapse.

    Science.gov (United States)

    Kobae, Yoshihiro; Gutjahr, Caroline; Paszkowski, Uta; Kojima, Tomoko; Fujiwara, Toru; Hata, Shingo

    2014-11-01

    Plants share photosynthetically fixed carbon with arbuscular mycorrhizal (AM) fungi to maintain their growth and nutrition. AM fungi are oleogenic fungi that contain numerous lipid droplets in their syncytial mycelia during most of their life cycle. These lipid droplets are probably used for supporting growth of extraradical mycelia and propagation; however, when and where the lipid droplets are produced remains unclear. To address these issues, we investigated the correlation between intracellular colonization stages and the appearance of fungal lipid droplets in roots by a combination of vital staining of fungal structures, selective staining of lipids and live imaging. We discovered that a surge of lipid droplets coincided with the collapse of arbuscular branches, indicating that arbuscule collapse and the emergence of lipid droplets may be associated processes. This phenomenon was observed in the model AM fungus Rhizophagus irregularis and the ancestral member of AM fungi Paraglomus occultum. Because the collapsing arbuscules were metabolically inactive, the emerged lipid droplets are probably derived from preformed lipids but not de novo synthesized. Our observations highlight a novel mode of lipid release by AM fungi. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Albumin-associated lipids regulate human embryonic stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Francesc R Garcia-Gonzalo

    Full Text Available BACKGROUND: Although human embryonic stem cells (hESCs hold great promise as a source of differentiated cells to treat several human diseases, many obstacles still need to be surmounted before this can become a reality. First among these, a robust chemically-defined system to expand hESCs in culture is still unavailable despite recent advances in the understanding of factors controlling hESC self-renewal. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we attempted to find new molecules that stimulate long term hESC self-renewal. In order to do this, we started from the observation that a commercially available serum replacement product has a strong positive effect on the expansion of undifferentiated hESCs when added to a previously reported chemically-defined medium. Subsequent experiments demonstrated that the active ingredient within the serum replacement is lipid-rich albumin. Furthermore, we show that this activity is trypsin-resistant, strongly suggesting that lipids and not albumin are responsible for the effect. Consistent with this, lipid-poor albumin shows no detectable activity. Finally, we identified the major lipids bound to the lipid-rich albumin and tested several lipid candidates for the effect. CONCLUSIONS/SIGNIFICANCE: Our discovery of the role played by albumin-associated lipids in stimulating hESC self-renewal constitutes a significant advance in the knowledge of how hESC pluripotency is maintained by extracellular factors and has important applications in the development of increasingly chemically defined hESC culture systems.

  12. In vivo topical application of acetyl aspartic acid increases fibrillin-1 and collagen IV deposition leading to a significant improvement of skin firmness.

    Science.gov (United States)

    Gillbro, J M; Merinville, E; Cattley, K; Al-Bader, T; Hagforsen, E; Nilsson, M; Mavon, A

    2015-10-01

    Acetyl aspartic acid (A-A-A) was discovered through gene array analysis with corresponding Cmap analysis. We found that A-A-A increased keratinocyte regeneration, inhibited dermal matrix metalloprotease (MMP) expression and relieved fibroblast stiffness through reduction of the fibroblast stiffness marker F-actin. Dermal absorption studies showed successful delivery to both the epidermal and dermal regions, and in-use trial demonstrated that 1% A-A-A was well tolerated. In this study, the aim was to investigate whether A-A-A could stimulate the synthesis of extracellular matrix supporting proteins in vivo and thereby improving the viscoelastic properties of human skin by conducting a dual histological and biophysical clinical study. Two separate double-blind vehicle-controlled in vivo studies were conducted using a 1% A-A-A containing oil-in-water (o/w) emulsion. In the histological study, 16 female volunteers (>55 years of age) exhibiting photodamaged skin on their forearm were included, investigating the effect of a 12-day treatment of A-A-A on collagen IV (COLIV) and fibrillin-1. In a subsequent pilot study, 0.1% retinol was used for comparison to A-A-A (1%). The biomechanical properties of the skin were assessed in a panel of 16 women (>45 years of age) using the standard Cutometer MPA580 after topical application of the test products for 28 days. The use of multiple suction enabled the assessment of F4, an area parameter specifically representing skin firmness. Twelve-day topical application of 1% A-A-A significantly increased COLIV and fibrillin with 13% and 6%, respectively, compared to vehicle. 1% A-A-A and 0.1% retinol were found to significantly reduce F4 after 28 days of treatment by 15.8% and 14.7%, respectively, in the pilot Cutometer study. No significant difference was found between retinol and A-A-A. However, only A-A-A exhibited a significant effect vs. vehicle on skin firmness which indicated the incremental benefit of A-A-A as a skin

  13. Evaluation of seven common lipid associated loci in a large Indian sib pair study.

    Science.gov (United States)

    Rafiq, Sajjad; Venkata, Kranthi Kumar M; Gupta, Vipin; Vinay, D G; Spurgeon, Charles J; Parameshwaran, Smitha; Madana, Sandeep N; Kinra, Sanjay; Bowen, Liza; Timpson, Nicholas J; Smith, George Davey; Dudbridge, Frank; Prabhakaran, Dorairaj; Ben-Shlomo, Yoav; Reddy, K Srinath; Ebrahim, Shah; Chandak, Giriraj R

    2012-11-14

    Genome wide association studies (GWAS), mostly in Europeans have identified several common variants as associated with key lipid traits. Replication of these genetic effects in South Asian populations is important since it would suggest wider relevance for these findings. Given the rising prevalence of metabolic disorders and heart disease in the Indian sub-continent, these studies could be of future clinical relevance. We studied seven common variants associated with a variety of lipid traits in previous GWASs. The study sample comprised of 3178 sib-pairs recruited as participants for the Indian Migration Study (IMS). Associations with various lipid parameters and quantitative traits were analyzed using the Fulker genetic association model. We replicated five of the 7 main effect associations with p-values ranging from 0.03 to 1.97x10(-7). We identified particularly strong association signals at rs662799 in APOA5 (beta=0.18 s.d, p=1.97 x 10(-7)), rs10503669 in LPL (beta =-0.18 s.d, p=1.0 x 10(-4)) and rs780094 in GCKR (beta=0.11 s.d, p=0.001) loci in relation to triglycerides. In addition, the GCKR variant was also associated with total cholesterol (beta=0.11 s.d, p=3.9x10(-4)). We also replicated the association of rs562338 in APOB (p=0.03) and rs4775041 in LIPC (p=0.007) with LDL-cholesterol and HDL-cholesterol respectively. We report associations of five loci with various lipid traits with the effect size consistent with the same reported in Europeans. These results indicate an overlap of genetic effects pertaining to lipid traits across the European and Indian populations.

  14. Association of lipids with integral membrane surface proteins of Mycoplasma hyorhinis

    International Nuclear Information System (INIS)

    Bricker, T.M.; Boyer, M.J.; Keith, J.; Watson-McKown, R.; Wise, K.S.

    1988-01-01

    Triton X-114 (TX-114)-phase fractionation was used to identify and characterize integral membrane surface proteins of the wall-less procaryote Mycoplasma hyorhinis GDL. Phase fractionation of mycoplasmas followed by analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed selective partitioning of approximately 30 [ 35 S]methionine-labeled intrinsic membrane proteins into the TX-114 phase. Similar analysis of [ 3 H]palmitate-labeled cells showed that approximately 20 proteins of this organism were associated with lipid, all of which also efficiently partitioned as integral membrane components into the detergent phase. Immunoblotting and immunoprecipitation of TX-114-phase proteins from 125 I-surface-labeled cells with four monoclonal antibodies to distinct surface epitopes of M. hyorhinis identified surface proteins p120, p70, p42, and p23 as intrinsic membrane components. Immunoprecipitation of [ 3 H]palmitate-labeled TX-114-phase proteins further established that surface proteins p120, p70, and p23 (a molecule that mediates complement-dependent mycoplasmacidal monoclonal antibody activity) were among the lipid-associated proteins of this organism. Two of these proteins, p120 and p123, were acidic (pI less than or equal to 4.5), as shown by two-dimensional isoelectric focusing. This study established that M. hyorhinis contains an abundance of integral membrane proteins tightly associated with lipids and that many of these proteins are exposed at the external surface of the single limiting plasma membrane. Monoclonal antibodies are reported that will allow detailed analysis of the structure and processing of lipid-associated mycoplasma proteins

  15. Impact of plant-based diet on lipid risk factors for atherosclerosis.

    Science.gov (United States)

    Kuchta, Agnieszka; Lebiedzińska, Anna; Fijałkowski, Marcin; Gałąska, Rafał; Kreft, Ewelina; Totoń, Magdalena; Czaja, Kuba; Kozłowska, Anna; Ćwiklińska, Agnieszka; Kortas-Stempak, Barbara; Strzelecki, Adrian; Gliwińska, Anna; Dąbkowski, Kamil; Jankowski, Maciej

    2016-01-01

    The aim of the study was to investigate the effect of a vegan diet on the serum lipid profile with particular regard to the parameters characterizing the high-density lipoprotein (HDL) fractions in subjects without subclinical atherosclerosis, measured by carotid Doppler ultrasonography. Forty-two 23 to 38 year old subjects (21 omnivores and 21 vegans) participated in the study. Compared to the omnivores, the vegan subjects were characterized by lower parameters of lipid profile: total cholesterol (p vegan subjects. The apoB/apoAI ratio in vegans was lower than in omnivores (p vegans. The activity of paraoxonase-1 and 8-iso-prostaglandin F2a concentration were also not different between the study groups. We suggest that a vegan diet may have a beneficial effect on serum lipid profile and cardiovascular protection, but it is not associated with changes in HDL composition.

  16. Disruption of fibronectin matrix affects type IV collagen, fibrillin and laminin deposition into extracellular matrix of human trabecular meshwork (HTM) cells.

    Science.gov (United States)

    Filla, Mark S; Dimeo, Kaylee D; Tong, Tiegang; Peters, Donna M

    2017-12-01

    Fibronectin fibrils are a major component of the extracellular matrix (ECM) of the trabecular meshwork (TM). They are a key mediator of the formation of the ECM which controls aqueous humor outflow and contributes to the pathogenesis of glaucoma. The purpose of this work was to determine if a fibronectin-binding peptide called FUD, derived from the Streptococcus pyogenes Functional Upstream Domain of the F1 adhesin protein, could be used to control fibronectin fibrillogenesis and hence ECM formation under conditions where its expression was induced by treatment with the glucocorticoid dexamethasone. FUD was very effective at preventing fibronectin fibrillogenesis in the presence or absence of steroid treatment as well as the removal of existing fibronectin fibrils. Disruption of fibronectin fibrillogenesis by FUD also disrupted the incorporation of type IV collagen, laminin and fibrillin into the ECM. The effect of FUD on these other protein matrices, however, was found to be dependent upon the maturity of the ECM when FUD was added. FUD effectively disrupted the incorporation of these other proteins into matrices when added to newly confluent cells that were forming a nascent ECM. In contrast, FUD had no effect on these other protein matrices if the cell cultures already possessed a pre-formed, mature ECM. Our studies indicate that FUD can be used to control fibronectin fibrillogenesis and that these fibrils play a role in regulating the assembly of other ECM protein into matrices involving type IV collagen, laminin, and fibrillin within the TM. This suggests that under in vivo conditions, FUD would selectively disrupt fibronectin fibrils and de novo assembly of other proteins into the ECM. Finally, our studies suggest that targeting fibronectin fibril assembly may be a viable treatment for POAG as well as other glaucomas involving excessive or abnormal matrix deposition of the ECM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Lipid Oxidation Inhibitory Effects and Phenolic Composition of Aqueous Extracts from Medicinal Plants of Colombian Amazonia

    Directory of Open Access Journals (Sweden)

    José Ignacio Ruiz-Sanz

    2012-05-01

    Full Text Available Diverse plants of ethnobotanic interest in Amazonia are commonly used in traditional medicine. We determined the antioxidant potential against lipid peroxidation, the antimicrobial activity, and the polyphenol composition of several Amazonian plants (Brownea rosademonte, Piper glandulosissimum, Piper krukoffii, Piper putumayoense, Solanum grandiflorum, and Vismia baccifera. Extracts from the plant leaf, bark, and stem were prepared as aqueous infusions, as used in folk medicine, and added to rat liver microsomes exposed to iron. The polyphenolic composition was detected by reverse-phase HPLC coupled to diode-array detector and MS/MS analysis. The antimicrobial activity was tested by the spot-on-a-lawn method against several indicator microorganisms. All the extracts inhibited lipid oxidation, except the P. glandulosissimum stem. The plant extracts exhibiting high antioxidant potential (V. baccifera and B. rosademonte contained high levels of flavanols (particularly, catechin and epicatechin. By contrast, S. grandiflorum leaf, which exhibited very low antioxidant activity, was rich in hydroxycinnamic acids. None of the extracts showed antimicrobial activity. This study demonstrates for the first time the presence of bioactive polyphenolic compounds in several Amazonian plants, and highlights the importance of flavanols as major phenolic contributors to antioxidant activity.

  18. Membrane nanodomains in plants: capturing form, function, and movement.

    Science.gov (United States)

    Tapken, Wiebke; Murphy, Angus S

    2015-03-01

    The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Chain-Length Distribution and Hydrogen Isotopic Fraction of n-alkyl Lipids in Aquatic and Terrestrial Plants: Implications for Paleoclimate Reconstructions

    Science.gov (United States)

    Gao, L.; Littlejohn, S.; Hou, J.; Toney, J.; Huang, Y.

    2008-12-01

    Recent studies demonstrate that in lacustrine sediments, aquatic plant lipids (e.g., C22-fatty acid) record lake water D/H ratio variation, while long-chain fatty acids (C26-C32, major components of terrestrial plant leaf waxes), record D/H ratios of precipitation (especially in arid regions). However, there are insufficient literature data for the distribution and hydrogen isotopic fractionation of n-alkyl lipids in aquatic and terrestrial plants. In this study, we determined the chain-length distributions and D/H ratios of n-alkyl lipids from 17 aquatic plant species (9 emergent, 4 floating and 4 submerge species) and 13 terrestrial plant species (7 grasses and 6 trees) from Blood Pond, Massachusetts. Our results are consistent with previous studies and provide a solid basis for the paleoclimatic reconstruction using D/H ratios of aquatic and terrestrial plant biomarkers. In addition, systematic hydrogen isotopic analyses on leaf waxes, leaf, stem and soil waters from trees and grasses significantly advance our understanding of our previously observed large D/H ratio difference between tree and grass leaf waxes. Our data indicate that the observed difference is not due to differences in leaf water D/H ratios. In comparison with grasses, trees use greater proportion of D-enriched residual or stored carbohydrates (as opposed to current photosynthetic carbohydrates) for leaf wax biosynthesis, resulting in higher leaf wax D/H ratios. The residual carbohydrates are enriched in deuterium because of the preferential consumption of light-hydrogen substrates during plant metabolism.

  20. Wrinkled1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus

    Directory of Open Access Journals (Sweden)

    Qing eLi

    2015-11-01

    Full Text Available Wrinkled1 (WRI1 belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid synthesis and lipid assembly. The overexpression (OE of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, fatty acid synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipid monogalactosyldiacylglycerol (MGDG, digalactosyldiacylglycerol (DGDG, and phosphatidylcholine (PC in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide (PE, and oil (triacylglycerol, TAG in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.

  1. Final Report for DE-FG02-04ER15626: P-type ATPases in Plants – Role of Lipid Flippases in Membrane Biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Jeffrey F. [Univ. of Nevada, Reno, NV (United States)

    2015-02-24

    The long-range goal of the research is to understand the structure and biological functions of different P-type ATPases (ion pumps) in plant cells, and to use that knowledge to enhance the production of bioenergy from plants, or plant-research inspired technologies. Ptype ATPases include ion pumps that specifically transport H+, Ca2+, Zn2+, Cu2+, K+, or Na+, as well as at least one unusual subfamily that appears to function as lipid flippases, flipping specific lipids from one side of a membrane bilayer to the other. As a group, P-type ATPases are thought to consume more than 1/3 of the cellular ATP in typical eukaryotic cells. Recent research in the Harper lab focused on understanding the biochemical and biological functions of P-type ATPases that flip lipids. These flippases belong to the P4 subfamily of P-type ATPases. The activity of lipid flippases is thought to induce membrane curvature and/or create an asymmetry in which certain lipid head groups are preferential exposed to one surface or the other. In Arabidopsis thaliana there are 12 members of this family referred to as Aminophospholipid ATPase (ALA) 1 to ALA12. Using genetic knockouts, the Harper lab has established that this unusual subfamily of P-type ATPases are critical for plants to cope with even modest changes in temperature (e.g., down to 15°C, or up to 30°C). In addition, members of one subclade are critical for cell expansion, and loss of function mutants result in severe dwarfism. Other members of this same sub-clade are critical for pollen tube growth, and loss of function mutants are sterile under conditions of hot days and cold nights. While the cellular processes that depend on lipid flippases are still unclear, the genetic analysis of loss of function mutants clearly show they are of fundamental importance to plant growth and response to the environment.

  2. Plant P4-ATPases: lipid translocators with a role in membrane traficking

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    a large family of membrane proteins involved in pumping different physiologically-relevant substrates across biological membranes [4]. The members of the P4 subfamily (also known as flippases) catalyze the energy-driven translocation of lipids necessary for establishing transbilayer lipid asymmetry [5......], a feature necessary for correct functioning of the cells [6,7]. Deletion of one or more P4-ATPase genes causes defects in vesicle budding in various organisms [8-10] and some members of the yeast family have been shown to interact with the vesiculation machinery [11,12]. Thus, unraveling the key features...... of P4-ATPase functioning is crucial to understand the mechanisms underlying the whole secretory and endocytic pathways. In the model plant Arabidopsis, 12 members of the P4-ATPase family have been described (ALA1-ALA12, for Aminophospholipid ATPase) [4]. In the past years, we have characterized several...

  3. Gut microbiome and lipid metabolism : from associations to mechanisms

    NARCIS (Netherlands)

    Wang, Zheng; Koonen, Debby; Hofker, Marten; Fu, Jingyuan

    Purpose of review The gut microbiome has now been convincingly linked to human metabolic health but the underlying causality and mechanisms remain poorly understood. This review focuses on the recent progress in establishing the associations between gut microbiome species and lipid metabolism in

  4. Effect of dietary cholesterol and plant sterol consumption on plasma lipid responsiveness and cholesterol trafficking in healthy individuals.

    Science.gov (United States)

    Alphonse, Peter A S; Ramprasath, Vanu; Jones, Peter J H

    2017-01-01

    Dietary cholesterol and plant sterols differentially modulate cholesterol kinetics and circulating cholesterol. Understanding how healthy individuals with their inherent variabilities in cholesterol trafficking respond to such dietary sterols will aid in improving strategies for effective cholesterol lowering and alleviation of CVD risk. The objectives of this study were to assess plasma lipid responsiveness to dietary cholesterol v. plant sterol consumption, and to determine the response in rates of cholesterol absorption and synthesis to each sterol using stable isotope approaches in healthy individuals. A randomised, double-blinded, crossover, placebo-controlled clinical trial (n 49) with three treatment phases of 4-week duration were conducted in a Manitoba Hutterite population. During each phase, participants consumed one of the three treatments as a milkshake containing 600 mg/d dietary cholesterol, 2 g/d plant sterols or a control after breakfast meal. Plasma lipid profile was determined and cholesterol absorption and synthesis were measured by oral administration of [3, 4-13C] cholesterol and 2H-labelled water, respectively. Dietary cholesterol consumption increased total (0·16 (sem 0·06) mmol/l, P=0·0179) and HDL-cholesterol (0·08 (sem 0·03) mmol/l, P=0·0216) concentrations with no changes in cholesterol absorption or synthesis. Plant sterol consumption failed to reduce LDL-cholesterol concentrations despite showing a reduction (6 %, P=0·0004) in cholesterol absorption. An over-compensatory reciprocal increase in cholesterol synthesis (36 %, P=0·0026) corresponding to a small reduction in absorption was observed with plant sterol consumption, possibly resulting in reduced LDL-cholesterol lowering efficacy of plant sterols. These data suggest that inter-individual variability in cholesterol trafficking mechanisms may profoundly impact plasma lipid responses to dietary sterols in healthy individuals.

  5. Requirement of transmembrane domain for CD154 association to lipid rafts and subsequent biological events.

    Directory of Open Access Journals (Sweden)

    Nadir Benslimane

    Full Text Available Interaction of CD40 with CD154 leads to recruitment of both molecules into lipid rafts, resulting in bi-directional cell activation. The precise mechanism by which CD154 is translocated into lipid rafts and its impact on CD154 signaling remain largely unknown. Our aim is to identify the domain of CD154 facilitating its association to lipid rafts and the impact of such association on signaling events and cytokine production. Thus, we generated Jurkat cell lines expressing truncated CD154 lacking the cytoplasmic domain or chimeric CD154 in which the transmembrane domain was replaced by that of transferrin receptor I, known to be excluded from lipid rafts. Our results show that cell stimulation with soluble CD40 leads to the association of CD154 wild-type and CD154-truncated, but not CD154-chimera, with lipid rafts. This is correlated with failure of CD154-chimera to activate Akt and p38 MAP kinases, known effectors of CD154 signaling. We also found that CD154-chimera lost the ability to promote IL-2 production upon T cell stimulation with anti-CD3/CD28 and soluble CD40. These results demonstrate the implication of the transmembrane domain of CD154 in lipid raft association, and that this association is necessary for CD154-mediated Akt and p38 activation with consequent enhancement of IL-2 production.

  6. Serum Calcium Level is Associated with Lipids in Young Nigerian ...

    African Journals Online (AJOL)

    Aim: To examine the association of serum total calcium with lipids levels and blood pressure .... Demographic data were obtained with the help of structures questionnaires ..... chronic kidney disease: Evaluation, classification and stratification.

  7. Lipids and pigment-protein complexes of photosynthetic apparatus of Deschampsia antarctica Desv. plants under UV-B radiation

    Directory of Open Access Journals (Sweden)

    Svietlova N. B.

    2012-01-01

    Full Text Available Aim. To investigate structural and functional modifications of major components of photosynthetic membranes of endemic antarctic species D. antarctica under UV-B radiation. Methods. For quantitative determination of photosynthetic membrane components we used Arnon’s method (for chlorophylls and carotenoids; separation of carotenoids was carried out by Merzlyak’s method; polar lipids were isolated by Zill and Harmon method in modification of Yakovenko and Mihno; glycolipids separation and identification we carried out by Yamamoto method; and sulfoquinovosyl diacylglycerol content was determined by Kean method. The separation, disintegration and determination of pigment-protein complexes of chloroplasts were carried out by Anderson method. Authenticity of differences between the mean arithmetic values of indices was set after the Student criterion. Differences were considered as reliable at p 0.05. Results. We determined structural and functional changes in lipids, carotenoids and pigment-protein complexes at the photosyntetic apparatus level in D. antarctica plants under UV-B radiation. Conclusions. Adaptation of D. antarctica plants to UV-B radiation is accompanied by a cascade of physiological and biochemical rearrangements at the level of photosynthetic apparatus, manifested as the changes in pigment, lipid and pigment-protein complexes content

  8. Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB).

    Science.gov (United States)

    Wang, Nai-Jyuan; Lee, Chi-Ching; Cheng, Chao-Sheng; Lo, Wei-Cheng; Yang, Ya-Fen; Chen, Ming-Nan; Lyu, Ping-Chiang

    2012-01-01

    Plant non-specific lipid transfer proteins (nsLTPs) are small and basic proteins. Recently, nsLTPs have been reported involved in many physiological functions such as mediating phospholipid transfer, participating in plant defence activity against bacterial and fungal pathogens, and enhancing cell wall extension in tobacco. However, the lipid transfer mechanism of nsLTPs is still unclear, and comprehensive information of nsLTPs is difficult to obtain. In this study, we identified 595 nsLTPs from 121 different species and constructed an nsLTPs database--nsLTPDB--which comprises the sequence information, structures, relevant literatures, and biological data of all plant nsLTPs http://nsltpdb.life.nthu.edu.tw/. Meanwhile, bioinformatics and statistics methods were implemented to develop a classification method for nsLTPs based on the patterns of the eight highly-conserved cysteine residues, and to suggest strict Prosite-styled patterns for Type I and Type II nsLTPs. The pattern of Type I is C X2 V X5-7 C [V, L, I] × Y [L, A, V] X8-13 CC × G X12 D × [Q, K, R] X2 CXC X16-21 P X2 C X13-15C, and that of Type II is C X4 L X2 C X9-11 P [S, T] X2 CC X5 Q X2-4 C[L, F]C X2 [A, L, I] × [D, N] P X10-12 [K, R] X4-5 C X3-4 P X0-2 C. Moreover, we referred the Prosite-styled patterns to the experimental mutagenesis data that previously established by our group, and found that the residues with higher conservation played an important role in the structural stability or lipid binding ability of nsLTPs. Taken together, this research has suggested potential residues that might be essential to modulate the structural and functional properties of plant nsLTPs. Finally, we proposed some biologically important sites of the nsLTPs, which are described by using a new Prosite-styled pattern that we defined.

  9. Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB

    Directory of Open Access Journals (Sweden)

    Wang Nai-Jyuan

    2012-01-01

    Full Text Available Abstract Background Plant non-specific lipid transfer proteins (nsLTPs are small and basic proteins. Recently, nsLTPs have been reported involved in many physiological functions such as mediating phospholipid transfer, participating in plant defence activity against bacterial and fungal pathogens, and enhancing cell wall extension in tobacco. However, the lipid transfer mechanism of nsLTPs is still unclear, and comprehensive information of nsLTPs is difficult to obtain. Methods In this study, we identified 595 nsLTPs from 121 different species and constructed an nsLTPs database -- nsLTPDB -- which comprises the sequence information, structures, relevant literatures, and biological data of all plant nsLTPs http://nsltpdb.life.nthu.edu.tw/. Results Meanwhile, bioinformatics and statistics methods were implemented to develop a classification method for nsLTPs based on the patterns of the eight highly-conserved cysteine residues, and to suggest strict Prosite-styled patterns for Type I and Type II nsLTPs. The pattern of Type I is C X2 V X5-7 C [V, L, I] × Y [L, A, V] X8-13 CC × G X12 D × [Q, K, R] X2 CXC X16-21 P X2 C X13-15C, and that of Type II is C X4 L X2 C X9-11 P [S, T] X2 CC X5 Q X2-4 C[L, F]C X2 [A, L, I] × [D, N] P X10-12 [K, R] X4-5 C X3-4 P X0-2 C. Moreover, we referred the Prosite-styled patterns to the experimental mutagenesis data that previously established by our group, and found that the residues with higher conservation played an important role in the structural stability or lipid binding ability of nsLTPs. Conclusions Taken together, this research has suggested potential residues that might be essential to modulate the structural and functional properties of plant nsLTPs. Finally, we proposed some biologically important sites of the nsLTPs, which are described by using a new Prosite-styled pattern that we defined.

  10. LipidPedia: a comprehensive lipid knowledgebase.

    Science.gov (United States)

    Kuo, Tien-Chueh; Tseng, Yufeng Jane

    2018-04-10

    Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3,923 lipids and more than 400,000 annotations of associated diseases, pathways, functions, and locations that are essential for interpreting lipid functions and mechanisms from over 1,400,000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. LipidPedia is available at http://lipidpedia.cmdm.tw. yjtseng@csie.ntu.edu.tw. Supplementary data are available at Bioinformatics online.

  11. Associations between serum lipid levels and suicidal ideation among Korean older people.

    Science.gov (United States)

    Shin, Hee-Young; Kang, Gaeun; Kang, Hee-Ju; Kim, Sung-Wan; Shin, Il-Seon; Yoon, Jin-Sang; Kim, Jae-Min

    2016-01-01

    There have been inconsistent reports on the relationships between lipids and suicidality, and studies conducted in older adults are rare. This study examined associations between serum lipid levels and suicidal ideation in an older population. This study used data obtained from a representative Korean sample of 4265 people age 65 years or older who completed a self-administered questionnaire about suicidal ideation over the last year. The fasting serum concentrations of total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides were measured and categorized into lower, intermediate (reference), and upper quartiles. A complex sample logistic regression stratified by gender was performed to determine the associations between serum lipid levels and suicidal ideation after controlling for covariates including age, education, marital status, current smoking, alcohol drinking, body mass index, hypertension, diabetes, diagnosed depression, antidepressant use, and lipid-lowering therapies. In this study, the prevalence of suicidal ideation in an older Korean population was 22.9% (SE=0.9%). The prevalence was significantly higher in women than in men, 27.7% (1.2%) vs. 15.9% (1.1%) respectively. After adjusting for covariates, lower triglyceride levels were significantly associated with a decreased risk of suicidal ideation (OR=0.65; 95% CI=0.43-0.99) among men but no significant associations were observed among women. Additionally, there were no significant associations between any other measure of cholesterol levels and suicidal ideation in either men or women. Cross-sectional design cannot infer temporality or the effects of changes in variables. These results support the association between lower triglyceride levels and a reduced risk of suicidal ideation among Korean men over 65. Further studies are necessary to investigate gender difference and the biological mechanism. Copyright © 2015 Elsevier B.V. All rights

  12. Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism

    DEFF Research Database (Denmark)

    Kory, Nora; Grond, Susanne; Kamat, Siddhesh S

    2017-01-01

    Variations in the gene LDAH (C2ORF43), which encodes lipid droplet-associated hydrolase (LDAH), are among few loci associated with human prostate cancer. Homologs of LDAH have been identified as proteins of lipid droplets (LDs). LDs are cellular organelles that store neutral lipids...

  13. The Association between the Lipids Levels in Blood and Risk of Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Yafeng Wang

    2016-10-01

    Full Text Available Lipid metabolism may be involved in the pathogenic mechanism of age-related macular degeneration (AMD. However, conflicting results have been reported in the associations of AMD with blood lipids. We performed a meta-analysis including a total of 19 studies to evaluate associations between blood lipids and this disease. The result reported that the high level of high-density lipoprotein cholesterol (HDL-C obtained with an increment of 1 mmol/L could result in a significantly increase in the AMD risk of approximately 18% (relative risk (RR, 1.18; 95% confidence interval (CI, 1.01 to 1.35; I2 = 53.8%; p = 0.007. High levels of total cholesterol (TC, low-density lipoprotein cholesterol (LDL-C, and triglycerides (TG were significantly associated with a decreased risk of AMD (RRs ranging from 0.92 to 0.95; all p < 0.05. The stratified analysis based on AMD subtypes showed that these blood lipids were only significantly associated with the risk of early AMD (all p < 0.05. The association between the blood lipids and AMD risk did not differ substantially based on the other characteristics of the participants. A high HDL-C level was associated with an increased AMD risk, whereas participants with high TC, LDL-C, and TG concentrations may show a decreased risk for this disease. Further well-designed large studies are warranted to confirm the conclusions.

  14. Taurine supplemented plant protein based diets with alternative lipid sources for juvenile sea bream, sparus aurata

    Science.gov (United States)

    Two lipid sources were evaluated as fish oil replacements in fishmeal free, plant protein based diets for juvenile gilthead sea bream, Sparus aurata. A twelve week feeding study was undertaken to examine the performance of fish fed the diets with different sources of essential fatty acids (canola o...

  15. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    Directory of Open Access Journals (Sweden)

    José A. Hernández

    2016-01-01

    Full Text Available The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.

  16. Cell-based lipid flippase assay employing fluorescent lipid derivatives

    DEFF Research Database (Denmark)

    Jensen, Maria Stumph; Costa, Sara; Günther-Pomorski, Thomas

    2016-01-01

    P-type ATPases in the P4 subfamily (P4-ATPases) are transmembrane proteins unique for eukaryotes that act as lipid flippases, i.e., to translocate phospholipids from the exofacial to the cytofacial monolayer of cellular membranes. While initially characterized as aminophospholipid translocases, s...... flippase activities in the plasma membrane of cells, using yeast as an example.......P-type ATPases in the P4 subfamily (P4-ATPases) are transmembrane proteins unique for eukaryotes that act as lipid flippases, i.e., to translocate phospholipids from the exofacial to the cytofacial monolayer of cellular membranes. While initially characterized as aminophospholipid translocases......, studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates. Here, we describe an assay based on fluorescent lipid derivatives to monitor and characterize lipid...

  17. Chronic hepatitis C infection is associated with insulin resistance and lipid profiles.

    Science.gov (United States)

    Dai, Chia-Yen; Yeh, Ming-Lun; Huang, Chung-Feng; Hou, Chen-Hsiu; Hsieh, Ming-Yen; Huang, Jee-Fu; Lin, I-Ling; Lin, Zu-Yau; Chen, Shinn-Chern; Wang, Liang-Yen; Chuang, Wan-Long; Yu, Ming-Lung; Tung, Hung-Da

    2015-05-01

    Chronic hepatitis C virus (HCV) infection has been suggested to be associated with non-insulin-dependent diabetes mellitus and lipid profiles. This study aimed to investigate the possible relationships of insulin resistance (IR) and lipid profiles with chronic hepatitis C (CHC) patients in Taiwan. We enrolled 160 hospital-based CHC patients with liver biopsy and the 480 controlled individuals without CHC and chronic hepatitis B from communities without known history of non-insulin-dependent diabetes mellitus. Fasting plasma glucose, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TGs), alanine aminotransferase, and serum insulin levels, and homeostasis model assessment (HOMA-IR) were tested. When comparing factors between CHC patients, and sex- and age-matched controls who had no HCV infection, patients with HCV infection had a significantly higher alanine aminotransferase level, fasting plasma glucose level, insulin level, and HOMA-IR (P C and LDL-C levels (all P  2.5]), a high body mass index, TGs, and HCV RNA level are independent factors significantly associated with high HOMA-IR in multivariate logistic analyses. Chronic HCV infection was associated with metabolic characteristics including IR and lipid profile. IR was also associated with virological characteristics. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  18. Effect of age and sex on the association between lipid profile and obesity among telecomunication workers in Palembang

    Directory of Open Access Journals (Sweden)

    Hardi Darmawan

    2007-12-01

    Full Text Available The study objective is to examine the effects of age and sex on the association between various obesity parameters and lipid profile. The measurements of whole body obesity (body fat, body fat % and BMI, abdominal obesity (waist to hip ratio, waist to thigh ratio and waist circumference and lipid profile (HDL, LDL, VLDL, total cholesterol and triglyceride were performed on 112 telecom workers in Palembang (84 men and 28 women, age 25, 35, 45, and 55 years. All lipid parameters results depend on sex and age of subjects. The association between obesity assessments and HDL or LDL was independent of sex and age of subjects, whereas the association between obesity assessments and total cholesterol, VLDL and triglyceride is dependent on sex and age of subjects. Abdominal obesity has greater effect on VLDL and triglyceride levels than on other lipid parameters. Whole body obesity has equal effects on all lipid parameters. When comparing results of male and female subjects, obesity measurements and lipid profile association is stronger in male subjects of almost all age groups. The exception is a stronger association between abdominal obesity and VLDL or triglyceride levels in 45 years old female subjects. Obesity measurements and VLDL or triglyceride level association is independent of age, whereas obesity and total cholesterol association is stronger in younger subjects. (Med J Indones 2007; 16:251-6Keywords: Lipid profile, fat distribution, obesity, abdominal obesity

  19. Coconut oil is associated with a beneficial lipid profile in pre-menopausal women in the Philippines.

    Science.gov (United States)

    Feranil, Alan B; Duazo, Paulita L; Kuzawa, Christopher W; Adair, Linda S

    2011-01-01

    Coconut oil is a common edible oil in many countries, and there is mixed evidence for its effects on lipid profiles and cardiovascular disease risk. Here we examine the association between coconut oil consumption and lipid profiles in a cohort of 1,839 Filipino women (age 35-69 years) participating in the Cebu Longitudinal Health and Nutrition Survey, a community based study in Metropolitan Cebu. Coconut oil intake was estimated using the mean of two 24-hour dietary recalls (9.5±8.9 grams). Lipid profiles were measured in morning plasma samples collected after an overnight fast. Linear regression models were used to estimate the association between coconut oil intake and each plasma lipid outcome after adjusting for total energy intake, age, body mass index (BMI), number of pregnancies, education, menopausal status, household assets and urban residency. Dietary coconut oil intake was positively associated with high density lipoprotein cholesterol especially among pre-menopausal women, suggesting that coconut oil intake is associated with beneficial lipid profiles. Coconut oil consumption was not significantly associated with low density lipoprotein cholesterol or triglyceride values. The relationship of coconut oil to cholesterol profiles needs further study in populations in which coconut oil consumption is common.

  20. 17β-Hydroxysteroid dehydrogenase type 13 is a liver-specific lipid droplet-associated protein

    International Nuclear Information System (INIS)

    Horiguchi, Yuka; Araki, Makoto; Motojima, Kiyoto

    2008-01-01

    17β-Hydroxysteroid dehydrogenase (17βHSD) type 13 is identified as a new lipid droplet-associated protein. 17βHSD type 13 has an N-terminal sequence similar to that of 17βHSD type 11, and both sequences function as an endoplasmic reticulum and lipid droplet-targeting signal. Localization of native 17βHSD type 13 on the lipid droplets was confirmed by subcellular fractionation and Western blotting. In contrast to 17βHSD type 11, however, expression of 17βHSD type 13 is largely restricted to the liver and is not enhanced by peroxisome proliferator-activated receptor α and its ligand. Instead the expression level of 17βHSD type 13 in the receptor-null mice was increased several-fold. 17βHSD type 13 may have a distinct physiological role as a lipid droplet-associated protein in the liver

  1. Parenteral nutrition-associated liver disease and lipid emulsions.

    Science.gov (United States)

    Zugasti Murillo, Ana; Petrina Jáuregui, Estrella; Elizondo Armendáriz, Javier

    2015-01-01

    Parenteral nutrition-associated liver disease (PNALD) is a particularly important problem in patients who need this type of nutritional support for a long time. Prevalence of the condition is highly variable depending on the series, and its clinical presentation is different in adults and children. The etiology of PNALD is not well defined, and participation of several factors at the same time has been suggested. When a bilirubin level >2 mg/dl is detected for a long time, other causes of liver disease should be ruled out and risk factors should be minimized. The composition of lipid emulsions used in parenteral nutrition is one of the factors related to PNALD. This article reviews the different types of lipid emulsions and the potential benefits of emulsions enriched with omega-3 fatty acids. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  2. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    Science.gov (United States)

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Lipid droplet-associated proteins in alcoholic liver disease: a potential linkage with hepatocellular damage

    OpenAIRE

    Ikura, Yoshihiro; Caldwell, Stephen H

    2015-01-01

    Steatosis is a characteristic morphological change of alcoholic liver disease, but its pathologic significance is still obscure. Regardless of cell types, intracellular lipid droplets are coated with a phospholipid monolayer, on which many kinds of lipid droplet-associated proteins are present. These proteins, such as the perilipin family of proteins and the cell death inducing DNA fragmentation factor (DFF) 45-like effectors, are recognized to play important roles in lipid metabolism in the ...

  4. Association between apolipoprotein E genotype, serum lipids, and colorectal cancer in Brazilian individuals.

    Science.gov (United States)

    Souza, D R S; Nakazone, M A; Pinhel, M A S; Alvares, R M; Monaco, A C; Pinheiro, A; Barros, C F D C; Cury, P M; Cunrath, G S; Netinho, J G

    2009-05-01

    We evaluated genetic variants of apolipoprotein E (APOE HhaI) and their association with serum lipids in colorectal cancer (CRC), together with eating habits and personal history. Eight-seven adults with CRC and 73 controls were studied. APOE*2 (rs7412) and APOE*4 (rs429358) were identified by polymerase chain reaction-restriction fragment length polymorphism. APOE gene polymorphisms were similar in both groups, but the epsilon4/epsilon4 genotype (6%) was present only in controls. The patients had reduced levels (mean +/- SD) of total cholesterol and low-density lipoprotein cholesterol fraction (180.4 +/- 49.5 and 116.1 +/- 43.1 mg/dL, respectively) compared to controls (204.2 +/- 55.6, P = 0.135 and 134.7 +/- 50.8 mg/dL; P = 0.330, respectively) indicating that they were not statistically significant after the Bonferroni correction. The APOE*4 allele was associated with lower levels of total cholesterol, low- and high-density lipoprotein cholesterol fraction and increased levels of very low-density lipoprotein cholesterol fraction and triglycerides only among patients (P = 0.014). There was a positive correlation between the altered lipid profile and increased body mass indexes in both groups (P hypertension and overweight was observed in controls (P < 0.002). In conclusion, the presence of the epsilon4/epsilon4 genotype only in controls may be due to a protective effect against CRC. Lower lipid profile values among patients, even those on lipid-rich diets associated with the APOE*4 allele, suggest alterations in the lipid synthesis and metabolism pathways in CRC.

  5. Differential Interaction of Synthetic Glycolipids with Biomimetic Plasma Membrane Lipids Correlates with the Plant Biological Response.

    Science.gov (United States)

    Nasir, Mehmet Nail; Lins, Laurence; Crowet, Jean-Marc; Ongena, Marc; Dorey, Stephan; Dhondt-Cordelier, Sandrine; Clément, Christophe; Bouquillon, Sandrine; Haudrechy, Arnaud; Sarazin, Catherine; Fauconnier, Marie-Laure; Nott, Katherine; Deleu, Magali

    2017-09-26

    Natural and synthetic amphiphilic molecules including lipopeptides, lipopolysaccharides, and glycolipids are able to induce defense mechanisms in plants. In the present work, the perception of two synthetic C14 rhamnolipids, namely, Alk-RL and Ac-RL, differing only at the level of the lipid tail terminal group have been investigated using biological and biophysical approaches. We showed that Alk-RL induces a stronger early signaling response in tobacco cell suspensions than does Ac-RL. The interactions of both synthetic RLs with simplified biomimetic membranes were further analyzed using experimental and in silico approaches. Our results indicate that the interactions of Alk-RL and Ac-RL with lipids were different in terms of insertion and molecular responses and were dependent on the lipid composition of model membranes. A more favorable insertion of Alk-RL than Ac-RL into lipid membranes is observed. Alk-RL forms more stable molecular assemblies than Ac-RL with phospholipids and sterols. At the molecular level, the presence of sterols tends to increase the RLs' interaction with lipid bilayers, with a fluidizing effect on the alkyl chains. Taken together, our findings suggest that the perception of these synthetic RLs at the membrane level could be related to a lipid-driven process depending on the organization of the membrane and the orientation of the RLs within the membrane and is correlated with the induction of early signaling responses in tobacco cells.

  6. Zinc and cadmium complexes of a plant metallothionein under radical stress: desulfurisation reactions associated with the formation of trans-lipids in model membranes.

    Science.gov (United States)

    Torreggiani, Armida; Domènech, Jordi; Orihuela, Ruben; Ferreri, Carla; Atrian, Sílvia; Capdevila, Mercè; Chatgilialoglu, Chryssostomos

    2009-06-08

    Metallothioneins (MTs) are sulfur-rich proteins capable of binding metal ions to give metal clusters. The metal-MT aggregates used in this work were Zn- and Cd-QsMT, where QsMT is an MT from the plant Quercus suber. Reactions of reductive reactive species (H(*) atoms and e(aq)(-)), produced by gamma irradiation of water, with Zn- and Cd-QsMT were carried out in both aqueous solutions and vesicle suspensions, and were characterized by different approaches. By using a biomimetic model based on unsaturated lipid vesicle suspensions, the occurrence of tandem protein/lipid damage was shown. The reactions of reductive reactive species with methionine residues and/or sulfur-containing ligands afford diffusible sulfur-centred radicals, which migrate from the aqueous phase to the lipid bilayer and transform the cis double bond of the oleate moiety into the trans isomer. Tailored experiments allowed the reaction mechanism to be elucidated in some detail. The formation of sulfur-centred radicals is accompanied by the modification of the metal-QsMT complexes, which were monitored by various spectroscopic and spectrometric techniques (Raman, CD, and ESI-MS). Attack of the H(*) atom and e(aq)(-) on the metal-QsMT aggregates can induce significant structural changes such as partial deconstruction and/or rearrangement of the metal clusters and breaking of the protein backbone. Substantial differences were observed in the behaviour of the Zn- and Cd-QsMT aggregates towards the reactive species, depending on the different folding of the polypeptide in these two cases.

  7. The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII).

    Science.gov (United States)

    Schaller, Susann; Latowski, Dariusz; Jemioła-Rzemińska, Małgorzata; Wilhelm, Christian; Strzałka, Kazimierz; Goss, Reimund

    2010-03-01

    In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the present study we investigated the influence of thylakoid lipids on the de-epoxidation of Vx, which was still associated with the LHCII. We isolated LHCII with different concentrations of native, endogenous lipids and Vx by sucrose gradient centrifugation or successive cation precipitation. Analysis of the different LHCII preparations showed that the concentration of LHCII-associated Vx was correlated with the concentration of the main thylakoid lipid monogalactosyldiacylglycerol (MGDG) associated with the complexes. Decreases in the MGDG content of the LHCII led to a diminished Vx concentration, indicating that a part of the total Vx pool was located in an MGDG phase surrounding the LHCII, whereas another part was bound to the LHCII apoproteins. We further studied the convertibility of LHCII-associated Vx in in-vitro enzyme assays by addition of isolated VDE. We observed an efficient and almost complete Vx conversion in the LHCII fractions containing high amounts of endogenous MGDG. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The de-epoxidation of LHCII-associated Vx was saturated at a much lower concentration of native, endogenous MGDG compared with the concentration of isolated, exogenous MGDG, which is needed for optimal VDE activity in in-vitro assays employing pure isolated Vx. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Lipid profiling in sewage sludge.

    Science.gov (United States)

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Simultaneous intake of beta-glucan and plant stanol esters affects lipid metabolism in slightly hypercholesterolemic subjects.

    Science.gov (United States)

    Theuwissen, Elke; Mensink, Ronald P

    2007-03-01

    Intake of food products rich in water-soluble fiber beta-glucan and products enriched with plant stanol esters lower serum cholesterol. Combining 2 functional food ingredients into one food product may achieve additional reductions of serum cholesterol. Our objective was to investigate the effects of a simultaneous intake of beta-glucan plus plant stanol esters on lipid metabolism in mildly hypercholesterolemic volunteers. In a randomized, controlled, 3-period crossover study, 40 mildly hypercholesterolemic men and women received muesli in random order twice a day for 4 wk, which provided, in total, 5 g control fiber from wheat (control muesli), 5 g oat beta-glucan (beta-glucan muesli), or 5 g oat beta-glucan plus 1.5 g plant stanols (combination muesli). beta-Glucan muesli decreased serum LDL cholesterol by 5.0% compared with control muesli (P = 0.013). Combination muesli reduced LDL cholesterol by 9.6% compared with control muesli (P < 0.001), and by 4.4% compared with beta-glucan muesli (P = 0.036). Serum HDL cholesterol and triacylglycerol concentrations did not differ after the 3 treatments. Compared with control muesli, beta-glucan muesli increased bile acid synthesis (P = 0.043) and decreased cholesterol absorption (P = 0.011). Addition of plant stanols did not influence bile acid synthesis but decreased cholesterol absorption (P < 0.001) and raised cholesterol synthesis (P = 0.016) compared with control muesli, and the plant stanols decreased cholesterol absorption compared with beta-glucan muesli (P = 0.004). The combination muesli decreased serum concentrations of sitostanol compared with control muesli (P = 0.010). Plasma concentrations of lipid-soluble antioxidants did not differ after the 3 treatments. beta-Glucan muesli effectively lowered serum LDL cholesterol concentrations. The addition of plant stanol esters to beta-glucan-enriched muesli further lowered serum LDL cholesterol, although effects were slightly less than predicted.

  10. Associations between lipid metabolism and fertility in the dairy cow.

    Science.gov (United States)

    Wathes, D Claire; Clempson, Andrew M; Pollott, Geoff E

    2012-01-01

    Dairy cows mobilise body tissues to support milk production and, because glucose supplies are limited, lipids are used preferentially for energy production. Lipogenic activity is switched off and lipolytic mechanisms in adipose tissue increase through changes in the expression of several key enzymes. This results in a loss of body condition, together with high circulating concentrations of non-esterified fatty acids. Changes in the synthesis, secretion and signalling pathways of somatotrophic hormones (insulin, growth hormone, insulin-like growth factor 1) and adipokines (e.g. leptin) are central to the regulation of these processes. A high reliance on fatty acids as an energy source in the peripartum period causes oxidative damage to mitochondria in metabolically active tissues, including the liver and reproductive tract. The expression of genes involved in insulin resistance (PDK4, AHSG) is increased, together with expression of TIEG1, a transcription factor that can induce apoptosis via the mitochondrial pathway. Polymorphisms in TFAM and UCP2, two autosomal mitochondrial genes, have been associated with longevity in dairy cows. Polymorphisms in many other genes that affect lipid metabolism also show some associations with fertility traits. These include DGAT1, SCD1, DECR1, CRH, CBFA2T1, GH, LEP and NPY. Excess lipid accumulation in oocytes and the regenerating endometrium reduces fertility via reductions in embryo survival and increased inflammatory changes, respectively.

  11. Association between spicy food consumption and lipid profiles in adults: a nationwide population-based study.

    Science.gov (United States)

    Xue, Yong; He, Tingchao; Yu, Kai; Zhao, Ai; Zheng, Wei; Zhang, Yumei; Zhu, Baoli

    2017-07-01

    CVD remains the leading cause of mortality worldwide, with abnormal lipid metabolism as a major risk factor. The aim of this study was to investigate associations between spicy food consumption and serum lipids in Chinese adults. Data were extracted from the 2009 phase of the China Health and Nutrition Survey, consisting of 6774 apparently healthy Chinese adults aged 18-65 years. The frequency of consumption and degree of pungency of spicy food were self-reported, and regular spicy food consumption was assessed using three consecutive 24-h recalls. Total cholesterol, TAG, LDL-cholesterol and HDL-cholesterol in fasting serum were measured. Multilevel mixed-effects models were constructed to estimate associations between spicy food consumption and serum lipid profiles. The results showed that the frequency and the average amount of spicy food intake were both inversely associated with LDL-cholesterol and LDL-cholesterol:HDL-cholesterol ratio (all P for trendfood (≥5 times/week) and who consumed spicy food perceived as moderate in pungency were significantly higher than those who did not (both Pfood intake and the degree of pungency in spicy food were positively associated with TAG (all P for trendfood consumption was inversely associated with serum cholesterol and positively associated with serum TAG, and additional studies are needed to confirm the findings as well as to elucidate the potential roles of spicy food consumption in lipid metabolism.

  12. Association between apolipoprotein E genotype, serum lipids, and colorectal cancer in Brazilian individuals

    Directory of Open Access Journals (Sweden)

    D.R.S. Souza

    2009-05-01

    Full Text Available We evaluated genetic variants of apolipoprotein E (APOE HhaI and their association with serum lipids in colorectal cancer (CRC, together with eating habits and personal history. Eight-seven adults with CRC and 73 controls were studied. APOE*2 (rs7412 and APOE*4 (rs429358 were identified by polymerase chain reaction-restriction fragment length polymorphism. APOE gene polymorphisms were similar in both groups, but the ε4/ε4 genotype (6% was present only in controls. The patients had reduced levels (mean ± SD of total cholesterol and low-density lipoprotein cholesterol fraction (180.4 ± 49.5 and 116.1 ± 43.1 mg/dL, respectively compared to controls (204.2 ± 55.6, P = 0.135 and 134.7 ± 50.8 mg/dL; P = 0.330, respectively indicating that they were not statistically significant after the Bonferroni correction. The APOE*4 allele was associated with lower levels of total cholesterol, low- and high-density lipoprotein cholesterol fraction and increased levels of very low-density lipoprotein cholesterol fraction and triglycerides only among patients (P = 0.014. There was a positive correlation between the altered lipid profile and increased body mass indexes in both groups (P < 0.010. Moreover, a higher rate of hypertension and overweight was observed in controls (P < 0.002. In conclusion, the presence of the ε4/ε4 genotype only in controls may be due to a protective effect against CRC. Lower lipid profile values among patients, even those on lipid-rich diets associated with the APOE*4 allele, suggest alterations in the lipid synthesis and metabolism pathways in CRC.

  13. Proatherogenic Lipid Profile in Early Childhood: Association with Weight Status at 4 Years and Parental Obesity.

    Science.gov (United States)

    Riaño-Galán, Isolina; Fernández-Somoano, Ana; Rodríguez-Dehli, Cristina; Valvi, Damaskini; Vrijheid, Martine; Tardón, Adonina

    2017-08-01

    To determine lipid profiles in early childhood and evaluate their association with weight status at 4 years of age. Additionally, we evaluated whether the risk of overweight or having an altered lipid profile was associated with parental weight status. Five hundred eighty two mothers and their 4-year-old children from 2 Spanish population-based cohorts were studied. Weight status in children at 4 years of age was classified as overweight or obese using the International Obesity Task Force criteria. Plasma total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol were determined in children and lipid ratios were calculated. A proatherogenic lipid profile was defined as having the 3 lipid ratios in the third tertile. A total of 12.9% of children were overweight and 6.4% were obese. Weight status at 4 years of age was related to maternal prepregnancy body mass index, paternal body mass index, gestational diabetes, and birth weight, but not with other sociodemographic characteristics of the mother. We found no association with gestational age, sex of the child, or breastfeeding. The risk of overweight/obesity was increased 4.17-fold if mothers were overweight/obese (95% CI 1.76-9.88) and 5.1-fold (95% CI 2.50-10.40) if both parents were overweight/obese. There were 133 children (22.8%) with a proatherogenic lipid profile. The risk of a proatherogenic lipid profile was increased 2.44-fold (95% CI 1.54-3.86) if they were overweight/obese at 4 years of age and 2-fold if the father was overweight/obese (95% CI 1.22-3.35). Four-year-old overweight/obese children have higher lipid risk profiles. Offspring of overweight/obese parents have an increased risk for obesity and a proatherogenic lipid profile. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. The association between HIV (treatment), pregnancy serum lipid concentrations and pregnancy outcomes : a systematic review

    NARCIS (Netherlands)

    Harmsen, Marissa J; Browne, Joyce L; Venter, Francois; Klipstein-Grobusch, Kerstin; Rijken, Marcus J

    2017-01-01

    BACKGROUND: Observed adverse effects of antiretroviral therapy (ART) on the lipid profile could be of significance in pregnancy. This systematic review aims to summarize studies that investigated the association between HIV, ART and serum lipids during pregnancy and adverse pregnancy outcomes.

  15. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    Science.gov (United States)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  16. Lipid storage myopathy with clinical markers of Marfan syndrome: A rare association

    Directory of Open Access Journals (Sweden)

    Subasree Ramakrishnan

    2012-01-01

    Full Text Available Disorders of lipid metabolism can cause variable clinical presentations, often involving skeletal muscle, alone or together with other tissues. A 19-year-old boy presented with a 2-year history of muscle pain, cramps, exercise intolerance and progressive weakness of proximal lower limbs. Examination revealed skeletal markers of Marfan syndrome in the form of increased arm span compared with height, Kyphoscoliois, moderate pectus excavatum, high arched palate and wrist sign. He also had mild neck flexor weakness and proximal lower limb weakness with areflexia. Pathologic findings revealed lipid-laden fine vacuoles in the muscle fibers. Possibility of carnitine deficiency myopathy was considered and the patient was started on carnitine and Co Q. The patient made remarkable clinical improvement over the next 2 months. This case is reported for rarity of the association of clinical markers of Marfan syndrome and lipid storage myopathy and sparse literature on lipid storage myopathy in the Indian context.

  17. Subretinal lipid exudation associated with untreated choroidal melanoma

    Directory of Open Access Journals (Sweden)

    C K Minija

    2011-01-01

    Full Text Available Subretinal lipid exudation in an untreated choroidal melanoma is very rare. It is seen following plaque radiotherapy in choroidal melanoma. There is only one case report of untreated choroidal melanoma with massive lipid exudation in a patient with metastatic hypernephroma. We report here a rare case of untreated choroidal melanoma with lipid exudation. Subretinal exudation that is rarely seen following plaque brachytherapy was noted at the borders of this untreated tumor. Lipid exudation partially resolved following brachytherapy.

  18. The association between HIV (treatment), pregnancy serum lipid concentrations and pregnancy outcomes: a systematic review.

