WorldWideScience

Sample records for plant light-harvesting complex

  1. The xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching.

    NARCIS (Netherlands)

    Peterman, E.J.G.; Gradinaru, C.C.; Calkoen, F.; Borst, J.C.; van Grondelle, R.; van Amerongen, H.

    1997-01-01

    A spectral and functional assignment of the xanthophylls in monomeric and trimeric light-harvesting complex II of green plants has been obtained using HPLC analysis of the pigment composition, laser-flash induced triplet- minus-singlet, fluorescence excitation, and absorption spectra. It is shown

  2. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    NARCIS (Netherlands)

    Ruban, A.V.; Wentworth, M.; Yakushevska, A.E.; Andersson, J.; Lee, P.J.; Keegstra, W.; Dekker, J.P.; Boekema, E.J.; Jansson, S.; Horton, P.

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the

  3. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    NARCIS (Netherlands)

    Ruban, AV; Wentworth, M; Yakushevska, AE; Andersson, J; Lee, PJ; Keegstra, W; Dekker, JP; Boekema, EJ; Jansson, S; Horton, P

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts(1). Several light-harvesting antenna complexes are organized precisely in the

  4. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    OpenAIRE

    Ruban, AV; Wentworth, M; Yakushevska, AE; Andersson, J; Lee, PJ; Keegstra, W; Dekker, JP; Boekema, EJ; Jansson, S; Horton, P

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts(1). Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure-the major trimeric complexes (LHCII)(2) that bind 70% of PSII chlorophyll and three minor monomeric complexes(3)-which together form PSII supercomplexes(4-6). The antenna comple...

  5. A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants

    International Nuclear Information System (INIS)

    Reinbothe, C.; Lebedev, N.; Reinbothe, S.

    1999-01-01

    When etiolated angiosperm seedlings break through the soil after germination, they are immediately exposed to sunlight, but at this stage they are unable to perform photosynthesis1. In the absence of chlorophyll a and chlorophyll b, two other porphyrin species cooperate as the basic light-harvesting structure of etiolated plants. Protochlorophyllide a and protochlorophyllide b (ref. 2) form supramolecular complexes with NADPH and two closely related NADPH:protochlorophyllide oxidoreductase (POR) proteins—PORA and PORB (ref. 3)—in the prolamellar body of etioplasts. Here we report that these light-harvesting POR–protochlorophyllide complexes, named LHPP, are essential for the establishment of the photosynthetic apparatus and also confer photoprotection on the plant. They collect sunlight for rapid chlorophyll a biosynthesis and, simultaneously, dissipate excess light energy in the bulk of non-photoreducible protochlorophyllide b. Based on this dual function, it seems that LHPP provides the link between skotomorphogenesis and photosynthesis that is required for efficient de-etiolation

  6. Interference lithographic nanopatterning of plant and bacterial light-harvesting complexes on gold substrates

    Energy Technology Data Exchange (ETDEWEB)

    Patole, S.; Vasilev, C.; El-Zubir, O.; Wang, L.; Johnson, M. P.; Cadby, A. J.; Leggett, G. J.; Hunter, C. N.

    2015-05-15

    We describe a facile approach for nanopatterning of photosynthetic light-harvesting complexes over macroscopic areas, and use optical spectroscopy to demonstrate retention of native properties by both site-specifically and non-specifically attached photosynthetic membrane proteins. A Lloyd's mirror dual-beam interferometer was used to expose self-assembled monolayers of amine-terminated alkylthiolates on gold to laser irradiation. Following exposure, photo-oxidized adsorbates were replaced by oligo(ethylene glycol) terminated thiols, and the remaining intact amine-functionalized regions were used for attachment of the major light-harvesting chlorophyll–protein complex from plants, LHCII. These amine patterns could be derivatized with nitrilotriacetic acid (NTA), so that polyhistidine-tagged bacteriochlorophyll–protein complexes from phototrophic bacteria could be attached with a defined surface orientation. By varying parameters such as the angle between the interfering beams and the laser irradiation dose, it was possible to vary the period and widths of NTA and amine-functionalized lines on the surfaces; periods varied from 1200 to 240 nm and linewidths as small as 60 nm (λ/4) were achieved. This level of control over the surface chemistry was reflected in the surface topology of the protein nanostructures imaged by atomic force microscopy; fluorescence imaging and spectral measurements demonstrated that the surface-attached proteins had retained their native functionality.

  7. Plants lacking the main light-harvesting complex retain photosystem II macro-organization.

    Science.gov (United States)

    Ruban, A V; Wentworth, M; Yakushevska, A E; Andersson, J; Lee, P J; Keegstra, W; Dekker, J P; Boekema, E J; Jansson, S; Horton, P

    2003-02-06

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure-the major trimeric complexes (LHCII) that bind 70% of PSII chlorophyll and three minor monomeric complexes-which together form PSII supercomplexes. The antenna complexes are essential for collecting sunlight and regulating photosynthesis, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function.

  8. Structure of the higher plant light harvesting complex I: In vivo characterization and structural interdependence of the Lhca proteins

    NARCIS (Netherlands)

    Klimmek, F.; Ganeteg, U.; Ihalainen, J.A.; van Roon, H.; Jensen, P.E.; Scheller, H.V.; Dekker, J.P.; Jansson, S.

    2005-01-01

    We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding

  9. Carotenoid-binding sites of the major light-harvesting complex II of higher plants

    NARCIS (Netherlands)

    Croce, Roberta; Weiss, Saskia; Bassi, Roberto

    1999-01-01

    Recombinant light-harvesting complex II (LHCII) proteins with modified carotenoid composition have been obtained by in vitro reconstitution of the Lhcb1 protein overexpressed in bacteria. The monomeric protein possesses three xanthophyll-binding sites. The L1 and L2 sites, localized by electron

  10. Stark effect measurements on monomers and trimers of reconstituted light-harvesting complex II of plants

    NARCIS (Netherlands)

    Palacios, M.A.; Caffarri, S.; Bassi, R.; Grondelle, van R.; Amerongen, van H.

    2004-01-01

    The electric-field induced absorption changes (Stark effect) of reconstituted light-harvesting complex II (LHCII) in different oligomerisation states - monomers and trimers - with different xanthophyll content have been probed at 77 K. The Stark spectra of the reconstituted control samples,

  11. Density of phonon states in the light-harvesting complex II of green plants

    CERN Document Server

    Pieper, J K; Irrgang, K D; Renger, G

    2002-01-01

    In photosynthetic antenna complexes, the coupling of electronic transitions to low-frequency vibrations of the protein matrix (phonons) plays an essential role in light absorption and ultra-fast excitation energy transfer (EET). The model calculations presented here indicate that inelastic neutron scattering experiments provide invaluable information on the phonon density of states for light-harvesting complex II, which may permit a consistent interpretation of contradictory results from high-resolution optical spectroscopy. (orig.)

  12. The light-harvesting complexes of higher plant Photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers

    NARCIS (Netherlands)

    Wientjes, I.E.; Croce, R.

    2011-01-01

    The outer antenna of higher-plant PSI (Photosystem I) is composed of four complexes [Lhc (light-harvesting complex) a1-Lhca4] belonging to the light-harvesting protein family. Difficulties in their purification have so far prevented the determination of their properties and most of the knowledge

  13. The light-harvesting complexes of higher-plant Photosystem I : Lhca1/4 and Lhca2/3 form two red-emitting heterodimers

    NARCIS (Netherlands)

    Wientjes, Emilie; Croce, Roberta

    2011-01-01

    The outer antenna of higher-plant PSI (Photosystem I) is composed of four complexes [Lhc (light-harvesting complex) al-Lhca4] belonging to the light-harvesting protein family. Difficulties in their purification have so far prevented the determination of their properties and most of the knowledge

  14. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    Energy Technology Data Exchange (ETDEWEB)

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  15. Mechanisms of energy transfer and conversion in plant Light-Harvesting Complex II

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Tiago Ferreira de

    2009-09-24

    The light-harvesting complex of photosystem II (LHC-II) is the major antenna complex in plant photosynthesis. It accounts for roughly 30% of the total protein in plant chloroplasts, which makes it arguably the most abundant membrane protein on Earth, and binds about half of plant chlorophyll (Chl). The complex assembles as a trimer in the thylakoid membrane and binds a total of 54 pigment molecules, including 24 Chl a, 18 Chl b, 6 lutein (Lut), 3 neoxanthin (Neo) and 3 violaxanthin (Vio). LHC-II has five key roles in plant photosynthesis. It: (1) harvests sunlight and transmits excitation energy to the reaction centres of photosystems II and I, (2) regulates the amount of excitation energy reaching each of the two photosystems, (3) has a structural role in the architecture of the photosynthetic supercomplexes, (4) contributes to the tight appression of thylakoid membranes in chloroplast grana, and (5) protects the photosynthetic apparatus from photo damage by non photochemical quenching (NPQ). A major fraction of NPQ is accounted for its energy-dependent component qE. Despite being critical for plant survival and having been studied for decades, the exact details of how excess absorbed light energy is dissipated under qE conditions remain enigmatic. Today it is accepted that qE is regulated by the magnitude of the pH gradient ({delta}pH) across the thylakoid membrane. It is also well documented that the drop in pH in the thylakoid lumen during high-light conditions activates the enzyme violaxanthin de-epoxidase (VDE), which converts the carotenoid Vio into zeaxanthin (Zea) as part of the xanthophyll cycle. Additionally, studies with Arabidopsis mutants revealed that the photosystem II subunit PsbS is necessary for qE. How these physiological responses switch LHC-II from the active, energy transmitting to the quenched, energy-dissipating state, in which the solar energy is not transmitted to the photosystems but instead dissipated as heat, remains unclear and is the

  16. Engineering a pH-Regulated Switch in the Major Light-Harvesting Complex of Plants (LHCII): Proof of Principle.

    Science.gov (United States)

    Liguori, Nicoletta; Natali, Alberto; Croce, Roberta

    2016-12-15

    Under excess light, photosynthetic organisms employ feedback mechanisms to avoid photodamage. Photoprotection is triggered by acidification of the lumen of the photosynthetic membrane following saturation of the metabolic activity. A low pH triggers thermal dissipation of excess absorbed energy by the light-harvesting complexes (LHCs). LHCs are not able to sense pH variations, and their switch to a dissipative mode depends on stress-related proteins and allosteric cofactors. In green algae the trigger is the pigment-protein complex LHCSR3. Its C-terminus is responsible for a pH-driven conformational change from a light-harvesting to a quenched state. Here, we show that by replacing the C-terminus of the main LHC of plants with that of LHCSR3, it is possible to regulate its excited-state lifetime solely via protonation, demonstrating that the protein template of LHCs can be modified to activate reversible quenching mechanisms independent of external cofactors and triggers.

  17. Structure of the higher plant light harvesting complex I: in vivo characterization and structural interdependence of the Lhca proteins.

    Science.gov (United States)

    Klimmek, Frank; Ganeteg, Ulrika; Ihalainen, Janne A; van Roon, Henny; Jensen, Poul E; Scheller, Henrik V; Dekker, Jan P; Jansson, Stefan

    2005-03-01

    We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding that there are four Lhca proteins per PSI in the crystal structure [Ben-Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635]. According to HPLC analyses the number of pigment molecules bound within the LHCI is higher than expected from reconstitution studies or analyses of isolated native LHCI. Comparison of the spectra of the particles from the different lines reveals chlorophyll absorption bands peaking at 696, 688, 665, and 655 nm that are not present in isolated PSI or LHCI. These bands presumably originate from "gap" or "linker" pigments that are cooperatively coordinated by the Lhca and/or PSI proteins, which we have tentatively localized in the PSI-LHCI complex.

  18. Photoprotection in Plants Involves a Change in Lutein 1 Binding Domain in the Major Light-harvesting Complex of Photosystem II

    NARCIS (Netherlands)

    Ilioaia, C.; Johnson, M.P.; Liao, P.N.; Pascal, A.A.; van Grondelle, R.; Walla, P.J.; Ruban, A.V.; Robert, B.

    2011-01-01

    Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem

  19. Density of vibrational States of the light-harvesting complex II of green plants studied by inelastic neutron scattering

    CERN Document Server

    Pieper, J K; Renger, G; Lechner, R E

    2004-01-01

    Results of inelastic neutron scattering (INS) experiments are reported for the solubilized trimeric light-harvesting complex of photosystem II (LHC II) in the temperature range from 5 to 100 K. Two incident neutron wavelengths of 2.0 ( similar to 20 meV) and 5.1 A ( similar to 3.2 meV) corresponding to elastic energy resolutions of DeltaE = 0.920 meV and DeltaE = 0.093 meV, respectively, are employed to study INS spectra of LHC II for both neutron energy loss and gain. Solubilized LHC II and D//2O-containing buffer solution are investigated separately in order to properly subtract the contribution of the solvent. The inelastic part of the scattering function S(Q, omega) derived for the LHC II protein resembles the well-known "Boson-peak" and is characterized by a maximum at about 2.5 meV and a strongly asymmetric line shape with a slight tailing toward higher energy transfers. Analysis of the momentum transfer dependence of S(Q, omega) reveals that both the elastic and inelastic contributions to S(Q, omega) e...

  20. Generation of fluorescence quenchers from the triplet states of chlorophylls in the major light-harvesting complex II from green plants

    NARCIS (Netherlands)

    Barzda, V.; Vengris, M.; Valkunas, L.; van Amerongen, H.; van Grondelle, R.

    2000-01-01

    Laser flash-induced changes of the fluorescence yield were studied in aggregates of light-harvesting complex II (LHCII) on a time scale ranging from microseconds to seconds. Carotenoid (Car) and chlorophyll (Chl) triplet states, decaying with lifetimes of several microseconds and hundreds of

  1. Ring-to-chain conformation may be a determining factor in the ability of xanthophylls to bind to the bulk light-harvesting complex of plants

    Science.gov (United States)

    Young, Andrew J.; Phillip, Denise M.; Hashimoto, Hideki

    2002-12-01

    The binding of xanthophylls to the main light-harvesting complex (LHC) of higher plants has been studied using the technique of in vitro reconstitution. This demonstrated that the carotenoid diol lactucaxanthin (native to many LHC) would not support the assembly of LHC whilst other diols, notably zeaxanthin and lutein would. Analysis of the most stable forms of the carotenoid end-groups found in xanthophylls native to higher plant LHC (as determined by theoretical calculations) revealed profound differences in the adiabatic potential energy curves for the C5-C6-C7-C8-torsion angle for the ɛ end-groups in lactucaxanthin (6-s- trans), in comparison to carotenoids possessing a 3-hydroxy β end-group (zeaxanthin; 6-s- cis), 3-hydroxy-4-keto β end-group (astaxanthin, 6-s- cis) or a 3-hydroxy-5,6-epoxy end-group (violaxanthin, distorted 6-s- cis). The (ɛ end-groups of other carotenoids studied were 6-s- trans. We examine the possible relationship between carotenoid ring-to-chain conformation and binding to LHC.

  2. Assembly of the Major Light-Harvesting Complex II in Lipid Nanodiscs.

    NARCIS (Netherlands)

    Pandit, A.; Shirzad-Wasei, N.; Wlodarczyk, L.M.; Roon, H. van; Boekema, E.J.; Dekker, J.P.; Grip, W.J. de

    2011-01-01

    Self-aggregation of isolated plant light-harvesting complexes (LHCs) upon detergent extraction is associated with fluorescence quenching and is used as an in vitro model to study the photophysical processes of nonphotochemical quenching (NPQ). In the NPQ state, in vivo induced under excess solar

  3. Assembly of the Major Light-Harvesting Complex II in Lipid Nanodiscs

    NARCIS (Netherlands)

    Pandit, Anjali; Shirzad-Wasei, Nazhat; Wlodarczyk, Lucyna M.; van Roon, Henny; Boekema, Egbert J.; Dekker, Jan P.; de Grip, Willem J.; Brown, Leonid S.

    2011-01-01

    Self-aggregation of isolated plant light-harvesting complexes (LHCs) upon detergent extraction is associated with fluorescence quenching and is used as an in vitro model to study the photophysical processes of nonphotochemical quenching (NPQ). In the NPQ state, in vivo induced under excess solar

  4. From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective

    Science.gov (United States)

    Gruber, J. Michael; Malý, Pavel; Krüger, Tjaart P. J.; Grondelle, Rienk van

    2018-01-01

    The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10-20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger in vivo systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.

  5. Quantum transport in the FMO photosynthetic light-harvesting complex.

    Science.gov (United States)

    Karafyllidis, Ioannis G

    2017-06-01

    The very high light-harvesting efficiency of natural photosynthetic systems in conjunction with recent experiments, which showed quantum-coherent energy transfer in photosynthetic complexes, raised questions regarding the presence of non-trivial quantum effects in photosynthesis. Grover quantum search, quantum walks, and entanglement have been investigated as possible effects that lead to this efficiency. Here we explain the near-unit photosynthetic efficiency without invoking non-trivial quantum effects. Instead, we use non-equilibrium Green's functions, a mesoscopic method used to study transport in nano-conductors to compute the transmission function of the Fenna-Matthews-Olson (FMO) complex using an experimentally derived exciton Hamiltonian. The chlorosome antenna and the reaction center play the role of input and output contacts, connected to the FMO complex. We show that there are two channels for which the transmission is almost unity. Our analysis also revealed a dephasing-driven regulation mechanism that maintains the efficiency in the presence of varying dephasing potentials.

  6. Single-molecule exploration of photoprotective mechanisms in light-harvesting complexes

    Science.gov (United States)

    Yang, Hsiang-Yu; Schlau-Cohen, Gabriela S.; Gwizdala, Michal; Krüger, Tjaart; Xu, Pengqi; Croce, Roberta; van Grondelle, Rienk; Moerner, W. E.

    2015-03-01

    Plants harvest sunlight by converting light energy to electron flow through the primary events in photosynthesis. One important question is how the light harvesting machinery adapts to fluctuating sunlight intensity. As a result of various regulatory processes, efficient light harvesting and photoprotection are balanced. Some of the biological steps in the photoprotective processes have been extensively studied and physiological regulatory factors have been identified. For example, the effect of lumen pH in changing carotenoid composition has been explored. However, the importance of photophysical dynamics in the initial light-harvesting steps and its relation to photoprotection remain poorly understood. Conformational and excited-state dynamics of multi-chromophore pigment-protein complexes are often difficult to study and limited information can be extracted from ensemble-averaged measurements. To address the problem, we use the Anti-Brownian ELectrokinetic (ABEL) trap to investigate the fluorescence from individual copies of light-harvesting complex II (LHCII), the primary antenna protein in higher plants, in a solution-phase environment. Perturbative surface immobilization or encapsulation schemes are avoided, and therefore the intrinsic dynamics and heterogeneity in the fluorescence of individual proteins are revealed. We perform simultaneous measurements of fluorescence intensity (brightness), excited-state lifetime, and emission spectrum of single trapped proteins. By analyzing the correlated changes between these observables, we identify forms of LHCII with different fluorescence intensities and excited-state lifetimes. The distinct forms may be associated with different energy dissipation mechanisms in the energy transfer chain. Changes of relative populations in response to pH and carotenoid composition are observed, which may extend our understanding of the molecular mechanisms of photoprotection.

  7. Single-molecule exploration of photoprotective mechanisms in light-harvesting complexes

    NARCIS (Netherlands)

    Yang, Hsiang Yu; Schlau-Cohen, Gabriela S.; Gwizdala, Michal; Krüger, Tjaart; Xu, Pengqi; Croce, Roberta; Van Grondelle, Rienk; Moerner, W. E.

    2015-01-01

    Plants harvest sunlight by converting light energy to electron flow through the primary events in photosynthesis. One important question is how the light harvesting machinery adapts to fluctuating sunlight intensity. As a result of various regulatory processes, efficient light harvesting and

  8. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  9. Role of xanthophylls in light harvesting in green plants: a spectroscopic investigation of mutant LHCII and Lhcb pigment-protein complexes.

    Science.gov (United States)

    Fuciman, Marcel; Enriquez, Miriam M; Polívka, Tomáš; Dall'Osto, Luca; Bassi, Roberto; Frank, Harry A

    2012-03-29

    The spectroscopic properties and energy transfer dynamics of the protein-bound chlorophylls and xanthophylls in monomeric, major LHCII complexes, and minor Lhcb complexes from genetically altered Arabidopsis thaliana plants have been investigated using both steady-state and time-resolved absorption and fluorescence spectroscopic methods. The pigment-protein complexes that were studied contain Chl a, Chl b, and variable amounts of the xanthophylls, zeaxanthin (Z), violaxanthin (V), neoxanthin (N), and lutein (L). The complexes were derived from mutants of plants denoted npq1 (NVL), npq2lut2 (Z), aba4npq1lut2 (V), aba4npq1 (VL), npq1lut2 (NV), and npq2 (LZ). The data reveal specific singlet energy transfer routes and excited state spectra and dynamics that depend on the xanthophyll present in the complex.

  10. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites

    KAUST Repository

    Tichý, Josef

    2013-06-01

    The structure and composition of the light harvesting complexes from the unicellular alga Chromera velia were studied by means of optical spectroscopy, biochemical and electron microscopy methods. Two different types of antennae systems were identified. One exhibited a molecular weight (18-19 kDa) similar to FCP (fucoxanthin chlorophyll protein) complexes from diatoms, however, single particle analysis and circular dichroism spectroscopy indicated similarity of this structure to the recently characterized XLH antenna of xanthophytes. In light of these data we denote this antenna complex CLH, for "Chromera Light Harvesting" complex. The other system was identified as the photosystem I with bound Light Harvesting Complexes (PSI-LHCr) related to the red algae LHCI antennae. The result of this study is the finding that C. velia, when grown in natural light conditions, possesses light harvesting antennae typically found in two different, evolutionary distant, groups of photosynthetic organisms. © 2013 Elsevier B.V. All rights reserved.

  11. A Femtosecond Visible/Visible and Visible/Mid-Infrared Transient Absorption Study of the Light Harvesting Complex II

    NARCIS (Netherlands)

    Stahl, A.D.; Di Donato, M.; van Stokkum, I.H.M.; van Grondelle, R.; Groot, M.L.

    2009-01-01

    Light harvesting complex II (LHCII) is the most abundant protein in the thylakoid membrane of higher plants and green algae. LHCII acts to collect solar radiation, transferring this energy mainly toward photosystem II, with a smaller amount going to photosystem I; it is then converted into a

  12. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution

    NARCIS (Netherlands)

    Standfuss, Jörg; Terwisscha van Scheltinga, Anke C.; Lamborghini, Matteo; Kühlbrandt, Werner

    2005-01-01

    The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 Å structure of pea LHC-II determined by X-ray crystallography of

  13. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites

    KAUST Repository

    Tichý , Josef; Gardian, Zdenko; Bí na, David; Koní k, Peter; Litví n, Radek V.; Herbstová , Miroslava; Pain, Arnab; Vá cha, František

    2013-01-01

    The structure and composition of the light harvesting complexes from the unicellular alga Chromera velia were studied by means of optical spectroscopy, biochemical and electron microscopy methods. Two different types of antennae systems were

  14. Activity of the promoter of the Lhca3.St.1 gene, encoding the potato apoprotein 2 of the light-harvesting complex of Photosystem I, in transgenic potato and tobacco plants

    NARCIS (Netherlands)

    Nap, Jan; VANSPANJE, M; Dirkse, W.G.; BAARDA, G; Mlynarova, L; Loonen, A.; GRONDHUIS, P; STIEKEMA, WJ

    We have isolated cDNA and genomic clones for the potato (Solanum tuberosum) apoprotein 2 of the light harvesting complex of Photosystem 1, designated Lhca3.St.l. The protein shows all characteristics of the family of chlorophyll a/b-binding proteins. Potato Lhca3.1 gene expression occurs

  15. Crystal structure of spinach major light-harvesting complex at 2.72Å resolution

    Science.gov (United States)

    Liu, Zhenfeng; Yan, Hanchi; Wang, Kebin; Kuang, Tingyun; Zhang, Jiping; Gui, Lulu; An, Xiaomin; Chang, Wenrui

    2004-03-01

    The major light-harvesting complex of photosystem II (LHC-II) serves as the principal solar energy collector in the photosynthesis of green plants and presumably also functions in photoprotection under high-light conditions. Here we report the first X-ray structure of LHC-II in icosahedral proteoliposome assembly at atomic detail. One asymmetric unit of a large R32 unit cell contains ten LHC-II monomers. The 14 chlorophylls (Chl) in each monomer can be unambiguously distinguished as eight Chla and six Chlb molecules. Assignment of the orientation of the transition dipole moment of each chlorophyll has been achieved. All Chlb are located around the interface between adjacent monomers, and together with Chla they are the basis for efficient light harvesting. Four carotenoid-binding sites per monomer have been observed. The xanthophyll-cycle carotenoid at the monomer-monomer interface may be involved in the non-radiative dissipation of excessive energy, one of the photoprotective strategies that have evolved in plants.

  16. Synthesis and Functional Reconstitution of Light-Harvesting Complex II into Polymeric Membrane Architectures.

    Science.gov (United States)

    Zapf, Thomas; Tan, Cherng-Wen Darren; Reinelt, Tobias; Huber, Christoph; Shaohua, Ding; Geifman-Shochat, Susana; Paulsen, Harald; Sinner, Eva-Kathrin

    2015-12-01

    One of most important processes in nature is the harvesting and dissipation of solar energy with the help of light-harvesting complex II (LHCII). This protein, along with its associated pigments, is the main solar-energy collector in higher plants. We aimed to generate stable, highly controllable, and sustainable polymer-based membrane systems containing LHCII-pigment complexes ready for light harvesting. LHCII was produced by cell-free protein synthesis based on wheat-germ extract, and the successful integration of LHCII and its pigments into different membrane architectures was monitored. The unidirectionality of LHCII insertion was investigated by protease digestion assays. Fluorescence measurements indicated chlorophyll integration in the presence of LHCII in spherical as well as planar bilayer architectures. Surface plasmon enhanced fluorescence spectroscopy (SPFS) was used to reveal energy transfer from chlorophyll b to chlorophyll a, which indicates native folding of the LHCII proteins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Osto, Luca [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Cazzaniga, Stefano [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Bressan, Mauro [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Paleček, David [Lund Univ. (Sweden). Dept. of Chemical Physics; Židek, Karel [Lund Univ. (Sweden). Dept. of Chemical Physics; Niyogi, Krishna K. [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst., Dept. of Plant and Microbial Biology; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Fleming, Graham R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry, Graduate Group in Applied Science and Technology; Zigmantas, Donatas [Lund Univ. (Sweden). Dept. of Chemical Physics; Bassi, Roberto [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Consiglio Nazionale delle Ricerche (CNR), Firenze (Italy). Istituto per la Protezione delle Piante (IPP)

    2017-04-10

    Oxygenic photoautotrophs require mechanisms for rapidly matching the level of chlorophyll excited states from light harvesting with the rate of electron transport from water to carbon dioxide. These photoprotective reactions prevent formation of reactive excited states and photoinhibition. The fastest response to excess illumination is the so-called non-photochemical quenching which, in higher plants, requires the luminal pH sensor PsbS and other yet unidentified components of the photosystem II antenna. Both trimeric light-harvesting complex II (LHCII) and monomeric LHC proteins have been indicated as site(s) of the heat-dissipative reactions. Different mechanisms have been proposed: Energy transfer to a lutein quencher in trimers, formation of a zeaxanthin radical cation in monomers. Here, we report on the construction of a mutant lacking all monomeric LHC proteins but retaining LHCII trimers. Its non-photochemical quenching induction rate was substantially slower with respect to the wild type. A carotenoid radical cation signal was detected in the wild type, although it was lost in the mutant. Here, we conclude that non-photochemical quenching is catalysed by two independent mechanisms, with the fastest activated response catalysed within monomeric LHC proteins depending on both zeaxanthin and lutein and on the formation of a radical cation. Trimeric LHCII was responsible for the slowly activated quenching component whereas inclusion in supercomplexes was not required. Finally, this latter activity does not depend on lutein nor on charge transfer events, whereas zeaxanthin was essential.

  18. The binding of Xanthophylls to the bulk light-harvesting complex of photosystem II of higher plants. A specific requirement for carotenoids with a 3-hydroxy-beta-end group.

    Science.gov (United States)

    Phillip, Denise; Hobe, Stephan; Paulsen, Harald; Molnar, Peter; Hashimoto, Hideki; Young, Andrew J

    2002-07-12

    The pigment composition of the light-harvesting complexes (LHCs) of higher plants is highly conserved. The bulk complex (LHCIIb) binds three xanthophyll molecules in combination with chlorophyll (Chl) a and b. The structural requirements for binding xanthophylls to LHCIIb have been examined using an in vitro reconstitution procedure. Reassembly of the monomeric recombinant LHCIIb was performed using a wide range of native and nonnative xanthophylls, and a specific requirement for the presence of a hydroxy group at C-3 on a single beta-end group was identified. The presence of additional substituents (e.g. at C-4) did not interfere with xanthophyll binding, but they could not, on their own, support reassembly. cis isomers of zeaxanthin, violaxanthin, and lutein were not bound, whereas all-trans-neoxanthin and different chiral forms of lutein and zeaxanthin were incorporated into the complex. The C-3 and C-3' diols lactucaxanthin (a carotenoid native to many plant LHCs) and eschscholtzxanthin (a retro-carotenoid) both behaved very differently from lutein and zeaxanthin in that they would not support complex reassembly when used alone. Lactucaxanthin could, however, be bound when lutein was also present, and it showed a high affinity for xanthophyll binding site N1. In the presence of lutein, lactucaxanthin was readily bound to at least one lutein-binding site, suggesting that the ability to bind to the complex and initiate protein folding may be dependent on different structural features of the carotenoid molecule. The importance of carotenoid end group structure and ring-to-chain conformation around the C-6-C-7 torsion angle of the carotenoid molecule in binding and complex reassembly is discussed.

  19. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).

    Science.gov (United States)

    Harel, Elad; Engel, Gregory S

    2012-01-17

    Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.

  20. LIL3, a Light-Harvesting Complex Protein, Links Terpenoid and Tetrapyrrole Biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Hey, Daniel; Rothbart, Maxi; Herbst, Josephine; Wang, Peng; Müller, Jakob; Wittmann, Daniel; Gruhl, Kirsten; Grimm, Bernhard

    2017-06-01

    The LIL3 protein of Arabidopsis ( Arabidopsis thaliana ) belongs to the light-harvesting complex (LHC) protein family, which also includes the light-harvesting chlorophyll-binding proteins of photosystems I and II, the early-light-inducible proteins, PsbS involved in nonphotochemical quenching, and the one-helix proteins and their cyanobacterial homologs designated high-light-inducible proteins. Each member of this family is characterized by one or two LHC transmembrane domains (referred to as the LHC motif) to which potential functions such as chlorophyll binding, protein interaction, and integration of interacting partners into the plastid membranes have been attributed. Initially, LIL3 was shown to interact with geranylgeranyl reductase (CHLP), an enzyme of terpene biosynthesis that supplies the hydrocarbon chain for chlorophyll and tocopherol. Here, we show another function of LIL3 for the stability of protochlorophyllide oxidoreductase (POR). Multiple protein-protein interaction analyses suggest the direct physical interaction of LIL3 with POR but not with chlorophyll synthase. Consistently, LIL3-deficient plants exhibit substantial loss of POR as well as CHLP, which is not due to defective transcription of the POR and CHLP genes but to the posttranslational modification of their protein products. Interestingly, in vitro biochemical analyses provide novel evidence that LIL3 shows high binding affinity to protochlorophyllide, the substrate of POR. Taken together, this study suggests a critical role for LIL3 in the organization of later steps in chlorophyll biosynthesis. We suggest that LIL3 associates with POR and CHLP and thus contributes to the supply of the two metabolites, chlorophyllide and phytyl pyrophosphate, required for the final step in chlorophyll a synthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica.

    Directory of Open Access Journals (Sweden)

    Marko Dachev

    2017-12-01

    Full Text Available The majority of life on Earth depends directly or indirectly on the sun as a source of energy. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers (RCs. Here, we analyzed the organization of photosynthetic (PS complexes in the bacterium G. phototrophica, which so far is the only phototrophic representative of the bacterial phylum Gemmatimonadetes. The isolated complex has a molecular weight of about 800 ± 100 kDa, which is approximately 2 times larger than the core complex of Rhodospirillum rubrum. The complex contains 62.4 ± 4.7 bacteriochlorophyll (BChl a molecules absorbing in 2 distinct infrared absorption bands with maxima at 816 and 868 nm. Using femtosecond transient absorption spectroscopy, we determined the energy transfer time between these spectral bands as 2 ps. Single particle analyses of the purified complexes showed that they were circular structures with an outer diameter of approximately 18 nm and a thickness of 7 nm. Based on the obtained, we propose that the light-harvesting complexes in G. phototrophica form 2 concentric rings surrounding the type 2 RC. The inner ring (corresponding to the B868 absorption band is composed of 15 subunits and is analogous to the inner light-harvesting complex 1 (LH1 in purple bacteria. The outer ring is composed of 15 more distant BChl dimers with no or slow energy transfer between them, resulting in the B816 absorption band. This completely unique and elegant organization offers good structural stability, as well as high efficiency of light harvesting. Our results reveal that while the PS apparatus of Gemmatimonadetes was acquired via horizontal gene transfer from purple bacteria, it later evolved along its own pathway, devising a new arrangement of its light harvesting complexes.

  2. Pigment structure in the FCP-like light-harvesting complex from Chromera velia

    Czech Academy of Sciences Publication Activity Database

    Llansola-Portoles, M.J.; Uragami, C.; Pacsal, A.; Bína, David; Litvín, Radek; Robert, B.

    2016-01-01

    Roč. 1857, č. 11 (2016), s. 1759-1765 ISSN 0005-2728 R&D Projects: GA ČR GBP501/12/G055 Institutional support: RVO:60077344 Keywords : Photosynthesis * Chlorophylls * Carotenoids * Light harvesting complex Subject RIV: CE - Biochemistry Impact factor: 4.932, year: 2016

  3. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    International Nuclear Information System (INIS)

    Dewa, Takehisa; Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu; Nango, Mamoru

    2013-01-01

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency

  4. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dewa, Takehisa, E-mail: takedewa@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Japan Science and Technology, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nango, Mamoru, E-mail: nango@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2013-06-20

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency.

  5. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    NARCIS (Netherlands)

    Oort, van B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these

  6. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    OpenAIRE

    Oort, van, B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these proteins contain fluorescent pigments. Each pigment’s fluorescence is influenced by its environment, and thereby may provide information on structure and dynamics of pigment protein complexes in vitro a...

  7. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon anti-bunching

    NARCIS (Netherlands)

    Wientjes, E.; Renger, J.; Curto, A.G.; Cogdell, R.; Hulst, van N.F.

    2014-01-01

    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we

  8. Identifying the quantum correlations in light-harvesting complexes

    International Nuclear Information System (INIS)

    Bradler, Kamil; Wilde, Mark M.; Vinjanampathy, Sai; Uskov, Dmitry B.

    2010-01-01

    One of the major efforts in the quantum biological program is to subject biological systems to standard tests or measures of quantumness. These tests and measures should elucidate whether nontrivial quantum effects may be present in biological systems. Two such measures of quantum correlations are the quantum discord and the relative entropy of entanglement. Here, we show that the relative entropy of entanglement admits a simple analytic form when dynamics and accessible degrees of freedom are restricted to a zero- and single-excitation subspace. We also simulate and calculate the amount of quantum discord that is present in the Fenna-Matthews-Olson protein complex during the transfer of an excitation from a chlorosome antenna to a reaction center. We find that the single-excitation quantum discord and single-excitation relative entropy of entanglement are equal for all of our numerical simulations, but a proof of their general equality for this setting evades us for now. Also, some of our simulations demonstrate that the relative entropy of entanglement without the single-excitation restriction is much lower than the quantum discord. The first picosecond of dynamics is the relevant time scale for the transfer of the excitation, according to some sources in the literature. Our simulation results indicate that quantum correlations contribute a significant fraction of the total correlation during this first picosecond in many cases, at both cryogenic and physiological temperatures.

  9. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.

    Science.gov (United States)

    Wen, Fuyu; Li, Can

    2013-11-19

    Solar fuel production through artificial photosynthesis may be a key to generating abundant and clean energy, thus addressing the high energy needs of the world's expanding population. As the crucial components of photosynthesis, the artificial photosynthetic system should be composed of a light harvester (e.g., semiconductor or molecular dye), a reduction cocatalyst (e.g., hydrogenase mimic, noble metal), and an oxidation cocatalyst (e.g., photosystem II mimic for oxygen evolution from water oxidation). Solar fuel production catalyzed by an artificial photosynthetic system starts from the absorption of sunlight by the light harvester, where charge separation takes place, followed by a charge transfer to the reduction and oxidation cocatalysts, where redox reaction processes occur. One of the most challenging problems is to develop an artificial photosynthetic solar fuel production system that is both highly efficient and stable. The assembly of cocatalysts on the semiconductor (light harvester) not only can facilitate the charge separation, but also can lower the activation energy or overpotential for the reactions. An efficient light harvester loaded with suitable reduction and oxidation cocatalysts is the key for high efficiency of artificial photosynthetic systems. In this Account, we describe our strategy of hybrid photocatalysts using semiconductors as light harvesters with biomimetic complexes as molecular cocatalysts to construct efficient and stable artificial photosynthetic systems. We chose semiconductor nanoparticles as light harvesters because of their broad spectral absorption and relatively robust properties compared with a natural photosynthesis system. Using biomimetic complexes as cocatalysts can significantly facilitate charge separation via fast charge transfer from the semiconductor to the molecular cocatalysts and also catalyze the chemical reactions of solar fuel production. The hybrid photocatalysts supply us with a platform to study the

  10. High pressure near infrared study of the mutated light-harvesting complex LH2

    Directory of Open Access Journals (Sweden)

    Braun P.