    Science.gov (United States)

    Harmsen, Marissa J; Browne, Joyce L; Venter, Francois; Klipstein-Grobusch, Kerstin; Rijken, Marcus J

    2017-07-11

    Observed adverse effects of antiretroviral therapy (ART) on the lipid profile could be of significance in pregnancy. This systematic review aims to summarize studies that investigated the association between HIV, ART and serum lipids during pregnancy and adverse pregnancy outcomes. A systematic search was conducted in five electronic databases to obtain articles that measured serum lipid concentrations or the incidence of dyslipidaemia in HIV-infected pregnant women. Included articles were assessed for quality according to the Cochrane Risk of Bias Tool. The extracted data was analysed through descriptive analysis. Of the 1264 articles screened, 17 articles were included in this review; eleven reported the incidence of dyslipidaemia, and twelve on maternal serum lipid concentrations under the influence of HIV-infection and ART. No articles reported pregnancy outcomes in relation to serum lipids. Articles were of acceptable quality, but heterogenic in methods and study design. Lipid levels in HIV-infected women increased 1.5-3 fold over the trimesters of pregnancy, and remained within the physiological reference range. The percentage of women with dyslipidaemia was variable between the studies [0-88.9%] and highest in the groups on first generation protease inhibitors and for women on ART at conception. This systematic review observed physiologic concentrations of serum lipids for HIV-infected women receiving ART during pregnancy. Serum lipids were increased in users of first generation protease inhibitors and for those on treatment at conception. There was no information available about pregnancy outcomes. Future studies are needed which include HIV-uninfected control groups, control for potential confounders, and overcome limitations associated with included studies.

  19. Attenuated associations between increasing BMI and unfavorable lipid profiles in Chinese Buddhist vegetarians.

    Science.gov (United States)

    Zhang, Hui-Jie; Han, Peng; Sun, Su-Yun; Wang, Li-Ying; Yan, Bing; Zhang, Jin-Hua; Zhang, Wei; Yang, Shu-Yu; Li, Xue-Jun

    2013-01-01

    Obesity is related to hyperlipidemia and risk of cardiovascular disease. Health benefits of vegetarian diets have well-documented in the Western countries where both obesity and hyperlipidemia were prevalent. We studied the association between BMI and various lipid/lipoprotein measures, as well as between BMI and predicted coronary heart disease probability in lean, low risk populations in Southern China. The study included 170 Buddhist monks (vegetarians) and 126 omnivore men. Interaction between BMI and vegetarian status was tested in the multivariable regression analysis adjusting for age, education, smoking, alcohol drinking, and physical activity. Compared with omnivores, vegetarians had significantly lower mean BMI, blood pressures, total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol, total cholesterol to high density lipoprotein ratio, triglycerides, apolipoprotein B and A-I, as well as lower predicted probability of coronary heart disease. Higher BMI was associated with unfavorable lipid/lipoprotein profile and predicted probability of coronary heart disease in both vegetarians and omnivores. However, the associations were significantly diminished in Buddhist vegetarians. Vegetarian diets not only lower BMI, but also attenuate the BMI-related increases of atherogenic lipid/ lipoprotein and the probability of coronary heart disease.

  20. Genetic diversity and population structure of Pisum sativum accessions for marker-trait association of lipid content

    Directory of Open Access Journals (Sweden)

    Sajjad Ahmad

    2015-06-01

    Full Text Available Field pea (Pisum sativum L. is an important protein-rich pulse crop produced globally. Increasing the lipid content of Pisum seeds through conventional and contemporary molecular breeding tools may bring added value to the crop. However, knowledge about genetic diversity and lipid content in field pea is limited. An understanding of genetic diversity and population structure in diverse germplasm is important and a prerequisite for genetic dissection of complex characteristics and marker-trait associations. Fifty polymorphic microsatellite markers detecting a total of 207 alleles were used to obtain information on genetic diversity, population structure and marker-trait associations. Cluster analysis was performed using UPGMA to construct a dendrogram from a pairwise similarity matrix. Pea genotypes were divided into five major clusters. A model-based population structure analysis divided the pea accessions into four groups. Percentage lipid content in 35 diverse pea accessions was used to find potential associations with the SSR markers. Markers AD73, D21, and AA5 were significantly associated with lipid content using a mixed linear model (MLM taking population structure (Q and relative kinship (K into account. The results of this preliminary study suggested that the population could be used for marker-trait association mapping studies.

  1. Lipid production in aquatic plant Azolla at vegetative and reproductive stages and in response to abiotic stress.

    Science.gov (United States)

    Miranda, Ana F; Liu, Zhiqian; Rochfort, Simone; Mouradov, Aidyn

    2018-03-01

    The aquatic plant Azolla became increasingly popular as bioenergy feedstock because of its high growth rate, production of biomass with high levels of biofuel-producing molecules and ability to grow on marginal lands. In this study, we analysed the contribution of all organs of Azolla to the total yield of lipids at vegetative and reproductive stages and in response to stress. Triacylglycerol-containing lipid droplets were detected in all (vegetative and reproductive) organs with the highest level in the male microsporocarps and microspores. As a result, significantly higher total yields of lipids were detected in Azolla filiculoides and Azolla pinnata at the reproductive stage. Starving changed the yield and composition of the fatty acid as a result of re-direction of carbon flow from fatty acid to anthocyanin pathways. The composition of lipids, in regard the length and degree of unsaturation of fatty acids, in Azolla meets most of the important requirements for biodiesel standards. The ability of Azolla to grow on wastewaters, along with their high productivity rate, makes it an attractive feedstock for the production of biofuels. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Association between dietary patterns and blood lipid profiles among Chinese women.

    Science.gov (United States)

    Zhang, Jiguo; Wang, Zhihong; Wang, Huijun; Du, Wenwen; Su, Chang; Zhang, Ji; Jiang, Hongru; Jia, Xiaofang; Huang, Feifei; Zhai, Fengying; Zhang, Bing

    2016-12-01

    The present study aimed to identify dietary patterns and explore their associations with blood lipid profiles among Chinese women. In a cross-sectional study, we identified dietary patterns using principal component analysis of data from three consecutive 24 h dietary recalls. The China Health and Nutrition Survey (CHNS) collected blood samples in the morning after an overnight fast and measured total cholesterol (TC), HDL cholesterol (HDL-C), LDL cholesterol (LDL-C) and TAG. Data were from the 2009 wave of the CHNS. We studied 2468 women aged 18-80 years from the CHNS. We identified three dietary patterns: traditional southern (high intakes of rice, pork and vegetables), snack (high intakes of fruits, eggs and cakes) and Western (high intakes of poultry, fast foods and milk). The traditional southern pattern was inversely associated with HDL-C (β=-0·68; 95 % CI -1·22, -0·14; Ppattern was significantly associated with higher TAG (β=4·14; 95 % CI 0·44, 7·84; Ppattern was positively associated with TC (β=2·52; 95 % CI 1·03, 4·02; Ppatterns that are significantly associated with blood lipid profiles. This information is important for developing interventions and policies addressing dyslipidaemia prevention among Chinese women.

  3. Evidence that the respiratory syncytial virus polymerase complex associates with lipid rafts in virus-infected cells: a proteomic analysis

    International Nuclear Information System (INIS)

    McDonald, Terence P.; Pitt, Andrew R.; Brown, Gaie; Rixon, Helen W. McL.; Sugrue, Richard J.

    2004-01-01

    The interaction between the respiratory syncytial virus (RSV) polymerase complex and lipid rafts was examined in HEp2 cells. Lipid-raft membranes were prepared from virus-infected cells and their protein content was analysed by Western blotting and mass spectrometry. This analysis revealed the presence of the N, P, L, M2-1 and M proteins. However, these proteins appeared to differ from one another in their association with these structures, with the M2-1 protein showing a greater partitioning into raft membranes compared to that of the N, P or M proteins. Determination of the polymerase activity profile of the gradient fractions revealed that 95% of the detectable viral enzyme activity was associated with lipid-raft membranes. Furthermore, analysis of virus-infected cells by confocal microscopy suggested an association between these proteins and the raft-lipid, GM1. Together, these results provide evidence that the RSV polymerase complex is able to associate with lipid rafts in virus-infected cells

  4. Association between lipid profile and adiposity in women over age 60.

    Science.gov (United States)

    Krause, Maressa Priscila; Hallage, Tatiane; Gama, Mirnaluci P R; Sasaki, Jeffer Eidi; Miculis, Cristiane Petra; Buzzachera, Cosme Franklin; Silva, Sergio Gregorio da

    2007-09-01

    To verify the association between lipid profiles and overall or central obesity in women over the age of 60. The sample was comprised of 388 women over the age of 60 (mean 69; standard deviation 5.9 years). The lipid profile was determined using total cholesterol (TC), HDL cholesterol (HDL-C), LDL cholesterol (LDL-C) and triglyceride (TG) levels. Overall obesity was determined using the body mass index (BMI) and skin fold (SF) measurements. Central obesity was determined using the waist circumference (WC) and waist--hip ratio (WHR). Statistical analysis was conducted using age adjusted partial correlation and one way ANOVA (padiposity variables and lipid profile components indicate an elevated atherogenic risk. In addition, the indicators for overall and central obesity were directly related to TG levels and inversely related to HDL-C levels. The partial correlation analysis and the largest variance found for WC and WHR in comparison to the lipidogram components indicate that both methods could be useful in the early diagnosis of atherosclerosis.

  5. Lipidomic data on lipid droplet triglyceride remodelling associated with protection of breast cancer cells from lipotoxic stress

    Directory of Open Access Journals (Sweden)

    Eva Jarc

    2018-06-01

    Full Text Available The data presented here is related to the research article entitled “Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress” by E. Jarc et al., Biochim. Biophys. Acta 1863 (2018 247–265. Elevated uptake of unsaturated fatty acids and lipid droplet accumulation are characteristic of aggressive cancer cells and have been associated with the cellular stress response. The present study provides lipidomic data on the triacylglycerol (TAG and phosphatidylcholine (PC composition of MDA-MB-231 breast cancer cells exposed to docosahexaenoic acid (DHA; 22:6, ω-3. Datasets provide information on the changes in lipid composition induced by depletion of adipose triglyceride lipase (ATGL and by exogenous addition of secreted phospholipase A2 (sPLA2 in DHA-treated cells. The presented alterations in lipid composition, mediated by targeting lipid droplet biogenesis and lipolysis, are associated with protection from lipotoxicity and allow further investigation into the role of lipid droplets in the resistance of cancer cells to lipotoxic stress. Keywords: Lipid droplets, Lipidomics, Adipose triglyceride lipase, Polyunsaturated fatty acid, Cancer, Phospholipase A2

  6. Lipidomic data on lipid droplet triglyceride remodelling associated with protection of breast cancer cells from lipotoxic stress.

    Science.gov (United States)

    Jarc, Eva; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-06-01

    The data presented here is related to the research article entitled "Lipid droplets induced by secreted phospholipase A 2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress" by E. Jarc et al., Biochim. Biophys. Acta 1863 (2018) 247-265. Elevated uptake of unsaturated fatty acids and lipid droplet accumulation are characteristic of aggressive cancer cells and have been associated with the cellular stress response. The present study provides lipidomic data on the triacylglycerol (TAG) and phosphatidylcholine (PC) composition of MDA-MB-231 breast cancer cells exposed to docosahexaenoic acid (DHA; 22:6, ω-3). Datasets provide information on the changes in lipid composition induced by depletion of adipose triglyceride lipase (ATGL) and by exogenous addition of secreted phospholipase A 2 (sPLA 2 ) in DHA-treated cells. The presented alterations in lipid composition, mediated by targeting lipid droplet biogenesis and lipolysis, are associated with protection from lipotoxicity and allow further investigation into the role of lipid droplets in the resistance of cancer cells to lipotoxic stress.

  7. A novel fibrillin-1 mutation in an egyptian marfan family: A proband showing nephrotic syndrome due to focal segmental glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Mohammad Al-Haggar

    2017-01-01

    Full Text Available Marfan syndrome (MFS, the founding member of connective tissue disorder, is an autosomal dominant disease; it is caused by a deficiency of the microfibrillar protein fibrillin-1 (FBN1 and characterized by involvement of three main systems; skeletal, ocular, and cardiovascular. More than one thousand mutations in FBN1 gene on chromosome 15 were found to cause MFS. Nephrotic syndrome (NS had been described in very few patients with MFS being attributed to membranoproliferative glomerulonephritis secondary to infective endocarditis. Focal segmental glomerulosclerosis (FSGS had been reported in NS in conjunction with MFS without confirming the diagnosis by mutational analysis of FBN1. We hereby present an Egyptian family with MFS documented at the molecular level; it showed a male proband with NS secondary to FSGS, unfortunately, we failed to make any causal link between FBN dysfunction and FSGS. In this context, we review the spectrum of renal involvements occurring in MFS patients.

  8. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes.

    Science.gov (United States)

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B

    2017-06-07

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  9. Effects of Ferulago angulata Extract on Serum Lipids and Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Mahmoud Rafieian-kopaei

    2014-01-01

    Full Text Available Background. Nowadays, herbs they are considered to be the main source of effective drugs for lowering serum lipids and lipid peroxidation. The present experimental animal study aimed to assess the impact of Ferulago angulata on serum lipid profiles, and on levels of lipid peroxidation. Methods. Fifty male Wistar rats, weighing 250–300 g, were randomly divided into five equal groups (ten rats in each. The rat groups received different diets as follows: Group I: fat-rich diet; Group II: fat-rich diet plus hydroalcoholic extracts of Ferulago angulata at a dose of 400 mg/kg; Group III: fat-rich diet plus hydroalcoholic extracts of Ferulago angulata at a dose of 600 mg/kg; Group IV: fat-rich diet plus atorvastatin; Group V: common stock diet. The levels of serum glucose and lipids and the atherogenic index were measured. In addition, malondialdehyde (MDA, thiol oxidation, carbonyl concentrations, C-reactive proteins, and antioxidant capacity were evaluated in each group of rats. Results. Interestingly, by adding a hydroalcoholic extract of Ferulago angulata to the high-fat diet, the levels of total cholesterol and low-density lipoproteins (LDL in the high-fat diet rats were both significantly reduced. This result was considerably greater compared to when atorvastatin was added as an antilipid drug. The beneficial effects of the Ferulago angulata extract on lowering the level of triglycerides was observed only when a high dosage of this plant extraction was added to a high fat diet. Furthermore, the level of malondialdehyde, was significantly affected by the use of the plant extract in a high-fat diet, compared with a normal regimen or high-fat diet alone. Conclusion. Administration of a hydroalcoholic extract of Ferulago angulata can reduce serum levels of total cholesterol, triglycerides, and LDL. It can also inhibit lipid peroxidation.

  10. Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats

    Directory of Open Access Journals (Sweden)

    Alireza Sadeghipour

    2014-01-01

    Full Text Available Many herbal medicines have been recommended for the treatment of dyslipidemia. The antilipidemic effect of hydroethanolic extract of pomegranate peel (Punica granatum L. was investigated in high lipid diet fed male rats. Intraperitoneally administration of pomegranate peel extract (50, 100, 200, and 300 mg/kg body weight for 23 days on the levels of serum cholesterol, triglycerides, LDL, HDL, alkaline phosphatase (AP, aspartate aminotransferase (AST, and alanine aminotransferase (ALT in high lipid diet fed male rats was evaluated. Treatment of pomegranate extract decreased body weight in treated rats, significantly. Administration of the plant extract significantly decreased serum total cholesterol, triglycerides, LDL-C, alkaline phosphatise, AST, and ALT levels, whereas it increased serum HDL-C in high lipid diet fed rats in comparison to saline control group. Also, histopathological study showed that treatment of pomegranate peel extract attenuates liver damage in high lipid diet fed rats in comparison to saline group. It is concluded that the plant should be considered as an excellent candidate for future studies on dyslipidemia.

  11. Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats

    Science.gov (United States)

    Sadeghipour, Alireza; Ilchizadeh Kavgani, Ali; Ghahramani, Reza; Shahabzadeh, Saleh; Anissian, Ali

    2014-01-01

    Many herbal medicines have been recommended for the treatment of dyslipidemia. The antilipidemic effect of hydroethanolic extract of pomegranate peel (Punica granatum L.) was investigated in high lipid diet fed male rats. Intraperitoneally administration of pomegranate peel extract (50, 100, 200, and 300 mg/kg body weight) for 23 days on the levels of serum cholesterol, triglycerides, LDL, HDL, alkaline phosphatase (AP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in high lipid diet fed male rats was evaluated. Treatment of pomegranate extract decreased body weight in treated rats, significantly. Administration of the plant extract significantly decreased serum total cholesterol, triglycerides, LDL-C, alkaline phosphatise, AST, and ALT levels, whereas it increased serum HDL-C in high lipid diet fed rats in comparison to saline control group. Also, histopathological study showed that treatment of pomegranate peel extract attenuates liver damage in high lipid diet fed rats in comparison to saline group. It is concluded that the plant should be considered as an excellent candidate for future studies on dyslipidemia. PMID:25295067

  12. Transfer of wastewater associated pharmaceuticals and personal care products to crop plants from biosolids treated soil.

    Science.gov (United States)

    Wu, Chenxi; Spongberg, Alison L; Witter, Jason D; Sridhar, B B Maruthi

    2012-11-01

    The plant uptake of emerging organic contaminants such as pharmaceuticals and personal care products (PPCPs) is receiving increased attention. Biosolids from municipal wastewater treatment have been previously identified as a major source for PPCPs. Thus, plant uptake of PPCPs from biosolids applied soils needs to be understood. In the present study, the uptake of carbamazepine, diphenhydramine, and triclocarban by five vegetable crop plants was examined in a field experiment. At the time of harvest, three compounds were detected in all plants grown in biosolids-treated soils. Calculated root concentration factor (RCF) and shoot concentration factor (SCF) are the highest for carbamazepine followed by triclocarban and diphenhydramine. Positive correlation between RCF and root lipid content was observed for carbamazepine but not for diphenhydramine and triclocarban. The results demonstrate the ability of crop plants to accumulate PPCPs from contaminated soils. The plant uptake processes of PPCPs are likely affected by their physico-chemical properties, and their interaction with soil. The difference uptake behavior between plant species could not solely be attributed to the root lipid content. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Basic Components of Connective Tissues and Extracellular Matrix

    DEFF Research Database (Denmark)

    Halper, Jaroslava; Kjær, Michael

    2014-01-01

    of specific organ systems, but they also provide a scaffold for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Fibulins are tightly connected with basement membranes...

  14. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    Science.gov (United States)

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  15. Mono- and Digalactosyldiacylglycerol Lipids Function Nonredundantly to Regulate Systemic Acquired Resistance in Plants

    Directory of Open Access Journals (Sweden)

    Qing-ming Gao

    2014-12-01

    Full Text Available Summary: The plant galactolipids monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG have been linked to the anti-inflammatory and cancer benefits of a green leafy vegetable diet in humans due to their ability to regulate the levels of free radicals like nitric oxide (NO. Here, we show that DGDG contributes to plant NO as well as salicylic acid biosynthesis and is required for the induction of systemic acquired resistance (SAR. In contrast, MGDG regulates the biosynthesis of the SAR signals azelaic acid (AzA and glycerol-3-phosphate (G3P that function downstream of NO. Interestingly, DGDG is also required for AzA-induced SAR, but MGDG is not. Notably, transgenic expression of a bacterial glucosyltransferase is unable to restore SAR in dgd1 plants even though it does rescue their morphological and fatty acid phenotypes. These results suggest that MGDG and DGDG are required at distinct steps and function exclusively in their individual roles during the induction of SAR. : The galactolipids monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG constitute ∼80% of total membrane lipids in plants. Gao et al. now show that these galactolipids function nonredundantly to regulate systemic acquired resistance (SAR. Furthermore, they show that the terminal galactose on the α-galactose-β-galactose head group of DGDG is critical for SAR.

  16. Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity

    International Nuclear Information System (INIS)

    Kunst, L.; Browse, J.; Somerville, C.

    1988-01-01

    The leaf membrane lipids of many plant species, including Arabidopsis thaliana (L.) Heynh., are synthesized by two complementary pathways that are associated with the chloroplast and the endoplasmic reticulum. By screening directly for alterations in lipid acyl-group composition, the authors have identified several mutants of Arabidopsis that lack the plastid pathway because of a deficiency in activity of the first enzyme in the plastid pathway of glycerolipid synthesis, acyl-ACP:sn-glycerol-3-phosphate acyltransferase. The lesion results in an increased synthesis of lipids by the cytoplasmic pathway that largely compensates for the loss of the plastid pathway and provides nearly normal amounts of all the lipids required for chloroplast biogenesis. However, the fatty acid composition of the leaf membrane lipids of the mutants is altered because the acyltransferases associated with the two pathways normally exhibit different substrate specificities. The remarkable flexibility of the system provides an insight into the nature of the regulatory mechanisms that allocate lipids for membrane biogenesis

  17. Polyphophoinositides components of plant nuclear membranes

    International Nuclear Information System (INIS)

    Hendrix, K.W.; Boss, W.F.

    1987-01-01

    The polyphosphoinositides, phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP 2 ), have been shown to be important components in signal transduction in many animal cells. Recently, these lipids have been found to be associated with plasma membrane but not microsomal membrane isolated from fusogenic wild carrot cells; however, in that study the lipids of the nuclear membrane were not analyzed. Since polyphosphoinositides had been shown to be associated with the nuclear membranes as well as the plasma membrane in some animal cells, it was important to determine whether they were associated with plant nuclear membranes as well. Cells were labeled for 18h with [ 3 H] inositol and the nuclei were isolated by a modification of the procedure of Saxena et al. Preliminary lipid analyses indicate lower amount of PIP and PIP 2 in nuclear membranes compared to whole protoplasts. This suggests that the nuclear membranes of carrot cells are not enriched in PIP and PIP 2 ; however, the Triton X-100 used during the nuclear isolation procedure may have affected the recovery of the lipids. Experiments are in progress to determine the effects of Triton X-100 on lipid extraction

  18. Ultrastructural pathology of aortic dissections in patients with Marfan syndrome: Comparison with dissections in patients without Marfan syndrome

    NARCIS (Netherlands)

    Dingemans, Koert P.; Teeling, Peter; van der Wal, Allard C.; Becker, Anton E.

    2006-01-01

    Despite the discovery in 1990 that mutations in the fibrillin-1 gene cause the Marfan syndrome, the pathogenesis of the life-threatening dissections associated with this disease is far from elucidated. Both the massive number of known fibrillin-1 mutations that result in a heterogeneous patient

  19. Increased lipid droplet accumulation associated with a peripheral sensory neuropathy.

    Science.gov (United States)

    Marshall, Lee L; Stimpson, Scott E; Hyland, Ryan; Coorssen, Jens R; Myers, Simon J

    2014-04-01

    Hereditary sensory neuropathy type 1 (HSN-1) is an autosomal dominant neurodegenerative disease caused by missense mutations in the SPTLC1 gene. The SPTLC1 protein is part of the SPT enzyme which is a ubiquitously expressed, critical and thus highly regulated endoplasmic reticulum bound membrane enzyme that maintains sphingolipid concentrations and thus contributes to lipid metabolism, signalling, and membrane structural functions. Lipid droplets are dynamic organelles containing sphingolipids and membrane bound proteins surrounding a core of neutral lipids, and thus mediate the intracellular transport of these specific molecules. Current literature suggests that there are increased numbers of lipid droplets and alterations of lipid metabolism in a variety of other autosomal dominant neurodegenerative diseases, including Alzheimer's and Parkinson's disease. This study establishes for the first time, a significant increase in the presence of lipid droplets in HSN-1 patient-derived lymphoblasts, indicating a potential connection between lipid droplets and the pathomechanism of HSN-1. However, the expression of adipophilin (ADFP), which has been implicated in the regulation of lipid metabolism, was not altered in lipid droplets from the HSN-1 patient-derived lymphoblasts. This appears to be the first report of increased lipid body accumulation in a peripheral neuropathy, suggesting a fundamental molecular linkage between a number of neurodegenerative diseases.

  20. Symbiotic fungal associations in 'lower' land plants.

    Science.gov (United States)

    Read, D J; Ducket, J G; Francis, R; Ligron, R; Russell, A

    2000-06-29

    An analysis of the current state of knowledge of symbiotic fungal associations in 'lower' plants is provided. Three fungal phyla, the Zygomycota, Ascomycota and Basidiomycota, are involved in forming these associations, each producing a distinctive suite of structural features in well-defined groups of 'lower' plants. Among the 'lower' plants only mosses and Equisetum appear to lack one or other of these types of association. The salient features of the symbioses produced by each fungal group are described and the relationships between these associations and those formed by the same or related fungi in 'higher' plants are discussed. Particular consideration is given to the question of the extent to which root fungus associations in 'lower' plants are analogous to 'mycorrhizas' of 'higher' plants and the need for analysis of the functional attributes of these symbioses is stressed. Zygomycetous fungi colonize a wide range of extant lower land plants (hornworts, many hepatics, lycopods, Ophioglossales, Psilotales and Gleicheniaceae), where they often produce structures analogous to those seen in the vesicular-arbuscular (VA) mycorrhizas of higher plants, which are formed by members of the order Glomales. A preponderance of associations of this kind is in accordance with palaeohbotanical and molecular evidence indicating that glomalean fungi produced the archetypal symbioses with the first plants to emerge on to land. It is shown, probably for the first time, that glomalean fungi forming typical VA mycorrhiza with a higher plant (Plantago lanceolata) can colonize a thalloid liverwort (Pellia epiphylla), producing arbuscules and vesicles in the hepatic. The extent to which these associations, which are structurally analogous to mycorrhizas, have similar functions remains to be evaluated. Ascomycetous associations are found in a relatively small number of families of leafy liverworts. The structural features of the fungal colonization of rhizoids and underground axes of

  1. Biogeographical diversity of plant associated microbes in arcto-alpine plants

    NARCIS (Netherlands)

    Kumar, Manoj Gopala Krishnan

    2016-01-01

    Terrestrial plants and microbes have co-evolved since the emergence of the former on Earth. Associations with microorganisms can be either beneficial or detrimental for plants. Microbes can be found in the soil surrounding the plant roots, but also in all plant tissues, including seeds. In

  2. Length and sequence dependence in the association of Huntingtin protein with lipid membranes

    Science.gov (United States)

    Jawahery, Sudi; Nagarajan, Anu; Matysiak, Silvina

    2013-03-01

    There is a fundamental gap in our understanding of how aggregates of mutant Huntingtin protein (htt) with overextended polyglutamine (polyQ) sequences gain the toxic properties that cause Huntington's disease (HD). Experimental studies have shown that the most important step associated with toxicity is the binding of mutant htt aggregates to lipid membranes. Studies have also shown that flanking amino acid sequences around the polyQ sequence directly affect interactions with the lipid bilayer, and that polyQ sequences of greater than 35 glutamine repeats in htt are a characteristic of HD. The key steps that determine how flanking sequences and polyQ length affect the structure of lipid bilayers remain unknown. In this study, we use atomistic molecular dynamics simulations to study the interactions between lipid membranes of varying compositions and polyQ peptides of varying lengths and flanking sequences. We find that overextended polyQ interactions do cause deformation in model membranes, and that the flanking sequences do play a role in intensifying this deformation by altering the shape of the affected regions.

  3. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    Science.gov (United States)

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  4. Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science

    Directory of Open Access Journals (Sweden)

    B. Jansen

    2017-11-01

    Full Text Available The application of lipids in soils as molecular proxies, also often referred to as biomarkers, has dramatically increased in the last decades. Applications range from inferring changes in past vegetation composition, climate, and/or human presence to unraveling the input and turnover of soil organic matter (SOM. The molecules used are extractable and non-extractable lipids, including ester-bound lipids. In addition, the carbon or hydrogen isotopic composition of such molecules is used. While holding great promise, the application of soil lipids as molecular proxies comes with several constraining factors, the most important of which are (i variability in the molecular composition of plant-derived organic matter both internally and between individual plants, (ii variability in (the relative contribution of input pathways into the soil, and (iii the transformation and/or (selective degradation of (some of the molecules once present in the soil. Unfortunately, the information about such constraining factors and their impact on the applicability of molecular proxies is fragmented and scattered. The purpose of this study is to provide a critical review of the current state of knowledge with respect to the applicability of molecular proxies in soil science, specifically focusing on the factors constraining such applicability. Variability in genetic, ontogenetic, and environmental factors influences plant n-alkane patterns in such a way that no unique compounds or specific molecular proxies pointing to, for example, plant community differences or environmental influences, exist. Other components, such as n-alcohols, n-fatty acids, and cutin- and suberin-derived monomers, have received far less attention in this respect. Furthermore, there is a high diversity of input pathways offering both opportunities and limitations for the use of molecular proxies at the same time. New modeling approaches might offer a possibility to unravel such mixed input

  5. Tofacitinib restores the inhibition of reverse cholesterol transport induced by inflammation: understanding the lipid paradox associated with rheumatoid arthritis.

    Science.gov (United States)

    Pérez-Baos, S; Barrasa, J I; Gratal, P; Larrañaga-Vera, A; Prieto-Potin, I; Herrero-Beaumont, G; Largo, R

    2017-09-01

    Patients with active rheumatoid arthritis (RA) have increased cardiovascular mortality, paradoxically associated with reduced circulating lipid levels. The JAK inhibitor tofacitinib ameliorates systemic and joint inflammation in RA with a concomitant increase in serum lipids. We analysed the effect of tofacitinib on the lipid profile of hyperlipidaemic rabbits with chronic arthritis (CA) and on the changes in reverse cholesterol transport (RCT) during chronic inflammation. CA was induced in previously immunized rabbits, fed a high-fat diet, by administering four intra-articular injections of ovalbumin. A group of rabbits received tofacitinib (10 mg·kg -1 ·day -1 ) for 2 weeks. Systemic and synovial inflammation and lipid content were evaluated. For in vitro studies, THP-1-derived macrophages were exposed to high lipid concentrations and then stimulated with IFNγ in the presence or absence of tofacitinib in order to study mediators of RCT. Tofacitinib decreased systemic and synovial inflammation and increased circulating lipid levels. Although it did not modify synovial macrophage density, it reduced the lipid content within synovial macrophages. In foam macrophages in culture, IFNγ further stimulated intracellular lipid accumulation, while the JAK/STAT inhibition provoked by tofacitinib induced lipid release by increasing the levels of cellular liver X receptor α and ATP-binding cassette transporter (ABCA1) synthesis. Active inflammation could be associated with lipid accumulation within macrophages of CA rabbits. JAK inhibition induced lipid release through RCT activation, providing a plausible explanation for the effect of tofacitinib on the lipid profile of RA patients. © 2017 The British Pharmacological Society.

  6. The Sheep Genome Illuminates Biology of the Rumen and Lipid Metabolism

    Science.gov (United States)

    Talbot, Richard; Maddox, Jillian F.; Faraut, Thomas; Wu, Chunhua; Muzny, Donna M.; Li, Yuxiang; Zhang, Wenguang; Stanton, Jo-Ann; Brauning, Rudiger; Barris, Wesley C.; Hourlier, Thibaut; Aken, Bronwen L.; Searle, Stephen M.J.; Adelson, David L.; Bian, Chao; Cam, Graham R.; Chen, Yulin; Cheng, Shifeng; DeSilva, Udaya; Dixen, Karen; Dong, Yang; Fan, Guangyi; Franklin, Ian R.; Fu, Shaoyin; Guan, Rui; Highland, Margaret A.; Holder, Michael E.; Huang, Guodong; Ingham, Aaron B.; Jhangiani, Shalini N.; Kalra, Divya; Kovar, Christie L.; Lee, Sandra L.; Liu, Weiqing; Liu, Xin; Lu, Changxin; Lv, Tian; Mathew, Tittu; McWilliam, Sean; Menzies, Moira; Pan, Shengkai; Robelin, David; Servin, Bertrand; Townley, David; Wang, Wenliang; Wei, Bin; White, Stephen N.; Yang, Xinhua; Ye, Chen; Yue, Yaojing; Zeng, Peng; Zhou, Qing; Hansen, Jacob B.; Kristensen, Karsten; Gibbs, Richard A.; Flicek, Paul; Warkup, Christopher C.; Jones, Huw E.; Oddy, V. Hutton; Nicholas, Frank W.; McEwan, John C.; Kijas, James; Wang, Jun; Worley, Kim C.; Archibald, Alan L.; Cockett, Noelle; Xu, Xun; Wang, Wen; Dalrymple, Brian P.

    2014-01-01

    Sheep (Ovis aries) are a major source of meat, milk and fiber in the form of wool, and represent a distinct class of animals that have a specialized digestive organ, the rumen, which carries out the initial digestion of plant material. We have developed and analyzed a high quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants, compared to non-ruminant animals. PMID:24904168

  7. Maternal lipids in pregnancy are associated with increased offspring cortisol reactivity in childhood.

    Science.gov (United States)

    Mina, Theresia H; Lahti, Marius; Drake, Amanda J; Forbes, Shareen; Denison, Fiona C; Räikkönen, Katri; Norman, Jane E; Reynolds, Rebecca M

    2017-09-01

    Prenatal programming of hypothalamic-pituitary-adrenal (HPA) axis activity has long term implications for offspring health. Biological mechanisms underlying programming of the offspring HPA axis are poorly understood. We hypothesised that altered maternal metabolism including higher maternal obesity, glucose and lipids are novel programming factors for altered offspring HPA axis activity. Salivary cortisol levels were measured in 54 children aged 3-5 years under experimental conditions (before and after a delay of self-gratification test). Associations of child cortisol responses with maternal obesity in early pregnancy and with fasting glucose, triglycerides, HDL and total cholesterol measured in each pregnancy trimester were tested. Higher levels of maternal triglycerides and total cholesterol throughout pregnancy were associated with increased offspring cortisol reactivity. The associations were independent of maternal obesity and other confounders, suggesting that exposure to maternal lipids could be a biological mechanism of in utero programming of the offspring's HPA axis. Copyright © 2017. Published by Elsevier Ltd.

  8. Endoplasmic Reticulum Stress-Associated Lipid Droplet Formation and Type II Diabetes

    Directory of Open Access Journals (Sweden)

    Xuebao Zhang

    2012-01-01

    Full Text Available Diabetes mellitus (DM, a metabolic disorder characterized by hyperglycemia, is caused by insufficient insulin production due to excessive loss of pancreatic β cells (type I diabetes or impaired insulin signaling due to peripheral insulin resistance (type II diabetes. Pancreatic β cell is the only insulin-secreting cell type that has highly developed endoplasmic reticulum (ER to cope with high demands of insulin synthesis and secretion. Therefore, ER homeostasis is crucial to the proper function of insulin signaling. Accumulating evidence suggests that deleterious ER stress and excessive intracellular lipids in nonadipose tissues, such as myocyte, cardiomyocyte, and hepatocyte, cause pancreatic β-cell dysfunction and peripheral insulin resistance, leading to type II diabetes. The excessive deposition of lipid droplets (LDs in specialized cell types, such as adipocytes, hepatocytes, and macrophages, has been found as a hallmark in ER stress-associated metabolic diseases, including obesity, diabetes, fatty liver disease, and atherosclerosis. However, much work remains to be done in understanding the mechanism by which ER stress response regulates LD formation and the pathophysiologic role of ER stress-associated LD in metabolic disease. This paper briefly summarizes the recent advances in ER stress-associated LD formation and its involvement in type II diabetes.

  9. Neutral lipids associated with haemozoin mediate efficient and rapid β-haematin formation at physiological pH, temperature and ionic composition

    Directory of Open Access Journals (Sweden)

    Ambele Melvin A

    2012-10-01

    Full Text Available Abstract Background The malaria parasite disposes of host-derived ferrihaem (iron(IIIprotoporphyrin IX, Fe(IIIPPIX by conversion to crystalline haemozoin in close association with neutral lipids. Lipids mediate synthetic haemozoin (β-haematin formation very efficiently. However, the effect on reaction rates of concentrations of lipid, Fe(IIIPPIX and physiologically relevant ions and biomolecules are unknown. Methods Lipid emulsions containing Fe(IIIPPIX were prepared in aqueous medium (pH 4.8, 37°C to mediate β-haematin formation. The reaction was quenched at various times and free Fe(IIIPPIX measured colorimetrically as a pyridine complex and the kinetics and yields analysed. Products were also characterized by FTIR, TEM and electron diffraction. Autofluorescence was also used to monitor β-haematin formation by confocal microscopy. Results At fixed Fe(IIIPPIX concentration, β-haematin yields remained constant with decreasing lipid concentration until a cut-off ratio was reached whereupon efficiency decreased dramatically. For the haemozoin-associated neutral lipid blend (NLB and monopalmitoylglycerol (MPG, this occurred below a lipid/Fe(IIIPPIX (L/H ratio of 0.54. Rate constants were found to increase with L/H ratio above the cut-off. At 16 μM MPG, Fe(IIIPPIX concentration could be raised until the L/H ratio reached the same ratio before a sudden decline in yield was observed. MPG-mediated β-haematin formation was relatively insensitive to biologically relevant cations (Na+, K+, Mg2+, Ca2+, or anions (H2PO4−, HCO3−, ATP, 2,3-diphosphoglycerate, glutathione. Confocal microscopy demonstrated β-haematin formation occurs in association with the lipid particles. Conclusions Kinetics of β-haematin formation have shown that haemozoin-associated neutral lipids alone are capable of mediating β-haematin formation at adequate rates under physiologically realistic conditions of ion concentrations to account for haemozoin formation.

  10. Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae

    Directory of Open Access Journals (Sweden)

    Yu Wei-Luen

    2011-11-01

    Full Text Available Abstract Microalgae have presented themselves as a strong candidate to replace diminishing oil reserves as a source of lipids for biofuels. Here we describe successful modifications of terrestrial plant lipid content which increase overall lipid production or shift the balance of lipid production towards lipid varieties more useful for biofuel production. Our discussion ranges from the biosynthetic pathways and rate limiting steps of triacylglycerol formation to enzymes required for the formation of triacylglycerol containing exotic lipids. Secondarily, we discuss techniques for genetic engineering and modification of various microalgae which can be combined with insights gained from research in higher plants to aid in the creation of production strains of microalgae.

  11. Hormonal, anthropometric and lipid factors associated with idiopathic pubertal gynecomastia.

    Science.gov (United States)

    Al Alwan, Ibrahim; Al Azkawi, Hanan; Badri, Motasim; Tamim, Hani; Al Dubayee, Mohammed; Tamimi, Waleed

    2013-01-01

    To determine factors associated with pubertal gynecomastia. A cross-sectional study among healthy male school children and adolescents in Riyadh, Saudi Arabia. Subjects were selected from diverse socioeconomic backgrounds. Tanner stage, height, weight, blood hormonal levels (leutilizing hormone [LH], follicle-stimulating hormone [FSH], total testosterone, and estradiol), and anthropometric and lipid parameters (body mass index [BMI], triglycerides, high-density lipoprotein [HDL], and low-density lipoprotein [LDL]), were collected and compared in children with and without gynecomastia. The study included 542 children and adolescents. Median (interquartile range) age in the whole group was 11(8-13) years. The prevalence of gynecomastia was 185/542 (34%), with a peak at age 14. The 2 groups compared had nonsignificant difference in cholesterol (P=.331), LH (P=.215) and FSH (P=.571) levels. Those with gynecomastia were significantly older, had lower gonad stage, had higher anthropometric (height, weight, and BMI), and lipid (triglycerides, HDL, and LDL) values. In multivariate regression analysis, factors significantly associated with gynecomastia were BMI (odds ratio [OR]=1.05; 95%CI 1.00-1.10; P=.013), HDL (OR=0.42; 95%CI 0.19-0.92; P=.03), and gonad (Stage II OR=2.23; 95%CI 1.27-3.92; P=.005, Stage III OR=6.40; 95%CI 2.70-15.0; P gynecomastia tends to increase in mid-puberty. In our setting, BMI, HDL, and gonad stage were the major factors associated with the development of pubertal gynecomastia.

  12. Association of adiposity measures with blood lipids and blood pressure in children aged 8-11 years.

    Science.gov (United States)

    Vizcaíno, Vicente Martínez; Aguilar, Fernando Salcedo; Martínez, Montserrat Solera; López, Mairena Sánchez; Gutiérrez, Ricardo Franquelo; Rodríguez-Artalejo, Fernando

    2007-09-01

    To examine the association of body mass index (BMI), triceps skinfold thickness (TST) and percentage body fat (%BF) from bioelectrical impedance analysis (BIA) with blood lipids, systolic blood pressure (SBP) and diastolic blood pressure (DBP) in children. Cross-sectional study was conducted on 1280 schoolchildren aged 8-11 years from the Cuenca province (Spain). Data collection was conducted under standardized conditions, taking several measurements of each variable to enhance accuracy. Analyses were performed using age-adjusted correlation coefficients, and multiple linear regression adjusted for age, BMI, TST and %BF. Correlations between %BF and apolipoprotein (apo) B, total cholesterol, low-density lipoprotein cholesterol (LDL-c), total cholesterol/HDL-c ratio and DBP were higher than those for BMI and TST. In contrast, the correlations between BMI, and apo A-I and SBP were higher than those for %BF and TST. The results were similar across the sexes. The correlations between each of the three measures of body fatness, and blood lipids and blood pressure were highest in children with greatest BMI and %BF. When analyses were adjusted for the three body fatness measures, %BF showed stronger associations than did BMI or TST with blood lipids and blood pressure, with the exception of apo A-I and SBP, which were more closely associated with BMI. %BF from BIA is more strongly associated than either BMI or TST with most of the blood lipid fractions in schoolchildren aged 8-11 years.

  13. Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells.

    Science.gov (United States)

    Miranda, Ana F; Taha, Mohamed; Wrede, Digby; Morrison, Paul; Ball, Andrew S; Stevenson, Trevor; Mouradov, Aidyn

    2015-01-01

    Numerous strategies have evolved recently for the generation of genetically modified or synthetic microalgae and cyanobacteria designed for production of ethanol, biodiesel and other fuels. In spite of their obvious attractiveness there are still a number of challenges that can affect their economic viability: the high costs associated with (1) harvesting, which can account for up to 50 % of the total biofuel's cost, (2) nutrients supply and (3) oil extraction. Fungal-assisted bio-flocculation of microalgae is gaining increasing attention due to its high efficiency, no need for added chemicals and low energy inputs. The implementation of renewable alternative carbon, nitrogen and phosphorus sources from agricultural wastes and wastewaters for growing algae and fungi makes this strategy economically attractive. This work demonstrates that the filamentous fungi, Aspergillus fumigatus can efficiently flocculate the unicellular cyanobacteria Synechocystis PCC 6803 and its genetically modified derivatives that have been altered to enable secretion of free fatty acids into growth media. Secreted free fatty acids are potentially used by fungal cells as a carbon source for growth and ex-novo production of lipids. For most of genetically modified strains the total lipid yields extracted from the fungal-cyanobacterial pellets were found to be higher than additive yields of lipids and total free fatty acids produced by fungal and Synechocystis components when grown in mono-cultures. The synergistic effect observed in fungal-Synechocystis associations was also found in bioremediation rates when animal husbandry wastewater was used an alternative source of nitrogen and phosphorus. Fungal assisted flocculation can complement and assist in large scale biofuel production from wild-type and genetically modified Synechocystis PCC 6803 strains by (1) efficient harvesting of cyanobacterial cells and (2) producing of high yields of lipids accumulated in fungal-cyanobacterial pellets.

  14. Association of acylated cationic decapeptides with dipalmitoylphosphatidylserine-dipalmitoyl- phosphatidylcholine lipid membranes

    DEFF Research Database (Denmark)

    Pedersen, T. B.; Sabra, Mads Christian; Frokjaer, Sven

    2001-01-01

    decapeptides that are N-terminally linked with C-2, C-8, and C-14 acyl chains contain four basic histidine residues in their identical amino acid sequence. A binding model, based on changes in the intrinsic fluorescent properties of the peptides upon association with the DPPC-DPPS membranes, is used...... DPPC-DPPS lipid mixture. The extent of peptide association deduced from the heat capacity measurements suggests a strong binding and membrane insertion of the C-14 acylated peptide in accordance with the fluorescence measurements....

  15. ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content.

    Science.gov (United States)

    Joseph, Roy; Poschmann, Jeremie; Sukarieh, Rami; Too, Peh Gek; Julien, Sofi G; Xu, Feng; Teh, Ai Ling; Holbrook, Joanna D; Ng, Kai Lyn; Chong, Yap Seng; Gluckman, Peter D; Prabhakar, Shyam; Stünkel, Walter

    2015-06-01

    Individuals who are born small for gestational age (SGA) have a risk to develop various metabolic diseases during their life course. The biological memory of the prenatal state of growth restricted individuals may be reflected in epigenetic alterations in stem cell populations. Mesenchymal stem cells (MSCs) from the Wharton's jelly of umbilical cord tissue are multipotent, and we generated primary umbilical cord MSC isolates from SGA and normal neonates, which were subsequently differentiated into adipocytes. We established chromatin state maps for histone marks H3K27 acetylation and H3K27 trimethylation and tested whether enrichment of these marks was associated with gene expression changes. After validating gene expression levels for 10 significant chromatin immunoprecipitation sequencing candidate genes, we selected acyl-coenzyme A synthetase 1 (ACSL1) for further investigations due to its key roles in lipid metabolism. The ACSL1 gene was found to be highly associated with histone acetylation in adipocytes differentiated from MSCs with SGA background. In SGA-derived adipocytes, the ACSL1 expression level was also found to be associated with increased lipid loading as well as higher insulin sensitivity. ACSL1 depletion led to changes in expression of candidate genes such as proinflammatory chemokines and down-regulated both, the amount of cellular lipids and glucose uptake. Increased ACSL1, as well as modulated downstream candidate gene expression, may reflect the obese state, as detected in mice fed a high-fat diet. In summary, we believe that ACSL1 is a programmable mediator of insulin sensitivity and cellular lipid content and adipocytes differentiated from Wharton's jelly MSCs recapitulate important physiological characteristics of SGA individuals.

  16. Hypoxia-inducible Lipid Droplet-associated (HILPDA) Is a Novel Peroxisome Proliferator-activated Receptor (PPAR) Target Involved in Hepatic Triglyceride Secretion

    NARCIS (Netherlands)

    Mattijsen, F.; Georgiadi, A.; Andasarie, T.; Szalowska, E.; Zota, A.; Krones-Herzig, A.; Kersten, A.H.

    2014-01-01

    Peroxisome proliferator-activated receptors (PPARs) play major roles in the regulation of hepatic lipid metabolism through the control of numerous genes involved in processes such as lipid uptake and fatty acid oxidation. Here we identify hypoxia-inducible lipid droplet-associated (Hilpda/Hig2) as a

  17. Vitamin E in new Generation Lipid Emulsions Protects Against Parenteral Nutrition-Associated Liver disease in Parenteral Nutrition-Fed Preterm Pigs

    DEFF Research Database (Denmark)

    Kenneth, Ng; Stoll, Barbara; Chacko, Shaji

    2016-01-01

    Introduction: Parenteral nutrition (PN) in preterm infants leads to PN-associated liver disease (PNALD). PNALD has been linked to serum accumulation of phytosterols that are abundant in plant oil but absent in fish oil emulsions. Hypothesis: Whether modifying the phytosterol and vitamin E...... composition of soy and fish oil lipid emulsions affects development of PNALD in preterm pigs. Methods: We measured markers of PNALD in preterm pigs that received 14 days of PN that included 1 of the following: (1) Intralipid (IL, 100% soybean oil), (2) Intralipid + vitamin E (ILE, d-α-tocopherol), (3......, OV, and PS compared to IL. Hepatic cholesterol 7-hydroxylase and organic solute transporter-α expression was lower (P E1 fatty acid...

  18. The straight-chain lipid biomarker composition of plant species responsible for the dominant biomass production along two altitudinal transects in the Ecuadorian Andes

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Boris; Nierop, Klaas G.J.; Verstraten, Jacobus M.; Cleef, Antoine M. [Amsterdam Univ., Center for Geo-ecological Research (ICG), Amsterdam (Netherlands); Hageman, Jos A. [Amsterdam Univ., Swammerdam Inst. for Life Sciences (SILS), Amsterdam (Netherlands)

    2006-11-15

    For a detailed reconstruction of historic upper forest line (UFL) positions, new proxies in addition to traditional pollen and vegetation analyses are needed. If the straight-chain lipid composition in plant leaves and roots is specific enough to allow distinction, their records in soils and peat bogs might be used for this purpose. We tested for such distinctiveness by analyzing the n-alkane, n-alcohol, n-aldehyde and wax ester composition in lipid extracts from the leaves and roots of the 19 plant species responsible for the dominant biomass input into soils and peat bogs along two altitudinal transects in the Ecuadorian Andes. We found the combined n-alkane and n-alcohol composition of the leaves of the studied plants to be unique enough in theory to allow for a distinction of the various plant species. The extractable straight-chain lipid concentrations in the roots were generally much lower than in the leaves of the same species, and were in many cases less specific. The n-fatty acids, n-aldehydes and wax ester compositions in leaves as well as roots appeared to be less suited as biomarkers, due to a lower specificity of the n-fatty acids and the absence of the n-aldehydes and wax ester from a significant number of plant species. Furthermore, using cluster analysis we found the combination of n-alkanes and n-alcohols from leaves to give the most meaningful clustering from the point of view of an UFL reconstruction, with all but one paramo grassland species and all but one peat bog species clustering separately from forest species. In addition, a large C{sub 31} /C{sub 27} n-alkane ratio as well as a large C{sub 26} /C{sub 30} n-alcohol ratio were found to be indicative of paramo vegetation (grasses). Both clustering and ratios can help reconstruct past UFL positions if discerning individual species from soil or peat records proves unfeasible. The preservation of the straight-chain lipid signal was tested in soil and peat samples from the study area predating

  19. Physiological Aldosterone Concentrations Are Associated with Alterations of Lipid Metabolism: Observations from the General Population.

    Science.gov (United States)

    Hannich, M; Wallaschofski, H; Nauck, M; Reincke, M; Adolf, C; Völzke, H; Rettig, R; Hannemann, A

    2018-01-01

    Aldosterone and high-density lipoprotein cholesterol (HDL-C) are involved in many pathophysiological processes that contribute to the development of cardiovascular diseases. Previously, associations between the concentrations of aldosterone and certain components of the lipid metabolism in the peripheral circulation were suggested, but data from the general population is sparse. We therefore aimed to assess the associations between aldosterone and HDL-C, low-density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, or non-HDL-C in the general adult population. Data from 793 men and 938 women aged 25-85 years who participated in the first follow-up of the Study of Health in Pomerania were obtained. The associations of aldosterone with serum lipid concentrations were assessed in multivariable linear regression models adjusted for sex, age, body mass index (BMI), estimated glomerular filtration rate (eGFR), and HbA1c. The linear regression models showed statistically significant positive associations of aldosterone with LDL-C ( β -coefficient = 0.022, standard error = 0.010, p = 0.03) and non-HDL-C ( β -coefficient = 0.023, standard error = 0.009, p = 0.01) as well as an inverse association of aldosterone with HDL-C ( β -coefficient = -0.022, standard error = 0.011, p = 0.04). The present data show that plasma aldosterone is positively associated with LDL-C and non-HDL-C and inversely associated with HDL-C in the general population. Our data thus suggests that aldosterone concentrations within the physiological range may be related to alterations of lipid metabolism.

  20. [Cloning, mutagenesis and symbiotic phenotype of three lipid transfer protein encoding genes from Mesorhizobium huakuii 7653R].

    Science.gov (United States)

    Li, Yanan; Zeng, Xiaobo; Zhou, Xuejuan; Li, Youguo

    2016-12-04

    Lipid transfer protein superfamily is involved in lipid transport and metabolism. This study aimed to construct mutants of three lipid transfer protein encoding genes in Mesorhizobium huakuii 7653R, and to study the phenotypes and function of mutations during symbiosis with Astragalus sinicus. We used bioinformatics to predict structure characteristics and biological functions of lipid transfer proteins, and conducted semi-quantitative and fluorescent quantitative real-time PCR to analyze the expression levels of target genes in free-living and symbiotic conditions. Using pK19mob insertion mutagenesis to construct mutants, we carried out pot plant experiments to observe symbiotic phenotypes. MCHK-5577, MCHK-2172 and MCHK-2779 genes encoding proteins belonged to START/RHO alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) superfamily, involved in lipid transport or metabolism, and were identical to M. loti at 95% level. Gene relative transcription level of the three genes all increased compared to free-living condition. We obtained three mutants. Compared with wild-type 7653R, above-ground biomass of plants and nodulenitrogenase activity induced by the three mutants significantly decreased. Results indicated that lipid transfer protein encoding genes of Mesorhizobium huakuii 7653R may play important roles in symbiotic nitrogen fixation, and the mutations significantly affected the symbiotic phenotypes. The present work provided a basis to study further symbiotic function mechanism associated with lipid transfer proteins from rhizobia.

  1. Characterization of Oilseed Lipids from “DHA-Producing Camelina sativa”: A New Transformed Land Plant Containing Long-Chain Omega-3 Oils

    Directory of Open Access Journals (Sweden)

    Maged P. Mansour

    2014-02-01

    Full Text Available New and sustainable sources of long-chain (LC, ≥C20 omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3 are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG as the major lipid class in hexane extracts (96% of total lipid. Subsequent chloroform-methanol (CM extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3 in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C16–C22 fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols.

  2. Lipid Droplet Formation Is Dispensable for Endoplasmic Reticulum-associated Degradation*

    OpenAIRE

    Olzmann, James A.; Kopito, Ron R.

    2011-01-01

    Proteins that fail to fold or assemble in the endoplasmic reticulum (ER) are destroyed by cytoplasmic proteasomes through a process known as ER-associated degradation. Substrates of this pathway are initially sequestered within the ER lumen and must therefore be dislocated across the ER membrane to be degraded. It has been proposed that generation of bicellar structures during lipid droplet formation may provide an “escape hatch” through which misfolded proteins, toxins, and viruses can exit ...

  3. Simulated microgravity impacts the plant plasmalemma lipid bilayer

    Science.gov (United States)

    Nedukha, Olena; Berkovich, Yuliy A.; Vorobyeva, Tamara; Grakhov, Volodimir; Klimenko, Elena; Zhupanov, Ivan; Jadko, Sergiy

    Biological membranes, especially the plasmalemma, and their properties and functions can be considered one of the most sensitive indicators of gravity interaction or alteration of gravity, respectively. Studies on the molecular basis of cellular signal perception and transduction are very important in order to understand signal responses at the cellular and organism level. The plasmalemma lipid bilayer is the boundary between the cell internal and external environment and mediates communication between them. Therefore, we studied the content and composition of lipids, saturated and unsaturated fatty acids, sterols, and microviscosity in the plasmalemma isolated from pea seedling roots and epicotyls grown in the stationary conditions and under slow horizontal clinorotation. In addition, lipid peroxidation intensity of intact roots was also identified. The plasmalemma fraction was isolated by the two-phase aquatic-polymer system optimized for pea using a centrifuge Optima L-90K. Lipid bilayer components were determined by using highly effective liquid chromatography with a system Angilent 1100 (Germany). Spontaneous chemiluminescence intensity was measured with a chemiluminometer ChLMTS-01. The obtained data showed that plasmalemma investigated parameters are sensitive to clinorotation, namely: increasing or decreasing the different lipids content, among which, phospho- and glycolipids were dominated, as well as changes in the content of saturated and unsaturated fatty acids and sterols. A degree of plasmalemma sensitivity to clinorotation was higher for the root plasmalemma than epicocotyl ones. This distinguish may be naturally explained by the differences in the structure, cell types, growth, and specific functions of a root and an epicotyl, those are the most complicated in roots. An index of unsaturation under clinorotation was similar to that in the stationary conditions as a result of the certain balance between changes in the content of saturated and

  4. GENOMIQUE ET LIPIDES Génomique et métabolisme des lipides des plantes

    Directory of Open Access Journals (Sweden)

    Delseny Michel

    2002-03-01

    Full Text Available Il existe dans les bases de données publiques une énorme quantité de séquences d’ADN dérivées de plantes, et notamment la séquence complète du génome d’Arabidopsis thaliana, une plante modèle pour les oléagineux, proche parente du colza. Ces données constituent une ressource importante non seulement pour la compréhension de métabolisme lipidique et de sa régulation, mais aussi pour la sélection et le développement de variétés nouvelles d’oléagineux produisant davantage d’huiles ou des huiles de composition nouvelle. Cette abondance de séquences peut être exploitée, en utilisant les recherches d’homologies, pour identifier les gènes, pour obtenir des informations sur leur fonction, comme pour repérer des gènes candidats codant des fonctions nouvelles. L’analyse de ces bases de données a révélé que la majeure partie des gènes codant des enzymes impliquées dans le métabolisme lipidique appartient à des petites familles multigéniques, reflétant la diversification des fonctions des isoformes. Une analyse du catalogue des ADNc séquencés en aveugle reflète les niveaux d’expression des différents gènes et fournit un aperçu des régulations des flux au travers des voies métaboliques conduisant à la biosynthèse des lipides de réserve. La disponibilité de mutants et de lignées transgéniques d’Arabidopsis et le développement de puces à ADN qui permettent l’analyse simultanée de plusieurs milliers de gènes conduiront à une meilleure compréhension des facteurs qui régulent le métabolisme des huiles dans les graines. Une telle connaissance facilitera la manipulation de la composition des huiles et des quantités produites dans les graines.