    2005-01-01

    Full Text Available The pressure sensitivities of the near infrared spectra of the light-harvesting (LH2 complex and a mutant complex with a simplified BChl-B850 binding pocket were compared. In the mutant an abrupt change in the spectral properties occurred at 250 MPa, which was not observed with the native sample. Increased disorder due to collapse of the chromophore pocket is suggested.

  11. Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes.

    Science.gov (United States)

    Reynolds, Nicholas P; Janusz, Stefan; Escalante-Marun, Maryana; Timney, John; Ducker, Robert E; Olsen, John D; Otto, Cees; Subramaniam, Vinod; Leggett, Graham J; Hunter, C Neil

    2007-11-28

    The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid "biochip" device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an optically active membrane protein, the light-harvesting LH2 complex from Rhodobacter sphaeroides, to patterned self-assembled monolayers at the micron scale and the fabrication of nanometer-scale patterns of these molecules using near-field photolithographic methods. In contrast to plasma proteins, which are reversibly adsorbed on many surfaces, the LH2 complex is readily patterned simply by spatial control of surface polarity. Near-field photolithography has yielded rows of light-harvesting complexes only 98 nm wide. Retention of the native optical properties of patterned LH2 molecules was demonstrated using in situ fluorescence emission spectroscopy.

  12. Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII

    NARCIS (Netherlands)

    Ramanan, Charusheela; Ferretti, Marco; van Roon, Henny; Novoderezhkin, Vladimir I.; van Grondelle, Rienk

    2017-01-01

    LHCII, the major light harvesting antenna from plants, plays a dual role in photosynthesis. In low light it is a light-harvester, while in high light it is a quencher that protects the organism from photodamage. The switching mechanism between these two orthogonal conditions is mediated by protein

  13. Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores.

    Science.gov (United States)

    Yoneda, Yusuke; Noji, Tomoyasu; Katayama, Tetsuro; Mizutani, Naoto; Komori, Daisuke; Nango, Mamoru; Miyasaka, Hiroshi; Itoh, Shigeru; Nagasawa, Yutaka; Dewa, Takehisa

    2015-10-14

    Introducing appropriate artificial components into natural biological systems could enrich the original functionality. To expand the available wavelength range of photosynthetic bacterial light-harvesting complex 2 (LH2 from Rhodopseudomonas acidophila 10050), artificial fluorescent dye (Alexa Fluor 647: A647) was covalently attached to N- and C-terminal Lys residues in LH2 α-polypeptides with a molar ratio of A647/LH2 ≃ 9/1. Fluorescence and transient absorption spectroscopies revealed that intracomplex energy transfer from A647 to intrinsic chromophores of LH2 (B850) occurs in a multiexponential manner, with time constants varying from 440 fs to 23 ps through direct and B800-mediated indirect pathways. Kinetic analyses suggested that B800 chromophores mediate faster energy transfer, and the mechanism was interpretable in terms of Förster theory. This study demonstrates that a simple attachment of external chromophores with a flexible linkage can enhance the light harvesting activity of LH2 without affecting inherent functions of energy transfer, and can achieve energy transfer in the subpicosecond range. Addition of external chromophores, thus, represents a useful methodology for construction of advanced hybrid light-harvesting systems that afford solar energy in the broad spectrum.

  14. Dark excited states of carotenoid in light harvesting complex probing with femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-03-01

    Full Text Available Vibrational dynamics of dark excited states in carotenoids have been investigated using tunable Raman pump pulses. The S1 state has same vibrational dynamics in light-harvesting complex (LH1 and solution. The S* state in LH1 has similar vibrational modes with the triplet state of carotenoid. However, the so-called S* state in solution does not have the modes and is concluded to be different from the S* state in LH1.

  15. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution

    OpenAIRE

    Standfuss, Jörg; Terwisscha van Scheltinga, Anke C.; Lamborghini, Matteo; Kühlbrandt, Werner

    2005-01-01

    The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 Å structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer...

  16. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes.

    Science.gov (United States)

    Akhtar, Parveen; Lingvay, Mónika; Kiss, Teréz; Deák, Róbert; Bóta, Attila; Ughy, Bettina; Garab, Győző; Lambrev, Petar H

    2016-04-01

    Light-harvesting complex II (LHCII), the major peripheral antenna of Photosystem II in plants, participates in several concerted mechanisms for regulation of the excitation energy and electron fluxes in thylakoid membranes. In part, these include interaction of LHCII with Photosystem I (PSI) enhancing the latter's absorption cross-section - for example in the well-known state 1 - state 2 transitions or as a long-term acclimation to high light. In this work we examined the capability of LHCII to deliver excitations to PSI in reconstituted membranes in vitro. Proteoliposomes with native plant thylakoid membrane lipids and different stoichiometric ratios of LHCII:PSI were reconstituted and studied by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission from LHCII was strongly decreased in PSI-LHCII membranes due to trapping of excitations by PSI. Kinetic modelling of the time-resolved fluorescence data revealed the existence of separate pools of LHCII distinguished by the time scale of energy transfer. A strongly coupled pool, equivalent to one LHCII trimer per PSI, transferred excitations to PSI with near-unity efficiency on a time scale of less than 10ps but extra LHCIIs also contributed significantly to the effective antenna size of PSI, which could be increased by up to 47% in membranes containing 3 LHCII trimers per PSI. The results demonstrate a remarkable competence of LHCII to increase the absorption cross-section of PSI, given the opportunity that the two types of complexes interact in the membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Evolution of light-harvesting complex proteins from Chl c-containing algae

    Directory of Open Access Journals (Sweden)

    Puerta M Virginia

    2011-04-01

    Full Text Available Abstract Background Light harvesting complex (LHC proteins function in photosynthesis by binding chlorophyll (Chl and carotenoid molecules that absorb light and transfer the energy to the reaction center Chl of the photosystem. Most research has focused on LHCs of plants and chlorophytes that bind Chl a and b and extensive work on these proteins has uncovered a diversity of biochemical functions, expression patterns and amino acid sequences. We focus here on a less-studied family of LHCs that typically bind Chl a and c, and that are widely distributed in Chl c-containing and other algae. Previous phylogenetic analyses of these proteins suggested that individual algal lineages possess proteins from one or two subfamilies, and that most subfamilies are characteristic of a particular algal lineage, but genome-scale datasets had revealed that some species have multiple different forms of the gene. Such observations also suggested that there might have been an important influence of endosymbiosis in the evolution of LHCs. Results We reconstruct a phylogeny of LHCs from Chl c-containing algae and related lineages using data from recent sequencing projects to give ~10-fold larger taxon sampling than previous studies. The phylogeny indicates that individual taxa possess proteins from multiple LHC subfamilies and that several LHC subfamilies are found in distantly related algal lineages. This phylogenetic pattern implies functional differentiation of the gene families, a hypothesis that is consistent with data on gene expression, carotenoid binding and physical associations with other LHCs. In all probability LHCs have undergone a complex history of evolution of function, gene transfer, and lineage-specific diversification. Conclusion The analysis provides a strikingly different picture of LHC diversity than previous analyses of LHC evolution. Individual algal lineages possess proteins from multiple LHC subfamilies. Evolutionary relationships showed

  18. Coulomb couplings in solubilised light harvesting complex II (LHCII): challenging the ideal dipole approximation from TDDFT calculations.

    Science.gov (United States)

    López-Tarifa, P; Liguori, Nicoletta; van den Heuvel, Naudin; Croce, Roberta; Visscher, Lucas

    2017-07-19

    The light harvesting complex II (LHCII), is a pigment-protein complex responsible for most of the light harvesting in plants. LHCII harvests sunlight and transfers excitation energy to the reaction centre of the photo-system, where the water oxidation process takes place. The energetics of LHCII can be modulated by means of conformational changes allowing a switch from a harvesting to a quenched state. In this state, the excitation energy is no longer transferred but converted into thermal energy to prevent photooxidation. Based on molecular dynamics simulations at the microsecond time scale, we have recently proposed that the switch between different fluorescent states can be probed by correlating shifts in the chromophore-chromophore Coulomb interactions to particular protein movements. However, these findings are based upon calculations in the ideal point dipole approximation (IDA) where the Coulomb couplings are simplified as first order dipole-dipole interactions, also assuming that the chromophore transition dipole moments lay in particular directions of space with constant moduli (FIX-IDA). In this work, we challenge this approximation using the time-dependent density functional theory (TDDFT) combined with the frozen density embedding (FDE) approach. Our aim is to establish up to which limit FIX-IDA can be applied and which chromophore types are better described under this approximation. For that purpose, we use the classical trajectories of solubilised light harvesting complex II (LHCII) we have recently reported [Liguori et al., Sci. Rep., 2015, 5, 15661] and selected three pairs of chromophores containing chlorophyll and carotenoids (Chl and Car): Chla611-Chla612, Chlb606-Chlb607 and Chla612-Lut620. Using the FDE in the Tamm-Dancoff approximation (FDEc-TDA), we show that IDA is accurate enough for predicting Chl-Chl Coulomb couplings. However, the FIX-IDA largely overestimates Chl-Car interactions mainly because the transition dipole for the Cars is not

  19. Trapping Dynamics in Photosystem I-Light Harvesting Complex I of Higher Plants Is Governed by the Competition Between Excited State Diffusion from Low Energy States and Photochemical Charge Separation.

    Science.gov (United States)

    Molotokaite, Egle; Remelli, William; Casazza, Anna Paola; Zucchelli, Giuseppe; Polli, Dario; Cerullo, Giulio; Santabarbara, Stefano

    2017-10-26

    The dynamics of excited state equilibration and primary photochemical trapping have been investigated in the photosystem I-light harvesting complex I isolated from spinach, by the complementary time-resolved fluorescence and transient absorption approaches. The combined analysis of the experimental data indicates that the excited state decay is described by lifetimes in the ranges of 12-16 ps, 32-36 ps, and 64-77 ps, for both detection methods, whereas faster components, having lifetimes of 550-780 fs and 4.2-5.2 ps, are resolved only by transient absorption. A unified model capable of describing both the fluorescence and the absorption dynamics has been developed. From this model it appears that the majority of excited state equilibration between the bulk of the antenna pigments and the reaction center occurs in less than 2 ps, that the primary charge separated state is populated in ∼4 ps, and that the charge stabilization by electron transfer is completed in ∼70 ps. Energy equilibration dynamics associated with the long wavelength absorbing/emitting forms harbored by the PSI external antenna are also characterized by a time mean lifetime of ∼75 ps, thus overlapping with radical pair charge stabilization reactions. Even in the presence of a kinetic bottleneck for energy equilibration, the excited state dynamics are shown to be principally trap-limited. However, direct excitation of the low energy chlorophyll forms is predicted to lengthen significantly (∼2-folds) the average trapping time.

  20. Environmental coupling and population dynamics in the PE545 light-harvesting complex

    Energy Technology Data Exchange (ETDEWEB)

    Aghtar, Mortaza; Kleinekathöfer, Ulrich, E-mail: u.kleinekathoefer@jacobs-university.de

    2016-01-15

    Long-lived quantum coherences have been shown experimentally in the Fenna–Matthews–Olson (FMO) complex of green sulfur bacteria as well as in the phycoerythrin 545 (PE545) photosynthetic antenna system of marine algae. A combination of classical molecular dynamics simulations, quantum chemistry and quantum dynamical calculations is employed to determine the excitation transfer dynamics in PE545. One key property of the light-harvesting system concerning the excitation transfer and dephasing phenomena is the spectral density. This quantity is determined from time series of the vertical excitation energies of the aggregate. In the present study we focus on the quantum dynamical simulations using the earlier QM/MM calculations as input. Employing an ensemble-averaged classical path-based wave packet dynamics, the excitation transfer dynamics between the different bilins in the PE545 complex is determined and analyzed. Furthermore, the nature of the environmental fluctuations determining the transfer dynamics is discussed. - Highlights: • Modeling of excitation energy transfer in the light-harvesting system PE545. • Combination of molecular dynamics simulations, quantum chemistry and quantum dynamics. • Spectral densities for bilins in the PE545 complex.

  1. Protein kinase that phosphorylates light-harvesting complex is autophosphorylated and is associated with photosystem II

    International Nuclear Information System (INIS)

    Coughlan, S.J.; Hind, G.

    1987-01-01

    Thylakoid membranes were phosphorylated with [γ- 32 P]ATP and extracted with octyl glucoside and cholate. Among the radiolabeled phosphoproteins in the extract was a previously characterized protein kinase of 64-kDa apparent mass. The ability of this enzyme to undergo autophosphorylation in situ was used to monitor its distribution in the membrane. Fractionation studies showed that the kinase is confined to granal regions of the thylakoid, where it appears to be associated with the light-harvesting chlorophyll-protein complex of photosystem II. The kinetics of kinase autophosphorylation were investigated both in situ and in extracted, purified enzyme. In the membrane, autophosphorylation saturated within 20-30 min and was reversed with a half-time of 7-8 min upon removal of ATP or oxidative inactivation of the kinase; the accompanying dephosphorylation of light-harvesting complex was slower and kinetically complex. Fluoride (10 mM) inhibited these dephosphorylations. Autophosphorylation of the isolated kinase was independent of enzyme concentration, indicative of an intramolecular mechanism. A maximum of one serine residue per mole of kinase was esterified. Autophosphorylation was more rapid in the presence of histone IIIs, an exogenous substrate. Dephosphorylation of the isolated enzyme was not observed

  2. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy

    Science.gov (United States)

    Ginsberg, Naomi S.; Davis, Jeffrey A.; Ballottari, Matteo; Cheng, Yuan-Chung; Bassi, Roberto; Fleming, Graham R.

    2011-01-01

    The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II. PMID:21321222

  3. Thermo-optically induced reorganizations in the main light harvesting antenna of plants. II

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Varkonyi, Zsuzsanna; Kovacs, Laszlo

    2005-01-01

    We have investigated the circular dichroism spectral transients associated with the light-induced reversible reorganizations in chirally organized macrodomains of pea thylakoid membranes and loosely stacked lamellar aggregates of the main chlorophyll a/b light harvesting complexes (LHCII) isolated...... from the same membranes. These reorganizations have earlier been assigned to originate from a thermo-optic effect. According to the thermo-optic mechanism, fast local thermal transients due to dissipation of the excess excitation energy induce elementary structural changes in the close vicinity...

  4. Bio-Photoelectrochemical Solar Cells Incorporating Reaction Center and Reaction Center Plus Light Harvesting Complexes

    Science.gov (United States)

    Yaghoubi, Houman

    onto Au electrodes via surface exposed cysteine residues. This resulted in photocurrent densities as large as ~600 nA cm-2 while still the incident photon to generated electron quantum efficiency was as low as %3 x 10-4. 2- The second approach is to immobilize wild type RCs of Rhodobacter sphaeroides on the surface of a Au underlying electrode using self-assembled monolayers of carboxylic acid terminated oligomers and cytochrome c charge mediating layers, with a preferential orientation from the primary electron donor site. This approach resulted in EQE of up to 0.06%, which showed 200 times efficiency improvement comparing to the first approach. In the third approach, instead of isolated protein complexes, RCs plus light harvesting (LH) complexes were employed for a better photon absorption. Direct attachment of RC-LH1 complexes on Au working electrodes, resulted in 0.21% EQE which showed 3.5 times efficiency improvement over the second approach (700 times higher than the first approach). The main impact of this work is the harnessing of biological RCs for efficient energy harvesting in man-made structures. Specifically, the results in this work will advance the application of RCs in devices for energy harvesting and will enable a better understanding of bio and nanomaterial interfaces, thereby advancing the application of biological materials in electronic devices. At the end, this work offers general guidelines that can serve to improve the performance of bio-hybrid solar cells.

  5. Population and coherence dynamics in light harvesting complex II (LH2).

    Science.gov (United States)

    Yeh, Shu-Hao; Zhu, Jing; Kais, Sabre

    2012-08-28

    The electronic excitation population and coherence dynamics in the chromophores of the photosynthetic light harvesting complex 2 (LH2) B850 ring from purple bacteria (Rhodopseudomonas acidophila) have been studied theoretically at both physiological and cryogenic temperatures. Similar to the well-studied Fenna-Matthews-Olson (FMO) protein, oscillations of the excitation population and coherence in the site basis are observed in LH2 by using a scaled hierarchical equation of motion approach. However, this oscillation time (300 fs) is much shorter compared to the FMO protein (650 fs) at cryogenic temperature. Both environment and high temperature are found to enhance the propagation speed of the exciton wave packet yet they shorten the coherence time and suppress the oscillation amplitude of coherence and the population. Our calculations show that a long-lived coherence between chromophore electronic excited states can exist in such a noisy biological environment.

  6. Timescales of Coherent Dynamics in the Light Harvesting Complex 2 (LH2) of Rhodobacter sphaeroides.

    Science.gov (United States)

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-05-02

    The initial dynamics of energy transfer in the light harvesting complex 2 from Rhodobacter sphaeroides were investigated with polarization controlled two-dimensional spectroscopy. This method allows only the coherent electronic motions to be observed revealing the timescale of dephasing among the excited states. We observe persistent coherence among all states and assign ensemble dephasing rates for the various coherences. A simple model is utilized to connect the spectroscopic transitions to the molecular structure, allowing us to distinguish coherences between the two rings of chromophores and coherences within the rings. We also compare dephasing rates between excited states to dephasing rates between the ground and excited states, revealing that the coherences between excited states dephase on a slower timescale than coherences between the ground and excited states.

  7. On improving the performance of nonphotochemical quenching in CP29 light-harvesting antenna complex

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P. [Theoretical Division, T-4, Los Alamos National Laboratory, and the New Mexico Consortium, Los Alamos, NM 87544 (United States); Nesterov, Alexander I., E-mail: nesterov@cencar.udg.mx [Departamento de Física, CUCEI, Universidad de Guadalajara, Av. Revolución 1500, Guadalajara, CP 44420, Jalisco (Mexico); Sayre, Richard T. [Biological Division, B-11, Los Alamos National Laboratory, and the New Mexico Consortium, Los Alamos, NM 87544 (United States); Still, Susanne [Department of Information and Computer Sciences, and Department of Physics and Astronomy, University of Hawaii at Mānoa, 1860 East–West Road, Honolulu, HI 96822 (United States)

    2016-03-22

    We model and simulate the performance of charge-transfer in nonphotochemical quenching (NPQ) in the CP29 light-harvesting antenna-complex associated with photosystem II (PSII). The model consists of five discrete excitonic energy states and two sinks, responsible for the potentially damaging processes and charge-transfer channels, respectively. We demonstrate that by varying (i) the parameters of the chlorophyll-based dimer, (ii) the resonant properties of the protein-solvent environment interaction, and (iii) the energy transfer rates to the sinks, one can significantly improve the performance of the NPQ. Our analysis suggests strategies for improving the performance of the NPQ in response to environmental changes, and may stimulate experimental verification. - Highlights: • Improvement of the efficiency of the charge-transfer nonphotochemical quenching in CP29. • Strategy for restoring the NPQ efficiency when the environment changes. • By changing of energy transfer rates to the sinks, one can significantly improve the performance of the NPQ.

  8. On improving the performance of nonphotochemical quenching in CP29 light-harvesting antenna complex

    Science.gov (United States)

    Berman, Gennady P.; Nesterov, Alexander I.; Sayre, Richard T.; Still, Susanne

    2016-03-01

    We model and simulate the performance of charge-transfer in nonphotochemical quenching (NPQ) in the CP29 light-harvesting antenna-complex associated with photosystem II (PSII). The model consists of five discrete excitonic energy states and two sinks, responsible for the potentially damaging processes and charge-transfer channels, respectively. We demonstrate that by varying (i) the parameters of the chlorophyll-based dimer, (ii) the resonant properties of the protein-solvent environment interaction, and (iii) the energy transfer rates to the sinks, one can significantly improve the performance of the NPQ. Our analysis suggests strategies for improving the performance of the NPQ in response to environmental changes, and may stimulate experimental verification.

  9. Investigation of detergent effects on the solution structure of spinach Light Harvesting Complex II

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Mateus B; Smolensky, Dmitriy; Heller, William T; O' Neill, Hugh, E-mail: hellerwt@ornl.gov, E-mail: oneillhm@ornl.gov [Center for Structural Molecular Biology, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2010-11-01

    The properties of spinach light harvesting complex II (LHC II), stabilized in the detergents Triton X-100 (TX100) and n-Octyl-{beta}-D-Glucoside (BOG), were investigated by small-angle neutron scattering (SANS). The LHC II-BOG scattering curve overlaid well with the theoretical scattering curve generated from the crystal structure of LHC II indicating that the protein preparation was in its native functional state. On the other hand, the simulated LHC II curve deviated significantly from the LHC II-TX100 experimental data. Analysis by circular dichroism spectroscopy supported the SANS analysis and showed that LHC II-TX100 is inactivated. This investigation has implications for extracting and stabilizing photosynthetic membrane proteins for the development of biohybrid photoconversion devices.

  10. Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state

    International Nuclear Information System (INIS)

    Savolainen, Janne; Buckup, Tiago; Hauer, Juergen; Jafarpour, Aliakbar; Serrat, Carles; Motzkus, Marcus; Herek, Jennifer L.

    2009-01-01

    Ultrafast relaxation of a carotenoid in an artificial light-harvesting complex has been studied by transient absorption spectroscopy. The transient signal amplitudes at several wavelengths as well as the amplitudes of the underlying species associated spectra (SAS) are analysed for several excitation energies ranging over more than two orders of magnitude (10 nJ/pulse up to 3000 nJ/pulse). Our analysis shows that the contribution from the so-called S* signal on the long-wavelength side of the first allowed S 0 → S 2 transition has a markedly different excitation energy dependence and saturation behaviour than the electronic excited state S 1 . These observations are modelled and explained in terms of a two-photon excitation of a vibrationally hot ground state via an impulsive stimulated Raman scattering (ISRS). The experimental observations of the varying pulse energy dependencies of different excited state species are supported by an analysis based on a density-matrix formalism

  11. Investigation of the effects of different carotenoids on the absorption and CD signals of light harvesting 1 complexes

    NARCIS (Netherlands)

    Georgakopoulou, S.; van der Zwan, G.; Olsen, J.D.; Hunter, C.N.; Niederman, R.A.; van Grondelle, R.

    2006-01-01

    Absorption and circular dichroism (CD) spectra of light-harvesting (LH)1 complexes from the purple bacteria Rhodobacter (Rba.) sphaeroides and Rhodospirillum (Rsp.) rubrum are presented. The complexes exhibit very low intensity, highly nonconservative, near-infrared (NIR) CD spectra. Absorption and

  12. Reconstitution of chlorophyll a/b light-harvesting complexes: xanthophyll-dependent assembly and energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Plumley, F.G.; Schmidt, G.W.

    1987-01-01

    A method for in vitro reconstitution of the chlorophyll a/b light-harvesting complex from LiDodSO/sub 4//heat-denatured or acetone-extracted photosynthetic membranes has been developed. Characterization of the minimum components necessary for the functional organization or pigments in these membrane complexes reveals that xanthophylls are essential structural components.

  13. Quantum transport through complex networks - from light-harvesting proteins to semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Kreisbeck, Christoph

    2012-06-18

    Electron transport through small systems in semiconductor devices plays an essential role for many applications in micro-electronics. One focus of current research lies on establishing conceptually new devices based on ballistic transport in high mobility AlGaAs/AlGa samples. In the ballistic regime, the transport characteristics are determined by coherent interference effects. In order to guide experimentalists to an improved device design, the characterization and understanding of intrinsic device properties is crucial. We develop a time-dependent approach that allows us to simulate experimentally fabricated, complex devicegeometries with an extension of up to a few micrometers. Particularly, we explore the physical origin of unexpected effects that have been detected in recent experiments on transport through Aharonov-Bohm waveguide-interferometers. Such interferometers can be configured as detectors for transfer properties of embedded quantum systems. We demonstrate that a four-terminal waveguide-ring is a suitable setup for measuring the transmission phase of a harmonic quantum dot. Quantum effects are not restricted exclusively to artificial devices but have been found in biological systems as well. Pioneering experiments reveal quantum effects in light-harvesting complexes, the building blocks of photosynthesis. We discuss the Fenna-Matthews-Olson complex, which is a network of coupled bacteriochlorophylls. It acts as an energy wire in the photosynthetic apparatus of green sulfur bacteria. Recent experimental findings suggest that energy transfer takes place in the form of coherent wave-like motion, rather than through classical hopping from one bacteriochlorophyll to the next. However, the question of why and how coherent transfer emerges in light-harvesting complexes is still open. The challenge is to merge seemingly contradictory features that are observed in experiments on two-dimensional spectroscopy into a consistent theory. Here, we provide such a

  14. High-resolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2

    Science.gov (United States)

    Scheuring, Simon; Reiss-Husson, Francoise; Engel, Andreas; Rigaud, Jean-Louis; Ranck, Jean-Luc

    2001-01-01

    Light-harvesting complexes 2 (LH2) are the accessory antenna proteins in the bacterial photosynthetic apparatus and are built up of αβ-heterodimers containing three bacteriochlorophylls and one carotenoid each. We have used atomic force microscopy (AFM) to investigate reconstituted LH2 from Rubrivivax gelatinosus, which has a C-terminal hydrophobic extension of 21 amino acids on the α-subunit. High-resolution topographs revealed a nonameric organization of the regularly packed cylindrical complexes incorporated into the membrane in both orientations. Native LH2 showed one surface which protruded by ∼6 Å and one that protruded by ∼14 Å from the membrane. Topographs of samples reconstituted with thermolysin-digested LH2 revealed a height reduction of the strongly protruding surface to ∼9 Å, and a change of its surface appearance. These results suggested that the α-subunit of R.gelatinosus comprises a single transmembrane helix and an extrinsic C-terminus, and allowed the periplasmic surface to be assigned. Occasionally, large rings (∼120 Å diameter) surrounded by LH2 rings were observed. Their diameter and appearance suggest the large rings to be LH1 complexes. PMID:11406579

  15. Two dimensional crystals of LH2 light-harvesting complexes from Ectothiorhodospira sp. and Rhodobacter capsulatus investigated by electron microscopy

    NARCIS (Netherlands)

    Oling, Frank; Boekema, EJ; deZarate, IO; Visschers, R; vanGrondelle, R; Keegstra, W; Brisson, A; Picorel, R

    1996-01-01

    Two-dimensional crystals of LH2 (B800-850) light-harvesting complexes from Ectothiorhodospira sp, and Rhodobacter capsulatus were obtained by reconstitution of purified protein into phospholipid vesicles and characterized by electron microscopy. The size of the crystals was up to several

  16. Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2.

    Science.gov (United States)

    Urboniene, V; Vrublevskaja, O; Trinkunas, G; Gall, A; Robert, B; Valkunas, L

    2007-09-15

    We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.

  17. Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic-Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, NHC; Gruenke, NL; Oliver, TAA; Ballottari, M; Bassi, R; Fleming, GR

    2016-10-05

    Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this article, we present two-dimensional electronic–vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Lastly, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.

  18. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens.

    Science.gov (United States)

    Pinnola, Alberta; Dall'Osto, Luca; Gerotto, Caterina; Morosinotto, Tomas; Bassi, Roberto; Alboresi, Alessandro

    2013-09-01

    Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)-dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments.

  19. Zeaxanthin Binds to Light-Harvesting Complex Stress-Related Protein to Enhance Nonphotochemical Quenching in Physcomitrella patens[W

    Science.gov (United States)

    Pinnola, Alberta; Dall’Osto, Luca; Gerotto, Caterina; Morosinotto, Tomas; Bassi, Roberto; Alboresi, Alessandro

    2013-01-01

    Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)–dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments. PMID:24014548

  20. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution

    Science.gov (United States)

    Standfuss, Jörg; Terwisscha van Scheltinga, Anke C; Lamborghini, Matteo; Kühlbrandt, Werner

    2005-01-01

    The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 Å structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer. Spectral assignment of individual chlorophylls indicates the flow of energy in the complex and the mechanism of photoprotection in two close chlorophyll a–lutein pairs. We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat. Our structure shows the complex in a quenched state, which may be relevant for the rapid, pH-induced component of nonphotochemical quenching. PMID:15719016

  1. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution.

    Science.gov (United States)

    Standfuss, Jörg; Terwisscha van Scheltinga, Anke C; Lamborghini, Matteo; Kühlbrandt, Werner

    2005-03-09

    The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 A structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer. Spectral assignment of individual chlorophylls indicates the flow of energy in the complex and the mechanism of photoprotection in two close chlorophyll a-lutein pairs. We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat. Our structure shows the complex in a quenched state, which may be relevant for the rapid, pH-induced component of nonphotochemical quenching.

  2. STUDY ON THE STRUCTURAL BASIS OF PERIPHERAL LIGHT HARVESTING COMPLEXES (LH2 IN PURPLE NON-SULPHUR PHOTOSYNTHETIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Tatas H.P. Brotosudarmo

    2010-12-01

    Full Text Available Photosynthesis provides an example of a natural process that has been optimized during evolution to harness solar energy efficiently and safely, and finally to use it to produce a carbon-based fuel. Initially, solar energy is captured by the light harvesting pigment-protein complexes. In purple bacteria these antenna complexes are constructed on a rather simple modular basis. Light absorbed by these antenna complexes is funnelled downhill to reaction centres, where light drives a trans-membrane redox reaction. The light harvesting proteins not only provide the scaffolding that correctly positions the bacteriochlorophyll a and carotenoid pigments for optimal energy transfer but also creates an environment that can modulate the wavelength at which different bacteriochlorophyll molecules absorb light thereby creating the energy funnel. How these proteins can modulate the absorption spectra of the bacteriochlorophylls will be discussed in this review.

  3. Nanoscale Confinement and Fluorescence Effects of Bacterial Light Harvesting Complex LH2 in Mesoporous Silicas

    DEFF Research Database (Denmark)

    Ikemoto, Hideki; Tubasum, Sumera; Pullerits, Tonu

    2013-01-01

    Many key chemical and biochemical reactions, particularly in living cells, take place in confined space at the mesoscopic scale. Towards understanding of physicochemical nature of biomacromolecules confined in nanoscale space, in this work we have elucidated fluorescent effects of a light harvest...

  4. The three isoforms of the light-harvesting complex II Spectroscopic features, trimer formation, and functional roles

    CERN Document Server

    Standfuss, Jorg

    2004-01-01

    The major light-harvesting complex (LHC-II) of higher plants plays a crucial role in capturing light energy for photosynthesis and in regulating the flow of energy within the photosynthetic apparatus. Native LHC-II isolated from plant tissue consists of three isoforms, Lhcb1, Lhcb2, and Lhcb3, which form homo- and heterotrimers. All three isoforms are highly conserved among different species, suggesting distinct functional roles. We produced the three LHC-II isoforms by heterologous expression of the polypeptide in Escherichia coli and in vitro refolding with purified pigments. Although Lhcb1 and Lhcb2 are very similar in polypeptide sequence and pigment content, Lhcb3 is clearly different because it lacks an N-terminal phosphorylation site and has a higher chlorophyll a/b ratio, suggesting the absence of one chlorophyll b. Low temperature absorption and fluorescence emission spectra of the pure isoforms revealed small but significant differences in pigment organization. The oligomeric state of the pure isofo...

  5. Subtle spectral effects accompanying the assembly of bacteriochlorophylls into cyclic light harvesting complexes revealed by high-resolution fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rätsep, Margus, E-mail: margus.ratsep@ut.ee; Pajusalu, Mihkel, E-mail: mihkel.pajusalu@ut.ee; Linnanto, Juha Matti, E-mail: juha.matti.linnanto@ut.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Freiberg, Arvi, E-mail: arvi.freiberg@ut.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu (Estonia)

    2014-10-21

    We have observed that an assembly of the bacteriochloropyll a molecules into B850 and B875 groups of cyclic bacterial light-harvesting complexes LH2 and LH1, respectively, results an almost total loss of the intra-molecular vibronic structure in the fluorescence spectrum, and simultaneously, an essential enhancement of its phonon sideband due to electron-phonon coupling. While the suppression of the vibronic coupling in delocalized (excitonic) molecular systems is predictable, as also confirmed by our model calculations, a boost of the electron-phonon coupling is rather unexpected. The latter phenomenon is explained by exciton self-trapping, promoted by mixing the molecular exciton states with charge transfer states between the adjacent chromophores in the tightly packed B850 and B875 arrangements. Similar, although less dramatic trends were noted for the light-harvesting complexes containing chlorophyll pigments.

  6. Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica

    Czech Academy of Sciences Publication Activity Database

    Kesan, G.; Litvín, Radek; Bína, David; Durchan, Milan; Šlouf, V.; Polívka, Tomáš

    2016-01-01

    Roč. 1857, č. 4 (2016), s. 370-379 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GAP205/11/1164; GA ČR GBP501/12/G055; GA ČR(CZ) GP14-01377P Institutional support: RVO:60077344 Keywords : Carotenoids * Energy transfer * Light-harvesting complex Subject RIV: BO - Biophysics Impact factor: 4.932, year: 2016

  7. Complex epsilon-near-zero metamaterials for broadband light harvesting systems

    KAUST Repository

    Bonifazi, Marcella; Tian, Yi; Fratalocchi, Andrea

    2018-01-01

    We engineered an epsilon-near-zero (ENZ) material from suitably disordered metallic nanostructures. We create a new class of dispersionless composite materials that efficiently harnesses white light. By means of Atomic Force Microscopy (AFM) and Photoluminescence (PLE) measurements we experimentally demonstrate that this nanomaterial increases up to a record value the absorption of ultra-thin light harvesting films at visible and infrared wavelengths. Moreover, we obtained a 170% broadband increase of the external quantum efficiency (EQE) when these ENZ materials are inserted in an energy-harvesting module. We developed an inexpensive electrochemical deposition process that enables large-scale production of this material for energy-harvesting applications.

  8. Complex epsilon-near-zero metamaterials for broadband light harvesting systems

    KAUST Repository

    Bonifazi, Marcella

    2018-02-17

    We engineered an epsilon-near-zero (ENZ) material from suitably disordered metallic nanostructures. We create a new class of dispersionless composite materials that efficiently harnesses white light. By means of Atomic Force Microscopy (AFM) and Photoluminescence (PLE) measurements we experimentally demonstrate that this nanomaterial increases up to a record value the absorption of ultra-thin light harvesting films at visible and infrared wavelengths. Moreover, we obtained a 170% broadband increase of the external quantum efficiency (EQE) when these ENZ materials are inserted in an energy-harvesting module. We developed an inexpensive electrochemical deposition process that enables large-scale production of this material for energy-harvesting applications.

  9. The low molecular weight protein PsaI stabilizes the light-harvesting complex II docking site of photosystem I

    DEFF Research Database (Denmark)

    Plöchinger, Magdalena; Torabi, Salar; Rantala, Marjaana

    2016-01-01

    PsaI represents one of three low molecular weight peptides of PSI. Targeted inactivation of the plastid PsaI gene in Nicotiana tabacum has no measurable effect on photosynthetic electron transport around PSI or on accumulation of proteins involved in photosynthesis. Instead, the lack of Psa......I destabilizes the association of PsaL and PsaH to PSI, both forming the light-harvesting complex (LHC)II docking site of PSI. These alterations at the LHCII binding site surprisingly did not prevent state transition but led to an increased incidence of PSI-LHCII complexes, coinciding with an elevated...

  10. The ring structure and organization of light harvesting 2 complexes in a reconstituted lipid bilayer, resolved by atomic force microscopy.

    Science.gov (United States)

    Stamouli, Amalia; Kafi, Sidig; Klein, Dionne C G; Oosterkamp, Tjerk H; Frenken, Joost W M; Cogdell, Richard J; Aartsma, Thijs J

    2003-04-01

    The main function of the transmembrane light-harvesting complexes in photosynthetic organisms is the absorption of a light quantum and its subsequent rapid transfer to a reaction center where a charge separation occurs. A combination of freeze-thaw and dialysis methods were used to reconstitute the detergent-solubilized Light Harvesting 2 complex (LH2) of the purple bacterium Rhodopseudomonas acidophila strain 10050 into preformed egg phosphatidylcholine liposomes, without the need for extra chemical agents. The LH2-containing liposomes opened up to a flat bilayer, which were imaged with tapping and contact mode atomic force microscopy under ambient and physiological conditions, respectively. The LH2 complexes were packed in quasicrystalline domains. The endoplasmic and periplasmic sides of the LH2 complexes could be distinguished by the difference in height of the protrusions from the lipid bilayer. The results indicate that the complexes entered in intact liposomes. In addition, it was observed that the most hydrophilic side, the periplasmic, enters first in the membrane. In contact mode the molecular structure of the periplasmic side of the transmembrane pigment-protein complex was observed. Using Föster's theory for describing the distance dependent energy transfer, we estimate the dipole strength for energy transfer between two neighboring LH2s, based on the architecture of the imaged unit cell.

  11. Protein Structural Deformation Induced Lifetime Shortening of Photosynthetic Bacteria Light-Harvesting Complex LH2 Excited State

    OpenAIRE

    Chen, Xing-Hai; Zhang, Lei; Weng, Yu-Xiang; Du, Lu-Chao; Ye, Man-Ping; Yang, Guo-Zhen; Fujii, Ritsuko; Rondonuwu, Ferdy S.; Koyama, Yasushi; Wu, Yi-Shi; Zhang, J. P.

    2005-01-01

    Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO2 nanoparticles in the colloidal solution. The LH2/TiO2 assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO2. The possibility that the decrease of the LH2 excited-state lifetime being caused by ...

  12. Ultrafast pump-probe spectroscopy of Zinc Phthalocynine (ZnPc) and light harvesting complex II (LHC II)

    CSIR Research Space (South Africa)

    Ombinda-Lemboumba, Saturnin

    2009-07-01

    Full Text Available pump-probe spectroscopy of Zinc Phthalocynine (ZnPc) and light harvesting complex II (LHC II) SAIP 7-10 July 2009, University of Kwazulu Natal. S. Ombinda-Lemboumba1, 2 A. du Plessis1, L. Botha1, D.E. Roberts1, P. Molukanele1, 3, R.W. Sparrow3, E... and phtobiology (2008) Page 12 Conclusion SAIP 7-10 July 2009, University of Kwazulu natal Femto group © CSIR 2008 www.csir.co.za • Presented our method of correcting chirp induced by white light generation. • Pump...

  13. Energy transfer between surface-immobilized light-harvesting chlorophyll a/b complex (LHCII) studied by surface plasmon field-enhanced fluorescence spectroscopy (SPFS).

    Science.gov (United States)

    Lauterbach, Rolf; Liu, Jing; Knoll, Wolfgang; Paulsen, Harald

    2010-11-16

    The major light-harvesting chlorophyll a/b complex (LHCII) of the photosynthetic apparatus in green plants can be viewed as a protein scaffold binding and positioning a large number of pigment molecules that combines rapid and efficient excitation energy transfer with effective protection of its pigments from photobleaching. These properties make LHCII potentially interesting as a light harvester (or a model thereof) in photoelectronic applications. Most of such applications would require the LHCII to be immobilized on a solid surface. In a previous study we showed the immobilization of recombinant LHCII on functionalized gold surfaces via a 6-histidine tag (His tag) in the protein moiety. In this work the occurrence and efficiency of Förster energy transfer between immobilized LHCII on a functionalized surface have been analyzed by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). A near-infrared dye was attached to some but not all of the LHC complexes, serving as an energy acceptor to chlorophylls. Analysis of the energy transfer from chlorophylls to this acceptor dye yielded information about the extent of intercomplex energy transfer between immobilized LHCII.

  14. Two photon absorption energy transfer in the light-harvesting complex of photosystem II (LHC-II) modified with organic boron dye

    Science.gov (United States)

    Chen, Li; Liu, Cheng; Hu, Rui; Feng, Jiao; Wang, Shuangqing; Li, Shayu; Yang, Chunhong; Yang, Guoqiang

    2014-07-01

    The plant light-harvesting complexes of photosystem II (LHC-II) play important roles in collecting solar energy and transferring the energy to the reaction centers of photosystems I and II. A two photon absorption compound, 4-(bromomethyl)-N-(4-(dimesitylboryl)phenyl)-N-phenylaniline (DMDP-CH2Br), was synthesized and covalently linked to the LHC-II in formation of a LHC-II-dye complex, which still maintained the biological activity of LHC-II system. Under irradiation with femtosecond laser pulses at 754 nm, the LHC-II-dye complex can absorb two photons of the laser light effectively compared with the wild type LHC-II. The absorbed excitation energy is then transferred to chlorophyll a with an obvious fluorescence enhancement. The results may be interesting and give potentials for developing hybrid photosystems.

  15. Singlet-triplet fission of carotenoid excitation in light-harvesting LH2 complexes of purple phototrophic bacteria.

    Science.gov (United States)

    Klenina, I B; Makhneva, Z K; Moskalenko, A A; Gudkov, N D; Bolshakov, M A; Pavlova, E A; Proskuryakov, I I

    2014-03-01

    The current generally accepted structure of light-harvesting LH2 complexes from purple phototrophic bacteria conflicts with the observation of singlet-triplet carotenoid excitation fission in these complexes. In LH2 complexes from the purple bacterium Allochromatium minutissimum, a drop in the efficiency of carotenoid triplet generation is demonstrated, which correlates with the extent of selective photooxidation of bacteriochlorophylls absorbing at ~850 nm. We conclude that singlet-triplet fission of carotenoid excitation proceeds with participation of these excitonically coupled bacteriochlorophylls. In the framework of the proposed mechanism, the contradiction between LH2 structure and photophysical properties of carotenoids is eliminated. The possibility of singlet-triplet excitation fission involving a third mediator molecule was not considered earlier.

  16. Unified analysis of ensemble and single-complex optical spectral data from light-harvesting complex-2 chromoproteins for gaining deeper insight into bacterial photosynthesis

    Science.gov (United States)

    Pajusalu, Mihkel; Kunz, Ralf; Rätsep, Margus; Timpmann, Kõu; Köhler, Jürgen; Freiberg, Arvi

    2015-11-01

    Bacterial light-harvesting pigment-protein complexes are very efficient at converting photons into excitons and transferring them to reaction centers, where the energy is stored in a chemical form. Optical properties of the complexes are known to change significantly in time and also vary from one complex to another; therefore, a detailed understanding of the variations on the level of single complexes and how they accumulate into effects that can be seen on the macroscopic scale is required. While experimental and theoretical methods exist to study the spectral properties of light-harvesting complexes on both individual complex and bulk ensemble levels, they have been developed largely independently of each other. To fill this gap, we simultaneously analyze experimental low-temperature single-complex and bulk ensemble optical spectra of the light-harvesting complex-2 (LH2) chromoproteins from the photosynthetic bacterium Rhodopseudomonas acidophila in order to find a unique theoretical model consistent with both experimental situations. The model, which satisfies most of the observations, combines strong exciton-phonon coupling with significant disorder, characteristic of the proteins. We establish a detailed disorder model that, in addition to containing a C2-symmetrical modulation of the site energies, distinguishes between static intercomplex and slow conformational intracomplex disorders. The model evaluations also verify that, despite best efforts, the single-LH2-complex measurements performed so far may be biased toward complexes with higher Huang-Rhys factors.

  17. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    International Nuclear Information System (INIS)

    Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong; Yu Yunjin; Cao Jianshu

    2012-01-01

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.

  18. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Yu Yunjin [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); College of Physics Science and Technology, Shenzhen University, Guangdong 518060 (China); Cao Jianshu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2012-06-28

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.

  19. Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica.

    Science.gov (United States)

    Keşan, Gürkan; Litvín, Radek; Bína, David; Durchan, Milan; Šlouf, Václav; Polívka, Tomáš

    2016-04-01

    Violaxanthin-chlorophyll a protein (VCP) from Nannochloropsis oceanica is a Chl a-only member of the LHC family of light-harvesting proteins. VCP binds carotenoids violaxanthin (Vio), vaucheriaxanthin (Vau), and vaucheriaxanthin-ester (Vau-ester). Here we report on energy transfer pathways in the VCP complex. The overall carotenoid-to-Chla energy transfer has efficiency over 90%. Based on their energy transfer properties, the carotenoids in VCP can be divided into two groups; blue carotenoids with the lowest energy absorption band around 480nm and red carotenoids with absorption extended up to 530nm. Both carotenoid groups transfer energy efficiently from their S2 states, reaching efficiencies of ~70% (blue) and ~60% (red). The S1 pathway, however, is efficient only for the red carotenoid pool for which two S1 routes characterized by 0.33 and 2.4ps time constants were identified. For the blue carotenoids the S1-mediated pathway is represented only by a minor route likely involving a hot S1 state. The relaxed S1 state of blue carotenoids decays to the ground state within 21ps. Presence of a fraction of non-transferring red carotenoids with the S1 lifetime of 13ps indicates some specific carotenoid-protein interaction that must shorten the intrinsic S1 lifetime of Vio and/or Vau whose S1 lifetimes in methanol are 26 and 29ps, respectively. The VCP complex from N. oceanica is the first example of a light-harvesting complex binding only non-carbonyl carotenoids with carotenoid-to-chlorophyll energy transfer efficiency over 90%. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2.

    Science.gov (United States)

    Harel, Elad; Long, Phillip D; Engel, Gregory S

    2011-05-01

    Here we present two-dimensional (2D) electronic spectra of the light-harvesting complex LH2 from purple bacteria using coherent pulses with bandwidth of over 100 nm FWHM. This broadband excitation and detection has allowed the simultaneous capture of both the B800 and B850 bands using a single light source. We demonstrate that one laser pulse is sufficient to capture the entire 2D electronic spectrum with a high signal-to-noise ratio. At a waiting time of 800 fs, we observe population transfer from the B800 to B850 band as manifested by a prominent cross peak. These results will enable observation of the dynamics of biological systems across both ultrafast (1 ms) timescales simultaneously.

  1. Femtosecond pump probe spectroscopy for the study of energy transfer of light-harvesting complexes from extractions of spinach leaves

    Directory of Open Access Journals (Sweden)

    L. van Rensburg

    2010-01-01

    Full Text Available Measurements of ultrafast transient processes, of temporal durations in the picosecond and femtosecond regime, are made possible by femtosecond pump probe transient absorption spectroscopy. Such an ultrafast pump probe transient absorption setup has been implemented at the CSIR National Laser Centre and has been applied to investigate energy transfer processes in different parts of photosynthetic systems. In this paper we report on our first results obtained with Malachite green as a benchmark. Malachite green was chosen because the lifetime of its excited state is well known. We also present experimental results of the ultrafast energy transfer of light-harvesting complexes in samples prepared from spinach leaves. Various pump wavelengths in the range 600–680 nm were used; the probe was a white light continuum spanning 420–700 nm. The experimental setup is described in detail in this paper. Results obtained with these samples are consistent with those expected and achieved by other researchers in this field.

  2. Effects of excited state mixing on transient absorption spectra in dimers Application to photosynthetic light-harvesting complex II

    CERN Document Server

    Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R

    1999-01-01

    The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...

  3. Light-harvesting features revealed by the structure of plant Photosystem I

    CERN Document Server

    Ben-Shem, A; Nelson, N; 10.1023/B:PRES.0000036881.23512.42

    2004-01-01

    Oxygenic photosynthesis is driven by two multi-subunit membrane protein complexes, Photosystem I and Photosystem II. In plants and green algae, both complexes are composed of two moieties: a reaction center (RC), where light-induced charge translocation occurs, and a peripheral antenna that absorbs light and funnels its energy to the reaction center. The peripheral antenna of PS I (LHC I) is composed of four gene products (Lhca 1-4) that are unique among the chlorophyll a/b binding proteins in their pronounced long-wavelength absorbance and in their assembly into dimers. The recently determined structure of plant Photosystem I provides the first relatively high- resolution structural model of a super-complex containing a reaction center and its peripheral antenna. We describe some of the structural features responsible for the unique properties of LHC I and discuss the advantages of the particular LHC I dimerization mode over monomeric or trimeric forms. In addition, we delineate some of the interactions betw...

  4. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Hacking, Kirsty; Niedzwiedzki, Dariusz M; Gibson, George N; Cogdell, Richard J; Frank, Harry A

    2016-02-01

    Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.

  5. Induction of Efficient Energy Dissipation in the Isolated Light-harvesting Complex of Photosystem II in the Absence of Protein Aggregation

    NARCIS (Netherlands)

    Ilioaia, C.; Johnson, M.P.; Horton, P.; Ruban, A.V.

    2008-01-01

    Under excess illumination, the Photosystem II light-harvesting antenna of higher plants has the ability to switch into an efficient photoprotective mode, allowing safe dissipation of excitation energy into heat. In this study, we show induction of the energy dissipation state, monitored by

  6. The role of energy losses in photosynthetic light harvesting

    Science.gov (United States)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  7. The role of energy losses in photosynthetic light harvesting

    International Nuclear Information System (INIS)

    Krüger, T P J; Van Grondelle, R

    2017-01-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example. (topical review)

  8. Communication: Broad manifold of excitonic states in light-harvesting complex 1 promotes efficient unidirectional energy transfer in vivo

    Science.gov (United States)

    Sohail, Sara H.; Dahlberg, Peter D.; Allodi, Marco A.; Massey, Sara C.; Ting, Po-Chieh; Martin, Elizabeth C.; Hunter, C. Neil; Engel, Gregory S.

    2017-10-01

    In photosynthetic organisms, the pigment-protein complexes that comprise the light-harvesting antenna exhibit complex electronic structures and ultrafast dynamics due to the coupling among the chromophores. Here, we present absorptive two-dimensional (2D) electronic spectra from living cultures of the purple bacterium, Rhodobacter sphaeroides, acquired using gradient assisted photon echo spectroscopy. Diagonal slices through the 2D lineshape of the LH1 stimulated emission/ground state bleach feature reveal a resolvable higher energy population within the B875 manifold. The waiting time evolution of diagonal, horizontal, and vertical slices through the 2D lineshape shows a sub-100 fs intra-complex relaxation as this higher energy population red shifts. The absorption (855 nm) of this higher lying sub-population of B875 before it has red shifted optimizes spectral overlap between the LH1 B875 band and the B850 band of LH2. Access to an energetically broad distribution of excitonic states within B875 offers a mechanism for efficient energy transfer from LH2 to LH1 during photosynthesis while limiting back transfer. Two-dimensional lineshapes reveal a rapid decay in the ground-state bleach/stimulated emission of B875. This signal, identified as a decrease in the dipole strength of a strong transition in LH1 on the red side of the B875 band, is assigned to the rapid localization of an initially delocalized exciton state, a dephasing process that frustrates back transfer from LH1 to LH2.

  9. Protein structural deformation induced lifetime shortening of photosynthetic bacteria light-harvesting complex LH2 excited state.

    Science.gov (United States)

    Chen, Xing-Hai; Zhang, Lei; Weng, Yu-Xiang; Du, Lu-Chao; Ye, Man-Ping; Yang, Guo-Zhen; Fujii, Ritsuko; Rondonuwu, Ferdy S; Koyama, Yasushi; Wu, Yi-Shi; Zhang, J P

    2005-06-01

    Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO(2) nanoparticles in the colloidal solution. The LH2/TiO(2) assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO(2). The possibility that the decrease of the LH2 excited-state lifetime being caused by an interfacial electron transfer reaction between B850 and the TiO(2) nanoparticle was precluded experimentally. We proposed that the observed change in the photophysical properties of LH2 when assembled onto TiO(2) nanoparticles is arising from the interfacial-interaction-induced structural deformation of the LH2 complex deviating from an ellipse of less eccentric to a more eccentric ellipse, and the observed phenomenon can be accounted by an elliptical exciton model. Experiment by using photoinactive SiO(2) nanoparticle in place of TiO(2) and core complex LH1 instead of LH2 provide further evidence to the proposed mechanism.

  10. Scalable high-performance algorithm for the simulation of exciton-dynamics. Application to the light harvesting complex II in the presence of resonant vibrational modes

    DEFF Research Database (Denmark)

    Kreisbeck, Christoph; Kramer, Tobias; Aspuru-Guzik, Alán

    2014-01-01

    high-performance many-core platforms using the Open Compute Language (OpenCL). For the light-harvesting complex II (LHC II) found in spinach, the HEOM results deviate from predictions of approximate theories and clarify the time-scale of the transfer-process. We investigate the impact of resonantly...

  11. Two-dimensional crystals of LH2 light-harvesting complexes from Ectothiorhodospira sp. and Rhodobacter capsulatus investigated by electron microscopy.

    NARCIS (Netherlands)

    Oling, F.; Boekema, E.J.; Ortiz de Zarate, I.; Visschers, R.W.; van Grondelle, R.; Keegstra, W.; Brisson, A.; Picorel, R.

    1996-01-01

    Two-dimensional crystals of LH2 (B800-850) light-harvesting complexes from Ectothiorhodospira sp. and Rhodobacter capsulatus were obtained by reconstitution of purified protein into phospholipid vesicles and characterized by electron microscopy. The size of the crystals was up to several

  12. Quenching of chlorophyll a singlets and triplets by carotenoids in light-harvesting complex of photosystem II: comparison of aggregates with trimers

    Science.gov (United States)

    Naqvi, K. Razi; Melø, T. B.; Raju, B. Bangar; Jávorfi, Tamás; Simidjiev, Ilian; Garab, Gyözö

    1997-12-01

    Laser-induced changes in the absorption spectra of isolated light-harvesting chlorophyll a/ b complex (LHC II) associated with photosystem II of higher plants have been recorded under anaerobic conditions and at ambient temperature by using multichannel detection with sub-microsecond time resolution. Difference spectra (Δ A) of LHC II aggregates have been found to differ from the corresponding spectra of trimers on two counts: (i) in the aggregates, the carotenoid (Car) triplet-triplet absorption band (Δ A>0) is red-shifted and broader; and (ii) the features attributable to the perturbation of the Qy band of a chlorophyll a (Chl a) by a nearby Car triplet are more pronounced, than in trimers. Aggregation, which is known to be accompanied by a reduction in the fluorescence yield of Chl a, is shown to cause a parallel decline in the triplet formation yield of Chl a; on the other hand, the efficiency (100%) of Chl a-to-Car transfer of triplet energy and the lifetime (9.3 μs) of Car triplets are not affected by aggregation. These findings are rationalized by postulating that the antenna Cars transact, besides light-harvesting and photoprotection, a third process: energy dissipation within the antenna. The suggestion is advanced that luteins, which are buried inside the LHC II monomers, as well as the other, peripheral, xanthophylls (neoxanthin and violaxanthin) quench the excited singlet state of Chl a by catalyzing internal conversion, a decay channel that competes with fluorescence and intersystem crossing; support for this explanation is presented by recalling reports of similar behaviour in bichromophoric model compounds in which one moiety is a Car and the other a porphyrin or a pyropheophorbide.

  13. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy.

    Science.gov (United States)

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-10-21

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.

  14. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Fuciman, Marcel; Kobayashi, Masayuki; Frank, Harry A; Blankenship, Robert E

    2011-10-01

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N=11) and spirilloxanthin (N=13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N=13) to play the role of the direct quencher of the excited singlet state of BChl. © Springer Science+Business Media B.V. 2011

  15. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Andrew F.; Singh, Ved P.; Engel, Gregory S. [Department of Chemistry, The Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Long, Phillip D.; Dahlberg, Peter D. [Graduate Program in the Biophysical Sciences, The University of Chicago, Chicago, Illinois 60637 (United States)

    2013-10-21

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.

  16. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy

    International Nuclear Information System (INIS)

    Fidler, Andrew F.; Singh, Ved P.; Engel, Gregory S.; Long, Phillip D.; Dahlberg, Peter D.

    2013-01-01

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex

  17. Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Maryana [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Maury, Pascale [Molecular Nanofabrication Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Bruinink, Christiaan M [Molecular Nanofabrication Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Werf, Kees van der [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Olsen, John D [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom); Timney, John A [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom); Huskens, Jurriaan [Molecular Nanofabrication Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Hunter, C Neil [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom); Subramaniam, Vinod [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Otto, Cees [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)

    2008-01-16

    We report the directed assembly of the photosynthetic membrane proteins LH1 and LH2 isolated from the purple bacterium Rhodobacter sphaeroides onto chemically patterned substrates. Nanoimprint lithography was used to pattern discrete regions of amino- and fluoro-terminated or poly(ethylene glycol) self-assembled monolayers onto a glass substrate. Densely packed layers of assembled protein complexes were observed with atomic force microscopy. The protein complexes attached selectively to the amino-terminated regions by electrostatic interactions. Spectral images generated with a hybrid scanning probe and fluorescence microscope confirmed that the patterned proteins retained their native optical signatures.

  18. Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces

    International Nuclear Information System (INIS)

    Escalante, Maryana; Maury, Pascale; Bruinink, Christiaan M; Werf, Kees van der; Olsen, John D; Timney, John A; Huskens, Jurriaan; Hunter, C Neil; Subramaniam, Vinod; Otto, Cees

    2008-01-01

    We report the directed assembly of the photosynthetic membrane proteins LH1 and LH2 isolated from the purple bacterium Rhodobacter sphaeroides onto chemically patterned substrates. Nanoimprint lithography was used to pattern discrete regions of amino- and fluoro-terminated or poly(ethylene glycol) self-assembled monolayers onto a glass substrate. Densely packed layers of assembled protein complexes were observed with atomic force microscopy. The protein complexes attached selectively to the amino-terminated regions by electrostatic interactions. Spectral images generated with a hybrid scanning probe and fluorescence microscope confirmed that the patterned proteins retained their native optical signatures

  19. Long-Range Energy Propagation in Nanometer Arrays of Light Harvesting Antenna Complexes

    NARCIS (Netherlands)

    Escalantet, Maryana; Escalante Marun, M.; Lenferink, Aufrid T.M.; Zhao, Yiping; Tas, Niels Roelof; Huskens, Jurriaan; Hunter, C. Neil; Subramaniam, Vinod; Otto, Cornelis

    2010-01-01

    Here we report the first observation of long-range transport of excitation energy within a biomimetic molecular nanoarray constructed from LH2 antenna complexes from Rhodobacter sphaeroides. Fluorescence microscopy of the emission of light after local excitation with a diffraction-limited light beam

  20. Identification of protein W, the elusive sixth subunit of the Rhodopseudomonas palustris reaction center-light harvesting 1 core complex.

    Science.gov (United States)

    Jackson, Philip J; Hitchcock, Andrew; Swainsbury, David J K; Qian, Pu; Martin, Elizabeth C; Farmer, David A; Dickman, Mark J; Canniffe, Daniel P; Hunter, C Neil

    2018-02-01

    The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a sixth protein component, variably referred to in the literature as helix W, subunit W or protein W. The position of this protein prevents closure of the LH1 ring, possibly to allow diffusion of ubiquinone/ubiquinol between the RC and the cytochrome bc 1 complex in analogous fashion to the well-studied PufX protein from Rhodobacter sphaeroides. The identity and function of helix W have remained unknown for over 13years; here we use a combination of biochemistry, mass spectrometry, molecular genetics and electron microscopy to identify this protein as RPA4402 in Rps. palustris CGA009. Protein W shares key conserved sequence features with PufX homologs, and although a deletion mutant was able to grow under photosynthetic conditions with no discernible phenotype, we show that a tagged version of protein W pulls down the RC-LH1 complex. Protein W is not encoded in the photosynthesis gene cluster and our data indicate that only approximately 10% of wild-type Rps. palustris core complexes contain this non-essential subunit; functional and evolutionary consequences of this observation are discussed. The ability to purify uniform RC-LH1 and RC-LH1-protein W preparations will also be beneficial for future structural studies of these bacterial core complexes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Static and dynamic protein impact on electronic properties of light-harvesting complex LH2.

    Science.gov (United States)

    Zerlauskiene, O; Trinkunas, G; Gall, A; Robert, B; Urboniene, V; Valkunas, L

    2008-12-11

    A comparative analysis of the temperature dependence of the absorption spectra of the LH2 complexes from different species of photosynthetic bacteria, i.e., Rhodobacter sphaeroides, Rhodoblastus acidophilus, and Phaeospirillum molischianum, was performed in the temperature range from 4 to 300 K. Qualitatively, the temperature dependence is similar for all of the species studied. The spectral bandwidths of both B800 and B850 bands increases with temperature while the band positions shift in opposite directions: the B800 band shifts slightly to the red while the B850 band to the blue. These results were analyzed using the modified Redfield theory based on the exciton model. The main conclusion drawn from the analysis was that the spectral density function (SDF) is the main factor underlying the strength of the temperature dependence of the bandwidths for the B800 and B850 electronic transitions, while the bandwidths themselves are defined by the corresponding inhomogeneous distribution function (IDF). Slight variation of the slope of the temperature dependence of the bandwidths between species can be attributed to the changes of the values of the reorganization energies and characteristic frequencies determining the SDF. To explain the shift of the B850 band position with temperature, which is unusual for the conventional exciton model, a temperature dependence of the IDF must be postulated. This dependence can be achieved within the framework of the modified (dichotomous) exciton model. The slope of the temperature dependence of the B850 bandwidth is then defined by the value of the reorganization energy and by the difference between the transition energies of the dichotomous states of the pigment molecules. The equilibration factor between these dichotomous states mainly determines the temperature dependence of the peak shift.

  2. Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia.

    Science.gov (United States)

    Durchan, Milan; Keşan, Gürkan; Slouf, Václav; Fuciman, Marcel; Staleva, Hristina; Tichý, Josef; Litvín, Radek; Bína, David; Vácha, František; Polívka, Tomáš

    2014-10-01

    We report on energy transfer pathways in the main light-harvesting complex of photosynthetic relative of apicomplexan parasites, Chromera velia. This complex, denoted CLH, belongs to the family of FCP proteins and contains chlorophyll (Chl) a, violaxanthin, and the so far unidentified carbonyl carotenoid related to isofucoxanthin. The overall carotenoid-to-Chl-a energy transfer exhibits efficiency over 90% which is the largest among the FCP-like proteins studied so far. Three spectroscopically different isofucoxanthin-like molecules were identified in CLH, each having slightly different energy transfer efficiency that increases from isofucoxanthin-like molecules absorbing in the blue part of the spectrum to those absorbing in the reddest part of spectrum. Part of the energy transfer from carotenoids proceeds via the ultrafast S2 channel of both the violaxanthin and isofucoxanthin-like carotenoid, but major energy transfer pathway proceeds via the S1/ICT state of the isofucoxanthin-like carotenoid. Two S1/ICT-mediated channels characterized by time constants of ~0.5 and ~4ps were found. For the isofucoxanthin-like carotenoid excited at 480nm the slower channel dominates, while those excited at 540nm employs predominantly the fast 0.5ps channel. Comparing these data with the excited-state properties of the isofucoxanthin-like carotenoid in solution we conclude that, contrary to other members of the FCP family employing carbonyl carotenoids, CLH complex suppresses the charge transfer character of the S1/ICT state of the isofucoxanthin-like carotenoid to achieve the high carotenoid-to-Chl-a energy transfer efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Comparison of the Light-Harvesting Networks of Plant and Cyanobacterial Photosystem I

    Science.gov (United States)

    Şener, Melih K.; Jolley, Craig; Ben-Shem, Adam; Fromme, Petra; Nelson, Nathan; Croce, Roberta; Schulten, Klaus

    2005-01-01

    With the availability of structural models for photosystem I (PSI) in cyanobacteria and plants it is possible to compare the excitation transfer networks in this ubiquitous photosystem from two domains of life separated by over one billion years of divergent evolution, thus providing an insight into the physical constraints that shape the networks' evolution. Structure-based modeling methods are used to examine the excitation transfer kinetics of the plant PSI-LHCI supercomplex. For this purpose an effective Hamiltonian is constructed that combines an existing cyanobacterial model for structurally conserved chlorophylls with spectral information for chlorophylls in the Lhca subunits. The plant PSI excitation migration network thus characterized is compared to its cyanobacterial counterpart investigated earlier. In agreement with observations, an average excitation transfer lifetime of ∼49 ps is computed for the plant PSI-LHCI supercomplex with a corresponding quantum yield of 95%. The sensitivity of the results to chlorophyll site energy assignments is discussed. Lhca subunits are efficiently coupled to the PSI core via gap chlorophylls. In contrast to the chlorophylls in the vicinity of the reaction center, previously shown to optimize the quantum yield of the excitation transfer process, the orientational ordering of peripheral chlorophylls does not show such optimality. The finding suggests that after close packing of chlorophylls was achieved, constraints other than efficiency of the overall excitation transfer process precluded further evolution of pigment ordering. PMID:15994896

  4. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang, E-mail: howesiang@ntu.edu.sg [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Akhtar, Parveen; Garab, Győző; Lambrev, Petar H., E-mail: lambrev@brc.hu [Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged (Hungary)

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  5. PucC and LhaA direct efficient assembly of the light-harvesting complexes in Rhodobacter sphaeroides

    DEFF Research Database (Denmark)

    Mothersole, David; Jackson, Philip J.; Vasilev, Cvetelin

    2016-01-01

    . Here we investigate the assembly of light-harvesting LH2 and reaction centre-light-harvesting1-PufX (RC-LH1-PufX) photosystem complexes using spectroscopy, pull-downs, native gel electrophoresis, quantitative mass spectrometry and fluorescence lifetime microscopy to characterise a series of lha......A and pucC mutants. LhaA and PucC are important for specific assembly of LH1 or LH2 complexes, respectively, but they are not essential; the few LH1 subunits found in ΔlhaA mutants assemble to form normal RC-LH1-PufX core complexes showing that, once initiated, LH1 assembly round the RC is cooperative...

  6. Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin

    Czech Academy of Sciences Publication Activity Database

    Alster, J.; Polívka, Tomáš; Arellano, J.B.; Hříbek, P.; Vácha, František; Hala, J.; Pšenčík, J.

    2012-01-01

    Roč. 111, 1-2 (2012), s. 193-204 ISSN 0166-8595 R&D Projects: GA ČR GA206/09/0375 Institutional research plan: CEZ:AV0Z50510513 Keywords : light- harvesting * astaxanthin * self-assembly * bacteriochlorophyll aggregates Subject RIV: BO - Biophysics Impact factor: 3.150, year: 2012

  7. Low-temperature time-resolved spectroscopic study of the major light-harvesting complex of Amphidinium carterae

    Czech Academy of Sciences Publication Activity Database

    Šlouf, V.; Fuciman, M.; Johanning, S.; Hofmann, E.; Frank, H.A.; Polívka, Tomáš

    2013-01-01

    Roč. 117, 1-3 (2013), s. 257-265 ISSN 0166-8595 R&D Projects: GA ČR(CZ) GAP205/11/1164 Institutional support: RVO:60077344 Keywords : Dinoflagellates * Energy transfer * Light- harvesting * Carotenoid Subject RIV: BO - Biophysics Impact factor: 3.185, year: 2013

  8. Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia

    Czech Academy of Sciences Publication Activity Database

    Durchan, Milan; Kesan, G.; Šlouf, M.; Fuciman, M.; Staleva, H.; Tichý, Josef; Litvín, Radek; Bína, David; Vácha, František; Polívka, Tomáš

    2014-01-01

    Roč. 1837, č. 10 (2014), s. 1748-1755 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GAP205/11/1164; GA ČR GBP501/12/G055 Institutional support: RVO:60077344 Keywords : Energy transfer * Light-harvesting * Carbonyl carotenoids Subject RIV: BO - Biophysics Impact factor: 5.353, year: 2014

  9. Heterologous Expression of Moss Light-harvesting Complex Stress-related 1 (LHCSR1), the Chlorophyll a-Xanthophyll Pigment-protein Complex Catalyzing Non-photochemical Quenching, in Nicotiana sp.*

    Science.gov (United States)

    Pinnola, Alberta; Ghin, Leonardo; Gecchele, Elisa; Merlin, Matilde; Alboresi, Alessandro; Avesani, Linda; Pezzotti, Mario; Capaldi, Stefano; Cazzaniga, Stefano; Bassi, Roberto

    2015-01-01

    Oxygenic photosynthetic organisms evolved mechanisms for thermal dissipation of energy absorbed in excess to prevent formation of reactive oxygen species. The major and fastest component, called non-photochemical quenching, occurs within the photosystem II antenna system by the action of two essential light-harvesting complex (LHC)-like proteins, photosystem II subunit S (PSBS) in plants and light-harvesting complex stress-related (LHCSR) in green algae and diatoms. In the evolutionary intermediate Physcomitrella patens, a moss, both gene products are active. These proteins, which are present in low amounts, are difficult to purify, preventing structural and functional analysis. Here, we report on the overexpression of the LHCSR1 protein from P. patens in the heterologous systems Nicotiana benthamiana and Nicotiana tabacum using transient and stable nuclear transformation. We show that the protein accumulated in both heterologous systems is in its mature form, localizes in the chloroplast thylakoid membranes, and is correctly folded with chlorophyll a and xanthophylls but without chlorophyll b, an essential chromophore for plants and algal LHC proteins. Finally, we show that recombinant LHCSR1 is active in quenching in vivo, implying that the recombinant protein obtained is a good material for future structural and functional studies. PMID:26260788

  10. Influence of thylakoid membrane lipids on the structure of aggregated light-harvesting complexes of the diatom Thalassiosira pseudonana and the green alga Mantoniella squamata.

    Science.gov (United States)

    Schaller-Laudel, Susann; Latowski, Dariusz; Jemioła-Rzemińska, Małgorzata; Strzałka, Kazimierz; Daum, Sebastian; Bacia, Kirsten; Wilhelm, Christian; Goss, Reimund

    2017-07-01

    The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light-harvesting complexes (LHCs). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana-stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the fucoxanthin chlorophyll protein (FCP) complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X-100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macroaggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid-induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana-stroma differentiation. © 2017 Scandinavian Plant Physiology Society.

  11. Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii[C][W

    Science.gov (United States)

    Grewe, Sabrina; Ballottari, Matteo; Alcocer, Marcelo; D’Andrea, Cosimo; Blifernez-Klassen, Olga; Hankamer, Ben; Mussgnug, Jan H.; Bassi, Roberto; Kruse, Olaf

    2014-01-01

    Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (PSII) LHC protein LHCBM9 of the microalga Chlamydomonas reinhardtii in terms of expression kinetics, localization, and function. In contrast to most LHC members described before, LHCBM9 expression was determined to be very low during standard cell cultivation but strongly increased as a response to specific stress conditions, e.g., when nutrient availability was limited. LHCBM9 was localized as part of PSII supercomplexes but was not found in association with photosystem I complexes. Knockdown cell lines with 50 to 70% reduced amounts of LHCBM9 showed reduced photosynthetic activity upon illumination and severe perturbation of hydrogen production activity. Functional analysis, performed on isolated PSII supercomplexes and recombinant LHCBM9 proteins, demonstrated that presence of LHCBM9 resulted in faster chlorophyll fluorescence decay and reduced production of singlet oxygen, indicating upgraded photoprotection. We conclude that LHCBM9 has a special role within the family of LHCII proteins and serves an important protective function during stress conditions by promoting efficient light energy dissipation and stabilizing PSII supercomplexes. PMID:24706511

  12. STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis[C][W

    Science.gov (United States)

    Sakuraba, Yasuhito; Schelbert, Silvia; Park, So-Yon; Han, Su-Hyun; Lee, Byoung-Doo; Andrès, Céline Besagni; Kessler, Felix; Hörtensteiner, Stefan; Paek, Nam-Chon

    2012-01-01

    During leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified; these enzymes catalyze the stepwise degradation of chlorophyll to a fluorescent intermediate, pFCC, which is then exported from the plastid. In addition, STAY-GREEN (SGR), Mendel’s green cotyledon gene encoding a chloroplast protein, is required for the initiation of chlorophyll breakdown in plastids. Senescence-induced SGR binds to light-harvesting complex II (LHCII), but its exact role remains elusive. Here, we show that all five CCEs also specifically interact with LHCII. In addition, SGR and CCEs interact directly or indirectly with each other at LHCII, and SGR is essential for recruiting CCEs in senescing chloroplasts. PAO, which had been attributed to the inner envelope, is found to localize in the thylakoid membrane. These data indicate a predominant role for the SGR-CCE-LHCII protein interaction in the breakdown of LHCII-located chlorophyll, likely to allow metabolic channeling of phototoxic chlorophyll breakdown intermediates upstream of nontoxic pFCC. PMID:22366162

  13. The fine tuning of carotenoid–chlorophyll interactions in light-harvesting complexes: an important requisite to guarantee efficient photoprotection via triplet–triplet energy transfer in the complex balance of the energy transfer processes

    International Nuclear Information System (INIS)

    Di Valentin, Marilena; Carbonera, Donatella

    2017-01-01

    Triplet–triplet energy transfer (TTET) from the chlorophyll to the carotenoid triplet state is the process exploited by photosynthetic systems to protect themselves from singlet oxygen formation under light-stress conditions. A deep comprehension of the molecular strategies adopted to guarantee TTET efficiency, while at the same time maintaining minimal energy loss and efficient light-harvesting capability, is still lacking. The paramagnetic nature of the triplet state makes electron paramagnetic resonance (EPR) the method of choice when investigating TTET. In this review, we focus on our extended comparative study of two photosynthetic antenna complexes, the Peridinin–chlorophyll a -protein of dinoflagellates and the light-harvesting complex II of higher plants, in order to point out important aspects of the molecular design adopted in the photoprotection strategy. We have demonstrated that a proper analysis of the EPR data allows one to identify the pigments involved in TTET and, consequently, gain an insight into the structure of the photoprotective sites. The structural information has been complemented by a detailed description of the electronic structure provided by hyperfine spectroscopy. All these elements represent the fundamental building blocks toward a deeper understanding of the requirements for efficient photoprotection, which is fundamental to guarantee the prolonged energy conversion action of photosynthesis. (topical review)

  14. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    International Nuclear Information System (INIS)

    Goliney, I.Yu.; Sugakov, V.I.; Valkunas, L.; Vertsimakha, G.V.