  5. Lipid droplet size and location in human skeletal muscle fibers are associated with insulin sensitivity

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Christensen, Anders E; Nellemann, Birgitte

    2017-01-01

    In skeletal muscle, an accumulation of lipid droplets (LDs) in the subsarcolemmal space is associated with insulin resistance, but the underlying mechanism is not clear. We aimed to investigate how the size, number and location of LDs are associated with insulin sensitivity and muscle fiber types...... are associated with insulin resistance in skeletal muscle....

  6. Physiological Aldosterone Concentrations Are Associated with Alterations of Lipid Metabolism: Observations from the General Population

    Directory of Open Access Journals (Sweden)

    M. Hannich

    2018-01-01

    Full Text Available Objective. Aldosterone and high-density lipoprotein cholesterol (HDL-C are involved in many pathophysiological processes that contribute to the development of cardiovascular diseases. Previously, associations between the concentrations of aldosterone and certain components of the lipid metabolism in the peripheral circulation were suggested, but data from the general population is sparse. We therefore aimed to assess the associations between aldosterone and HDL-C, low-density lipoprotein cholesterol (LDL-C, total cholesterol, triglycerides, or non-HDL-C in the general adult population. Methods. Data from 793 men and 938 women aged 25–85 years who participated in the first follow-up of the Study of Health in Pomerania were obtained. The associations of aldosterone with serum lipid concentrations were assessed in multivariable linear regression models adjusted for sex, age, body mass index (BMI, estimated glomerular filtration rate (eGFR, and HbA1c. Results. The linear regression models showed statistically significant positive associations of aldosterone with LDL-C (β-coefficient = 0.022, standard error = 0.010, p=0.03 and non-HDL-C (β-coefficient = 0.023, standard error = 0.009, p=0.01 as well as an inverse association of aldosterone with HDL-C (β-coefficient = −0.022, standard error = 0.011, p=0.04. Conclusions. The present data show that plasma aldosterone is positively associated with LDL-C and non-HDL-C and inversely associated with HDL-C in the general population. Our data thus suggests that aldosterone concentrations within the physiological range may be related to alterations of lipid metabolism.

  7. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Vrablik, Tracy L. [Washington State Univ., Pullman, WA (United States); Petyuk, Vladislav A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larson, Emily M. [Washington State Univ., Pullman, WA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Watts, Jennifer [Washington State Univ., Pullman, WA (United States)

    2015-06-27

    Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified C. elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols was rich in fatty acid species obtained from the dietary E. coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type and high-fat daf-2 mutant strains shows a relative decrease of MDT-28 abundance in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans.

  8. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Pribyl, Pavel; Cepak, Vladislav [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Algological Centre and Centre for Bioindication and Revitalization; Zachleder, Vilem [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Lab. of the Cell Cycles of Algae

    2012-04-15

    We tested 10 different Chlorella and Parachlorella strains under lipid induction growth conditions in autotrophic laboratory cultures. Between tested strains, substantial differences in both biomass and lipid productivity as well as in the final content of lipids were found. The most productive strain (Chlorella vulgaris CCALA 256) was subsequently studied in detail. The availability of nitrates and/or phosphates strongly influenced growth and accumulation of lipids in cells by affecting cell division. Nutrient limitation substantially enhanced lipid productivity up to a maximal value of 1.5 g l{sup -1} day{sup -1}. We also demonstrated the production of lipids through large-scale cultivation of C. vulgaris in a thin layer photobioreactor, even under suboptimal conditions. After 8 days of cultivation, maximal lipid productivity was 0.33 g l{sup -1} day{sup -1}, biomass density was 5.7 g l{sup -1} dry weight and total lipid content was more than 30% dry weight. C. vulgaris lipids comprise fatty acids with a relatively high degree of saturation compared with canola oil offering a possible alternative to the use of higher plant oils. (orig.)

  9. Specific Lipids Modulate the Transporter Associated with Antigen Processing (TAP)

    DEFF Research Database (Denmark)

    Scholz, C.; Parcej, D.; Ejsing, C. S.

    2011-01-01

    and structural analysis of this ATP-binding cassette complex, we established the overexpression of TAP in the methylotrophic yeast Pichia pastoris. Screening of optimal solubilization and purification conditions allowed the isolation of the heterodimeric transport complex, yielding 30 mg of TAP/liter of culture....... Detailed analysis of TAP function in the membrane, solubilized, purified, and reconstituted states revealed a direct influence of the native lipid environment on activity. TAP-associated phospholipids, essential for function, were profiled by liquid chromatography Fourier transform mass spectrometry...

  10. Expression of mouse MGAT in Arabidopsis results in increased lipid accumulation in seeds

    Directory of Open Access Journals (Sweden)

    Anna eEl Tahchy

    2015-12-01

    Full Text Available Worldwide demand for vegetable oil is projected to double within the next thirty years due to increasing food, fuel and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. Monoacylglycerol acyltransferase (MGAT is predominantly associated with lipid absorption and resynthesis in the animal intestine where it catalyses monoacylglycerol (MAG to form diacylglycerol (DAG, and then triacylglycerol (TAG. In contrast plant lipid biosynthesis routes do not include MGAT. Rather, DAG and TAG are either synthesized from glycerol-3-phosphate (G-3-P by a series of three subsequent acylation reactions, or originate from phospholipids via an acyl editing pathway. Mouse MGATs 1 and 2 have been shown to increase oil content transiently in Nicotiana benthamiana leaf tissue by 2.6 fold. Here we explore the feasibility of this approach to increase TAG in Arabidopsis thaliana seed. The stable MGAT2 expression resulted in a significant increase in seed oil content by 1.32 fold. We also report evidence of the MGAT2 activity based on in vitro assays. Up to 3.9 fold increase of radiolabelled DAG were produced in seed lysate which suggest that the transgenic MGAT activity can result in DAG re-synthesis by salvaging the MAG product of lipid breakdown. The expression of MGAT2 therefore creates an independent and complementary TAG biosynthesis route to the endogenous Kennedy pathway and other glycerolipid synthesis routes.

  11. Characterization of five typical agave plants used to produce mezcal through their simple lipid composition analysis by gas chromatography.

    Science.gov (United States)

    Martínez-Aguilar, Juan Fco; Peña-Alvarez, Araceli

    2009-03-11

    Five agave plants typically used in Mexico for making mezcal in places included in the Denomination of Origin (Mexican federal law that establishes the territory within which mezcal can be produced) of this spirit were analyzed: Agave salmiana ssp. crassispina, A. salmiana var. salmiana, Agave angustifolia, Agave cupreata, and Agave karwinskii. Fatty acid and total simple lipid profiles of the mature heads of each plant were determined by means of a modified Bligh-Dyer extraction and gas chromatography. Sixteen fatty acids were identified, from capric to lignoceric, ranging from 0.40 to 459 microg/g of agave. Identified lipids include free fatty acids, beta-sitosterol, and groups of mono-, di-, and triacylglycerols, their total concentration ranging from 459 to 992 microg/g of agave. Multivariate analyses performed on the fatty acid profiles showed a close similarity between A. cupreata and A. angustifolia. This fact can be ascribed to the taxa themselves or differences in growing conditions, an issue that is still to be explored. These results help to characterize the agaves chemically and can serve to relate the composition of mezcals from various states of Mexico with the corresponding raw material.

  12. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex.

    Science.gov (United States)

    Martín, Virginia; Fabelo, Noemí; Santpere, Gabriel; Puig, Berta; Marín, Raquel; Ferrer, Isidre; Díaz, Mario

    2010-01-01

    Lipid rafts are membrane microdomains intimately associated with cell signaling. These biochemical microstructures are characterized by their high contents of sphingolipids, cholesterol and saturated fatty acids and a reduced content of polyunsaturated fatty acids (PUFA). Here, we have purified lipid rafts of human frontal brain cortex from normal and Alzheimer's disease (AD) and characterized their biochemical lipid composition. The results revealed that lipid rafts from AD brains exhibit aberrant lipid profiles compared to healthy brains. In particular, lipid rafts from AD brains displayed abnormally low levels of n-3 long chain polyunsaturated fatty acids (LCPUFA, mainly 22:6n-3, docosahexaenoic acid) and monoenes (mainly 18:1n-9, oleic acid), as well as reduced unsaturation and peroxidability indexes. Also, multiple relationships between phospholipids and fatty acids were altered in AD lipid rafts. Importantly, no changes were observed in the mole percentage of lipid classes and fatty acids in rafts from normal brains throughout the lifespan (24-85 years). These indications point to the existence of homeostatic mechanisms preserving lipid raft status in normal frontal cortex. The disruption of such mechanisms in AD brains leads to a considerable increase in lipid raft order and viscosity, which may explain the alterations in lipid raft signaling observed in AD.

  13. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins

    Directory of Open Access Journals (Sweden)

    Pablo Esteban Morales

    2017-01-01

    Full Text Available Skeletal muscle is one of the main regulators of carbohydrate and lipid metabolism in our organism, and therefore, it is highly susceptible to changes in glucose and fatty acid (FA availability. Skeletal muscle is an extremely complex tissue: its metabolic capacity depends on the type of fibers it is made up of and the level of stimulation it undergoes, such as acute or chronic contraction. Obesity is often associated with increased FA levels, which leads to the accumulation of toxic lipid intermediates, oxidative stress, and autophagy in skeletal fibers. This lipotoxicity is one of the most common causes of insulin resistance (IR. In this scenario, the “isolation” of certain lipids in specific cell compartments, through the action of the specific lipid droplet, perilipin (PLIN family of proteins, is conceived as a lifeguard compensatory strategy. In this review, we summarize the cellular mechanism underlying lipid mobilization and metabolism inside skeletal muscle, focusing on the function of lipid droplets, the PLIN family of proteins, and how these entities are modified in exercise, obesity, and IR conditions.

  14. Postpartum weight retention is associated with elevated ratio of oxidized LDL lipids to HDL-cholesterol.

    Science.gov (United States)

    Puhkala, Jatta; Luoto, Riitta; Ahotupa, Markku; Raitanen, Jani; Vasankari, Tommi

    2013-12-01

    Oxidized LDL lipids (ox-LDL) are associated with lifestyle diseases such as cardiovascular diseases, metabolic syndrome and type 2 diabetes. The present study investigated how postpartum weight retention effects on ox-LDL and serum lipids. The study is a nested comparative research of a cluster-randomized controlled trial, NELLI (lifestyle and counselling during pregnancy). During early pregnancy (8-12 weeks) and 1 year postpartum, 141 women participated in measurements for determining of plasma lipids: total cholesterol (T-C), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), triacylglycerols (TAG) and ox-LDL. Subjects were stratified into tertiles (weight loss, unaltered weight and weight gain groups) based on their weight change from baseline to follow-up. Ox-LDL was determined by baseline level of conjugated dienes in LDL lipids. Among the group of weight gainers, concentration of TAG reduced less (-0.14 vs. -0.33, p = 0.002), HDL-C reduced more (-0.31 vs. -0.16, p = 0.003) and ox-LDL/HDL-C ratio increased (3.0 vs. -0.2, p = 0.003) when compared to group of weight loss. Both T-C and LDL-C elevated more (0.14 vs. -0.21, p = 0.008; 0.31 vs. 0.07, p = 0.015) and TAG and ox-LDL reduced less (-0.33 vs. 0.20, p = 0.033; -3.33 vs. -0.68, p = 0.026) in unaltered weight group compared to weight loss group. The women who gained weight developed higher TAG and ox-LDL/HDL-C ratio as compared to those who lost weight. Postpartum weight retention of 3.4 kg or more is associated with atherogenic lipid profile.

  15. Mitochondrial GWA Analysis of Lipid Profile Identifies Genetic Variants to Be Associated with HDL Cholesterol and Triglyceride Levels.

    Directory of Open Access Journals (Sweden)

    Antònia Flaquer

    Full Text Available It has been suggested that mitochondrial dysfunction has an influence on lipid metabolism. The fact that mitochondrial defects can be accumulated over time as a normal part of aging may explain why cholesterol levels often are altered with age. To test the hypothesis whether mitochondrial variants are associated with lipid profile (total cholesterol, LDL, HDL, and triglycerides we analyzed a total number of 978 mitochondrial single nucleotide polymorphisms (mtSNPs in a sample of 2,815 individuals participating in the population-based KORA F4 study. To assess mtSNP association while taking the presence of heteroplasmy into account we used the raw signal intensity values measured on the microarray and applied linear regression. Ten mtSNPs (mt3285, mt3336, mt5285, mt6591, mt6671, mt9163, mt13855, mt13958, mt14000, and mt14580 were significantly associated with HDL cholesterol and one mtSNP (mt15074 with triglycerides levels. These results highlight the importance of the mitochondrial genome among the factors that contribute to the regulation of lipid levels. Focusing on mitochondrial variants may lead to further insights regarding the underlying physiological mechanisms, or even to the development of innovative treatments. Since this is the first mitochondrial genome-wide association analysis (mtGWAS for lipid profile, further analyses are needed to follow up on the present findings.

  16. Influence of thylakoid membrane lipids on the structure of aggregated light-harvesting complexes of the diatom Thalassiosira pseudonana and the green alga Mantoniella squamata.

    Science.gov (United States)

    Schaller-Laudel, Susann; Latowski, Dariusz; Jemioła-Rzemińska, Małgorzata; Strzałka, Kazimierz; Daum, Sebastian; Bacia, Kirsten; Wilhelm, Christian; Goss, Reimund

    2017-07-01

    The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light-harvesting complexes (LHCs). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana-stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the fucoxanthin chlorophyll protein (FCP) complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X-100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macroaggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid-induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana-stroma differentiation. © 2017 Scandinavian Plant Physiology Society.

  17. Fasting time and lipid parameters: association with hepatic steatosis — data from a random population sample

    Science.gov (United States)

    2014-01-01

    Background Current guidelines recommend measuring plasma lipids in fasting patients. Recent studies, however, suggest that variation in plasma lipid concentrations secondary to fasting time may be minimal. Objective of the present study was to investigate the impact of fasting time on plasma lipid concentrations (total cholesterol, HDL and LDL cholesterol, triglycerides). A second objective was to determine the effect of non-alcoholic fatty liver disease exerted on the above-mentioned lipid levels. Method Subjects participating in a population-based cross-sectional study (2,445 subjects; 51.7% females) were questioned at time of phlebotomy regarding duration of pre-phlebotomy fasting. Total cholesterol, LDL and HDL cholesterol, and triglycerides were determined and correlated with length of fasting. An upper abdominal ultrasonographic examination was performed and body-mass index (BMI) and waist-to-hip ratio (WHR) were calculated. Subjects were divided into three groups based on their reported fasting periods of 1–4 h, 4–8 h and > 8 h. After application of the exclusion criteria, a total of 1,195 subjects (52.4% females) were included in the study collective. The Kruskal-Wallis test was used for continuous variables and the chi-square test for categorical variables. The effects of age, BMI, WHR, alcohol consumption, fasting time and hepatic steatosis on the respective lipid variables were analyzed using multivariate logistic regression. Results At multivariate analysis, fasting time was associated with elevated triglycerides (p = 0.0047 for 1–4 h and p = 0.0147 for 4–8 h among females; p fasting period. LDL cholesterol and triglycerides exhibit highly significant variability; the greatest impact is seen with the triglycerides. Fasting time represents an independent factor for reduced LDL cholesterol and elevated triglyceride concentrations. There is a close association between elevated lipids and hepatic steatosis. PMID:24447492

  18. Association of apolipoprotein e gene polymorphisms with blood lipids and their interaction with dietary factors

    DEFF Research Database (Denmark)

    Shatwan, Israa M.; Winther, Kristian Hillert; Ellahi, Basma

    2018-01-01

    of two single nucleotide polymorphisms (SNPs) at LPL, seven tagging SNPs at the APOE gene, and a common APOE haplotype (two SNPs) with blood lipids, and examined the interaction of these SNPs with dietary factors. Methods: The population studied for this investigation included 660 individuals from...... the Prevention of Cancer by Intervention with Selenium (PRECISE) study who supplied baseline data. The findings of the PRECISE study were further replicated using 1238 individuals from the Caerphilly Prospective cohort (CaPS). Dietary intake was assessed using a validated food-frequency questionnaire (FFQ......Background: Several candidate genes have been identified in relation to lipid metabolism, and among these, lipoprotein lipase (LPL) and apolipoprotein E (APOE) gene polymorphisms are major sources of genetically determined variation in lipid concentrations. This study investigated the association...

  19. Antiproliferative effects of γ-tocotrienol are associated with lipid raft disruption in HER2-positive human breast cancer cells.

    Science.gov (United States)

    Alawin, Osama A; Ahmed, Rayan A; Ibrahim, Baher A; Briski, Karen P; Sylvester, Paul W

    2016-01-01

    A large percentage of human breast cancers are characterized by excessive or aberrant HER2 activity. Lipid rafts are specialized microdomains within the plasma membrane that are required for HER2 activation and signal transduction. Since the anticancer activity of γ-tocotrienol is associated with suppression in HER2 signaling, studies were conducted to examine the effects of γ-tocotrienol on HER2 activation within the lipid raft microdomain in HER2-positive SKBR3 and BT474 human breast cancer cells. Treatment with 0-5μM γ-tocotrienol induced a significant dose-dependent inhibition in cancer cell growth after a 5-day culture period, and these growth inhibitory effects were associated with a reduction in HER2 dimerization and phosphorylation (activation). Phosphorylated HER2 was found to be primarily located in the lipid raft microdomain of the plasma membrane in vehicle-treated control groups, whereas γ-tocotrienol treatment significantly inhibited this effect. Assay of plasma membrane subcellular fractions showed that γ-tocotrienol also accumulates exclusively within the lipid raft microdomain. Hydroxypropyl-β-cyclodextrin (HPβCD) is an agent that disrupts lipid raft integrity. Acute exposure to 3mM HPβCD alone had no effect, whereas an acute 24-h exposure to 20μM γ-tocotrienol alone significantly decreased SKBR3 and BT474 cell viability. However, combined treatment with these agents greatly reduced γ-tocotrienol accumulation in the lipid raft microdomain and cytotoxicity. In summary, these findings demonstrate that the anticancer effects of γ-tocotrienol are associated with its accumulation in the lipid raft microdomain and subsequent interference with HER2 dimerization and activation in SKBR3 and BT474 human breast cancer cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Peng, Debby

    2013-01-01

    Biological membranes are complex, and the mechanisms underlying their homeostasis are incompletely understood. Here, we present a quantitative genetic interaction map (E-MAP) focused on various aspects of lipid biology, including lipid metabolism, sorting, and trafficking. This E-MAP contains ∼250......,000 negative and positive genetic interaction scores and identifies a molecular crosstalk of protein quality control pathways with lipid bilayer homeostasis. Ubx2p, a component of the endoplasmic-reticulum-associated degradation pathway, surfaces as a key upstream regulator of the essential fatty acid (FA...

  1. Lipid and Alzheimer's disease genes associated with healthy aging and longevity in healthy oldest-old.

    Science.gov (United States)

    Tindale, Lauren C; Leach, Stephen; Spinelli, John J; Brooks-Wilson, Angela R

    2017-03-28

    Several studies have found that long-lived individuals do not appear to carry lower numbers of common disease-associated variants than ordinary people; it has been hypothesized that they may instead carry protective variants. An intriguing type of protective variant is buffering variants that protect against variants that have deleterious effects. We genotyped 18 variants in 15 genes related to longevity or healthy aging that had been previously reported as having a gene-gene interaction or buffering effect. We compared a group of 446 healthy oldest-old 'Super-Seniors' (individuals 85 or older who have never been diagnosed with cancer, cardiovascular disease, dementia, diabetes or major pulmonary disease) to 421 random population-based midlife controls. Cases and controls were of European ancestry. Association tests of individual SNPs showed that Super-Seniors were less likely than controls to carry an APOEε4 allele or a haptoglobin HP2 allele. Interactions between APOE/FOXO3, APOE/CRYL1, and LPA/CRYL1 did not remain significant after multiple testing correction. In a network analysis of the candidate genes, lipid and cholesterol metabolism was a common theme. APOE, HP, and CRYL1 have all been associated with Alzheimer's Disease, the pathology of which involves lipid and cholesterol pathways. Age-related changes in lipid and cholesterol maintenance, particularly in the brain, may be central to healthy aging and longevity.

  2. Association between dietary patterns and blood lipid profiles in Korean adults with type 2 diabetes.

    Science.gov (United States)

    Lim, Jeong Hyun; Lee, Yeon-Sook; Chang, Hak Chul; Moon, Min Kyong; Song, YoonJu

    2011-09-01

    We aimed to explore the associations of dietary patterns with blood lipid profiles and obesity in adults with type 2 diabetes. The data were obtained from the Forth Korean National Health and Nutrition Examination Survey, 2007-2008. Adults 30 yr or older, from which had both biochemical and dietary data were obtained. Among them, 680 subjects were defined as having diabetes based on criteria of fasting glucose ≥ 126 mg/dL, anti-diabetic treatment, or previously diagnosed diabetes. Dietary data from a 24-hr recall were used to derive dietary patterns by factor analysis. Four dietary patterns by factor analysis were identified: 'Bread & Meat & Alcohol', 'Noodles & Seafood', 'Rice & Vegetables', and 'Korean Healthy' patterns. Serum cholesterol levels in the highest quartile of the 'Bread & Meat & Alcohol' pattern were significantly higher compared with those in the lowest quartile. In addition, total cholesterol and triglyceride levels in the highest quartile of the 'Korean Healthy' pattern were significantly lower after adjusting for potential confounders. Dietary patterns of adults with diabetes were found to be associated with blood lipid profiles. 'Korean Healthy' pattern including whole grains, legumes, vegetables, and fruits could thus improve lipid profiles among those with type 2 diabetes.

  3. LIPID PROFILE OF CIRRHOTIC PATIENTS AND ITS ASSOCIATION WITH PROGNOSTIC SCORES: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Lílian BASSANI

    2015-09-01

    Full Text Available BackgroundIn cirrhosis the production of cholesterol and lipoproteins is altered.ObjectiveEvaluate the lipid profile by measuring total cholesterol, very low-density lipoprotein, low-density lipoprotein, high-density lipoprotein and triglyceride levels in patients with cirrhosis caused by alcoholism and/or hepatitis C virus infection and determine its association with Child-Pugh and MELD scores.MethodsCross-sectional retrospective study of patients treated at the outpatient clinic in Porto Alegre, Brazil, from 2006 to 2010.ResultsIn total, 314 records were reviewed, and 153 (48.7% met the inclusion criteria, of which 82 (53.6% had cirrhosis that was due to hepatitis C virus infection, 50 (32.7% were due to alcoholism, and 21 (13.7% were due to alcoholism and hepatitis C virus infection. The total cholesterol levels diminished with a Child-Pugh progression (P20 was associated with lower total cholesterol levels (<100mg/dL; P<0.001, very low-density lipoprotein (<16 mg/dL; P=0.006, and low-density lipoprotein (<70 mg/dL; P=0.003. Inverse and statistically significant correlations were observed between Child-Pugh and all the lipid fractions analyzed (P<0.001. The increase in MELD was inversely correlated with reduced levels intotal cholesterol (P<0.001, high-density lipoprotein (P<0.001, low-density lipoprotein (P<0.001, very low-density lipoprotein (P=0.030 and triglyceride (P=0.003.ConclusionA reduction in the lipid profile in patients with cirrhosis due to hepatitis C virus infection and/or alcoholism was significantly associated with the Child-Pugh and MELD prognostic markers. These results suggest that the lipid profile may be used as a tool to assist in evaluating liver disease.

  4. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel.

    Science.gov (United States)

    Cheirsilp, Benjamas; Louhasakul, Yasmi

    2013-08-01

    Two strategies of converting industrial wastes to microbial lipid and direct transesterification of obtained lipid into biodiesel were attempted. Several oleaginous yeasts were cultivated on industrial wastes. The yeasts grew well on the wastes with low C/N ratio (i.e. serum latex) but accumulated high lipid content only when the wastes had a high C/N ratio (i.e. palm oil mill effluent and crude glycerol). The yeast lipids have similar fatty acid composition to that of plant oil indicating their potential use as biodiesel feedstocks. The combination of these wastes and two-phase cultivation for cell growth and lipid accumulation improved lipid productivity of the selected yeast. The direct transesterification process that eliminates cell drying and lipid extraction steps, gave comparable yield of biodiesel (fatty acid methyl ester >70% within 1h) to that of conventional method. These two successful strategies may contribute greatly to industrializing oil production from microbes and industrial wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Protein/lipid coaggregates are formed during α-synuclein-induced disruption of lipid bilayers

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Langkilde, Annette Eva

    2014-01-01

    Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including the molec......Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including...... the molecular mechanisms behind potential amyloid-mediated toxic effects, is still missing. Interaction between amyloid aggregates and the lipid cell membrane is expected to play a key role in the disease progress. Here, we present experimental data based on hybrid analysis of two-photon-microscopy, solution...... small-angle X-ray scattering and circular dichroism data. Data show in real time changes in liposome morphology and stability upon protein addition and reveal that membrane disruption mediated by amyloidogenic αSN is associated with dehydration of anionic lipid membranes and stimulation of protein...

  6. Association of antioxidative enzymes with the synergistic effect of selenium and UV irradiation in enhancing plant growth

    Directory of Open Access Journals (Sweden)

    T. XUE

    2008-12-01

    Full Text Available Selenium (Se is able to defend human and animal cells against UV(B stress. Higher plants are generally considered not to require Se but to have a low tolerance to it. However, recently it has been demonstrated that Se is able to protect also plants against UV-induced oxidative stress and even to promote the growth of plants subjected to high-energy light. In the present study the effects of Se on antioxidative enzymes possibly associated with this synergistic effect were investigated. Ryegrass and lettuce were grown in soil supplemented with Se at 0, 0.1 or 1.0 mg kg-1 under normal light or subjected to UV episodes. Lipid peroxidation and the changes of antioxidative enzymes were measured at two growing stages. The positive synergistic effect of the lower Se dosage and UV was found to be at least partly associated with the antioxidative role of Se through increased glutathione peroxidase (GSH-Px and catalase (CAT activity, whereas ascorbate peroxidase (APX responded negatively to both factors. The contribution of the other enzymes studied seemed to be plant-specific: glutathione S-transferase (GST increased in both ryegrass assays and superoxide dismutase (SOD in the first lettuce assay. At the higher addition level Se acted as a pro-oxidant and diminished fresh weight yields. UV irradiation alleviated the toxicity coincidently with increase of CAT in ryegrass and SOD in lettuce.;

  7. Blood lipid levels associate with childhood asthma, airway obstruction, bronchial hyperresponsiveness, and aeroallergen sensitization

    DEFF Research Database (Denmark)

    Vinding, Rebecca K; Stokholm, Jakob; Chawes, Bo Lund Krogsgaard

    2016-01-01

    -density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglyceride levels were measured at ages 5 to 7 years in the Copenhagen Prospective Studies on Asthma in Childhood2000 at-risk birth cohort. Asthma and allergic rhinitis were diagnosed based on predefined algorithms at age 7 years along......BACKGROUND: Studies of children's blood lipid profiles in relation to asthma are few, and the results are ambiguous. OBJECTIVE: We sought to examine whether the lipid profile is associated with concurrent asthma, altered lung function, and allergic sensitization in children. METHODS: High...... associated with concurrent asthma (adjusted odds ratio [aOR], 1.93; 95% CI, 1.06-3.55; P = .03) and airway obstruction: 50% of forced expiratory flow (aβ coefficient, -0.13 L/s; 95% CI, -0.24 to -0.03 L/s; P = .01) and specific airway resistance (aβ coefficient, 0.06 kPa/s; 95% CI, 0.00-0.11 kPa/s; P = .05...

  8. Novel Genetic Tools to Accelerate Our Understanding of Photosynthesis and Lipid Accumulation

    Science.gov (United States)

    2014-08-20

    understanding of photosynthesis and lipid accumulation Martin C. Jonikas, Ph.D. Carnegie Institution for Science, Department of Plant Biology 260...knowledge of algal lipid metabolism and photosynthesis . Advances in our basic understanding of these processes will facilitate genetic engineering of...algae to improve lipid yields. Currently, one of the greatest roadblocks in the study of algal photosynthesis and lipid metabolism is the slow pace of

  9. Alterations in lipids & lipid peroxidation in rats fed with flavonoid rich fraction of banana (Musa paradisiaca) from high background radiation area.

    Science.gov (United States)

    Krishnan, Kripa; Vijayalakshmi, N R

    2005-12-01

    A group of villages in Kollam district of Kerala, southern part of India are exposed to a higher dose of natural radiation than global average. Yet no adverse health effects have been found in humans, animals and plants in these areas. The present study was carried out to understand whether radiation affects the quantity and quality of flavonoids in plants grown in this area of high radiation, and to assess the effect of feeding flavonoid rich fraction (FRF) of the two varieties of banana to rats on their biochemical parameters like lipids, lipid peroxides and antioxidant enzyme levels. A total of 42 albino rats were equally divided into 7 groups. Rats fed laboratory diet alone were grouped under group I (normal control). Groups II and V received flavonoid rich fraction (FRF) from the fruits of two varieties of Musa paradisiaca, Palayamkodan and Rasakadali respectively from normal background radiation area (Veli) and treated as controls. Rats of groups III and IV received FRF of Palayamkodan from high background radiation areas (HBRAs) - Neendakara and Karunagappally respectively while groups VI and VII received FRF of Rasakadali from HBRAs. At the end of the experimental period of 45 days, lipids, lipid peroxides and antioxidant enzymes from liver, heart and kidney were analyzed. FRF of Palayamkodan and Rasakadali varieties showed significant hypolipidaemic and antioxidant activities. But these activities were found to be lowered in plants grown in HBRAs, particularly in Karunagappally area. Of the two, Palayamkodan variety was more effective in reducing lipids and lipid peroxides. MDA and hydroperoxides were significantly diminished in rats given FRF of banana from Veli (control area) only. FRF from plants grown in HBRAs exerted inhibition in the activities of antioxidant enzymes in the liver of rats and this inhibitory effect was maximum in rats fed FRF from Karunagappally. Banana grown in HBRAs is of lower quality with less efficient antioxidant system

  10. Sex-specific nonlinear associations between serum lipids and different domains of cognitive function in middle to older age individuals.

    Science.gov (United States)

    Lu, Yanhui; An, Yu; Yu, Huanling; Che, Fengyuan; Zhang, Xiaona; Rong, Hongguo; Xi, Yuandi; Xiao, Rong

    2017-08-01

    To examine how serum lipids relates to specific cognitive ability domains between the men and women in Chinese middle to older age individuals. A complete lipid panel was obtained from 1444 individuals, ages 50-65, who also underwent a selection of cognitive tests. Participants were 584 men and 860 women from Linyi city, Shandong province. Multiple linear regression analyses examined serum lipids level as quadratic predictors of sex-specific measure of performance in different cognitive domains, which were adjusted for sociodemographic and lifestyle characteristics. In men, a significant quadratic effect of total cholesterol (TC) was identified for Digit Symbol (B = -0.081, P = 0.044) and also quadratic effect of low density lipoprotein-cholesterol (LDL-C) was identified for Trail Making Test B (B = -0.082, P = 0.045). Differently in women, there were significant quadratic associations between high density lipoprotein-cholesterol (HDL-C) and multiple neuropsychological tests. The nonlinear lipid-cognition associations differed between men and women and were specific to certain cognitive domains and might be of potential relevance for prevention and therapy of cognitive decline.

  11. Is Marfan syndrome associated with symptomatic intracranial aneurysms?

    NARCIS (Netherlands)

    van den Berg, J. S.; Limburg, M.; Hennekam, R. C.

    1996-01-01

    BACKGROUND AND PURPOSE: Marfan syndrome is a heritable disorder of connective tissue caused by a deficiency of the glycoprotein fibrillin. In several publications and neurological textbooks, a relationship between Marfan syndrome and intracranial aneurysms has been assumed. METHODS: The records of

  12. Veganism Is a Viable Alternative to Conventional Diet Therapy for Improving Blood Lipids and Glycemic Control.

    Science.gov (United States)

    Trepanowski, John F; Varady, Krista A

    2015-01-01

    The American Diabetes Association (ADA) and the National Cholesterol Education Program (NCEP) have each outlined a set of dietary recommendations aimed at improving glycemic control and blood lipids, respectively. However, traditional vegan diets (low-fat diets that proscribe animal product consumption) are also effective at improving glycemic control, and dietary portfolios (vegan diets that contain prescribed amounts of plant sterols, viscous fibers, soy protein, and nuts) are also effective at improving blood lipids. The purpose of this review was to compare the effects of traditional vegan diets and dietary portfolios with ADA and NCEP diets on body weight, blood lipids, blood pressure, and glycemic control. The main findings are that traditional vegan diets appear to improve glycemic control better than ADA diets in individuals with type 2 diabetes mellitus (T2DM), while dietary portfolios have been consistently shown to improve blood lipids better than NCEP diets in hypercholesterolemic individuals.

  13. Genome-Wide Association Study Reveals Four Loci for Lipid Ratios in the Korean Population and the Constitutional Subgroup.

    Science.gov (United States)

    Kim, Taehyeung; Park, Ah Yeon; Baek, Younghwa; Cha, Seongwon

    2017-01-01

    Circulating lipid ratios are considered predictors of cardiovascular risks and metabolic syndrome, which cause coronary heart diseases. One constitutional type of Korean medicine prone to weight accumulation, the Tae-Eum type, predisposes the consumers to metabolic syndrome, hypertension, diabetes mellitus, etc. Here, we aimed to identify genetic variants for lipid ratios using a genome-wide association study (GWAS) and followed replication analysis in Koreans and constitutional subgroups. GWASs in 5,292 individuals of the Korean Genome and Epidemiology Study and replication analyses in 2,567 subjects of the Korea medicine Data Center were performed to identify genetic variants associated with triglyceride (TG) to HDL cholesterol (HDLC), LDL cholesterol (LDLC) to HDLC, and non-HDLC to HDLC ratios. For subgroup analysis, a computer-based constitution analysis tool was used to categorize the constitutional types of the subjects. In the discovery stage, seven variants in four loci, three variants in three loci, and two variants in one locus were associated with the ratios of log-transformed TG:HDLC (log[TG]:HDLC), LDLC:HDLC, and non-HDLC:HDLC, respectively. The associations of the GWAS variants with lipid ratios were replicated in the validation stage: for the log[TG]:HDLC ratio, rs6589566 near APOA5 and rs4244457 and rs6586891 near LPL; for the LDLC:HDLC ratio, rs4420638 near APOC1 and rs17445774 near C2orf47; and for the non-HDLC:HDLC ratio, rs6589566 near APOA5. Five of these six variants are known to be associated with TG, LDLC, and/or HDLC, but rs17445774 was newly identified to be involved in lipid level changes in this study. Constitutional subgroup analysis revealed effects of variants associated with log[TG]:HDLC and non-HDLC:HDLC ratios in both the Tae-Eum and non-Tae-Eum types, whereas the effect of the LDLC:HDLC ratio-associated variants remained only in the Tae-Eum type. In conclusion, we identified three log[TG]:HDLC ratio-associated variants, two LDLC

  14. Genome-Wide Association Study Reveals Four Loci for Lipid Ratios in the Korean Population and the Constitutional Subgroup.

    Directory of Open Access Journals (Sweden)

    Taehyeung Kim

    Full Text Available Circulating lipid ratios are considered predictors of cardiovascular risks and metabolic syndrome, which cause coronary heart diseases. One constitutional type of Korean medicine prone to weight accumulation, the Tae-Eum type, predisposes the consumers to metabolic syndrome, hypertension, diabetes mellitus, etc. Here, we aimed to identify genetic variants for lipid ratios using a genome-wide association study (GWAS and followed replication analysis in Koreans and constitutional subgroups. GWASs in 5,292 individuals of the Korean Genome and Epidemiology Study and replication analyses in 2,567 subjects of the Korea medicine Data Center were performed to identify genetic variants associated with triglyceride (TG to HDL cholesterol (HDLC, LDL cholesterol (LDLC to HDLC, and non-HDLC to HDLC ratios. For subgroup analysis, a computer-based constitution analysis tool was used to categorize the constitutional types of the subjects. In the discovery stage, seven variants in four loci, three variants in three loci, and two variants in one locus were associated with the ratios of log-transformed TG:HDLC (log[TG]:HDLC, LDLC:HDLC, and non-HDLC:HDLC, respectively. The associations of the GWAS variants with lipid ratios were replicated in the validation stage: for the log[TG]:HDLC ratio, rs6589566 near APOA5 and rs4244457 and rs6586891 near LPL; for the LDLC:HDLC ratio, rs4420638 near APOC1 and rs17445774 near C2orf47; and for the non-HDLC:HDLC ratio, rs6589566 near APOA5. Five of these six variants are known to be associated with TG, LDLC, and/or HDLC, but rs17445774 was newly identified to be involved in lipid level changes in this study. Constitutional subgroup analysis revealed effects of variants associated with log[TG]:HDLC and non-HDLC:HDLC ratios in both the Tae-Eum and non-Tae-Eum types, whereas the effect of the LDLC:HDLC ratio-associated variants remained only in the Tae-Eum type. In conclusion, we identified three log[TG]:HDLC ratio-associated

  15. Refurbishing the plasmodesmal chamber: a role for lipid bodies?

    Directory of Open Access Journals (Sweden)

    Laju K Paul

    2014-02-01

    Full Text Available Lipid bodies (LBs are universal constituents of both animal and plant cells. They are produced by specialised membrane domains at the tubular endoplasmic reticulum (ER, and consist of a core of neutral lipids and a surrounding monolayer of phospholipid with embedded amphipathic proteins. Although originally regarded as simple depots for lipids, they have recently emerged as organelles that interact with other cellular constituents, exchanging lipids, proteins and signalling molecules, and shuttling them between various intracellular destinations, including the plasmamembrane (PM. Recent data showed that in plants LBs can deliver a subset of 1,3-β-glucanases to the plasmodesmal (PD channel. We hypothesise that this may represent a more general mechanism, which complements the delivery of GPI-anchored proteins to the PD exterior via the secretory pathway. We propose that LBs may contribute to the maintenance of the PD chamber and the delivery of regulatory molecules as well as proteins destined for transport to adjacent cells. In addition, we speculate that LBs deliver their cargo through interaction with membrane domains in the cytofacial side of the PM.

  16. Effect of scoparia dulcis (Sweet Broomweed) plant extract on plasma antioxidants in streptozotocin-induced experimental diabetes in male albino Wistar rats.

    Science.gov (United States)

    Pari, L; Latha, M

    2004-07-01

    Clinical research has confirmed the efficacy of several plants in the modulation of oxidative stress associated with diabetes mellitus. Scoparia dulcis plant extract is tried for prevention and treatment of diabetes mellitus induced experimentally by streptozotocin injection. A single dose of streptozotocin (45 mg/kg body weight) produced decrease in insulin, hyperglycemia, increased lipid peroxidation (Thiobarbituric reactive substances and lipid hydroperoxides) and decreased antioxidant levels (vitamin C, vitamin E, reduced glutathione, ceruloplasmin). Oral administration of an aqueous extract of Scoparia dulcis plant (200 mg/kg body weight) for 6 weeks to diabetic rats significantly increased the plasma insulin and plasma antioxidants and significantly decreased lipid peroxidation. The effect of Scoparia dulcis plant extract at 200 mg/kg body weight was better than that of glibenclamide, a reference drug.

  17. Associations among Race/Ethnicity, ApoC-III Genotypes, and Lipids in HIV-1-Infected Individuals on Antiretroviral Therapy.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Protease inhibitors (PIs are associated with hypertriglyceridemia and atherogenic dyslipidemia. Identifying HIV-1-infected individuals who are at increased risk of PI-related dyslipidemia will facilitate therapeutic choices that maintain viral suppression while reducing risk of atherosclerotic diseases. Apolipoprotein C-III (apoC-III gene variants, which vary by race/ethnicity, have been associated with a lipid profile that resembles PI-induced dyslipidemia. However, the association of race/ethnicity, or candidate gene effects across race/ethnicity, with plasma lipid levels in HIV-1-infected individuals, has not been reported. METHODS AND FINDINGS: A cross-sectional analysis of race/ethnicity, apoC-III/apoA-I genotypes, and PI exposure on plasma lipids was performed in AIDS Clinical Trial Group studies (n = 626. Race/ethnicity was a highly significant predictor of plasma lipids in fully adjusted models. Furthermore, in stratified analyses, the effect of PI exposure appeared to differ across race/ethnicity. Black/non-Hispanic, compared with White/non-Hispanics and Hispanics, had lower plasma triglyceride (TG levels overall, but the greatest increase in TG levels when exposed to PIs. In Hispanics, current PI antiretroviral therapy (ART exposure was associated with a significantly smaller increase in TGs among patients with variant alleles at apoC-III-482, -455, and Intron 1, or at a composite apoC-III genotype, compared with patients with the wild-type genotypes. CONCLUSIONS: In the first pharmacogenetic study of its kind in HIV-1 disease, we found race/ethnic-specific differences in plasma lipid levels on ART, as well as differences in the influence of the apoC-III gene on the development of PI-related hypertriglyceridemia. Given the multi-ethnic distribution of HIV-1 infection, our findings underscore the need for future studies of metabolic and cardiovascular complications of ART that specifically account for racial

  18. Vitamin E in New-Generation Lipid Emulsions Protects Against Parenteral Nutrition–Associated Liver Disease in Parenteral Nutrition–Fed Preterm Pigs

    Science.gov (United States)

    Ng, Kenneth; Stoll, Barbara; Chacko, Shaji; de Pipaon, Miguel Saenz; Lauridsen, Charlotte; Gray, Matthew; Squires, E. James; Marini, Juan; Zamora, Irving J.; Olutoye, Oluyinka O.; Burrin, Douglas G.

    2015-01-01

    Introduction Parenteral nutrition (PN) in preterm infants leads to PN-associated liver disease (PNALD). PNALD has been linked to serum accumulation of phytosterols that are abundant in plant oil but absent in fish oil emulsions. Hypothesis Whether modifying the phytosterol and vitamin E composition of soy and fish oil lipid emulsions affects development of PNALD in preterm pigs. Methods We measured markers of PNALD in preterm pigs that received 14 days of PN that included 1 of the following: (1) Intralipid (IL, 100% soybean oil), (2) Intralipid + vitamin E (ILE, d-α-tocopherol), (3) Omegaven (OV, 100% fish oil), or (4) Omegaven + phytosterols (PS, β-sitosterol, campesterol, and stigmasterol). Results Serum levels of direct bilirubin, gamma glutamyl transferase, serum triglyceride, low-density lipoprotein, and hepatic triglyceride content were significantly lower (P phytosterols to Omegaven did not produce evidence of PNALD. PMID:25596209

  19. Age-dependent variation in membrane lipid synthesis in leaves of garden pea (Pisum sativum L.)

    DEFF Research Database (Denmark)

    Hellgren, Lars; Sandelius, A.S.

    2001-01-01

    To study membrane lipid synthesis during the lifespan of a dicotyledon leaf, the second oldest leaf of 10-40-d-old plants of garden pea (Pisum sativum L.) was labelled with [1-C- 14]acetate and the distribution of radioactivity between the major membrane lipids was followed for 3 d. In the expand......To study membrane lipid synthesis during the lifespan of a dicotyledon leaf, the second oldest leaf of 10-40-d-old plants of garden pea (Pisum sativum L.) was labelled with [1-C- 14]acetate and the distribution of radioactivity between the major membrane lipids was followed for 3 d...

  20. Engineering Yarrowia lipolytica for Enhanced Production of Lipid and Citric Acid

    Directory of Open Access Journals (Sweden)

    Ali Abghari

    2017-07-01

    Full Text Available Increasing demand for plant oil for food, feed, and fuel production has led to food-fuel competition, higher plant lipid cost, and more need for agricultural land. On the other hand, the growing global production of biodiesel has increased the production of glycerol as a by-product. Efficient utilization of this by-product can reduce biodiesel production costs. We engineered Yarrowia lipolytica (Y. lipolytica at various metabolic levels of lipid biosynthesis, degradation, and regulation for enhanced lipid and citric acid production. We used a one-step double gene knock-in and site-specific gene knock-out strategy. The resulting final strain combines the overexpression of homologous DGA1 and DGA2 in a POX-deleted background, and deletion of the SNF1 lipid regulator. This increased lipid and citric acid production in the strain under nitrogen-limiting conditions (C/N molar ratio of 60. The engineered strain constitutively accumulated lipid at a titer of more than 4.8 g/L with a lipid content of 53% of dry cell weight (DCW. The secreted citric acid reached a yield of 0.75 g/g (up to ~45 g/L from pure glycerol in 3 days of batch fermentation using a 1-L bioreactor. This yeast cell factory was capable of simultaneous lipid accumulation and citric acid secretion. It can be used in fed-batch or continuous bioprocessing for citric acid recovery from the supernatant, along with lipid extraction from the harvested biomass.

  1. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria.

    Science.gov (United States)

    Xiao, Mengqing; Zhong, Huiqin; Xia, Lin; Tao, Yongzhen; Yin, Huiyong

    2017-10-01

    Mitochondrial lipids are essential for maintaining the integrity of mitochondrial membranes and the proper functions of mitochondria. As the "powerhouse" of a cell, mitochondria are also the major cellular source of reactive oxygen species (ROS). Oxidative stress occurs when the antioxidant system is overwhelmed by overproduction of ROS. Polyunsaturated fatty acids in mitochondrial membranes are primary targets for ROS attack, which may lead to lipid peroxidation (LPO) and generation of reactive lipids, such as 4-hydroxynonenal. When mitochondrial lipids are oxidized, the integrity and function of mitochondria may be compromised and this may eventually lead to mitochondrial dysfunction, which has been associated with many human diseases including cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases. How mitochondrial lipids are oxidized and the underlying molecular mechanisms and pathophysiological consequences associated with mitochondrial LPO remain poorly defined. Oxidation of the mitochondria-specific phospholipid cardiolipin and generation of bioactive lipids through mitochondrial LPO has been increasingly recognized as an important event orchestrating apoptosis, metabolic reprogramming of energy production, mitophagy, and immune responses. In this review, we focus on the current understanding of how mitochondrial LPO and generation of bioactive lipid mediators in mitochondria are involved in the modulation of mitochondrial functions in the context of relevant human diseases associated with oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  3. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.

    Science.gov (United States)

    Iswanto, Arya Bagus Boedi; Kim, Jae-Yean

    2017-04-03

    A bstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.

  4. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes.

    Science.gov (United States)

    Agarwal, Shailesh R; Gratwohl, Jackson; Cozad, Mia; Yang, Pei-Chi; Clancy, Colleen E; Harvey, Robert D

    2018-01-01

    Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane

  5. Water, plants, and early human habitats in eastern Africa.

    Science.gov (United States)

    Magill, Clayton R; Ashley, Gail M; Freeman, Katherine H

    2013-01-22

    Water and its influence on plants likely exerted strong adaptive pressures in human evolution. Understanding relationships among water, plants, and early humans is limited both by incomplete terrestrial records of environmental change and by indirect proxy data for water availability. Here we present a continuous record of stable hydrogen-isotope compositions (expressed as δD values) for lipid biomarkers preserved in lake sediments from an early Pleistocene archaeological site in eastern Africa--Olduvai Gorge. We convert sedimentary leaf- and algal-lipid δD values into estimates for ancient source-water δD values by accounting for biochemical, physiological, and environmental influences on isotopic fractionation via published water-lipid enrichment factors for living plants, algae, and recent sediments. Reconstructed precipitation and lake-water δD values, respectively, are consistent with modern isotopic hydrology and reveal that dramatic fluctuations in water availability accompanied ecosystem changes. Drier conditions, indicated by less negative δD values, occur in association with stable carbon-isotopic evidence for open, C(4)-dominated grassland ecosystems. Wetter conditions, indicated by lower δD values, are associated with expanded woody cover across the ancient landscape. Estimates for ancient precipitation amounts, based on reconstructed precipitation δD values, range between approximately 250 and 700 mm · y(-1) and are consistent with modern precipitation data for eastern Africa. We conclude that freshwater availability exerted a substantial influence on eastern African ecosystems and, by extension, was central to early human proliferation during periods of rapid climate change.

  6. Evaluation of antioxidant activity of Ruta graveolens L. extract on inhibition of lipid peroxidation and DPPH radicals and the effects of some external factors on plant extract's potency.

    Directory of Open Access Journals (Sweden)

    S. Mohammadi- Motamed

    2014-01-01

    Full Text Available The antioxidant properties of Ruta graveolens L. were evaluated by two different methods; free radical scavenging using DPPH and inhibition of lipid peroxidation by the ferric thiocyanate method. The IC50 value of the methanol extract in DPPH inhibition was 200.5 μg/mL which was acceptable in comparison with BHT (41.8 μg/mL. In thiocyanate method, the plant extract demonstrated activity as much as BHT in prevention of lipid peroxidation. Increasing the temperature during extraction, significantly decreased the extract power in inhibition of DPPH radicals. The storage time and temperature had no effect on lipid peroxidation inhibition.

  7. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice

    DEFF Research Database (Denmark)

    Bartels, E.D.; Nielsen, J.M.; Bisgaard, L.S.

    2010-01-01

    % (P depression of ANP mRNA expression in cultured HL-1 atrial myocytes. The data suggest that obesity and altered cardiac lipid metabolism are associated with reduced production of ANP and BNP in the cardiac ventricles in the setting of normal as well as impaired cardiac function....

  8. Effects of plant polyphenols and a-tocopherol on lipid oxidation, residual nitrites, biogenic amines, and N-nitrosamines formation during ripening and storage of dry-cured bacon

    Science.gov (United States)

    Effects of plant polyphenols (green tea polyphenols (GTP) and grape seed extract (GSE) and a-tocopherol on physicochemical parameters, lipid oxidation, residual nitrite, microbiological counts, biogenic amines, and N-nitrosamines were determined in bacons during dry-curing and storage. Results show ...

  9. Lipid vesicle-mediated affinity chromatography using magnetic activated cell sorting (LIMACS): a novel method to analyze protein-lipid interaction.

    Science.gov (United States)

    Bieberich, Erhard

    2011-04-26

    The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane

  10. The Use of Fish Oil Lipid Emulsion in the Treatment of Intestinal Failure Associated Liver Disease (IFALD

    Directory of Open Access Journals (Sweden)

    Melissa I. Chang

    2012-11-01

    Full Text Available Since 2004, fish oil based lipid emulsions have been used in the treatment of intestinal failure associated liver disease, with a noticeable impact on decreasing the incidence of morbidity and mortality of this often fatal condition. With this new therapy, however, different approaches have emerged as well as concerns about potential risks with using fish oil as a monotherapy. This review will discuss the experience to date with this lipid emulsion along with the rational for its use, controversies and concerns.

  11. Gender Differences in the Association between Lipid Profile and Sexual Function among Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Shervin Assari

    2014-03-01

    Full Text Available Background: Although several studies have been conducted on the association between lipid profile and sexual function among men with coronary artery disease, there is a paucity of knowledge about this association among women with coronary artery disease. Objectives: Our study aimed to evaluate the link between lipid profile and sexual function in men and women with coronary artery disease. Methods: One hundred and twenty patients with documented coronary artery disease were consecutively sampled from an outpatient cardiovascular clinic. The patients were assessed for lipid profile and sexual relationship using the Relation and Sexuality Scale (RSS. In addition, the Hospital Anxiety and Depression Scale (HADS was used to measure the symptoms of anxiety and depression. The characteristics of chest pain were also measured using the Rose Angina Questionnaire. The data were analyzed through linear regression analysis. Results: This study was conducted on 91 males (75.8% and 29 females (24.2%. Multivariate analysis showed that low-density lipoprotein cholesterol was correlated with sexual function (B = 0.01, P = 0.010 and total sexual relationship (B = 0.01, P = 0.050. A correlation was also observed between the level of high-density lipoprotein and sexual frequency score (B = -0.02, P = 0.040. Gender moderated these correlations. Among males, serum cholesterol (r = 0.193, P = 0.047 and low-density lipoprotein (r = 0.224, P = 0.037 were correlated to sexual function. In females, however, low-density lipoprotein was correlated to the total sexual relationship (r = 0.426, P = 0.021 and high-density lipoprotein was correlated to sexual frequency (r = -0.334, P = 0.046. Conclusions: The findings of this study showed a relationship between lipid profile and sexual relationship among both male and female patients with coronary artery disease. The link between lipid profile and sexual function of the patients with coronary artery disease is thus beyond just

  12. A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1.

    Science.gov (United States)

    Gautier, J; Passot, S; Pénicaud, C; Guillemin, H; Cenard, S; Lieben, P; Fonseca, F

    2013-09-01

    The mechanisms of cellular damage that lactic acid bacteria incur during freeze-thaw processes have not been elucidated to date. Fourier transform infrared spectroscopy was used to investigate in situ the lipid phase transition behavior of the membrane of Lactobacillus delbrueckii ssp. bulgaricus CFL1 cells during the freeze-thaw process. Our objective was to relate the lipid membrane behavior to membrane integrity losses during freezing and to cell-freezing resistance. Cells were produced by using 2 different culture media: de Man, Rogosa, and Sharpe (MRS) broth (complex medium) or mild whey-based medium (minimal medium commonly used in the dairy industry), to obtain different membrane lipid compositions corresponding to different recovery rates of cell viability and functionality after freezing. The lipid membrane behavior studied by Fourier transform infrared spectroscopy was found to be different according to the cell lipid composition and cryotolerance. Freeze-resistant cells, exhibiting a higher content of unsaturated and cyclic fatty acids, presented a lower lipid phase transition temperature (Ts) during freezing (Ts=-8°C), occurring within the same temperature range as the ice nucleation, than freeze-sensitive cells (Ts=+22°C). A subzero value of lipid phase transition allowed the maintenance of the cell membrane in a relatively fluid state during freezing, thus facilitating water flux from the cell and the concomitant volume reduction following ice formation in the extracellular medium. In addition, the lipid phase transition of freeze-resistant cells occurred within a short temperature range, which could be ascribed to a reduced number of fatty acids, representing more than 80% of the total. This short lipid phase transition could be associated with a limited phenomenon of lateral phase separation and membrane permeabilization. This work highlights that membrane phase transitions occurring during freeze-thawing play a fundamental role in the

  13. Blood lipids and prostate cancer

    DEFF Research Database (Denmark)

    Bull, Caroline J; Bonilla, Carolina; Holly, Jeff M P

    2016-01-01

    Genetic risk scores were used as unconfounded instruments for specific lipid traits (Mendelian randomization) to assess whether circulating lipids causally influence prostate cancer risk. Data from 22,249 prostate cancer cases and 22,133 controls from 22 studies within the international PRACTICAL...... into logistic regression models to estimate the presence (and direction) of any causal effect of each lipid trait on prostate cancer risk. There was weak evidence for an association between the LDL genetic score and cancer grade: the odds ratio (OR) per genetically instrumented standard deviation (SD) in LDL.......95, 3.00; P = 0.08). The rs12916-T variant in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was inversely associated with prostate cancer (OR: 0.97; 95% CI: 0.94, 1.00; P = 0.03). In conclusion, circulating lipids, instrumented by our genetic risk scores, did not appear to alter prostate cancer risk...