    2012-01-01

    Highlights: ► Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. ► Light absorption of LH2 is enhanced by a metal nanoparticle. ► Using nanoshells allows reaching resonance between molecular and plasmons. ► Metal nanoparticles introduce additional channel of excitation decay. ► Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  15. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Goliney, I.Yu., E-mail: igoliney@kinr.kiev.ua [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Sugakov, V.I. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Valkunas, L. [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Department of Theoretical Physics, Vilnius University, Sauletekio 9, Build. 3, 10222 Vilnius (Lithuania); Vertsimakha, G.V. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. Black-Right-Pointing-Pointer Light absorption of LH2 is enhanced by a metal nanoparticle. Black-Right-Pointing-Pointer Using nanoshells allows reaching resonance between molecular and plasmons. Black-Right-Pointing-Pointer Metal nanoparticles introduce additional channel of excitation decay. Black-Right-Pointing-Pointer Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  16. Quantum mechanical calculations of xanthophyll-chlorophyll electronic coupling in the light-harvesting antenna of photosystem II of higher plants.

    Science.gov (United States)

    Duffy, C D P; Valkunas, L; Ruban, A V

    2013-06-27

    Light-harvesting by the xanthophylls in the antenna of photosystem II (PSII) is a very efficient process (with 80% of the absorbed energy being transfer to chlorophyll). However, the efficiencies of the individual xanthophylls vary considerably, with violaxanthin in LHCII contributing very little to light-harvesting. To investigate the origin of the variation we used Time Dependent Density Functional Theory to model the Coulombic interactions between the xanthophyll 1(1)B(u)(+) states and the chlorophyll Soret band states in the LHCII and CP29 antenna complexes. The results show that the central L1 and L2 binding sites in both complexes favored close cofacial associations between the bound xanthophylls and chlorophyll a, implying efficient energy transfer, consistent with previously reported experimental evidence. Additionally, we found that the peripheral V1 binding site in LHCII did not favor close xanthophyll-chlorophyll associations, confirming observations that violaxanthin in LHCII is not an effective light-harvester. Finally, violaxanthin bound into the L2 site of the CP29 complex was found to be very strongly coupled to its neighboring chlorophylls.

  17. Synchrotron small-angle x-ray scattering investigation on integral membrane protein light-harvesting complex LH2 from photosynthetic bacterium rhodopseudomonas acidophila

    International Nuclear Information System (INIS)

    Du Luchao; Weng Yuxiang; Hong Xinguo; Xian Dingchang; Kobayashi Katsumi

    2006-01-01

    Structures of membrane protein in solution are different from that in crystal phase. We present the primary results of small angle x-ray scattering (SAXS) resolved topological structures of a light harvesting antenna membrane protein complex LH2 from photosynthetic bacteria Rhodopseudomonas acidophila in detergent solution for the first time. Our results show that the elliptical shape of the LH2 complex in solution clearly deviates from its circular structure in crystal phase determined by x-ray diffraction. This result provides an insight into the structure and function interplay in LH2. (authors)

  18. The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII).

    Science.gov (United States)

    Schaller, Susann; Latowski, Dariusz; Jemioła-Rzemińska, Małgorzata; Wilhelm, Christian; Strzałka, Kazimierz; Goss, Reimund

    2010-03-01

    In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the present study we investigated the influence of thylakoid lipids on the de-epoxidation of Vx, which was still associated with the LHCII. We isolated LHCII with different concentrations of native, endogenous lipids and Vx by sucrose gradient centrifugation or successive cation precipitation. Analysis of the different LHCII preparations showed that the concentration of LHCII-associated Vx was correlated with the concentration of the main thylakoid lipid monogalactosyldiacylglycerol (MGDG) associated with the complexes. Decreases in the MGDG content of the LHCII led to a diminished Vx concentration, indicating that a part of the total Vx pool was located in an MGDG phase surrounding the LHCII, whereas another part was bound to the LHCII apoproteins. We further studied the convertibility of LHCII-associated Vx in in-vitro enzyme assays by addition of isolated VDE. We observed an efficient and almost complete Vx conversion in the LHCII fractions containing high amounts of endogenous MGDG. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The de-epoxidation of LHCII-associated Vx was saturated at a much lower concentration of native, endogenous MGDG compared with the concentration of isolated, exogenous MGDG, which is needed for optimal VDE activity in in-vitro assays employing pure isolated Vx. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Bina, David; Picken, Nichola; Honkanen, Suvi; Blankenship, Robert E; Holten, Dewey; Cogdell, Richard J

    2012-09-01

    Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Hunter, C Neil; Blankenship, Robert E

    2016-11-03

    Carotenoids are a class of natural pigments present in all phototrophic organisms, mainly in their light-harvesting proteins in which they play roles of accessory light absorbers and photoprotectors. Extensive time-resolved spectroscopic studies of these pigments have revealed unexpectedly complex photophysical properties, particularly for carotenoids in light-harvesting LH2 complexes from purple bacteria. An ambiguous, optically forbidden electronic excited state designated as S* has been postulated to be involved in carotenoid excitation relaxation and in an alternative carotenoid-to-bacteriochlorophyll energy transfer pathway, as well as being a precursor of the carotenoid triplet state. However, no definitive and satisfactory origin of the carotenoid S* state in these complexes has been established, despite a wide-ranging series of studies. Here, we resolve the ambiguous origin of the carotenoid S* state in LH2 complex from Rba. sphaeroides by showing that the S* feature can be seen as a combination of ground state absorption bleaching of the carotenoid pool converted to cations and the Stark spectrum of neighbor neutral carotenoids, induced by temporal electric field brought by the carotenoid cation-bacteriochlorophyll anion pair. These findings remove the need to assign an S* state, and thereby significantly simplify the photochemistry of carotenoids in these photosynthetic antenna complexes.

  1. Excitation energy transfer from the bacteriochlorophyll Soret band to carotenoids in the LH2 light-harvesting complex from Ectothiorhodospira haloalkaliphila is negligible.

    Science.gov (United States)

    Razjivin, A P; Lukashev, E P; Kompanets, V O; Kozlovsky, V S; Ashikhmin, A A; Chekalin, S V; Moskalenko, A A; Paschenko, V Z

    2017-09-01

    Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S 2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S 2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.

  2. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway.

    Science.gov (United States)

    Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Hunter, C Neil; Bocian, David F; Holten, Dewey; Niedzwiedzki, Dariusz M

    2016-06-23

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC═C + NC═O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids.

  3. Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii

    CERN Document Server

    Durnford Dion, G; McKim, Sarah M; Sarchfield, Michelle L

    2003-01-01

    To compensate for increases in photon flux density (PFD), photosynthetic organisms possess mechanisms for reversibly modulating their photosynthetic apparatus to minimize photodamage. The photoacclimation response in Chlamydomonas reinhardtii was assessed following a 10-fold increase in PFD over 24h. In addition to a 50% reduction in the amount of chlorophyll and light-harvesting complexes (LHC) per cell, the expression of genes encoding polypeptides of the light-harvesting antenna were also affected. The abundance of Lhcb (a LHCH gene), Lhcb4 (a CP29-like gene), and Lhca (a LHCI gene) transcripts were reduced by 65 to 80%, within 1-2 h; however, the RNA levels of all three genes recovered to their low-light (LL) concentrations within 6-8 h. To determine the role of transcript turnover in this transient decline in abundance, the stability of all transcripts was measured. Although there was no change in the Lhcb or Lhca transcript turnover time, the Lhcb4 mRNA stability decreased 2.5-fold immediately following...

  4. Coherent quantum dynamics launched by incoherent relaxation in a quantum circuit simulator of a light-harvesting complex

    Science.gov (United States)

    Chin, A. W.; Mangaud, E.; Atabek, O.; Desouter-Lecomte, M.

    2018-06-01

    Engineering and harnessing coherent excitonic transport in organic nanostructures has recently been suggested as a promising way towards improving manmade light-harvesting materials. However, realizing and testing the dissipative system-environment models underlying these proposals is presently very challenging in supramolecular materials. A promising alternative is to use simpler and highly tunable "quantum simulators" built from programmable qubits, as recently achieved in a superconducting circuit by Potočnik et al. [A. Potočnik et al., Nat. Commun. 9, 904 (2018), 10.1038/s41467-018-03312-x]. We simulate the real-time dynamics of an exciton coupled to a quantum bath as it moves through a network based on the quantum circuit of Potočnik et al. Using the numerically exact hierarchical equations of motion to capture the open quantum system dynamics, we find that an ultrafast but completely incoherent relaxation from a high-lying "bright" exciton into a doublet of closely spaced "dark" excitons can spontaneously generate electronic coherences and oscillatory real-space motion across the network (quantum beats). Importantly, we show that this behavior also survives when the environmental noise is classically stochastic (effectively high temperature), as in present experiments. These predictions highlight the possibilities of designing matched electronic and spectral noise structures for robust coherence generation that do not require coherent excitation or cold environments.

  5. Biogenesis of light harvesting proteins.

    Science.gov (United States)

    Dall'Osto, Luca; Bressan, Mauro; Bassi, Roberto

    2015-09-01

    The LHC family includes nuclear-encoded, integral thylakoid membrane proteins, most of which coordinate chlorophyll and xanthophyll chromophores. By assembling with the core complexes of both photosystems, LHCs form a flexible peripheral moiety for enhancing light-harvesting cross-section, regulating its efficiency and providing protection against photo-oxidative stress. Upon its first appearance, LHC proteins underwent evolutionary diversification into a large protein family with a complex genetic redundancy. Such differentiation appears as a crucial event in the adaptation of photosynthetic organisms to changing environmental conditions and land colonization. The structure of photosystems, including nuclear- and chloroplast-encoded subunits, presented the cell with a number of challenges for the control of the light harvesting function. Indeed, LHC-encoding messages are translated in the cytosol, and pre-proteins imported into the chloroplast, processed to their mature size and targeted to the thylakoids where are assembled with chromophores. Thus, a tight coordination between nuclear and plastid gene expression, in response to environmental stimuli, is required to adjust LHC composition during photoacclimation. In recent years, remarkable progress has been achieved in elucidating structure, function and regulatory pathways involving LHCs; however, a number of molecular details still await elucidation. In this review, we will provide an overview on the current knowledge on LHC biogenesis, ranging from organization of pigment-protein complexes to the modulation of gene expression, import and targeting to the photosynthetic membranes, and regulation of LHC assembly and turnover. Genes controlling these events are potential candidate for biotechnological applications aimed at optimizing light use efficiency of photosynthetic organisms. This article is part of a Special Issue entitled: Chloroplast biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Greco, Jordan A; Gardiner, Alastair T; Carey, Anne-Marie; Cogdell, Richard J; Gibson, George N; Birge, Robert R; Frank, Harry A

    2014-09-25

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment-protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions.

  7. Crystallization and preliminary X-ray diffraction analysis of the peripheral light-harvesting complex LH2 from Marichromatium purpuratum.

    Science.gov (United States)

    Cranston, Laura J; Roszak, Aleksander W; Cogdell, Richard J

    2014-06-01

    LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment-protein complex that is involved in harvesting light energy and transferring it to the LH1-RC `core' complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a=b=109.36, c=80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer.

  8. Peripheral Light-Harvesting LH2 Complex Can Be Assembled in Cells of Nonsulfur Purple Bacterium Rhodoblastus acidophilus without Carotenoids.

    Science.gov (United States)

    Bol'shakov, M A; Ashikhmin, A A; Makhneva, Z K; Moskalenko, A A

    2015-09-01

    The effect of carotenoids on the assembly of LH2 complex in cells of the purple nonsulfur bacterium Rhodoblastus acidophilus was investigated. For this purpose, the bacterial culture was cultivated with an inhibitor of carotenoid biosynthesis - 71 µM diphenylamine (DPA). The inhibitor decreased the level of biosynthesis of the colored carotenoids in membranes by ~58%. It was found that a large amount of phytoene was accumulated in them. This carotenoid precursor was bound nonspecifically to LH2 complex and did not stabilize its structure. Thermostability testing of the isolated LH2 complex together with analysis of carotenoid composition revealed that the population of this complex was heterogeneous with respect to carotenoid composition. One fraction of the LH2 complex with carotenoid content around 90% remains stable and was not destroyed under heating for 15 min at 50°C. The other fraction of LH2 complex containing on average less than one molecule of carotenoid per complex was destroyed under heating, forming a zone of free pigments (and polypeptides). The data suggest that a certain part of the LH2 complexes is assembled without carotenoids in cells of the nonsulfur bacterium Rbl. acidophilus grown with DPA. These data contradict the fact that the LH2 complex from nonsulfur bacteria cannot be assembled without carotenoids, but on the other hand, they are in good agreement with the results demonstrated in our earlier studies of the sulfur bacteria Allochromatium minutissimum and Ectothiorhodospira haloalkaliphila. Carotenoidless LH2 complex was obtained from these bacteria with the use of DPA (Moskalenko, A. A., and Makhneva, Z. K. (2012) J. Photochem. Photobiol., 108, 1-7; Ashikhmin, A., et al. (2014) Photosynth. Res., 119, 291-303).

  9. Controlling Light Harvesting with Light

    NARCIS (Netherlands)

    Gwizdala, M.S.; Berera, R.; Kirilovsky, D.; van Grondelle, R.; Kruger, T.P.J.

    2016-01-01

    When exposed to intense sunlight, all organisms performing oxygenic photosynthesis implement various photoprotective strategies to prevent potentially lethal photodamage. The rapidly responding photoprotective mechanisms, occurring in the light-harvesting pigment-protein antennae, take effect within

  10. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Niederman, Robert A. [Rutgers Univ., New Brunswick, NJ (United States); Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States); Frank, Harry A. [Univ. of Connecticut, Storrs, CT (United States)

    2015-02-07

    represented a diverse international and multidisciplinary group, with over 160 individuals attending from a total of 17 different countries. Attendees came from a wide range of fields assuring that the widest possible interdisciplinary exchanges. They included prominent biochemists, biophysicists, plant physiologists, chemical physicists, as well as theoretical and computational physical chemists, who presented their research findings or to hear the latest advances in this very dynamic field. In the choice of speakers, a balance was created between established scientists and young, emerging researchers, given this opportunity to showcase their results. Sessions were held on electronic and vibrational coherence including coherent sharing of excitations among donor and acceptor molecules during excitation energy transfer, nonphotochemical quenching, acclimation to light environments, evolution, adaptation and biodiversity of light-harvesting pigment-protein complexes, their structure and membrane organization, spectroscopy and dynamics, as well as artificial antenna systems. A joint session was also held with the participants from the Cyanobacterial Satellite Conference. A special issue of Photosynthesis Research devoted to light harvesting (Volume 121, Issue No. 1, July 2014) has recently appeared which contains peer-reviewed original research contributions arising from talks and posters presented at the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems. Edited by the Organizers of the Workshop, Robert E. Blankenship, Harry A. Frank and Robert A. Niederman, it includes topics ranging from the isolation of new bacteriochlorophyll species from green bacteria, temperature effects on the excited states of the newly discovered chlorophyll (Chl) ƒ, new architectures for enhancing energy capture by biohybrid light-harvesting complexes, forces governing the formation of light-harvesting rings, spectroscopy of carotenoids of algae and diatoms and the supramolecular

  11. Dimers of light-harvesting complex 2 from Rhodobacter sphaeroides characterized in reconstituted 2D crystals with atomic force microscopy

    NARCIS (Netherlands)

    Liu, Lu-Ning; Aartsma, Thijs J.; Frese, Raoul N.

    Microscopic and light spectroscopic investigations on the supramolecular architecture of bacterial photosynthetic membranes have revealed the photosynthetic protein complexes to be arranged in a densely packed energy-transducing network. Protein packing may play a determining role in the formation

  12. A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes.

    Science.gov (United States)

    Freiberg, Arvi; Rätsep, Margus; Timpmann, Kõu

    2012-08-01

    Integral membrane proteins constitute more than third of the total number of proteins present in organisms. Solubilization with mild detergents is a common technique to study the structure, dynamics, and catalytic activity of these proteins in purified form. However beneficial the use of detergents may be for protein extraction, the membrane proteins are often denatured by detergent solubilization as a result of native lipid membrane interactions having been modified. Versatile investigations of the properties of membrane-embedded and detergent-isolated proteins are, therefore, required to evaluate the consequences of the solubilization procedure. Herein, the spectroscopic and kinetic fingerprints have been established that distinguish excitons in individual detergent-solubilized LH2 light-harvesting pigment-protein complexes from them in the membrane-embedded complexes of purple photosynthetic bacteria Rhodobacter sphaeroides. A wide arsenal of spectroscopic techniques in visible optical range that include conventional broadband absorption-fluorescence, fluorescence anisotropy excitation, spectrally selective hole burning and fluorescence line-narrowing, and transient absorption-fluorescence have been applied over broad temperature range between physiological and liquid He temperatures. Significant changes in energetics and dynamics of the antenna excitons upon self-assembly of the proteins into intracytoplasmic membranes are observed, analyzed, and discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. Copyright © 2011. Published by Elsevier B.V.

  13. Brevetoxin, the Dinoflagellate Neurotoxin, Localizes to Thylakoid Membranes and Interacts with the Light-Harvesting Complex II (LHCII) of Photosystem II.

    Science.gov (United States)

    Cassell, Ryan T; Chen, Wei; Thomas, Serge; Liu, Li; Rein, Kathleen S

    2015-05-04

    The brevetoxins are neurotoxins that are produced by the "Florida red tide" dinoflagellate Karenia brevis. They bind to and activate the voltage-gated sodium channels in higher organisms, specifically the Nav 1.4 and Nav 1.5 channel subtypes. However, the native physiological function that the brevetoxins perform for K. brevis is unknown. By using fluorescent and photoactivatable derivatives, brevetoxin was shown to localize to the chloroplast of K. brevis where it binds to the light-harvesting complex II (LHCII) and thioredoxin. The LHCII is essential to non-photochemical quenching (NPQ), whereas thioredoxins are critical to the maintenance of redox homeostasis within the chloroplast and contribute to the scavenging of reactive oxygen. A culture of K. brevis producing low levels of toxin was shown to be deficient in NPQ and produced reactive oxygen species at twice the rate of the toxic culture, implicating a role in NPQ for the brevetoxins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Ballottari, Matteo; Truong, Thuy B; De Re, Eleonora; Erickson, Erika; Stella, Giulio R; Fleming, Graham R; Bassi, Roberto; Niyogi, Krishna K

    2016-04-01

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green algaChlamydomonas reinhardtii Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesisin vivoandin vitrofor identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp(117), Glu(221), and Glu(224)were shown to be essential for LHCSR3-dependent NPQ induction inC. reinhardtii Analysis of recombinant proteins carrying the same mutations refoldedin vitrowith pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The upstream regulatory sequence of the light harvesting complex Lhcf2 gene of the marine diatom Phaeodactylum tricornutum enhances transcription in an orientation- and distance-independent fashion.

    Science.gov (United States)

    Russo, Monia Teresa; Annunziata, Rossella; Sanges, Remo; Ferrante, Maria Immacolata; Falciatore, Angela

    2015-12-01

    Diatoms are a key phytoplankton group in the contemporary ocean, showing extraordinary adaptation capacities to rapidly changing environments. The recent availability of whole genome sequences from representative species has revealed distinct features in their genomes, like novel combinations of genes encoding distinct metabolisms and a significant number of diatom-specific genes. However, the regulatory mechanisms driving diatom gene expression are still largely uncharacterized. Considering the wide variety of fields of study orbiting diatoms, ranging from ecology, evolutionary biology to biotechnology, it is thus essential to increase our understanding of fundamental gene regulatory processes such as transcriptional regulation. To this aim, we explored the functional properties of the 5'-flanking region of the Phaeodatylum tricornutum Lhcf2 gene, encoding a member of the Light Harvesting Complex superfamily and we showed that this region enhances transcription of a GUS reporter gene in an orientation- and distance-independent fashion. This represents the first example of a cis-regulatory sequence with enhancer-like features discovered in diatoms and it is instrumental for the generation of novel genetic tools and diatom exploitation in different areas of study. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Potential sustainable energy source: Pheroid™ with incorporated light harvesting materials

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2010-09-01

    Full Text Available the main pigments, Chl a and b attributed main peaks around 435 nm (Chl b) and 680 nm (Chl a) respectively, as well as shoulders around 590 nm and 620 nm. Other pigments were also present, with carotenoids possibly attributing a peak...] Ruban, A.V., Horton, P., Robert, B., Resonance raman spectroscopy of the Photosystem II light- harvesting complex of green plants: A comparison of trimeric and aggregated states, Biochemistry 34, 2333 – 2337 (1995). [6] Haferkamp, S., Haase, W...

  17. Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Bocian, David F; Holten, Dewey; Hunter, C Neil

    2015-01-01

    Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. [Influence of LDAO on the conformation and release of bacteriochlorophyll of peripheral light-harvesting complex (LH2) from Rhodobacter azotoformans].

    Science.gov (United States)

    Zhao, Gen-gui; Dong, Yan-min; Yang, Su-ping; Jiao, Nian-zhi; Qu, Yin-bo

    2010-10-01

    The aim of this study is to reveal the interaction relationships between lauryl dimethylamine N-oxide (LDAO) and peripheral light-harvesting complex (LH2) as well as the influence of LDAO on structure and function of LH2. In the present work, the effects of LDAO on the conformation and release processes of bacteriochlorophyll (BChl) of LH2 when incubated under different temperature and pH in the presence and absence of LDAO were investigated by spectroscopy. The results indicated that (1) the presence of LDAO resulted in alterations in the conformation, alpha-helix content, and spectra of Tyr and B850 band of LH2 at room temperature and pH 8.0. Moreover, energy transfer efficiency of LH2 was enhanced markedly in the presence of LDAO. (2) At 60 degrees C, both the B800 and B850 band of LH2 were released and transited into free BChl at pH 8.0. However, the release rates of bacteriochlorophylls of B800 and B850 band from LH2 were slowed down and the release processes were changed when incubated in the presence of LDAO. Hence, the stability of LH2 was improved in the presence of LDAO. (3) The accelerated release processes of bacteriochlorophylls of B800 and B850 band of LH2 were induced to transform into bacteriopheophytin (BPhe) and free BChl by LDAO in strong acid and strong alkalic solution at room temperature. However, the kinetic patterns of the B800 and B850 band were remarkably different. The release and self-assemble processes of B850 in LH2 were observed in strong acid solution without LDAO. Therefore, the different release behaviors of B800 and B850 of LH2 are induced by LDAO under different extreme environmental conditions.

  19. Emission lineshapes of the B850 band of light-harvesting 2 (LH2) complex in purple bacteria: a second order time-nonlocal quantum master equation approach.

    Science.gov (United States)

    Kumar, Praveen; Jang, Seogjoo

    2013-04-07

    The emission lineshape of the B850 band in the light harvesting complex 2 of purple bacteria is calculated by extending the approach of 2nd order time-nonlocal quantum master equation [S. Jang and R. J. Silbey, J. Chem. Phys. 118, 9312 (2003)]. The initial condition for the emission process corresponds to the stationary excited state density where exciton states are entangled with the bath modes in equilibrium. This exciton-bath coupling, which is not diagonal in either site excitation or exciton basis, results in a new inhomogeneous term that is absent in the expression for the absorption lineshape. Careful treatment of all the 2nd order terms are made, and explicit expressions are derived for both full 2nd order lineshape expression and the one based on secular approximation that neglects off-diagonal components in the exciton basis. Numerical results are presented for a few representative cases of disorder and temperature. Comparison of emission line shape with the absorption line shape is also made. It is shown that the inhomogeneous term coming from the entanglement of the system and bath degrees of freedom makes significant contributions to the lineshape. It is also found that the perturbative nature of the theory can result in negative portion of lineshape in some situations, which can be removed significantly by inclusion of the inhomogeneous term and completely by using the secular approximation. Comparison of the emission and absorption lineshapes at different temperatures demonstrates the role of thermal population of different exciton states and exciton-phonon couplings.

  20. Biogeography of photosynthetic light-harvesting genes in marine phytoplankton.

    Directory of Open Access Journals (Sweden)

    Thomas S Bibby

    Full Text Available BACKGROUND: Photosynthetic light-harvesting proteins are the mechanism by which energy enters the marine ecosystem. The dominant prokaryotic photoautotrophs are the cyanobacterial genera Prochlorococcus and Synechococcus that are defined by two distinct light-harvesting systems, chlorophyll-bound protein complexes or phycobilin-bound protein complexes, respectively. Here, we use the Global Ocean Sampling (GOS Project as a unique and powerful tool to analyze the environmental diversity of photosynthetic light-harvesting genes in relation to available metadata including geographical location and physical and chemical environmental parameters. METHODS: All light-harvesting gene fragments and their metadata were obtained from the GOS database, aligned using ClustalX and classified phylogenetically. Each sequence has a name indicative of its geographic location; subsequent biogeographical analysis was performed by correlating light-harvesting gene budgets for each GOS station with surface chlorophyll concentration. CONCLUSION/SIGNIFICANCE: Using the GOS data, we have mapped the biogeography of light-harvesting genes in marine cyanobacteria on ocean-basin scales and show that an environmental gradient exists in which chlorophyll concentration is correlated to diversity of light-harvesting systems. Three functionally distinct types of light-harvesting genes are defined: (1 the phycobilisome (PBS genes of Synechococcus; (2 the pcb genes of Prochlorococcus; and (3 the iron-stress-induced (isiA genes present in some marine Synechococcus. At low chlorophyll concentrations, where nutrients are limited, the Pcb-type light-harvesting system shows greater genetic diversity; whereas at high chlorophyll concentrations, where nutrients are abundant, the PBS-type light-harvesting system shows higher genetic diversity. We interpret this as an environmental selection of specific photosynthetic strategy. Importantly, the unique light-harvesting system isiA is found

  1. Stability and properties of quasi-stable conformational states in the LH2 light-harvesting complex of Rbl. acidophilus bacteria formed by hexacoordination of bacteriochlorophyll a magnesium atom

    Science.gov (United States)

    Belov, Aleksandr S.; Khokhlov, Daniil V.; Glebov, Ilya O.; Poddubnyy, Vladimir V.; Eremin, Vadim V.

    2017-06-01

    Single-molecule spectroscopic experiments on several light-harvesting complexes revealed the existence of a set of metastable conformational states with different spectroscopic properties and lifetimes spanning from milliseconds to tens of seconds. In the absence of explicit structural data, a number of probable structural changes underlying the observed spectroscopic shifts were proposed. We examine the donor-acceptor interaction between the magnesium atom and the acetyl group of the adjacent bacteriochlorophylls a as a possible origin of metastable conformational states in the LH2 light-harvesting complex of Rbl. acidophilus bacteria. The results of QM/MM and molecular dynamics simulations show that such ligation can occur at room temperature and leads to one metastable coordination bond per pair of bacteriochlorophylls in the B850 ring. According to the results of Poisson-TrESP modeling, such coordination lowers the energies of the excited states of the complex by up to 163 cm-1 which causes red spectral shift of the B850 band.

  2. Low-temperature protein dynamics of the B800 molecules in the LH2 light-harvesting complex: spectral hole burning study and comparison with single photosynthetic complex spectroscopy.

    Science.gov (United States)

    Grozdanov, Daniel; Herascu, Nicoleta; Reinot, Tõnu; Jankowiak, Ryszard; Zazubovich, Valter

    2010-03-18

    Previously published and new spectral hole burning (SHB) data on the B800 band of LH2 light-harvesting antenna complex of Rps. acidophila are analyzed in light of recent single photosynthetic complex spectroscopy (SPCS) results (for a review, see Berlin et al. Phys. Life Rev. 2007, 4, 64.). It is demonstrated that, in general, SHB-related phenomena observed for the B800 band are in qualitative agreement with the SPCS data and the protein models involving multiwell multitier protein energy landscapes. Regarding the quantitative agreement, we argue that the single-molecule behavior associated with the fastest spectral diffusion (smallest barrier) tier of the protein energy landscape is inconsistent with the SHB data. The latter discrepancy can be attributed to SPCS probing not only the dynamics of of the protein complex per se, but also that of the surrounding amorphous host and/or of the host-protein interface. It is argued that SHB (once improved models are developed) should also be able to provide the average magnitudes and probability distributions of light-induced spectral shifts and could be used to determine whether SPCS probes a set of protein complexes that are both intact and statistically relevant. SHB results are consistent with the B800 --> B850 energy-transfer models including consideration of the whole B850 density of states.

  3. Design principles of natural light-harvesting as revealed by single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krüger, T.P.J., E-mail: tjaart.kruger@up.ac.za [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa); Grondelle, R. van [Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands)

    2016-01-01

    Biology offers a boundless source of adaptation, innovation, and inspiration. A wide range of photosynthetic organisms exist that are capable of harvesting solar light in an exceptionally efficient way, using abundant and low-cost materials. These natural light-harvesting complexes consist of proteins that strongly bind a high density of chromophores to capture solar photons and rapidly transfer the excitation energy to the photochemical reaction centre. The amount of harvested light is also delicately tuned to the level of solar radiation to maintain a constant energy throughput at the reaction centre and avoid the accumulation of the products of charge separation. In this Review, recent developments in the understanding of light-harvesting by plants will be discussed, based on results obtained from single molecule spectroscopy studies. Three design principles of the main light-harvesting antenna of plants will be highlighted: (a) fine, photoactive control over the intrinsic protein disorder to efficiently use intrinsically available thermal energy dissipation mechanisms; (b) the design of the protein microenvironment of a low-energy chromophore dimer to control the amount of shade absorption; (c) the design of the exciton manifold to ensure efficient funneling of the harvested light to the terminal emitter cluster.

  4. Flexibility and size heterogeneity of the LH1 light harvesting complex revealed by atomic force microscopy - Functional significance for bacterial photosynthesis

    NARCIS (Netherlands)

    Bahatyrova, S.; Frese, R.N.; van der Werf, K.O.; Otto, C.; Hunter, C.N.; Olsen, J.D.

    2004-01-01

    Previous electron microscopic studies of bacterial RC-LH1 complexes demonstrated both circular and elliptical conformations of the LH1 ring, and this implied flexibility has been suggested to allow passage of quinol from the Q

  5. Photodynamic effect of light-harvesting, long-lived triplet excited state Ruthenium(II)-polyimine-coumarin complexes: DNA binding, photocleavage and anticancer studies.

    Science.gov (United States)

    Nomula, Raju; Wu, Xueyan; Zhao, Jianzhang; Munirathnam, Nagegownivari R

    2017-10-01

    Two coumarin based Ru II -polyimine complexes (Ru-1 and Ru-2) showing intense absorption of visible light and long-lived triplet excited states (~12-15μs) were used for study of the interaction with DNA. The binding of the complexes with CT-DNA were studied by UV-vis, fluorescence and time-resolved nanosecond transient absorption (ns-TA) spectroscopy. The results suggesting that the complexes interact with CT-DNA by intercalation mode of binding, showing the binding constants (K b ) 6.47×10 4 for Ru-1 and 5.94×10 4 M -1 for Ru-2, in contrast no such results were found for Ru-0. The nanosecond transient absorption spectra of these systems in the presence of CT-DNA showing a clear perturbation in the bleaching region was observed compare to buffer alone. Visible light photoirradiation DNA cleavage was investigated for these complexes by treating with the supercoiled pUC19 DNA and irradiated at 450nm. The reactive species produced upon irradiation of current agents is singlet oxygen ( 1 O 2 ), which results in the generation of other reactive oxygen species (ROS). The complexes shown efficient cleavage activity, converted complete supercoiled DNA to nicked circular at as low as 20μM concentration in 30min of light irradiation time. Significant amount of linear form was generated by Ru-1 at the same conditions. Even though Ru-0 has significant 1 O 2 quantum yield but shown lower cleavage activity compared to other two analogs is due the miserable interaction (binding) with DNA. The cytotoxicity in vitro of the complexes toward HeLa, BEL-7402 and MG-63 cells was assessed by MTT assay. The cellular uptake was observed on BEL-7402 cells under fluorescence microscope. The complexes shown appreciable cytotoxicity towards the cancer cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The mutation of carotenoids affects the energy transfer in LH2 light harvesting complexes from Rhodobacter sphaeroides 601 at room temperature

    International Nuclear Information System (INIS)

    Liu Weimin; Liu Yuan; Guo Lijun; Xu Chunhe; Qian Shixiong

    2006-01-01

    Energy transfer in two kinds of peripheral antenna complexes LH2 from Rhodobacter sphaeroides 601 was studied by absorption, fluorescence emission, time-resolved fluorescence and femtosecond transient absorption spectroscopy at room temperature. These two complexes are LH2 (RS601) and green carotenoid mutated LH2 (GM309). The obtained results demonstrate that: (a) compared with spheroidenes, which have ten carbon-carbon double bonds in native RS601, carotenoids in GM309 were identified as containing neurosporenes with nine carbon-carbon double bonds, which show a significant blue shift of ∼20 nm in the three absorption peaks because of the higher energy levels of neurosporene than those of spheroidene, (b) the higher energy levels of neurosporene in GM309 induce a lower B800 → B850 energy transfer rate and efficiency as compared to that in RS601 resulting from the relatively higher band gap between the donor of B800 and the bridge of the carotenoids (c) the same lifetime of the B850 excited singlet state is observed in these two LH2 complexes

  7. A quantum mechanical analysis of the light-harvesting complex 2 (LH2) from purple photosynthetic bacteria: insights into the electrostatic effects of transmembrane helices.

    Science.gov (United States)

    Pichierri, Fabio

    2011-02-01

    We perform a quantum mechanical study of the peptides that are part of the LH2 complex from Rhodopseudomonas acidophila, a non-sulfur purple bacteria that has the ability of producing chemical energy from photosynthesis. The electronic structure calculations indicate that the transmembrane helices of these peptides are characterized by dipole moments with a magnitude of about 150D. When the full nonamer assembly made of 18 peptides is considered, then a macrodipole of magnitude 806D is built up from the vector sum of each monomer dipole. The macrodipole is oriented normal to the membrane plane and with the positive tip toward the cytoplasm thereby indicating that the electronic charge of the protein scaffold is polarized toward the periplasm. The results obtained here suggest that the asymmetric charge distribution of the protein scaffold contributes an anisotropic electrostatic environment which differentiates the absorption properties of the bacteriochlorophyll pigments, B800 and B850, embedded in the LH2 complex. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. An efficient method to calculate excitation energy transfer in light-harvesting systems: application to the Fenna-Matthews-Olson complex

    International Nuclear Information System (INIS)

    Ritschel, Gerhard; Roden, Jan; Eisfeld, Alexander; Strunz, Walter T

    2011-01-01

    A master equation derived from non-Markovian quantum state diffusion is used to calculate the excitation energy transfer in the photosynthetic Fenna-Matthews-Olson pigment-protein complex at various temperatures. This approach allows us to treat spectral densities that explicitly contain the coupling to internal vibrational modes of the chromophores. Moreover, the method is very efficient and as a result the transfer dynamics can be calculated within about 1 min on a standard PC, making systematic investigations w.r.t. parameter variations tractable. After demonstrating that our approach is able to reproduce the results of the numerically exact hierarchical equations of motion approach, we show how the inclusion of vibrational modes influences the transfer. (paper)

  9. The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function?

    Science.gov (United States)

    Montané, M H; Kloppstech, K

    2000-11-27

    Light-harvesting complex proteins (LHCs) and early light-induced proteins (ELIPs) are essential pigment-binding components of the thylakoid membrane and are encoded by one of the largest and most complex higher plant gene families. The functional diversification of these proteins corresponded to the transition from extrinsic (phycobilisome-based) to intrinsic (LHC-based) light-harvesting antenna systems during the evolution of chloroplasts from cyanobacteria, yet the functional basis of this diversification has been elusive. Here, we propose that the original function of LHCs and ELIPs was not to collect light and to transfer its energy content to the reaction centers but to disperse the absorbed energy of light in the form of heat or fluorescence. These energy-dispersing proteins are believed to have originated in cyanobacteria as one-helix, highly light-inducible proteins (HLIPs) that later acquired four helices through two successive gene duplication steps. We suggest that the ELIPs arose first in this succession, with a primary function in energy dispersion for protection of photosynthetic pigments from photo-oxidation. We consider the LHC I and II families as more recent and very successful evolutionary additions to this family that ultimately attained a new function, thereby replacing the ancestral extrinsic light-harvesting system. Our model accounts for the non-photochemical quenching role recently shown for higher plant psbS proteins.

  10. Natural strategies for photosynthetic light harvesting

    NARCIS (Netherlands)

    Croce, R.; van Amerongen, H.