  14. Sulfurisation of lipids in a marine-influenced lignite

    Energy Technology Data Exchange (ETDEWEB)

    Sandison, C.M.; Alexander, R.; Kagi, R.I.; Boreham, C.J. [Curtin University of Technology, Perth, WA (Australia)

    2002-07-01

    Compelling evidence is presented for the process of lipid sulfurisation in humic coal-forming environments. The production of reduced inorganic sulfides by sulfate-reducing bacteria during a marine transgression, which occurred during early diagenesis, enabled the selective sequestration of functionalised lipids in the polar and asphaltene fractions from the Eocene, marine-influenced Heartbreak Ridge lignite deposit in southeast Western Australia. Nickel boride desulfurisation experiments conducted on these fractions released small but significant quantities of sulfur-bound hydrocarbons. These comprised mostly higher plant triterpanes, C-29 steranes and extended 17beta(H),21beta(H)-hopanes, linked by one sulfur atom at, or close to, functionalised sites in the original natural product precursors. These sulfurised lipids come from the same carbon sources as the free hydrocarbon lipids, except for the sulfurised extended hopanoids, which may be partially derived from a different bacterial source. These results indicate that the selectivity and nature of steroid and hopanoid vulcanisation in coal-forming mires is similar to that observed in other sedimentary environments. However, the diversity of higher plant triterpanes that can be sulfurised in marine transgressed coals is greater than that reported in immature terrestrial coals. This preservation mechanism explains the formation of the structurally related biomarkers in more mature sulfur-rich humic coals.

  15. Factors associated with lipid goal attainment among acute coronary syndrome patients

    Directory of Open Access Journals (Sweden)

    Mohd-Zulkefli SZ

    2016-08-01

    Full Text Available Siti-Zainora Mohd-Zulkefli, Marhanis-Salihah Omar, Adyani Md-Redzuan Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Background: The incidence of acute coronary syndrome (ACS, one of the most common cardiovascular diseases, is high. Lipid goal attainment is one of the important factors to reduce the risk of recurrent heart attack. Identification of factors influencing lipid goal attainment such as age, female, race, underlying comorbidities, intensity of lipid-lowering therapy, patients’ knowledge, and patients’ belief about medicine would be beneficial in achieving the lipid goal. This study is aimed to determine lipid profile attainment and prescribing pattern of lipid-lowering therapy as well as to identify factors influencing lipid profile attainment among ACS patients.Patients and methods: This researcher-assisted cross-sectional survey was carried out at a cardiology clinic in a tertiary hospital from March to May 2015.Results: A total of 101 ACS patients were involved in this study. The mean values for low-density lipoprotein cholesterol (LDL-C and high-density lipoprotein cholesterol levels were 2.75 (0.82 mmol/L and 1.14 (0.27 mmol/L, respectively, while the median value for triglyceride level was 2.75 (0.82 mmol/L. Only 15.8% of our participants achieved the targeted LDL-C. Simvastatin 20 mg was the most common regimen prescribed. Predictors for better LDL-C attainment were younger age (β=-0.228; P=0.032 and higher knowledge score (β=-0.255; P=0.049, while predictors for high-density lipoprotein cholesterol attainment were male (β=0.268; P=0.006, smoking (β=-0.192; P=0.045, and higher knowledge score (β=-0.195; P=0.039. Smoking (β=-0.361; P<0.0001 was the only predictor for higher triglyceride level.Conclusion: Younger age, female, lower knowledge score, and smoking status are good predictors for lipid attainment among ACS patients. Keywords: influence, disease, drug use, patient 

  16. Oxidized lipids enhance RANKL production by T lymphocytes: implications for lipid-induced bone loss.

    Science.gov (United States)

    Graham, Lucia S; Parhami, Farhad; Tintut, Yin; Kitchen, Christina M R; Demer, Linda L; Effros, Rita B

    2009-11-01

    Osteoporosis is a systemic disease that is associated with increased morbidity, mortality and health care costs. Whereas osteoclasts and osteoblasts are the main regulators of bone homeostasis, recent studies underscore a key role for the immune system, particularly via activation-induced T lymphocyte production of receptor activator of NFkappaB ligand (RANKL). Well-documented as a mediator of T lymphocyte/dendritic cell interactions, RANKL also stimulates the maturation and activation of bone-resorbing osteoclasts. Given that lipid oxidation products mediate inflammatory and metabolic disorders such as osteoporosis and atherosclerosis, and since oxidized lipids affect several T lymphocyte functions, we hypothesized that RANKL production might also be subject to modulation by oxidized lipids. Here, we show that short term exposure of both unstimulated and activated human T lymphocytes to minimally oxidized low density lipoprotein (LDL), but not native LDL, significantly enhances RANKL production and promotes expression of the lectin-like oxidized LDL receptor-1 (LOX-1). The effect, which is also observed with 8-iso-Prostaglandin E2, an inflammatory isoprostane produced by lipid peroxidation, is mediated via the NFkappaB pathway, and involves increased RANKL mRNA expression. The link between oxidized lipids and T lymphocytes is further reinforced by analysis of hyperlipidemic mice, in which bone loss is associated with increased RANKL mRNA in T lymphocytes and elevated RANKL serum levels. Our results suggest a novel pathway by which T lymphocytes contribute to bone changes, namely, via oxidized lipid enhancement of RANKL production. These findings may help elucidate clinical associations between cardiovascular disease and decreased bone mass, and may also lead to new immune-based approaches to osteoporosis.

  17. Sphingolipids and plant defense/disease: the "death" connection and beyond

    Directory of Open Access Journals (Sweden)

    Robert eBerkey

    2012-04-01

    Full Text Available Sphingolipids comprise a major class of structural materials and lipid signaling molecules in all eukaryotic cells. Over the past two decades, there has been a phenomenal growth in the study of sphingolipids (i.e. sphingobiology at an average rate of >1000 research articles per year. Sphingolipid studies in plants, though accounting for only a small fraction (~6% of the total number of publications, have also enjoyed proportionally rapid growth in the past decade. Concomitant with the growth of sphingobiology, there has also been tremendous progress in our understanding of the molecular mechanisms of plant innate immunity. In this review, we (i cross examine and analyze the major findings that establish and strengthen the intimate connections between sphingolipid metabolism and plant programmed cell death (PCD associated with plant defense or disease; (ii highlight and compare key bioactive sphingolipids involved in the regulation of plant PCD and possibly defense; (iii discuss the potential role of sphingolipids in polarized membrane/protein trafficking and formation of lipid rafts as subdomains of cell membranes in relation to plant defense; and (iv where possible, attempt to identify potential parallels for immunity-related mechanisms involving sphingolipids across kingdoms.

  18. Primary trabeculodysgenesis in association with neonatal Marfan syndrome

    NARCIS (Netherlands)

    Whitelaw, CM; Anwar, S; Ades, LC; Gole, GA; Elder, JE; Savarirayan, R

    2004-01-01

    We present the clinical and ophthalmological findings in two infants with neonatal Marfan syndrome (nMFS) and primary trabeculodysgenesis (PT). Fibrillin 1 (FBN1) mutations were confirmed in both cases. Numerous eye anomalies have been recognized in infants with nMFS, but PT has not been reported

  19. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    Science.gov (United States)

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps

  20. C-reactive protein in patients with acute coronary syndrome: association with coronary markers, lipid profile and markers of coagulation

    International Nuclear Information System (INIS)

    Munir, T.A.; Afzal, M.N.

    2010-01-01

    To determine levels of C-reactive protein (CRP) and its association with coronary markers, lipid profile and markers of coagulation in patients of acute coronary syndrome (ACS). The study was conducted at Shifa college of Medicine and Shifa international hospital for a period of one year (November 2005-December 2006). Patients and Methods: Sixty nine age matched controls and 133 consecutive patients of ACS were included in the study. CRP were measured by immunoturbidometric method, MB fraction of creatine kinase (CK-MB) and Troponin-1 by micro-particle enzyme immunoassay, lipid levels by Colorimetric Enzymatic methods, platelets by celldyn and coagulation markers were measured by CA-50 Sysmax. At admission mean CRP levels, cardiac biomarkers, lipid profile and coagulation markers were significantly increased in patients of ACS versus controls. Within the patients of ACS the mean levels of CRP, CK-MB, Trop I, prothrombin time (PT) and activated partial thromboplastin time (Am) were significantly raised in patients with ST - elevation myocardial infarction (STEMI) and non STEMI (NSTEMI) versus patients of unstable angina (VA). Association between CRP levels and coronary markers, coagulation markers and lipid profile was found to be non significant. The CRP levels were increased in patients with ACS as compared to controls. The CRP levels were insignificantly correlated with coronary markers (CK-MB, Trop I), coagulation markers (platelet count, PT, Am), and lipid profile (cholesterol, triglyceride, HDL and LDL cholesterol) in patients with ACS. (author)

  1. Repeat-containing protein effectors of plant-associated organisms

    Directory of Open Access Journals (Sweden)

    Carl H. Mesarich

    2015-10-01

    Full Text Available Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  2. Generalized Anxiety Disorder (GAD) and Comorbid Major Depression with GAD Are Characterized by Enhanced Nitro-oxidative Stress, Increased Lipid Peroxidation, and Lowered Lipid-Associated Antioxidant Defenses.

    Science.gov (United States)

    Maes, Michael; Bonifacio, Kamila Landucci; Morelli, Nayara Rampazzo; Vargas, Heber Odebrecht; Moreira, Estefânia Gastaldello; St Stoyanov, Drozdstoy; Barbosa, Décio Sabbatini; Carvalho, André F; Nunes, Sandra Odebrecht Vargas

    2018-05-07

    Accumulating evidence shows that nitro-oxidative pathways play an important role in the pathophysiology of major depressive disorder (MDD) and bipolar disorder (BD) and maybe anxiety disorders. The current study aims to examine superoxide dismutase (SOD1), catalase, lipid hydroperoxides (LOOH), nitric oxide metabolites (NOx), advanced oxidation protein products (AOPP), malondialdehyde (MDA), glutathione (GSH), paraoxonase 1 (PON1), high-density lipoprotein cholesterol (HDL), and uric acid (UA) in participants with and without generalized anxiety disorder (GAD) co-occurring or not with BD, MDD, or tobacco use disorder. Z unit-weighted composite scores were computed as indices of nitro-oxidative stress driving lipid and protein oxidation. SOD1, LOOH, NOx, and uric acid were significantly higher and HDL and PON1 significantly lower in participants with GAD than in those without GAD. GAD was more adequately predicted by increased SOD + LOOH + NOx and lowered HDL + PON1 composite scores. Composite scores of nitro-oxidative stress coupled with aldehyde and AOPP production were significantly increased in participants with comorbid GAD + MDD as compared with all other study groups, namely MDD, GAD + BD, BD, GAD, and healthy controls. In conclusion, GAD is characterized by increased nitro-oxidative stress and lipid peroxidation and lowered lipid-associated antioxidant defenses, while increased uric acid levels in GAD may protect against aldehyde production and protein oxidation. This study suggests that increased nitro-oxidative stress and especially increased SOD1 activity, NO production, and lipid peroxidation as well as lowered HDL-cholesterol and PON1 activity could be novel drug targets for GAD especially when comorbid with MDD.

  3. Effect of tofacitinib on lipid levels and lipid-related parameters in patients with moderate to severe psoriasis.

    Science.gov (United States)

    Wolk, Robert; Armstrong, Ehrin J; Hansen, Peter R; Thiers, Bruce; Lan, Shuping; Tallman, Anna M; Kaur, Mandeep; Tatulych, Svitlana

    Psoriasis is a systemic inflammatory disease associated with increased cardiovascular (CV) risk and altered lipid metabolism. Tofacitinib is an oral Janus kinase inhibitor. The aim of the study was to investigate the effects of tofacitinib on traditional and nontraditional lipid parameters and CV risk markers in patients with psoriasis from a phase III study, OPT Pivotal 1. Patients with psoriasis were randomized to tofacitinib 5 or 10 mg twice daily (BID) or placebo BID. Serum samples were collected at baseline, week 4, and week 16. Analyses included serum cholesterol levels, triglycerides, lipoproteins, lipid particles, lipid-related parameters/CV risk markers, and high-density lipoprotein (HDL) function analyses. At week 16, small concurrent increases in mean low-density lipoprotein cholesterol (LDL-C) and HDL cholesterol (HDL-C) levels were observed with tofacitinib; total cholesterol/HDL-C ratio did not change. There was no significant change in the number of small dense LDL particles, which are considered to be more atherogenic than large particles, and oxidized LDL did not increase. Paraoxonase 1 activity, linked to HDL antioxidant capacity, increased, and HDL-associated serum amyloid A, which reduces the anti-atherogenic potential of HDL, decreased. HDL capacity to promote cholesterol efflux from macrophages did not change. Lecithin-cholesterol acyltransferase activity, which is associated with reverse cholesterol transport, increased. Markers of systemic inflammation, serum amyloid A and C-reactive protein, decreased with tofacitinib. While small increases in lipid levels are observed with tofacitinib treatment in patients with psoriasis, effects on selected lipid-related parameters and other circulating CV risk biomarkers are not suggestive of an increased CV risk [NCT01276639]. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  4. Lack of association of ghrelin precursor gene variants and percentage body fat or serum lipid profiles.

    Science.gov (United States)

    Martin, Glynn R; Loredo, J C; Sun, Guang

    2008-04-01

    Ghrelin has been recognized for its involvement in food intake, control of energy homeostasis, and lipid metabolism. However, the roles of genetic variations in the ghrelin precursor gene (GHRL) on body compositions and serum lipids are not clear in humans. Our study investigated five single-nucleotide polymorphisms (SNPs) within GHRL to determine their relationship with body fat percentage (BF), trunk fat percentage (TF), lower body (legs) fat percentage (LF), and serum lipids in 1,464 subjects, which were recruited from the genetically homogeneous population of Newfoundland and Labrador (NL), Canada. Serum glucose, insulin, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, and triglycerides were determined. Five SNPs are rs35684 (A/G: a transition substitution in exon 1), rs4684677 (A/T: a missense mutation), rs2075356 (C/T: intron), rs26802 (G/T: intron), and rs26311 (A/G: near the 3' untranslated region) of GHRL were genotyped using TaqMan validated or functionally tested SNP genotyping assays. Our study found no significant evidence of an allele or genotype association between any of the variant sites and body compositions or serum lipids. Furthermore, haplotype frequencies were not found to be significantly different between lean and obese subjects. In summary, the results of our study do not support a significant role for genetic variations in GHRL in the differences of body fat and serum lipid profiles in the NL population.

  5. Differential expression of genes associated with lipid metabolism in longissimus dorsi of Korean bulls and steers.

    Science.gov (United States)

    Bong, Jin Jong; Jeong, Jin Young; Rajasekar, Panchamoorthy; Cho, Young Moo; Kwon, Eung Gi; Kim, Hyeong Cheol; Paek, Bong Hyun; Baik, Myunggi

    2012-07-01

    The objective of this study was to compare expression of genes associated with lipid deposition and removal between bulls and steers in the longissimus dorsi muscle (LM) tissue of Korean cattle. Castration increased the expression of lipid uptake lipoprotein lipase, fatty acid translocase, and fatty acid transport protein 1 in LM. Castration increased lipogenic gene expression of both acetyl-CoA carboxylase and fatty acid synthase. In contrast, castration downregulated lipolytic gene expression of both adipose triglyceride lipase (ATGL) and monoglyceride lipase. Steers showed higher expression levels of insulin signaling phospho-v-akt murine thymoma viral oncogene homolog 1 than bulls but lower protein levels of nuclear Forkhead box O 1 (FoxO1) than bulls, suggesting that increased insulin signaling following castration decreases nuclear FoxO1 levels, leading to downregulation of ATGL gene expression. These findings suggest that castration contributes to increases in lipid uptake and lipogenesis and a decrease in lipolysis, resulting in improved marbling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content.

    Science.gov (United States)

    Liu, Hui; Wang, Cuiping; Chen, Fan; Shen, Shihua

    2015-01-15

    To reveal the difference among three mature Jatropha curcas seeds (JcVH, variant with high lipid content; JcW, wild type and JcVL, variant with low lipid content) with different lipid content, comparative proteomics was employed to profile the changes of oil body (OB) associated protein species by using gels-based proteomic technique. Eighty-three protein species were successfully identified through LTQ-ES-MS/MS from mature JcW seeds purified OBs. Two-dimensional electrophoresis analysis of J. curcas OB associated protein species revealed they had essential interactions with other organelles and demonstrated that oleosin and caleosin were the most abundant OB structural protein species. Twenty-eight OB associated protein species showed significant difference among JcVH, JcW and JcVL according to statistical analysis. Complementary transient expression analysis revealed that calcium ion binding protein (CalBP) and glycine-rich RNA binding protein (GRP) were well targeted in OBs apart from the oleosins. This study demonstrated that ratio of lipid content to caleosins abundance was involved in the regulation of OB size, and the mutant induced by ethylmethylsulfone treatment might be related to the caleosin like protein species. These findings are important for biotechnological improvement with the aim to alter the lipid content in J. curcas seeds. The economic value of Jatropha curcas largely depends on the lipid content in seeds which are mainly stored in the special organelle called oil bodies (OBs). In consideration of the biological importance and applications of J. curcas OB in seeds, it is necessary to further explore the components and functions of J. curcas OBs. Although a previous study concerning the J. curcas OB proteome revealed oleosins were the major OB protein component and additional protein species were similar to those in other oil seed plants, these identified OB associated protein species were corresponding to the protein bands instead of protein

  7. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers

    Science.gov (United States)

    Zoledziewska, Magdalena; Mulas, Antonella; Pistis, Giorgio; Steri, Maristella; Danjou, Fabrice; Kwong, Alan; Ortega del Vecchyo, Vicente Diego; Chiang, Charleston W. K.; Bragg-Gresham, Jennifer; Pitzalis, Maristella; Nagaraja, Ramaiah; Tarrier, Brendan; Brennan, Christine; Uzzau, Sergio; Fuchsberger, Christian; Atzeni, Rossano; Reinier, Frederic; Berutti, Riccardo; Huang, Jie; Timpson, Nicholas J; Toniolo, Daniela; Gasparini, Paolo; Malerba, Giovanni; Dedoussis, George; Zeggini, Eleftheria; Soranzo, Nicole; Jones, Chris; Lyons, Robert; Angius, Andrea; Kang, Hyun M.; Novembre, John; Sanna, Serena; Schlessinger, David; Cucca, Francesco; Abecasis, Gonçalo R

    2015-01-01

    We report ~17.6M genetic variants from whole-genome sequencing of 2,120 Sardinians; 22% are absent from prior sequencing-based compilations and enriched for predicted functional consequence. Furthermore, ~76K variants common in our sample (frequency >5%) are rare elsewhere (Genomes Project). We assessed the impact of these variants on circulating lipid levels and five inflammatory biomarkers. Fourteen signals, including two major new loci, were observed for lipid levels, and 19, including two novel loci, for inflammatory markers. New associations would be missed in analyses based on 1000 Genomes data, underlining the advantages of large-scale sequencing in this founder population. PMID:26366554

  8. Unique ecological impacts associated with offshore floating nuclear power plants

    International Nuclear Information System (INIS)

    Adams, S.M.; McLean, R.B.

    1979-01-01

    The ecological impacts that could occur as a result of site construction and operation of an offshore floating nuclear power plant are identified by comparing the principal ecological features associated with offshore siting with those associated with the siting of onshore estuarine plants. In general, the ecological impacts of offshore nuclear plants should be relatively smaller than those of estuarine plants. Possible factors that could increase the relative impacts of offshore plants are high frequency of contact with schools of fish, siting near inlets to estuaries or other ecologically important areas, and the persistence of halogen residuals. Identifying the potential ecological impacts associated with the siting of offshore plants permits the development of various monitoring programs and measures to minimize these impacts

  9. Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria.

    Science.gov (United States)

    Carvalho, T L G; Balsemão-Pires, E; Saraiva, R M; Ferreira, P C G; Hemerly, A S

    2014-10-01

    Some beneficial plant-interacting bacteria can biologically fix N2 to plant-available ammonium. Biological nitrogen fixation (BNF) is an important source of nitrogen (N) input in agriculture and represents a promising substitute for chemical N fertilizers. Diazotrophic bacteria have the ability to develop different types of root associations with different plant species. Among the highest rates of BNF are those measured in legumes nodulated by endosymbionts, an already very well documented model of plant-diazotrophic bacterial association. However, it has also been shown that economically important crops, especially monocots, can obtain a substantial part of their N needs from BNF by interacting with associative and endophytic diazotrophic bacteria, that either live near the root surface or endophytically colonize intercellular spaces and vascular tissues of host plants. One of the best reported outcomes of this association is the promotion of plant growth by direct and indirect mechanisms. Besides fixing N, these bacteria can also produce plant growth hormones, and some species are reported to improve nutrient uptake and increase plant tolerance against biotic and abiotic stresses. Thus, this particular type of plant-bacteria association consists of a natural beneficial system to be explored; however, the regulatory mechanisms involved are still not clear. Plant N status might act as a key signal, regulating and integrating various metabolic processes that occur during association with diazotrophic bacteria. This review will focus on the recent progress in understanding plant association with associative and endophytic diazotrophic bacteria, particularly on the knowledge of the N networks involved in BNF and in the promotion of plant growth. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Endoplasmic Reticulum Lipid Flux Influences Enterocyte Nuclear Morphology and Lipid-dependent Transcriptional Responses.

    Science.gov (United States)

    Zeituni, Erin M; Wilson, Meredith H; Zheng, Xiaobin; Iglesias, Pablo A; Sepanski, Michael A; Siddiqi, Mahmud A; Anderson, Jennifer L; Zheng, Yixian; Farber, Steven A

    2016-11-04

    Responding to a high-fat meal requires an interplay between multiple digestive tissues, sympathetic response pathways, and the gut microbiome. The epithelial enterocytes of the intestine are responsible for absorbing dietary nutrients and preparing them for circulation to distal tissues, which requires significant changes in cellular activity, including both morphological and transcriptional responses. Following a high-fat meal, we observe morphological changes in the enterocytes of larval zebrafish, including elongation of mitochondria, formation and expansion of lipid droplets, and the rapid and transient ruffling of the nuclear periphery. Dietary and pharmacological manipulation of zebrafish larvae demonstrated that these subcellular changes are specific to triglyceride absorption. The transcriptional changes that occur simultaneously with these morphological changes were determined using RNA sequencing, revealing a cohort of up-regulated genes associated with lipid droplet formation and lipid transport via lipoprotein particles. Using a microsomal triglyceride transfer protein (MTP) inhibitor to block β-lipoprotein particle formation, we demonstrate that the transcriptional response to a high-fat meal is associated with the transfer of ER triglyceride to nascent β-lipoproteins, possibly through the activation of Creb3l3/cyclic AMP-responsive element-binding protein. These data suggest that a transient increase in ER lipids is the likely mediator of the initial physiological response of intestinal enterocytes to dietary lipid. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Endoplasmic Reticulum Lipid Flux Influences Enterocyte Nuclear Morphology and Lipid-dependent Transcriptional Responses*

    Science.gov (United States)

    Zeituni, Erin M.; Wilson, Meredith H.; Zheng, Xiaobin; Iglesias, Pablo A.; Sepanski, Michael A.; Siddiqi, Mahmud A.; Anderson, Jennifer L.; Zheng, Yixian; Farber, Steven A.

    2016-01-01

    Responding to a high-fat meal requires an interplay between multiple digestive tissues, sympathetic response pathways, and the gut microbiome. The epithelial enterocytes of the intestine are responsible for absorbing dietary nutrients and preparing them for circulation to distal tissues, which requires significant changes in cellular activity, including both morphological and transcriptional responses. Following a high-fat meal, we observe morphological changes in the enterocytes of larval zebrafish, including elongation of mitochondria, formation and expansion of lipid droplets, and the rapid and transient ruffling of the nuclear periphery. Dietary and pharmacological manipulation of zebrafish larvae demonstrated that these subcellular changes are specific to triglyceride absorption. The transcriptional changes that occur simultaneously with these morphological changes were determined using RNA sequencing, revealing a cohort of up-regulated genes associated with lipid droplet formation and lipid transport via lipoprotein particles. Using a microsomal triglyceride transfer protein (MTP) inhibitor to block β-lipoprotein particle formation, we demonstrate that the transcriptional response to a high-fat meal is associated with the transfer of ER triglyceride to nascent β-lipoproteins, possibly through the activation of Creb3l3/cyclic AMP-responsive element-binding protein. These data suggest that a transient increase in ER lipids is the likely mediator of the initial physiological response of intestinal enterocytes to dietary lipid. PMID:27655916

  12. Consumption of seafood and its estimated heavy metals are associated with lipid profile and oxidative lipid damage on healthy adults from a Spanish Mediterranean area: A cross-sectional study.

    Science.gov (United States)

    Aranda, N; Valls, R M; Romeu, M; Sánchez-Martos, V; Albaladejo, R; Fernández-Castillejo, S; Nogués, R; Catalán, Ú; Pedret, A; Espinel, A; Delgado, M A; Arija, V; Sola, R; Giralt, M

    2017-07-01

    The association between the consumption of seafood and its benefits on cardiovascular (CVD) risk can be challenged by its heavy metal (HM) content. This study aimed to explore the association of seafood consumption and its estimated HM contents with the lipid profile and lipid oxidation biomarkers in adults from a Spanish Mediterranean area who do not present risk factors for CVD. In this cross-sectional study, the clinical history, three-day dietary record, lipid profile (LDLc, HDLc, APOB/A, and triglyceride levels), plasma oxidised LDL (oxLDL) and 8-isoprostane levels of 81 adults without risk factors for CVD [43% men, with a mean age of 43.6 years (95%CI: 40.1-47.1)] were assessed. The HM [arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb)] contents of seafood were estimated according to data from analyses of marine species in the same Mediterranean area. Moderate adherence to the Mediterranean diet (score: 4.6 of 9) with a mean seafood consumption of 74.9g/day (95%CI: 59.9-89.9), including 22.7g of shellfish per day (95%CI: 13.5-31.9), was observed. The estimated HM contents were lower than the provisional tolerable weekly intakes (PTWIs): 21.12µg/kg/week As, 0.57µg/kg/week InAs, 0.15µg/kg/week Cd, 1.11µg/kg/week Hg and 0.28µg/kg/week Pb. After adjusting by confounder variables, an increase in shellfish consumption was associated with increases in the levels of LDLc (P=0.013), non-HDLc (P=0.015), APOB/A (P=0.02) and plasma oxLDL (P=0.002). Moreover, an increase in the estimated As and Hg levels in shellfish was associated with an increase in LDLc (P=0.015 and P=0.018, respectively), non-HDLc (Pconsumption, even by a moderate amount, could favour a pro-atherogenic lipid profile and a higher level of oxidised LDL. These associations are likely influenced by the estimated exposure to As and Hg from shellfish despite these values are lower than the PTWIs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effective application of freezing lipid precipitation and SCX-SPE for determination of pyrrolizidine alkaloids in high lipid foodstuffs by LC-ESI-MS/MS.

    Science.gov (United States)

    Yoon, Soo Hwan; Kim, Min-Sun; Kim, Sang Hoon; Park, Hyun Mee; Pyo, Heesoo; Lee, Yong Moon; Lee, Kyung-Tae; Hong, Jongki

    2015-06-15

    Pyrrolizidine alkaloids (PAs) are naturally occurring plant toxins associated with serious hepatic disease in humans and animals. In this study, rapid and sensitive analytical method was developed for the determination of 9 toxic PAs in popularly high lipid foodstuffs by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). PAs in lipid foodstuff were effectively purified by freezing lipid precipitation (FLP) and strong cation exchange (SCX)-solid-phase extraction (SPE). Especially, FLP could easily remove the large amounts of triacylglycerols in the lipid sample extract and effectively combine with SPE cleanup. During the FLP procedure, over 77% of the lipids in the foodstuff extracts were rapidly eliminated without any significant loss of the PAs with over 81% recovery. The elimination efficiency of lipids by FLP was tested with LC-atmospheric chemical ionization (APCI)-MS. For further purification, SCX-SPE cartridge could successfully purify PAs from the remaining interfering substances by the variation pH with 5% NH4OH in methanol. For precise quantification and confirmation of PAs in complicate sample matrices, appropriate transition ions in LC-MS/MS-multiple-ion reaction monitoring (MRM) mode were selected on the basis of MS/MS fragmentation pathways of PAs. The established analytical method was validated in terms of the linearity, limits of detection (LOD), and quantification (LOQ), precision, and accuracy. The method was deemed satisfactory by inter- and intra-day validation and exhibited both high accuracy and precision (relative standard deviation<11.06%). Overall limits of detection and quantitation of PAs were approximately 0.06-0.60ng/mL at a signal-to-noise ratio (S/N) of 3 and were about 0.20-1.99ng/mL at a S/N of 10 for all foodstuffs. The established method was successfully applied for the monitoring of toxic PAs in several types of high lipid foodstuffs such as soybeans, seed oil, milk, and margarine. Copyright

  14. Localization and Orientation of Xanthophylls in a Lipid Bilayer

    OpenAIRE

    Grudzinski, Wojciech; Nierzwicki, Lukasz; Welc, Renata; Reszczynska, Emilia; Luchowski, Rafal; Czub, Jacek; Gruszecki, Wieslaw I.

    2017-01-01

    Xanthophylls (polar carotenoids) play diverse biological roles, among which are modulation of the physical properties of lipid membranes and protection of biomembranes against oxidative damage. Molecular mechanisms underlying these functions are intimately related to the localization and orientation of xanthophyll molecules in lipid membranes. In the present work, we address the problem of localization and orientation of two xanthophylls present in the photosynthetic apparatus of plants and i...

  15. Association between apolipoprotein E genotype, serum lipids, and colorectal cancer in Brazilian individuals

    OpenAIRE

    Souza, D.R.S.; Nakazone, M.A.; Pinhel, M.A.S.; Alvares, R.M.; Monaco, A.C.; Pinheiro, A.; Barros, C.F.D.C.; Cury, P.M.; Cunrath, G.S.; Netinho, J.G.

    2009-01-01

    We evaluated genetic variants of apolipoprotein E (APOE HhaI) and their association with serum lipids in colorectal cancer (CRC), together with eating habits and personal history. Eight-seven adults with CRC and 73 controls were studied. APOE*2 (rs7412) and APOE*4 (rs429358) were identified by polymerase chain reaction-restriction fragment length polymorphism. APOE gene polymorphisms were similar in both groups, but the ε4/ε4 genotype (6%) was present only in controls. The patients ...

  16. Water insoluble and soluble lipids for gene delivery.

    Science.gov (United States)

    Mahato, Ram I

    2005-04-05

    Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.

  17. Effects of Shiitake Intake on Serum Lipids in Rats Fed Different High-Oil or High-Fat Diets.

    Science.gov (United States)

    Asada, Norihiko; Kairiku, Rumi; Tobo, Mika; Ono, Akifumi

    2018-04-27

    Shiitake (Lentinula edodes) extract, eritadenine, has been shown to reduce cholesterol levels, and its hypocholesterolemic actions are involved in the metabolism of methionine. However, the mechanisms by which eritadenine affects cholesterol metabolism in animals fed a high-fat diet containing different sources of lipids have not yet been elucidated in detail. This study was conducted to investigate the effects of shiitake supplementation on serum lipid concentrations in rats fed a diet including a high amount of a plant oil (HO [high oil] and HOS [high oil with shiitake] groups), animal fat (HF [high fat] and HFS [high fat with shiitake] groups), or MCT- (medium-chain triglyceride-) rich plant oil (HM [high MCT] and HMS [high MCT with shiitake] groups). Rats in the HOS, HFS, and HMS groups were fed shiitake. When rats were fed a diet containing shiitake, serum triglyceride, cholesterol levels, and LCAT (lecithin-cholesterol acyltransferase) activities were lower in rats given MCT-rich plant oil than in those that consumed lard. The lipid type in the diet with shiitake also affected serum cholesterol levels and LCAT activities. The diet containing MCT-rich plant oil showed the greatest rates of decrease in all serum lipid profiles and LCAT activities. These results suggest that shiitake and MCT-rich plant oil work together to reduce lipid profiles and LCAT activity in serum.

  18. Genetic polymorphisms of the CYP1A1, GSTM1, and GSTT1 enzymes and their influence on cardiovascular risk and lipid profile in people who live near a natural gas plant.

    Science.gov (United States)

    Pašalić, Daria; Marinković, Natalija

    2017-03-01

    The aim of this cross-sectional study was to see whether genetic polymorphisms of the enzymes CYP1A1, GSTM1, and GSTT1 are associated with higher risk of coronary artery disease (CAD) and whether they affect lipid profile in 252 subjects living near a natural gas plant, who are likely to be exposed to polycyclic aromatic hydrocarbons (PAHs). Fasting serum concentrations of biochemical parameters were determined with standard methods. Genetic polymorphisms of CYP 1A1 rs4646903, rs1048943, rs4986883, and rs1799814 were genotyped with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFPL), while GSTM1 and GSTT1 deletions were detected with multiplex PCR. Cardiovascular risk was assessed with Framingham risk score, and the subjects divided in two groups: >10% risk and ≤10% risk. The two groups did not differ in the genotype frequencies. MANCOVA analysis, which included lipid parameters, glucose, and BMI with sex, age, hypertension and smoking status as covariates, showed a significant difference between the GSTT1*0 and GSTT1*1 allele carriers (p=0.001). UNIANCOVA with same covariates showed that total cholesterol and triglyceride levels were significantly higher in GSTT1*1 allele carriers than in GSTT1*0 carriers (prisk of CAD, but that GSTT1 affects lipid profile.

  19. Imaging Prostatic Lipids to Distinguish Aggressive Prostate Cancer

    Science.gov (United States)

    2016-12-01

    prostatectomy samples, intraprostatic lipid as measured by MRSI and prostate tumor aggressiveness. 3) To quantify key metabolic intermediates involved in...lipid as measured by 1H MRSI, and prostate tumor aggressiveness; and 3) quantify the association between key metabolic intermediates involved in lipid

  20. Curcumin Mitigates the Intracellular Lipid Deposit Induced by Antipsychotics In Vitro.

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, both inhibit cholesterol biosynthesis and impair the intracellular cholesterol trafficking, leading to lipid accumulation in the late endosome/lysosome compartment. In this study we examined if curcumin, a plant polyphenol that stimulates exosome release, can alleviate antipsychotic-induced intracellular lipid accumulation.HepG2 hepatocarcinoma cells were treated with antipsychotics or placebo and DiI-labelled LDL for 18 h and then exposed to curcumin for the last 2 h. Cells and media were collected separately and used for biochemical analyses, electron microscopy and immunocytochemistry. Exosomes were isolated from the incubation medium by ultracentrifugation.Curcumin treatment reduced the number of heterolysosomes and shifted their subcellular localization to the periphery, as revealed by electron microscopy, and stimulated the release of lysosomal β-hexosaminidase and exosome markers flotillin-2 and CD63 into the media. The presence of DiI in exosomes released by cells preloaded with DiI-LDL demonstrated the endolysosomal origin of the microvesicles. Furthermore, curcumin increased the secretion of cholesterol as well as LDL-derived DiI and [3H]-cholesterol, in association with a decrease of intracellular lipids. Thus, the disruption of lipid trafficking induced by FGAs or SGAs can be relieved by curcumin treatment. This polyphenol, however, did not mitigate the reduction of cholesterol esterification induced by antipsychotics.Curcumin stimulates exosome release to remove cholesterol (and presumably other lipids accumulated within the endolysosomal compartment, thereby normalizing intracellular lipid homeostasis. This action may help minimize the adverse metabolic effects of antipsychotic treatment, which should now be evaluated in clinical trials.

  1. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    Science.gov (United States)

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  2. Gene therapy for lipid disorders

    Directory of Open Access Journals (Sweden)

    Rader Daniel J

    2000-10-01

    Full Text Available Abstract Lipid disorders are associated with atherosclerotic vascular disease, and therapy is associated with a substantial reduction in cardiovascular events. Current approaches to the treatment of lipid disorders are ineffective in a substantial number of patients. New therapies for refractory hypercholesterolemia, severe hypertriglyceridemia, and low levels of high-density lipoprotein cholesterol are needed: somatic gene therapy is one viable approach. The molecular etiology and pathophysiology of most of the candidate diseases are well understood. Animal models exist for the diseases and in many cases preclinical proof-of-principle studies have already been performed. There has been progress in the development of vectors that provide long-term gene expression. New clinical gene therapy trials for lipid disorders are likely to be initiated within the next few years.

  3. PRDM16 Gene Polymorphism Is Associated with Obesity and Blood Lipids Profiles in Saudi Population

    Directory of Open Access Journals (Sweden)

    Aishah AlAmrani

    2018-06-01

    Full Text Available Aims: The PR domain containing 16 (PRDM16 gene and the Phosphodiesterase 4D (PDE4 gene are both an essential regulators in the thermogenesis process in the brown adipose tissues (BAT. The influence of polymorphisms in those genes on obesity and blood lipids profile is unknown particularly in the Saudi population, so the current study is aiming to explore that. Methods: A case control format was used that involved 89 obese individual and 84 non-obese (control. The PRDM16 (rs2651899 and PDE4D (rs295978 polymorphisms were genotyped using KASP™ (Competitive Allele-Specific PCR method. Results: The distributions of the AA, GG, and AG genotypes of PRDM16 (rs2651899 polymorphism were 0.19, 0.26 and 0.54, respectively. While the distribution of the mutated allele A was 0.7 in the obese group comparing to 0.34 in the non-obese group. Participants with the mutated genotypes, AA and AG, of PRDM16 (rs2651899 polymorphism were significantly more likely to be obese as compared to participants with wild type genotype (OR = 21, 95% CI = 5.4190 to 84.4231, p value < 0.0001 and OR = 44.6, 95% CI = 11.5984 to 172.0157, p value < 0.0001, respectively. The wild type GG genotype of this polymorphism was associated with higher blood cholesterol, HDL and LDL but lower blood triglyceride compared with the mutated genotypes (p = 0.003, p = 0.008, p = 0.02 and p = 0.003, respectively. In contrast, PDE4D (rs295978 polymorphism was not associated with risk of obesity and had no effects on blood lipids profile. Conclusions: We found that the PRDM16 polymorphism (rs2651899 is a risk factor for obesity and influence blood lipids profiles significantly in Saudi population. While the PDE4D (rs295978 polymorphism didn’t show significant effect on risk of obesity or blood lipids profiles.

  4. Characterization of the Lateral Distribution of Fluorescent Lipid in Binary-Constituent Lipid Monolayers by Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    István P. Sugár

    2010-01-01

    Full Text Available Lipid lateral organization in binary-constituent monolayers consisting of fluorescent and nonfluorescent lipids has been investigated by acquiring multiple emission spectra during measurement of each force-area isotherm. The emission spectra reflect BODIPY-labeled lipid surface concentration and lateral mixing with different nonfluorescent lipid species. Using principal component analysis (PCA each spectrum could be approximated as the linear combination of only two principal vectors. One point on a plane could be associated with each spectrum, where the coordinates of the point are the coefficients of the linear combination. Points belonging to the same lipid constituents and experimental conditions form a curve on the plane, where each point belongs to a different mole fraction. The location and shape of the curve reflects the lateral organization of the fluorescent lipid mixed with a specific nonfluorescent lipid. The method provides massive data compression that preserves and emphasizes key information pertaining to lipid distribution in different lipid monolayer phases. Collectively, the capacity of PCA for handling large spectral data sets, the nanoscale resolution afforded by the fluorescence signal, and the inherent versatility of monolayers for characterization of lipid lateral interactions enable significantly enhanced resolution of lipid lateral organizational changes induced by different lipid compositions.

  5. Effects of acute exercise on lipid content and dietary lipid uptake in liver and skeletal muscle of lean and diabetic rats

    NARCIS (Netherlands)

    Janssens, Sharon; Jonkers, Richard A. M.; Groen, Albert K.; Nicolay, Klaas; van Loon, Luc J. C.; Prompers, Jeanine J.

    2015-01-01

    Insulin resistance is associated with ectopic lipid accumulation. Physical activity improves insulin sensitivity, but the impact of exercise on lipid handling in insulin-resistant tissues remains to be elucidated. The present study characterizes the effects of acute exercise on lipid content and

  6. Regulation of AMPA receptor localization in lipid rafts

    Science.gov (United States)

    Hou, Qingming; Huang, Yunfei; Amato, Stephen; Snyder, Solomon H.; Huganir, Richard L.; Man, Heng-Ye

    2009-01-01

    Lipid rafts are special microdomains enriched in cholesterol, sphingolipids and certain proteins, and play important roles in a variety of cellular functions including signal transduction and protein trafficking. We report that in cultured cortical and hippocampal neurons the distribution of lipid rafts is development-dependent. Lipid rafts in mature neurons exist on the entire cell-surface and display a high degree of mobility. AMPA receptors co-localize and associate with lipid rafts in the plasma membrane. The association of AMPARs with rafts is under regulation; through the NOS–NO pathway, NMDA receptor activity increases AMPAR localization in rafts. During membrane targeting, AMPARs insert into or at close proximity of the surface raft domains. Perturbation of lipid rafts dramatically suppresses AMPA receptor exocytosis, resulting in significant reduction in AMPAR cell-surface expression. PMID:18411055

  7. Biologic activity of porphyromonas endodontalis complex lipids.

    Science.gov (United States)

    Mirucki, Christopher S; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E; Clark, Robert B; Nichols, Frank C

    2014-09-01

    Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis and evaluate their capacity to promote proinflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Constituent lipids of both organisms were fractionated by high-performance liquid chromatography and were structurally characterized using electrospray mass spectrometry or electrospray-mass spectrometry/mass spectrometry. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. P. endodontalis total lipids were shown to promote tumor necrosis factor alpha secretion from RAW 264.7 cells, and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells, but osteoblast differentiation in culture was inhibited and appeared to be dependent on Toll-like receptor 2 expression. These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Characteristic of lipid metabolism and state of free-radical processes in workers of 30-km alienation zone at Chernobyl Atomic Power Plant

    International Nuclear Information System (INIS)

    Chayalo, P.P.; Chobot'ko, G.M.; Palamar, L.A.; Kolesnik, L.L.; Kuznetsov, G.P.

    1997-01-01

    The study involved 54 men aged 35-50 working in 30 km alienation zone at the Chernobyl Atomic Power Plant. Blood serum and erythrocyte lipid peroxidation indices were estimated. Investigation of peroxidation processes in the erythrocytes allowed to reveal changes in glutation system, they being characterized by its amount elevation against the background of glutation transferase activity increase both in the persons, working in the 30 km zone, and in those from 'Ukryttia' Establishment

  9. Changes in semi-arid plant species associations along a livestock grazing gradient.

    Directory of Open Access Journals (Sweden)

    Hugo Saiz

    Full Text Available In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences, with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize

  10. Impact of grape pomace consumption on the blood lipid profile and liver genes associated with lipid metabolism of young rats.

    Science.gov (United States)

    Yu, Jianmei; Bansode, Rishipal R; Smith, Ivy N; Hurley, Steven L

    2017-08-01

    Herein, we investigated the effects of grape pomace (GP) in diet on body weight, blood lipid profile, and expression of liver genes associated with lipid metabolism using a young rat model. In this study, twenty female Sprague-Dawley rats at 7 weeks of age were randomly divided into 4 groups, which were fed modified AIN-93G diets containing 0% (control), 6.9%, 13.8%, and 20.7% of GP for 10 weeks. Feed consumption and body weight were weekly determined. Blood samples were obtained at the beginning and end of the feeding period for cholesterol, alanine aminotransferase (ALT), and glucose analysis. At the end of the feeding period, all rats were fasted overnight and euthanized. Heart, kidney, and liver samples were obtained and weighed. Liver tissues were used for gene expression analysis. GP-containing diet did not influence the body weight of the rats. As GP content increased, blood triglyceride and very low density lipoprotein (VLDL) decreased (P consumption of a diet containing appropriate amount of GP may help in the reduction of body fat accumulation and prevention of obesity. This is the first study revealing the change in gene expression caused by long-term consumption of GP-containing diet.

  11. Polyene-lipids: a new tool to image lipids

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Ejsing, Christer S.; Ekroos, Kim

    2005-01-01

    conjugated double bonds as a new type of lipid tag. Polyene-lipids exhibit a unique structural similarity to natural lipids, which results in minimal effects on the lipid properties. Analyzing membrane phase partitioning, an important biophysical and biological property of lipids, we demonstrated......Microscopy of lipids in living cells is currently hampered by a lack of adequate fluorescent tags. The most frequently used tags, NBD and BODIPY, strongly influence the properties of lipids, yielding analogs with quite different characteristics. Here, we introduce polyene-lipids containing five...... the superiority of polyene-lipids to both NBD- and BODIPY-tagged lipids. Cells readily take up various polyene-lipid precursors and generate the expected end products with no apparent disturbance by the tag. Applying two-photon excitation microscopy, we imaged the distribution of polyene-lipids in living...

  12. To Assess the Association between Glucose Metabolism and Ectopic Lipid Content in Different Clinical Classifications of PCOS

    Science.gov (United States)

    Göbl, Christian S.; Ott, Johannes; Bozkurt, Latife; Feichtinger, Michael; Rehmann, Victoria; Cserjan, Anna; Heinisch, Maike; Steinbrecher, Helmut; JustKukurova, Ivica; Tuskova, Radka; Leutner, Michael; Vytiska-Binstorfer, Elisabeth; Kurz, Christine; Weghofer, Andrea; Tura, Andrea; Egarter, Christian; Kautzky-Willer, Alexandra

    2016-01-01

    Aims There are emerging data indicating an association between PCOS (polycystic ovary syndrome) and metabolic derangements with potential impact on its clinical presentation. This study aims to evaluate the pathophysiological processes beyond PCOS with particular focus on carbohydrate metabolism, ectopic lipids and their possible interaction. Differences between the two established classifications of the disease should be additionally evaluated. Methods A metabolic characterization was performed in 53 untreated PCOS patients as well as 20 controls including an extended oral glucose tolerance test (OGTT, to assess insulin sensitivity, secretion and ß-cell function) in addition to a detailed examination of ectopic lipid content in muscle and liver by nuclear magnetic resonance spectroscopy. Results Women with PCOS classified by the original NIH 1990 definition showed a more adverse metabolic risk profile compared to women characterized by the additional Rotterdam 2003 phenotypes. Subtle metabolic derangements were observed in both subgroups, including altered shapes of OGTT curves, impaired insulin action and hyperinsulinemia due to increased secretion and attenuated hepatic extraction. No differences were observed for ectopic lipids between the groups. However, particularly hepatocellular lipid content was significantly related to clinical parameters of PCOS like whole body insulin sensitivity, dyslipidemia and free androgen index. Conclusions Subtle alterations in carbohydrate metabolism are present in both PCOS classifications, but more profound in subjects meeting the NIH 1990 criteria. Females with PCOS and controls did not differ in ectopic lipids, however, liver fat was tightly related to hyperandrogenism and an adverse metabolic risk profile. PMID:27505055

  13. Effect of Ring Size in ω-Alicyclic Fatty Acids on the Structural and Dynamical Properties Associated with Fluidity in Lipid Bilayers.

    Science.gov (United States)

    Poger, David; Mark, Alan E

    2015-10-27

    Fatty acids containing a terminal cyclic group such as cyclohexyl and cycloheptyl are commonly found in prokaryotic membranes, especially in those of thermo-acidophilic bacteria. These so-called ω-alicyclic fatty acids have been proposed to stabilize the membranes of bacteria by reducing the fluidity in membranes and increasing lipid packing and lipid chain order. In this article, molecular dynamics simulations are used to examine the effect of 3- to 7-membered cycloalkyl saturated and unsaturated (cyclopent-2-enyl and phenyl) rings in ω-alicyclic fatty acyl chains on the structure (lipid packing, lipid chain order, and fraction of gauche defects in the chains) and dynamics (lateral lipid diffusion) of a model lipid bilayer. It was found that ω-alicyclic chains in which the ring was saturated reduced lipid condensation and lowered chain order which would be associated with enhanced fluidity. However, this effect was limited. The lateral diffusion of the lipids diminished as the ring size increased. In particular, ω-cyclohexyl and ω-cycloheptyl acyl tails led to a decrease in lipid diffusion. In contrast, ω-alicyclic acyl chains that contain an unsaturated ring promoted membrane fluidity both in terms of changes in membrane structure and lipid diffusion. This may indicate that saturated and unsaturated terminal rings in ω-alicyclic fatty acids fulfill alternative functions within membranes. Overall, the simulations suggest that ω-alicyclic fatty acids in which the terminal ring is saturated might protect the membrane of thermo-acidophilic bacteria from high-temperature and low-pH conditions through a "dynamical barrier" that would limit lipid diffusion and transmembrane diffusion of undesired ions and molecules.

  14. Associations between Dietary Nutrient Intakes and Hepatic Lipid Contents in NAFLD Patients Quantified by 1H-MRS and Dual-Echo MRI

    Directory of Open Access Journals (Sweden)

    Yipeng Cheng

    2016-08-01

    Full Text Available Dietary habits are crucial in the progression of hepatic lipid accumulation and nonalcoholic fatty liver disease (NAFLD. However, there are limited studies using 1H-magnetic resonance spectroscopy (1H-MRS and dual-echo in-phase and out-phase magnetic resonance spectroscopy imaging (dual-echo MRI to assess the effects of dietary nutrient intakes on hepatic lipid contents. In the present study, we recruited 36 female adults (NAFLD:control = 19:17 to receive questionnaires and medical examinations, including dietary intakes, anthropometric and biochemical measurements, and 1H-MRS and dual-echo MRI examinations. NAFLD patients were found to consume diets higher in energy, protein, fat, saturated fatty acid (SFA, and polyunsaturated fatty acid (PUFA. Total energy intake was positively associated with hepatic fat fraction (HFF and intrahepatic lipid (IHL after adjustment for age and body-mass index (BMI (HFF: β = 0.24, p = 0.02; IHL: β = 0.38, p = 0.02. Total fat intake was positively associated with HFF and IHL after adjustment for age, BMI and total energy intake (HFF: β = 0.36, p = 0.03; IHL: β = 0.42, p = 0.01. SFA intake was positively associated with HFF and IHL after adjustments (HFF: β = 0.45, p = 0.003; IHL: β = 1.16, p = 0.03. In conclusion, hepatic fat content was associated with high energy, high fat and high SFA intakes, quantified by 1H-MRS and dual-echo MRI in our population. Our findings are useful to provide dietary targets to prevent the hepatic lipid accumulation and NAFLD.

  15. Recent developments in genome and exome-wide analyses of plasma lipids.

    Science.gov (United States)

    Lange, Leslie A; Willer, Cristen J; Rich, Stephen S

    2015-04-01

    Genome-wide association scans (GWAS) have identified over 100 human loci associated with variation in lipids. The identification of novel genes and variants that affect lipid levels is made possible by next-generation sequencing, rare variant discovery and analytic advances. The current status of the genetic basis of lipid traits will be presented. Expansion of GWAS sample sizes for lipid traits has not substantially increased the proportion of trait variance explained by common genetic variants (less than 15% of trait variation captured). Although GWAS has discovered novel loci and pathways with putative biological function and impact on cardiovascular disease risk, discovery of the genes in these loci remains challenging. Exome sequencing promises to identify genes with protein-coding variants with a large impact on lipids, as shown for LDL-cholesterol levels associated with novel (PNPLA5) and known (LDLR, PCSK9, APOB) genes. Current results have increased our understanding of the genetic architecture of lipids, expanding the range of effect and frequency for variants identified for lipid traits. Identification of novel lipid-associated gene variants, even if small in effect or rare in the population, could provide important novel drug targets and biological pathways for dyslipidemia.

  16. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats.

    Science.gov (United States)

    Murugan, Pidaran; Pari, Leelavinothan

    2006-08-01

    Hyperlipidaemia is an associated complication of diabetes mellitus. We recently reported that tetrahydrocurcumin lowered the blood glucose in diabetic rats. In the present study, we have investigated the effect of tetrahydrocurcumin, one of the active metabolites of curcumin on lipid profile and lipid peroxidation in streptozotocin-nicotinamide-induced diabetic rats. Tetrahydrocurcumin 80 mg/kg body weight was administered orally to diabetic rats for 45 days, resulted a significant reduction in blood glucose and significant increase in plasma insulin in diabetic rats, which proved its antidiabetic effect. Tetrahydrocurcumin also caused a significant reduction in lipid peroxidation (thiobarbituric acid reactive substances and hydroperoxides) and lipids (cholesterol, triglycerides, free fatty acids and phospholipids) in serum and tissues, suggesting its role in protection against lipid peroxidation and its antihyperlipidemic effect. Tetrahydrocurcumin showed a better effect when compared with curcumin. Results of the present study indicate that tetrahydrocurcumin showed antihyperlipidaemic effect in addition to its antidiabetic effect in type 2 diabetic rats.

  17. Association between Sleep Disruption and Levels of Lipids in Caucasians with Type 2 Diabetes.

    LENUS (Irish Health Repository)

    Wan Mahmood, Wan Aizad

    2013-08-29

    Aim. To investigate the association between sleep quality and duration with lipid and glycaemic control in Caucasian subjects with type 2 diabetes. Methods. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) in 114 type 2 diabetes (T2DM) subjects. Comparisons were made between subjects with different sleep quality and sleep duration. Hierarchical multiple regression analyses were used to determine contributors to metabolic parameters. Results. Subjects with poor sleep quality (PQ; PSQI ≥ 6) had higher systolic blood pressure, glycated haemoglobin, urine albumin : creatinine ratio (UAC), total cholesterol (TC), and triglycerides (TG) (P < 0.05 for all) compared to those with good sleep quality (GQ; PSQI ≤ 5). Long sleep duration (LSD) subjects had higher TC and short sleep duration (SSD) subjects had higher TG compared to those with medium sleep duration. Sleep duration and PSQI score were independent predictors of TC and low-density lipoprotein cholesterol (LDL), contributing to 14.0% and 6.1% of the total variance, respectively. Conclusions. In this Caucasian T2DM population, PQ is associated with adverse cardiovascular risk markers, and long and short sleep disruptions have an independent negative impact on lipids. Sleep assessment should be included as part of a diabetes clinic review.

  18. Resolution of parenteral nutrition-associated jaundice on changing from a soybean oil emulsion to a complex mixed-lipid emulsion.

    Science.gov (United States)

    Muhammed, Rafeeq; Bremner, Ronald; Protheroe, Sue; Johnson, Tracey; Holden, Chris; Murphy, M Stephen

    2012-06-01

    Resolution of parenteral nutrition (PN)-associated jaundice has been reported in children given a reduced dose of intravenous fat using a fish oil-derived lipid emulsion. The aim of the present study was to examine the effect on PN-associated jaundice of changing from a soybean oil-derived lipid to a mixed lipid emulsion derived from soybean, coconut, olive, and fish oils without reducing the total amount of lipid given. Retrospective cohort comparison examining serum bilirubin during 6 months in children with PN-associated jaundice who changed to SMOFlipid (n=8) or remained on Intralipid (n=9). At entry, both groups received most of their energy as PN (SMOFlipid 81.5%, range 65.5-100 vs Intralipid 92.2%, range 60.3-100; P=0.37). After 6 months, both tolerated increased enteral feeding but still received large proportions of their energy as PN (SMOFlipid 68.4%, range 36.6-100 vs Intralipid 50%, range 37.6-76; P=0.15). The median bilirubin at the outset was 143 μmol/L (range 71-275) in the SMOFlipid group and 91 μmol/L (range 78-176) in the Intralipid group. After 6 months, 5 of 8 children in the SMOFlipid and 2 of 9 children in the Intralipid group had total resolution of jaundice. The median bilirubin fell by 99 μmol/L in the SMOFlipid group but increased by 79 μmol/L in the Intralipid group (P=0.02). SMOFlipid may have important protective properties for the liver and may constitute a significant advance in PN formulation. Randomised trials are needed to study the efficacy of SMOFlipid in preventing PN liver disease.