    2014-01-01

    Photosynthetic organisms are crucial for life on Earth as they provide food and oxygen and are at the basis of most energy resources. They have a large variety of light-harvesting strategies that allow them to live nearly everywhere where sunlight can penetrate. They have adapted their pigmentation

  11. Heteronuclear 2D (1H-13C) MAS NMR Resolves the Electronic Structure of Coordinated Histidines in Light-Harvesting Complex II: Assessment of Charge Transfer and Electronic Delocalization Effect

    International Nuclear Information System (INIS)

    Matysik, Joerg; Boer, Ido de; Gast, Peter; Gorkom, Hans J. van; Groot, Huub J.M. de

    2004-01-01

    In a recent MAS NMR study, two types of histidine residues in the light-harvesting complex II (LH2) of Rhodopseudomonas acidophila were resolved: Type 1 (neutral) and Type 2 (positively charged) (Alia et al. J. Am. Chem. Soc.). The isotropic 13 C shifts of histidines coordinating to B850 BChl a are similar to fully positively charged histidine, while the 15 N shift anisotropy shows a predominantly neutral character. In addition the possibility that the ring currents are quenched by overlap in the superstructure of the complete ring of 18 B850 molecules in the LH2 complex could not be excluded. In the present work, by using two-dimensional heteronuclear ( 1 H- 13 C) dipolar correlation spectroscopy with phase-modulated Lee-Goldburg homonuclear 1 H decoupling applied during the t 1 period, a clear and unambiguous assignment of the protons of histidine interacting with the magnesium of a BChl a molecule is obtained and a significant ring current effect from B850 on the coordinating histidine is resolved. Using the ring current shift on 1 H, we refine the 13 C chemical shift assignment of the coordinating histidine and clearly distinguish the electronic structure of coordinating histidines from that of fully positively charged histidine. The DFT calculations corroborate that the coordinating histidines carry ∼0.2 electronic equivalent of positive charge in LH2. In addition, the data indicate that the ground state electronic structures of individual BChl a/His complexes is largely independent of supermolecular π interactions in the assembly of 18 B850 ring in LH2

  12. Toward understanding as photosynthetic biosignatures: light harvesting and energy transfer calculation

    Science.gov (United States)

    Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.

    2014-03-01

    energy transfer from the outer to the inner ring can be reproduced. To deal with a realistic system, we calculated at a macro structural model. The energy transfer between light harvesting complexes is accomplished rapidly via inner rings. By exchange the original pigment to a pigment absorb lower energy, faster energy transfer occurs and the density was trapped in pigment having lower energy. We will compare the result of purple bacteria, which is considered to show longer red edge, cyanobacteria and plants.

  13. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots.

    Science.gov (United States)

    Sylak-Glassman, Emily J; Malnoë, Alizée; De Re, Eleonora; Brooks, Matthew D; Fischer, Alexandra Lee; Niyogi, Krishna K; Fleming, Graham R

    2014-12-09

    The photosystem II (PSII) protein PsbS and the enzyme violaxanthin deepoxidase (VDE) are known to influence the dynamics of energy-dependent quenching (qE), the component of nonphotochemical quenching (NPQ) that allows plants to respond to fast fluctuations in light intensity. Although the absence of PsbS and VDE has been shown to change the amount of quenching, there have not been any measurements that can detect whether the presence of these proteins alters the type of quenching that occurs. The chlorophyll fluorescence lifetime probes the excited-state chlorophyll relaxation dynamics and can be used to determine the amount of quenching as well as whether two different genotypes with the same amount of NPQ have similar dynamics of excited-state chlorophyll relaxation. We measured the fluorescence lifetimes on whole leaves of Arabidopsis thaliana throughout the induction and relaxation of NPQ for wild type and the qE mutants, npq4, which lacks PsbS; npq1, which lacks VDE and cannot convert violaxanthin to zeaxanthin; and npq1 npq4, which lacks both VDE and PsbS. These measurements show that although PsbS changes the amount of quenching and the rate at which quenching turns on, it does not affect the relaxation dynamics of excited chlorophyll during quenching. In addition, the data suggest that PsbS responds not only to ΔpH but also to the Δψ across the thylakoid membrane. In contrast, the presence of VDE, which is necessary for the accumulation of zeaxanthin, affects the excited-state chlorophyll relaxation dynamics.

  14. Energy transfer dynamics in Light-Harvesting Dendrimers

    Science.gov (United States)

    Melinger, Joseph S.; McMorrow, Dale; Kleiman, Valeria D.

    2002-03-01

    We explore energy transfer dynamics in light-harvesting phenylacetylene symmetric and asymmetric dendrimers. Femtosecond pump-probe spectroscopy is used to probe the ultrafast dynamics of electronic excitations in these dendrimers. The backbone of the macromolecule consists of branches of increasing conjugation length, creating an energy gradient, which funnels energy to an accepting perylene trap. In the case of the symmetric dendrimer (nanostar), the energy transfer efficiency is known to approach nearly unity, although the nature and timescale of the energy transfer process is still unknown. For the asymmetric dendrimers, energy transfer efficiencies are very high, with the possibility of more complex transfer processes. We experimentally monitor the transport of excitons through the light-harvesting dendrimer. The transients show a number of components, with timescales ranging from <300fs to several tens of picoseconds, revealing the complex photophysics taking place in these macromolecules. We interpret our results in terms of the Förster mechanism in which energy transfer occurs through dipole-dipole interactions.

  15. Light harvesting by dye linked conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Troensegaard Nielsen, K.

    2006-06-15

    The fact that the fossil fuel is finite and that the detrimental long-term effects of letting CO2 into our atmosphere exist, have created an enormous interest in developing new, cheap, renewable and less polluting energy resources. One of the most obvious abundant sources of energy in the solar system is the sun. Unfortunately the well developed silicon solar cells are very costly to produce. In an attempt to produce cheap and flexible solar cells, plastic solar cells have received a lot of attention in the last decades. There are still a lot of parameters to optimize if the plastic solar cell shall be able to compete with the silicon solar cells. One of the parameters is to ensure a high degree of charge carrier separation. Charge carrier separation can only happen at heterojunctions, which cover for example the interfaces between the polymers and the electrodes or the interface between an n-conductor and a p-conductor. The facts that the charge carrier separation only happens at the heterojunctions limits the thickness of the active layer in solar cells and thereby the effectiveness of the solar cells. In this project the charge carrier separation is attempted optimized by making plastic solar cells with a molecular heterojunction. The molecular heterojunction has been obtained by synthesizing a three domain super molecular assembly termed NPN. NPN consists of two poly[1-(2,5-dioctyltolanyl)ethynylene] chains (N-domains) coupled to the [10,20-bis(3,5-bistert-butylphenyl]-5,15-dibromoporphinato]zinc(II) (P-domain). It is shown that the N domains in NPN work as effective light harvesting antennas for the P domain and effectively transfer electrically generated excitons in the N domain to the P domain. Unfortunately the P domain does not separate the charge carriers but instead works as a charge carrier trap. This results in a performance of solar cells made of NPN that is much lower than the performance of solar cells made of pure poly[1-(2,5-dioctyltolanyl

  16. Green grasses as light harvesters in dye sensitized solar cells

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  17. Green grasses as light harvesters in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-25

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Light-harvesting organic photoinitiators of polymerization.

    Science.gov (United States)

    Lalevée, Jacques; Tehfe, Mohamad-Ali; Dumur, Frédéric; Gigmes, Didier; Graff, Bernadette; Morlet-Savary, Fabrice; Fouassier, Jean-Pierre

    2013-02-12

    Two new photoinitiators with unprecedented light absorption properties are proposed on the basis of a suitable truxene skeleton where several UV photoinitiators PI units such as benzophenone and thioxanthone are introduced at the periphery and whose molecular orbitals MO can be coupled with those of the PI units: a red-shifted absorption and a strong increase of the molecular extinction coefficients (by a ≈ 20-1000 fold factor) are found. These compounds are highly efficient light-harvesting photoinitiators. The scope and practicality of these photoinitiators of polymerization can be dramatically expanded, that is, both radical and cationic polymerization processes are accessible upon very soft irradiation conditions (halogen lamp, LED…︁) thanks to the unique light absorption properties of the new proposed structures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: a Redfield theory approach

    NARCIS (Netherlands)

    Novoderezhkin, V.; Salverda, J.M.; Amerongen, van H.; Grondelle, van R.

    2003-01-01

    We propose an exciton model for the peripheral plant light-harvesting complex LHCII that allows us to explain the absorption (OD) and linear dichroism (LD) spectra, the superradiance (SR), the pump-probe transient absorption (TA), the three-pulse photon echo peak shift (3PEPS), and transient grating

  20. Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: A redfield theory approach

    NARCIS (Netherlands)

    Novoderezhkin, V.; Salverda, J.M.; van Amerongen, H.; van Grondelle, R.

    2003-01-01

    We propose an exciton model for the peripheral plant light-harvesting complex LHCII that allows us to explain the absorption (OD) and linear dichroism (LD) spectra, the superradiance (SR), the pump-probe transient absorption (TA), the three-pulse photon echo peak shift (3PEPS), and transient grating

  1. Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same

    Science.gov (United States)

    Lindsey, Jonathan S [Raleigh, NC; Chinnasamy, Muthiah [Raleigh, NC; Fan, Dazhong [Raleigh, NC

    2009-12-15

    A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

  2. Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Harel, Elad [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2012-05-07

    Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.

  3. Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus

    International Nuclear Information System (INIS)

    Harel, Elad

    2012-01-01

    Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.

  4. PS2004 Light-harvesting Systems Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, Robert E.

    2005-01-01

    This special issue of the international scientific research journal Photosynthesis Research consists of 25 original peer-reviewed contributions from participants in the PS 2004 Lisht-Harvesting Systems Workshop. This workshop was held from 26-29, 2004 at Hotel Le Chantecler, Sainte-Adele, Quebec, Canada. The workshop was a satellite meeting of the XIII International Congress on Photosynthesis held August 29-September 3, 2004 in Montreal, Canada. The workshope dealt with all types of photosynthetic antenna systems and types of organisms, including anoxygenic photosynthetic bacteria, cyanobacteria, algae and higher plants, as well as in vitro studies of isolated pigments. This collection of papers is a good representation of the highly interdisciplinary nature of modern research on photosynthetic antenna complexes, utilizing techniques of advanced spectroscopy, biochemistry, molecular biology, synthetic chemistry and structural determination to understand these diverse and elegant molecular complexes.

  5. Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls.

    Science.gov (United States)

    Bassi, R; Caffarri, S

    2000-01-01

    Photoprotection of the chloroplast is an important component of abiotic stress resistance in plants. Carotenoids have a central role in photoprotection. We review here the recent evidence, derived mainly from in vitro reconstitution of recombinant Lhc proteins with different carotenoids and from carotenoid biosynthesis mutants, for the existence of different mechanisms of photoprotection and regulation based on xanthophyll binding to Lhc proteins into multiple sites and the exchange of chromophores between different Lhc proteins during exposure of plants to high light stress and the operation of the xanthophyll cycle. The use of recombinant Lhc proteins has revealed up to four binding sites in members of Lhc families with distinct selectivity for xanthophyll species which are here hypothesised to have different functions. Site L1 is selective for lutein and is here proposed to be essential for catalysing the protection from singlet oxygen by quenching chlorophyll triplets. Site L2 and N1 are here proposed to act as allosteric sites involved in the regulation of chlorophyll singlet excited states by exchanging ligand during the operation of the xanthophyll cycle. Site V1 of the major antenna complex LHC II is here hypothesised to be a deposit for readily available substrate for violaxanthin de-epoxidase rather than a light harvesting pigment. Moreover, xanthophylls bound to Lhc proteins can be released into the lipid bilayer where they contribute to the scavenging of reactive oxygen species produced in excess light.

  6. Artificial light harvesting by dimerized Möbius ring

    Science.gov (United States)

    Xu, Lei; Gong, Z. R.; Tao, Ming-Jie; Ai, Qing

    2018-04-01

    We theoretically study artificial light harvesting by a Möbius ring. When the donors in the ring are dimerized, the energies of the donor ring are split into two subbands. Because of the nontrivial Möbius boundary condition, both the photon and acceptor are coupled to all collective-excitation modes in the donor ring. Therefore, the quantum dynamics in the light harvesting is subtly influenced by dimerization in the Möbius ring. It is discovered that energy transfer is more efficient in a dimerized ring than that in an equally spaced ring. This discovery is also confirmed by a calculation with the perturbation theory, which is equivalent to the Wigner-Weisskopf approximation. Our findings may be beneficial to the optimal design of artificial light harvesting.

  7. Molecular Factors Controlling Photosynthetic Light Harvesting by Carotenoids

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Frank, H.A.

    2010-01-01

    Roč. 43, č. 8 (2010), s. 1125-1134 ISSN 0001-4842 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * energy transfer * photosynthesis * light-harvesting Subject RIV: BO - Biophysics Impact factor: 21.840, year: 2010

  8. How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes

    Science.gov (United States)

    Bryant, Donald A.; Canniffe, Daniel P.

    2018-02-01

    Chlorophyll-based phototrophs, or chlorophototrophs, convert light energy into stored chemical potential energy using two types of photochemical reaction center (RC), denoted type-1 and type-2. After excitation with light, a so-called special pair of chlorophylls in the RC is oxidized, and an acceptor is reduced. To ensure that RCs function at maximal rates in diffuse and variable light conditions, chlorophototrophs have independently evolved diverse light-harvesting antenna systems to rapidly and efficiently transfer that energy to the RCs. Energy transfer between weakly coupled chromophores is generally believed to proceed by resonance energy transfer, a dipole-induced-dipole process that was initially described theoretically by Förster. Nature principally optimizes three parameters in antenna systems: the distance separating the donor and acceptor chromophores, the relative orientations of those chromophores, and the spectral overlap between the donor and the acceptor chromophores. However, there are other important biological parameters that nature has optimized, and some common themes emerge from comparisons of different antenna systems. This tutorial considers structural and functional characteristics of three fundamentally different light-harvesting antenna systems of chlorophotrophic bacteria: phycobilisomes of cyanobacteria, the light-harvesting complexes (LH1 and LH2) of purple bacteria, and chlorosomes of green bacteria. Phycobilisomes are generally considered to represent an antenna system in which the chromophores are weakly coupled, while the strongly coupled bacteriochlorophyll molecules in LH1 and LH2 are strongly coupled and are better described by exciton theory. Chlorosomes can contain up to 250 000 bacteriochlorophyll molecules, which are very strongly coupled and form supramolecular, nanotubular arrays. The general and specific principles that have been optimized by natural selection during the evolution of these diverse light-harvesting

  9. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  10. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.

    Directory of Open Access Journals (Sweden)

    John F Allen

    Full Text Available In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II. Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.

  11. Design principles and fundamental trade-offs in biomimetic light harvesting

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Birgitta Whaley, K

    2013-01-01

    Recent developments in synthetic and supramolecular chemistry have created opportunities to design organic systems with tailored nanoscale structure for various technological applications. A key application area is the capture of light energy and its conversion into electrochemical or chemical forms for photovoltaic or sensing applications. In this work we consider cylindrical assemblies of chromophores that model structures produced by several supramolecular techniques. Our study is especially guided by the versatile structures produced by virus-templated assembly. We use a multi-objective optimization framework to determine design principles and limitations in light harvesting performance for such assemblies, both in the presence and absence of disorder. We identify a fundamental trade-off in cylindrical assemblies that is encountered when attempting to maximize both efficiency of energy transfer and absorption bandwidth. We also rationalize the optimal design strategies and provide explanations for why various structures provide optimal performance. Most importantly, we find that the optimal design strategies depend on the amount of energetic and structural disorder in the system. The aim of these studies is to develop a program of quantum-informed rational design for construction of organic assemblies that have the same degree of tailored nanoscale structure as biological photosynthetic light harvesting complexes, and consequently have the potential to reproduce their remarkable light harvesting performance. (paper)

  12. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Yukihira, Nao [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Sugai, Yuko [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Fujiwara, Masazumi [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Kosumi, Daisuke [Institute of Pulsed Power Science; Kumamoto University; Kumamoto; Japan; Iha, Masahiko [South Product Co. Ltd.; Uruma-shi; Japan; Sakaguchi, Kazuhiko [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Katsumura, Shigeo [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Gardiner, Alastair T. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Cogdell, Richard J. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Hashimoto, Hideki [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan

    2017-01-01

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.

  13. Individual members of the light-harvesting complex II chlorophyll a/b-binding protein gene family in pea (Pisum sativum) show differential responses to ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Mackerness, A.H.S.; Liu, L.; Thomas, B.; Thompson, W.F.; Jordan, B.R.; White, M.J.

    1998-01-01

    In the present work, UV-B-repressible and UV-B-inducible genes were identified in the pea, Pisum sativum L., by rapid amplification of 3′ cDNA ends through use of the polymerase chain reaction. Of the UV-B-repressible clones, psUVRub and psUVDeh represent genes encoding Rubisco activase and dehydrin, respectively. A third clone, psUVZinc, did not correspond closely in overall nucleotide sequence to any gene registered in GenBank; however, a short deduced peptide shared similarity with the photosystem-II reaction center X protein of the chlorophyll a+c-containing alga, Odontella sinensis. The UV-B-inducible clones, psUVGluc, psUVAux and psUVRib, were related to genes encoding β-1, 3-glucanase, auxin-repressed protein, and a 40S ribosomal protein, respectively. The modulation of these pea genes indicates how UV-B, through its actions as a physical stressor, affects several important physiological processes in plants. (author)

  14. Multireference excitation energies for bacteriochlorophylls A within light harvesting system 2

    DEFF Research Database (Denmark)

    Anda, Andre; Hansen, Thorsten; De Vico, Luca

    2016-01-01

    Light-harvesting system 2 (LH2) of purple bacteria is one of the most popular antenna complexes used to study Nature's way of collecting and channeling solar energy. The dynamics of the absorbed energy is probed by ultrafast spectroscopy. Simulation of these experiments relies on fitting a range...... bacteriochlorophylls in LH2. We find that the excitation energies vary among the bacteriochlorophyll monomers and that they are regulated by the curvature of the macrocycle ring and the dihedral angle of an acetyl moiety. Increasing the curvature lifts the ground state energy, which causes a red shift...

  15. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.

    Science.gov (United States)

    Ensslen, Philipp; Wagenknecht, Hans-Achim

    2015-10-20

    Light-harvesting complexes collect light energy and deliver it by a cascade of energy and electron transfer processes to the reaction center where charge separation leads to storage as chemical energy. The design of artificial light-harvesting assemblies faces enormous challenges because several antenna chromophores need to be kept in close proximity but self-quenching needs to be avoided. Double stranded DNA as a supramolecular scaffold plays a promising role due to its characteristic structural properties. Automated DNA synthesis allows incorporation of artificial chromophore-modified building blocks, and sequence design allows precise control of the distances and orientations between the chromophores. The helical twist between the chromophores, which is induced by the DNA framework, controls energy and electron transfer and thereby reduces the self-quenching that is typically observed in chromophore aggregates. This Account summarizes covalently multichromophore-modified DNA and describes how such multichromophore arrays were achieved by Watson-Crick-specific and DNA-templated self-assembly. The covalent DNA systems were prepared by incorporation of chromophores as DNA base substitutions (either as C-nucleosides or with acyclic linkers as substitutes for the 2'-deoxyribofuranoside) and as DNA base modifications. Studies with DNA base substitutions revealed that distances but more importantly relative orientations of the chromophores govern the energy transfer efficiencies and thereby the light-harvesting properties. With DNA base substitutions, duplex stabilization was faced and could be overcome, for instance, by zipper-like placement of the chromophores in both strands. For both principal structural approaches, DNA-based light-harvesting antenna could be realized. The major disadvantages, however, for covalent multichromophore DNA conjugates are the poor yields of synthesis and the solubility issues for oligonucleotides with more than 5-10 chromophore

  16. Role of ions in the regulation of light-harvesting

    Directory of Open Access Journals (Sweden)

    Radek Kana

    2016-12-01

    Full Text Available Regulation of photosynthetic light harvesting in the thylakoids is one of the major key factors affecting the efficiency of photosynthesis. Thylakoid membrane is negatively charged and influences both the structure and the function of the primarily photosynthetic reactions through its electrical double layer. Further, there is a heterogeneous organization of soluble ions (K+, Mg2+, Cl- attached to the thylakoid membrane that, together with fixed charges (negatively charged amino acids, lipids, provides an electrical field. The electrical double layer is affected by the valence of the ions and interferes with the regulation of state transitions, protein interactions, and excitation energy spillover from Photosystem II to Photosystem I. These effects are reflected in changes in the intensity of chlorophyll a fluorescence, which is also a measure of photoprotective non-photochemical quenching of the excited state of chlorophyll a. A triggering of non-photochemical quenching proceeds via lumen acidification and is coupled to the export of positive counter-ions (Mg2+, K+ to the stroma or/and negative ions (e.g., Cl- into the lumen. The effect of protons and anions in the lumen and of the cations (Mg2+, K+ in the stroma are, thus, functionally tightly interconnected. In this review, we discuss the consequences of the model of electrical double layer, proposed by James Barber (J. Barber (1980 Biochim Biophys Acta 594:253-308 in light of light-harvesting regulation. Further, we explain differences between electrostatic screening and neutralization, and we emphasize the opposite effect of monovalent (K+ and divalent (Mg2+ ions on light-harvesting and on screening of the negative charges on the thylakoid membrane; this effect needs to be incorporated in all future models of photosynthetic regulation by ion channels and transporters.

  17. Light-Harvesting Organic Nanocrystals Capable of Photon Upconversion.

    Science.gov (United States)

    Li, Li; Zeng, Yi; Yu, Tianjun; Chen, Jinping; Yang, Guoqiang; Li, Yi

    2017-11-23

    Harvesting and converting low energy photons into higher ones through upconversion have great potential in solar energy conversion. A light-harvesting nanocrystal assembled from 9,10-distyrylanthracene and palladium(II) meso-tetraphenyltetrabenzoporphyrin as the acceptor and the sensitizer, respectively effects red-to-green upconversion under incoherent excitation of low power density. An upconversion quantum yield of 0.29±0.02 % is obtained upon excitation with 640 nm laser of 120 mW cm -2 . The well-organized packing of acceptor molecules with aggregation-induced emission in the nanocrystals dramatically reduces the nonradiative decay of the excited acceptor, benefits the triplet-triplet annihilation (TTA) upconversion and guides the consequent upconverted emission. This work provides a straightforward strategy to develop light-harvesting nanocrystals based on TTA upconversion, which is attractive for energy conversion and photonic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Revealing Linear Aggregates of Light Harvesting Antenna Proteins in Photosynthetic Membranes

    OpenAIRE

    He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H. Peter

    2010-01-01

    How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under...

  19. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Directory of Open Access Journals (Sweden)

    Lioz Etgar

    2013-02-01

    Full Text Available Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  20. Semiconductor Nanocrystals as Light Harvesters in Solar Cells.

    Science.gov (United States)

    Etgar, Lioz

    2013-02-04

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  1. Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures

    Science.gov (United States)

    Wu, Wu-Qiang; Feng, Hao-Lin; Rao, Hua-Shang; Xu, Yang-Fan; Kuang, Dai-Bin; Su, Cheng-Yong

    2014-05-01

    The scrupulous design of nanoarchitectures and smart hybridization of specific active materials are closely related to the overall photovoltaic performance of an anode electrode. Here we present a solution-based strategy for the fabrication of well-aligned metal oxide-based nanowire-nanosheet-nanorod hyperbranched arrays on transparent conducting oxide substrates. For these hyperbranched arrays, we observe a twofold increment in dye adsorption and enhanced light trapping and scattering capability compared with the pristine titanium dioxide nanowires, and thus a power conversion efficiency of 9.09% is achieved. Our growth approach presents a strategy to broaden the photoresponse and maximize the light-harvesting efficiency of arrays architectures, and may lead to applications for energy conversion and storage, catalysis, water splitting and gas sensing.

  2. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Science.gov (United States)

    Etgar, Lioz

    2013-01-01

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered. PMID:28809318

  3. Light harvesting via energy transfer in the dye solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Siegers, Conrad

    2007-11-09

    The PhD-thesis ''Light Harvesting via Energy Transfer in the Dye Solar Cell'' (University of Freiburg, July 2007) describes the conceptual design, synthesis and testing of energy donor acceptor sensitizers for the dye solar cell (DSC). Under monochromatic illumination solar cells sensitized with the novel donor acceptor systems revealed a higher power conversion efficiency than cells containing exclusively the acceptor component. The following approach led to this conclusion: (i) the choice of suitable chromophores as energy donor and acceptor moieties according to the Foerster-theory, (ii) the synthesis of different donor acceptor systems, (iii) the development of a methodology allowing the quantification of energy transfer within dye solar cells, and (iv) the evaluation of characteristics of DSCs that were sensitized with the different donor acceptor systems. The acceptor chromophores used in this work were derived from [Ru(dcbpy)2acac]Cl (dcbpy = 4,4'-dicarboxy-2,2'-bipyridin, acac = acetylacetonato). This complex offered the opportunity to introduce substituents at the acac-ligand's terminal CH3 groups without significantly affecting its excellent photoelectrochemical properties. Alkylated 4-amino-1,8-naphthalimides (termed Fluorols in the following) were used as energy donor chromophores. This class of compounds fulfils the requirements for efficient energy transfer to [Ru(dcbpy)2acac]Cl. Covalently linking donor and acceptor chromophores to one another was achieved by two different concepts. A dyad comprising one donor and one acceptor chromophore was synthesized by subsequent hydrosilylation steps of an olefin-bearing donor and an acceptor precursor to the dihydrosilane HSiMe2-CH2CH2-SiMe2H. A series of polymers comprising multiple donor and acceptor units was made by the addition of alkyne-bearing chromophores to hyperbranched polyglycerol azide (''Click-chemistry''). In this series the donor acceptor

  4. Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions

    Science.gov (United States)

    Kong, Fanna; Zhou, Yang; Sun, Peipei; Cao, Min; Li, Hong; Mao, Yunxiang

    2016-02-01

    Photosynthesis includes the collection of light and the transfer of solar energy using light-harvesting chlorophyll a/b-binding (LHC) proteins. In high plants, the LHC gene family includes LHCA and LHCB sub-families, which encode proteins constituting the light-harvesting complex of photosystems I and II. Zostera marina L. is a monocotyledonous angiosperm and inhabits submerged marine environments rather than land environments. We characterized the Lhca and Lhcb gene families of Z. marina from the expressed sequence tags (EST) database. In total, 13 unigenes were annotated as ZmLhc, 6 in Lhca family and 7 in ZmLhcb family. ZmLHCA and ZmLHCB contained the conservative LHC motifs and amino acid residues binding chlorophyll. The average similarity among mature ZmLHCA and ZmLHCB was 48.91% and 48.66%, respectively, which indicated a high degree of divergence within ZmLHChc gene family. The reconstructed phylogenetic tree showed that the tree topology and phylogenetic relationship were similar to those reported in other high plants, suggesting that the Lhc genes were highly conservative and the classification of ZmLhc genes was consistent with the evolutionary position of Z. marina. Real-time reverse transcription (RT) PCR analysis showed that different members of ZmLhca and ZmLhcb responded to a stress in different expression patterns. Salinity, temperature, light intensity and light quality may affect the expression of most ZmLhca and ZmLhcb genes. Inorganic carbon concentration and acidity had no obvious effect on ZmLhca and ZmLhcb gene expression, except for ZmLhca6.

  5. Comparative Analysis of Light-Harvesting Antennae and State Transition in chlorina and cpSRP Mutants.

    Science.gov (United States)

    Wang, Peng; Grimm, Bernhard

    2016-11-01

    State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Comparative Analysis of Light-Harvesting Antennae and State Transition in chlorina and cpSRP Mutants1[OPEN

    Science.gov (United States)

    Wang, Peng

    2016-01-01

    State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos. Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems. PMID:27663408

  7. Si Functionalization With Dye Molecular as Light-Harvesting Material

    International Nuclear Information System (INIS)

    Nurul Aqidah Mohd Sinin; Mohd Adib Ibrahim; Mohd Asri Mat Teridi; Norasikin Ahmad Ludin; Suhaila Sepeai; Kamaruzzaman Sopian

    2015-01-01

    The surface plays an important role in thin silicon solar cells, especially with regard to the surface state and interface electronic properties that influence the electron and hole to recombine. In order to keep the recombination loss at a tolerable minimum and avoid an unacceptably large efficiency loss when moving towards thinner silicon materials, the surface must be electronically well passivated. Passivation is the most significant step for the functionalization of silicon. In this study, Si functionalization with a dye molecule might increase the absorption of light that acts as light-harvesting material on the silicon surface. Two types of dye molecular were used; DiL (λ_p_e_a_k = 549 nm) and DiO (λ_p_e_a_k = 484 nm). Both dyes were deposited using a spin-coating technique. These dye layers on the silicon surface were characterized using a Kelvin probe (KP) and photoluminescence (PL) spectroscopy. A different mechanism of slow charge trapping and detrapping was observed using KP measurement. A lifetime decay was observed that indicated a slow process of charge detrapping, owing to light trapping inside the dye/ SiNW interface, with a slow process for an equilibrium to establish between the surface states and the space charge region. An average lifetime of the entire fluorescence decay process was recorded at about 1.24 ns (DiO) and 0.22 ns (DiL), using PL spectroscopy. We show conclusively that these two types of dye can be used as light absorbers, in order to improve the surface properties of the silicon. (author)

  8. Optically nonlinear energy transfer in light-harvesting dendrimers

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2004-08-01

    Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices.

  9. Balancing photosynthetic light-harvesting and light-utilization capacities in potato leaf tissue during acclimation to different growth temperatures

    Science.gov (United States)

    Steffen, K. L.; Wheeler, R. M.; Arora, R.; Palta, J. P.; Tibbitts, T. W.

    1995-01-01

    We investigated the effect of temperature during growth and development on the relationship between light-harvesting capacity, indicated by chlorophyll concentration, and light-utilization potential, indicated by light- and bicarbonate-saturated photosynthetic oxygen evolution, in Solanum tuberosum L. cv. Norland. Clonal plantlets were transplanted and grown at 20 degrees C for 2 weeks before transfer to 12, 16, 20, 24 and 28 degrees C for 6 weeks. After 4 weeks of the temperature treatments, leaf tissue fresh weights per area were one-third higher in plants grown at 12 degrees C vs those grown at 28 degrees C. Conversely, chlorophyll content per area in tissue grown at 12 degrees C was less than one-half of that of tissue grown at 28 degrees C at 4 weeks. Photosynthetic capacity measured at a common temperature of 20 degrees C and expressed on a chlorophyll basis was inversely proportional to growth temperature. Leaf tissue from plants grown at 12 degrees C for 4 weeks had photosynthetic rates that were 3-fold higher on a chlorophyll basis than comparable tissue from plants grown at 28 degrees C. These results suggest that the relationship between light-harvesting capacity and light-utilization potential varies 3-fold in response to the growth temperatures examined. The role of this response in avoidance of photoinhibition is discussed.

  10. Structural Stability of Light-harvesting Protein LH2 Adsorbed on Mesoporous Silica Supports.

    Science.gov (United States)

    Shibuya, Yuuta; Itoh, Tetsuji; Matsuura, Shun-ichi; Yamaguchi, Akira

    2015-01-01

    In the present study, we examined the reversible thermal deformation of the membrane protein light-harvesting complex LH2 adsorbed on mesoporous silica (MPS) supports. The LH2 complex from Thermochromatium tepidum cells was conjugated to MPS supports with a series of pore diameter (2.4 to 10.6 nm), and absorption spectra of the resulting LH2/MPS conjugates were observed over a temperature range of 273 - 313 K in order to examine the structure of the LH2 adsorbed on the MPS support. The experimental results confirmed that a slight ellipsoidal deformation of LH2 was induced by adsorption on the MPS supports. On the other hand, the structural stability of LH2 was not perturbed by the adsorption. Since the pore diameter of MPS support did not influence the structural stability of LH2, it could be considered that the spatial confinement of LH2 in size-matches pore did not improve the structural stability of LH2.

  11. Phylogenetic analysis of the light-harvesting system in Chromera velia.

    Science.gov (United States)

    Pan, Hao; Slapeta, Jan; Carter, Dee; Chen, Min

    2012-03-01

    Chromera velia is a newly discovered photosynthetic eukaryotic alga that has functional chloroplasts closely related to the apicoplast of apicomplexan parasites. Recently, the chloroplast in C. velia was shown to be derived from the red algal lineage. Light-harvesting protein complexes (LHC), which are a group of proteins involved in photon capture and energy transfer in photosynthesis, are important for photosynthesis efficiency, photo-adaptation/accumulation and photo-protection. Although these proteins are encoded by genes located in the nucleus, LHC peptides migrate and function in the chloroplast, hence the LHC may have a different evolutionary history compared to chloroplast evolution. Here, we compare the phylogenetic relationship of the C. velia LHCs to LHCs from other photosynthetic organisms. Twenty-three LHC homologues retrieved from C. velia EST sequences were aligned according to their conserved regions. The C. velia LHCs are positioned in four separate groups on trees constructed by neighbour-joining, maximum likelihood and Bayesian methods. A major group of seventeen LHCs from C. velia formed a separate cluster that was closest to dinoflagellate LHC, and to LHC and fucoxanthin chlorophyll-binding proteins from diatoms. One C. velia LHC sequence grouped with LI1818/LI818-like proteins, which were recently identified as environmental stress-induced protein complexes. Only three LHC homologues from C. velia grouped with the LHCs from red algae.

  12. Singlet-triplet annihilation in single LHCII complexes

    NARCIS (Netherlands)

    Gruber, J.M.; Chmeliov, J.; Kruger, T.P.J.; Valkunas, L.; van Grondelle, R.

    2015-01-01

    In light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching

  13. Enhanced Light Harvesting in Dye-Sensitized Solar Cell Using External Lightguide

    Directory of Open Access Journals (Sweden)

    Chi-Hui Chien

    2011-01-01

    Full Text Available An external lightguide (EL for enhancing the light-harvesting efficiency of dye-sensitized solar cells (DSSCs was designed and developed. The EL attached to the exterior of a DSSC photoelectrode directed light on a dye-covered nanoporous TiO2 film (D-NTF of the photoelectrode. Experimental tests confirmed that the EL increased the light-harvesting efficiency of a DSSC with an active area of 0.25 cm2 by 30.69%. Photocurrent density and the power conversion efficiency were also increased by 38.12% and 25.09%, respectively.

  14. Excitation migration in fluctuating light-harvesting antenna systems

    NARCIS (Netherlands)

    Chmeliov, J.; Trinkunas, G.; Amerongen, van H.; Valkunas, L.

    2016-01-01

    Complex multi-exponential fluorescence decay kinetics observed in various photosynthetic systems like photosystem II (PSII) have often been explained by the reversible quenching mechanism of the charge separation taking place in the reaction center (RC) of PSII. However, this description does not

  15. Advanced nuclear plant control complex

    International Nuclear Information System (INIS)

    Scarola, K.; Jamison, S.; Manazir, R.M.; Rescorl, R.L.; Harmon, D.L.

    1991-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system which is nuclear qualified for rapid response to changes in plant parameters and a component control system which together provide a discrete monitoring and control capability at a panel in the control room. A separate data processing system, which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs and a large, overhead integrated process status overview board. The discrete indicator and alarm system and the data processing system receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accidental conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof. (author)

  16. Energy transfer dynamics from individual semiconductor nanoantennae to dye molecules with implication to light-harvesting nanosystems

    Science.gov (United States)

    Shan, Guangcun; Hu, Mingjun; Yan, Ze; Li, Xin; Huang, Wei

    2018-03-01

    Semiconductor nanocrystals can be used as nanoscale optical antennae to photoexcite individual dye molecules in an ensemble via energy transfer mechanism. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. Herein we investigate the effect of the average donor-acceptor spacing on the time-resolved fluorescence intensity and dynamics of single donor-acceptor pairs with the dye acceptor concentration decreasing by using quantum Monte-Carlo simulation of FRET dynamics. Our results validated that the spatial disorder controlling the microscopic energy transfer rates accounts for the scatter in donor fluorescence lifetimes and intensities, which provides a new design guideline for artificial light-harvesting nanosystems.

  17. Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination

    NARCIS (Netherlands)

    Lucarelli, G.; Di Giacomo, F.; Zardetto, V.; Creatore, M.; Brown, T.M.

    2017-01-01

    This is the first report of an investigation on flexible perovskite solar cells for artificial light harvesting by using a white light-emitting diode (LED) lamp as a light source at 200 and 400 lx, values typically found in indoor environments. Flexible cells were developed using either

  18. Improving light harvesting in polymer photodetector devices through nanoindented metal mask films

    NARCIS (Netherlands)

    Macedo, A. G.; Zanetti, F.; Mikowski, A.; Hummelen, J. C.; Lepienski, C. M.; da Luz, M. G. E.; Roman, L. S.