  19. Lipids, lipid genes, and incident age-related macular degeneration: the three continent age-related macular degeneration consortium

    NARCIS (Netherlands)

    Klein, Ronald; Myers, Chelsea E.; Buitendijk, Gabriëlle H. S.; Rochtchina, Elena; Gao, Xiaoyi; de Jong, Paulus T. V. M.; Sivakumaran, Theru A.; Burlutsky, George; McKean-Cowdin, Roberta; Hofman, Albert; Iyengar, Sudha K.; Lee, Kristine E.; Stricker, Bruno H.; Vingerling, Johannes R.; Mitchell, Paul; Klein, Barbara E. K.; Klaver, Caroline C. W.; Wang, Jie Jin

    2014-01-01

    To describe associations of serum lipid levels and lipid pathway genes to the incidence of age-related macular degeneration (AMD). Meta-analysis. setting: Three population-based cohorts. population: A total of 6950 participants from the Beaver Dam Eye Study (BDES), Blue Mountains Eye Study (BMES),

  20. Constraining Lipid Biomarker Paleoclimate Proxies in a Small Arctic Watershed

    Science.gov (United States)

    Dion-Kirschner, H.; McFarlin, J. M.; Axford, Y.; Osburn, M. R.

    2017-12-01

    Arctic amplification of climate change renders high-latitude environments unusually sensitive to changes in climatic conditions (Serreze and Barry, 2011). Lipid biomarkers, and their hydrogen and carbon isotopic compositions, can yield valuable paleoclimatic and paleoecological information. However, many variables affect the production and preservation of lipids and their constituent isotopes, including precipitation, plant growth conditions, biosynthesis mechanisms, and sediment depositional processes (Sachse et al., 2012). These variables are particularly poorly constrained for high-latitude environments, where trees are sparse or not present, and plants grow under continuous summer light and cool temperatures during a short growing season. Here we present a source-to-sink study of a single watershed from the Kangerlussuaq region of southwest Greenland. Our analytes from in and around `Little Sugarloaf Lake' (LSL) include terrestrial and aquatic plants, plankton, modern lake water, surface sediments, and a sediment core. This diverse sample set allows us to fulfill three goals: 1) We evaluate the production of lipids and isotopic signatures in the modern watershed in comparison to modern climate. Our data exhibit genus-level trends in leaf wax production and isotopic composition, and help clarify the difference between terrestrial and aquatic signals. 2) We evaluate the surface sediment of LSL to determine how lipid biomarkers from the watershed are incorporated into sediments. We constrain the relative contributions of terrestrial plants, aquatic plants, and other aquatic organisms to the sediment in this watershed. 3) We apply this modern source-to-sink calibration to the analysis of a 65 cm sediment core record. Our core is organic-rich, and relatively high deposition rates allow us to reconstruct paleoenvironmental changes with high resolution. Our work will help determine the veracity of these common paleoclimate proxies, specifically for research in

  1. Genetic architecture of circulating lipid levels

    DEFF Research Database (Denmark)

    Demirkan, Ayşe; Amin, Najaf; Isaacs, Aaron

    2011-01-01

    Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total cholesterol (TC) are important heritable risk factors for cardiovascular disease. Although genome-wide association studies (GWASs) of circulating lipid...... the ENGAGE Consortium GWAS on serum lipids, were applied to predict lipid levels in an independent population-based study, the Rotterdam Study-II (RS-II). We additionally tested for evidence of a shared genetic basis for different lipid phenotypes. Finally, the polygenic score approach was used to identify...... an alternative genome-wide significance threshold before pathway analysis and those results were compared with those based on the classical genome-wide significance threshold. Our study provides evidence suggesting that many loci influencing circulating lipid levels remain undiscovered. Cross-prediction models...

  2. The role of TGF-β in polycystic ovary syndrome.

    Science.gov (United States)

    Raja-Khan, Nazia; Urbanek, Margrit; Rodgers, Raymond J; Legro, Richard S

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by chronic oligoanovulation and hyperandrogenism and associated with insulin resistance, type 2 diabetes, and cardiovascular risk. In recent years, genetic studies have linked PCOS to a dinucleotide marker D19S884 in the fibrillin 3 gene. Fibrillins make up the major component of microfibrils in the extracellular matrix (ECM) and interact with molecules in the ECM to regulate transforming growth factor β (TGF-β) signaling. Therefore, variations in fibrillin 3 and subsequent dysregulation of TGF-β may contribute to the pathogenesis of PCOS. Here, we review the evidence from genetic studies supporting the role of TGF-β in PCOS and describe how TGF-β dysregulation may contribute to (1) the fetal origins of PCOS, (2) reproductive abnormalities in PCOS, and (3) cardiovascular and metabolic abnormalities in PCOS.

  3. Serum lipids modify periodontal infection - C-reactive protein association.

    Science.gov (United States)

    Haro, Anniina; Saxlin, Tuomas; Suominen, Anna-Liisa; Ylöstalo, Pekka; Leiviskä, Jaana; Tervonen, Tellervo; Knuuttila, Matti

    2012-09-01

    To investigate whether low-grade inflammation-related factors such as serum low-density (LDL-C) and high-density lipoprotein cholesterol (HDL-C) modify the association between periodontal infection and C-reactive protein. This study was based on a subpopulation of the Health 2000 Survey, which consisted of dentate, non-diabetic, non-rheumatic subjects who were 30-49 years old (n = 2710). The extent of periodontal infection was measured by means of the number of teeth with periodontal pocket ≥4 mm and teeth with periodontal pocket ≥6 mm and systemic inflammation using high sensitive C-reactive protein. The extent of periodontal infection was associated with elevated levels of C-reactive protein among those subjects whose HDL-C value was below the median value of 1.3 mmol/l or LDL-C above the median value of 3.4 mmol/l. Among those with HDL-C ≥ 1.3 mmol/l or LDL-C ≤ 3.4 mmol/l, the association between periodontal infection and serum concentrations of C-reactive protein was practically non-existent. This study suggests that the relation of periodontal infection to the systemic inflammatory condition is more complicated than previously presumed. The findings of this study suggest that the possible systemic effect of periodontal infection is dependent on serum lipid composition. © 2012 John Wiley & Sons A/S.

  4. Associations between serum lipids and major depressive disorder: results from the Netherlands Study of Depression and Anxiety (NESDA)

    NARCIS (Netherlands)

    van Reedt Dortland, A.K.B.; Giltay, E.J.; van Veen, T.; van Pelt, J.; Zitman, F.G.; Penninx, B.W.J.H.

    2010-01-01

    Background: Several studies have suggested an association between lipids or lipoproteins and depression, but findings are contradictory. However, previous studies did not always take into consideration potentially mediating factors or heterogeneity of symptoms, which may clarify contradicting

  5. Associations Between Serum Lipids and Major Depressive Disorder : Results From the Netherlands Study of Depression and Anxiety (NESDA)

    NARCIS (Netherlands)

    Dortland, Arianne K. B. van Reedt; Giltay, Erik J.; van Veen, Tineke; van Pelt, Johannes; Zitman, Frans G.; Penninx, Brenda W. J. H.

    Background: Several studies have suggested an association between lipids or lipoproteins and depression, but findings are contradictory. However, previous studies did not always take into consideration potentially mediating factors or heterogeneity of symptoms, which may clarify contradicting

  6. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2012-12-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.

  7. Lipid Raft Association Restricts CD44-Ezrin Interaction and Promotion of Breast Cancer Cell Migration

    Science.gov (United States)

    Donatello, Simona; Babina, Irina S.; Hazelwood, Lee D.; Hill, Arnold D.K.; Nabi, Ivan R.; Hopkins, Ann M.

    2012-01-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration. PMID:23031255

  8. Glypican-1 mediates both prion protein lipid raft association and disease isoform formation.

    Directory of Open Access Journals (Sweden)

    David R Taylor

    2009-11-01

    Full Text Available In prion diseases, the cellular form of the prion protein, PrP(C, undergoes a conformational conversion to the infectious isoform, PrP(Sc. PrP(C associates with lipid rafts through its glycosyl-phosphatidylinositol (GPI anchor and a region in its N-terminal domain which also binds to heparan sulfate proteoglycans (HSPGs. We show that heparin displaces PrP(C from rafts and promotes its endocytosis, suggesting that heparin competes with an endogenous raft-resident HSPG for binding to PrP(C. We then utilised a transmembrane-anchored form of PrP (PrP-TM, which is targeted to rafts solely by its N-terminal domain, to show that both heparin and phosphatidylinositol-specific phospholipase C can inhibit its association with detergent-resistant rafts, implying that a GPI-anchored HSPG targets PrP(C to rafts. Depletion of the major neuronal GPI-anchored HSPG, glypican-1, significantly reduced the raft association of PrP-TM and displaced PrP(C from rafts, promoting its endocytosis. Glypican-1 and PrP(C colocalised on the cell surface and both PrP(C and PrP(Sc co-immunoprecipitated with glypican-1. Critically, treatment of scrapie-infected N2a cells with glypican-1 siRNA significantly reduced PrP(Sc formation. In contrast, depletion of glypican-1 did not alter the inhibitory effect of PrP(C on the beta-secretase cleavage of the Alzheimer's amyloid precursor protein. These data indicate that glypican-1 is a novel cellular cofactor for prion conversion and we propose that it acts as a scaffold facilitating the interaction of PrP(C and PrP(Sc in lipid rafts.

  9. Lipid droplet-associated proteins in high-fat fed mice with the effects of voluntary running and diet change.

    Science.gov (United States)

    Rinnankoski-Tuikka, Rita; Hulmi, Juha J; Torvinen, Sira; Silvennoinen, Mika; Lehti, Maarit; Kivelä, Riikka; Reunanen, Hilkka; Kujala, Urho M; Kainulainen, Heikki

    2014-08-01

    The relation between lipid accumulation and influence of exercise on insulin sensitivity is not straightforward. A proper balance between lipid droplet synthesis, lipolysis, and oxidative metabolism would ensure low local intramyocellular fatty acid levels, thereby possibly protecting against lipotoxicity-associated insulin resistance. This study investigated whether the accumulation of triglycerides and lipid droplets in response to high availability of fatty acids after high-fat feeding would parallel the abundance of intramyocellular perilipin proteins, especially PLIN5. The effects on these variables after diet change or voluntary running exercise intervention in skeletal muscle were also investigated. During a 19-week experiment, C57BL/6J mice were studied in six different groups: low-fat diet sedentary, low-fat diet active, high-fat diet sedentary, high-fat diet active and two groups which were high-fat sedentary for nine weeks, after which divided into low-fat sedentary or low-fat active groups. Myocellular triglyceride concentration and perilipin protein expression levels were assessed. We show that, concurrently with impaired insulin sensitivity, the expression level of PLIN5 and muscular triglyceride concentration increased dramatically after high-fat diet. These adaptations were reversible after the diet change intervention with no additional effect of exercise. After high-fat diet, lipid droplets become larger providing more surface area for PLIN5. We suggest that PLIN5 is an important regulator of lipid droplet turnover in altered conditions of fatty acid supply and consumption. Imbalances in lipid droplet metabolism and turnover might lead to lipotoxicity-related insulin resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Impact of methods used to express levels of circulating fatty acids on the degree and direction of associations with blood lipids in humans.

    Science.gov (United States)

    Sergeant, Susan; Ruczinski, Ingo; Ivester, Priscilla; Lee, Tammy C; Morgan, Timothy M; Nicklas, Barbara J; Mathias, Rasika A; Chilton, Floyd H

    2016-01-28

    Numerous studies have examined relationships between disease biomarkers (such as blood lipids) and levels of circulating or cellular fatty acids. In such association studies, fatty acids have typically been expressed as the percentage of a particular fatty acid relative to the total fatty acids in a sample. Using two human cohorts, this study examined relationships between blood lipids (TAG, and LDL, HDL or total cholesterol) and circulating fatty acids expressed either as a percentage of total or as concentration in serum. The direction of the correlation between stearic acid, linoleic acid, dihomo-γ-linolenic acid, arachidonic acid and DHA and circulating TAG reversed when fatty acids were expressed as concentrations v. a percentage of total. Similar reversals were observed for these fatty acids when examining their associations with the ratio of total cholesterol:HDL-cholesterol. This reversal pattern was replicated in serum samples from both human cohorts. The correlations between blood lipids and fatty acids expressed as a percentage of total could be mathematically modelled from the concentration data. These data reveal that the different methods of expressing fatty acids lead to dissimilar correlations between blood lipids and certain fatty acids. This study raises important questions about how such reversals in association patterns impact the interpretation of numerous association studies evaluating fatty acids and their relationships with disease biomarkers or risk.

  11. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Guang-feng [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Xiao, Di; Gong, Wei-jing [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Hui-xia; Liu, Jun [Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Zhou, Hong-hao [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China)

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  12. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    International Nuclear Information System (INIS)

    Ming, Guang-feng; Xiao, Di; Gong, Wei-jing; Liu, Hui-xia; Liu, Jun; Zhou, Hong-hao; Liu, Zhao-qian

    2014-01-01

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders

  13. Oil bodies and their associated proteins, oleosin and caleosin

    DEFF Research Database (Denmark)

    Frandsen, Gitte I.; Mundy, John; Tzen, Jason T. C.

    2001-01-01

    Oil bodies are lipid storage organelles which have been analyzed biochemically due to the economic importance of oil seeds. Although oil bodies are structurally simple, the mechanisms involved in their formation and degradation remain controversial. At present, only two proteins associated with oil....... (1999) Plant Cell Physiol 40: 1079-1086; Naested et al. (2000) Plant Mol Biol 44: 463-476]. Caleosin and caleosin-like proteins are not unique to oil bodies and are associated with an endoplasmatic reticulum subdomain in some cell types. Here we review the synthesis and degradation of oil bodies...

  14. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process

    Science.gov (United States)

    Cho, Seok-Cheol; Choi, Woon-Yong; Oh, Sung-Ho; Lee, Choon-Geun; Seo, Yong-Chang; Kim, Ji-Seon; Song, Chi-Ho; Kim, Ga-Vin; Lee, Shin-Young; Kang, Do-Hyung; Lee, Hyeon-Yong

    2012-01-01

    Marine microalga, Scenedesmus sp., which is known to be suitable for biodiesel production because of its high lipid content, was subjected to the conventional Folch method of lipid extraction combined with high-pressure homogenization pretreatment process at 1200 psi and 35°C. Algal lipid yield was about 24.9% through this process, whereas only 19.8% lipid can be obtained by following a conventional lipid extraction procedure using the solvent, chloroform : methanol (2 : 1, v/v). Present approach requires 30 min process time and a moderate working temperature of 35°C as compared to the conventional extraction method which usually requires >5 hrs and 65°C temperature. It was found that this combined extraction process followed second-order reaction kinetics, which means most of the cellular lipids were extracted during initial periods of extraction, mostly within 30 min. In contrast, during the conventional extraction process, the cellular lipids were slowly and continuously extracted for >5 hrs by following first-order kinetics. Confocal and scanning electron microscopy revealed altered texture of algal biomass pretreated with high-pressure homogenization. These results clearly demonstrate that the Folch method coupled with high-pressure homogenization pretreatment can easily destruct the rigid cell walls of microalgae and release the intact lipids, with minimized extraction time and temperature, both of which are essential for maintaining good quality of the lipids for biodiesel production. PMID:22969270

  15. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process

    Directory of Open Access Journals (Sweden)

    Seok-Cheol Cho

    2012-01-01

    Full Text Available Marine microalga, Scenedesmus sp., which is known to be suitable for biodiesel production because of its high lipid content, was subjected to the conventional Folch method of lipid extraction combined with high-pressure homogenization pretreatment process at 1200 psi and 35°C. Algal lipid yield was about 24.9% through this process, whereas only 19.8% lipid can be obtained by following a conventional lipid extraction procedure using the solvent, chloroform : methanol (2 : 1, v/v. Present approach requires 30 min process time and a moderate working temperature of 35°C as compared to the conventional extraction method which usually requires >5 hrs and 65°C temperature. It was found that this combined extraction process followed second-order reaction kinetics, which means most of the cellular lipids were extracted during initial periods of extraction, mostly within 30 min. In contrast, during the conventional extraction process, the cellular lipids were slowly and continuously extracted for >5 hrs by following first-order kinetics. Confocal and scanning electron microscopy revealed altered texture of algal biomass pretreated with high-pressure homogenization. These results clearly demonstrate that the Folch method coupled with high-pressure homogenization pretreatment can easily destruct the rigid cell walls of microalgae and release the intact lipids, with minimized extraction time and temperature, both of which are essential for maintaining good quality of the lipids for biodiesel production.

  16. Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: implications for understanding soil carbon cycling

    Directory of Open Access Journals (Sweden)

    Ashish A. Malik

    2015-04-01

    Full Text Available Using a pulse-chase 13CO2 plant labeling experiment we compared the flow of plant carbon into macromolecular fractions of root-associated soil microorganisms. Time dependent 13C dilution patterns in microbial cellular fractions were used to calculate their turnover time. The turnover times of microbial biomolecules were found to vary: microbial RNA (19 h and DNA (30 h turned over fastest followed by chloroform fumigation extraction-derived soluble cell lysis products (14 d, while phospholipid fatty acids (PLFAs had the slowest turnover (42 d. PLFA/NLFA 13C analyses suggest that both mutualistic arbuscular mycorrhizal and saprophytic fungi are dominant in initial plant carbon uptake. In contrast, high initial 13C enrichment in RNA hints at bacterial importance in initial C uptake due to the dominance of bacterial derived RNA in total extracts of soil RNA. To explain this discrepancy, we observed low renewal rate of bacterial lipids, which may therefore bias lipid fatty acid based interpretations of the role of bacteria in soil microbial food webs. Based on our findings, we question current assumptions regarding plant-microbe carbon flux and suggest that the rhizosphere bacterial contribution to plant assimilate uptake could be higher. This highlights the need for more detailed quantitative investigations with nucleic acid biomarkers to further validate these findings.

  17. Association of blood lipid levels with the risk of cholecystectomy and postoperative pain

    Directory of Open Access Journals (Sweden)

    WANG Qiang

    2017-10-01

    Full Text Available ObjectiveTo investigate whether blood lipid control can delay the progression of asymptomatic gallstones and reduce the risk of cholecystectomy in patients with gallstones and hyperlipidemia, as well as the influence of hyperlipidemia on postoperative pain after cholecystectomy. MethodsA total of 153 patients with asymptomatic gallstones and hyperlipidemia who underwent physical examination from February 2013 to February 2015 were enrolled and randomly divided into experimental group with 72 patients and control group with 81 patients. The patients in the experimental group were given blood lipid control via diet, exercise, and drugs, and according to fasting triglyceride (TG and total cholesterol (TC after 3 months, these patients were further divided into normal blood lipid group with 47 patients and abnormal blood lipid group with 25 patients. All the patients were followed up for 2 years with an interval of 3 months. The surgical indications for laparoscopic cholecystectomy were persistent pain in the gallbladder or more than 3 times of gallbladder discomfort within the past one month. A subgroup analysis was performed based on the number and size of gallstones to evaluate the risk of cholecystectomy. A numerical pain scale was used to assess the improvement in pain during hospitalization and at 3 and 6 months after surgery. The t-test was used for comparison of continuous data between two groups; a one-way analysis of variance was used for comparison between three groups, and the Bonferroni test was used for further comparison between any two groups. The chi-square test was used for comparison of categorical data between groups. ResultsThe normal blood lipid group had a significantly lower rate of cholecystectomy than the abnormal blood lipid group and the control group (23.4% vs 68.8%/70.4%, χ2=2772, P<0.01. The patients in the normal blood lipid group had moderate pain during hospitalization, while those in the abnormal blood lipid

  18. Regulation of AMPA receptor localization in lipid rafts

    OpenAIRE

    Hou, Qingming; Huang, Yunfei; Amato, Stephen; Snyder, Solomon H.; Huganir, Richard L.; Man, Heng-Ye

    2008-01-01

    Lipid rafts are special microdomains enriched in cholesterol, sphingolipids and certain proteins, and play important roles in a variety of cellular functions including signal transduction and protein trafficking. We report that in cultured cortical and hippocampal neurons the distribution of lipid rafts is development-dependent. Lipid rafts in mature neurons exist on the entire cell-surface and display a high degree of mobility. AMPA receptors co-localize and associate with lipid rafts in the...

  19. Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants

    OpenAIRE

    James, Christopher N.; Horn, Patrick J.; Case, Charlene R.; Gidda, Satinder K.; Zhang, Daiyuan; Mullen, Robert T.; Dyer, John M.; Anderson, Richard G. W.; Chapman, Kent D.

    2010-01-01

    CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana resulted in the accumulation of neutral lipid droplets in mature leaves. Mass spectroscopy of isolated lipid droplets from cgi-58 loss-of-function mutants showed they contain triacylglycerols with common...

  20. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential

    KAUST Repository

    Soussi, Asma

    2015-08-28

    Background: Aridification is a worldwide serious threat directly affecting agriculture and crop production. In arid and desert areas, it has been found that microbial diversity is huge, built of microorganisms able to cope with the environmental harsh conditions by developing adaptation strategies. Plants growing in arid lands or regions facing prolonged abiotic stresses such as water limitation and salt accumulation have also developed specific physiological and molecular stress responses allowing them to thrive under normally unfavorable conditions. Scope: Under such extreme selection pressures, special root-associated bacterial assemblages, endowed with capabilities of plant growth promotion (PGP) and extremophile traits, are selected by the plants. In this review, we provide a general overview on the microbial diversity in arid lands and deserts versus specific microbial assemblages associated with plants. The ecological drivers that shape this diversity, how plant-associated microbiomes are selected, and their biotechnological potential are discussed. Conclusions: Selection and recruitment of the plant associated bacterial assemblages is mediated by the combination of the bio-pedo-agroclimatic conditions and the plant species or varieties. Diversity and functional redundancy of these associated PGPR makes them very active in supporting plant improvement, health and resistance to drought, salt and related stresses. Implementing proper biotechnological applications of the arid and desert-adapted PGPR constitute the challenge to be raised.

  1. [Germ cell membrane lipids in spermatogenesis].

    Science.gov (United States)

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  2. Association of apolipoprotein E polymorphism with plasma lipids and Alzheimer's disease in a Southern Brazilian population

    Directory of Open Access Journals (Sweden)

    de-Andrade F.M.

    2000-01-01

    Full Text Available Apolipoprotein E (protein: apo E; gene: APOE plays an important role in the multifactorial etiology of both Alzheimer's disease (AD and lipid level concentrations. The polymerase chain reaction (PCR was used to investigate the APOE gene polymorphism in 446 unrelated Caucasians, among them 23 AD patients, and 100 Afro-Brazilians living in Porto Alegre, Brazil. The frequencies of the APOE*2, APOE*3 and APOE*4 alleles were 0.075, 0.810 and 0.115 in Caucasians and 0.075, 0.700 and 0.225 in Afro-Brazilians, respectively (c2 = 8.72, P = 0.013. A highly significant association was observed between the APOE*4 allele and AD in this population-based sample. The APOE*4 frequency in AD patients (39% was about four times higher than in the general Caucasian population (11.5%. The influence of each of the three common APOE alleles on lipid traits was evaluated by the use of the average excess statistic. The E*2 allele is associated with lower levels of triglycerides and of total and non-HDL cholesterol in both men and women. Conversely, the E*4 allele is associated with higher levels of these traits in women only. The effect of APOE alleles was of greater magnitude in women.

  3. RaftProt: mammalian lipid raft proteome database.

    Science.gov (United States)

    Shah, Anup; Chen, David; Boda, Akash R; Foster, Leonard J; Davis, Melissa J; Hill, Michelle M

    2015-01-01

    RaftProt (http://lipid-raft-database.di.uq.edu.au/) is a database of mammalian lipid raft-associated proteins as reported in high-throughput mass spectrometry studies. Lipid rafts are specialized membrane microdomains enriched in cholesterol and sphingolipids thought to act as dynamic signalling and sorting platforms. Given their fundamental roles in cellular regulation, there is a plethora of information on the size, composition and regulation of these membrane microdomains, including a large number of proteomics studies. To facilitate the mining and analysis of published lipid raft proteomics studies, we have developed a searchable database RaftProt. In addition to browsing the studies, performing basic queries by protein and gene names, searching experiments by cell, tissue and organisms; we have implemented several advanced features to facilitate data mining. To address the issue of potential bias due to biochemical preparation procedures used, we have captured the lipid raft preparation methods and implemented advanced search option for methodology and sample treatment conditions, such as cholesterol depletion. Furthermore, we have identified a list of high confidence proteins, and enabled searching only from this list of likely bona fide lipid raft proteins. Given the apparent biological importance of lipid raft and their associated proteins, this database would constitute a key resource for the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Associations of human skeletal muscle fiber type and insulin sensitivity, blood lipids, and vascular hemodynamics in a cohort of premenopausal women.

    Science.gov (United States)

    Fisher, Gordon; Windham, Samuel T; Griffin, Perry; Warren, Jonathan L; Gower, Barbara A; Hunter, Gary R

    2017-07-01

    Cardiometabolic disease remains a leading cause of morbidity and mortality in developed nations. Consequently, identifying and understanding factors associated with underlying pathophysiological processes leading to chronic cardio metabolic conditions is critical. Metabolic health, arterial elasticity, and insulin sensitivity (SI) may impact disease risk, and may be determined in part by myofiber type. Therefore, the purpose of this study was to test the hypothesis that type I myofiber composition would be associated with high SI, greater arterial elasticity, lower blood pressure, and blood lipids; whereas, type IIx myofibers would be associated with lower SI, lower arterial elasticity, higher blood pressure, blood lipids. Muscle biopsies were performed on the vastus lateralis in 16 subjects (BMI = 27.62 ± 4.71 kg/m 2 , age = 32.24 ± 6.37 years, 43% African American). The distribution of type I, IIa, and IIx myofibers was determined via immunohistochemistry performed on frozen cross-sections. Pearson correlation analyses were performed to assess associations between myofiber composition, SI, arterial elasticity, blood pressure, and blood lipid concentrations. The percentage of type I myofibers positively correlated with SI and negatively correlated with systolic blood pressure SBP, diastolic blood pressure, and mean arterial pressure (MAP); whereas, the percentage of type IIx myofibers were negatively correlated with SI and large artery elasticity, and positively correlated with LDL cholesterol, SBP, and MAP. These data demonstrate a potential link between myofiber composition and cardiometabolic health outcomes in a cohort of premenopausal women. Future research is needed to determine the precise mechanisms in which myofiber composition impacts the pathophysiology of impaired glucose and lipid metabolism, as well as vascular dysfunction.

  5. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis.

    Science.gov (United States)

    Grison, Magali S; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M

    2015-04-01

    Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes. © 2015 American Society of Plant Biologists. All rights reserved.

  6. The associations of a marine diet with plasma lipids, blood glucose, blood pressure and obesity among the inuit in Greenland

    DEFF Research Database (Denmark)

    Bjerregaard, P; Pedersen, H S; Mulvad, G

    2000-01-01

    OBJECTIVE: To analyse the associations between the intake of fish and marine mammals and risk factors for cardiovascular disease, ie lipid profile, fasting blood glucose, blood pressure and obesity, in a population whose average consumption of n-3 fatty acids is high compared with Western countries...... and not statistically significant. The pattern was similar within groups with low, medium and high consumption of marine food. CONCLUSIONS: There are statistically significant associations between the consumption of marine food and certain lipid fractions in the blood also in this population with a very high average...... intake of marine food. The observation that blood glucose is positively associated with marine diet in a population survey is new and should be repeated. There was good agreement between the results for the reported consumption of seal and those for the biomarkers. SPONSORSHIP: The study was financially...

  7. Antimicrobial activity of Brassica nectar lipid transfer protein

    Science.gov (United States)

    Antimicrobial peptides (AMPs) provide an ancient, innate immunity conserved in all multicellular organisms. In plants, there are several large families of AMPs defined by sequence similarity. The nonspecific lipid transfer protein (LTP) family is defined by a conserved signature of eight cysteines a...

  8. Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals.

    Science.gov (United States)

    Carmona-Antoñanzas, Greta; Tocher, Douglas R; Martinez-Rubio, Laura; Leaver, Michael J

    2014-01-15

    Lipid content and composition in aquafeeds have changed rapidly as a result of the recent drive to replace ecologically limited marine ingredients, fishmeal and fish oil (FO). Terrestrial plant products are the most economic and sustainable alternative; however, plant meals and oils are devoid of physiologically important cholesterol and long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and arachidonic (ARA) acids. Although replacement of dietary FO with vegetable oil (VO) has little effect on growth in Atlantic salmon (Salmo salar), several studies have shown major effects on the activity and expression of genes involved in lipid homeostasis. In vertebrates, sterols and LC-PUFA play crucial roles in lipid metabolism by direct interaction with lipid-sensing transcription factors (TFs) and consequent regulation of target genes. The primary aim of the present study was to elucidate the role of key TFs in the transcriptional regulation of lipid metabolism in fish by transfection and overexpression of TFs. The results show that the expression of genes of LC-PUFA biosynthesis (elovl and fads2) and cholesterol metabolism (abca1) are regulated by Lxr and Srebp TFs in salmon, indicating highly conserved regulatory mechanism across vertebrates. In addition, srebp1 and srebp2 mRNA respond to replacement of dietary FO with VO. Thus, Atlantic salmon adjust lipid metabolism in response to dietary lipid composition through the transcriptional regulation of gene expression. It may be possible to further increase efficient and effective use of sustainable alternatives to marine products in aquaculture by considering these important molecular interactions when formulating diets. © 2013.

  9. Protein diffusion in plant cell plasma membranes: the cell-wall corral.

    Science.gov (United States)

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  10. Engineering plant membranes using droplet interface bilayers.

    Science.gov (United States)

    Barlow, N E; Smpokou, E; Friddin, M S; Macey, R; Gould, I R; Turnbull, C; Flemming, A J; Brooks, N J; Ces, O; Barter, L M C

    2017-03-01

    Droplet interface bilayers (DIBs) have become widely recognised as a robust platform for constructing model membranes and are emerging as a key technology for the bottom-up assembly of synthetic cell-like and tissue-like structures. DIBs are formed when lipid-monolayer coated water droplets are brought together inside a well of oil, which is excluded from the interface as the DIB forms. The unique features of the system, compared to traditional approaches (e.g., supported lipid bilayers, black lipid membranes, and liposomes), is the ability to engineer multi-layered bilayer networks by connecting multiple droplets together in 3D, and the capability to impart bilayer asymmetry freely within these droplet architectures by supplying droplets with different lipids. Yet despite these achievements, one potential limitation of the technology is that DIBs formed from biologically relevant components have not been well studied. This could limit the reach of the platform to biological systems where bilayer composition and asymmetry are understood to play a key role. Herein, we address this issue by reporting the assembly of asymmetric DIBs designed to replicate the plasma membrane compositions of three different plant species; Arabidopsis thaliana , tobacco, and oats, by engineering vesicles with different amounts of plant phospholipids, sterols and cerebrosides for the first time. We show that vesicles made from our plant lipid formulations are stable and can be used to assemble asymmetric plant DIBs. We verify this using a bilayer permeation assay, from which we extract values for absolute effective bilayer permeation and bilayer stability. Our results confirm that stable DIBs can be assembled from our plant membrane mimics and could lead to new approaches for assembling model systems to study membrane translocation and to screen new agrochemicals in plants.

  11. Modulatory effect of Scoparia dulcis in oxidative stress-induced lipid peroxidation in streptozotocin diabetic rats.

    Science.gov (United States)

    Latha, M; Pari, L

    2003-01-01

    In light of evidence that diabetes mellitus is associated with oxidative stress and altered antioxidant status, we investigated the effect of Scoparia dulcis plant extracts (SPEt) (aqueous, ethanolic, and chloroform) in streptozotocin diabetic rats. Significant increases in the activities of insulin, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, reduced glutathione, vitamin C, and vitamin E were observed in liver, kidney, and brain on treatment with SPEt. In addition, the treated groups also showed significant decreases in blood glucose, thiobarbituric acid-reactive substances, and hydroperoxide formation in tissues, suggesting its role in protection against lipid peroxidation-induced membrane damage. Thus, the results of the present study indicate that extracts of S. dulcis, especially the aqueous extract, showed a modulatory effect by attenuating the above lipid peroxidation in streptozotocin diabetes.

  12. Sex-specific association of rs16996148 SNP in the NCAN/CILP2/PBX4 and serum lipid levels in the Mulao and Han populations

    Directory of Open Access Journals (Sweden)

    Yan Ting-Ting

    2011-12-01

    Full Text Available Abstract Background The association of rs16996148 single nucleotide polymorphism (SNP in NCAN/CILP2/PBX4 and serum lipid levels is inconsistent. Furthermore, little is known about the association of rs16996148 SNP and serum lipid levels in the Chinese population. We therefore aimed to detect the association of rs16996148 SNP and several environmental factors with serum lipid levels in the Guangxi Mulao and Han populations. Method A total of 712 subjects of Mulao nationality and 736 participants of Han nationality were randomly selected from our stratified randomized cluster samples. Genotyping of the rs16996148 SNP was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results The levels of apolipoprotein (Apo B were higher in Mulao than in Han (P P 0.05; respectively. The frequencies of GG, GT and TT genotypes were 76.0%, 22.5% and 1.5% in Mulao, and 81.2%, 17.4% and 1.4% in Han (P 0.05; respectively. There were no significant differences in the genotypic and allelic frequencies between males and females in both ethnic groups. The levels of HDL-C, ApoAI, and the ratio of ApoAI to ApoB in Mulao were different between the GG and GT/TT genotypes in males but not in females (P P P P P Conclusions The genotypic and allelic frequencies of rs16996148 SNP and the associations of the SNP and serum lipid levels are different in the Mulao and Han populations. Sex (male-specific association of rs16996148 SNP in the NCAN/CILP2/PBX4 and serum lipid levels is also observed in the both ethnic groups.

  13. The association between serum lipid levels, suicide ideation, and central serotonergic activity in patients with major depressive disorder.

    Science.gov (United States)

    Park, Young-Min; Lee, Bun-Hee; Lee, Seung-Hwan

    2014-04-01

    There is some evidence that low lipid levels cause suicide in depressed patients. The purpose of this study was to identify whether low serum lipid levels are associated with suicide ideation or are correlated with central serotonin function. Auditory processing for the loudness dependence of auditory evoked potentials (LDAEP) was measured in 73 outpatients with major depressive disorder. The Hamilton Depression Rating Scale (HAMD) and the Beck Depression Inventory (BDI) were administered on the same day as measurement of the LDAEP. In addition, serum levels of total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) levels were measured. All subjects had received antidepressant monotherapy. The depressed subjects were divided into those with and without suicide ideation according to the score for HAMD item 3 or BDI item 9. TG levels differed significantly between the two groups, whereas body mass index (BMI), total cholesterol, LDL, HDL, and LDAEP did not. The scores for HAMD item 3 and BDI item 9 were negatively correlated with TG levels (p=0.045 and 0.026, respectively). The LDAEP was negatively correlated with TG levels (p=0.012). Although there was tendency toward a negative correlation between the LDAEP and serum LDL, it did not reach statistical significance (p=0.068). The cross-sectional design of this study means that baseline serum lipid levels were not measured. The findings of this study revealed a relationship between TG and suicide ideation that is independent of both BMI and body weight. Furthermore, serum lipid levels were associated with central serotonergic activity, as assessed using the LDAEP. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease.

    Science.gov (United States)

    Labilloy, Anatália; Youker, Robert T; Bruns, Jennifer R; Kukic, Ira; Kiselyov, Kirill; Halfter, Willi; Finegold, David; do Monte, Semiramis Jamil Hadad; Weisz, Ora A

    2014-02-01

    Accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids with galactosyl residues is the hallmark of Fabry disease, a lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A (α-gal A). These lipids are incorporated into the plasma membrane and intracellular membranes, with a preference for lipid rafts. Disruption of raft mediated cell processes is implicated in the pathogenesis of several human diseases, but little is known about the effects of the accumulation of glycosphingolipids on raft dynamics in the context of Fabry disease. Using siRNA technology, we have generated a polarized renal epithelial cell model of Fabry disease in Madin-Darby canine kidney cells. These cells present increased levels of Gb3 and enlarged lysosomes, and progressively accumulate zebra bodies. The polarized delivery of both raft-associated and raft-independent proteins was unaffected by α-gal A knockdown, suggesting that accumulation of Gb3 does not disrupt biosynthetic trafficking pathways. To assess the effect of α-gal A silencing on lipid raft dynamics, we employed number and brightness (N&B) analysis to measure the oligomeric status and mobility of the model glycosylphosphatidylinositol (GPI)-anchored protein GFP-GPI. We observed a significant increase in the oligomeric size of antibody-induced clusters of GFP-GPI at the plasma membrane of α-gal A silenced cells compared with control cells. Our results suggest that the interaction of GFP-GPI with lipid rafts may be altered in the presence of accumulated Gb3. The implications of our results with respect to the pathogenesis of Fabry disease are discussed. © 2013 Elsevier Inc. All rights reserved.

  15. Erectile dysfunction and diabetes: Association with the impairment of lipid metabolism and oxidative stress.

    Science.gov (United States)

    Belba, Arben; Cortelazzo, Alessio; Andrea, Giansanti; Durante, Jacopo; Nigi, Laura; Dotta, Francesco; Timperio, Anna Maria; Zolla, Lello; Leoncini, Roberto; Guerranti, Roberto; Ponchietti, Roberto

    2016-01-01

    To test the hypothesis that exists an association of non-diabetic and diabetic patients suffering from erectile dysfunction (ED) with lipid metabolism and oxidative stress. Clinical and laboratory characteristics in non-diabetic (n = 30, middle age range: 41–55.5 years; n = 25, old age range: 55.5–73), diabetic ED patients (n = 30, age range: 55.5–75 years) and diabetic patients (n = 25, age range: 56–73.25), were investigated. Proteomic analysis was performed to identify differentially expressed plasma proteins and to evaluate their oxidative posttranslational modifications. A decreased level of high-density lipoproteins in all ED patients (P < 0.001, C.I. 0.046–0.10), was detected by routine laboratory tests. Proteomic analysis showed a significant decreased expression (P < 0.05) of 5 apolipoproteins (i.e. apolipoprotein H, apolipoprotein A4, apolipoprotein J, apolipoprotein E and apolipoprotein A1) and zinc-alpha-2-glycoprotein, 50% of which are more oxidized proteins. Exclusively for diabetic ED patients, oxidative posttranslational modifications for prealbumin, serum albumin, serum transferrin and haptoglobin markedly increased. Showing evidence for decreased expression of apolipoproteins in ED and the remarkable enhancement of oxidative posttranslational modifications in diabetes-associated ED, considering type 2 diabetes mellitus and age as independent risk factors involved in the ED pathogenesis, lipid metabolism and oxidative stress appear to exert a complex interplay in the disease.

  16. The MicroRNA Interaction Network of Lipid Diseases

    Science.gov (United States)

    Kandhro, Abdul H.; Shoombuatong, Watshara; Nantasenamat, Chanin; Prachayasittikul, Virapong; Nuchnoi, Pornlada

    2017-01-01

    Background: Dyslipidemia is one of the major forms of lipid disorder, characterized by increased triglycerides (TGs), increased low-density lipoprotein-cholesterol (LDL-C), and decreased high-density lipoprotein-cholesterol (HDL-C) levels in blood. Recently, MicroRNAs (miRNAs) have been reported to involve in various biological processes; their potential usage being a biomarkers and in diagnosis of various diseases. Computational approaches including text mining have been used recently to analyze abstracts from the public databases to observe the relationships/associations between the biological molecules, miRNAs, and disease phenotypes. Materials and Methods: In the present study, significance of text mined extracted pair associations (miRNA-lipid disease) were estimated by one-sided Fisher's exact test. The top 20 significant miRNA-disease associations were visualized on Cytoscape. The CyTargetLinker plug-in tool on Cytoscape was used to extend the network and predicts new miRNA target genes. The Biological Networks Gene Ontology (BiNGO) plug-in tool on Cytoscape was used to retrieve gene ontology (GO) annotations for the targeted genes. Results: We retrieved 227 miRNA-lipid disease associations including 148 miRNAs. The top 20 significant miRNAs analysis on CyTargetLinker provides defined, predicted and validated gene targets, further targeted genes analyzed by BiNGO showed targeted genes were significantly associated with lipid, cholesterol, apolipoprotein, and fatty acids GO terms. Conclusion: We are the first to provide a reliable miRNA-lipid disease association network based on text mining. This could help future experimental studies that aim to validate predicted gene targets. PMID:29018475

  17. The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins.

    Science.gov (United States)

    Sharma, Aabha I; Olson, Cheryl L; Engman, David M

    2017-08-24

    Lipid rafts are liquid-ordered membrane microdomains that form by preferential association of 3-β-hydroxysterols, sphingolipids and raft-associated proteins often having acyl modifications. We isolated lipid rafts of the protozoan parasite Trypanosoma brucei and determined the protein composition of lipid rafts in the cell. This analysis revealed a striking enrichment of flagellar proteins and several putative signaling proteins in the lipid raft proteome. Calpains and intraflagellar transport proteins, in particular, were found to be abundant in the lipid raft proteome. These findings provide additional evidence supporting the notion that the eukaryotic cilium/flagellum is a lipid raft-enriched specialized structure with high concentrations of sterols, sphingolipids and palmitoylated proteins involved in environmental sensing and cell signaling.

  18. Open Field Study of Some Zea mays Hybrids, Lipid Compounds and Fumonisins Accumulation

    Science.gov (United States)

    Giorni, Paola; Dall’Asta, Chiara; Reverberi, Massimo; Scala, Valeria; Ludovici, Matteo; Cirlini, Martina; Galaverna, Gianni; Fanelli, Corrado; Battilani, Paola

    2015-01-01

    Lipid molecules are increasingly recognized as signals exchanged by organisms interacting in pathogenic and/or symbiotic ways. Some classes of lipids actively determine the fate of the interactions. Host cuticle/cell wall/membrane components such as sphingolipids and oxylipins may contribute to determining the fate of host–pathogen interactions. In the present field study, we considered the relationship between specific sphingolipids and oxylipins of different hybrids of Zea mays and fumonisin by F. verticillioides, sampling ears at different growth stages from early dough to fully ripe. The amount of total and free fumonisin differed significantly between hybrids and increased significantly with maize ripening. Oxylipins and phytoceramides changed significantly within the hybrids and decreased with kernel maturation, starting from physiological maturity. Although the correlation between fumonisin accumulation and plant lipid profile is certain, the data collected so far cannot define a cause-effect relationship but open up new perspectives. Therefore, the question—“Does fumonisin alter plant lipidome or does plant lipidome modulate fumonisin accumulation?”—is still open. PMID:26378580

  19. Open Field Study of Some Zea mays Hybrids, Lipid Compounds and Fumonisins Accumulation

    Directory of Open Access Journals (Sweden)

    Paola Giorni

    2015-09-01

    Full Text Available Lipid molecules are increasingly recognized as signals exchanged by organisms interacting in pathogenic and/or symbiotic ways. Some classes of lipids actively determine the fate of the interactions. Host cuticle/cell wall/membrane components such as sphingolipids and oxylipins may contribute to determining the fate of host–pathogen interactions. In the present field study, we considered the relationship between specific sphingolipids and oxylipins of different hybrids of Zea mays and fumonisin by F. verticillioides, sampling ears at different growth stages from early dough to fully ripe. The amount of total and free fumonisin differed significantly between hybrids and increased significantly with maize ripening. Oxylipins and phytoceramides changed significantly within the hybrids and decreased with kernel maturation, starting from physiological maturity. Although the correlation between fumonisin accumulation and plant lipid profile is certain, the data collected so far cannot define a cause-effect relationship but open up new perspectives. Therefore, the question—“Does fumonisin alter plant lipidome or does plant lipidome modulate fumonisin accumulation?”—is still open.

  20. The role of the kidney in lipid metabolism

    DEFF Research Database (Denmark)

    Moestrup, Søren K; Nielsen, Lars Bo

    2005-01-01

    PURPOSE OF REVIEW: Cellular uptake of plasma lipids is to a large extent mediated by specific membrane-associated proteins that recognize lipid-protein complexes. In the kidney, the apical surface of proximal tubules has a high capacity for receptor-mediated uptake of filtered lipid-binding plasma...... proteins. We describe the renal receptor system and its role in lipid metabolism in health and disease, and discuss the general effect of the diseased kidney on lipid metabolism. RECENT FINDINGS: Megalin and cubilin are receptors in the proximal tubules. An accumulating number of lipid......-binding and regulating proteins (e.g. albumin, apolipoprotein A-I and leptin) have been identified as ligands, suggesting that their receptors may directly take up lipids in the proximal tubules and indirectly affect plasma and tissue lipid metabolism. Recently, the amnionless protein was shown to be essential...

  1. Effects of gamma irradiation on antioxidants of medicinal plants

    International Nuclear Information System (INIS)

    Jetawattana, Suwimol; Chaichantipyuth, Chaiyo

    2003-06-01

    The antioxidant effect of water extracts from irradiated medicinal plants on inhibition of lipid peroxidation in human plasma was examined. The results presented herein indicate that crude extracts from 29 kinds, 31 extracts, of medicinal plants, irradiated at 10 and 25 kilo gray. showed no significant change in inhibition of lipid peroxidation in plasma induced by gamma irradiation (p<0.05). It also found that extraction yields in some irradiated plants were increased

  2. Effects of gamma irradiation on antioxidants of medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Jetawattana, Suwimol [The irradiation research for agriculture program, Office of Atoms for Peace, BK (Thailand); Chaichantipyuth, Chaiyo [Faculty of Pharmacy, Chulalongkorn University, BK (Thailand)

    2003-06-01

    The antioxidant effect of water extracts from irradiated medicinal plants on inhibition of lipid peroxidation in human plasma was examined. The results presented herein indicate that crude extracts from 29 kinds, 31 extracts, of medicinal plants, irradiated at 10 and 25 kilo gray. showed no significant change in inhibition of lipid peroxidation in plasma induced by gamma irradiation (p<0.05). It also found that extraction yields in some irradiated plants were increased.

  3. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    Science.gov (United States)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  4. The International Association for Plant Taxonomy (IAPT) Announces ...

    African Journals Online (AJOL)

    The International Association for Plant Taxonomy (IAPT) Announces: Registration of Plant Names, Test and Trial Phase (1998-1999). KL Wilson. Abstract. Journal of East African Natural History Vol. 85 (1&2) 1996: 91-93. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...

  5. The Associations of Plant Protein Intake With All-Cause Mortality in CKD.

    Science.gov (United States)

    Chen, Xiaorui; Wei, Guo; Jalili, Thunder; Metos, Julie; Giri, Ajay; Cho, Monique E; Boucher, Robert; Greene, Tom; Beddhu, Srinivasan

    2016-03-01

    Plant protein intake is associated with lower production of uremic toxins and lower serum phosphorus levels. Therefore, at a given total protein intake, a higher proportion of dietary protein from plant sources might be associated with lower mortality in chronic kidney disease. Observational study. 14,866 NHANES III participants 20 years or older without missing data for plant and animal protein intake and mortality. Plant protein to total protein ratio and total plant protein intake. Patients were stratified by estimated glomerular filtration rate (eGFR)protein intakes were estimated from 24-hour dietary recalls. Mortality was ascertained by probabilistic linkage with National Death Index records through December 31, 2000. Mean values for plant protein intake and plant protein to total protein ratio were 24.6±13.2 (SD) g/d and 33.0% ± 14.0%, respectively. The prevalence of eGFRsprotein intake, and physical inactivity, each 33% increase in plant protein to total protein ratio was not associated with mortality (HR, 0.88; 95% CI, 0.74-1.04) in the eGFR≥60mL/min/1.73m(2) subpopulation, but was associated with lower mortality risk (HR, 0.77; 95% CI, 0.61-0.96) in the eGFRprotein itself or to other factors associated with more plant-based diets is difficult to establish. A diet with a higher proportion of protein from plant sources is associated with lower mortality in those with eGFRprotein intake in reducing mortality in those with eGFR<60mL/min/1.73m(2). Published by Elsevier Inc.

  6. Phytosterols Promote Liver Injury and Kupffer Cell Activation in Parenteral Nutrition–Associated Liver Disease

    Science.gov (United States)

    El Kasmi, Karim C.; Anderson, Aimee L.; Devereaux, Michael W.; Vue, Padade M.; Zhang, Wujuan; Setchell, Kenneth D. R.; Karpen, Saul J.; Sokol, Ronald J.

    2014-01-01

    Parenteral nutrition–associated liver disease (PNALD) is a serious complication of PN in infants who do not tolerate enteral feedings, especially those with acquired or congenital intestinal diseases. Yet, the mechanisms underlying PNALD are poorly understood. It has been suggested that a component of soy oil (SO) lipid emulsions in PN solutions, such as plant sterols (phytosterols), may be responsible for PNALD, and that use of fish oil (FO)–based lipid emulsions may be protective. We used a mouse model of PNALD combining PN infusion with intestinal injury to demonstrate that SO-based PN solution causes liver damage and hepatic macrophage activation and that PN solutions that are FO-based or devoid of all lipids prevent these processes. We have furthermore demonstrated that a factor in the SO lipid emulsions, stigmasterol, promotes cholestasis, liver injury, and liver macrophage activation in this model and that this effect may be mediated through suppression of canalicular bile transporter expression (Abcb11/BSEP, Abcc2/MRP2) via antagonism of the nuclear receptors Fxr and Lxr, and failure of up-regulation of the hepatic sterol exporters (Abcg5/g8/ABCG5/8). This study provides experimental evidence that plant sterols in lipid emulsions are a major factor responsible for PNALD and that the absence or reduction of plant sterols is one of the mechanisms for hepatic protection in infants receiving FO-based PN or lipid minimization PN treatment. Modification of lipid constituents in PN solutions is thus a promising strategy to reduce incidence and severity of PNALD. PMID:24107776

  7. Antiartherosclerotic Effects of Plant Flavonoids

    Directory of Open Access Journals (Sweden)

    Shamala Salvamani

    2014-01-01

    Full Text Available Atherosclerosis is the process of hardening and narrowing the arteries. Atherosclerosis is generally associated with cardiovascular diseases such as strokes, heart attacks, and peripheral vascular diseases. Since the usage of the synthetic drug, statins, leads to various side effects, the plants flavonoids with antiartherosclerotic activity gained much attention and were proven to reduce the risk of atherosclerosis in vitro and in vivo based on different animal models. The flavonoids compounds also exhibit lipid lowering effects and anti-inflammatory and antiatherogenic properties. The future development of flavonoids-based drugs is believed to provide significant effects on atherosclerosis and its related diseases. This paper discusses the antiatherosclerotic effects of selected plant flavonoids such as quercetin, kaempferol, myricetin, rutin, naringenin, catechin, fisetin, and gossypetin.

  8. MALDI Imaging of Neutral Cuticular Lipids in Insects and Plants

    Czech Academy of Sciences Publication Activity Database

    Vrkoslav, Vladimír; Muck, A.; Cvačka, Josef; Svatoš, A.

    2010-01-01

    Roč. 21, č. 2 (2010), s. 220-231 ISSN 1044-0305 R&D Projects: GA ČR GA203/09/0139 Institutional research plan: CEZ:AV0Z40550506 Keywords : MALDI imaging * epicuticular waxes * neutral lipids Subject RIV: CC - Organic Chemistry Impact factor: 3.830, year: 2010

  9. Evidence Suggesting That Francisella tularensis O-Antigen Capsule Contains a Lipid A-Like Molecule That Is Structurally Distinct from the More Abundant Free Lipid A.

    Directory of Open Access Journals (Sweden)

    Jason H Barker

    Full Text Available Francisella tularensis, the Gram-negative bacterium that causes tularemia, produces a high molecular weight capsule that is immunologically distinct from Francisella lipopolysaccharide but contains the same O-antigen tetrasaccharide. To pursue the possibility that the capsule of Francisella live vaccine strain (LVS has a structurally unique lipid anchor, we have metabolically labeled Francisella with [14C]acetate to facilitate highly sensitive compositional analysis of capsule-associated lipids. Capsule was purified by two independent methods and yielded similar results. Autoradiographic and immunologic analysis confirmed that this purified material was largely devoid of low molecular weight LPS and of the copious amounts of free lipid A that the Francisellae accumulate. Chemical hydrolysis yielded [14C]-labeled free fatty acids characteristic of Francisella lipid A but with a different molar ratio of 3-OH C18:0 to 3-OH C16:0 and different composition of non-hydroxylated fatty acids (mainly C14:0 rather than C16:0 than that of free Francisella lipid A. Mild acid hydrolysis to induce selective cleavage of KDO-lipid A linkage yielded a [14C]-labeled product that partitioned during Bligh/Dyer extraction and migrated during thin-layer chromatography like lipid A. These findings suggest that the O-antigen capsule of Francisella contains a covalently linked and structurally distinct lipid A species. The presence of a discrete lipid A-like molecule associated with capsule raises the possibility that Francisella selectively exploits lipid A structural heterogeneity to regulate synthesis, transport, and stable bacterial surface association of the O-antigen capsular layer.

  10. Genome-wide linkage scan to identify loci associated with type 2 diabetes and blood lipid phenotypes in the Sikh Diabetes Study.

    Directory of Open Access Journals (Sweden)

    Dharambir K Sanghera

    Full Text Available In this investigation, we have carried out an autosomal genome-wide linkage analysis to map genes associated with type 2 diabetes (T2D and five quantitative traits of blood lipids including total cholesterol, high-density lipoprotein (HDL cholesterol, low-density lipoprotein (LDL cholesterol, very low-density lipoprotein (VLDL cholesterol, and triglycerides in a unique family-based cohort from the Sikh Diabetes Study (SDS. A total of 870 individuals (526 male/344 female from 321 families were successfully genotyped using 398 polymorphic microsatellite markers with an average spacing of 9.26 cM on the autosomes. Results of non-parametric multipoint linkage analysis using S(all statistics (implemented in Merlin did not reveal any chromosomal region to be significantly associated with T2D in this Sikh cohort. However, linkage analysis for lipid traits using QTL-ALL analysis revealed promising linkage signals with p≤0.005 for total cholesterol, LDL cholesterol, and HDL cholesterol at chromosomes 5p15, 9q21, 10p11, 10q21, and 22q13. The most significant signal (p = 0.0011 occurred at 10q21.2 for HDL cholesterol. We also observed linkage signals for total cholesterol at 22q13.32 (p = 0.0016 and 5p15.33 (p = 0.0031 and for LDL cholesterol at 10p11.23 (p = 0.0045. Interestingly, some of linkage regions identified in this Sikh population coincide with plausible candidate genes reported in recent genome-wide association and meta-analysis studies for lipid traits. Our study provides the first evidence of linkage for loci associated with quantitative lipid traits at four chromosomal regions in this Asian Indian population from Punjab. More detailed examination of these regions with more informative genotyping, sequencing, and functional studies should lead to rapid detection of novel targets of therapeutic importance.

  11. Heart, lipids and hormones

    Directory of Open Access Journals (Sweden)

    Peter Wolf

    2017-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.

  12. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients.

    Science.gov (United States)

    Vaudo, A D; Stabler, D; Patch, H M; Tooker, J F; Grozinger, C M; Wright, G A

    2016-12-15

    Bee population declines are linked to the reduction of nutritional resources due to land-use intensification, yet we know little about the specific nutritional needs of many bee species. Pollen provides bees with their primary source of protein and lipids, but nutritional quality varies widely among host-plant species. Therefore, bees might have adapted to assess resource quality and adjust their foraging behavior to balance nutrition from multiple food sources. We tested the ability of two bumble bee species, Bombus terrestris and Bombus impatiens, to regulate protein and lipid intake. We restricted B. terrestris adults to single synthetic diets varying in protein:lipid ratios (P:L). The bees over-ate protein on low-fat diets and over-ate lipid on high-fat diets to reach their targets of lipid and protein, respectively. The bees survived best on a 10:1 P:L diet; the risk of dying increased as a function of dietary lipid when bees ate diets with lipid contents greater than 5:1 P:L. Hypothesizing that the P:L intake target of adult worker bumble bees was between 25:1 and 5:1, we presented workers from both species with unbalanced but complementary paired diets to determine whether they self-select their diet to reach a specific intake target. Bees consumed similar amounts of proteins and lipids in each treatment and averaged a 14:1 P:L for B. terrestris and 12:1 P:L for B. impatiens These results demonstrate that adult worker bumble bees likely select foods that provide them with a specific ratio of P:L. These P:L intake targets could affect pollen foraging in the field and help explain patterns of host-plant species choice by bumble bees. © 2016. Published by The Company of Biologists Ltd.

  13. Vitex agnus-castus L. (Verbenaceae) Improves the Liver Lipid Metabolism and Redox State of Ovariectomized Rats

    OpenAIRE

    Moreno, Franciele Neves; Campos-Shimada, Lilian Brites; da Costa, Silvio Claudio; Garcia, Ros?ngela Fernandes; Cecchini, Alessandra Louren?o; Natali, Maria Raquel Mar?al; Vitoriano, Adriana de Souza; Ishii-Iwamoto, Emy Luiza; Salgueiro-Pagadigorria, Clairce Luzia

    2015-01-01

    Vitex agnus-castus (VAC) is a plant that has recently been used to treat the symptoms of menopause, by its actions on the central nervous system. However, little is known about its actions on disturbances in lipid metabolism and nonalcoholic fat liver disease (NAFLD), frequently associated with menopause. Ovariectomized (OVX) rats exhibit increased adiposity and NAFLD 13 weeks after ovary removal and were used as animal models of estrogen deficiency. The rats were treated with crude extract (...

  14. Lipid discordance and carotid plaque in obese patients in primary prevention.

    Science.gov (United States)

    Masson, Walter; Siniawski, Daniel; Lobo, Martín; Molinero, Graciela

    2018-01-01

    Obese patients with lipid discordance (non-HDL cholesterol levels 30mg/dL above the LDL-c value) may have a greater prevalence of carotid atherosclerotic plaque (CAP). Our study objectives were: 1) To assess the prevalence of lipid discordance in a primary prevention population of obese patients; 2) To investigate the association between lipid discordance and presence of CAP. Obese subjects aged >18 years (BMI ≥30kg/m 2 ) with no cardiovascular disease, diabetes, or lipid-lowering treatment from six cardiology centers were included. Lipid discordance was defined when, regardless of the LDL-c level, the non-HDL cholesterol value exceeded the LDL-c value by 30mg/dL. Presence of CAP was identified by ultrasonography. Univariate and multivariate analyses were performed to explore the association between lipid discordance and presence of CAP. The study simple consisted of 325 obese patients (57.2% men; mean age, 52.3 years). Prevalence of lipid discordance was 57.9%. CAP was found in 38.6% of patients, but the proportion was higher in subjects with lipid discordance as compared to those without this lipid pattern (44.4% vs. 30.7%, P=.01). In both the univariate (OR: 1.80; 95% CI: 1.14-2.87; P=.01) and the multivariate analysis (OR: 2.07; 95% CI: 1.22-3.54; P=.007), presence of lipid discordance was associated to an increased probability of CAP. In these obese patients, lipid discordance was associated to greater prevalence of CAP. Evaluation of obese patients with this strategy could help identify subjects with higher residual cardiovascular risk. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Interactions of polyphenols with carbohydrates, lipids and proteins.

    Science.gov (United States)

    Jakobek, Lidija

    2015-05-15

    Polyphenols are secondary metabolites in plants, investigated intensively because of their potential positive effects on human health. Their bioavailability and mechanism of positive effects have been studied, in vitro and in vivo. Lately, a high number of studies takes into account the interactions of polyphenols with compounds present in foods, like carbohydrates, proteins or lipids, because these food constituents can have significant effects on the activity of phenolic compounds. This paper reviews the interactions between phenolic compounds and lipids, carbohydrates and proteins and their impact on polyphenol activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Plant seeds as sources of potential industrial chemicals, pharmaceuticals, and pest control agents.

    Science.gov (United States)

    Powell, Richard G

    2009-03-27

    Investigations of natural products isolated from seeds have resulted in a remarkable variety of compounds having unusual structures. Seeds of many plant species contain uncommon fatty acids and lipids, some of which have found uses in the cosmetic industry or as renewable (non-petroleum based) industrial raw materials. In addition to proteins and energy storage substances such as carbohydrates and lipids, seeds generally contain, or have the ability to produce, protective compounds that are active as plant growth regulators, fungicides, insecticides, and repellents of herbivores; seeds occasionally contain compounds that are toxic to most other organisms. These compounds may also be present in other plant parts, but often are found at higher concentrations in seeds. Other compounds of interest have been associated with plant-endophyte interactions that are of mutual benefit to both organisms. Tests of seed extracts for cytotoxic and antitumor activity, toxicity to insects, and relationships to several animal disease syndromes have been revealing. Examples of compounds isolated from plant seeds that have served as lead compounds for additional research, or that continue to be of interest to researchers in multiple areas, are reviewed.

  17. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils.

    Science.gov (United States)

    Wen, Bei; Wu, Yali; Zhang, Hongna; Liu, Yu; Hu, Xiaoyu; Huang, Honglin; Zhang, Shuzhen

    2016-09-01

    The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in seven species of plants from biosolids-amended soils were investigated. The PFOS and PFOA root concentration factors (Croot/Csoil) ranged from 1.37 to 4.68 and 1.69 to 10.3 (ng/groot)/(ng/gsoil), respectively, while the translocation factors (Cshoot/Croot) ranged from 0.055 to 0.16 and 0.093 to 1.8 (ng/gshoot)/(ng/groot), respectively. The PFOS and PFOA accumulations in roots correlated positively with root protein contents (P distribution of PFOS and PFOA in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Avanti lipid tools: connecting lipids, technology, and cell biology.

    Science.gov (United States)

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  19. Acrolein-detoxifying isozymes of glutathione transferase in plants.

    Science.gov (United States)

    Mano, Jun'ichi; Ishibashi, Asami; Muneuchi, Hitoshi; Morita, Chihiro; Sakai, Hiroki; Biswas, Md Sanaullah; Koeduka, Takao; Kitajima, Sakihito

    2017-02-01

    Acrolein is a lipid-derived highly reactive aldehyde, mediating oxidative signal and damage in plants. We found acrolein-scavenging glutathione transferase activity in plants and purified a low K M isozyme from spinach. Various environmental stressors on plants cause the generation of acrolein, a highly toxic aldehyde produced from lipid peroxides, via the promotion of the formation of reactive oxygen species, which oxidize membrane lipids. In mammals, acrolein is scavenged by glutathione transferase (GST; EC 2.5.1.18) isozymes of Alpha, Pi, and Mu classes, but plants lack these GST classes. We detected the acrolein-scavenging GST activity in four species of plants, and purified an isozyme showing this activity from spinach (Spinacia oleracea L.) leaves. The isozyme (GST-Acr), obtained after an affinity chromatography and two ion exchange chromatography steps, showed the K M value for acrolein 93 μM, the smallest value known for acrolein-detoxifying enzymes in plants. Peptide sequence homology search revealed that GST-Acr belongs to the GST Tau, a plant-specific class. The Arabidopsis thaliana GST Tau19, which has the closest sequence similar to spinach GST-Acr, also showed a high catalytic efficiency for acrolein. These results suggest that GST plays as a scavenger for acrolein in plants.

  20. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB.

    Science.gov (United States)

    Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D; Garner, Ethan C; Walker, Suzanne

    2015-01-01

    The bacterial actin homolog MreB, which is crucial for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm, and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis.

  1. Fish oil feeding is associated with an increased accumulation of dietary lipids in enterocytes: Results from an in vivo study in rats

    DEFF Research Database (Denmark)

    Larsen, L.F.; Marckmann, P.; Hansen, A.K.

    2003-01-01

    Background: Chronic fish oil consumption is associated with reduced postprandial lipaemia, but the mechanism behind this effect is not fully understood. We studied whether lipid absorption might be altered in rats fed fish oil. Methods: Male Wistar rats were fed fish oil enriched chow (n = 6...... contents of enterocytes were determined by liquid scintillation counting. Two other groups of rats (2 x 6) fed the experimental diets were given an oral fat load and fasting and postprandial blood samples were taken. Results: The accumulation of H-3-lipids in enterocytes was higher in rats fed fish oil...... than in controls (area under the H-3-lipid time curve: 1041.3 versus 670.3 nmol oleic acid x min/mug DNA, P fish oil. The amount of non-absorbed H-3-lipid tended to be higher in the fish...

  2. Insulin Clearance Is Associated with Hepatic Lipase Activity and Lipid and Adiposity Traits in Mexican Americans.

    Directory of Open Access Journals (Sweden)

    Artak Labadzhyan

    Full Text Available Reduction in insulin clearance plays an important role in the compensatory response to insulin resistance. Given the importance of this trait to the pathogenesis of diabetes, a deeper understanding of its regulation is warranted. Our goal was to identify metabolic and cardiovascular traits that are independently associated with metabolic clearance rate of insulin (MCRI. We conducted a cross-sectional analysis of metabolic and cardiovascular traits in 765 participants from the Mexican-American Coronary Artery Disease (MACAD project who had undergone blood sampling, oral glucose tolerance test, euglycemic-hyperinsulinemic clamp, dual-energy X-ray absorptiometry, and carotid ultrasound. We assessed correlations of MCRI with traits from seven domains, including anthropometry, biomarkers, cardiovascular, glucose homeostasis, lipase activity, lipid profile, and liver function tests. We found inverse independent correlations between MCRI and hepatic lipase (P = 0.0004, insulin secretion (P = 0.0002, alanine aminotransferase (P = 0.0045, total fat mass (P = 0.014, and diabetes (P = 0.03. MCRI and apolipoprotein A-I exhibited a positive independent correlation (P = 0.035. These results generate a hypothesis that lipid and adiposity associated traits related to liver function may play a role in insulin clearance.

  3. Biological, clinical and population relevance of 95 loci for blood lipids

    DEFF Research Database (Denmark)

    Teslovich, Tanya M; Musunuru, Kiran; Smith, Albert V

    2010-01-01

    polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits...... in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken...

  4. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data.

    Science.gov (United States)

    Koelmel, Jeremy P; Kroeger, Nicholas M; Ulmer, Candice Z; Bowden, John A; Patterson, Rainey E; Cochran, Jason A; Beecher, Christopher W W; Garrett, Timothy J; Yost, Richard A

    2017-07-10

    Lipids are ubiquitous and serve numerous biological functions; thus lipids have been shown to have great potential as candidates for elucidating biomarkers and pathway perturbations associated with disease. Methods expanding coverage of the lipidome increase the likelihood of biomarker discovery and could lead to more comprehensive understanding of disease etiology. We introduce LipidMatch, an R-based tool for lipid identification for liquid chromatography tandem mass spectrometry workflows. LipidMatch currently has over 250,000 lipid species spanning 56 lipid types contained in in silico fragmentation libraries. Unique fragmentation libraries, compared to other open source software, include oxidized lipids, bile acids, sphingosines, and previously uncharacterized adducts, including ammoniated cardiolipins. LipidMatch uses rule-based identification. For each lipid type, the user can select which fragments must be observed for identification. Rule-based identification allows for correct annotation of lipids based on the fragments observed, unlike typical identification based solely on spectral similarity scores, where over-reporting structural details that are not conferred by fragmentation data is common. Another unique feature of LipidMatch is ranking lipid identifications for a given feature by the sum of fragment intensities. For each lipid candidate, the intensities of experimental fragments with exact mass matches to expected in silico fragments are summed. The lipid identifications with the greatest summed intensity using this ranking algorithm were comparable to other lipid identification software annotations, MS-DIAL and Greazy. For example, for features with identifications from all 3 software, 92% of LipidMatch identifications by fatty acyl constituents were corroborated by at least one other software in positive mode and 98% in negative ion mode. LipidMatch allows users to annotate lipids across a wide range of high resolution tandem mass spectrometry

  5. Postprandial triglyceride-rich lipoproteins regulate perilipin-2 and perilipin-3 lipid-droplet-associated proteins in macrophages.

    Science.gov (United States)

    Varela, Lourdes M; López, Sergio; Ortega-Gómez, Almudena; Bermúdez, Beatriz; Buers, Insa; Robenek, Horst; Muriana, Francisco J G; Abia, Rocío

    2015-04-01

    Lipid accumulation in macrophages contributes to atherosclerosis. Within macrophages, lipids are stored in lipid droplets (LDs); perilipin-2 and perilipin-3 are the main LD-associated proteins. Postprandial triglyceride (TG)-rich lipoproteins induce LD accumulation in macrophages. The role of postprandial lipoproteins in perilipin-2 and perilipin-3 regulation was studied. TG-rich lipoproteins (TRLs) induced the levels of intracellular TGs, LDs and perilipin-2 protein expression in THP-1 macrophages and in Apoe(-/-) mice bone-marrow-derived macrophages with low and high basal levels of TGs. Perilipin-3 was only synthesized in mice macrophages with low basal levels of TGs. The regulation was dependent on the fatty acid composition of the lipoproteins; monounsaturated and polyunsaturated fatty acids (PUFAs) more strongly attenuated these effects compared with saturated fatty acids. In THP-1 macrophages, immunofluorescence microscopy and freeze-fracture immunogold labeling indicated that the lipoproteins translocated perilipin-3 from the cytoplasm to the LD surface; only the lipoproteins that were rich in PUFAs suppressed this effect. Chemical inhibition showed that lipoproteins induced perilipin-2 protein expression through the peroxisome proliferator-activated nuclear receptor (PPAR) PPARα and PPARγ pathways. Overall, our data indicate that postprandial TRLs may be involved in atherosclerotic plaque formation through the regulation of perilipin-2 and perilipin-3 proteins in macrophages. Because the fatty acid composition of the lipoproteins is dependent on the type of fat consumed, the ingestion of olive oil, which is rich in monounsaturated fatty acids, and fish oil, which is rich in omega-3 fatty acids, can be considered a good nutritional strategy to reduce the risk of atherosclerosis by LD-associated proteins decrease. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Spontaneous charged lipid transfer between lipid vesicles.

    Science.gov (United States)

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  7. Association of non-heterocystous cyanobacteria with crop plants

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2010-01-01

    Cyanobacteria have the ability to form associations with organisms from all domains of life, notably with plants, which they provide with fixed nitrogen, among other substances. This study was aimed at developing artificial associations between non-heterocystous cyanobacteria and selected crop

  8. Discovery and refinement of loci associated with lipid levels

    NARCIS (Netherlands)

    Willer, Cristen J.; Schmidt, Ellen M.; Sengupta, Sebanti; Peloso, Gina M.; Gustafsson, Stefan; Kanoni, Stavroula; Ganna, Andrea; Chen, Jin; Buchkovich, Martin L.; Mora, Samia; Beckmann, Jacques S.; Bragg-Gresham, Jennifer L.; Chang, Hsing-Yi; Demirkan, Ayşe; den Hertog, Heleen M.; Do, Ron; Donnelly, Louise A.; Ehret, Georg B.; Esko, Tõnu; Feitosa, Mary F.; Ferreira, Teresa; Fischer, Krista; Fontanillas, Pierre; Fraser, Ross M.; Freitag, Daniel F.; Gurdasani, Deepti; Heikkilä, Kauko; Hyppönen, Elina; Isaacs, Aaron; Jackson, Anne U.; Johansson, Asa; Johnson, Toby; Kaakinen, Marika; Kettunen, Johannes; Kleber, Marcus E.; Li, Xiaohui; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Magnusson, Patrik K. E.; Mangino, Massimo; Mihailov, Evelin; Montasser, May E.; Müller-Nurasyid, Martina; Nolte, Ilja M.; O'Connell, Jeffrey R.; Palmer, Cameron D.; Perola, Markus; Petersen, Ann-Kristin; Sanna, Serena; Saxena, Richa; Service, Susan K.; Shah, Sonia; Shungin, Dmitry; Sidore, Carlo; Song, Ci; Strawbridge, Rona J.; Surakka, Ida; Tanaka, Toshiko; Teslovich, Tanya M.; Thorleifsson, Gudmar; van den Herik, Evita G.; Voight, Benjamin F.; Volcik, Kelly A.; Waite, Lindsay L.; Wong, Andrew; Wu, Ying; Zhang, Weihua; Absher, Devin; Asiki, Gershim; Barroso, Inês; Been, Latonya F.; Bolton, Jennifer L.; Bonnycastle, Lori L.; Brambilla, Paolo; Burnett, Mary S.; Cesana, Giancarlo; Dimitriou, Maria; Doney, Alex S. F.; Döring, Angela; Elliott, Paul; Epstein, Stephen E.; Eyjolfsson, Gudmundur Ingi; Gigante, Bruna; Goodarzi, Mark O.; Grallert, Harald; Gravito, Martha L.; Groves, Christopher J.; Hallmans, Göran; Hartikainen, Anna-Liisa; Hayward, Caroline; Hernandez, Dena; Hicks, Andrew A.; Holm, Hilma; Hung, Yi-Jen; Illig, Thomas; Jones, Michelle R.; Kaleebu, Pontiano; Kastelein, John J. P.; Khaw, Kay-Tee; Kim, Eric; Klopp, Norman; Komulainen, Pirjo; Kumari, Meena; Langenberg, Claudia; Lehtimäki, Terho; Lin, Shih-Yi; Lindström, Jaana; Loos, Ruth J. F.; Mach, François; McArdle, Wendy L.; Meisinger, Christa; Mitchell, Braxton D.; Müller, Gabrielle; Nagaraja, Ramaiah; Narisu, Narisu; Nieminen, Tuomo V. M.; Nsubuga, Rebecca N.; Olafsson, Isleifur; Ong, Ken K.; Palotie, Aarno; Papamarkou, Theodore; Pomilla, Cristina; Pouta, Anneli; Rader, Daniel J.; Reilly, Muredach P.; Ridker, Paul M.; Rivadeneira, Fernando; Rudan, Igor; Ruokonen, Aimo; Samani, Nilesh; Scharnagl, Hubert; Seeley, Janet; Silander, Kaisa; Stancáková, Alena; Stirrups, Kathleen; Swift, Amy J.; Tiret, Laurence; Uitterlinden, Andre G.; van Pelt, L. Joost; Vedantam, Sailaja; Wainwright, Nicholas; Wijmenga, Cisca; Wild, Sarah H.; Willemsen, Gonneke; Wilsgaard, Tom; Wilson, James F.; Young, Elizabeth H.; Zhao, Jing Hua; Adair, Linda S.; Arveiler, Dominique; Assimes, Themistocles L.; Bandinelli, Stefania; Bennett, Franklyn; Bochud, Murielle; Boehm, Bernhard O.; Boomsma, Dorret I.; Borecki, Ingrid B.; Bornstein, Stefan R.; Bovet, Pascal; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chambers, John C.; Chen, Yii-Der Ida; Collins, Francis S.; Cooper, Richard S.; Danesh, John; Dedoussis, George; de Faire, Ulf; Feranil, Alan B.; Ferrières, Jean; Ferrucci, Luigi; Freimer, Nelson B.; Gieger, Christian; Groop, Leif C.; Gudnason, Vilmundur; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hingorani, Aroon; Hirschhorn, Joel N.; Hofman, Albert; Hovingh, G. Kees; Hsiung, Chao Agnes; Humphries, Steve E.; Hunt, Steven C.; Hveem, Kristian; Iribarren, Carlos; Järvelin, Marjo-Riitta; Jula, Antti; Kähönen, Mika; Kaprio, Jaakko; Kesäniemi, Antero; Kivimaki, Mika; Kooner, Jaspal S.; Koudstaal, Peter J.; Krauss, Ronald M.; Kuh, Diana; Kuusisto, Johanna; Kyvik, Kirsten O.; Laakso, Markku; Lakka, Timo A.; Lind, Lars; Lindgren, Cecilia M.; Martin, Nicholas G.; März, Winfried; McCarthy, Mark I.; McKenzie, Colin A.; Meneton, Pierre; Metspalu, Andres; Moilanen, Leena; Morris, Andrew D.; Munroe, Patricia B.; Njølstad, Inger; Pedersen, Nancy L.; Power, Chris; Pramstaller, Peter P.; Price, Jackie F.; Psaty, Bruce M.; Quertermous, Thomas; Rauramaa, Rainer; Saleheen, Danish; Salomaa, Veikko; Sanghera, Dharambir K.; Saramies, Jouko; Schwarz, Peter E. H.; Sheu, Wayne H.-H.; Shuldiner, Alan R.; Siegbahn, Agneta; Spector, Tim D.; Stefansson, Kari; Strachan, David P.; Tayo, Bamidele O.; Tremoli, Elena; Tuomilehto, Jaakko; Uusitupa, Matti; van Duijn, Cornelia M.; Vollenweider, Peter; Wallentin, Lars; Wareham, Nicholas J.; Whitfield, John B.; Wolffenbuttel, Bruce H. R.; Ordovas, Jose M.; Boerwinkle, Eric; Palmer, Colin N. A.; Thorsteinsdottir, Unnur; Chasman, Daniel I.; Rotter, Jerome I.; Franks, Paul W.; Ripatti, Samuli; Cupples, L. Adrienne; Sandhu, Manjinder S.; Rich, Stephen S.; Boehnke, Michael; Deloukas, Panos; Kathiresan, Sekar; Mohlke, Karen L.; Ingelsson, Erik; Abecasis, Gonçalo R.

    2013-01-01

    Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577

  9. Multiple functional self-association interfaces in plant TIR domains

    NARCIS (Netherlands)

    Zhang, Xiaoxiao; Bernoux, Maud; Bentham, Adam R; Newman, Toby E; Ve, Thomas; Casey, Lachlan W; Raaymakers, Tom M; Hu, Jian; Croll, Tristan I; Schreiber, Karl J; Staskawicz, Brian J; Anderson, Peter A; Sohn, Kee Hoon; Williams, Simon J; Dodds, Peter N; Kobe, Bostjan

    2017-01-01

    The self-association of Toll/interleukin-1 receptor/resistance protein (TIR) domains has been implicated in signaling in plant and animal immunity receptors. Structure-based studies identified different TIR-domain dimerization interfaces required for signaling of the plant nucleotide-binding

  10. Dermal extracellular lipid in birds.

    Science.gov (United States)

    Stromberg, M W; Hinsman, E J; Hullinger, R L

    1990-01-01

    A light and electron microscopic study of the skin of domestic chickens, seagulls, and antarctic penguins revealed abundant extracellular dermal lipid and intracellular epidermal lipid. Dermal lipid appeared ultrastructurally as extracellular droplets varying from less than 1 micron to more than 25 microns in diameter. The droplets were often irregularly contoured, sometimes round, and of relatively low electron density. Processes of fibrocytes were often seen in contact with extracellular lipid droplets. Sometimes a portion of such a droplet was missing, and this missing part appeared to have been "digested away" by the cell process. In places where cells or cell processes are in contact with fact droplets, there are sometimes extracellular membranous whorls or fragments which have been associated with the presence of fatty acids. Occasionally (in the comb) free fat particles were seen in intimate contact with extravasated erythrocytes. Fat droplets were seen in the lumen of small dermal blood and lymph vessels. We suggest that the dermal extracellular lipid originates in the adipocyte layer and following hydrolysis the free fatty acids diffuse into the epidermis. Here they become the raw material for forming the abundant neutral lipid contained in many of the epidermal cells of both birds and dolphins. The heretofore unreported presence and apparently normal utilization of abundant extracellular lipid in birds, as well as the presence of relatively large droplets of neutral lipid in dermal vessels, pose questions which require a thorough reappraisal of present concepts of the ways in which fat is distributed and utilized in the body.

  11. Longitudinal analysis of the associations between antiretroviral therapy, viraemia and immunosuppression with lipid levels

    DEFF Research Database (Denmark)

    Kamara, David A; Smith, Colette; Ryom, Lene

    2016-01-01

    BACKGROUND: Antiretroviral (ART) drugs have been associated with higher triglycerides (TG), higher total cholesterol (TC) and lower high-density lipoprotein cholesterol (HDL-C) levels. Associations between lipid levels with HIV viraemia and immunosuppression in the presence of ART remain unclear......%, 92% and 80% contributed at least one TG/TC/HDL-C measurement (median follow-up 6.8, 6.8 and 5.0 years, respectively). Predicted mean (95% CI) baseline levels for TG, TC and HDL-C (mmol/l), were 2.10 (2.05, 2.14), 4.94 (4.91, 4.98) and 1.08 (1.07, 1.10), respectively. Lopinavir was associated...... with the worst TG profile, (27.2% higher levels compared to atazanavir; 95% CI 25.2%, 29.2%), and darunavir had a similar profile as atazanavir. The nucleoside pair lamivudine/tenofovir was associated with the most favourable TG profile (-2.8%; -3.5%, -2.0%) compared with emtricitabine/tenofovir, whereas...

  12. Protein diffusion in plant cell plasma membranes: The cell-wall corral

    Directory of Open Access Journals (Sweden)

    Alexandre eMartinière

    2013-12-01

    Full Text Available Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  13. Suppressing the formation of lipid raft-associated Rac1/PI3K/Akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells.

    Science.gov (United States)

    Lin, Meng-Liang; Lu, Yao-Cheng; Chen, Hung-Yi; Lee, Chuan-Chun; Chung, Jing-Gung; Chen, Shih-Shun

    2014-05-01

    Stromal cell-derived factor-1α (SDF-1α) is a ligand for C-X-C chemokine receptor type 4 (CXCR4), which contributes to the metastasis of cancer cells by promoting cell migration. Here, we show that the SDF-1α/CXCR4 axis can significantly increase invasion of esophageal carcinoma (EC) cells. We accomplished this by examining the effects of CXCR4 knockdown as well as treatment with a CXCR4-neutralizing antibody and the CXCR4-specific inhibitor AMD3100. Curcumin suppressed SDF-1α-induced cell invasion and matrix metalloproteinase-2 (MMP-2) promoter activity, cell surface localization of CXCR4 at lipid rafts, and lipid raft-associated ras-related C3 botulinum toxin substrate 1 (Rac1)/phosphatidylinositol 3-kinase (PI3K) p85α/Akt signaling. Curcumin inhibited SDF-1α-induced cell invasion by suppressing the Rac1-PI3K signaling complex at lipid rafts but did not abrogate lipid raft formation. We further demonstrate that the attenuation of lipid raft-associated Rac1 activity by curcumin was critical for the inhibition of SDF-1α-induced PI3K/Akt/NF-κB activation, cell surface localization of CXCR4 at lipid rafts, MMP-2 promoter activity, and cell invasion. Collectively, our results indicate that curcumin inhibits SDF-1α-induced EC cell invasion by suppressing the formation of the lipid raft-associated Rac1-PI3K-Akt signaling complex, the localization of CXCR4 with lipid rafts at the cell surface, and MMP-2 promoter activity, likely through the inhibition of Rac1 activity. © 2012 Wiley Periodicals, Inc.

  14. Comparative studies of cyanobacterial associations with crop plants

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2009-01-01

    Cyanobacteria are very sociable organisms having ability to form symbiotic relationships with a variety of organisms from all other domains of life. Their association with plants is of prime importance. Very less work is done on development of new artificial symbiotic associations between

  15. Rotavirus RRV associates with lipid membrane microdomains during cell entry

    International Nuclear Information System (INIS)

    Isa, Pavel; Realpe, Mauricio; Romero, Pedro; Lopez, Susana; Arias, Carlos F.

    2004-01-01

    Rotavirus cell entry is a multistep process, not completely understood, which requires at least four interactions between the virus and cell surface molecules. In this work, we investigated the role of the sphingolipid- and cholesterol-enriched lipid microdomains (rafts) in the entry of rotavirus strain RRV to MA104 cells. We found that ganglioside GM1, integrin subunits α2 and β3, and the heat shock cognate protein 70 (hsc70), all of which have been implicated as rotavirus receptors, are associated with TX-100 and Lubrol WX detergent-resistant membranes (DRMs). Integrin subunits α2 and β3 were found to be particularly enriched in DRMs resistant to lysis by Lubrol WX. When purified RRV particles were incubated with cells at 4 deg. C, about 10% of the total infectious virus was found associated with DRMs, and the DRM-associated virus increased to 37% in Lubrol-resistant membrane domains after 60-min incubation at 37 deg. C. The virus was excluded from DRMs if the cells were treated with methyl-β-cyclodextrin (MβCD). Immunoblot analysis of the viral proteins showed that the virus surface proteins became enriched in DRMs upon incubation at 37 deg. C, being almost exclusively localized in Lubrol-resistant DRMs after 60 min. These data suggest that detergent-resistant membrane domains play an important role in the cell entry of rotaviruses, which could provide a platform to facilitate the efficient interaction of the rotavirus receptors with the virus particle

  16. Major lipids, apolipoproteins, and risk of vascular disease

    DEFF Research Database (Denmark)

    Collaboration, Emerging Risk Factors; Di Angelantonio, Emanuele; Sarwar, Nadeem

    2009-01-01

    CONTEXT: Associations of major lipids and apolipoproteins with the risk of vascular disease have not been reliably quantified. OBJECTIVE: To assess major lipids and apolipoproteins in vascular risk. DESIGN, SETTING, AND PARTICIPANTS: Individual records were supplied on 302,430 people without...

  17. [Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza].

    Science.gov (United States)

    Tian, Lei; Li, Yuanjing; Tian, Chunjie

    2016-01-04

    Arbuscular mycorrhizal (AM) fungi play an important role in energy flow and nutrient cycling, besides their wide distribution in the cosystem. With a long co-evolution, AM fungi and host plant have formed a symbiotic relationship, and fungal lipid metabolism may be the key point to find the symbiotic mechanism in arbusculart mycorrhiza. Here, we reviewed the most recent progress on the interaction between AM fungal lipid metabolism and symbiotic signaling networks, especially the response of AM fungal lipid metabolism to symbiotic signals. Furthermore, we discussed the response of AM fungal lipid storage and release to symbiotic or non-symbiotic status, and the correlation between fungal lipid metabolism and nutrient transfer in mycorrhiza. In addition, we explored the feedback of the lipolysis process to molecular signals during the establishment of symbiosis, and the corresponding material conversion and energy metabolism besides the crosstalk of fungal lipid metabolism and signaling networks. This review will help understand symbiotic mechanism of arbuscular mycorrhiza fungi and further application in ecosystem.

  18. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential

    KAUST Repository

    Soussi, Asma; Ferjani, Raoudha; Marasco, Ramona; Guesmi, Amel; Cherif, Hanene; Rolli, Eleonora; Mapelli, Francesca; Ouzari, Hadda Imene; Daffonchio, Daniele; Cherif, Ameur

    2015-01-01

    Selection and recruitment of the plant associated bacterial assemblages is mediated by the combination of the bio-pedo-agroclimatic conditions and the plant species or varieties. Diversity and functional redundancy of these associated PGPR makes them very active in supporting plant improvement, health and resistance to drought, salt and related stresses. Implementing proper biotechnological applications of the arid and desert-adapted PGPR constitute the challenge to be raised.

  19. Exploring the plant-associated bacterial communities in Medicago sativa L

    Directory of Open Access Journals (Sweden)

    Pini Francesco

    2012-05-01

    Full Text Available Abstract Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti. However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40% between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may

  20. Lipid status in phyisiological non-complicated pregnancy

    Directory of Open Access Journals (Sweden)

    Ardalić Daniela

    2016-01-01

    Full Text Available Specifically altered lipid profile and physiological hyperlipidemia during pregnancy are considered essential for the normal course of pregnancy and fetal development. This specific alteration of the lipid profile raises the questions about potential proaterogenic effect of these altered lipid parameters during pregnancy and its influence on the development of cardiovascular disease in women later in life. Research topic was also the association of altered lipid profile during pregnancy with the development of complications in pregnancy, especially gestational diabetes, hypertension and preeclampsia. Through the mediation of cholesterol ester transfer protein (CETP, the activity of which grows in mid-gestation, there are exchanges of the triglycerides between VLDL and LDL or HDL particle, which leads to increased accumulation of triglycerides in these particles, causes them to become smaller and denser with much greater atherogenic potential. These changes in lipid profile point out that a large number of pregnancies increase risk of development of cardiovascular diseases later in life. In order to optimize the predictive capacity of the lipid profile during pregnancy, it is recommended to determine the indexes of lipid.

  1. The multifaceted interplay between lipids and epigenetics.

    Science.gov (United States)

    Dekkers, Koen F; Slagboom, P Eline; Jukema, J Wouter; Heijmans, Bastiaan T

    2016-06-01

    The interplay between lipids and epigenetic mechanisms has recently gained increased interest because of its relevance for common diseases and most notably atherosclerosis. This review discusses recent advances in unravelling this interplay with a particular focus on promising approaches and methods that will be able to establish causal relationships. Complementary approaches uncovered close links between circulating lipids and epigenetic mechanisms at multiple levels. A characterization of lipid-associated genetic variants suggests that these variants exert their influence on lipid levels through epigenetic changes in the liver. Moreover, exposure of monocytes to lipids persistently alters their epigenetic makeup resulting in more proinflammatory cells. Hence, epigenetic changes can both impact on and be induced by lipids. It is the combined application of technological advances to probe epigenetic modifications at a genome-wide scale and methodological advances aimed at causal inference (including Mendelian randomization and integrative genomics) that will elucidate the interplay between circulating lipids and epigenetics. Understanding its role in the development of atherosclerosis holds the promise of identifying a new category of therapeutic targets, since epigenetic changes are amenable to reversal.

  2. Association between markers of systemic inflammation, oxidative stress, lipid profiles, and insulin resistance in pregnant women.

    Science.gov (United States)

    Asemi, Zatollah; Jazayeri, Shima; Najafi, Mohammad; Samimi, Mansooreh; Shidfar, Farzad; Tabassi, Zohreh; Shahaboddin, Mohamadesmaeil; Esmaillzadeh, Ahmad

    2013-05-01

    Increased levels of pro-inflammatory factors, markers of oxidative stress and lipid profiles are known to be associated with several complications. The aim of this study was to determine the association of markers of systemic inflammation, oxidative stress and lipid profiles with insulin resistance in pregnant women in Kashan, Iran. In a cross-sectional study, serum high sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-alpha (TNF-α), fasting plasma glucose (FPG), serum insulin, 8-oxo-7, 8-dihydroguanine (8-oxo-G), total cholesterol, triglyceride, High density lipoprotein-cholesterol (HDL-cholesterol), and plasma total antioxidant capacity (TAC) were measured among 89 primigravida singleton pregnant women aged 18-30 years at 24-28 weeks of gestation. Pearson's correlation and multiple linear regressions were used to assess their relationships with homeostatic model assessment of insulin resistance (HOMA-IR). We found that among biochemical indicators of pregnant women, serum hs-CRP and total cholesterol levels were positively correlated with HOMA-IR (β = 0.05, P = 0.006 for hs-CRP and β = 0.006, P = 0.006 for total cholesterol). These associations remained significant even after mutual effect of other biochemical indicators were controlled (β = 0.04, P = 0.01 for hs-CRP and β = 0.007, P = 0.02 for total cholesterol). Further adjustment for body mass index made the association of hs-CRP and HOMA-IR disappeared; however, the relationship for total cholesterol remained statistically significant. Our findings showed that serum total cholesterol is independently correlated with HOMA-IR score. Further studies are needed to confirm our findings.

  3. Assessment of transformability of bacteria associated with tomato and potato plants

    NARCIS (Netherlands)

    Overbeek, van L.S.; Ray, J.L.; Elsas, van J.D.

    2007-01-01

    Transformation of plant-associated bacteria by plant DNA has never been demonstrated in agricultural fields. In total 552 bacterial isolates from stems of Ralstonia solanacearum-infected and healthy tomato plants and from stems and leaves of healthy potato plants were tested for natural genetic

  4. Association of Spicy Food Consumption Frequency with Serum Lipid Profiles in Older People in China.

    Science.gov (United States)

    Yu, K; Xue, Y; He, T; Guan, L; Zhao, A; Zhang, Y

    2018-01-01

    There has been recent interest in spicy foods and their bioactive ingredients for cardiovascular health. This study aims to explore relationship between spicy food consumption frequency and serum lipid profiles in a cross-sectional sample of older Chinese from China Health and Nutrition Survey (CHNS). A total of 1549 participant aged 65 years and above from CHNS 2009 were included in the analysis. Information on spicy food consumption was obtained using a questionnaire survey and 24h dietary recalls over three consecutive days combined with weighted food inventory. Fasting blood samples were analyzed for total cholesterol (TC), triglycerides, high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apolipoprotein A1 (apoA1) and apolipoprotein B (apoB). Correlations between spicy food consumption frequency and serum lipid profiles were evaluated by multivariate linear regression models. The result shows a significant positive association between frequency of spicy food consumption estimated by the frequency question and daily spicy food intake calculated from 24h recall. After adjustment for potential lifestyle and dietary confounding factors, men with higher frequency of spicy food consumption showed higher apoA1 level, and lower ratio of LDL-C/apoB (p for trend food consumption was significantly associated with TC, LDL-C, apoB, LDL-C/HDL-C, and apoB/apoA1 in an inverse manner, and positively correlated with apoA1 level (p for trend food consumption frequency may favorably associated with some risk factors for cardiovascular diseases.

  5. [Association of high altitude-induced hypoxemia to lipid profile and glycemia in men and women living at 4,100m in the Peruvian Central Andes].

    Science.gov (United States)

    Gonzales, Gustavo F; Tapia, Vilma

    2013-02-01

    At a same altitude, people with greater hypoxemia would have higher hemoglobin (Hb) levels than less hypoxemic patients. It is not known whether higher hypoxemia levels (as measured by higher Hb values) affect basal glucose and lipid profile at an altitude of 4,100mg (Carhuamayo and Junln). Glucose, lipid, and hemoglobin levels and body mass index (BMI) were assessed in 158 males and 348 females aged 35 to 75 years. Association of lipid and glucose levels with systolic and diastolic blood pressure (SBP and DBP) was also assessed. Results were analyzed using Student's t test, Chi-square test, analysis of variance, correlations, and linear multivariate analyses adjusted for age, sex, BMI, smoking, and education. Higher hemoglobin levels were directly associated to higher levels of total cholesterol (P0.05). Levels of total cholesterol, high density lipoprotein cholesterol, triglycerides, low density lipoprotein cholesterol, and blood glucose were directly associated to DBP. In people living at high altitude (4100m), the non-HDL cholesterol fraction and triglycerides are directly associated to hemoglobin value, and increases in them are in turn associated to higher DBP. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  6. Association between chronic periodontitis and serum lipid levels

    Directory of Open Access Journals (Sweden)

    Pejčić Ana

    2012-01-01

    Full Text Available Background/Aim. Periodontitis is a local inflammatory process mediating destruction of periodontal tissues triggered by bacterial insult. However, this disease is also characterized by systemic inflammatory host responses that may contrbute, in part, to the recently reported increased risk for systemic diseases, including an altered lipid metabolism. On the other hand, many people in the world are affected by hyperlipidemia, which is a known risk faktor for atherosclerosis. The aim of this study was to determine the relationship between periodontal disease and blood lipid levels. Methods. A total of 50 patients with periodontitis included in this study had no documented history of recent acute coronary events. The healthy, non-periodontal subjects (comparison group comprised 25 subjects. All the patients were periodontology examined and completed a medical history. Dental plaque index, probing depth, gingival index bleeding on probing and clinical attechment levels were recorded. Blood samples were taken on admission for measurements of serum total cholesterol, triglycerides, hight density lipoprotein cholesterol (HDL-cholesterol, and low density lipoprotein cholesterol (LDL-cholesterol. Results. The obtained results showed that mean levels of cholesterol (6.09 ± 1.61 mmol/L, triglycerdes (2.19+1.67mmol/l and LDL cholesterol (4.09 ± 1.40 mmol/L in individuals with periodontitis were higer, and levels od HDL (1.43 ± 0.51 mmol/L was lower than those of individuals without periodontitis (4.86 ± 1.37; 1.14 ± 0.71; 3.18 ± 0.64; 1.53 ± 0.32 mmol/L, respectively. Conclusion. This study confirms a significant relationship between periodontal disease, regardless its intensity, and blood lipid levels in the studied population. The results imply that periodontitis may be a risk factor and may contribute to the pathogenesis of atherosclerosis and cardiovascular diseases (CVD. However, future prospective randomized studies have to determine whether

  7. Lipid Raft: A Floating Island Of Death or Survival

    Science.gov (United States)

    George, Kimberly S.; Wu, Shiyong

    2012-01-01

    Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid rafts microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid rafts disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity. PMID:22289360

  8. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    Directory of Open Access Journals (Sweden)

    Shengxi Meng

    2013-01-01

    Full Text Available Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA, one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism.

  9. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane.

    Science.gov (United States)

    Kim, Bong-Woo; Lee, Chang Seok; Yi, Jae-Sung; Lee, Joo-Hyung; Lee, Joong-Won; Choo, Hyo-Jung; Jung, Soon-Young; Kim, Min-Sik; Lee, Sang-Won; Lee, Myung-Shik; Yoon, Gyesoon; Ko, Young-Gyu

    2010-12-01

    Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.

  10. Is Shift Work Associated with Lipid Disturbances and Increased Insulin Resistance?

    Science.gov (United States)

    Alefishat, Eman; Abu Farha, Rana

    2015-11-01

    Shift work is associated with higher risk of metabolic disturbances and cardiovascular diseases. There are contradictory reports on the effect of shift work on lipid parameters in the literature. No studies have investigated any possible association between shift work and the ratio of serum triglyceride to high density lipoprotein cholesterol (TG/HDL-C ratio). This ratio can be used as a predictor for insulin resistance. The main aim of the present cross-sectional study was to investigate the association between shift work and serum TG/HDL-C ratio, TG level, and HDL-C level. One hundred and forty adult Jordanian employees were recruited. Demographic data, lifestyle habits, clinical parameters, and working patterns data were documented through a well-structured questionnaire. Serum TG and HDL-C levels were measured after at least 9 hours fasting using enzymatic assay procedure. Compared with daytime workers (58 subjects), shift workers (82 subjects) displayed higher TG/HDL-C ratio (r = 0.217, P = 0.013), higher serum TG levels (r = 0.220, P = 0.012), and lower HDL-C levels (r = -0.200, P = 0.016). Among shift workers, 30.5% were found to have a TG/HDL-C ratio >3.5 compared with 8.6% of daytime workers (P = 0.002). In the present study, shift work was shown to be associated with higher TG/HDL-C ratio, higher serum TG, and lower HDL-C levels. These findings might indicate that shift work is associated with increased insulin resistance and consequently higher risk of metabolic syndrome and cardiovascular diseases.

  11. Cuticle lipids on heteromorphic leaves of Populus euphratica Oliv. growing in riparian habitats differing in available soil moisture.

    Science.gov (United States)

    Xu, Xiaojing; Xiao, Lei; Feng, Jinchao; Chen, Ningmei; Chen, Yue; Song, Buerbatu; Xue, Kun; Shi, Sha; Zhou, Yijun; Jenks, Matthew A

    2016-11-01

    Populus euphratica is an important native tree found in arid regions from North Africa and South Europe to China, and is known to tolerate many forms of environmental stress, including drought. We describe cuticle waxes, cutin and cuticle permeability for the heteromorphic leaves of P. euphratica growing in two riparian habitats that differ in available soil moisture. Scanning electron microscopy revealed variation in epicuticular wax crystallization associated with leaf type and site. P. euphratica leaves are dominated by cuticular wax alkanes, primary-alcohols and fatty acids. The major cutin monomers were 10,16-diOH C 16 :0 acids. Broad-ovate leaves (associated with adult phase growth) produced 1.3- and 1.6-fold more waxes, and 2.1- and 0.9-fold more cutin monomers, than lanceolate leaves (associated with juvenile phase growth) at the wetter site and drier site, respectively. The alkane-synthesis-associated ECERIFERUM1 (CER1), as well as ABC transporter- and elongase-associated genes, were expressed at much higher levels at the drier than wetter sites, indicating their potential function in elevating leaf cuticle lipids in the dry site conditions. Higher cuticle lipid amounts were closely associated with lower cuticle permeability (both chlorophyll efflux and water loss). Our results implicate cuticle lipids as among the xeromorphic traits associated with P. euphratica adult-phase broad-ovate leaves. Results here provide useful information for protecting natural populations of P. euphratica and their associated ecosystems, and shed new light on the functional interaction of cuticle and leaf heterophylly in adaptation to more arid, limited-moisture environments. © 2016 Scandinavian Plant Physiology Society.

  12. Plant diversity associated with pools in natural and restored peatlands

    Directory of Open Access Journals (Sweden)

    N. Fontaine

    2007-06-01

    Full Text Available This study describes plant assemblages associated with the edges of peatland pools. We conducted inventories in six natural peatlands in the province of Québec (Canada in order to measure the contribution of pools to species diversity in climatic regions where peatlands are used for peat extraction. We also carried out vegetation surveys in a peatland that has been restored after peat extraction/harvesting to determine whether pool vegetation establishes along the edges of created pools when dry surface restoration techniques only are used. Pools enhanced plant species richness in natural peatlands. Around created pools, species associated with natural pools were still absent, and non-bog species were present, six years after restoration. On this basis, we emphasise the importance of preserving natural peatlands with pools. In order to restore fully the plant diversity associated with peatlands at harvested sites, it may be necessary to modify pool excavation techniques so that created pools resemble more closely those in natural peatlands. Active introduction of the plant species or communities associated with natural pools may also be needed; candidate species for North America include Andromeda glaucophylla, Cladopodiella fluitans, Carex limosa, Eriophorum virginicum, Rhynchospora alba and Sphagnum cuspidatum.

  13. Phytosterols and blood lipid risk factors for cardiovascular disease

    NARCIS (Netherlands)

    Ras, R.T.

    2014-01-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Lifestyle improvements including dietary changes are important for CVD prevention. This thesis aimed to advance insights in the role of phytosterols, lipid-like compounds present in foods or plant origin, in

  14. Greater adherence to a Mediterranean dietary pattern is associated with improved plasma lipid profile: the Aragon Health Workers Study cohort.

    Science.gov (United States)

    Peñalvo, José L; Oliva, Belén; Sotos-Prieto, Mercedes; Uzhova, Irina; Moreno-Franco, Belén; León-Latre, Montserrat; Ordovás, José María

    2015-04-01

    There is wide recognition of the importance of healthy eating in cardiovascular health promotion. The purpose of this study was to identify the main dietary patterns among a Spanish population, and to determine their relationship with plasma lipid profiles. A cross-sectional analysis was conducted of data from 1290 participants of the Aragon Workers Health Study cohort. Standardized protocols were used to collect clinical and biochemistry data. Diet was assessed through a food frequency questionnaire, quantifying habitual intake over the past 12 months. The main dietary patterns were identified by factor analysis. The association between adherence to dietary patterns and plasma lipid levels was assessed by linear and logistic regression. Two dietary patterns were identified: a Mediterranean dietary pattern, high in vegetables, fruits, fish, white meat, nuts, and olive oil, and a Western dietary pattern, high in red meat, fast food, dairy, and cereals. Compared with the participants in the lowest quintile of adherence to the Western dietary pattern, those in the highest quintile had 4.6 mg/dL lower high-density lipoprotein cholesterol levels (P dietary pattern had 3.3mg/dL higher high-density lipoprotein cholesterol levels (P dietary pattern is associated with improved lipid profile compared with a Western dietary pattern, which was associated with a lower odds of optimal high-density lipoprotein cholesterol levels in this population. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  15. Dietary pattern as identified by factorial analysis and its association with lipid profile and fasting plasma glucose among Iranian individuals with spinal cord injury.

    Science.gov (United States)

    Sabour, Hadis; Soltani, Zahra; Latifi, Sahar; Javidan, Abbas Norouzi

    2016-07-01

    Plasma lipids (triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C)) may be associated with dietary intakes. The purpose of this study was to identify the most common food patterns among Iranian persons with spinal cord injury (SCI) and investigate their associations with lipid profile. Cross-sectional. Tertiary rehabilitation center. Referred individuals to Brain and Spinal Injury Research Center (BASIR) from 2011 to 2014. Dietary intakes were assessed by 24-hour dietary recall interviews in three non-consecutive days. Principal component analysis (PCA) was used to identify dietary patterns. Total of 100 persons (83 male and 17 female) entered the study. Four food patterns were detected. The most common dietary pattern (Pattern 1) included processed meat, sweets desserts and soft drink and was similar to 'Western' food pattern described previously. Pattern 1 was related to higher levels of TC and LDL-C (r = 0.09; P = 0.04 and r = 0.11; P = 0.03 for TC and LDL-C, respectively) only in male participants. Pattern 2 which included tea, nuts, vegetable oil and sugars had a positive association with TC level (r = 0.11; P = 0.02) again in male participants. Pattern 3 which represented a healthy food pattern showed no significant influence on lipid profiles. In this study, the four most common dietary patterns among Iranian individuals with SCI have been identified. Western food pattern was the most common diet and was associated with increased TC and LDL-C. The healthy food pattern, in which the major source of calories was protein, was not associated with variance in lipid profile.

  16. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice.

    Directory of Open Access Journals (Sweden)

    Gerhard Sengle

    2015-06-01

    Full Text Available Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that

  17. Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies

    International Nuclear Information System (INIS)

    Siddique, A.M.; Bal, A.K.

    1991-01-01

    The peanut plant (Arachis hypogaea L.), unlike other known legumes, can sustain nitrogen fixation when prolonged periods of darkness or detopping curtail the supply of photosynthate to the nodule. This ability to withstand photosynthate stress is attributed to the presence of lipid bodies in infected nodule cells. In both dark-treated and detopped plants, the lipid bodies show a gradual decrease in numbers, suggesting their utilization as a source of energy and carbon for nitrogen fixation. Lipolytic activity can be localized in the lipid bodies, and the existence of β-oxidation pathway and glyoxylate cycle is shown by the release of 14 CO 2 from 14 C lineoleoyl coenzyme A by the nodule homogenate

  18. Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants.

    Science.gov (United States)

    Carvalho, T L G; Ballesteros, H G F; Thiebaut, F; Ferreira, P C G; Hemerly, A S

    2016-04-01

    A wide range of rhizosphere diazotrophic bacteria are able to establish beneficial associations with plants, being able to associate to root surfaces or even endophytically colonize plant tissues. In common, both associative and endophytic types of colonization can result in beneficial outcomes to the plant leading to plant growth promotion, as well as increase in tolerance against biotic and abiotic stresses. An intriguing question in such associations is how plant cell surface perceives signals from other living organisms, thus sorting pathogens from beneficial ones, to transduce this information and activate proper responses that will finally culminate in plant adaptations to optimize their growth rates. This review focuses on the recent advances in the understanding of genetic and epigenetic controls of plant-bacteria signaling and recognition during beneficial associations with associative and endophytic diazotrophic bacteria. Finally, we propose that "soil-rhizosphere-rhizoplane-endophytes-plant" could be considered as a single coordinated unit with dynamic components that integrate the plant with the environment to generate adaptive responses in plants to improve growth. The homeostasis of the whole system should recruit different levels of regulation, and recognition between the parties in a given environment might be one of the crucial factors coordinating these adaptive plant responses.

  19. Fatty acid content and lipid fractions in herbs

    DEFF Research Database (Denmark)

    Petersen, Majbritt Bonefeld; Søegaard, Karen; Jensen, Søren Krogh

    2012-01-01

    Experiments have shown a higher transfer efficiency of n-3 and n-6 fatty acids (FA) to milk when feeding herbs compared to feeding grass-clover. With the aim to gain more knowledge for this, the FA profile of ten single plant species and the incorporation of FA in lipid fractions were analysed...

  20. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant.

    Science.gov (United States)

    Golovko, Oksana; Kumar, Vimal; Fedorova, Ganna; Randak, Tomas; Grabic, Roman

    2014-09-01

    Seasonal changes in the concentration of 21 pharmaceuticals in a wastewater treatment plant (WWTP) in České Budějovice were investigated over 12months. The target compounds were 10 antibiotics, 4 antidepressants, 3 psychiatric drugs, 2 antihistamines and 2 lipid regulators. 272 Wastewater samples (136 influents and 136 effluents) were collected from March 2011 to February 2012 and analyzed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. All studied pharmaceuticals were frequently detected in both the influent and the effluent wastewater samples, except for meclozine, which was only found in the influent. The mean concentration of pharmaceuticals varied from 0.006μgL(-1) to 1.48μgL(-1) in the influent and from 0.003μgL(-1) to 0.93μgL(-1) in the effluent. The concentration of most pharmaceuticals was higher during winter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Evaluation of a pharmacist-managed lipid clinic that uses point-of-care lipid testing.

    Science.gov (United States)

    Gerrald, Katherine R; Dixon, Dave L; Barnette, Debra J; Williams, Virginia G

    2010-01-01

    Hyperlipidemia is a significant, modifiable risk factor for developing coronary heart disease. Low-density lipoprotein cholesterol (LDL-C) goal achievement has improved overall, but many high-risk patients remain above the desired LDL-C goals. Published data have demonstrated the ability of pharmacist-managed lipid clinics to improve lipid management in a variety of clinical settings. This observational analysis aimed to report the impact of a newly developed hospital-based, outpatient lipid clinic by the use of point-of-care testing on LDL-C goal attainment. A retrospective, observational analysis was conducted from February 2007 to December 2008. The primary outcome measure was the change in the proportion of patients who achieved their LDL-C goal at the end of the observation period compared with baseline. A total of 81 patients met study inclusion criteria. Mean duration of follow-up was 9.0 ± 4.9 (SD) months. At the end of the observation period, 82.9% of patients achieved their LDL-C goal compared with 55.3% at baseline (P used point-of-care testing to obtain lipid results for making therapy adjustments during the face-to-face visit. Copyright © 2010 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  2. ColoLipidGene: signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients

    Science.gov (United States)

    Vargas, Teodoro; Moreno-Rubio, Juan; Herranz, Jesús; Cejas, Paloma; Molina, Susana; González-Vallinas, Margarita; Mendiola, Marta; Burgos, Emilio; Aguayo, Cristina; Custodio, Ana B.; Machado, Isidro; Ramos, David; Gironella, Meritxell; Espinosa-Salinas, Isabel; Ramos, Ricardo; Martín-Hernández, Roberto; Risueño, Alberto; De Las Rivas, Javier; Reglero, Guillermo; Yaya, Ricardo; Fernández-Martos, Carlos; Aparicio, Jorge; Maurel, Joan; Feliu, Jaime; de Molina, Ana Ramírez

    2015-01-01

    Lipid metabolism plays an essential role in carcinogenesis due to the requirements of tumoral cells to sustain increased structural, energetic and biosynthetic precursor demands for cell proliferation. We investigated the association between expression of lipid metabolism-related genes and clinical outcome in intermediate-stage colon cancer patients with the aim of identifying a metabolic profile associated with greater malignancy and increased risk of relapse. Expression profile of 70 lipid metabolism-related genes was determined in 77 patients with stage II colon cancer. Cox regression analyses using c-index methodology was applied to identify a metabolic-related signature associated to prognosis. The metabolic signature was further confirmed in two independent validation sets of 120 patients and additionally, in a group of 264 patients from a public database. The combined analysis of these 4 genes, ABCA1, ACSL1, AGPAT1 and SCD, constitutes a metabolic-signature (ColoLipidGene) able to accurately stratify stage II colon cancer patients with 5-fold higher risk of relapse with strong statistical power in the four independent groups of patients. The identification of a group of 4 genes that predict survival in intermediate-stage colon cancer patients allows delineation of a high-risk group that may benefit from adjuvant therapy, and avoids the toxic and unnecessary chemotherapy in patients classified as low-risk group. PMID:25749516

  3. p53-inducible DHRS3 Is an Endoplasmic Reticulum Protein Associated with Lipid Droplet Accumulation*

    Science.gov (United States)

    Deisenroth, Chad; Itahana, Yoko; Tollini, Laura; Jin, Aiwen; Zhang, Yanping

    2011-01-01

    The transcription factor p53 plays a critical role in maintaining homeostasis as it relates to cellular growth, proliferation, and metabolism. In an effort to identify novel p53 target genes, a microarray approach was utilized to identify DHRS3 (also known as retSDR1) as a robust candidate gene. DHRS3 is a highly conserved member of the short chain alcohol dehydrogenase/reductase superfamily with a reported role in lipid and retinoid metabolism. Here, we demonstrate that DHRS3 is an endoplasmic reticulum (ER) protein that is shuttled to the ER via an N-terminal endoplasmic reticulum targeting signal. One important function of the ER is synthesis of neutral lipids that are packaged into lipid droplets whose biogenesis occurs from ER-derived membranes. DHRS3 is enriched at focal points of lipid droplet budding where it also localizes to the phospholipid monolayer of ER-derived lipid droplets. p53 promotes lipid droplet accumulation in a manner consistent with DHRS3 enrichment in the ER. As a p53 target gene, the observations of Dhrs3 location and potential function provide novel insight into an unexpected role for p53 in lipid droplet dynamics with implications in cancer cell metabolism and obesity. PMID:21659514

  4. 78 FR 65690 - Trees and Plantings Associated With Eligible Facilities, RP9524.5

    Science.gov (United States)

    2013-11-01

    ...] Trees and Plantings Associated With Eligible Facilities, RP9524.5 AGENCY: Federal Emergency Management... policy Trees and Plantings Associated with Eligible Facilities. The Federal Emergency Management Agency... trees, shrubs, and other plantings, including limited eligibility for replacement of grass and sod...