    2008-01-01

    To enhance light harvesting in organic photovoltaic devices, we propose the incorporation of a metal (aluminum) mask film in the system's usual layout. We fabricate devices in a sandwich geometry, where the mask (nanoindented with a periodic array of holes of sizes d and spacing s) is added between

  19. Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica

    Czech Academy of Sciences Publication Activity Database

    Litvín, Radek; Bína, David; Herbstová, Miroslava; Gardian, Zdenko

    2016-01-01

    Roč. 130, 1-3 (2016), s. 137-150 ISSN 0166-8595 R&D Projects: GA ČR(CZ) GP14-01377P Institutional support: RVO:60077344 Keywords : Light harvesting * Thylakoid membrane * Vaucheriaxanthin * Violaxanthin–chlorophyll protein Subject RIV: BO - Biophysics Impact factor: 3.864, year: 2016

  20. On the theory of frequency-shifted secondary emission of light-harvesting molecular systems

    International Nuclear Information System (INIS)

    Morozov, V.A.

    2001-01-01

    The expressions are obtained for the intensity of the frequency-shifted secondary emission of a chromophore playing the role of a reaction center in the simplest model three-chromophore molecular 'light-harvesting' antenna, which is constructed and oriented in space so that the incident photons coherently excite two of its chromophore pigments. The quantum-field formalism was used, which takes into account the generalized (quantum-electrodynamic) dipole-dipole, as well as radiative and nonradiative dissipative interactions between pigments and the reaction center of the antenna. The special features of the excitation spectrum of the Raman scattering line and the frequency-shifted fluorescence spectrum of the reaction center of the molecular antenna under study are discussed. A comparison of the expressions obtained for the excitation and fluorescence spectra and with the corresponding expressions obtained for a bichromophore molecular system, which differs from a three-chromophore antenna by the absence of one of the pigments, revealed the properties of the mechanism of action of light-harvesting molecular antennas that have not been found earlier. In particular, it is shown that 'the light-harvesting' caused by the collective dissipative interactions of pigments with the reaction center of the antenna can substantially exceed a sum of contributions from separate pigments

  1. Dark states and delocalization: Competing effects of quantum coherence on the efficiency of light harvesting systems.

    Science.gov (United States)

    Hu, Zixuan; Engel, Gregory S; Alharbi, Fahhad H; Kais, Sabre

    2018-02-14

    Natural light harvesting systems exploit electronic coupling of identical chromophores to generate efficient and robust excitation transfer and conversion. Dark states created by strong coupling between chromophores in the antenna structure can significantly reduce radiative recombination and enhance energy conversion efficiency. Increasing the number of the chromophores increases the number of dark states and the associated enhanced energy conversion efficiency yet also delocalizes excitations away from the trapping center and reduces the energy conversion rate. Therefore, a competition between dark state protection and delocalization must be considered when designing the optimal size of a light harvesting system. In this study, we explore the two competing mechanisms in a chain-structured antenna and show that dark state protection is the dominant mechanism, with an intriguing dependence on the parity of the number of chromophores. This dependence is linked to the exciton distribution among eigenstates, which is strongly affected by the coupling strength between chromophores and the temperature. Combining these findings, we propose that increasing the coupling strength between the chromophores can significantly increase the power output of the light harvesting system.

  2. Function of membrane protein in silica nanopores: incorporation of photosynthetic light-harvesting protein LH2 into FSM.

    Science.gov (United States)

    Oda, Ippei; Hirata, Kotaro; Watanabe, Syoko; Shibata, Yutaka; Kajino, Tsutomu; Fukushima, Yoshiaki; Iwai, Satoshi; Itoh, Shigeru

    2006-01-26

    A high amount of functional membrane protein complex was introduced into a folded-sheet silica mesoporous material (FSM) that has nanometer-size pores of honeycomb-like hexagonal cylindrical structure inside. The photosynthetic light-harvesting complex LH2, which is a typical membrane protein, has a cylindrical structure of 7.3 nm diameter and contains 27 bacteriochlorophyll a and nine carotenoid molecules. The complex captures light energy in the anoxygenic thermophilic purple photosynthetic bacterium Thermochromatium tepidum. The amount of LH2 adsorbed to FSM was determined optically and by the adsorption isotherms of N2. The FSM compounds with internal pore diameters of 7.9 and 2.7 nm adsorbed LH2 at 1.11 and 0.24 mg/mg FSM, respectively, suggesting the high specific affinity of LH2 to the interior of the hydrophobic nanopores with a diameter of 7.9 nm. The LH2 adsorbed to FSM showed almost intact absorption bands of bacteriochlorophylls, and was fully active in the capture and transfer of excitation energy. The LH2 complex inside the FSM showed increased heat stability of the exciton-type absorption band of bacteriochlorophylls (B850), suggesting higher circular symmetry. The environment inside the hydrophobic silica nanopores can be a new matrix for the membrane proteins to reveal their functions. The silica-membrane protein adduct will be useful for the construction of new probes and reaction systems.

  3. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Tardy, F; Havaux, M

    1996-06-01

    The abscisic-acid-deficient aba-1 mutant of Arabidopsis thaliana is unable to epoxidize zeaxanthin. As a consequence, it contains large amounts of this carotenoid and lacks epoxy-xanthophylls. HPLC analysis of pigment contents in leaves, isolated thylakoids and preparations of the major light-harvesting complex of photosystem II (PSII) (LHC-II) indicated that zeaxanthin replaced neoxanthin, violaxanthin and antheraxanthin in the light-harvesting system of PSII in aba-1. Non-denaturing electrophoretic fractionation of solubilized thylakoids showed that the xanthophyll imbalance in aba-1 was associated with a pronounced decrease in trimeric LHC-II in favour of monomeric complexes, with a substantial increase in free pigments (mainly zeaxanthin and chlorophyll b), suggesting a decreased stability of LHC-II. The reduced thermostability of PSII in aba-1 was also deduced from in vivo chlorophyll fluorescence measurements. Wild-type and aba-1 leaves could not be distinguished on the basis of their photosynthetic performance: no significant difference was observed between the two types of leaves for light-limited and light-saturated photosynthetic oxygen evolution, PSII photochemistry and PSII to PSI electron flow. When dark-adapted leaves (grown in white light of 80 mumol m-2s-1) were suddenly exposed to red light of 150 mumol m-2s-1, there was a strong nonphotochemical quenching of chlorophyll fluorescence, the amplitude of which was virtually identical (at steady state) in aba-1 and wild-type leaves, despite the fact that the xanthophyll cycle pigment pool was completely in the form of zeaxanthin in aba-1 and almost exclusively in the form of violaxanthin in the wild type. A high concentration of zeaxanthin in aba-1 thylakoids did not, in itself, provide any particular protection against the photoinhibition of PSII. Taken together, the presented results indicate the following: (1) zeaxanthin can replace epoxy-xanthophylls in LHC-II without significantly affecting the

  4. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters

    KAUST Repository

    Grä tzel, Carole; Zakeeruddin, Shaik M.

    2013-01-01

    Mesoscopic solar cells are one of the most promising photovoltaic technologies among third generation photovoltaics due to their low cost and high efficiency. The morphology of wide-band semiconductors, sensitized with molecular or nanosized light harvesters, used as electron collectors contribute substantially to the device performance. Recent developments in the use of organic-inorganic layer structured perovskites as light absorbers and as electron or hole transport materials allows reduction in the thickness of photoanodes to the submicron level and have raised the power conversion efficiency of solid state mesoscopic solar cells above the 10% level.

  5. Porphyrin nanorods characterisation for an artificial light harvesting and energy transfer system

    CSIR Research Space (South Africa)

    Mongwaketsi, N

    2010-01-01

    Full Text Available s 1 0 h r s 1 3 h r s 1 5 h r s 1 8 h r s Porphyrin Nanorods Characterization for an Artificial Light Harvesting and Energy Transfer System Nametso Mongwaketsi1,2,3, Raymond Sparrow2, Bert Klumperman3, Malik Maaza1 1 NanoSciences Lab..., Materials Research Dept, iThemba LABS, PO Box 722, Somerset West, 7129, South Africa 2 CSIR Biosciences, PO Box 395, Pretoria, 0001, South Africa 3 Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X 1, Matieland, 7602...

  6. Facile Synthesis of Colloidal CuO Nanocrystals for Light-Harvesting Applications

    KAUST Repository

    Lim, Yee-Fun; Choi, Joshua J.; Hanrath, Tobias

    2012-01-01

    CuO is an earth-abundant, nontoxic, and low band-gap material; hence it is an attractive candidate for application in solar cells. In this paper, a synthesis of CuO nanocrystals by a facile alcohothermal route is reported. The nanocrystals are dispersible in a solvent mixture of methanol and chloroform, thus enabling the processing of CuO by solution. A bilayer solar cell comprising of CuO nanocrystals and phenyl-C61-butyric acid methyl ester (PCBM) achieved a power conversion efficiency of 0.04%, indicating the potential of this material for light-harvesting applications.

  7. Quantum dot sensitized solar cells: Light harvesting versus charge recombination, a film thickness consideration

    Science.gov (United States)

    Wang, Xiu Wei; Wang, Ye Feng; Zeng, Jing Hui; Shi, Feng; Chen, Yu; Jiang, Jiaxing

    2017-08-01

    Sensitizer loading level is one of the key factors determined the performance of sensitized solar cells. In this work, we systemically studied the influence of photo-anode thicknesses on the performance of the quantum-dot sensitized solar cells. It is found that the photo-to-current conversion efficiency enhances with increased film thickness and peaks at around 20 μm. The optimal value is about twice as large as the dye counterparts. Here, we also uncover the underlying mechanism about the influence of film thickness over the photovoltaic performance of QDSSCs from the light harvesting and charge recombination viewpoint.

  8. The exocyst complex in plants

    Czech Academy of Sciences Publication Activity Database

    Eliáš, M.; Drdová, E.; Žiak, Drahomír; Bavlnka, Břetislav; Hála, Michal; Cvrčková, F.; Soukupová, Hana; Žárský, Viktor

    2003-01-01

    Roč. 27, č. 3 (2003), s. 199-201 ISSN 1065-6995 R&D Projects: GA MŠk LN00A081 Institutional research plan: CEZ:AV0Z5038910 Keywords : Plant cell morphogenesis * GTPases * Rab Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.092, year: 2003

  9. A ratiometric rhodamine–naphthalimide pH selective probe built on the basis of a PAMAM light-harvesting architecture

    International Nuclear Information System (INIS)

    Alamry, Khalid A.; Georgiev, Nikolai I.; El-Daly, Samy Abdullah; Taib, Layla A.; Bojinov, Vladimir B.

    2015-01-01

    PAMAM light harvesting antenna of second generation was synthesized and investigated. Novel compound was configured as a wavelength-shifting bichromophoric molecule where the system surface is labeled with yellow-green emitting 4-(N,N-dimethylamino)ethylamino-1,8-naphthalimide “donor” units capable of absorbing light and efficiently transferring the energy to a focal Rhodamine 6G “acceptor”. Furthermore, the 1,8-naphthalimide periphery of the system was designed on the “fluorophore-spacer-receptor” format, capable of acting as a molecular fluorescence photoinduced electron transfer based probe. Due to the both effects, photoinduced electron transfer in the periphery of the system and pH dependent rhodamine core absorption, novel antenna is able to act as a selective ratiometric pH fluorescence probe in aqueous medium. Thus, the distinguishing features of light-harvesting systems (fluorescence resonance energy transfer) were successfully combined with the properties of classical ring-opening sensor systems, which may be beneficial for monitoring pH variations in complex samples. - Highlights: • PAMAM antenna decorated with Rhodamine 6G and 1,8-naphthalimides is synthesized. • Periphery of the antenna is designed as a PET based fluorescence probe. • System manifests excellent selective response to protons in aqueous medium. • Core emission of the systems is enhanced more than 10 times as a function of pH. • Bichromophoric system acts as a selective ratiometric probe in complex samples

  10. Enzyme-Triggered Defined Protein Nanoarrays: Efficient Light-Harvesting Systems to Mimic Chloroplasts.

    Science.gov (United States)

    Zhao, Linlu; Zou, Haoyang; Zhang, Hao; Sun, Hongcheng; Wang, Tingting; Pan, Tiezheng; Li, Xiumei; Bai, Yushi; Qiao, Shanpeng; Luo, Quan; Xu, Jiayun; Hou, Chunxi; Liu, Junqiu

    2017-01-24

    The elegance and efficiency by which chloroplasts harvest solar energy and conduct energy transfer have been a source of inspiration for chemists to mimic such process. However, precise manipulation to obtain orderly arranged antenna chromophores in constructing artificial chloroplast mimics was a great challenge, especially from the structural similarity and bioaffinity standpoints. Here we reported a design strategy that combined covalent and noncovalent interactions to prepare a protein-based light-harvesting system to mimic chloroplasts. Cricoid stable protein one (SP1) was utilized as a building block model. Under enzyme-triggered covalent protein assembly, mutant SP1 with tyrosine (Tyr) residues at the designated sites can couple together to form nanostructures. Through controlling the Tyr sites on the protein surface, we can manipulate the assembly orientation to respectively generate 1D nanotubes and 2D nanosheets. The excellent stability endowed the self-assembled protein architectures with promising applications. We further integrated quantum dots (QDs) possessing optical and electronic properties with the 2D nanosheets to fabricate chloroplast mimics. By attaching different sized QDs as donor and acceptor chromophores to the negatively charged surface of SP1-based protein nanosheets via electrostatic interactions, we successfully developed an artificial light-harvesting system. The assembled protein nanosheets structurally resembled the natural thylakoids, and the QDs can achieve pronounced FRET phenomenon just like the chlorophylls. Therefore, the coassembled system was meaningful to explore the photosynthetic process in vitro, as it was designed to mimic the natural chloroplast.

  11. Cyanobacterial flv4-2 Operon-Encoded Proteins Optimize Light Harvesting and Charge Separation in Photosystem II.

    Science.gov (United States)

    Chukhutsina, Volha; Bersanini, Luca; Aro, Eva-Mari; van Amerongen, Herbert

    2015-05-01

    Photosystem II (PSII) complexes drive the water-splitting reaction necessary to transform sunlight into chemical energy. However, too much light can damage and disrupt PSII. In cyanobacteria, the flv4-2 operon encodes three proteins (Flv2, Flv4, and Sll0218), which safeguard PSII activity under air-level CO2 and in high light conditions. However, the exact mechanism of action of these proteins has not been clarified yet. We demonstrate that the PSII electron transfer properties are influenced by the flv4-2 operon-encoded proteins. Accelerated secondary charge separation kinetics was observed upon expression/overexpression of the flv4-2 operon. This is likely induced by docking of the Flv2/Flv4 heterodimer in the vicinity of the QB pocket of PSII, which, in turn, increases the QB redox potential and consequently stabilizes forward electron transfer. The alternative electron transfer route constituted by Flv2/Flv4 sequesters electrons from QB(-) guaranteeing the dissipation of excess excitation energy in PSII under stressful conditions. In addition, we demonstrate that in the absence of the flv4-2 operon-encoded proteins, about 20% of the phycobilisome antenna becomes detached from the reaction centers, thus decreasing light harvesting. Phycobilisome detachment is a consequence of a decreased relative content of PSII dimers, a feature observed in the absence of the Sll0218 protein. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  12. The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516).

    Science.gov (United States)

    McKew, Boyd A; Davey, Phillip; Finch, Stewart J; Hopkins, Jason; Lefebvre, Stephane C; Metodiev, Metodi V; Oxborough, Kevin; Raines, Christine A; Lawson, Tracy; Geider, Richard J

    2013-10-01

    Mechanistic understanding of the costs and benefits of photoacclimation requires knowledge of how photophysiology is affected by changes in the molecular structure of the chloroplast. We tested the hypothesis that changes in the light dependencies of photosynthesis, nonphotochemical quenching and PSII photoinactivation arises from changes in the abundances of chloroplast proteins in Emiliania huxleyi strain CCMP 1516 grown at 30 (Low Light; LL) and 1000 (High Light; HL) μmol photons m(-2) s(-1) photon flux densities. Carbon-specific light-saturated gross photosynthesis rates were not significantly different between cells acclimated to LL and HL. Acclimation to LL benefited cells by increasing biomass-specific light absorption and gross photosynthesis rates under low light, whereas acclimation to HL benefited cells by reducing the rate of photoinactivation of PSII under high light. Differences in the relative abundances of proteins assigned to light-harvesting (Lhcf), photoprotection (LI818-like), and the photosystem II (PSII) core complex accompanied differences in photophysiology: specifically, Lhcf:PSII was greater under LL, whereas LI818:PSII was greater in HL. Thus, photoacclimation in E. huxleyi involved a trade-off amongst the characteristics of light absorption and photoprotection, which could be attributed to changes in the abundance and composition of proteins in the light-harvesting antenna of PSII. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. Enhanced light-harvesting by plasmonic hollow gold nanospheres for photovoltaic performance.

    Science.gov (United States)

    Ding, Hao; Lv, Jindian; Wu, Huaping; Chai, Guozhong; Liu, Aiping

    2018-01-01

    A 'sandwich'-structured TiO 2 NR/HGN/CdS photoanode was successfully fabricated by the electrophoretic deposition of hollow gold nanospheres (HGNs) on the surface of TiO 2 nanorods (NRs). The HGNs presented a wide surface plasmon resonance character in the visible region from 540 to 630 nm, and further acted as the scatter elements and light energy 'antennas' to trap the local-field light near the TiO 2 NR/CdS layer, resulting in the increase of the light harvesting. An outstanding enhancement in the photochemical behaviour of TiO 2 NR/HGN/CdS photoanodes was attained by the contribution of HGNs in increasing the light absorption and the number of electron-hole pairs of photosensitive semiconductors. The optimized photochemical performance of TiO 2 NR/HGN/CdS photoanodes by using plasmonic HGNs demonstrated their potential application in energy conversion devices.

  14. Synthesis of borylated porphyrin and bromo- porphyrin as building blocks for light harvesting antenna molecule

    Science.gov (United States)

    Radzuan, Nuur Haziqah Mohd; Hassan, Nurul Izzaty; Bakar, Muntaz Abu

    2018-04-01

    The building blocks for synthesis of light harvesting antenna which are 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-10,20-diphenylporphyrin, 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-10,20-dihexylporphyrin and 5,10,15,20-tetra-(bromophenyl)porphyrin were synthesized. Borylated porphyrin was synthesized by Suzuki coupling reaction between A2BC bromo-porphyrin and pinacolborane. Whereas 5,10,15,20-tetra-(bromophenyl) porphyrin was synthesized by Lindsey condensation reaction between pyrrole and 4-bromobenzaldehyde. 1H-NMR, 13C-NMR spectroscopy and UV-visible spectroscopy confirmed the successful formation of all compounds.

  15. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    KAUST Repository

    Alamri, Amal M.; Fu, Po-Han; Lai, Kun-Yu; Wang, Hsin-Ping; Li, Lain-Jong; He, Jr-Hau

    2016-01-01

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%.

  16. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    KAUST Repository

    Alamri, Amal M.

    2016-06-24

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%.

  17. Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes

    NARCIS (Netherlands)

    Reynolds, Nicholas P; Janusz, Stefan; Escalante-Marun, Maryana; Timney, John A; Ducker, Robert E; Olsen, John D; Otto, Cees; Subramaniam, Vinod; Leggett, Graham J; Hunter, C Neil

    2007-01-01

    The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid "biochip" device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an

  18. Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes

    NARCIS (Netherlands)

    Reynolds, Nicholas P.; Janusz, Stefan; Escalante Marun, M.; Escalante-Marun, Maryana; Timney, John; Ducker, Robert E.; Olsen, John D.; Otto, Cornelis; Subramaniam, Vinod; Leggett, Graham J.; Hunter, C. Neil

    2007-01-01

    The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid “biochip” device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an

  19. Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; van Stokkum, I.H.M.; Zigmantas, D.; van Grondelle, R.; Sundström, V.; Hiller, R.G.

    2006-01-01

    Roč. 45, - (2006), s. 8516-8526 ISSN 0006-2960 Institutional research plan: CEZ:AV0Z50510513 Keywords : Energy transfer * Amphidinium carterae Subject RIV: CE - Biochemistry Impact factor: 3.633, year: 2006

  20. Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; van Stokkum, I.H.M.; Zigmantas, D.; van Grondelle, R.; Sundström, V.; Hiller, R.G.

    2006-01-01

    Roč. 45, č. 28 (2006), s. 8516-8526 ISSN 0006-2960 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * Energy transfer Subject RIV: CE - Biochemistry Impact factor: 3.633, year: 2006

  1. Circular dichroism measured on single chlorosomal light-harvesting complexes of green photosynthetic bacteria

    KAUST Repository

    Furumaki, Shu

    2012-12-06

    We report results on circular dichroism (CD) measured on single immobilized chlorosomes of a triple mutant of green sulfur bacterium Chlorobaculum tepidum. The CD signal is measured by monitoring chlorosomal bacteriochlorphyll c fluorescence excited by alternate left and right circularly polarized laser light with a fixed wavelength of 733 nm. The excitation wavelength is close to a maximum of the negative CD signal of a bulk solution of the same chlorosomes. The average CD dissymmetry parameter obtained from an ensemble of individual chlorosomes was gs = -0.025, with an intrinsic standard deviation (due to variations between individual chlorosomes) of 0.006. The dissymmetry value is about 2.5 times larger than that obtained at the same wavelength in the bulk solution. The difference can be satisfactorily explained by taking into account the orientation factor in the single-chlorosome experiments. The observed distribution of the dissymmetry parameter reflects the well-ordered nature of the mutant chlorosomes. © 2012 American Chemical Society.

  2. Circular dichroism measured on single chlorosomal light-harvesting complexes of green photosynthetic bacteria

    KAUST Repository

    Furumaki, Shu; Yabiku, Yu; Habuchi, Satoshi; Tsukatani, Yusuke; Bryant, Donald A.; Vá cha, Martin

    2012-01-01

    We report results on circular dichroism (CD) measured on single immobilized chlorosomes of a triple mutant of green sulfur bacterium Chlorobaculum tepidum. The CD signal is measured by monitoring chlorosomal bacteriochlorphyll c fluorescence excited by alternate left and right circularly polarized laser light with a fixed wavelength of 733 nm. The excitation wavelength is close to a maximum of the negative CD signal of a bulk solution of the same chlorosomes. The average CD dissymmetry parameter obtained from an ensemble of individual chlorosomes was gs = -0.025, with an intrinsic standard deviation (due to variations between individual chlorosomes) of 0.006. The dissymmetry value is about 2.5 times larger than that obtained at the same wavelength in the bulk solution. The difference can be satisfactorily explained by taking into account the orientation factor in the single-chlorosome experiments. The observed distribution of the dissymmetry parameter reflects the well-ordered nature of the mutant chlorosomes. © 2012 American Chemical Society.

  3. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica

    Czech Academy of Sciences Publication Activity Database

    Dachev, Marko; Bína, David; Sobotka, Roman; Moravcová, Lenka; Gardian, Zdenko; Kaftan, David; Šlouf, V.; Fuciman, M.; Polívka, Tomáš; Koblížek, Michal

    2017-01-01

    Roč. 15, č. 12 (2017), č. článku e2003943. E-ISSN 1545-7885 R&D Projects: GA ČR GA15-00703S; GA ČR GBP501/12/G055; GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 ; RVO:60077344 Keywords : BACTERIUM CHLOROFLEXUS-AURANTIACUS * EXCITATION-ENERGY TRANSFER * PURPLE BACTERIA Subject RIV: EE - Microbiology, Virology; BO - Biophysics (BC-A) OBOR OECD: Microbiology; Biophysics (BC-A) Impact factor: 9.797, year: 2016

  4. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites

    Czech Academy of Sciences Publication Activity Database

    Tichý, Josef; Gardian, Zdenko; Bína, David; Koník, P.; Litvín, Radek; Herbstová, Miroslava; Pain, A.; Vácha, František

    2013-01-01

    Roč. 1827, č. 6 (2013), s. 723-729 ISSN 0005-2728 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 Keywords : Chromera velia * Photosystem I * Electron microscopy Subject RIV: ED - Physiology Impact factor: 4.829, year: 2013

  5. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs

    Czech Academy of Sciences Publication Activity Database

    Selyanin, Vadim; Hauruseu, Dzmitry; Koblížek, Michal

    2016-01-01

    Roč. 128, č. 1 (2016), s. 35-43 ISSN 0166-8595 R&D Projects: GA ČR GBP501/12/G055; GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : Bacteriochlorophyll * Purple non-sulfur bacteria * Photosynthetic unit size Subject RIV: EE - Microbiology, Virology Impact factor: 3.864, year: 2016

  6. Dynamic complexity: plant receptor complexes at the plasma membrane.

    Science.gov (United States)

    Burkart, Rebecca C; Stahl, Yvonne

    2017-12-01

    Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Diamond functionalization with light-harvesting molecular wires: improved surface coverage by optimized Suzuki cross-coupling conditions

    Czech Academy of Sciences Publication Activity Database

    Yeap, W. S.; Bevk, D.; Liu, X.; Krýsová, Hana; Pasquarelli, A.; Vanderzande, D.; Lutsen, L.; Kavan, Ladislav; Fahlman, M.; Maes, W.; Haenen, K.

    2014-01-01

    Roč. 4, AUG 2014 (2014), s. 42044-42053 ISSN 2046-2069 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 Keywords : Functionalizations * Light-harvesting * Molecular wires Subject RIV: CG - Electrochemistry Impact factor: 3.840, year: 2014

  8. Role of Carotenoids in Light-Harvesting Processes in an Antenna Protein from the Chromophyte Xanthonema debile

    Czech Academy of Sciences Publication Activity Database

    Durchan, Milan; Tichý, Josef; Litvín, Radek; Šlouf, V.; Gardian, Zdenko; Hříbek, P.; Vácha, František; Polívka, Tomáš

    2012-01-01

    Roč. 116, č. 30 (2012), s. 8880-8889 ISSN 1520-6106 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 Keywords : xanthophytes * carotenoids * light harvesting * energy transfer Subject RIV: BO - Biophysics Impact factor: 3.607, year: 2012

  9. Allelic variations of a light harvesting chlorophyll a/b-binding protein gene (Lhcb1 associated with agronomic traits in barley.

    Directory of Open Access Journals (Sweden)

    Yanshi Xia

    Full Text Available Light-harvesting chlorophyll a/b-binding protein (LHCP is one of the most abundant chloroplast proteins in plants. Its main function is to collect and transfer light energy to photosynthetic reaction centers. However, the roles of different LHCPs in light-harvesting antenna systems remain obscure. Exploration of nucleotide variation in the genes encoding LHCP can facilitate a better understanding of the functions of LHCP. In this study, nucleotide variations in Lhcb1, a LHCP gene in barley, were investigated across 292 barley accessions collected from 35 different countries using EcoTILLING technology, a variation of the Targeting Induced Local Lesions In Genomes (TILLING. A total of 23 nucleotide variations were detected including three insert/deletions (indels and 20 single nucleotide polymorphisms (SNPs. Among them, 17 SNPs were in the coding region with nine missense changes. Two SNPs with missense changes are predicted to be deleterious to protein function. Seventeen SNP formed 31 distinguishable haplotypes in the barley collection. The levels of nucleotide diversity in the Lhcb1 locus differed markedly with geographic origins and species of accessions. The accessions from Middle East Asia exhibited the highest nucleotide and haplotype diversity. H. spontaneum showed greater nucleotide diversity than H. vulgare. Five SNPs in Lhcb1 were significantly associated with at least one of the six agronomic traits evaluated, namely plant height, spike length, number of grains per spike, thousand grain weight, flag leaf area and leaf color, and these SNPs may be used as potential markers for improvement of these barley traits.

  10. Ultrafast Nonradiative Decay and Excitation Energy Transfer by Carotenoids in Photosynthetic Light-Harvesting Proteins

    Science.gov (United States)

    Ghosh, Soumen

    This dissertation investigates the photophysical and structural dynamics that allow carotenoids to serve as efficient excitation energy transfer donor to chlorophyll acceptors in photosynthetic light harvesting proteins. Femtosecond transient grating spectroscopy with optical heterodyne detection has been employed to follow the nonradiative decay pathways of carotenoids and excitation energy transfer to chlorophylls. It was found that the optically prepared S2 (11Bu+) state of beta-carotene decays in 12 fs fs to populate an intermediate electronic state, Sx, which then decays nonradiatively to the S 1 state. The ultrafast rise of the dispersion component of the heterodyne transient grating signal reports the formation of Sx intermediate since the rise of the dispersion signal is controlled by the loss of stimulated emission from the S2 state. These findings were extended to studies of peridinin, a carbonyl substituted carotenoid that serves as a photosynthetic light-harvesting chromophore in dinoflagellates. Numerical simulations using nonlinear response formalism and the multimode Brownian oscillator model assigned the Sx intermediate to a torsionally distorted structure evolving on the S2 potential surface. The decay of the Sx state is promoted by large amplitude out-of-plane torsional motions and is significantly retarded by solvent friction owing to the development of an intramolecular charge transfer character in peridinin. The slowing of the nonradiative decay allows the Sx state to transfer significant portion of the excitation energy to chlorophyll a acceptors in the peridinin-chlorophyll a protein. The results of heterodyne transient grating study on peridinin-chlorophyll a protein suggests two distinct energy transfer channels from peridinin to chlorophyll a: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process involving the distorted S2 state of peridinin. The torsional evolution on the S2

  11. An artificial light-harvesting array constructed from multiple Bodipy dyes.

    Science.gov (United States)

    Ziessel, Raymond; Ulrich, Gilles; Haefele, Alexandre; Harriman, Anthony

    2013-07-31

    An artificial light-harvesting array, comprising 21 discrete chromophores arranged in a rational manner, has been synthesized and characterized fully. The design strategy follows a convergent approach that leads to a molecular-scale funnel, having an effective chromophore concentration of 0.6 M condensed into ca. 55 nm(3), able to direct the excitation energy to a focal point. A cascade of electronic energy-transfer steps occurs from the rim to the focal point, with the rate slowing down as the exciton moves toward its ultimate target. Situated midway along each branch of the V-shaped array, two chromophoric relays differ only slightly in terms of their excitation energies, and this situation facilitates reverse energy transfer. Thus, the excitation energy becomes spread around the array, a situation reminiscent of a giant holding pattern for the photon that can sample many different chromophores before being trapped by the terminal acceptor. At high photon flux under conditions of relatively slow off-load to a device, such as a solar cell, electronic energy transfer encounters one or more barriers that hinder forward progress of the exciton and thereby delays arrival of the second photon. Preliminary studies have addressed the ability of the array to function as a sensitizer for amorphous silicon solar cells.

  12. Porphyrin-based polymeric nanostructures for light harvesting applications: Ab initio calculations

    Science.gov (United States)

    Orellana, Walter

    The capture and conversion of solar energy into electricity is one of the most important challenges to the sustainable development of mankind. Among the large variety of materials available for this purpose, porphyrins concentrate great attention due to their well-known absorption properties in the visible range. However, extended materials like polymers with similar absorption properties are highly desirable. In this work, we investigate the stability, electronic and optical properties of polymeric nanostructures based on free-base porphyrins and phthalocyanines (H2P, H2Pc), within the framework of the time-dependent density functional perturbation theory. The aim of this work is the stability, electronic, and optical characterization of polymeric sheets and nanotubes obtained from H2P and H2Pc monomers. Our results show that H2P and H2Pc sheets exhibit absorption bands between 350 and 400 nm, slightly different that the isolated molecules. However, the H2P and H2Pc nanotubes exhibit a wide absorption in the visible and near-UV range, with larger peaks at 600 and 700 nm, respectively, suggesting good characteristic for light harvesting. The stability and absorption properties of similar structures obtained from ZnP and ZnPc molecules is also discussed. Departamento de Ciencias Físicas, República 220, 037-0134 Santiago, Chile.

  13. Quantification of complex modular architecture in plants.

    Science.gov (United States)

    Reeb, Catherine; Kaandorp, Jaap; Jansson, Fredrik; Puillandre, Nicolas; Dubuisson, Jean-Yves; Cornette, Raphaël; Jabbour, Florian; Coudert, Yoan; Patiño, Jairo; Flot, Jean-François; Vanderpoorten, Alain

    2018-04-01

    Morphometrics, the assignment of quantities to biological shapes, is a powerful tool to address taxonomic, evolutionary, functional and developmental questions. We propose a novel method for shape quantification of complex modular architecture in thalloid plants, whose extremely reduced morphologies, combined with the lack of a formal framework for thallus description, have long rendered taxonomic and evolutionary studies extremely challenging. Using graph theory, thalli are described as hierarchical series of nodes and edges, allowing for accurate, homologous and repeatable measurements of widths, lengths and angles. The computer program MorphoSnake was developed to extract the skeleton and contours of a thallus and automatically acquire, at each level of organization, width, length, angle and sinuosity measurements. Through the quantification of leaf architecture in Hymenophyllum ferns (Polypodiopsida) and a fully worked example of integrative taxonomy in the taxonomically challenging thalloid liverwort genus Riccardia, we show that MorphoSnake is applicable to all ramified plants. This new possibility of acquiring large numbers of quantitative traits in plants with complex modular architectures opens new perspectives of applications, from the development of rapid species identification tools to evolutionary analyses of adaptive plasticity. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  14. Strong photocurrent enhancements in plasmonic organic photovoltaics by biomimetic nanoarchitectures with efficient light harvesting.

    Science.gov (United States)

    Leem, Jung Woo; Kim, Sehwan; Park, Chihyun; Kim, Eunkyoung; Yu, Jae Su

    2015-04-01

    We propose the biomimetic moth-eye nanoarchitectures as a novel plasmonic light-harvesting structure for further enhancing the solar-generated photocurrents in organic photovoltaics (OPVs). The full moth-eye nanoarchitectures are composed of two-dimensional hexagonal periodic grating arrays on surfaces of both the front zinc oxide (ZnO) and rear active layers, which are prepared by a simple and cost-effective soft imprint nanopatterning technique. For the 380 nm period ZnO and 650 nm period active gratings (i.e., ZnO(P380)/Active(P650)), the poly(3-hexylthiophene-2,5-diyl):indene-C60 bis-adduct (P3HT:ICBA)-based plasmonic OPVs exhibit an improvement of the absorption spectrum compared to the pristine OPVs over a broad wavelength range of 350-750 nm, showing absorption enhancement peaks at wavelengths of ∼370, 450, and 670 nm, respectively. This leads to a considerable increase of short-circuit current density (Jsc) from 10.9 to 13.32 mA/cm(2), showing a large Jsc enhancement percentage of ∼22.2%. As a result, the strongly improved power conversion efficiency (PCE) of 6.28% is obtained compared to that (i.e., PCE = 5.12%) of the pristine OPVs. For the angle-dependent light-absorption characteristics, the plasmonic OPVs with ZnO(P380)/Active(P650) have a better absorption performance than that of the pristine OPVs at incident angles of 20-70°. For optical absorption characteristics and near-field intensity distributions of plasmonic OPVs, theoretical analyses are also performed by a rigorous coupled-wave analysis method, which gives a similar tendency with the experimentally measured data.

  15. HPLC-DAD-ESI/MS identification of light harvesting and light screening pigments in the lake sediments at Edmonson Point.

    Science.gov (United States)

    Giovannetti, Rita; Alibabaei, Leila; Zannotti, Marco; Ferraro, Stefano; Petetta, Laura

    2013-01-01

    The composition of sedimentary pigments in the Antarctic lake at Edmonson Point has been investigated and compared with the aim to provide a useful analytical method for pigments separation and identification, providing reference data for future assessment of possible changes in environmental conditions. Reversed phase high performance liquid chromatography (HPLC) with electrospray-mass spectrometry (ESI-MS) detection and diode array detection (DAD) has been used to identify light screening and light harvesting pigments. The results are discussed in terms of local environmental conditions.

  16. HPLC-DAD-ESI/MS Identification of Light Harvesting and Light Screening Pigments in the Lake Sediments at Edmonson Point

    Directory of Open Access Journals (Sweden)

    Rita Giovannetti

    2013-01-01

    Full Text Available The composition of sedimentary pigments in the Antarctic lake at Edmonson Point has been investigated and compared with the aim to provide a useful analytical method for pigments separation and identification, providing reference data for future assessment of possible changes in environmental conditions. Reversed phase high performance liquid chromatography (HPLC with electrospray-mass spectrometry (ESI-MS detection and diode array detection (DAD has been used to identify light screening and light harvesting pigments. The results are discussed in terms of local environmental conditions.

  17. Core–shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells

    KAUST Repository

    Mahmood, Khalid; Swain, Bhabani Sankar; Amassian, Aram

    2015-01-01

    To achieve highly efficient mesoscopic perovskite solar cells (PSCs), the structure and properties of an electron transport layer (ETL) or material (ETM) have been shown to be of supreme importance. Particularly, the core-shell heterostructured mesoscopic ETM architecture has been recognized as a successful electrode design, because of its large internal surface area, superior light-harvesting efficiency and its ability to achieve fast charge transport. Here we report the successful fabrication of a hysteresis-free, 15.3% efficient PSC using vertically aligned ZnO nanorod/TiO2 shell (ZNR/TS) core-shell heterostructured ETMs for the first time. We have also added a conjugated polyelectrolyte polymer into the growth solution to promote the growth of high aspect ratio (AR) ZNRs and substantially improve the infiltration of the perovskite light absorber into the ETM. The PSCs based on the as-synthesized core-shell ZnO/TiO2 heterostructured ETMs exhibited excellent performance enhancement credited to the superior light harvesting capability, larger surface area, prolonged charge-transport pathways and lower recombination rate. The unique ETM design together with minimal hysteresis introduces core-shell ZnO/TiO2 heterostructures as a promising mesoscopic electrode approach for the fabrication of efficient PSCs. This journal is © The Royal Society of Chemistry.

  18. Carbon dot-Au(i)Ag(0) assembly for the construction of an artificial light harvesting system.

    Science.gov (United States)

    Jana, Jayasmita; Aditya, Teresa; Pal, Tarasankar

    2018-03-06

    Artificial light harvesting systems (LHS) with inorganic counterparts are considered to be robust as well as mechanistically simple, where the system follows the donor-acceptor principle with an unchanged structural pattern. Plasmonic gold or silver nanoparticles are mostly chosen as inorganic counterparts to design artificial LHS. To capitalize on its electron accepting capability, Au(i) has been considered in this work for the synergistic stabilization of a system with intriguingly fluorescing silver(0) clusters produced in situ. Thus a stable fluorescent Au(i)Ag(0) assembly is generated with electron accepting capabilities. On the other hand, carbon dots have evolved as new fluorescent probes due to their unique physicochemical properties. Utilizing the simple electronic behavior of carbon dots, an electronic interaction between the fluorescent Au(i)Ag(0) and a carbon dot has been investigated for the construction of a new artificial light harvesting system. This coinage metal assembly allows surface energy transfer where it acts as an acceptor, while the carbon dot behaves as a good donor. The energy transfer efficiency has been calculated experimentally to be significant (81.3%) and the Au(i)Ag(0)-carbon dot assembly paves the way for efficient artificial LHS.

  19. Influence of vibronic contribution on light harvesting efficiency of NKX-2587 derivatives with oligothiophene as π-conjugated linker

    Science.gov (United States)

    Yang, Pan; Zhang, Yang; Li, Ming; Shen, Wei; He, Rongxing

    2018-01-01

    Based on the NKX-2587 molecule we designed ten sensitizers with 1-10 thiophene moieties to investigate how the number of thiophene unit in the spacer influences the absorption spectra of sensitizer in dye sensitized solar cells (DSSCs). The parameters of short-circuit current density (Jsc), open circuit voltage (Voc), the light harvesting efficiency (LHE), injection driving force (Δ Ginject), and transferred electron number (nc), were calculated and discussed in detail. Results indicated that the increasing of thiophene units makes for the enhancement of oscillator strengths (f), although the red shift of vertical electronic absorption spectra is small. For the designed sensitizers with 1-5 thiophene units, their ΔGinject and nc raise gradually with the increasing of thiophene number. However, for those sensitizers with 6-10 thiophene units, the ΔGinject and nc decrease continuously with the increasing of thiophene units. In order to study how the oligothiophene as π-conjugated linker affects light harvesting efficiency of DSSCs, the vibrationally resolved electronic spectra of five metal-free NKX-2587 derivatives with 1-5 thiophene units were simulated within the Franck-Condon approximation including the Herzberg-Teller and Duschinsky effects. The present theoretical results provided helpful guidance for understanding the sources of spectral intensities of dye molecules, and a valuable method for rational design of new molecules to improve the energy conversion efficiency (η) of DSSCs.

  20. Broadband Light-Harvesting Molecular Triads with High FRET Efficiency Based on the Coumarin-Rhodamine-BODIPY Platform.

    Science.gov (United States)

    He, Longwei; Zhu, Sasa; Liu, Yong; Xie, Yinan; Xu, Qiuyan; Wei, Haipeng; Lin, Weiying

    2015-08-17

    Broadband capturing and FRET-based light-harvesting molecular triads, CRBs, based on the coumarin-rhodamine-BODIPY platform were rationally designed and synthesized. The absorption band of CRBs starts from blue-green to yellow-orange regions (330-610 nm), covering the strong radiation scope of sunlight. The peripheral coumarin and BODIPY chromophore energy could transfer to the central acceptor rhodamine by a one-step direct way. The energy of the coumarin moiety could also transfer to the BODIPY unit, subsequently transferring to the rhodamine core by two-step sequential ways. Both the efficiencies of the coumarin moiety and the BODIPY unit to the rhodamine core in CRBs, determined by two different ways, are very high. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dynamics simulation of a π-conjugated light-harvesting dendrimer II: phenylene-based dendrimer (phDG2)

    International Nuclear Information System (INIS)

    Kodama, Yasunobu; Ishii, Soh; Ohno, Kaoru

    2009-01-01

    We investigate the light-harvesting property of a π-conjugated dendrimer, phenylene-based dendrimer (phDG2), by carrying out a semi-classical Ehrenfest dynamics simulation based on the time-dependent density functional theory. Similar to our previous study of star-shaped stilbenoid phthalocyanine (SSS1Pc), phDG2 shows electron and hole transfer from the periphery to the core through a π-conjugated network when an electron is selectively excited in the periphery. The one-way electron and hole transfer occurs more easily in dendrimers with planar structure than in those with steric hindrance because π-conjugation is well maintained in the planar structure. The present results explain recent experiments by Akai et al (2005 J. Lumin. 112 449).

  2. Semiconductor Nanocrystals for New-generation Lightening and Light Harvesting Applications

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Krishna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-20

    Research works: I. QDs: CdSe/ZnSe and ZnSe/CdS; Synthetic complexities and mitigations. II. Photovoltaics: PLD graphite counter electrode; PbS, PbSe sensitization on TiO2; NW sensitized solar cell. III. Photocatalysis:ZnSe/CdS/Pt & ZnTe/CdS/Pt

  3. Dye-sensitized solar cells using natural dye as light-harvesting materials extracted from Acanthus sennii chiovenda flower and Euphorbia cotinifolia leaf

    Directory of Open Access Journals (Sweden)

    Wuletaw Andargie Ayalew

    2016-12-01

    Full Text Available Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. In this study, dye-sensitized solar cells (DSSCs were fabricated using natural dyes light harvesting materials. The natural dyes were extracted from Acanthus sennii chiovenda flower and Euphorbia cotinifolia leaf. In the as-prepared DSSC, a quasi-solid state electrolyte was sandwiched between the working electrode (photoanode and counter electrode (PEDOT-coated FTO glass. The photoelectrochemical performance of the as-prepared quasi-solid state DSSCs showed open-circuit voltages (VOC varied from 0.475 to 0.507 V, the short-circuit current densities (JSC ranged from 0.352 to 0.642 mA cm−2 and the fill factors (FF varied from 47 to 60% at 100 mWcm−2 light intensity. The dye extracted from A. sennii chiovenda flower, using acidified ethanol (in 1% HCl as extracting solvent, exhibited best conversion efficiency with a maximum open-circuit voltage (VOC of 0.507 V, short-circuit current density (JSC of 0.491 mA cm−2, fill factor (FF of 0.60 and an overall conversion efficiency (η of 0.15%. On the other hand, the maximum power conversion efficiency of the dye extracted from E. cotinifolia leaf was 0.136%. This is the first study that reports the fabrication of DSSC using natural dye sensitizers extracted from these plants in the presence of quasi-solid state electrolyte and PEDOT as a counter electrode.

  4. CH3 NH3 PbBr3 Perovskite Nanocrystals as Efficient Light-Harvesting Antenna for Fluorescence Resonance Energy Transfer.

    Science.gov (United States)

    Muthu, Chinnadurai; Vijayan, Anuja; Nair, Vijayakumar C

    2017-05-04

    Hybrid perovskites have created enormous research interest as a low-cost material for high-performance photovoltaic devices, light-emitting diodes, photodetectors, memory devices and sensors. Perovskite materials in nanocrystal form that display intense luminescence due to the quantum confinement effect were found to be particularly suitable for most of these applications. However, the potential use of perovskite nanocrystals as a light-harvesting antenna for possible applications in artificial photosynthesis systems is not yet explored. In the present work, we study the light-harvesting antenna properties of luminescent methylammonium lead bromide (CH 3 NH 3 PbBr 3 )-based perovskite nanocrystals using fluorescent dyes (rhodamine B, rhodamine 101, and nile red) as energy acceptors. Our studies revealed that CH 3 NH 3 PbBr 3 nanocrystals are an excellent light-harvesting antenna, and efficient fluorescence resonance energy transfer occurs from the nanocrystals to fluorescent dyes. Further, the energy transfer efficiency is found to be highly dependent on the number of anchoring groups and binding ability of the dyes to the surface of the nanocrystals. These observations may have significant implications for perovskite-based light-harvesting devices and their possible use in artificial photosynthesis systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    KAUST Repository

    Ocakoǧlu, Kasim; Joya, Khurram Saleem; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-01-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C 18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ∼120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates. © 2014 the Partner Organisations.

  6. Plant Mediator complex and its critical functions in transcription regulation.

    Science.gov (United States)

    Yang, Yan; Li, Ling; Qu, Li-Jia

    2016-02-01

    The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted. © 2015 Institute of Botany, Chinese Academy of Sciences.

  7. Using Plants to Explore the Nature & Structural Complexity of Life

    Science.gov (United States)

    Howard, Ava R.

    2014-01-01

    Use of real specimens brings the study of biology to life. This activity brings easily acquired plant specimens into the classroom to tackle common alternative conceptions regarding life, size, complexity, the nature of science, and plants as multicellular organisms. The activity occurs after a discussion of the characteristics of life and engages…

  8. Static and Dynamic Disorder in Bacterial Light-Harvesting Complex LH2: A 2DES Simulation Study.

    Science.gov (United States)

    Rancova, Olga; Abramavicius, Darius

    2014-07-10

    Two-dimensional coherent electronic spectroscopy (2DES) is a powerful technique in distinguishing homogeneous and inhomogeneous broadening contributions to the spectral line shapes of molecular transitions induced by environment fluctuations. Using an excitonic model of a double-ring LH2 aggregate, we perform simulations of its 2DES spectra and find that the model of a harmonic environment cannot provide a consistent set of parameters for two temperatures: 77 K and room temperature. This indicates the highly anharmonic nature of protein fluctuations for the pigments of the B850 ring. However, the fluctuations of B800 ring pigments can be assumed as harmonic in this temperature range.

  9. Femtosecond pump probe spectroscopy for the study of energy transfer of light-harvesting complexes from extractions of spinach leaves

    CSIR Research Space (South Africa)

    Ombinda-Lemboumba, Saturnin

    2009-09-01

    Full Text Available been implemented at the CSIR National Laser Centre and has been applied to investigate energy transfer processes in different parts of photosynthetic systems. In this paper, researchers report on the first results obtained with Malachite green as a...

  10. A reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a

    DEFF Research Database (Denmark)

    Pedersen, Marie Ø; Pham, Lan; Steensgaard, Dorte B

    2008-01-01

    chlorosomes were lyophilized and extracted with chloroform/methanol (1:1, v/v). The extract was further purified using gel filtration and reverse-phase HPLC and the purity of the preparation confirmed by SDS-PAGE. Mass spectrometric analysis showed an m/z of 6154.8, in agreement with the calculated mass...

  11. Physiological and biochemical studies on the yellowing of spruce trees in higher altitudes. Pt. 1. Protection of pigments in the light-harvesting Chl-a/b-protein against photooxidation - the role of apoprotein and pigment organisation

    Energy Technology Data Exchange (ETDEWEB)

    Siefermanns-Harms, D.; Horsch, F.; Filby, W.G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A.

    1988-04-01

    The light-harvesting Chl-a/b-protein complex (LHC) from Spinacea oleracia, Lactuca sativa and Picea abies is stable under strong white light (> 350 nm, 1000 w/m/sub 2/). Therefore, LHC preparations were used to examine requirements for the protection of LHC-bound pigments from photooxidation. - The presence of carotenoids in the LHC and their arrangement in close proximity with the chlorophylls are not sufficient for pigment protection under light. - An intact LHC apoprotein is required to protect the pigments from photooxidation. Evidently, the intact LHC apoprotein represents a barrier for O/sub 2/ limiting O/sub 2/ access to the microenvironment of the pigments. - The composition of the pigment fraction destroyed under light depends on the state of the LHC. If only the integrity of the apoprotein is impaired, both, chlorophylls and carotenoids are subjected to photooxidation.

  12. Anthocyanines as light harvesters in the dye-sensitized TiO2 solar cell

    International Nuclear Information System (INIS)

    Sokolsky, M.; Kaiser, M.; Cirak, J.; Kusko, M.

    2011-01-01

    In this paper anthocyanine extracted from blackberry was used instead of widely used dyes based on Ru and N3 complexes such as N3, N719 or 'black dye', on which one of the highest efficiencies where measured (10.0 % to 11 %). DSSC were successfully fabricated using anthocyanine dye extracted from blackberries. The open circuit voltage of 419.0 mV, short circuit current of 380.40 μA, fill factor of 41.2 % and efficiency of 0.0164 % were evaluated. The cell shows degradation in performance over time of the exponential type with a drop in the open circuit voltage to 406 mV in 15 minutes. (authors)

  13. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes

    NARCIS (Netherlands)

    Tóth, T.N.; Chukhutsina, Volha; Domonkos, Ildikó; Knoppová, Jana; Komenda, Josef; Kis, Mihály; Lénárt, Zsófia; Garab, Gyozo; Kovács, László; Gombos, Zoltán; Amerongen, Van Herbert

    2015-01-01

    In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting, photoprotection and structural stability of a variety of pigment-protein complexes. Here, we investigated the consequences of altered carotenoid composition for the functional organization of

  14. Upright nanopyramid structured cover glass with light harvesting and self-cleaning effects for solar cell applications

    International Nuclear Information System (INIS)

    Amalathas, Amalraj Peter; Alkaisi, Maan M

    2016-01-01

    In this paper, we demonstrate the effect of upright nanopyramid (UNP) structured cover glass with light harvesting and self-cleaning functions on the device performance of monocrystalline Si solar cells. The UNP structures were fabricated on the surface of the glass substrate by simple, high throughput and low cost UV nanoimprint lithography, using a Si master mold with inverted nanopyramid (INP) structures. The diffuse transmittance and haze ratio values were significantly increased for UNP patterned glass, especially in the wavelength range 300–600 nm compared to the bare glass; this implies that antireflection and strong light scattering are due to the UNP structures. By replacing a bare cover glass with UNP patterned glass, the power conversion efficiency of the monocrystalline Si solar cell was substantially enhanced by about 10.97%; this is mainly due to the increased short-circuit current density J SC of 32.39 mA cm −2 compared to the reference cell with bare cover glass (i.e. J SC   =  31.60 mA cm −2 ). In addition, unlike the bare cover glass (i.e. θ CA ∼ 36°), the fluorinated UNP structured cover glass exhibited a hydrophobic surface with a water contact angle ( θ CA ) of ∼132° and excellent self-cleaning of dust particles by rolling down water droplets. (paper)

  15. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš [Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16 (Czech Republic); Cranston, Laura J.; Cogdell, Richard J. [Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland (United Kingdom); Lincoln, Craig N.; Hauer, Jürgen, E-mail: juergen.hauer@tuwien.ac.at [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna (Austria); Savolainen, Janne [Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum (Germany)

    2015-06-07

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.

  16. Wide-range light-harvesting donor-acceptor assemblies through specific intergelator interactions via self-assembly.

    Science.gov (United States)

    Samanta, Suman K; Bhattacharya, Santanu

    2012-12-03

    We have synthesized two new low-molecular-mass organogelators based on tri-p-phenylene vinylene derivatives, one of which could be designated as the donor whereas the other one is an acceptor. These were prepared specifically to show the intergelator interactions at the molecular level by using donor-acceptor self-assembly to achieve appropriate control over their macroscopic properties. Intermolecular hydrogen-bonding, π-stacking, and van der Waals interactions operate for both the individual components and the mixtures, leading to the formation of gels in the chosen organic solvents. Evidence for intergelator interactions was acquired from various spectroscopic, microscopic, thermal, and mechanical investigations. Due to the photochromic nature of these molecules, interesting photophysical properties, such as solvatochromism and J-type aggregation, were clearly observed. An efficient energy transfer was exhibited by the mixture of donor-acceptor assemblies. An array of four chromophores was built up by inclusion of two known dyes (anthracene and rhodamine 6G) for the energy-transfer studies. Interestingly, an energy-transfer cascade was observed in the assembly of four chromophores in a particular order (anthracene-donor-acceptor-rhodamine 6G), and if one of the components was removed from the assembly the energy transfer process was discontinued. This allowed the build up of a light-harvesting process with a wide range. Excitation at one end produces an emission at the other end of the assembly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Light-harvesting dendrimer zinc-phthalocyanines chromophores labeled single-wall carbon nanotube nanoensembles: Synthesis and photoinduced electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongqin [Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Pan, Sujuan; Ma, Dongdong; He, Dandan; Wang, Yuhua [College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007 (China); Xie, Shusen [Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Peng, Yiru, E-mail: yirupeng@fjnu.edu.cn [College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007 (China)

    2016-11-15

    A novel series of light-harvesting dendrimer zinc-phthalocyanines chromophores labeled-single-wall carbon nanotubes (SWNTs) nanoparticles, in which 0–2 generations dendrimer zinc phthalocyanines covalently linked with SWNTs using either ethylenediamine or hexamethylenediamine as the space linkers were prepared. The structures and morphologies of these nanoconjugates were comprehensively characterized by Raman spectroscopy, transmission electron microscopy and thermal gravimetric analysis methods. Their photophysical properties were investigated by fluorescence and time-resolved spectroscopic methods. The photoinduced intramolecular electron transfer occurred from phthalocyanines (donors) to SWNTs (acceptors). Besides, the electron transfer exchange rates and exchange efficacies between the dendritic phthalocyanines and single-wall carbon nanotubes increased as the length of spacer linker decreased, or as the dendritic generation increased. Cyclic voltammetry (CV) method further confirmed thermodynamics possibility of the electron transfer from phthalocyanines to single-wall carbon nanotubes. These new nanoconjugates are fundamentally important due to the synergy effects of both carbon nanotubes and dendrimer phthalocyanines, which may find potential applications in the fields of drug delivery, biological labeling, or others.

  18. Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization

    International Nuclear Information System (INIS)

    Lobello, Maria Grazia; Fantacci, Simona; Manfredi, Norberto; Coluccini, Carmine; Abbotto, Alessandro; Nazeeruddin, Mohammed K.; De Angelis, Filippo

    2014-01-01

    We report the design, synthesis and computational investigation of a class of Ru(II)-dyes based on mixed bipyridine ligands for use in dye-sensitized solar cells. These dyes are designed to preserve the optimal anchoring mode of the prototypical N719 sensitizer by three carboxylic groups, yet allowing for tunable optimization of their electronic and optical properties by selective substitution at one of the 4-4′ positions of a single bipyridine ligand with π-excessive heteroaromatic groups. We used Density Functional Theory/Time Dependent Density Functional Theory calculations to analyze the electronic structure and optical properties of the dye and to investigate the dye adsorption mode on a TiO 2 nanoparticle model. Our results show that we are effectively able to introduce three carboxylic anchoring units into the dye and achieve at the same time an enhanced dye light harvesting, demonstrating the design concept. As a drawback of this type of dyes, the synthesis leads to a mixture of dye isomers, which are rather tedious to separate. - Highlights: • We designed heteroleptic Ru(II) sensitizers with three carboxylic anchoring groups. • The three carboxylic anchoring groups are essential for high open circuit potentials. • Introduction of the mixed bipyridine ligand increases the dye light absorption. • Computational simulations confirm the three anchoring sites on TiO 2

  19. Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lobello, Maria Grazia; Fantacci, Simona [Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, Via elce di Sotto 8, I-06213 Perugia (Italy); Manfredi, Norberto; Coluccini, Carmine [Department of Materials Science and Milano-Bicocca Solar Energy Research Center-MIB-Solar, University of Milano-Bicocca and INSTM, Via Cozzi 53, I-20125 Milano (Italy); Abbotto, Alessandro, E-mail: alessandro.abbotto@unimib.it [Department of Materials Science and Milano-Bicocca Solar Energy Research Center-MIB-Solar, University of Milano-Bicocca and INSTM, Via Cozzi 53, I-20125 Milano (Italy); Nazeeruddin, Mohammed K., E-mail: mdkhaja.nazeeruddin@epfl.ch [Laboratory for Photonics and Interfaces, Station 6, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); De Angelis, Filippo, E-mail: filippo@thch.unipg.it [Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, Via elce di Sotto 8, I-06213 Perugia (Italy)

    2014-06-02

    We report the design, synthesis and computational investigation of a class of Ru(II)-dyes based on mixed bipyridine ligands for use in dye-sensitized solar cells. These dyes are designed to preserve the optimal anchoring mode of the prototypical N719 sensitizer by three carboxylic groups, yet allowing for tunable optimization of their electronic and optical properties by selective substitution at one of the 4-4′ positions of a single bipyridine ligand with π-excessive heteroaromatic groups. We used Density Functional Theory/Time Dependent Density Functional Theory calculations to analyze the electronic structure and optical properties of the dye and to investigate the dye adsorption mode on a TiO{sub 2} nanoparticle model. Our results show that we are effectively able to introduce three carboxylic anchoring units into the dye and achieve at the same time an enhanced dye light harvesting, demonstrating the design concept. As a drawback of this type of dyes, the synthesis leads to a mixture of dye isomers, which are rather tedious to separate. - Highlights: • We designed heteroleptic Ru(II) sensitizers with three carboxylic anchoring groups. • The three carboxylic anchoring groups are essential for high open circuit potentials. • Introduction of the mixed bipyridine ligand increases the dye light absorption. • Computational simulations confirm the three anchoring sites on TiO{sub 2}.

  20. Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants.

    Directory of Open Access Journals (Sweden)

    Zaki S Seddigi

    Full Text Available In the present work, bismuth oxychloride nanoparticles-a light harvesting semiconductor photocatalyst-were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions.

  1. Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants.

    Science.gov (United States)

    Seddigi, Zaki S; Gondal, Mohammed A; Baig, Umair; Ahmed, Saleh A; Abdulaziz, M A; Danish, Ekram Y; Khaled, Mazen M; Lais, Abul

    2017-01-01

    In the present work, bismuth oxychloride nanoparticles-a light harvesting semiconductor photocatalyst-were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions.

  2. Nerium oleander indirect leaf photosynthesis and light harvesting reductions after clipping injury or Spodoptera eridania herbivory: high sensitivity to injury.

    Science.gov (United States)

    Delaney, Kevin J

    2012-04-01

    Variable indirect photosynthetic rate (P(n)) responses occur on injured leaves after insect herbivory. It is important to understand factors that influence indirect P(n) reductions after injury. The current study examines the relationship between gas exchange and chlorophyll a fluorescence parameters with injury intensity (% single leaf tissue removal) from clipping or Spodoptera eridania Stoll (Noctuidae) herbivory on Nerium oleander L. (Apocynaceae). Two experiments showed intercellular [CO(2)] increases but P(n) and stomatal conductance reductions with increasing injury intensity, suggesting non-stomatal P(n) limitation. Also, P(n) recovery was incomplete at 3d post-injury. This is the first report of a negative exponential P(n) impairment function with leaf injury intensity to suggest high N. oleander leaf sensitivity to indirect P(n) impairment. Negative linear functions occurred between most other gas exchange and chlorophyll a fluorescence parameters with injury intensity. The degree of light harvesting impairment increased with injury intensity via lower (1) photochemical efficiency indicated lower energy transfer efficiency from reaction centers to PSII, (2) photochemical quenching indicated reaction center closure, and (3) electron transport rates indicated less energy traveling through PSII. Future studies can examine additional mechanisms (mesophyll conductance, carbon fixation, and cardenolide induction) to cause N. oleander indirect leaf P(n) reductions after injury. Published by Elsevier Ireland Ltd.

  3. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    International Nuclear Information System (INIS)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Hauer, Jürgen; Savolainen, Janne

    2015-01-01

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems

  4. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    Science.gov (United States)

    Ocakoglu, Kasim; Joya, Khurram S.; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-07-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The

  5. Dendritic multiporphyrin arrays as light-harvesting antennae: effects of generation number and morphology on intramolecular energy transfer.

    Science.gov (United States)

    Choi, Myung-Seok; Aida, Takuzo; Yamazaki, Tomoko; Yamazaki, Iwao

    2002-06-17

    A series of star- and cone-shaped dendritic multiporphyrin arrays, (nPZn)4PFB and (nPZn)1PFB, respectively, that contain energy-donating dendritic zinc porphyrin (PZn) wedges of different numbers (n = 1, 3, and 7) of the PZn units, attached to an energy-accepting free-base porphyrin (PFB) core, were synthesized by a convergent growth approach. For the cone-shaped series ((nPZn)1PFB), the efficiency of energy transfer (phi ENT) from the photoexcited PZn units to the focal PFB core, as evaluated from the fluorescence lifetimes of the PZn units, considerably decreased as the generation number increased: (1PZn)1PFB (86%), (3PZn)1PFB (66%), and (7PZn)1PFB (19%). In sharp contrast, the star-shaped series ((nPZn)4PFB) all showed high phi ENT values: (1PZn)4PFB (87%), (3PZn)4PFB (80%), and (7PZn)4PFB (71%). Energy transfer efficiencies of (3PZn)4-ester-PFB, (1PZn)4-ester-PFB, and (3PZn)1-ester-PFB, whose dendritic PZn wedges are connected by an ester linkage to the PFB core, were almost comparable to those of the corresponding ether-linked versions. Fluorescence depolarization (P) studies showed much lower P values for star-shaped (7PZn)4PFB and (3PZn)4PFB than cone-shaped (7PZn)1PFB and (3PZn)1PFB, respectively, indicating a highly efficient energy migration among the PZn units in the star-shaped series. Such a morphology-assisted photochemical event is probably responsible for the excellent light-harvesting activity of large (7PZn)4PFB molecules.

  6. Efficient dye-sensitized solar cells from curved silicate microsheet caged TiO2 photoanodes. An avenue of enhancing light harvesting

    International Nuclear Information System (INIS)

    Wang, Zubin; Tang, Qunwei; He, Benlin; Chen, Haiyan; Yu, Liangmin

    2015-01-01

    Graphical abstract: - Highlights: • Curved silicate microsheets are incorporated with TiO 2 for light harvesting in DSSC • The optical matching between silicate and TiO 2 is superior to light reflection. • The curved silicate can hinder the recombination reaction of electrons with I 3 − . • The DSSC with TiO 2 /curved silicate photoanode shows an efficiency of 9.22% - Abstract: Enhancement of light harvesting has been a persistent objective for elevating dye excitation and therefore power conversion efficiency of dye-sensitized solar cells (DSSCs). Here we launch a strategy of markedly enhancing light harvesting by caging TiO 2 nanoparticles with curved silica microsheets. The results show that the strategy is versatile in suppressing the recombination reaction of electrons with I 3 − species in liquid electrolyte. Due to the superior reflective behaviors of curved silica microsheets, an optimal efficiency of 9.22% is recorded under simulated air mass 1.5 global sunlight on the DSSC in comparison with 6.51% and 7.51% from pristine TiO 2 and planar silicate microsheet incorporated TiO 2 photoanode based solar cells, respectively. This strategy is also believed to be applicable to other solar cells such as perovskite solar cells and quantum dot-sensitized solar cells.

  7. Identification and characterization of multiple emissive species in aggregated minor antenna complexes

    Czech Academy of Sciences Publication Activity Database

    Wahadoszamen, M.; Belgio, Erica; Rahman, M.A.; Ara, A.M.; Ruban, A.V.; van Grondelle, R.

    2016-01-01

    Roč. 1857, č. 12 (2016), s. 1917-1924 ISSN 0005-2728 Institutional support: RVO:61388971 Keywords : Light harvesting * Minor antenna complexes * Photoprotective energy dissipation Subject RIV: EE - Microbiology, Virology Impact factor: 4.932, year: 2016

  8. Plant Phenotyping through the Eyes of Complex Systems: Theoretical Considerations

    Science.gov (United States)

    Kim, J.

    2017-12-01

    Plant phenotyping is an emerging transdisciplinary research which necessitates not only the communication and collaboration of scientists from different disciplines but also the paradigm shift to a holistic approach. Complex system is defined as a system having a large number of interacting parts (or particles, agents), whose interactions give rise to non-trivial properties like self-organization and emergence. Plant ecosystems are complex systems which are continually morphing dynamical systems, i.e. self-organizing hierarchical open systems. Such systems are composed of many subunits/subsystems with nonlinear interactions and feedback. The throughput such as the flow of energy, matter and information is the key control parameter in complex systems. Information theoretic approaches can be used to understand and identify such interactions, structures and dynamics through reductions in uncertainty (i.e. entropy). The theoretical considerations based on network and thermodynamic thinking and exemplary analyses (e.g. dynamic process network, spectral entropy) of the throughput time series will be presented. These can be used as a framework to develop more discipline-specific fundamental approaches to provide tools for the transferability of traits between measurement scales in plant phenotyping. Acknowledgment: This work was funded by the Weather Information Service Engine Program of the Korea Meteorological Administration under Grant KMIPA-2012-0001.

  9. The function of the Mediator complex in plant immunity.

    Science.gov (United States)

    An, Chuanfu; Mou, Zhonglin

    2013-03-01

    Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.

  10. Deep Plant Phenomics: A Deep Learning Platform for Complex Plant Phenotyping Tasks

    Science.gov (United States)

    Ubbens, Jordan R.; Stavness, Ian

    2017-01-01

    Plant phenomics has received increasing interest in recent years in an attempt to bridge the genotype-to-phenotype knowledge gap. There is a need for expanded high-throughput phenotyping capabilities to keep up with an increasing amount of data from high-dimensional imaging sensors and the desire to measure more complex phenotypic traits (Knecht et al., 2016). In this paper, we introduce an open-source deep learning tool called Deep Plant Phenomics. This tool provides pre-trained neural networks for several common plant phenotyping tasks, as well as an easy platform that can be used by plant scientists to train models for their own phenotyping applications. We report performance results on three plant phenotyping benchmarks from the literature, including state of the art performance on leaf counting, as well as the first published results for the mutant classification and age regression tasks for Arabidopsis thaliana. PMID:28736569

  11. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants

    Science.gov (United States)

    Mansilla, Natanael; Racca, Sofia; Gras, Diana E.; Gonzalez, Daniel H.

    2018-01-01

    Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution. PMID:29495437

  12. Exotic plant species around Jeongeup Research Complex and RFT industrial complex

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Cha, Min Kyoung; Ryu, Tae Ho; Lee, Yun Jong; Kim, Jin Hong

    2015-01-01

    In Shinjeong-dong of Jeongeup, there are three government-supported research institutes and an RFT industrial complex which is currently being established. Increased human activities can affect flora and fauna as a man-made pressure onto the region. As a baseline study, status of exotic plants was investigated prior to a full operation of the RFT industrial complex. A total of 54 species and 1 variety of naturalized or introduced plants were found in the study area. Among them, three species (Ambrosia artemisifolia var. elatior, Rumex acetocella and Aster pilosus) belong to 'nuisance species', and four species (Phytolacca americana, Iopomoea hederacea, Ereechtites hieracifolia and Rudbeckia laciniata) to ‘monitor species’ designated by the ministry of Environment. Some of naturalized trees and plants were intentionally introduced in this area, while others naturally immigrated. Physalis angulata seems to immigrate in the study area in the form of mixture with animal feeds as its distribution coincided with the transportation route of the animal feeds. Liquidambar styraciflua is amenable to the ecological investigation on the possible expansion of the species to the nearby Naejang National Park as its leave shape and autumn color are very similar to those of maple trees. The number of naturalized plants around the RFT industrial complex will increase with an increase in floating population, in human activities in association with constructions of factories and operations of the complex. The result of this study provides baseline data for assessing the ecological change of the region according to the operation of the RFT industrial complex

  13. Exotic plant species around Jeongeup Research Complex and RFT industrial complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Cha, Min Kyoung; Ryu, Tae Ho; Lee, Yun Jong; Kim, Jin Hong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2015-08-15

    In Shinjeong-dong of Jeongeup, there are three government-supported research institutes and an RFT industrial complex which is currently being established. Increased human activities can affect flora and fauna as a man-made pressure onto the region. As a baseline study, status of exotic plants was investigated prior to a full operation of the RFT industrial complex. A total of 54 species and 1 variety of naturalized or introduced plants were found in the study area. Among them, three species (Ambrosia artemisifolia var. elatior, Rumex acetocella and Aster pilosus) belong to 'nuisance species', and four species (Phytolacca americana, Iopomoea hederacea, Ereechtites hieracifolia and Rudbeckia laciniata) to ‘monitor species’ designated by the ministry of Environment. Some of naturalized trees and plants were intentionally introduced in this area, while others naturally immigrated. Physalis angulata seems to immigrate in the study area in the form of mixture with animal feeds as its distribution coincided with the transportation route of the animal feeds. Liquidambar styraciflua is amenable to the ecological investigation on the possible expansion of the species to the nearby Naejang National Park as its leave shape and autumn color are very similar to those of maple trees. The number of naturalized plants around the RFT industrial complex will increase with an increase in floating population, in human activities in association with constructions of factories and operations of the complex. The result of this study provides baseline data for assessing the ecological change of the region according to the operation of the RFT industrial complex.

  14. Biological significance of complex N-glycans in plants and their impact on plant physiology.

    Science.gov (United States)

    Strasser, Richard

    2014-01-01

    Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of β1,2-xylose, core α1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signaling events. In contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review, I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.

  15. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities.

    Science.gov (United States)

    Gorzelak, Monika A; Asay, Amanda K; Pickles, Brian J; Simard, Suzanne W

    2015-05-15

    Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground 'tree talk' is a foundational process in the complex adaptive nature of forest ecosystems. Published by Oxford University Press on behalf of the Annals of Botany Company.

  16. Atmospheric dispersion in complex terrain: Angra-1 nuclear power plant

    International Nuclear Information System (INIS)

    Lima e Silva Filho, P.P. de

    1986-01-01

    The Angra 1 plant is located in a very complex terrain, what makes the environmental impact assessment very difficult, regarding to the atmospheric transport problem as well as to the diffusion problem. Three main characteristics are responsible for that situation: the location at the shoreline, the complex topography and the high roughness of the terrain. Those characteristics generate specific phenomena and utilization of parameters from other sites are not convenient. Considering financial and technical viabilities, we must look for the local parameters, disregarding the easy, although risky, attitude of applying parameters and models incovenient to the Angra site. Some of those aspects are more important, and among them we will discuss the Plume Rise, the Critical Height, the Drainage Flow and the Atmospheric Dispersion Coefficients. (Author) [pt

  17. Efficient solar light harvesting CdS/Co{sub 9}S{sub 8} hollow cubes for Z-scheme photocatalytic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Bocheng; Zhu, Qiaohong; Du, Mengmeng; Fan, Linggang; Xing, Mingyang; Zhang, Jinlong [Key Lab. for Advanced Materials and Inst. of Fine Chemicals, School of Chemistry and Molecular Engineering, East China Univ. of Science and Technology, Shanghai (China)

    2017-03-01

    Hollow structures with an efficient light harvesting and tunable interior component offer great advantages for constructing a Z-scheme system. Controlled design of hollow cobalt sulfide (Co{sub 9}S{sub 8}) cubes embedded with cadmium sulfide quantum dots (QDs) is described, using hollow Co(OH){sub 2} as the template and a one-pot hydrothermal strategy. The hollow CdS/Co{sub 9}S{sub 8} cubes utilize multiple reflections of light in the cubic structure to achieve enhanced photocatalytic activity. Importantly, the photoexcited charge carriers can be effectively separated by the construction of a redox-mediator-free Z-scheme system. The hydrogen evolution rate over hollow CdS/Co{sub 9}S{sub 8} is 134 and 9.1 times higher than that of pure hollow Co{sub 9}S{sub 8} and CdS QDs under simulated solar light irradiation, respectively. Moreover, this is the first report describing construction of a hollow Co{sub 9}S{sub 8} based Z-scheme system for photocatalytic water splitting, which gives full play to the advantages of light-harvesting and charges separation. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light-Harvesting Ability and Photovoltaic Performance

    KAUST Repository

    Qi, Qingbiao; Li, Renzhi; Luo, Jie; Zheng, Bin; Huang, Kuo-Wei; Wang, Peng; Wu, Jishan

    2015-01-01

    Push-pull type porphyrin-based sensitizers have become promising candidates for high-efficiency dye sensitized solar cells (DSCs). It is of importance to understand the fundamental structure-physical property-photovoltaic performance relationships by varying the donor and acceptor moieties. In this work, two new porphyrin-based sensitizers, WW-7 and WW-8, were synthesized and compared with the known sensitizer YD20. All the three dyes have the same porphyrin core and acceptor group (ethynylbenzoic acid) but their donor groups vary from the triphenylamine in YD20 to meso-diphenylaminoanthracene in WW-7 to N-phenyl carbazole in WW-8. Co(II/III)-based DSC device characterizations revealed that WW-7 showed enhanced light harvesting ability in comparison to YD20 with improved incident photon-to-collected electron conversion efficiencies (IPCEs). As a result, WW-7 displayed much higher short circuit current (Jsc: 13.54 mA cm-2) and open-circuit voltage (Voc: 0.829 V), with a power conversion efficiency (η) as high as 7.7%. Under the same conditions, YD20 cell exhibited a power conversion efficiency of 6.6% and the dye WW-8 showed even lower efficiency (η = 4.6%). Detailed physical measurements and theoretic calculations were conducted to understand the difference and reveal how three different donor structures affect their molecular orbital profile, light-harvesting ability, energy level alignment, and eventually the photovoltaic performance.