  5. Structural transition in a lipid-water liquid system

    International Nuclear Information System (INIS)

    Bulavin, L.A.; Solovjov, D.V.; Solovjov, D.V.; Gorshkova, Yu.Je.; Zhigunov, O.M.; Ivan'kov, O.I.; Ivan'kov, O.I.; Gordelij, V.I.; Gordelij, V.I.; Gordelij, V.I.; Gordelij, V.I.; Kuklin, O.I.; Kuklin, O.I.

    2012-01-01

    Small-angle X-ray scattering technique has been used to study multilayer lipid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the 3:1-mixture DPPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in excess water. The temperature dependences of the repetition period for lipid bilayers in the temperature range 20-55 o C are obtained. A comparative analysis of the scattering curves obtained for multilayer membranes showed that, below a temperature of 40 o C , there emerges an additional ordering with a repetition period of 66 A in the lipid mixture, which we associate with the lipid phase separation. A disappearance of the so-called ripple (wave-like) phase of DPPC lipid in the mixture is also observed.

  6. The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants.

    Science.gov (United States)

    Angel, Roey; Conrad, Ralf; Dvorsky, Miroslav; Kopecky, Martin; Kotilínek, Milan; Hiiesalu, Inga; Schweingruber, Fritz; Doležal, Jiří

    2016-08-01

    Upward migration of plants to barren subnival areas is occurring worldwide due to raising ambient temperatures and glacial recession. In summer 2012, the presence of six vascular plants, growing in a single patch, was recorded at an unprecedented elevation of 6150 m.a.s.l. close to the summit of Mount Shukule II in the Western Himalayas (Ladakh, India). Whilst showing multiple signs of stress, all plants have managed to establish stable growth and persist for several years. To learn about the role of microbes in the process of plant upward migration, we analysed the root-associated microbial community of the plants (three individuals from each) using microscopy and tagged amplicon sequencing. No mycorrhizae were found on the roots, implying they are of little importance to the establishment and early growth of the plants. However, all roots were associated with a complex bacterial community, with richness and diversity estimates similar or even higher than the surrounding bare soil. Both soil and root-associated communities were dominated by members of the orders Sphingomonadales and Sphingobacteriales, which are typical for hot desert soils, but were different from communities of temperate subnival soils and typical rhizosphere communities. Despite taxonomic similarity on the order level, the plants harboured a unique set of highly dominant operational taxonomic units which were not found in the bare soil. These bacteria have been likely transported with the dispersing seeds and became part of the root-associated community following germination. The results indicate that developing soils act not only as a source of inoculation to plant roots but also possibly as a sink for plant-associated bacteria.

  7. Apolipoprotein M in lipid metabolism and cardiometabolic diseases

    DEFF Research Database (Denmark)

    Borup, Anna; Christensen, Pernille Meyer; Nielsen, Lars B.

    2015-01-01

    : The apoM/S1P axis and its implications in atherosclerosis and lipid metabolism have been thoroughly studied. Owing to the discovery of the apoM/S1P axis, the scope of apoM research has broadened. ApoM and S1P have been implicated in lipid metabolism, that is by modulating HDL particles. Also......PURPOSE: This review will address recent findings on apolipoprotein M (apoM) and its ligand sphingosine-1-phosphate (S1P) in lipid metabolism and inflammatory diseases. RECENT FINDINGS: ApoM's likely role(s) in health and disease has become more diverse after the discovery that apoM functions...... as a chaperone for S1P. Hence, apoM has recently been implicated in lipid metabolism, diabetes and rheumatoid arthritis through in-vivo, in-vitro and genetic association studies. It remains to be established to which degree such associations with apoM can be attributed to its ability to bind S1P. SUMMARY...

  8. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Danielsen, Pernille H; Folkmann, Janne K

    2014-01-01

    exposure to 6.4mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because...... and subsequently incubated for another 18h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid...... there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes....

  9. Association of canalicular membrane enzymes with bile acid micelles and lipid aggregates in human and rat bile.

    Science.gov (United States)

    Accatino, L; Pizarro, M; Solís, N; Koenig, C S

    1995-01-18

    This study was undertaken to gain insights into the characteristics of the polymolecular association between canalicular membrane enzymes, bile acids, cholesterol and phospholipids in bile and into the celular mechanisms whereby the enzymes are secreted into bile. With this purpose, we studied the distribution of bile acids, cholesterol, phospholipids, proteins and representative canalicular membrane enzymes (alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase), which can be considered specific marker constituents, in bile fractions enriched in phospholipid-cholesterol lamellar structures (multilamellar and unilamellar vesicles) and bile acid-mixed micelles. These fractions were isolated by ultracentrifugation from human hepatic bile, normal rat bile and bile of rats treated with diosgenin, a steroid that induces a marked increase in biliary cholesterol secretion, and were characterized by density, lipid composition and transmission electron microscopy. These studies demonstrate that alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase are secreted into both human and rat bile where they are preferentially associated with bile acid-mixed micelles, suggesting a role for bile acids in both release of these enzymes and lipids from the canalicular membrane and solubilization in bile. In addition, heterogeneous association of these enzymes with nonmicellar, lamellar structures in human and rat bile is consistent with the hypothesis that processes independent of the detergent effects of bile acids might also result in the release of specific intrinsic membrane proteins into bile.

  10. The Valuable Role of Measuring Serum Lipid Profile in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Farahnaz Ghahremanfard

    2015-09-01

    Full Text Available Objective: Serum lipid levels are not only associated with etiology, but also with prognosis in cancer. To investigate this issue further, we aimed to evaluate the serum levels of lipids in association with the most important prognostic indicators in cancer patients at the start of chemotherapy. Methods: In a retrospective cross-sectional study, using existing medical records obtained from 2009–2014, the data of all incident cancer cases in Iranian patients referred to the Semnan oncology clinic for chemotherapy were analyzed. Data on demographics, cancer type, prognostic indicators (e.g. lymph node involvement, metastasis, and stage of disease, as well as the patient’s lipid profile were collected. We used multiple logistic regression models to show the relationship between prognosis indicators and lipid profile adjusting for age, gender, and type of cancer. Results: The data of 205 patients was gathered. We found a significant difference in the lipid profile between different types of cancers (breast, colon, gastric, and ovarian. With the exception of high-density lipoprotein levels in women, which were higher than in men, the means of other lipid profiles were similar between the genders. There was a significant association between higher levels of low-density lipoprotein (LDL >110mg/dL in the serum and metastasis (adjusted odds ratio=2.4, 95% CI 1.2–3.5. No significant association was reported between lipid profile and lymph nodes involvement and stage of the disease. Conclusion: Our study suggested a benefit of measuring serum levels of lipids for predicting cancer progression. Increased LDL levels can be considered a predictive factor for increasing the risk of metastasis.

  11. Low serum thyroid-stimulating hormone levels are associated with lipid profile in depressive patients with long symptom duration.

    Science.gov (United States)

    Peng, Rui; Li, Yan

    2017-08-01

    The current study was designed to investigate the association between serum thyroid hormones and thyroid-stimulating hormone (TSH) levels with lipid profile in depressive disorder. A total of 370 depressive individuals aged 18 years and above were recruited in this cross-section study. All participants underwent a Structured Clinical Interview for DSM-IV (SCID) and recorded the duration of their symptoms. The serum levels of total cholesterol (TCH), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), lipoprotein A (Lp(a)), high-sensitivity C-reactive protein (hsCRP), free thyroxine (FT4), free triiodothyronine (FT3) and TSH levels were determined and the ratios of TCH/HDL-C were assessed. Depressed subjects with a symptom duration ≥3 years had higher TG levels, increased TCH/HDL-C ratios and lower levels of HDL-C, FT4 and TSH compared with depressive patients with a symptom duration <3 years. Correlation analysis displayed that TSH is positively and significantly associated with TCH and LDL-C (p<0.05); the above FT4 and FT3 are negatively, significantly and respectively associated with TCH/HDL-C (p<0.05) and TCH, HDL-C, LDL-C (p<0.05). Multiple linear regression analysis indicated that serum TG and TSH levels are associated with depressive symptom duration. According to our results,These findings indicate that low serum TSH levels are associated with lipid profile, TG and TSH levels have significant association with symptom duration in depressive patients. Copyright © 2017. Published by Elsevier B.V.

  12. Nutraceuticals in lipid-lowering treatment: a narrative review on the role of chitosan.

    Science.gov (United States)

    Patti, Angelo Maria; Katsiki, Niki; Nikolic, Dragana; Al-Rasadi, Khalid; Rizzo, Manfredi

    2015-05-01

    Lipid-lowering drugs may cause adverse effects and, although lipid targets may be achieved, a substantial residual cardiovascular (CV) risk remains. Treatment with agents mimicking proteins present in the body, such as incretin-based therapies, provided promising results. However, in order to improve lipids and CV risk, lifestyle measures remain important. Some researchers focused on nutraceuticals that may beneficially affect metabolic parameters and minimize CV risk. Chitosan, a dietary fiber, can regulate lipids with benefit on anthropometric parameters. The beneficial properties of dietary supplements (such as green tea extract, prebiotics, plant sterols, and stanols) on plasma lipids, lipoproteins, blood pressure, glucose, and insulin levels and their anti-inflammatory and anti-oxidant effects are documented. However, larger, prospective clinical trials are required to confirm such benefits. Such treatments may be recommended when lipid-lowering drugs are neither indicated nor tolerated as well as in order to achieve therapeutic targets and/or overcome residual CV risk. © The Author(s) 2014.

  13. From Leaf Synthesis to Senescence: n-Alkyl Lipid Abundance and D/H Composition Among Plant Species in a Temperate Deciduous Forest at Brown's Lake Bog, Ohio, USA

    Science.gov (United States)

    Freimuth, E. J.; Diefendorf, A. F.; Lowell, T. V.

    2014-12-01

    The hydrogen isotope composition (D/H, δD) of terrestrial plant leaf waxes is a promising paleohydrology proxy because meteoric water (e.g., precipitation) is the primary hydrogen source for wax synthesis. However, secondary environmental and biological factors modify the net apparent fractionation between precipitation δD and leaf wax δD, limiting quantitative reconstruction of paleohydrology. These secondary factors include soil evaporation, leaf transpiration, biosynthetic fractionation, and the seasonal timing of lipid synthesis. Here, we investigate the influence of each of these factors on n-alkyl lipid δD in five dominant deciduous angiosperm tree species as well as shrubs, ferns and grasses in the watershed surrounding Brown's Lake Bog, Ohio, USA. We quantified n-alkane and n-alkanoic acid concentrations and δD in replicate individuals of each species at weekly to monthly intervals from March to October 2014 to assess inter- and intraspecific isotope variability throughout the growing season. We present soil, xylem and leaf water δD from each individual, and precipitation and atmospheric water vapor δD throughout the season to directly examine the relationship between source water and lipid isotope composition. These data allow us to assess the relative influence of soil evaporation and leaf transpiration among plant types, within species, and along a soil moisture gradient throughout the catchment. We use leaf water δD to approximate biosynthetic fractionation for each individual and test whether this is a species-specific and seasonal constant, and to evaluate variation among plant types with identical growth conditions. Our high frequency sampling approach provides new insights into the seasonal timing of n-alkane and n-alkanoic acid synthesis and subsequent fluctuations in concentration and δD in a temperate deciduous forest. These results will advance understanding of the magnitude and timing of secondary influences on the modern leaf wax

  14. Lipids, lipid bilayers and vesicles as seen by neutrons

    International Nuclear Information System (INIS)

    Seto, Hideki

    2011-01-01

    Lipid molecules self-assemble into bilayers in water with their hydrocarbon chains facing inward due to their amphiphilic nature. The structural and dynamical properties of lipids and lipid bilayers have been studied by neutron scattering intensively. In this article, 3 topics are shown as typical examples. 1) a time-resolved small-angle neutron scattering on uni-lamellar vesicles composed of deuterated and protonated lipids to determine lipid kinetics, 2) small-angle neutron scattering to investigate spontaneous formation of nanopores on uni-lamellar vesicles, and 3) neutron spin echo study to determine bending modulus of lipid bilayers. (author)

  15. Mitochondrial and cellular mechanisms for managing lipid excess

    Directory of Open Access Journals (Sweden)

    Miguel A Aon

    2014-07-01

    Full Text Available Current scientific debates center on the impact of lipids and mitochondrial function on diverse aspects of human health, nutrition and disease, among them the association of lipotoxicity with the onset of insulin resistance in skeletal muscle, and with heart dysfunction in obesity and diabetes. Mitochondria play a fundamental role in aging and in prevalent acute or chronic diseases. Lipids are main mitochondrial fuels however these molecules can also behave as uncouplers and inhibitors of oxidative phosphorylation. Knowledge about the functional composition of these contradictory effects and their impact on mitochondrial-cellular energetics/redox status is incomplete.Cells store fatty acids (FAs as triacylglycerol and package them into cytoplasmic lipid droplets (LDs. New emerging data shows the LD as a highly dynamic storage pool of FAs that can be used for energy reserve. Lipid excess packaging into LDs can be seen as an adaptive response to fulfilling energy supply without hindering mitochondrial or cellular redox status and keeping low concentration of lipotoxic intermediates.Herein we review the mechanisms of action and utilization of lipids by mitochondria reported in liver, heart and skeletal muscle under relevant physiological situations, e.g. exercise. We report on perilipins, a family of proteins that associate with LDs in response to loading of cells with lipids. Evidence showing that in addition to physical contact, mitochondria and LDs exhibit metabolic interactions is presented and discussed. A hypothetical model of channeled lipid utilization by mitochondria is proposed. Direct delivery and channeled processing of lipids in mitochondria could represent a reliable and efficient way to maintain ROS within levels compatible with signaling while ensuring robust and reliable energy supply.

  16. Association between markers of systemic inflammation, oxidative stress, lipid profiles, and insulin resistance in pregnant women

    Directory of Open Access Journals (Sweden)

    Zatollah Asemi

    2013-05-01

    Full Text Available BACKGROUND: Increased levels of pro-inflammatory factors, markers of oxidative stress and lipid profiles are known to be associated with several complications. The aim of this study was to determine the association of markers of systemic inflammation, oxidative stress and lipid profiles with insulin resistance in pregnant women in Kashan, Iran. METHODS: In a cross-sectional study, serum high sensitivity C-reactive protein (hs-CRP, tumor necrosis factor-alpha (TNF-α, fasting plasma glucose (FPG, serum insulin, 8-oxo-7, 8-dihydroguanine (8-oxo-G, total cholesterol, triglyceride, HDL-cholesterol, and plasma total antioxidant capacity (TAC were measured among 89 primigravida singleton pregnant women aged 18-30 years at 24-28 weeks of gestation. Pearson’s correlation and multiple linear regressions were used to assess their relationships with homeostatic model assessment of insulin resistance (HOMA-IR. RESULTS: We found that among biochemical indicators of pregnant women, serum hs-CRP and total cholesterol levels were positively correlated with HOMA-IR (β = 0.05, P = 0.006 for hs-CRP and β = 0.006, P = 0.006 for total cholesterol. These associations remained significant even after mutual effect of other biochemical indicators were controlled (β = 0.04, P = 0.01 for hs-CRP and β = 0.007, P = 0.02 for total cholesterol. Further adjustment for body mass index made the association of hs-CRP and HOMA-IR disappeared; however, the relationship for total cholesterol remained statistically significant. CONCLUSION: Our findings showed that serum total cholesterol is independently correlated with HOMA-IR score. Further studies are needed to confirm our findings. Keywords: Inflammation, Oxidative Stress, Insulin Resistance, Pregnancy

  17. Genetic variation for sensitivity to a thyme monoterpene in associated plant species.

    Science.gov (United States)

    Jensen, Catrine Grønberg; Ehlers, Bodil Kirstine

    2010-04-01

    Recent studies have shown that plant allelochemicals can have profound effects on the performance of associated species, such that plants with a history of co-existence with "chemical neighbour" plants perform better in their presence compared to naïve plants. This has cast new light on the complexity of plant-plant interactions and plant communities and has led to debates on whether plant communities are more co-evolved than traditionally thought. In order to determine whether plants may indeed evolve in response to other plants' allelochemicals it is crucial to determine the presence of genetic variation for performance under the influence of specific allelochemicals and show that natural selection indeed operates on this variation. We studied the effect of the monoterpene carvacrol-a dominant compound in the essential oil of Thymus pulegioides-on three associated plant species originating from sites where thyme is either present or absent. We found the presence of genetic variation in both naïve and experienced populations for performance under the influence of the allelochemical but the response varied among naïve and experienced plant. Plants from experienced populations performed better than naïve plants on carvacrol soil and contained significantly more seed families with an adaptive response to carvacrol than naïve populations. This suggests that the presence of T. pulegioides can act as a selective agent on associated species, by favouring genotypes which perform best in the presence of its allelochemicals. The response to the thyme allelochemical varied from negative to neutral to positive among the species. The different responses within a species suggest that plant-plant interactions can evolve; this has implications for community dynamics and stability.

  18. Localization and Orientation of Xanthophylls in a Lipid Bilayer.

    Science.gov (United States)

    Grudzinski, Wojciech; Nierzwicki, Lukasz; Welc, Renata; Reszczynska, Emilia; Luchowski, Rafal; Czub, Jacek; Gruszecki, Wieslaw I

    2017-08-29

    Xanthophylls (polar carotenoids) play diverse biological roles, among which are modulation of the physical properties of lipid membranes and protection of biomembranes against oxidative damage. Molecular mechanisms underlying these functions are intimately related to the localization and orientation of xanthophyll molecules in lipid membranes. In the present work, we address the problem of localization and orientation of two xanthophylls present in the photosynthetic apparatus of plants and in the retina of the human eye, zeaxanthin and lutein, in a single lipid bilayer membrane formed with dimyristoylphosphatidylcholine. By using fluorescence microscopic analysis and Raman imaging of giant unilamellar vesicles, as well as molecular dynamics simulations, we show that lutein and zeaxanthin adopt a very similar transmembrane orientation within a lipid membrane. In experimental and computational approach, the average tilt angle of xanthophylls relative to the membrane normal is independently found to be ~40 deg, and results from hydrophobic mismatch between the membrane thickness and the distance between the terminal hydroxyl groups of the xanthophylls. Consequences of such a localization and orientation for biological activity of xanthophylls are discussed.

  19. Symptomatic lipid storage in carriers for the PNPLA2 gene.

    Science.gov (United States)

    Janssen, Mirian C H; van Engelen, Baziel; Kapusta, Livia; Lammens, Martin; van Dijk, Martin; Fischer, Judith; van der Graaf, Marinette; Wevers, Ron A; Fahrleitner, Manuela; Zimmermann, Robert; Morava, Eva

    2013-08-01

    Neutral lipid storage disease comprises a heterogeneous group of inherited disorders characterized by severe accumulation of cytoplasmic triglyceride droplets in several tissues and neutrophils. A novel type of autosomal recessive lipid myopathy due to PNPLA2 mutations was recently described with associated cardiac disease, myopathy and frequent infections, but without ichthyosis. Here we describe the clinical and biochemical characteristics of a long surviving patient and report on four carrier family members with diverse clinical involvement. Interestingly, heterozygous patients show neutral lipid storage in muscle and in the keratocytes of the skin, Jordans' bodies, mild myopathy and frequent infections. Biochemical analysis of fibroblasts obtained from patients revealed increased triglyceride storage and reduced lipid droplet-associated triglyceride hydrolase activity. Together, our data implicate that the wild-type allele cannot fully compensate for the mutated dysfunctional allele of PNPLA2 leading to triglyceride accumulation in muscle and mild myopathy in PNPLA2 mutation carriers. The presence of neutral lipid droplets in the skin in PNPLA2 mutation carriers strengthens the link between NLSD and other neutral lipid storage diseases with ichthyosis.

  20. Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid.

    Science.gov (United States)

    Zhao, Xuebing; Peng, Feng; Du, Wei; Liu, Canming; Liu, Dehua

    2012-08-01

    Microbial lipid produced using yeast fermentation with inexpensive carbon sources such as lignocellulosic hydrolyzate can be an alternative feedstock for biodiesel production. Several inhibitors that can be generated during acid hydrolysis of lignocellulose were added solely or together into the culture medium to study their individual inhibitory actions and their synergistic effects on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides. When the inhibitors were present in isolation in the medium, to obtain a high cell biomass accumulation, the concentrations of formic acid, acetic acid, furfural and vanillin should be lower than 2, 5, 0.5 and 1.5 g/L, respectively. However, the synergistic effects of these compounds could dramatically decrease the minimum critical inhibitory concentrations leading to significant growth and lipid production inhibitions. Unlike the above-cited inhibitors, sodium lignosulphonate had no negative influence on biomass accumulation when its concentration was in the range of 0.5-2.0 g/L; in effect, it was found to facilitate cell growth and sugar-to-lipid conversion. The fatty acid compositional profile of the yeast lipid was in the compositional range of various plant oils and animal tallow. Finally, the crude yeast lipid from bagasse hydrolyzate could be well converted into fatty acid methyl ester (FAME, biodiesel) by enzymatic transesterification in a tert-butanol system with biodiesel yield of 67.2% and lipid-to-biodiesel conversion of 88.4%.

  1. Lipid-load in peripheral blood mononuclear cells: Impact of food-consumption, dietary-macronutrients, extracellular lipid availability and demographic factors.

    Science.gov (United States)

    Ameer, Fatima; Munir, Rimsha; Usman, Hina; Rashid, Rida; Shahjahan, Muhammad; Hasnain, Shahida; Zaidi, Nousheen

    2017-04-01

    Lipid-load in peripheral blood mononuclear cells (PBMCs) has recently gained attention of the researchers working on nutritional regulation of metabolic health. Previous works have indicated that the metabolic circuitries in the circulating PBMCs are influenced by dietary-intake and macronutrient composition of diet. In the present work, we analyzed the impact of diet and dietary macronutrients on PBMCs' lipid-load. The overall analyses revealed that dietary carbohydrates and fats combinatorially induce triglyceride accumulation in PBMCs. On the other hand, dietary fats were shown to induce significant decrease in PBMCs' cholesterol-load. The effects of various demographic factors -including age, gender and body-weight- on PBMCs' lipid-load were also examined. Body-weight and age were both shown to affect PBMC's lipid-load. Our study fails to provide any direct association between extracellular lipid availability and cholesterol-load in both, freshly isolated and cultured PBMCs. The presented work significantly contributes to the current understanding of the impact of food-consumption, dietary macronutrients, extracellular lipid availability and demographic factors on lipid-load in PBMCs. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. Deciphering the Evolution and Development of the Cuticle by Studying Lipid Transfer Proteins in Mosses and Liverworts

    Directory of Open Access Journals (Sweden)

    Tiina A. Salminen

    2018-01-01

    Full Text Available When plants conquered land, they developed specialized organs, tissues, and cells in order to survive in this new and harsh terrestrial environment. New cell polymers such as the hydrophobic lipid-based polyesters cutin, suberin, and sporopollenin were also developed for protection against water loss, radiation, and other potentially harmful abiotic factors. Cutin and waxes are the main components of the cuticle, which is the waterproof layer covering the epidermis of many aerial organs of land plants. Although the in vivo functions of the group of lipid binding proteins known as lipid transfer proteins (LTPs are still rather unclear, there is accumulating evidence suggesting a role for LTPs in the transfer and deposition of monomers required for cuticle assembly. In this review, we first present an overview of the data connecting LTPs with cuticle synthesis. Furthermore, we propose liverworts and mosses as attractive model systems for revealing the specific function and activity of LTPs in the biosynthesis and evolution of the plant cuticle.

  3. Novel Bacterial Proteins and Lipids Reveal the Diversity of Triterpenoid Biomarker Synthesis

    Science.gov (United States)

    Wei, J. H.; Banta, A. B.; Gill, C. C. C.; Giner, J. L.; Welander, P. V.

    2017-12-01

    Lipids preserved in sediments and rocks function as organic biomarkers providing evidence for the types of organisms that lived in ancient environments. We use a combined approach utilizing comparative genomics, molecular biology, and lipid analysis to discover novel cyclic triteprenoid lipids and their biosynthetic pathways in bacteria. Here, we present two cases of bacterial synthesis of pentacylic triterpenols previously thought to be indicative of eukaryotes, which address current incongruities in the fossil record. Cyclic triterpenoid lipids, such as hopanoids and sterols, are generally associated with bacteria and eukaryotes, respectively. The pentacyclic triterpenoid tetrahymanol, first discovered in the ciliate Tetrahymena pyriformis, and its diagenetic product gammacerane, have been previously interpreted as markers for eukaryotes and linked to water column stratification. Yet the occurrence of tetrahymanol in bacteria implies our knowledge of extant tetrahymanol producers is not complete. Through comparative genomics we identified a new gene required for tetrahymanol synthesis in the bacterium Methylomicrobium alcaliphilum. This gene encodes a novel enzyme, Tetrahymanol synthase (THS), that synthesizes tetrahymanol from the hopanoid diploptene demonstrating a pathway for tetrahymanol production in bacteria distinct from that in eukaryotes. We bionformatically identified THS homologs in 104 bacterial genomes and 472 metagenomes, implying a great diversity of tetrahymanol producers. Lipids of the arborane class, such as iso-arborinol, are commonly found in modern angiosperms. Arobranes are synthesized by the enzyme oxidosqualene cyclase (OSC), which in plants can form both tetra and pentacyclic molecules. While bacteria are known to produce tetracyclic sterol compounds, bacterial synthesis of pentacyclic arborane class triterpenols of this class were previously undiscovered. We have identified a bacterium, Eudoraea adriatica, whose OSC synthesizes

  4. Insulin resistance, hepatic lipid and adipose tissue distribution in HIV infected men

    Science.gov (United States)

    He, Qing; Engelson, Ellen S.; Ionescu, Gabriel; Glesby, Marshall J.; Albu, Jeanine B.; Kotler, Donald P.

    2010-01-01

    Background A large proportion of HIV-infected subjects on antiretroviral medication develop insulin resistance, especially in the context of fat redistribution. This study investigates the interrelationships among fat distribution, hepatic lipid content, and insulin resistance in HIV-infected men. Design and methods We performed a cross-sectional analysis of baseline data from twenty-three HIV-infected participants in 3 prospective clinical studies. Magnetic resonance spectroscopy was applied to quantify hepatic lipid concentrations. Magnetic resonance imaging was used to quantify whole body adipose tissue compartments, i.e., subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes as well as inter-muscular adipose tissue (IMAT) subcompartment, and omental-mesenteric adipose tissue (OMAT) and retroperitoneal adipose tissue (RPAT) subcompartments of VAT. Homeostasis model for assessment of insulin resistance (HOMA-IR) was calculated from fasting glucose and insulin concentrations. Results Hepatic lipid content correlated significantly with total VAT (r=0.62, p=0.0014) but not with SAT (r=0.053, p=0.81). In univariate analysis, hepatic lipid content was associated with the OMAT (r=0.67, p=0.0004) and RPAT (r=0.53, p=0.009) subcompartments; HOMA-IR correlated with both VAT and hepatic lipid contents (r=0.61, p=0.057 and 0.68, p=0.0012, respectively). In stepwise linear regression models, hepatic lipid had the strongest associations with OMAT and with HOMA-IR. Conclusion Hepatic lipid content is associated with VAT volume, especially the omental-mesenteric subcompartment, in HIV-infected men. Hepatic lipid content is associated with insulin resistance in HIV-infected men. Hepatic lipid content might mediate the relationship between VAT and insulin resistance among treated, HIV-infected men. PMID:18572755

  5. Insulin resistance, hepatic lipid and adipose tissue distribution in HIV-infected men.

    Science.gov (United States)

    He, Qing; Engelson, Ellen S; Ionescu, Gabriel; Glesby, Marshall J; Albu, Jeanine B; Kotler, Donald P

    2008-01-01

    A large proportion of HIV-infected patients on antiretroviral medication develop insulin resistance, especially in the context of fat redistribution. This study investigates the interrelationships among fat distribution, hepatic lipid content, and insulin resistance in HIV-infected men. We performed a cross-sectional analysis of baseline data from 23 HIV-infected participants in three prospective clinical studies. Magnetic resonance spectroscopy was used to quantify hepatic lipid concentrations. Magnetic resonance imaging was used to quantify whole-body adipose tissue compartments: that is, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes, as well as the intermuscular adipose tissue (IMAT) subcompartment and the omental-mesenteric adipose tissue (OMAT) and retroperitoneal adipose tissue (RPAT) subcompartments of VAT. The homeostasis model for assessment of insulin resistance (HOMA-IR) was calculated from fasting glucose and insulin concentrations. Hepatic lipid content correlated significantly with total VAT (r = 0.62, P = 0.0014), but not with SAT (r = 0.053, P = 0.81). In univariate analysis, hepatic lipid content was associated with the OMAT (r = 0.67, P = 0.0004) and RPAT (r = 0.53, P = 0.009) subcompartments; HOMA-IR correlated with both VAT and hepatic lipid contents (r = 0.61, P = 0.057 and r = 0.68, P = 0.0012, respectively). In stepwise linear regression models, hepatic lipid had the strongest associations with OMAT and with HOMA-IR. Hepatic lipid content is associated with VAT volume, especially the OMAT subcompartment, in HIV-infected men. Hepatic lipid content is associated with insulin resistance in HIV-infected men. Hepatic lipid content might mediate the relationship between VAT and insulin resistance among treated, HIV-infected men.

  6. Dynapenic obesity as an associated factor to lipid and glucose metabolism disorders and metabolic syndrome in older adults - Findings from SABE Study.

    Science.gov (United States)

    Alexandre, Tiago da Silva; Aubertin-Leheudre, Mylène; Carvalho, Lívia Pinheiro; Máximo, Roberta de Oliveira; Corona, Ligiana Pires; Brito, Tábatta Renata Pereira de; Nunes, Daniella Pires; Santos, Jair Licio Ferreira; Duarte, Yeda Aparecida de Oliveira; Lebrão, Maria Lúcia

    2018-08-01

    There is little evidence showing that dynapenic obesity is associated with lipid and glucose metabolism disorders, high blood pressure, chronic disease and metabolic syndrome. Our aim was to analyze whether dynapenic abdominal obesity can be associated with lipid and glucose metabolism disorders, high blood pressure, metabolic syndrome and cardiovascular diseases in older adults living in São Paulo. This cross-sectional study included 833 older adults who took part of the third wave of the Health, Well-being and Aging Study in 2010. Based on waist circumference (>88 cm women and >102 cm men) and handgrip strength (metabolic syndrome and cardiovascular diseases. Logistic regression was used to analyze the associations between dynapenia and abdominal obesity status and lipid and glucose metabolic profiles, blood pressure, cardiovascular diseases and metabolic syndrome. The fully adjusted models showed that D/AO individuals had higher prevalence of low HDL plasma concentrations (OR = 2.51, 95%CI: 1.40-4.48), hypertriglyceridemia (OR = 2.53, 95%CI: 1.43-4.47), hyperglycemia (OR = 2.05, 95%CI: 1.14-3.69), high glycated-haemoglobin concentrations (OR = 1.84, 95%CI: 1.03-3.30) and metabolic syndrome (OR = 12.39, 95%CI: 7.38-20.79) than ND/NAO. Dynapenic and D/AO individuals had higher prevalence of heart disease (OR = 2.05, 95%CI: 1.17-3.59 and OR = 1.92, 95%CI: 1.06-3.48, respectively) than ND/NAO. D/AO was associated with high prevalence of lipid and glucose metabolism disorders and metabolic syndrome while dynapenia and D/AO were associated with high prevalence of heart disease. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  7. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves.

    Science.gov (United States)

    Kim, Hyojin; Choi, Dongsu; Suh, Mi Chung

    2017-06-01

    An increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis and may allow plants to cope with oxygen deficiency. The hydrophobic cuticle layer consisting of cutin polyester and cuticular wax is the first barrier to protect the aerial parts of land plants from environmental stresses. In the present study, we investigated the role of cuticle membrane in Arabidopsis responses to oxygen deficiency. TEM analysis showed that the epidermal cells of hypoxia-treated Arabidopsis stems and leaves possessed a thinner electron-translucent cuticle proper and a more electron-dense cuticular layer. A reduction in epicuticular wax crystal deposition was observed in SEM images of hypoxia-treated Arabidopsis stem compared with normoxic control. Cuticular transpiration was more rapid in hypoxia-stressed leaves than in normoxic control. Total wax and cutin loads decreased by approximately 6-12 and 12-22%, respectively, and the levels of C29 alkanes, secondary alcohols, and ketones, C16:0 ω-hydroxy fatty acids, and C18:2 dicarboxylic acids were also prominently reduced in hypoxia-stressed Arabidopsis leaves and/or stems relative to normoxic control. Genome-wide transcriptome and quantitative RT-PCR analyses revealed that the expression of several genes involved in the biosynthesis and transport of cuticular waxes and cutin monomers were downregulated more than fourfold, but no significant alterations were detected in the transcript levels of fatty acid biosynthetic genes, BCCP2, PDH-E1α, and ENR1 in hypoxia-treated Arabidopsis stems and leaves compared with normoxic control. Taken together, an increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis. The present study elucidates one of the cuticle-related adaptive responses that may allow plants to cope with low oxygen levels.

  8. Genetic polymorphisms in carnitine palmitoyltransferase 1A gene are associated with variation in body composition and fasting lipid traits in Yup'ik Eskimos[S

    Science.gov (United States)

    Lemas, Dominick J.; Wiener, Howard W.; O'Brien, Diane M.; Hopkins, Scarlett; Stanhope, Kimber L.; Havel, Peter J.; Allison, David B.; Fernandez, Jose R.; Tiwari, Hemant K.; Boyer, Bert B.

    2012-01-01

    Variants of carnitine palmitoyltransferase 1A (CPT1A), a key hepatic lipid oxidation enzyme, may influence how fatty acid oxidation contributes to obesity and metabolic outcomes. CPT1A is regulated by diet, suggesting interactions between gene variants and diet may influence outcomes. The objective of this study was to test the association of CPT1A variants with body composition and lipids, mediated by consumption of polyunsaturated fatty acids (PUFA). Obesity phenotypes and fasting lipids were measured in a cross-sectional sample of Yup'ik Eskimo individuals (n = 1141) from the Center of Alaska Native Health Research (CANHR) study. Twenty-eight tagging CPT1A SNPs were evaluated with outcomes of interest in regression models accounting for family structure. Several CPT1A polymorphisms were associated with HDL-cholesterol and obesity phenotypes. The P479L (rs80356779) variant was associated with all obesity-related traits and fasting HDL-cholesterol. Interestingly, the association of P479L with HDL-cholesterol was still significant after correcting for body mass index (BMI), percentage body fat (PBF), or waist circumference (WC). Our findings are consistent with the hypothesis that the L479 allele of the CPT1A P479L variant confers a selective advantage that is both cardioprotective (through increased HDL-cholesterol) and associated with reduced adiposity. PMID:22045927

  9. Body mass index and serum lipid levels

    Directory of Open Access Journals (Sweden)

    Pedro Javier Navarrete Mejía

    2016-02-01

    Full Text Available Objective: To identify the association between the body mass index (BMI and serum lipid levels in adult people. Material and Methods: Observational, transversal and retrospective study. Non experimental investigation design. The population was conformed for people treated in private health centers in Metropolitan Lima. The evaluations of the BMI and the laboratorial tests to know the seric concentration of lipids were taken between October 2014 and October 2015. It was determined the association between the BMI and the seric lipid levels using the Chi2 test. People with comorbidity that could modify the seric levels of lipids were excluded. Results: 39.7% of people studied were male and 60.3% were female. The average age was 34.2 years old. 40.7% (1227/3016 of population were obese and overweight. The results show a higher level of obesity or overweight in male people over female (54.6% and 33% respectively. 19.7% (594/3016 of the tested people presented high triglycerides seric levels. 27.9% (841/3016 presented high cholesterol levels and 38.8% (1146/3016 presented low cHDL levels. The cLDL levels and cVLDL levels were similar in both groups (male and female. Conclusions: The investigation determined the significant statistical association between the BMI and triglycerides (p < 0.05, cholesterol (p < 0.05 and cHDL (p < 0.05.

  10. Saphenous vein graft near-infrared spectroscopy imaging insights from the lipid core plaque association with clinical events near-infrared spectroscopy (ORACLE-NIRS) registry.

    Science.gov (United States)

    Danek, Barbara A; Karatasakis, Aris; Alame, Aya J; Nguyen-Trong, Phuong-Khanh J; Karacsonyi, Judit; Rangan, Bavana; Roesle, Michele; Atwell, Amy; Resendes, Erica; Martinez-Parachini, Jose Roberto; Iwnetu, Rahel; Kalsaria, Pratik; Siddiqui, Furqan; Muller, James E; Banerjee, Subhash; Brilakis, Emmanouil

    2017-05-01

    We sought to examine near-infrared spectroscopy (NIRS) imaging findings of aortocoronary saphenous vein grafts (SVGs). SVGs are prone to develop atherosclerosis similar to native coronary arteries. They have received little study using NIRS. We examined the clinical characteristics and imaging findings from 43 patients who underwent NIRS imaging of 45 SVGs at our institution between 2009 and 2016. The mean patient age was 67 ± 7 years and 98% were men, with high prevalence of diabetes mellitus (56%), hypertension (95%), and dyslipidemia (95%). Mean SVG age was 7 ± 7 years, mean SVG lipid core burden index (LCBI) was 53 ± 60 and mean maxLCBI 4 mm was 194 ± 234. Twelve SVGs (27%) had lipid core plaques (2 yellow blocks on the block chemogram), with a higher prevalence in SVGs older than 5 years (46% vs. 5%, P = 0.002). Older SVG age was associated with higher LCBI (r = 0.480, P < 0.001) and higher maxLCBI 4 mm (r = 0.567, P < 0.001). On univariate analysis, greater annual total cholesterol exposure was associated with higher SVG LCBI (r = 0.30, P = 0.042) and annual LDL-cholesterol and triglyceride exposure were associated with higher SVG maxLCBI 4 mm (LDL-C: r = 0.41, P = 0.020; triglycerides: r = 0.36, P = 0.043). On multivariate analysis, the only independent predictor of SVG LCBI and maxLCBI 4mm was SVG age. SVG percutaneous coronary intervention was performed in 63% of the patients. An embolic protection device was used in 96% of SVG PCIs. Periprocedural myocardial infarction occurred in one patient. Older SVG age and greater lipid exposure are associated with higher SVG lipid burden. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. LIPID PRODUCTION BY DUNALIELLA SALINA IN BATCH CULTURE: EFFECTS OF NITROGEN LIMITATION AND LIGHT INTENSITY

    Energy Technology Data Exchange (ETDEWEB)

    Weldy, C.S.; Huesemann, M.

    2007-01-01

    Atmospheric carbon dioxide (CO2) concentrations are increasing and may cause unknown deleterious environmental effects if left unchecked. The Intergovernmental Panel on Climate Change (IPCC) has predicted in its latest report a 2°C to 4°C increase in global temperatures even with the strictest CO2 mitigation practices. Global warming can be attributed in large part to the burning of carbon-based fossil fuels, as the concentration of atmospheric CO2 is directly related to the burning of fossil fuels. Biofuels which do not add CO2 to the atmosphere are presently generated primarily from terrestrial plants, i.e., ethanol from corn grain and biodiesel from soybean oil. The production of biofuels from terrestrial plants is severely limited by the availability of fertile land. Lipid production from microalgae and its corresponding biodiesel production have been studied since the late 1970s but large scale production has remained economically infeasible due to the large costs of sterile growing conditions required for many algal species. This study focuses on the potential of the halophilic microalgae species Dunaliella salina as a source of lipids and subsequent biodiesel production. The lipid production rates under high light and low light as well as nitrogen suffi cient and nitrogen defi cient culture conditions were compared for D. salina cultured in replicate photobioreactors. The results show (a) cellular lipid content ranging from 16 to 44% (wt), (b) a maximum culture lipid concentration of 450mg lipid/L, and (c) a maximum integrated lipid production rate of 46mg lipid/L culture*day. The high amount of lipids produced suggests that D. salina, which can be mass-cultured in non-sterile outdoor ponds, has strong potential to be an economically valuable source for renewable oil and biodiesel production.

  12. Apolipoprotein gene involved in lipid metabolism

    Science.gov (United States)

    Rubin, Edward; Pennacchio, Len A.

    2007-07-03

    Methods and materials for studying the effects of a newly identified human gene, APOAV, and the corresponding mouse gene apoAV. The sequences of the genes are given, and transgenic animals which either contain the gene or have the endogenous gene knocked out are described. In addition, single nucleotide polymorphisms (SNPs) in the gene are described and characterized. It is demonstrated that certain SNPs are associated with diseases involving lipids and triglycerides and other metabolic diseases. These SNPs may be used alone or with SNPs from other genes to study individual risk factors. Methods for intervention in lipid diseases, including the screening of drugs to treat lipid-related or diabetic diseases are also disclosed.

  13. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation[OPEN

    Science.gov (United States)

    2015-01-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets. PMID:26362606

  14. The structures of lipopolysaccharides from plant-associated gram-negative bacteria

    DEFF Research Database (Denmark)

    Molinaro, Antonio; Newman, Mari-Anne; Lanzetta, Rosa

    2009-01-01

    Gram-negative bacterial lipopolysaccharides (LPSs) have multiple roles in plant-microbe interactions. LPSs contribute to the low permeabilities of bacterial outer membranes, which act as barriers to protect bacteria from plant-derived antimicrobial substances. Conversely, perception of LPSs...... is an important prerequisite for any further understanding of the biological processes in plant-microbe interactions. Moreover, the LPSs from Gram-negative bacteria - especially those originating from plant-associated bacteria - are a great source of novel monosaccharides with unusual and occasionally astounding...

  15. Fiber in Diet Is Associated with Improvement of Glycated Hemoglobin and Lipid Profile in Mexican Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Lubia Velázquez-López

    2016-01-01

    Full Text Available Objective. To assess the association of dietary fiber on current everyday diet and other dietary components with glycated hemoglobin levels (HbA1c, glucose, lipids profile, and body weight body weight, in patients with type 2 diabetes. Methods. A cross-sectional survey of 395 patients with type 2 diabetes was performed. HbA1c, fasting glucose, triglycerides, and lipids profile were measured. Weight, waist circumference, blood pressure, and body composition were measured. Everyday diet with a semiquantitative food frequency questionnaire was evaluated. ANOVA, Kruskal-Wallis, chi-square tests and multivariate logistic regression were used in statistical analysis. Results. Higher fiber intake was associated with a low HbA1c, high HDL-c levels, low weight, and waist circumference. The highest tertile of calories consumption was associated with a higher fasting glucose level and weight. The highest tertile of carbohydrate consumption was associated with a lower weight. The lowest tertile of total fat and saturated fat was associated with the highest tertile of HDL-c levels, and lower saturated fat intake was associated with lower weight (p<0.05. Conclusions. A higher content of fiber in the diet reduces HbA1c and triglycerides, while improving HDL-c levels. Increasing fiber consumption while lowering calorie consumption seems to be an appropriate strategy to reduce body weight and promote blood glucose control.

  16. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2.

    Science.gov (United States)

    Ahmad, Irshad; Sharma, Anil K; Daniell, Henry; Kumar, Shashi

    2015-05-01

    Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin-supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 10(6) cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro-fluorometric analysis of Nile red-stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α-linolenic acid, an essential omega-3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long-term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Prepregnancy Dietary Patterns Are Associated with Blood Lipid Level Changes During Pregnancy: A Prospective Cohort Study in Rio de Janeiro, Brazil.

    Science.gov (United States)

    Eshriqui, Ilana; Franco-Sena, Ana Beatriz; Farias, Dayana Rodrigues; Freitas-Vilela, Ana Amélia; Cunha, Diana Barbosa; Barros, Erica Guimarães; Emmett, Pauline M; Kac, Gilberto

    2017-07-01

    Physiologic adaptations lead to an increase in blood lipid levels during pregnancy, yet little is known about the influence of prepregnancy dietary patterns. To identify whether prepregnancy dietary patterns that explain the consumption of fiber, energy, and saturated fat are associated with blood lipid levels throughout pregnancy. Prospective cohort study, with data collection at gestational weeks 5 to 13, 20 to 26, and 30 to 36. A food frequency questionnaire was administered at baseline (gestational week 5 to 13). Women with singleton pregnancy (N=299) aged 20 to 40 years, without infectious/chronic disease (except obesity) were enrolled in the study. One hundred ninety-nine women were included in the final analysis. The study took place at a prenatal service of a public health care center in Rio de Janeiro, Brazil, during the period from 2009 to 2012. Total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, and triglyceride levels, measured at all trimesters. Dietary patterns were derived by reduced rank regression. Fiber density, dietary energy density, and percent energy from saturated fat were response variables. Crude and adjusted longitudinal linear mixed-effects regression models were performed to account for confounders and mediators. Interaction terms between dietary pattern and gestational week were tested. Fast Food and Candies; Vegetables and Dairy; and Beans, Bread, and Fat patterns were derived. Our Fast Food and Candies pattern was positively associated with triglyceride level (β=4.961, 95% CI 0.945 to 8.977; P=0.015). In the HDL-C rate of change prediction, significant interactions were observed between both the Fast Food and Candies and Vegetables and Dairy patterns and gestational week (β=-.053, 95% CI -0.101 to -0.004; P=0.035 and β=.055, 95% CI -0.002 to 0.112; P=0.060, respectively). The Beans, Bread, and Fat pattern was not associated with blood lipid levels. Prepregnancy dietary patterns

  18. Association between Obesity, Serum Lipids, and Colorectal Polyps in Old Chinese People

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2013-01-01

    Full Text Available Background. Colorectal cancer mostly arises from the polyps of colon. The aim of our study was to examine the association of body mass index (BMI and serum lipids with the colorectal polyps in old Chinese people. Methods. The risk of developing colorectal polyps was studied in 244 subjects (212 men and 32 women, 74.63 ± 11.63 years old who underwent colonoscopy for the first time from January 2008 to July 2012 at the Navy General Hospital, Beijing, China. According to the results of colonoscopy, all the subjects were divided into 112 normal control, 38 right colorectal polyps, 53 left colorectal polyps, and 41 both right and left colorectal polyps groups. The total plasma cholesterol, plasma triglyceride, plasma creatinine concentration, blood urinary nitrogen, and fasting glucose were determined using a multichannel analyzer. Results. There were significant differences among normal control, right colorectal polyps, left colorectal polyps, and both right and left polyps groups, which were the BMI, total cholesterol, triglycerides, creatinine, and urinary nitrogen. In binary logistic regression analysis, there were two risk factors associated with the occurrence of colorectal polyps, which included BMI and systolic blood pressure. Conclusions. Colorectal polyps were significantly associated with increased BMI, total cholesterol, and triglycerides levels.

  19. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Bollano, Entela; Lindegaard, Marie L S

    2003-01-01

    Obesity may confer cardiac dysfunction due to lipid accumulation in cardiomyocytes. To test this idea, we examined whether obese ob/ob mice display heart lipid accumulation and cardiac dysfunction. Ob/ob mouse hearts had increased expression of genes mediating extracellular generation, transport....../ob mice and 2.5 +/- 0.1 in ob/+ mice (P = 0.0001). In contrast, the indexes of systolic function and heart brain natriuretic peptide mRNA expression were only marginally affected and unaffected, respectively, in ob/ob compared with ob/+ mice. The results suggest that ob/ob mouse hearts have increased...... across the myocyte cell membrane, intracellular transport, mitochondrial uptake, and beta-oxidation of fatty acids compared with ob/+ mice. Accordingly, ob/ob mouse hearts contained more triglyceride (6.8 +/- 0.4 vs. 2.3 +/- 0.4 microg/mg; P hearts. Histological examinations...

  20. Long-term associations between serum lipids and panretinal photocoagulation in type 1 diabetes

    DEFF Research Database (Denmark)

    Jørgensen, Jesper Skovlund; Mejnert Jørgensen, Trine; Green, Anders

    2013-01-01

    To examine the predictive value of serum lipids on the need for panretinal photocoagulation (PRP) treatment in a long-term follow-up of a cohort of Danish type 1 diabetic patients.......To examine the predictive value of serum lipids on the need for panretinal photocoagulation (PRP) treatment in a long-term follow-up of a cohort of Danish type 1 diabetic patients....

  1. Analysis of Lipoplex Structure and Lipid Phase Changes

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana

    2012-07-18

    Efficient delivery of genetic material to cells is needed for tasks of utmost importance in the laboratory and clinic, such as gene transfection and gene silencing. Synthetic cationic lipids can be used as delivery vehicles for nucleic acids and are now considered the most promising nonviral gene carriers. They form complexes (lipoplexes) with the polyanionic nucleic acids. A critical obstacle for clinical application of the lipid-mediated DNA delivery (lipofection) is its unsatisfactory efficiency for many cell types. Understanding the mechanism of lipid-mediated DNA delivery is essential for their successful application, as well as for a rational design and synthesis of novel cationic lipoid compounds for enhanced gene delivery. A viewpoint now emerging is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids. In particular, recent studies showed that the phase evolution of lipoplex lipids upon interaction and mixing with membrane lipids appears to be decisive for transfection success: specifically, lamellar lipoplex formulations, which were readily susceptible to undergoing lamellar-nonlamellar phase transition upon mixing with cellular lipids and were found rather consistently associated with superior transfection potency, presumably as a result of facilitated DNA release. Thus, understanding the lipoplex structure and the phase changes upon interacting with membrane lipids is important for the successful application of the cationic lipids as gene carriers.

  2. Symbiodinium genotypic and environmental controls on lipids in reef building corals.

    Directory of Open Access Journals (Sweden)

    Timothy F Cooper

    Full Text Available BACKGROUND: Lipids in reef building corals can be divided into two classes; non-polar storage lipids, e.g. wax esters and triglycerides, and polar structural lipids, e.g. phospholipids and cholesterol. Differences among algal endosymbiont types are known to have important influences on processes including growth and the photobiology of scleractinian corals yet very little is known about the role of symbiont types on lipid energy reserves. METHODOLOGY/PRINCIPAL FINDINGS: The ratio of storage lipid and structural lipid fractions of Scott Reef corals were determined by thin layer chromatography. The lipid fraction ratio varied with depth and depended on symbiont type harboured by two corals (Seriatopora hystrix and Pachyseris speciosa. S. hystrix colonies associated with Symbiodinium C1 or C1/C# at deep depths (>23 m had lower lipid fraction ratios (i.e. approximately equal parts of storage and structural lipids than those with Symbiodinium D1 in shallow depths (<23 m, which had higher lipid fraction ratios (i.e. approximately double amounts of storage relative to structural lipid. Further, there was a non-linear relationship between the lipid fraction ratio and depth for S. hystrix with a modal peak at ∼23 m coinciding with the same depth as the shift from clade D to C types. In contrast, the proportional relationship between the lipid fraction ratio and depth for P. speciosa, which exhibited high specificity for Symbiodinium C3 like across the depth gradient, was indicative of greater amounts of storage lipids contained in the deep colonies. CONCLUSIONS/SIGNIFICANCE: This study has demonstrated that Symbiodinium exert significant controls over the quality of coral energy reserves over a large-scale depth gradient. We conclude that the competitive advantages and metabolic costs that arise from flexible associations with divergent symbiont types are offset by energetic trade-offs for the coral host.

  3. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    International Nuclear Information System (INIS)

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.; Jespersen, Line F.; Aguilar-Pelaez, Karin; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2014-01-01

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposure to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C 60 or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C 60 , diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered expression

  4. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    Energy Technology Data Exchange (ETDEWEB)

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.; Jespersen, Line F.; Aguilar-Pelaez, Karin; Roursgaard, Martin; Loft, Steffen; Møller, Peter, E-mail: pemo@sund.ku.dk

    2014-01-15

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposure to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C{sub 60} or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C{sub 60}, diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered

  5. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity.

    Science.gov (United States)

    Pfeilmeier, Sebastian; Saur, Isabel Marie-Luise; Rathjen, John Paul; Zipfel, Cyril; Malone, Jacob George

    2016-05-01

    The plant innate immune system employs plasma membrane-localized receptors that specifically perceive pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern-triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant-associated bacteria. Here, we show that cyclic-di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic-di-GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf-5 inhibit flagellin synthesis and help the bacteria to evade FLS2-mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic-di-GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic-di-GMP signalling on bacterial behaviour. © 2015 THE AUTHORS MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  6. The Effects of Plant Growth Regulators on Cell Growth, Protein, Carotenoid, PUFAs and Lipid Production of Chlorella pyrenoidosa ZF Strain

    Directory of Open Access Journals (Sweden)

    Huanmin Du

    2017-10-01

    Full Text Available In the present study, eight kinds plant growth regulators—salicylic acid (SA, 1-naphthaleneacetic acid (NAA, gibberellic acid (GA3, 6-benzylaminopurine (6-BA, 2, 4-epi-brassinolide (EBR, abscisic acid (ABA, ethephon (ETH, and spermidine (SPD—were used to investigate the impact on microalgal biomass, lipid, total soluble protein, carotenoids, and polyunsaturated fatty acids (PUFAS production of Chlorella pyrenoidosa ZF strain. The results showed the quickest biomass enhancement was induced by 50 mg·L−1 NAA, with a 6.3-fold increase over the control; the highest protein content was increased by 0.005 mg·L−1 ETH, which produced 3.5-fold over the control; total carotenoids content was induced most effectively by 1 mg·L−1 NAA with 3.6-fold higher production than the control; the most efficient elicitor for lipid production was 5 mg·L−1 GA3 at 1.9-fold of the control; 0.2 mg·L−1 ETH induced the abundant production of 1.82 ± 0.23% linoleic acid; 0.65 ± 0.01% linolenic acid was induced by 1 mg·L−1 NAA; 2.53 ± 0.15% arachidonic acid and 0.44 ± 0.05% docosahexaenoic acid were induced by 5 mg·L−1 GA3. Transcriptional expression levels of seven lipid-related genes, including ACP, BC, FAD, FATA, KAS, MCTK, and SAD, were studied by real-time RT-q-PCR. 5 mg·L−1 GA3 was the most effective regulator for transcriptional expressions of these seven genes, producing 23-fold ACP, 31-fold BC, 25-fold FAD, 6-fold KAS, 12-fold MCTK compared with the controls, respectively.

  7. Effect of Copper on Fatty-Acid Composition and Peroxidation of Lipids in the Roots of Copper Tolerant and Sensitive Silene-Cucubalus.

    NARCIS (Netherlands)

    De Vos, C.H.R.; TenBookum, W.M.; Vooijs, R.; Schat, H.; De Kok, L.J.

    1993-01-01

    The effect of high copper exposure in vivo on the lipid and fatty acid composition and lipid peroxidation was studied in the roots of plants from one copper sensitive and two copper tolerant genotypes of Silene cucubalus. At 0.5 muM Cu (control treatment) the compositions of lipids and fatty acids

  8. Immobilized Metal Affinity Chromatography Co-Purifies TGF-β1 with Histidine-Tagged Recombinant Extracellular Proteins

    Science.gov (United States)

    Kaur, Jasvir; Reinhardt, Dieter P.

    2012-01-01

    Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075

  9. Lipid Structure in Triolein Lipid Droplets

    DEFF Research Database (Denmark)

    Chaban, Vitaly V; Khandelia, Himanshu

    2014-01-01

    of a mass of hydrophobic lipid esters coved by phospholipid monolayer. The small size and unique architecture of LDs makes it complicated to study LD structure by modern experimental methods. We discuss coarse-grained molecular dynamics (MD) simulations of LD formation in systems containing 1-palmitoyl-2...... to coarse-grained simulations, the presence of PE lipids at the interface has a little impact on distribution of components and on the overall LD structure. (4) The thickness of the lipid monolayer at the surface of the droplet is similar to the thickness of one leaflet of a bilayer. Computer simulations......Lipid droplets (LDs) are primary repositories of esterified fatty acids and sterols in animal cells. These organelles originate on the lumenal or cytoplasmic side of endoplasmic reticulum (ER) membrane and are released to the cytosol. In contrast to other intracellular organelles, LDs are composed...

  10. Positive Association between Urinary Concentration of Phthalate Metabolites and Oxidation of DNA and Lipid in Adolescents and Young Adults

    Science.gov (United States)

    Lin, Chien-Yu; Chen, Pau-Chung; Hsieh, Chia-Jung; Chen, Chao-Yu; Hu, Anren; Sung, Fung-Chang; Lee, Hui-Ling; Su, Ta-Chen

    2017-03-01

    Phthalate has been used worldwide in various products for years. Little is known about the association between phthalate exposure and biomarkers of oxidative stress in adolescents and young adults. Among 886 subjects recruited from a population-based cohort during 2006 to 2008, 751 subjects (12-30 years) with complete phthalate metabolites and oxidation stress measurement were enrolled in this study. Nine urine phthalate metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso prostaglandin F2α (8-isoPGF2α) were measured in urine to assess exposure and oxidative stress to DNA and lipid, respectively. Multiple linear regression analysis revealed that an ln-unit increase in mono-methyl phthalate (MMP) concentration in urine was positively associated with an increase in urine biomarkers of oxidative stress (in μg/g creatinine of 0.098 ± 0.028 in 8-OHdG; and 0.253 ± 0.051 in 8-isoPGF2α). There was no association between other eight phthalate metabolite concentrations and oxidative stress. In conclusion, a higher MMP concentration in urine was associated with an increase in markers of oxidative stress to DNA and lipid in this cohort of adolescents and young adults. Further studies are warranted to clarify the causal relationship between exposure to phthalate and oxidative stress.

  11. Rab32 is important for autophagy and lipid storage in Drosophila.

    Directory of Open Access Journals (Sweden)

    Chao Wang

    Full Text Available Lipids are essential components of all organisms. Within cells, lipids are mainly stored in a specific type of organelle, called the lipid droplet. The molecular mechanisms governing the dynamics of lipid droplets have been little explored. The protein composition of lipid droplets has been analyzed in numerous proteomic studies, and a large number of lipid droplet-associated proteins have been identified, including Rab small GTPases. Rab proteins are known to participate in many intracellular membranous events; however, their exact role in lipid droplets is largely unexplored. Here we systematically investigate the roles of Drosophila Rab family proteins in lipid storage in the larval adipose tissue, fat body. Rab32 and several other Rabs were found to affect the size of lipid droplets as well as lipid levels. Further studies showed that Rab32 and Rab32 GEF/Claret may be involved in autophagy, consequently affecting lipid storage. Loss-of-function mutants of several components in the autophagy pathway result in similar effects on lipid storage. These results highlight the potential functions of Rabs in regulating lipid metabolism.

  12. Association and interaction between dietary pattern and VEGF receptor-2 (VEGFR2) gene polymorphisms on blood lipids in Chinese Malaysian and Japanese adults.

    Science.gov (United States)

    Yap, Roseline Wai Kuan; Shidoji, Yoshihiro; Hon, Wei Min; Masaki, Motofumi

    2012-01-01

    Dietary pattern and genetic predisposition of each population have different impacts on lifestyle-related chronic diseases. This study was conducted to evaluate the association and interaction between dietary patterns and VEGFR2 or KDR gene polymorphisms on physical and biochemical risk factors of cardiovascular disease in two Asian populations (179 Chinese Malaysian and 136 Japanese adults). Dietary patterns were constructed from food frequency questionnaire using factor analysis. Genotyping of rs1870377 and rs2071559 was performed by real-time PCR using TaqMan probes. Physical measurements: body mass index, systolic and diastolic blood pressures and biochemical parameters: glycated hemoglobin A1c and blood lipids (total cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol and total cholesterol/HDL-C ratio) were measured. Two dietary patterns were extracted for: Japanese ('Japanese diet' and 'Western diet') and Chinese Malaysians ('Balanced diet'; and 'Meat, rice and noodles diet'). In Japanese, 'Western Diet' and rs2071559 were associated with LDL-C and HDL-C, respectively. In Chinese Malaysians, 'Meat, rice and noodles diet' was asso-ciated with triglycerides, HDL-C and total cholesterol/HDL ratio while rs1870377 and rs2071559 were associated with total cholesterol and/or LDL-C. The interaction between 'Western Diet' and rs2071559 in Japanese and 'Meat, rice and noodles diet' and rs1870377 in Malaysians had significant effects on blood lipids after adjusting for confounders. The association and interaction of dietary patterns and VEGFR2 gene polymorphisms on blood lipids differ between Chinese Malaysian and Japanese subjects by either decreasing or increasing the risk of cardiovascular disease.

  13. Golden rain tree leaf extracts as potential inhibitor of lipid ...

    African Journals Online (AJOL)

    This study was designed to evaluate the peroxyl radical scavenging capacity and deoxyribonucleic acid (DNA) protective effect of extract/fractions of Koelreuteria paniculata Laxm. (Golden rain tree) in lipid peroxidation assay and calf thymus DNA protection assay. The leaves of the plant were extracted with different ...

  14. A CROSS-SECTIONAL SURVEY ON LIPID ABNORMALITIES ASSOCIATED WITH NONDIABETIC SUBJECTS WITH CHRONIC KIDNEY DISEASE, STAGE III-V

    Directory of Open Access Journals (Sweden)

    Sibi N. S

    2017-09-01

    Full Text Available BACKGROUND Chronic kidney disease is a worldwide public health problem. The adverse outcomes of chronic kidney disease, such as kidney failure, cardiovascular disease and premature death can be prevented or delayed. Chronic renal disease is accompanied by characteristic abnormalities of lipid metabolism. High cholesterol and triglyceride plasma levels have been demonstrated to be independent risk factors for progression of renal disease in humans. The pattern of lipid abnormalities in chronic renal disease patients in Kerala, India, has not been studied. The primary aim of the study is to describe the pattern of lipid profile in nondiabetic chronic kidney disease patients. The secondary objective is to determine the proportion of patients with nondiabetic chronic kidney disease who have lipid abnormalities. MATERIALS AND METHODS Our study is a cross-sectional study conducted in Department of Internal Medicine, Government Medical College, Trivandrum, during the time period of 22-08-2014 to 22-08-2015. The study was conducted after clearance from Institutional Ethics Committee and written informed consent was obtained from all study participants. 134 nondiabetic patients who were diagnosed to have Chronic Kidney disease (CKD according to KDOQI and NKF criteria with a GFR 70 years showed significantly higher serum creatinine value and lower EGFR. Significantly, higher values of Total Cholesterol (TC, Low-Density Lipoproteins (LDL, Triglycerides (TG and Very Low-Density Lipoproteins (VLDL were seen in the age group >70 years and in stage V CKD compared to other groups. CONCLUSION Dyslipidaemia is common in nondiabetic CKD patients (67.91%. Higher stages of CKD were associated with more dyslipidaemia.

  15. A review of plant-based compounds and medicinal plants effective on atherosclerosis

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Sedighi

    2017-01-01

    Full Text Available Atherosclerosis is one of the most important cardiovascular diseases that involve vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis through affecting the involved factors. The main purpose of this review article is to investigate and introduce medicinal plants and their potential activities regarding antioxidant properties, effective on lipids level and development of plaque, atherosclerosis, and progression of atherosclerosis as well as the development of cardiovascular disease and ischemia. To search for the relevant articles indexed in Information Sciences Institute, PubMed, Scientific Information Database, IranMedex, and Scopus between 1980 and 2013, with further emphasis on those indexed from 2004 to 2015, we used these search terms: atherosclerosis, antioxidant, cholesterol, inflammation, and the medicinal plants below. Then, the articles with inclusion criteria were used in the final analysis of the findings. Plant-based active compounds, including phenols, flavonoids, and antioxidants, can be effective on atherosclerosis predisposing factors and hence in preventing this disease and associated harmful complications, especially through reducing cholesterol, preventing increase in free radicals, and ultimately decreasing vascular plaque and vascular resistance. Hence, medicinal plants can contribute to treating atherosclerosis and preventing its progression through reducing cholesterolemia, free radicals, inflammation, vascular resistance, and certain enzymes. They, alone or in combination with hypocholesterolemic drugs, can therefore be useful for patients with hyperlipidemia and its complications.

  16. Plant-associated bacterial degradation of toxic organic compounds in soil.

    LENUS (Irish Health Repository)

    McGuinness, Martina

    2009-08-01

    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review.

  17. Current problems associated with nuclear plant construction contracts

    International Nuclear Information System (INIS)

    Albano, Raffaele.

    1977-01-01

    The expansion of nuclear electricity generating programmes has brought to the fore the problems associated with construction of this type of power plant. The paper analyses the contracts for such construction and describes the most common, the turnkey contract. The present tendency is to limit the scope of turnkey contracts to the nuclear system or simply to the reactor and this is especially common in advanced nuclear countries such as the US, Canada, Japan, UK and France, and this is also the case in Italy where the question of contracting nuclear plants is debated. In Germany the power utilities hold a large number of shares in the manufacturing industry and the turnkey contract is therefore more economically attractive. A detailed description of the contracting procedure is provided, including the suppliers' and purchasers' responsibilities, plant commissioning tests and handing over of the plant to the operator. (NEA) [fr

  18. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

    Directory of Open Access Journals (Sweden)

    Richard R Rodrigues

    Full Text Available The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum, another by a shrub (Rhamnus davurica, and the third by a tree (Ailanthus altissima. The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME. Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that

  19. MSU-DOE Plant Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  20. Analysis of lipid profile in lipid storage myopathy.

    Science.gov (United States)

    Aguennouz, M'hammed; Beccaria, Marco; Purcaro, Giorgia; Oteri, Marianna; Micalizzi, Giuseppe; Musumesci, Olimpia; Ciranni, Annmaria; Di Giorgio, Rosa Maria; Toscano, Antonio; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Lipid dysmetabolism disease is a condition in which lipids are stored abnormally in organs and tissues throughout the body, causing muscle weakness (myopathy). Usually, the diagnosis of this disease and its characterization goes through dosage of Acyl CoA in plasma accompanied with evidence of droplets of intra-fibrils lipids in the patient muscle biopsy. However, to understand the pathophysiological mechanisms of lipid storage diseases, it is useful to identify the nature of lipids deposited in muscle fiber. In this work fatty acids and triglycerides profile of lipid accumulated in the muscle of people suffering from myopathies syndromes was characterized. In particular, the analyses were carried out on the muscle biopsy of people afflicted by lipid storage myopathy, such as multiple acyl-coenzyme A dehydrogenase deficiency, and neutral lipid storage disease with myopathy, and by the intramitochondrial lipid storage dysfunctions, such as deficiencies of carnitine palmitoyltransferase II enzyme. A single step extraction and derivatization procedure was applied to analyze fatty acids from muscle tissues by gas chromatography with a flame ionization detector and with an electronic impact mass spectrometer. Triglycerides, extracted by using n-hexane, were analyzed by high performance liquid chromatography coupled to mass spectrometer equipped with an atmospheric pressure chemical ionization interface. The most representative fatty acids in all samples were: C16:0 in the 13-24% range, C18:1n9 in the 20-52% range, and C18:2n6 in the 10-25% range. These fatty acids were part of the most representative triglycerides in all samples. The data obtained was statistically elaborated performing a principal component analysis. A satisfactory discrimination was obtained among the different diseases. Using component 1 vs component 3 a 43.3% of total variance was explained. Such results suggest the important role that lipid profile characterization can have in supporting a correct

  1. [STUDY OF LIPIDS SEED'S OIL OF VITEX AGNUS CASTUS GROWING IN GEORGIA].

    Science.gov (United States)

    Kikalishvili, B; Zurabashvili, D; Sulakvelidze, Ts; Malania, M; Turabelidze, D

    2016-07-01

    There was established the lipid composition of the seeds of Vitex agnus castus L. by the qualitative and quantitative methods of analyses. There were received neutral lipids from the seeds by extraction with hexane in the yield 10%, counted on dry material. For the divide of neutral lipids there was used silica gel plates LS 5/40 in the systems of solvents: 1. petroleum ether-diethylether-acidum aceticum (85:14:1), 2. hexane-diethylether (1:1). After obtaining neutral lipids from the residual plant shrot pollar lipids was extracted with the mixture of chloroform-methanol (2:1) and was divided on silica gel plates LS 5/40, mobile phase: 1. chloroform-methanol-25% ammonium hydrate 2. chloroform-methanol icy acetic acid-water (170:25:25:6). In the sum of polar lipids qualitatively were established phospholipids: lisophosphatidylcholine, phosphatidylinosit, phospatidylethanolamine and N-acylphosphatidylethanolamine, in neutral lipids, hydrocarbons, triglycerids, free fatty acids and sterines. By the method of high performance liquid chromatography analyses there were identified following free fatty acids: lauric, myristic, palmitic, stearic, linolic, linolenic, arachidic and begenic, unsaturated oleic and polyunsaturated linolic and linolenic acids. obtained oil with unique composition from the seeds of Vitex agnus-castus indicates to its high biological activity and importance for usage in medicine.

  2. Comparison of serum lipid profiles between normal controls and breast cancer patients

    Directory of Open Access Journals (Sweden)

    Pikul Laisupasin

    2013-01-01

    Full Text Available Background: Researchers have reported association of plasma/serum lipids and lipoproteins with different cancers. Increase levels of circulating lipids and lipoproteins have been associated with breast cancer risk. Aim: The aim of this study is to compare serum lipid profiles: total-cholesterol (T-CHOL, triglyceride (TG, high density lipoprotein-cholesterol (HDL-C, low density lipoprotein-cholesterol (LDL-C and very low density lipoprotein-cholesterol (VLDL-C between breast cancer patients and normal participants. Materials and Methods: A total of 403 women in this study were divided into two groups in the period during May 2006-April 2007. Blood samples were collected from 249 patients with early stage breast cancer and 154 normal controls for serum lipid profiles (T-CHOL, TG, HDL-C, LDL-C and VLDL-C analysis using Hitachi 717 Autoanalyzer (Roche Diagnostic GmbH, Germany. TG, LDL-C and VLDL-C levels in breast cancer group were significantly increased as compared with normal controls group (P < 0.001, whereas HDL-C and T-CHOL levels were not. Results: The results of this study suggest that increased serum lipid profiles may associate with breast cancer risk in Thai women. Further studies to group important factors including, cancer stages, types of cancer, parity, and menopausal status that may affect to lipid profiles in breast cancer patients along with an investigation of new lipid profiles to clarify most lipid factors that may involve in breast cancer development are needed.

  3. Interactions between lipids and proteins are critical for organization of plasma membrane-ordered domains in tobacco BY-2 cells.

    Science.gov (United States)

    Grosjean, Kevin; Der, Christophe; Robert, Franck; Thomas, Dominique; Mongrand, Sébastien; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2018-06-27

    The laterally heterogeneous plant plasma membrane (PM) is organized into finely controlled specialized areas that include membrane-ordered domains. Recently, the spatial distribution of such domains within the PM has been identified as playing a key role in cell responses to environmental challenges. To examine membrane order at a local level, BY-2 tobacco suspension cell PMs were labelled with an environment-sensitive probe (di-4-ANEPPDHQ). Four experimental models were compared to identify mechanisms and cell components involved in short-term (1 h) maintenance of the ordered domain organization in steady-state cell PMs: modulation of the cytoskeleton or the cell wall integrity of tobacco BY-2 cells; and formation of giant vesicles using either a lipid mixture of tobacco BY-2 cell PMs or the original lipid and protein combinations of the tobacco BY-2 cell PM. Whilst inhibiting phosphorylation or disrupting either the cytoskeleton or the cell wall had no observable effects, we found that lipids and proteins significantly modified both the abundance and spatial distribution of ordered domains. This indicates the involvement of intrinsic membrane components in the local physical state of the plant PM. Our findings support a major role for the 'lipid raft' model, defined as the sterol-dependent ordered assemblies of specific lipids and proteins in plant PM organization.

  4. Reassessing the Potential Activities of Plant CGI-58 Protein

    Science.gov (United States)

    Khatib, Abdallah; Arhab, Yani; Bentebibel, Assia; Abousalham, Abdelkarim; Noiriel, Alexandre

    2016-01-01

    Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed. PMID:26745266

  5. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Directory of Open Access Journals (Sweden)

    Abdallah Khatib

    Full Text Available Comparative Gene Identification-58 (CGI-58 is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL, the initial enzyme responsible for the triacylglycerol (TAG catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.

  6. Association of membrane/lipid rafts with the platelet cytoskeleton and the caveolin PY14: participation in the adhesion process.

    Science.gov (United States)

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Maldonado-García, Deneb; Hernández-González, Enrique; Winder, Steve J

    2015-11-01

    Platelets are the most prominent elements of blood tissue involved in hemostasis at sites of blood vessel injury. Platelet cytoskeleton is responsible for their shape modifications observed during activation and adhesion to the substratum; therefore the interactions between cytoskeleton and plasma membrane are critical to modulate blood platelet functions. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to membrane/lipid rafts (MLR) and regulate lateral diffusion of membrane proteins and lipids. Resting, thrombin-activated, and adherent human platelets were processed for biochemical studies including western-blot and immunprecipitation assays and confocal analysis were performed to characterize the interaction of MLR with the main cytoskeleton elements and β-dystroglycan as well as with the association of caveolin-1 PY14 with focal adhesion proteins. We transfected a megakaryoblast cell line (Meg-01) to deplete β-dystroglycan, subsequent to their differentiation to the platelet progenitors. Our data showed a direct interaction of the MLR with cytoskeleton to regulate platelet shape, while an association of caveolin-1 PY14 with vinculin is needed to establish focal adhesions, which are modulated for β-dystroglycan. In conclusion, caveolin-1 PY14 in association with platelet cytoskeleton participate in focal adhesions dynamics. © 2015 Wiley Periodicals, Inc.

  7. Hypoxia and oxidation levels of DNA and lipids in humans and animal experimental models

    DEFF Research Database (Denmark)

    Møller, Peter; Risom, Lotte; Lundby, Carsten

    2008-01-01

    The objective of this review was to evaluate the association between hypoxia and oxidative damage to DNA and lipids. Evaluation criteria encompassed specificity and validation status of the biomarkers, study design, strength of the association, dose-response relationship, biological plausibility......, analogous exposures, and effect modification by intervention. The collective interpretation indicates persuasive evidence from the studies in humans for an association between hypoxia and elevated levels of oxidative damage to DNA and lipids. The levels of oxidatively generated DNA lesions and lipid...... in subjects at high altitude. Most of the animal experimental models should be interpreted with caution because the assays for assessment of lipid peroxidation products have suboptimal validity....

  8. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    Science.gov (United States)

    Anantachaisilp, Suranan; Meejoo Smith, Siwaporn; Treetong, Alongkot; Pratontep, Sirapat; Puttipipatkhachorn, Satit; Rungsardthong Ruktanonchai, Uracha

    2010-03-01

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812® as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance (1H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and

  9. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    International Nuclear Information System (INIS)

    Anantachaisilp, Suranan; Smith, Siwaporn Meejoo; Treetong, Alongkot; Ruktanonchai, Uracha Rungsardthong; Pratontep, Sirapat; Puttipipatkhachorn, Satit

    2010-01-01

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812 as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance ( 1 H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1 H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1 H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and

  10. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Science.gov (United States)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  11. Serum aspirin esterase is strongly associated with glucose and lipids in healthy subjects: different association patterns in subjects with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Kotani Kazuhiko

    2010-07-01

    Full Text Available Abstract Background Aspirin esterase (AE activity can account for part of aspirin pharmacokinetics in the circulation, possibly being associated with the impairment of aspirin effectiveness as an inhibitor of platelet aggregation. Aims The study was aimed at investigating the correlations of serum AE activity with cholinesterase (ChE and metabolic variables in healthy subjects in comparison to subjects with type 2 diabetes mellitus (T2DM. Methods In cardiovascular disease-free T2DM subjects and healthy controls, the AE activity levels and/or the correlation patterns between AE and the other variables were analyzed. Results Neither AE nor ChE activities were higher in the subjects with T2DM. Serum AE activity strongly correlated with ChE as well as glucose/lipids variables such as total cholesterol and triglyceride in healthy subjects, while the correlations between AE and glucose/lipids variables were not present in T2DM subjects. Conclusions These data may reflect the pathophysiological changes between healthy and T2DM subjects. Our data may thus provide the basis for future studies to unravel the mechanisms.

  12. Evidence for the Existence of One Antenna-Associated, Lipid-Dissolved and Two Protein-Bound Pools of Diadinoxanthin Cycle Pigments in Diatoms[C][W

    Science.gov (United States)

    Lepetit, Bernard; Volke, Daniela; Gilbert, Matthias; Wilhelm, Christian; Goss, Reimund

    2010-01-01

    We studied the localization of diadinoxanthin cycle pigments in the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum. Isolation of pigment protein complexes revealed that the majority of high-light-synthesized diadinoxanthin and diatoxanthin is associated with the fucoxanthin chlorophyll protein (FCP) complexes. The characterization of intact cells, thylakoid membranes, and pigment protein complexes by absorption and low-temperature fluorescence spectroscopy showed that the FCPs contain certain amounts of protein-bound diadinoxanthin cycle pigments, which are not significantly different in high-light and low-light cultures. The largest part of high-light-formed diadinoxanthin cycle pigments, however, is not bound to antenna apoproteins but located in a lipid shield around the FCPs, which is copurified with the complexes. This lipid shield is primarily composed of the thylakoid membrane lipid monogalactosyldiacylglycerol. We also show that the photosystem I (PSI) fraction contains a tightly connected FCP complex that is enriched in protein-bound diadinoxanthin cycle pigments. The peripheral FCP and the FCP associated with PSI are composed of different apoproteins. Tandem mass spectrometry analysis revealed that the peripheral FCP is composed mainly of the light-harvesting complex protein Lhcf and also significant amounts of Lhcr. The PSI fraction, on the other hand, shows an enrichment of Lhcr proteins, which are thus responsible for the diadinoxanthin cycle pigment binding. The existence of lipid-dissolved and protein-bound diadinoxanthin cycle pigments in the peripheral antenna and in PSI is discussed with respect to different specific functions of the xanthophylls. PMID:20935178

  13. Consumption of polyphenol plants may slow aging and associated diseases.

    Science.gov (United States)

    Uysal, Utku; Seremet, Sila; Lamping, Jeffrey W; Adams, Jerome M; Liu, Deede Y; Swerdlow, Russell H; Aires, Daniel J

    2013-01-01

    Slowing aging is a widely shared goal. Plant-derived polyphenols, which are found in commonly consumed food plants such as tea, cocoa, blueberry and grape, have been proposed to have many health benefits, including slowing aging. In-vivo studies have demonstrated the lifespan-extending ability of six polyphenol-containing plants. These include five widely consumed foods (tea, blueberry, cocoa, apple, pomegranate) and a flower commonly used as a folk medicine (betony). These and multiple other plant polyphenols have been shown to have beneficial effects on aging-associated changes across a variety of organisms from worm and fly to rodent and human.

  14. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands.

    Science.gov (United States)

    Hallin, Sara; Hellman, Maria; Choudhury, Maidul I; Ecke, Frauke

    2015-11-15

    Reactive nitrogen (N) species released from undetonated ammonium-nitrate based explosives used in mining or other blasting operations are an emerging environmental problem. Wetlands are frequently used to treat N-contaminated water in temperate climate, but knowledge on plant-microbial interactions and treatment potential in sub-arctic wetlands is limited. Here, we compare the relative importance of plant uptake and denitrification among five plant species commonly occurring in sub-arctic wetlands for removal of N in nitrate-rich mine drainage in northern Sweden. Nitrogen uptake and plant associated potential denitrification activity and genetic potential for denitrification based on quantitative PCR of the denitrification genes nirS, nirK, nosZI and nosZII were determined in plants growing both in situ and cultivated in a growth chamber. The growth chamber and in situ studies generated similar results, suggesting high relevance and applicability of results from growth chamber experiments. We identified denitrification as the dominating pathway for N-removal and abundances of denitrification genes were strong indicators of plant associated denitrification activity. The magnitude and direction of the effect differed among the plant species, with the aquatic moss Drepanocladus fluitans showing exceptionally high ratios between denitrification and uptake rates, compared to the other species. However, to acquire realistic estimates of N-removal potential of specific wetlands and their associated plant species, the total plant biomass needs to be considered. The species-specific plant N-uptake and abundance of denitrification genes on the root or plant surfaces were affected by the presence of other plant species, which show that both multi- and inter-trophic interactions are occurring. Future studies on N-removal potential of wetland plant species should consider how to best exploit these interactions in sub-arctic wetlands. Copyright © 2015 Elsevier Ltd. All rights

  15. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.

    Science.gov (United States)

    Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K

    2010-10-01

    Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more

  16. Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues

    Directory of Open Access Journals (Sweden)

    Blachutzik Jörg O

    2012-08-01

    Full Text Available Abstract Background Sterols and Sphingolipids form lipid clusters in the plasma membranes of cell types throughout the animal and plant kingdoms. These lipid domains provide a medium for protein signaling complexes at the plasma membrane and are also observed to be principal regions of membrane contact at the inception of infection. We visualized different specific fluorescent lipophilic stains of the both sphingolipid enriched and non-sphingolipid enriched regions in the plasma membranes of live protoplasts of Arabidopsis thaliana. Results Lipid staining protocols for several fluorescent lipid analogues in plants are presented. The most emphasis was placed on successful protocols for the single and dual staining of sphingolipid enriched regions and exclusion of sphingolipid enriched regions on the plasma membrane of Arabidopsis thaliana protoplasts. A secondary focus was placed to ensure that these staining protocols presented still maintain cell viability. Furthermore, the protocols were successfully tested with the spectrally sensitive dye Laurdan. Conclusion Almost all existing staining procedures of the plasma membrane with fluorescent lipid analogues are specified for animal cells and tissues. In order to develop lipid staining protocols for plants, procedures were established with critical steps for the plasma membrane staining of Arabidopsis leaf tissue and protoplasts. The success of the plasma membrane staining protocols was additionally verified by measurements of lipid dynamics by the fluorescence recovery after photobleaching technique and by the observation of new phenomena such as time dependent lipid polarization events in living protoplasts, for which a putative physiological relevance is suggested.

  17. Synthetic Lipid (DOPG) Vesicles Accumulate in the Cell Plate Region But Do Not Fuse1

    NARCIS (Netherlands)

    Esseling-Ozdoba, A.; Vos, J.W.; Lammeren, van A.A.M.; Emons, A.M.C.

    2008-01-01

    Synthetic Lipid (DOPG) Vesicles Accumulate in the Cell Plate Region But Do Not Fuse1,[W],[OA] Agnieszka Esseling-Ozdoba2, Jan W. Vos, André A.M. van Lammeren and Anne Mie C. Emons* Laboratory of Plant Cell Biology, Department of Plant Sciences, Wageningen University, 6703¿BD Wageningen, The

  18. Phosphatidic acid: a multifunctional stress-signalling lipid in plants.

    NARCIS (Netherlands)

    Testerink, C.; Munnik, T.

    2005-01-01

    Phosphatidic acid (PA) has only recently been identified as an important signaling molecule in both plants and animals. Nonetheless, it already promises to rival the importance of the classic second messengers Ca(2+) and cAMP. In plants, its formation is triggered in response to various biotic and

  19. A REVIEW ON CORRELATION BETWEEN LIPID PROFILE AND DEPRESSION

    Directory of Open Access Journals (Sweden)

    Lalitha Devi Dhulipala

    2016-07-01

    Full Text Available Epidemiological and clinical intervention data indicate that low levels of circulating lipids and cholesterol are the risk factors for depressive symptoms. Olie et al 2011 (1 showed an association of low cholesterol and self-harm in their study. In the present scenario, depression and anxiety disorders have high prevalence rates and are frequently related. Understanding the subject and concepts/mechanisms related to neurobiological basis for these disorders is very important and the available techniques or methods are ineffective. Lipids generally play an important role in neural function in the brain. The composition of lipid of the brain influences perception, mood and behaviour. Lipids are responsible to regulate the membrane's function which acts as a barrier between the intracellular and extracellular spaces. It is found that membrane lipids determine the local behaviour and characterisation and function of proteins within the membrane. It is found from the literature that lipids can influence both exo-and endocytic processes and work within the membrane as second messengers. This paper discusses some important case studies related to the correlation between lipid profile and the depression.

  20. Association of triglycerides and new lipid markers with the incidence of hypertension in a Spanish cohort.

    Science.gov (United States)

    Sánchez-Íñigo, Laura; Navarro-González, David; Pastrana-Delgado, Juan; Fernández-Montero, Alejandro; Martínez, J Alfredo

    2016-07-01

    Triglycerides and high-density lipoprotein cholesterol (HDL-C) are known to be risk factors for cardiovascular disease. However, there has been limited knowledge on the relationship between triglycerides and incident hypertension. The associations of incident hypertension with triglycerides and triglycerides-related indices such as triglycerides to HDL-C ratio (TG/HDL-C) and triglyceride-glucose index (TyG) were evaluated. Data from 3637 participants from the Vascular Metabolic Clinica Universidad Navarra cohort were followed-up during a mean of 8.49 years. A Cox proportional hazard ratio with repeated measures analyses was performed to assess the risk of developing hypertension across the quintiles of triglycerides, TG/HDL-C ratio, and TyG index. The risk of developing hypertension was 47% and 73% greater for those in the fourth and fifth quintiles of triglycerides, after adjusting for age, sex, BMI, cigarette smoking, daily alcohol intake, lifestyle pattern, type 2 diabetes, antiaggregation therapy, low-density lipoprotein cholesterol, SBP, and DBP. In men, those in the top quintile of triglycerides, TG/HDL-C ratio or TyG index were two times more likely to develop hypertension than those in the bottom quintile. In women, the effect was attenuated although the risk of hypertension rose with increasing quintiles (P for trend triglycerides-related variables and incident hypertension independently of adiposity. This association was stronger than those observed for other commonly used lipid parameters or lipid ratios, such as the TC/HDL-C ratio. : http://links.lww.com/HJH/A620.

  1. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Anantachaisilp, Suranan; Smith, Siwaporn Meejoo [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Treetong, Alongkot; Ruktanonchai, Uracha Rungsardthong [National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Pratontep, Sirapat [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Bangkok (Thailand); Puttipipatkhachorn, Satit, E-mail: uracha@nanotec.or.th [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand)

    2010-03-26

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of {gamma}-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812 as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the {gamma}-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance ({sup 1}H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the {sup 1}H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of {gamma}-oryzanol inside the lipid nanoparticles, the {sup 1}H-NMR revealed that the chemical shifts of the liquid lipid in {gamma}-oryzanol loaded systems were found at rather higher field than those in {gamma}-oryzanol free systems, suggesting incorporation of {gamma}-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of {gamma}-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models

  2. Bioactive lipids in kidney physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    Daria Sałata

    2014-01-01

    Full Text Available Lipids not only have structural functions, but also play an important role as signaling and regulatory molecules and participate in many cellular processes such as proliferation, differentiation, migration, and apoptosis. Bioactive lipids act both as extracellular mediators, which are associated with receptors on the surface of cells, and intracellular mediators triggering different signal pathways. They are present and active in physiological conditions, and are also involved in the pathogenesis of inflammation, asthma, cancer, diabetes, and hypertension. Bioactive lipids such as derivatives of arachidonic acid and sphingolipids have an important role in renal development, physiology and in many renal diseases. Some of them are potential indicators of kidney damage degree and/or function of the transplanted kidneys.

  3. The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface

    OpenAIRE

    Farese, Robert; Xu, N; Zhang, SO; Cole, RA; McKinney, SA; Guo, F; Haas, JT; Bobba, S; Farese, RV; Mak, HY

    2012-01-01

    At the subcellular level, fat storage is confined to the evolutionarily conserved compartments termed lipid droplets (LDs), which are closely associated with the endoplasmic reticulum (ER). However, the molecular mechanisms that enable ER-LD interaction an

  4. No Evidence for Spontaneous Lipid Transfer at ER-PM Membrane Contact Sites.

    Science.gov (United States)

    Merklinger, Elisa; Schloetel, Jan-Gero; Spitta, Luis; Thiele, Christoph; Lang, Thorsten

    2016-04-01

    Non-vesicular lipid transport steps play a crucial role in lipid trafficking and potentially include spontaneous exchange. Since membrane contact facilitates this lipid transfer, it is most likely to occur at membrane contact sites (MCS). However, to date it is unknown whether closely attached biological membranes exchange lipids spontaneously. We have set up a system for studying the exchange of lipids at MCS formed between the endoplasmic reticulum (ER) and the plasma membrane. Contact sites were stably anchored and the lipids cholesterol and phosphatidylcholine (PC) were not capable of transferring spontaneously into the opposed bilayer. We conclude that physical contact between two associated biological membranes is not sufficient for transfer of the lipids PC and cholesterol.

  5. Effects of Plasma Lipids and Statins on Cognitive Function.

    Science.gov (United States)

    Li, Rui; Wang, Tian-Jun; Lyu, Pei-Yuan; Liu, Yang; Chen, Wei-Hong; Fan, Ming-Yue; Xu, Jing

    2018-02-20

    Dementia is the fourth most common cause of death in developed countries. The relationship between plasma lipids and cognitive function is complex and controversial. Due to the increasing life expectancy of the population, there is an urgent need to control vascular risk factors and to identify therapies to prevent and treat both cognitive impairment and dementia. Here, we reviewed the effects of plasma lipids and statins on cognitive function. We searched the PubMed database for research articles published through November 2017 with key words including "plasma lipids," "hyperlipidemia," "hypercholesterolemia," "statins," and "cognition function." Articles were retrieved and reviewed to analyze the effects of plasma lipids and statins on cognitive function and the mechanisms underlying these effects. Many studies have examined the relationship between plasma lipids and cognitive function, but no definitive conclusions can be drawn. The mechanisms involved may include blood-brain barrier injury, the influence on small blood vessels in the brain, the influence on amyloid deposition, and a neuroprotective effect. To date, most studies of statins and cognition have been observational, with few randomized controlled trials. Therefore, firm conclusions regarding whether mid- or long-term statin use affects cognition function and dementia remain elusive. However, increasing concern exists that statins may be a causative factor for cognitive problems. These adverse effects appear to be rare and likely represent a yet-to-be-defined vulnerability in susceptible individuals. The association between plasma lipids and cognition, the mechanism of the influence of plasma lipids on cognitive function, and the association between statins and cognitive function are complex issues and currently not fully understood. Future research aimed at identifying the mechanisms that underlie the effects of plasma lipids and statins on cognition will not only provide important insight into the

  6. Association of serum lipid indices and statin consumption with periodontal status.

    Science.gov (United States)

    Sayar, F; Fallah, S; Akhondi, N; Jamshidi, S

    2016-11-01

    Periodontal and cardiovascular diseases share some common underlying mechanisms. Hyperlipidemia is a major risk factor for cardiovascular diseases. This study sought to assess the association of hyperlipidemia and statin consumption with periodontal status. This cross-sectional study was conducted on 150 participants including 50 individuals with normal lipid profile (group C), 50 hyperlipidemic patients without drug therapy (group N), and 50 hyperlipidemic patients on drug therapy for a minimum of 3 months (group S). Periodontal parameters including plaque index (PI), clinical attachment level (CAL), bleeding on probing (BOP), and pocket depth (PD) were measured for all teeth except for the third molars. Serum levels of total cholesterol (TC), HDL, LDL, and triglycerides (TGs) were measured. The mean values of CAL and PD were significantly higher in the two hyperlipidemic groups compared with the C group (P < 0.005). Also, CAL and PD had significant associations with serum levels of TGs, LDL, and TC (P < 0.0001); PI in the group S was significantly lower than that in the other groups (P < 0.005). Hyperlipidemic patients showed higher values of periodontal parameters compared with the statin-treated and control groups. Lower PI in the group S may indicate the anti-inflammatory effect of statin. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Reduction of body fat and improved lipid profile associated with daily consumption of a Puer tea extract in a hyperlipidemic population: a randomized placebo-controlled trial.

    Science.gov (United States)

    Jensen, Gitte S; Beaman, Joni L; He, Yi; Guo, Zhixin; Sun, Henry

    2016-01-01

    The goal for this study was to evaluate the effects of daily consumption of Puer tea extract (PTE) on body weight, body-fat composition, and lipid profile in a non-Asian population in the absence of dietary restrictions. A randomized, double-blind, placebo-controlled study design was used. A total of 59 overweight or mildly obese subjects were enrolled upon screening to confirm fasting cholesterol level at or above 220 mg/dL (5.7 mmol/dL). After giving informed consent, subjects were randomized to consume PTE (3 g/day) or placebo for 20 weeks. At baseline and at 4-week intervals, blood lipids, C-reactive protein, and fasting blood glucose were evaluated. A dual-energy X-ray absorptiometry scan was performed at baseline and at study exit to evaluate changes to body composition. Appetite and physical and mental energy were scored at each visit using visual analog scales (0-100). Consumption of PTE was associated with statistically significant weight loss when compared to placebo (PConsumption of PTE was associated with improvements to lipid profile, including a mild reduction in cholesterol and the cholesterol:high-density lipoprotein ratio after only 4 weeks, as well as a reduction in triglycerides and very small-density lipoproteins, where average blood levels reached normal range at 8 weeks and remained within normal range for the duration of the study (Pconsumption of PTE was associated with significant weight loss, reduced body mass index, and an improved lipid profile.

  8. Gender and genotype modulation of the association between lipid levels and depressive symptomatology in community-dwelling elderly (the ESPRIT study).

    Science.gov (United States)

    Ancelin, Marie-Laure; Carrière, Isabelle; Boulenger, Jean-Philippe; Malafosse, Alain; Stewart, Robert; Cristol, Jean-Paul; Ritchie, Karen; Chaudieu, Isabelle; Dupuy, Anne-Marie

    2010-07-15

    Lipids appear to mediate depressive vulnerability in the elderly; however, sex differences and genetic vulnerability have not been taken into account in previous prospective studies. Depression was assessed in a population of 1040 women and 752 men aged 65 years and older at baseline and after 7-year follow-up. Clinical level of depression (DEP) was defined as having either a score of 16 or higher on the Centre for Epidemiology Studies Depression scale or a diagnosis of current major depression on the Mini-International Neuropsychiatric Interview. Lipid levels, apolipoprotein E, and serotonin transporter linked promoter region (5-serotonin transporter gene linked promoter region) genotypes were evaluated at baseline. Multivariate analyses adjusted by sociodemographic and behavioral variables, measures of physical health including ischemic pathologies, and genetic vulnerability indicated gender-specific associations between dyslipidemia and DEP, independent of the use of lipid-lowering agents or apolipoprotein E status. Men with low low-density lipoprotein cholesterol levels had twice the risk of prevalent and incident DEP, whereas in women low high-density lipoprotein cholesterol levels were found to be significantly associated with increased prevalent DEP (odds ratio = 1.5) only. A significant interaction was observed between low low-density lipoprotein-cholesterol and 5-serotonin transporter gene linked promoter region genotype, men with s/s or s/l genotype being at increased risk of DEP (odds ratio = 6.0 and 2.7, respectively). No significant gene-environment interaction was observed for women. DEP is associated with higher atherogenic risk in women (low high-density lipoprotein cholesterol), whereas the reverse is observed in men (low low-density lipoprotein cholesterol). Late-life depression may have a complex gender-specific etiology involving genetic vulnerability in men. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights

  9. Dual acylation and lipid raft association of Src-family protein tyrosine kinases are required for SDF-1/CXCL12-mediated chemotaxis in the Jurkat human T cell lymphoma cell line.

    Science.gov (United States)

    Zaman, Sabiha N; Resek, Mary E; Robbins, Stephen M

    2008-10-01

    Chemokines play pivotal roles in regulating a wide variety of biological processes by modulating cell migration and recruitment. Deregulation of chemokine signaling can alter cell recruitment, contributing to the pathogenic states associated with autoimmune disease, inflammatory disorders, and sepsis. During chemotaxis, lipid rafts and their resident signaling molecules have been demonstrated to partition to different parts of the cell. Herein, we investigated the role of lipid raft resident Src-family kinases (SFK) in stromal cell-derived factor 1/CXCL12-mediated chemotaxis. We have shown that Lck-deficient J.CaM 1.6 cells are defective in CXCL12-mediated chemotaxis in contrast to their parental counterpart, Jurkat cells. Ectopic expression of the SFK hematopoietic cell kinase (Hck) in J.CaM 1.6 cells reconstituted CXCL12 responsiveness. The requirement of lipid raft association of SFK was assessed using both isoforms of Hck: the dually acylated p59(Hck) isoform that is targeted to lipid rafts and the monoacylated p61(Hck) isoform that is nonraft-associated. We have shown using several gain and loss of acylation alleles that dual acylation of Hck was required for CXCL12-mediated chemotaxis in J.CaM 1.6 cells. These results highlight the importance of the unique microenvironment provided by lipid rafts and their specific contribution in providing specificity to CXCL12 signaling.

  10. Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses.

    Science.gov (United States)

    Iwabuchi, Kazuhisa

    2015-01-01

    Glycosphingolipids (GSLs) are membrane components consisting of hydrophobic ceramide and hydrophilic sugar moieties. GSLs cluster with cholesterol in cell membranes to form GSL-enriched lipid rafts. Biochemical analyses have demonstrated that GSL-enriched lipid rafts contain several kinds of transducer molecules, including Src family kinases. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms, is highly expressed on the plasma membranes of human phagocytes, and forms lipid rafts containing the Src family tyrosine kinase Lyn. LacCer-enriched lipid rafts mediate immunological and inflammatory reactions, including superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. LacCer also serves as a signal transduction molecule for functions mediated by CD11b/CD18-integrin (αM/β2-integrin, CR3, Mac-1), as well as being associated with several key cellular processes. LacCer recruits PCKα/ε and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and their adhesion to endothelial cells, as well as regulating β1-integrin clustering and endocytosis on cell surfaces. This review describes the organizational and inflammation-related functions of LacCer-enriched lipid rafts.

  11. Low-level radioactive waste associated with plant life extension

    International Nuclear Information System (INIS)

    Sciacca, F.; Zigler, G.; Walsh, R.

    1992-01-01

    Many utilities operating nuclear power plants are expected to seek to extend the useful life of their plants through license renewal. These US Nuclear Regulatory Commission (NRC) licensees are expected to implement enhanced inspection, surveillance, testing, and monitoring (ISTM) as needed to detect and mitigate age-related degradation of important structures, systems, and components (SSCs). In addition, utilities may undertake various refurbishment and upgrade activities at these plants to better assure economic and reliable power generation. These activities performed for safety and/or economic reasons can result in radioactive waste generation, which is incremental to that generated in the original licensing term. Work was performed for the NRC to help define and characterize potential environmental impacts associated with nuclear plant license renewal and plant life extension. As part of this work, projections were made of the types and quantities of low-level radioactive waste (LLRW) likely to be generated by licensee programs. These projections were needed to estimate environmental impacts related to the disposal of such wastes

  12. Discovery of Novel Lipid Profiles in PCOS: Do Insulin and Androgen Oppositely Regulate Bioactive Lipid Production?

    Science.gov (United States)

    Li, Shengxian; Chu, Qianqian; Ma, Jing; Sun, Yun; Tao, Tao; Huang, Rong; Liao, Yu; Yue, Jiang; Zheng, Jun; Wang, Lihua; Xue, Xinli; Zhu, Mingjiang; Kang, Xiaonan; Yin, Huiyong; Liu, Wei

    2017-03-01

    Polycystic ovary syndrome (PCOS) is a complex syndrome showing clinical features of an endocrine/metabolic disorder, including hyperinsulinemia and hyperandrogenism. Polyunsaturated fatty acids (PUFAs) and their derivatives, both tightly linked to PCOS and obesity, play important roles in inflammation and reproduction. This study aimed to investigate serum lipid profiles in newly diagnosed patients with PCOS using lipidomics and correlate these features with the hyperinsulinemia and hyperandrogenism associated with PCOS and obesity. Thirty-two newly diagnosed women with PCOS and 34 controls were divided into obese and lean subgroups. A PCOS rat model was used to validate results of the human studies. Serum lipid profiles, including phospholipids, free fatty acids (FFAs), and bioactive lipids, were analyzed using gas chromatography-mass spectrometry (MS) and liquid chromatography-MS. Elevation in phosphatidylcholine and a concomitant decrease in lysophospholipid were found in obese patients with PCOS vs lean controls. Obese patients with PCOS had decreased PUFA levels and increased levels of long-chain saturated fatty acids vs lean controls. Serum bioactive lipids downstream of arachidonic acid were increased in obese controls, but reduced in both obese and lean patients with PCOS vs their respective controls. Patients with PCOS showed abnormal levels of phosphatidylcholine, FFAs, and PUFA metabolites. Circulating insulin and androgens may have opposing effects on lipid profiles in patients with PCOS, particularly on the bioactive lipid metabolites derived from PUFAs. These clinical observations warrant further studies of the molecular mechanisms and clinical implications of PCOS and obesity. Copyright © 2017 by the Endocrine Society

  13. Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses.

    Directory of Open Access Journals (Sweden)

    Pei-Luen Jiang

    Full Text Available Stable cnidarian-dinoflagellate (genus Symbiodinium endosymbioses depend on the regulation of nutrient transport between Symbiodinium populations and their hosts. It has been previously shown that the host cytosol is a nitrogen-deficient environment for the intracellular Symbiodinium and may act to limit growth rates of symbionts during the symbiotic association. This study aimed to investigate the cell proliferation, as well as ultrastructural and lipid compositional changes, in free-living Symbiodinium spp. (clade B upon nitrogen (N-deprivation. The cell proliferation of the N-deprived cells decreased significantly. Furthermore, staining with a fluorescent probe, boron dipyrromethane 493/503 (BODIPY 493/503, indicated that lipid contents progressively accumulated in the N-deprived cells. Lipid analyses further showed that both triacylglycerol (TAG and cholesterol ester (CE were drastically enriched, with polyunsaturated fatty acids (PUFA; i.e., docosahexaenoic acid, heneicosapentaenoic acid, and oleic acid became more abundant. Ultrastructural examinations showed that the increase in concentration of these lipid species was due to the accumulation of lipid droplets (LDs, a cellular feature that have previously shown to be pivotal in the maintenance of intact endosymbioses. Integrity of these stable LDs was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Proteomic analyses of these LDs identified proteins putatively involved in lipid metabolism, signaling, stress response and energy metabolism. These results suggest that LDs production may be an adaptive response that enables Symbiodinium to maintain sufficient cellular energy stores for survival under the N-deprived conditions in the host cytoplasm.

  14. Lipid raft localization of TLR2 and its co-receptors is independent of membrane lipid composition

    Directory of Open Access Journals (Sweden)

    Christine Hellwing

    2018-01-01

    Full Text Available Background Toll like receptors (TLRs are an important and evolutionary conserved class of pattern recognition receptors associated with innate immunity. The recognition of Gram-positive cell wall constituents strongly depends on TLR2. In order to be functional, TLR2 predominantly forms a heterodimer with TLR1 or TLR6 within specialized membrane microdomains, the lipid rafts. The membrane lipid composition and the physicochemical properties of lipid rafts are subject to modification by exogenous fatty acids. Previous investigations of our group provide evidence that macrophage enrichment with polyunsaturated fatty acids (PUFA induces a reordering of lipid rafts and non-rafts based on the incorporation of supplemented PUFA as well as their elongation and desaturation products. Methods In the present study we investigated potential constraining effects of membrane microdomain reorganization on the clustering of TLR2 with its co-receptors TLR1 and TLR6 within lipid rafts. To this end, RAW264.7 macrophages were supplemented with either docosahexaenoic acid (DHA or arachidonic acid (AA and analyzed for receptor expression and microdomain localization in context of TLR stimulation. Results and Conclusions Our analyses showed that receptor levels and microdomain localization were unchanged by PUFA supplementation. The TLR2 pathway, in contrast to the TLR4 signaling cascade, is not affected by exogenous PUFA at the membrane level.

  15. Genetic Variants from Lipid-Related Pathways and Risk for Incident Myocardial Infarction

    Science.gov (United States)

    Song, Ci; Pedersen, Nancy L.; Reynolds, Chandra A.; Sabater-Lleal, Maria; Kanoni, Stavroula; Willenborg, Christina; Syvänen, Ann-Christine; Watkins, Hugh; Hamsten, Anders; Prince, Jonathan A.; Ingelsson, Erik

    2013-01-01

    Background Circulating lipids levels, as well as several familial lipid metabolism disorders, are strongly associated with initiation and progression of atherosclerosis and incidence of myocardial infarction (MI). Objectives We hypothesized that genetic variants associated with circulating lipid levels would also be associated with MI incidence, and have tested this in three independent samples. Setting and Subjects Using age- and sex-adjusted additive genetic models, we analyzed 554 single nucleotide polymorphisms (SNPs) in 41 candidate gene regions proposed to be involved in lipid-related pathways potentially predisposing to incidence of MI in 2,602 participants of the Swedish Twin Register (STR; 57% women). All associations with nominal P<0.01 were further investigated in the Uppsala Longitudinal Study of Adult Men (ULSAM; N = 1,142). Results In the present study, we report associations of lipid-related SNPs with incident MI in two community-based longitudinal studies with in silico replication in a meta-analysis of genome-wide association studies. Overall, there were 9 SNPs in STR with nominal P-value <0.01 that were successfully genotyped in ULSAM. rs4149313 located in ABCA1 was associated with MI incidence in both longitudinal study samples with nominal significance (hazard ratio, 1.36 and 1.40; P-value, 0.004 and 0.015 in STR and ULSAM, respectively). In silico replication supported the association of rs4149313 with coronary artery disease in an independent meta-analysis including 173,975 individuals of European descent from the CARDIoGRAMplusC4D consortium (odds ratio, 1.03; P-value, 0.048). Conclusions rs4149313 is one of the few amino acid changing variants in ABCA1 known to associate with reduced cholesterol efflux. Our results are suggestive of a weak association between this variant and the development of atherosclerosis and MI. PMID:23555974

  16. Lipid somersaults

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Menon, Anant K.

    2016-01-01

    Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support diverse...... aspects of cellular life. Here we discuss the mechanisms by which rapid flip-flop occurs, and what role lipid flipping plays in membrane homeostasis and cell growth. We focus on conceptual aspects, highlighting mechanistic insights from biochemical and in silico experiments, and the recent, ground......-breaking identification of a number of lipid scramblases....

  17. Adipophilin distribution and colocalization with lipid droplets in skeletal muscle.

    LENUS (Irish Health Repository)

    Shaw, Christopher S

    2009-05-01

    Intramyocellular lipids (IMCL) are stored as discrete lipid droplets which are associated with a number of proteins. The lipid droplet-associated protein adipophilin (the human orthologue of adipose differentiation-related protein) is ubiquitously expressed and is one of the predominant lipid droplet-proteins in skeletal muscle. The aim of this study was to investigate the subcellular distribution of adipophilin in human muscle fibres and to measure the colocalization of adipophilin with IMCL. Muscle biopsies from six lean male cyclists (BMI 23.4 +\\/- 0.4, aged 31 +\\/- 2 years, W (max) 346 +\\/- 8) were stained for myosin heavy chain type 1, IMCL, adipophilin and mitochondria using immunofluorescence and viewed with widefield and confocal fluorescence microscopy. The present study shows that like IMCL, the adipophilin content is ~twofold greater in type I skeletal muscle fibres and is situated in the areas between the mitochondrial network. Colocalization analysis demonstrated that 61 +\\/- 2% of IMCL contain adipophilin. Although the majority of adipophilin is contained within IMCL, 36 +\\/- 4% of adipophilin is not associated with IMCL. In conclusion, this study indicates that the IMCL pool is heterogeneous, as the majority but not all IMCL contain adipophilin.

  18. Preoperative serum lipid profile and outcome in nonmetastatic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Ting-Ting Hong

    2016-12-01

    Full Text Available Objective: A large portion of non-metastatic colorectal cancers (non-mCRCs recur after curative surgery. In addition to the traditional tumor-related factors, host-related factors are also required to accurately predict prognosis. A few studies have shown an association between the serum lipid profile and the survival and treatment response of patients with colorectal cancer. Methods: We retrospectively evaluated the prognostic significance of the preoperative serum lipid profile [total cholesterol (TC, triglyceride (TG, low-density lipoprotein cholesterol (LDL-C, and high-density lipoprotein cholesterol (HDL-C] in patients with non-mCRC treated with curative surgery. The Spearman rank correlation test was used to analyze associations between lipid levels and categorical variables. Lipid levels were modeled as four equal-sized quartiles based on the distribution among the whole cohort. Kaplan-Meier curves were used to estimate survival probabilities, and the log-rank test was used to detect differences between them. Multivariate fractional polynomial (MFP analysis was used to model any non-linear effects and avoid categorization. To evaluate the added prognostic value of lipids, the predictive power of two models (with and without lipids as covariates was compared by using Harrell's C-statistic and the Akaike information criterion (AIC. Results: A total of 266 patients with non-mCRC were enrolled in the present study. Spearman rank correlation test showed that TG levels inversely correlated with N stage (r = −0.20, P = 0.00 and Tumor-Node-Metastasis (TNM stage (r = −0.19, P = 0.00. HDL-C levels positively correlated with perineural invasion (PNI (r = 0.15, P = 0.02, and LDL-C levels inversely correlated with lymphovascular invasion (LVI (r = −0.12, P = 0.04. None of the four lipids predicted overall survival (OS in univariate or multivariate analyses adjusted for age, gender, T stage, N stage, TNM stage

  19. Pollen lipidomics: lipid profiling exposes a notable diversity in 22 allergenic pollen and potential biomarkers of the allergic immune response.

    Directory of Open Access Journals (Sweden)

    Mohamed Elfatih H Bashir

    Full Text Available BACKGROUND/AIM: Pollen grains are the male gametophytes that deliver sperm cells to female gametophytes during sexual reproduction of higher plants. Pollen is a major source of aeroallergens and environmental antigens. The pollen coat harbors a plethora of lipids that are required for pollen hydration, germination, and penetration of the stigma by pollen tubes. In addition to proteins, pollen displays a wide array of lipids that interact with the human immune system. Prior searches for pollen allergens have focused on the identification of intracellular allergenic proteins, but have largely overlooked much of the extracellular pollen matrix, a region where the majority of lipid molecules reside. Lipid antigens have attracted attention for their potent immunoregulatory effects. By being in close proximity to allergenic proteins on the pollen surface when they interact with host cells, lipids could modify the antigenic properties of proteins. METHODOLOGY/PRINCIPAL FINDINGS: We performed a comparative pollen lipid profiling of 22 commonly allergenic plant species by the use of gas chromatography-mass spectroscopy, followed by detailed data mining and statistical analysis. Three experiments compared pollen lipid profiles. We built a database library of the pollen lipids by matching acquired pollen-lipid mass spectra and retention times with the NIST/EPA/NIH mass-spectral library. We detected, identified, and relatively quantified more than 106 lipid molecular species including fatty acids, n-alkanes, fatty alcohols, and sterols. Pollen-derived lipids stimulation up-regulate cytokines expression of dendritic and natural killer T cells co-culture. CONCLUSIONS/SIGNIFICANCE: Here we report on a lipidomic analysis of pollen lipids that can serve as a database for identifying potential lipid antigens and/or novel candidate molecules involved in allergy. The database provides a resource that facilitates studies on the role of lipids in the

  20. Serum lipids in hypothyroidism: Our experience.

    Science.gov (United States)

    Prakash, Archana; Lal, Ashok Kumar

    2006-09-01

    In order to determine whether the screening of lipid profile is justified in patients with hypothyroidism we estimated serum lipids in cases having different levels of serum TSH. 60 patients of hypothyroidism in the age group of 20 to 60 yrs were studied for thyroid profile over a period of one year. On the basis of serum TSH level the cases were divided into three groups: In the first group TSH concentration was 8.8±2.99 μlU/ml, 95% confidence interval (Cl) 8.8±1.07, whereas serum total cholesterol and LDL-chol levels were 196±37.22 and 126±29.17 mg/dl respectively. The statistical analysis of these two groups showed a significant correlation between raised TSH levels and serum total cholesterol and LDL-chol (Phypothyrodism is associated with changes in lipid profile.