  19. Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light-Harvesting Ability and Photovoltaic Performance

    KAUST Repository

    Qi, Qingbiao

    2015-06-23

    Push-pull type porphyrin-based sensitizers have become promising candidates for high-efficiency dye sensitized solar cells (DSCs). It is of importance to understand the fundamental structure-physical property-photovoltaic performance relationships by varying the donor and acceptor moieties. In this work, two new porphyrin-based sensitizers, WW-7 and WW-8, were synthesized and compared with the known sensitizer YD20. All the three dyes have the same porphyrin core and acceptor group (ethynylbenzoic acid) but their donor groups vary from the triphenylamine in YD20 to meso-diphenylaminoanthracene in WW-7 to N-phenyl carbazole in WW-8. Co(II/III)-based DSC device characterizations revealed that WW-7 showed enhanced light harvesting ability in comparison to YD20 with improved incident photon-to-collected electron conversion efficiencies (IPCEs). As a result, WW-7 displayed much higher short circuit current (Jsc: 13.54 mA cm-2) and open-circuit voltage (Voc: 0.829 V), with a power conversion efficiency (η) as high as 7.7%. Under the same conditions, YD20 cell exhibited a power conversion efficiency of 6.6% and the dye WW-8 showed even lower efficiency (η = 4.6%). Detailed physical measurements and theoretic calculations were conducted to understand the difference and reveal how three different donor structures affect their molecular orbital profile, light-harvesting ability, energy level alignment, and eventually the photovoltaic performance.

  20. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    Science.gov (United States)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  1. Computer simulations of discharges from a lignite power plant complex

    International Nuclear Information System (INIS)

    Koukouliou, V.; Horyna, J.; Perez-Sanchez, D.

    2008-01-01

    This paper describes work carried out within the IAEA EMRAS program NORM working group to test the predictions of three computer models against measured radionuclide concentrations resulting from discharges from a lignite power plant complex. This complex consists of two power plants with a total of five discharge stacks, situated approximately 2-5 kilometres from a city of approximately 10,000 inhabitants. Monthly measurements of mean wind speed and direction, dust loading, and 238 U activities in fallout samples, as well as mean annual values of 232 Th activity in the nearest city sampling sites were available for the study. The models used in the study were Pc-CREAM (a detailed impact assessment model), and COMPLY and CROM (screening models). In applying the models to this scenario it was noted that the meteorological data provided was not ideal for testing, and that a number of assumptions had to be made, particularly for the simpler models. However, taking the gaps and uncertainties in the data into account, the model predictions from PC-CREAM were generally in good agreement with the measured data, and the results from different models were also generally consistent with each other. However, the COMPLY predictions were generally lower than those from PC-CREAM. This is of concern, as the aim of a screening model (COMPLY) is to provide conservative estimates of contaminant concentrations. Further investigation of this problem is required. The general implications of the results for further model development are discussed. (author)

  2. Research of polysaccharide complexes from asteraceae family plants

    Directory of Open Access Journals (Sweden)

    Світлана Михайлівна Марчишин

    2015-10-01

    Full Text Available Aim of research. Depth study of polysaccharides in some little-known plant species of Asteraceae family is pressing question, considering that polysaccharides are important biologically active compounds widely used in pharmaceutical and medical practice as remedies and preventive medications. The aim of research was to determinate both quantitative content and monomeric composition of polysaccharide complexes from Asteraceae family plant species – Tagetes genus, Arnica genus, and Bellis genus.Materials and methods. Determination of polysaccharides was carried out by the precipitation reaction, using 96 % ethyl alcohol P and Fehling's solution after acid hydrolysis; quantitative content of this group of compounds was determined by gravimetric analysis. On purpose to identify the monomeric composition hydrolysis under sulfuric acid conditions was conducted. Qualitative monomeric composition of polysaccharides after hydrolysis was carried out by paper chromatography method in n-Butanol – Pyridine – Distilled water P (6:4:3 system along with saccharides reference samples.Results. Polysaccharide complexes from Tagetes erecta, Tagetes patula, Tagetes tenuifolia, Arnica montana, Arnica foliosa, wild and cultivated Bellis perennis herbs were studied. Water-soluble polysaccharides and pectin fractions were isolated from studied objects; their quantitative content and monomeric composition were determined.Conclusion. The highest amount of water-soluble polysaccharides was found in cultivated Bellis perennis herb (10,13 %, the highest amount of pectin compounds – in Tagetes tenuifolia herb (13,62 %; the lowest amount of water-soluble polysaccharides and pectin compounds was found in Arnica montana herb (4,61 % and Tagetes patula herb (3,62 %, respectively. It was found that polysaccharide complexes from all studied species include glucose and arabinose

  3. Compartmentation and complexation of metals in hyperaccumulator plants

    Directory of Open Access Journals (Sweden)

    Barbara eLeitenmaier

    2013-09-01

    Full Text Available Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their strange behaviour in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defence against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e. detoxified by binding to strong ligands such as metallothioneins.

  4. Does plant architectural complexity increase with increasing habitat complexity? A test with a pioneer shrub in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    FAO Silveira

    Full Text Available Understanding variation in plant traits in heterogeneous habitats is important to predict responses to changing environments, but trait-environment associations are poorly known along ecological gradients. We tested the hypothesis that plant architectural complexity increases with habitat complexity along a soil fertility gradient in a Cerrado (Neotropical savanna area in southeastern Brazil. Plant architecture and productivity (estimated as the total number of healthy infructescences of Miconia albicans (SW. Triana were examined in three types of vegetation which together form a natural gradient of increasing soil fertility, tree density and canopy cover: grasslands (campo sujo, CS, shrublands (cerrado sensu strico, CE and woodlands (cerradão, CD. As expected, plants growing at the CS were shorter and had a lower branching pattern, whereas plants at the CD were the tallest. Unexpectedly, however, CD plants did not show higher architectural complexity compared to CE plants. Higher architectural similarity between CE and CD plants compared to similarity between CS and CE plants suggests reduced expression of functional architectural traits under shade. Plants growing at the CE produced more quaternary shoots, leading to a larger number of infructescences. This higher plant productivity in CE indicates that trait variation in ecological gradients is more complex than previously thought. Nematode-induced galls accounted for fruit destruction in 76.5% infructescences across physiognomies, but percentage of attack was poorly related to architectural variables. Our data suggest shade-induced limitation in M. albicans architecture, and point to complex phenotypic variation in heterogeneous habitats in Neotropical savannas.

  5. Ab initio modeling of primary processes in photosynthesis : protein induced activation of bacteriochlorophylls for efficient light harvesting and charge separation

    NARCIS (Netherlands)

    Wawrzyniak, Piotr K.

    2011-01-01

    Everything started in 1780 when Joseph Priestley, an English chemist, enclosed a mint plant and a burning candle in a glass jar. Surprisingly, the candle burned without interruption, even though in earlier experiments it was extinguished quickly when no plant was present in the jar. Now, 230 years

  6. Fire hazard analysis for Plutonium Finishing Plant complex

    International Nuclear Information System (INIS)

    MCKINNIS, D.L.

    1999-01-01

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards

  7. Fire hazard analysis for Plutonium Finishing Plant complex

    Energy Technology Data Exchange (ETDEWEB)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

  8. Improved design architecture to minimize functional complexity of plant protection system for nuclear power plant

    International Nuclear Information System (INIS)

    Jung, JaeCheon

    2016-01-01

    An improved design architecture method to minimize the functional complexity of PPS (Plant Protection System) is proposed in this work. Firstly, the design concerns are identified with both AHP (Analytic Hierarchy Process) analysis. AHP is able to identify the source of design concerns using pairwise comparison. AHP result shows CCF is the primary concern and the complexity is the secondly. Even though complexity is the second largest concern to the effectiveness of digital I&C system, but it has not been highlighted as CCF. This is the reason why this work focuses on the sources of complexity to maximize the effectiveness of digital system in the viewpoint of design architecture. The proposed methods are, separating non-safety functions from bistable logics and simplifying communication links and network. In order to verify the new concept, EFFBD (Enhanced Functional Flow Block Diagram) models are developed for two bistable logics of PPS and the complexities are measured using Halstead’s program maintainability measures. This measure specifies what provokes functional complexity. Periodic testing and operating bypass function are the source of complexity in this analysis.

  9. Improved design architecture to minimize functional complexity of plant protection system for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Jung, JaeCheon, E-mail: jcjung@kings.ac.kr

    2016-12-01

    An improved design architecture method to minimize the functional complexity of PPS (Plant Protection System) is proposed in this work. Firstly, the design concerns are identified with both AHP (Analytic Hierarchy Process) analysis. AHP is able to identify the source of design concerns using pairwise comparison. AHP result shows CCF is the primary concern and the complexity is the secondly. Even though complexity is the second largest concern to the effectiveness of digital I&C system, but it has not been highlighted as CCF. This is the reason why this work focuses on the sources of complexity to maximize the effectiveness of digital system in the viewpoint of design architecture. The proposed methods are, separating non-safety functions from bistable logics and simplifying communication links and network. In order to verify the new concept, EFFBD (Enhanced Functional Flow Block Diagram) models are developed for two bistable logics of PPS and the complexities are measured using Halstead’s program maintainability measures. This measure specifies what provokes functional complexity. Periodic testing and operating bypass function are the source of complexity in this analysis.

  10. B Plant Complex waste management training plan. Revision 1

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-01-01

    This training program is designed to comply with all applicable federal, state and US Department of Energy-Richland Operations Office training requirements. The training program complies with requirements contained within WAC 173-303-330 for the development of a written dangerous waste training program. The training program is designed to prepare personnel to manage and maintain waste treatment, storage and disposal (TSD) units, as well as generator units, in a safe, effective, efficient and environmentally sound manner. In addition to preparing employees to manage and maintain TSD and generator units under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should an emergency occur. The training plan also identifies specific individuals holding key waste management positions at B Plant Complex

  11. B Plant Complex pollution prevention plan. Revision 1

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-01-01

    The US Department of Energy (DOE) has directed Westinghouse Hanford Company (WHC) to develop an effective strategy to minimize the generation of hazardous, radioactive, and mixed wastes at Hanford in compliance with state and federal regulations. WHC has formalized a pollution prevention program composed of management policies, management requirements and procedures. This plan addresses pollution prevention for B Plant Complex. A pollution prevention team is in place and has been assigned responsibility for implementing the plan. This plan includes actions and goals for reducing volume and toxicity of waste generated, as well as a basis for evaluation of progress. Descriptions of waste streams, current specific goals, general pollution prevention methods, and specific accomplishments are in the appendices of this plan

  12. Complex Dietary Supplements from Raw Plants Provide Nutrition for Athletes

    Directory of Open Access Journals (Sweden)

    Dmitriy M. Uvarov

    2017-03-01

    Full Text Available The aim of this study was to investigate the effectiveness of mechanically activated complexes from plant substances to enhance athletes’ adaptability to intense physical activity. Methods: The object of the study was the dietary supplement Kladorod, which is based on the reindeer lichen Cladonia rangiferina and Rhodiola rosea in weight ratio of 10:1. To test the dietary supplement, we developed a special scheme for the experiment and selected 10 elite athletes (boxers and mixfighters. Athletes were divided into 2 groups and were under the same conditions (nutrition, medical monitoring, living conditions and training process. Athletes of the experimental group were given the dietary supplement Kladorod (capsule of 0.4 g by mouth between meals 4 times a day for 28 days. The control group was given placebo (Ringer-Locke powder capsules in the same terms in a similar way. During the experiment, the athletes were medically examined 3 times: at the beginning, in the middle, and after the course of intervention. We measured muscle performance, fat mass, muscle mass, and serum concentrations of cortisol and total testosterone. Results: It was established that during the intensive training of boxers and mixfighters for rating fights, administration of the dietary supplement Kladorod for 28 days stabilized the absolute and relative muscle mass, preventing its reduction, in comparison with the placebo group. At the same time, indicators of fat mass decreased significantly in the experimental group. After administering the course of Kladorod, we did not observe a significant decrease in testosterone/cortisol ratio, compared to the control group Thus, the use of biologically active supplements based on lichen raw materials and complexes of lichen raw materials with different plant substances enables the body to increase its adaptive potential and physical capacity.

  13. Self-assembly of natural light-harvesting bacteriochlorophylls of green sulfur photosynthetic bacteria in silicate capsules as stable models of chlorosomes.

    Science.gov (United States)

    Saga, Yoshitaka; Akai, Sho; Miyatake, Tomohiro; Tamiaki, Hitoshi

    2006-01-01

    Naturally occurring bacteriochlorophyll(BChl)s-c, -d, and -e from green sulfur photosynthetic bacteria were self-assembled in an aqueous solution in the presence of octadecyltriethoxysilane and tetraethoxysilane, followed by polycondensation of the alkoxysilanes by incubation for 50 h at 25 degrees C. The resulting BChl self-assemblies in silicate capsules exhibited visible absorption and circular dichroism spectra similar to the corresponding natural light-harvesting systems (chlorosomes) of green sulfur bacteria. Dynamic light scattering measurements indicated that the silicate capsules had an average hydrodynamic diameter of several hundred nanometers. BChl self-aggregates in silicate capsules were significantly stable to a nonionic surfactant Triton X-100, which was apt to decompose the BChl aggregates to their monomeric form, compared with conventional micelle systems. BChls in silicate capsules were more tolerant to demetalation of the central magnesium under acidic conditions than the natural systems.

  14. Layer by layer assembly of gold nanoparticles and graphene via Langmuir Blodgett method for efficient light-harvesting in photocatalytic applications

    International Nuclear Information System (INIS)

    Shakir, Imran; Ali, Zahid; Kang, Dae Joon

    2014-01-01

    Highlights: • Layer by layer assembly of gold nanoparticles and graphene. • Efficient visible light photocatalysis. • Plasmonic resonances by nanoparticles are utilized for visible light scattering. • Electron scavenging reaction. • Easy handling and recycling. - Abstract: The synthesis of a photocatalyst that is highly active under visible light is one of the most challenging tasks for solar-energy utilization. Here we report a multilayer assembly of gold nanoparticles and graphene that offers dual functionality to efficiently harness visible photons. Firstly, plasmonic resonances by gold nanoparticles are utilized for visible light scattering; secondly the electron scavenging reaction is enhanced by the gold nanoparticles trapping the electrons that are injected from the dye into the graphene. Moreover, the structure is in the form of a thin film, which demonstrates the potential for easy handling and recycling. Precise control over light harvesting and the photocatalytic response is achieved by controlling the number of layers

  15. Layer by layer assembly of gold nanoparticles and graphene via Langmuir Blodgett method for efficient light-harvesting in photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Shakir, Imran, E-mail: shakir@skku.edu [Deanship of scientific research, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Ali, Zahid [BK 21 Physics Research Division, Department of Energy Science, Institute of Basic Sciences, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); National Institute of Lasers and Optronics, Islamabad (Pakistan); Kang, Dae Joon [BK 21 Physics Research Division, Department of Energy Science, Institute of Basic Sciences, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-12-25

    Highlights: • Layer by layer assembly of gold nanoparticles and graphene. • Efficient visible light photocatalysis. • Plasmonic resonances by nanoparticles are utilized for visible light scattering. • Electron scavenging reaction. • Easy handling and recycling. - Abstract: The synthesis of a photocatalyst that is highly active under visible light is one of the most challenging tasks for solar-energy utilization. Here we report a multilayer assembly of gold nanoparticles and graphene that offers dual functionality to efficiently harness visible photons. Firstly, plasmonic resonances by gold nanoparticles are utilized for visible light scattering; secondly the electron scavenging reaction is enhanced by the gold nanoparticles trapping the electrons that are injected from the dye into the graphene. Moreover, the structure is in the form of a thin film, which demonstrates the potential for easy handling and recycling. Precise control over light harvesting and the photocatalytic response is achieved by controlling the number of layers.

  16. Molecular mechanisms behind the adjustment of phototrophic light-harvesting and mixotrophic utilization of cellulosic carbon sources in Chlamydomonas reinhardtii

    OpenAIRE

    Blifernez-Klassen, Olga

    2012-01-01

    Plants, green algae and cyanobacteria perform photosynthetic conversion of sunlight into chemical energy in a permanently changing natural environment, where the efficient utilization of light and inorganic carbon represent the most critical factors. Photosynthetic organisms have developed different acclimation strategies to adapt changing light conditions and insufficient carbon source supply in order to survive and to assure optimal growth and protection. This thesis provides further insigh...

  17. Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices

    Science.gov (United States)

    2012-07-10

    bacterial photosynthesis . The structure of the reaction center (RC, the first membrane protein to have its structure determined to high resolution) revealed...1282 (2011) & Photosynthesis Res.. 111,63-69(2012)) Bacterial photosynthetic antenna polypeptide (LH) was synthesized as a water-soluble fusion...binding protein and its effect on the stability of reconstituted light-harvesting core antenna complex” , Photosynthesis Res.. 111,63-69(2012)(Doi

  18. Isolation and characterization of PSI-LHCI super-complex and their sub-complexes from a red alga Cyanidioschyzon merolae.

    Science.gov (United States)

    Tian, Lirong; Liu, Zheyi; Wang, Fangjun; Shen, Liangliang; Chen, Jinghua; Chang, Lijing; Zhao, Songhao; Han, Guangye; Wang, Wenda; Kuang, Tingyun; Qin, Xiaochun; Shen, Jian-Ren

    2017-09-01

    Photosystem I (PSI)-light-harvesting complex I (LHCI) super-complex and its sub-complexes PSI core and LHCI, were purified from a unicellular red alga Cyanidioschyzon merolae and characterized. PSI-LHCI of C. merolae existed as a monomer with a molecular mass of 580 kDa. Mass spectrometry analysis identified 11 subunits (PsaA, B, C, D, E, F, I, J, K, L, O) in the core complex and three LHCI subunits, CMQ142C, CMN234C, and CMN235C in LHCI, indicating that at least three Lhcr subunits associate with the red algal PSI core. PsaG was not found in the red algae PSI-LHCI, and we suggest that the position corresponding to Lhca1 in higher plant PSI-LHCI is empty in the red algal PSI-LHCI. The PSI-LHCI complex was separated into two bands on native PAGE, suggesting that two different complexes may be present with slightly different protein compositions probably with respective to the numbers of Lhcr subunits. Based on the results obtained, a structural model was proposed for the red algal PSI-LHCI. Furthermore, pigment analysis revealed that the C. merolae PSI-LHCI contained a large amount of zeaxanthin, which is mainly associated with the LHCI complex whereas little zeaxanthin was found in the PSI core. This indicates a unique feature of the carotenoid composition of the Lhcr proteins and may suggest an important role of Zea in the light-harvesting and photoprotection of the red algal PSI-LHCI complex.

  19. N -annulated perylene as an efficient electron donor for porphyrin-based dyes: Enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells

    KAUST Repository

    Luo, Jie; Xu, Mingfei; Li, Renzhi; Huang, Kuo-Wei; Jiang, Changyun; Qi, Qingbiao; Zeng, Wangdong; Zhang, Jie; Chi, Chunyan; Wang, Peng; Wu, Jishan

    2014-01-01

    Porphyrin-based dyes recently have become good candidates for dye-sensitized solar cells (DSCs). However, the bottleneck is how to further improve their light-harvesting ability. In this work, N-annulated perylene (NP) was used to functionalize

  20. [Survival strategy of photosynthetic organisms. 1. Variability of the extent of light-harvesting pigment aggregation as a structural factor optimizing the function of oligomeric photosynthetic antenna. Model calculations].

    Science.gov (United States)

    Fetisova, Z G

    2004-01-01

    In accordance with our concept of rigorous optimization of photosynthetic machinery by a functional criterion, this series of papers continues purposeful search in natural photosynthetic units (PSU) for the basic principles of their organization that we predicted theoretically for optimal model light-harvesting systems. This approach allowed us to determine the basic principles for the organization of a PSU of any fixed size. This series of papers deals with the problem of structural optimization of light-harvesting antenna of variable size controlled in vivo by the light intensity during the growth of organisms, which accentuates the problem of antenna structure optimization because optimization requirements become more stringent as the PSU increases in size. In this work, using mathematical modeling for the functioning of natural PSUs, we have shown that the aggregation of pigments of model light-harvesting antenna, being one of universal optimizing factors, furthermore allows controlling the antenna efficiency if the extent of pigment aggregation is a variable parameter. In this case, the efficiency of antenna increases with the size of the elementary antenna aggregate, thus ensuring the high efficiency of the PSU irrespective of its size; i.e., variation in the extent of pigment aggregation controlled by the size of light-harvesting antenna is biologically expedient.

  1. Lessons from Red Data Books: Plant Vulnerability Increases with Floral Complexity.

    Science.gov (United States)

    Stefanaki, Anastasia; Kantsa, Aphrodite; Tscheulin, Thomas; Charitonidou, Martha; Petanidou, Theodora

    2015-01-01

    The architectural complexity of flower structures (hereafter referred to as floral complexity) may be linked to pollination by specialized pollinators that can increase the probability of successful seed set. As plant-pollinator systems become fragile, a loss of such specialized pollinators could presumably result in an increased likelihood of pollination failure. This is an issue likely to be particularly evident in plants that are currently rare. Using a novel index describing floral complexity we explored whether this aspect of the structure of flowers could be used to predict vulnerability of plant species to extinction. To do this we defined plant vulnerability using the Red Data Book of Rare and Threatened Plants of Greece, a Mediterranean biodiversity hotspot. We also tested whether other intrinsic (e.g. life form, asexual reproduction) or extrinsic (e.g. habitat, altitude, range-restrictedness) factors could affect plant vulnerability. We found that plants with high floral complexity scores were significantly more likely to be vulnerable to extinction. Among all the floral complexity components only floral symmetry was found to have a significant effect, with radial-flower plants appearing to be less vulnerable. Life form was also a predictor of vulnerability, with woody perennial plants having significantly lower risk of extinction. Among the extrinsic factors, both habitat and maximum range were significantly associated with plant vulnerability (coastal plants and narrow-ranged plants are more likely to face higher risk). Although extrinsic and in particular anthropogenic factors determine plant extinction risk, intrinsic traits can indicate a plant's proneness to vulnerability. This raises the potential threat of declining global pollinator diversity interacting with floral complexity to increase the vulnerability of individual plant species. There is potential scope for using plant-pollinator specializations to identify plant species particularly at

  2. Phycocyanin: One Complex, Two States, Two Functions

    NARCIS (Netherlands)

    Gwizdala, Michal; Krüger, Tjaart P.J.; Wahadoszamen, Md; Gruber, J. Michael; Van Grondelle, Rienk

    2018-01-01

    Solar energy captured by pigments embedded in light-harvesting complexes can be transferred to neighboring pigments, dissipated, or emitted as fluorescence. Only when it reaches a reaction center is the excitation energy stabilized in the form of a charge separation and converted into chemical

  3. Photoprotection Conferred by Changes in Photosynthetic Protein Levels and Organization during Dehydration of a Homoiochlorophyllous Resurrection Plant1

    Science.gov (United States)

    Charuvi, Dana; Nevo, Reinat; Shimoni, Eyal; Naveh, Leah; Zia, Ahmad; Adam, Zach; Farrant, Jill M.; Kirchhoff, Helmut; Reich, Ziv

    2015-01-01

    During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state. PMID:25713340

  4. A Key Role of Xanthophylls That Are Not Embedded in Proteins in Regulation of the Photosynthetic Antenna Function in Plants, Revealed by Monomolecular Layer Studies.

    Science.gov (United States)

    Welc, Renata; Luchowski, Rafal; Grudzinski, Wojciech; Puzio, Michal; Sowinski, Karol; Gruszecki, Wieslaw I

    2016-12-29

    The main physiological function of LHCII (light-harvesting pigment-protein complex of photosystem II), the largest photosynthetic antenna complex of plants, is absorption of light quanta and transfer of excitation energy toward the reaction centers, to drive photosynthesis. However, under strong illumination, the photosynthetic apparatus faces the danger of photodegradation and therefore excitations in LHCII have to be down-regulated, e.g., via thermal energy dissipation. One of the elements of the regulatory system, operating in the photosynthetic apparatus under light stress conditions, is a conversion of violaxanthin, the xanthophyll present under low light, to zeaxanthin, accumulated under strong light. In the present study, an effect of violaxanthin and zeaxanthin on the molecular organization and the photophysical properties of LHCII was studied in a monomolecular layer system with application of molecular imaging (atomic force microscopy, fluorescence lifetime imaging microscopy) and spectroscopy (UV-Vis absorption, FTIR, fluorescence spectroscopy) techniques. The results of the experiments show that violaxanthin promotes the formation of supramolecular LHCII structures preventing dissipative excitation quenching while zeaxanthin is involved in the formation of excitonic energy states able to quench chlorophyll excitations in both the higher (B states) and lower (Q states) energy levels. The results point to a strategic role of xanthophylls that are not embedded in a protein environment, in regulation of the photosynthetic light harvesting activity in plants.

  5. Complex effects of fertilization on plant and herbivore performance in the presence of a plant competitor and activated carbon.

    Science.gov (United States)

    Mahdavi-Arab, Nafiseh; Meyer, Sebastian T; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2014-01-01

    Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant's growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance to investigate both

  6. Complex effects of fertilization on plant and herbivore performance in the presence of a plant competitor and activated carbon.

    Directory of Open Access Journals (Sweden)

    Nafiseh Mahdavi-Arab

    Full Text Available Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant's growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance

  7. Facile Preparation of TiO2 Nanobranch/Nanoparticle Hybrid Architecture with Enhanced Light Harvesting Properties for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ju Seong Kim

    2015-01-01

    Full Text Available We report TiO2 nanobranches/nanoparticles (NBN hybrid architectures that can be synthesized by a facile solution phase method. The hybrid architecture simultaneously improves light harvesting and charge collection performances for a dye-sensitized solar cell. First, TiO2 nanorods with a trunk length of 2 μm were grown on a fluorine-doped tin oxide (FTO/glass substrate, and then nanobranches and nanoparticles were deposited on the nanorods’ trunks through a solution method using an aqueous TiCl3 solution at 80°C. The relative amount of nanobranches and nanoparticles can be controlled by multiplying the number of TiCl3 treatments to maximize the amount of surface area. We found that the resultant TiO2 NBN hybrid architecture greatly improves the amount of dye adsorption (five times compared to bare nanorods due to the enhanced surface area, while maintaining a fast charge collection, leading to a three times higher current density and thus tripling the maximum power conversion efficiency for a dye-sensitized solar cell.

  8. Tunable band alignment in two-phase-coexistence Nb3O7F nanocrystals with enhanced light harvesting and photocatalytic performance

    Science.gov (United States)

    Li, Zhen; Huang, Fei; Feng, Xin; Yan, Aihua; Dong, Haiming; Hu, Miao; Li, Qi

    2018-06-01

    A two-phase-coexistence technique offers intriguing variables to maneuver novel and enhanced functionality in a single-component material. Most importantly, new band alignment and perfect interfaces between two phases can strongly affect local photoelectronic properties. However, previous efforts to achieve two-phase coexistence were mainly restricted to specific systems and methods. Here we demonstrate a phase-transition route to acquire two-phase-coexistence niobium oxyfluoride (Nb3O7F) nanocrystals for the first time. Based on key distinguishing features of the experimental results and theoretical analysis, the phase transition of Nb3O7F involves an organic/inorganic hybrid, heat treating, Al-doping, lattice deformation and structural rearrangement. The band gap can be effectively tuned from 3.03 eV to 2.84 eV, and the VBM can be tuned from 1.49 eV to 1.69 eV according to the phase proportion. Benefiting from uniform nanocrystal size, tunable band alignment and an optimized interfacial structure, the two-phase coexistence markedly enhances visible-light harvesting and the photocatalytic performance of Nb3O7F nanocrystals. The results not only demonstrate an opportunity to explore two-phase coexistence of novel nanocrystals, but also illustrate the role of two-phase coexistence in achieving enhanced photoelectronic properties.

  9. Radiation quality effects on pigment-protein complex of maize and pine

    International Nuclear Information System (INIS)

    Milivojevic, D.B.

    1990-01-01

    Maize hybrid ZP-704 and Pinus nigra seedlings were grown under the same low irradiance (2.0 µmol/s m²) of white (WR), blue (BR) or red (RR) irradiation and adapted similarly. Radiation quality differences during chloroplast development had a greater effect on the ratio of PSII:PSI complexes than on chlorophyll (Chl) a:b ratio. RR in mesophyll chloroplasts induced primarily an increased accumulation of Chl a, b, xanthophylls, light-harvesting complex proteins LHC1 and LHC3, and PSII-bound polypeptides. BR-treated plants were more efficient in the synthesis of β-carotene, Chl-proteins and PSI-bound polypeptides. BR resulted in the production of sun type chloroplasts while RR gave shade type chloroplasts and WR resulted in intermediate chloroplasts

  10. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  11. Coupling of metal-based light-harvesting antennas and electron-donor subunits: Trinuclear Ruthenium(II) complexes containing tetrathiafulvalene-substituted polypyridine ligands

    DEFF Research Database (Denmark)

    Campagna, Sebastiano; Serroni, Scolastica; Puntoriero, Fausto

    2002-01-01

    in fluid solution at room temperature. Time-resolved transient absorption spectroscopy confirmed that the potentially luminescent MLCT states of 7-10 are significantly shorter lived than the corresponding states of the model species. Photoinduced electron-transfer processes from the TTF moieties...

  12. Structure and function of complex I in animals and plants - a comparative view.

    Science.gov (United States)

    Senkler, Jennifer; Senkler, Michael; Braun, Hans-Peter

    2017-09-01

    The mitochondrial NADH dehydrogenase complex (complex I) has a molecular mass of about 1000 kDa and includes 40-50 subunits in animals, fungi and plants. It is composed of a membrane arm and a peripheral arm and has a conserved L-like shape in all species investigated. However, in plants and possibly some protists it has a second peripheral domain which is attached to the membrane arm on its matrix exposed side at a central position. The extra domain includes proteins resembling prokaryotic gamma-type carbonic anhydrases. We here present a detailed comparison of complex I from mammals and flowering plants. Forty homologous subunits are present in complex I of both groups of species. In addition, five subunits are present in mammalian complex I, which are absent in plants, and eight to nine subunits are present in plant complex I which do not occur in mammals. Based on the atomic structure of mammalian complex I and biochemical insights into complex I architecture from plants we mapped the species-specific subunits. Interestingly, four of the five animal-specific and five of the eight to nine plant-specific subunits are localized at the inner surface of the membrane arm of complex I in close proximity. We propose that the inner surface of the membrane arm represents a workbench for attaching proteins to complex I, which are not directly related to respiratory electron transport, like nucleoside kinases, acyl-carrier proteins or carbonic anhydrases. We speculate that further enzyme activities might be bound to this micro-location in other groups of organisms. © 2017 Scandinavian Plant Physiology Society.

  13. Emerging functions of multi-protein complex Mediator with special emphasis on plants.

    Science.gov (United States)

    Malik, Naveen; Agarwal, Pinky; Tyagi, Akhilesh

    2017-10-01

    Mediator is a multi-subunit protein complex which is involved in transcriptional regulation in yeast and other eukaryotes. As a co-activator, it connects information from transcriptional activators/repressors to transcriptional machinery including RNA polymerase II and general transcription factors. It is not only involved in transcription initiation but also has important roles to play in transcription elongation and termination. Functional attributes of different Mediator subunits have been largely defined in yeast and mammalian systems earlier, while such studies in plants have gained momentum recently. Mediator regulates various processes related to plant development and is also involved in biotic and abiotic stress response. Thus, plant Mediator, like yeast and mammalian Mediator complex, is indispensable for plant growth and survival. Interaction of its multiple subunits with other regulatory proteins and their ectopic expression or knockdown in model plant like Arabidopsis and certain crop plants are paving the way to biochemical analysis and unravel molecular mechanisms of action of Mediator in plants.

  14. Polyamines and abiotic stress in plants: A complex relationship

    Directory of Open Access Journals (Sweden)

    Rakesh eMinocha

    2014-05-01

    Full Text Available The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g. due to their ability to deal with oxidative radicals or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism. The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e. being a protector as well as a perpetrator of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress.

  15. Identifying cognitive complexity factors affecting the complexity of procedural steps in emergency operating procedures of a nuclear power plant

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jeong, Kwangsup; Jung, Wondea

    2005-01-01

    In complex systems such as a nuclear and chemical plant, it is well known that the provision of understandable procedures that allow operators to clarify what needs to be done and how to do it is one of the requisites to secure their safety. As a previous study in providing understandable procedures, the step complexity (SC) measure that can quantify the complexity of procedural steps in emergency operating procedures (EOPs) of a nuclear power plant (NPP) was suggested. However, the necessity of additional complexity factors that can consider a cognitive aspect in evaluating the complexity of procedural steps is raised. To this end, the comparisons between operators' performance data measured by the form of a step performance time with their behavior in carrying out the prescribed activities of procedural steps are conducted in this study. As a result, two kinds of complexity factors (the abstraction level of knowledge and the level of engineering decision) that could affect an operator's cognitive burden are identified. Although a well-designed experiment is indispensable for confirming the appropriateness of the additional complexity factors, it is strongly believed that the change of operators' performance data can be more authentically explained if the additional complexity factors are taken into consideration

  16. Identifying cognitive complexity factors affecting the complexity of procedural steps in emergency operating procedures of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinkyun [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, P.O. Box 105, Duckjin-Dong, Yusong-Ku, Taejon 305-600 (Korea, Republic of)]. E-mail: kshpjk@kaeri.re.kr; Jeong, Kwangsup [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, P.O. Box 105, Duckjin-Dong, Yusong-Ku, Taejon 305-600 (Korea, Republic of); Jung, Wondea [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, P.O. Box 105, Duckjin-Dong, Yusong-Ku, Taejon 305-600 (Korea, Republic of)

    2005-08-01

    In complex systems such as a nuclear and chemical plant, it is well known that the provision of understandable procedures that allow operators to clarify what needs to be done and how to do it is one of the requisites to secure their safety. As a previous study in providing understandable procedures, the step complexity (SC) measure that can quantify the complexity of procedural steps in emergency operating procedures (EOPs) of a nuclear power plant (NPP) was suggested. However, the necessity of additional complexity factors that can consider a cognitive aspect in evaluating the complexity of procedural steps is raised. To this end, the comparisons between operators' performance data measured by the form of a step performance time with their behavior in carrying out the prescribed activities of procedural steps are conducted in this study. As a result, two kinds of complexity factors (the abstraction level of knowledge and the level of engineering decision) that could affect an operator's cognitive burden are identified. Although a well-designed experiment is indispensable for confirming the appropriateness of the additional complexity factors, it is strongly believed that the change of operators' performance data can be more authentically explained if the additional complexity factors are taken into consideration.

  17. Identifying cognitive complexity factors affecting the complexity of procedural steps in emergency operating procedures of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Jinkyun Park; Kwangsup Jeong; Wondea Jung [Korea Atomic Energy Research Institute, Taejon (Korea). Integrated Safety Assessment Division

    2005-08-15

    In complex systems such as a nuclear and chemical plant, it is well known that the provision of understandable procedures that allow operators to clarify what needs to be done and how to do it is one of the requisites to secure their safety. As a previous study in providing understandable procedures, the step complexity (SC) measure that can quantify the complexity of procedural steps in emergency operating procedures (EOPs) of a nuclear power plant (NPP) was suggested. However, the necessity of additional complexity factors that can consider a cognitive aspect in evaluating the complexity of procedural steps is raised. To this end, the comparisons between operator' performance data measured by the form of a step performance time with their behavior in carrying out the prescribed activities of procedural steps are conducted in this study. As a result, two kinds of complexity factors (the abstraction level of knowledge and the level of engineering decision) that could affect an operator's cognitive burden are identified. Although a well-designed experiment is indispensable for confirming the appropriateness of the additional complexity factors, it is strongly believed that the change of operators' performance data can be more authentically explained if the additional complexity factors are taken into consideration. (author)

  18. Light harvesting in photosystem II

    NARCIS (Netherlands)

    van Amerongen, H.; Croce, R.

    2013-01-01

    Water oxidation in photosynthesis takes place in photosystem II (PSII). This photosystem is built around a reaction center (RC) where sunlight-induced charge separation occurs. This RC consists of various polypeptides that bind only a few chromophores or pigments, next to several other cofactors. It

  19. Light Harvesting for Organic Photovoltaics

    Science.gov (United States)

    2016-01-01

    The field of organic photovoltaics has developed rapidly over the last 2 decades, and small solar cells with power conversion efficiencies of 13% have been demonstrated. Light absorbed in the organic layers forms tightly bound excitons that are split into free electrons and holes using heterojunctions of electron donor and acceptor materials, which are then extracted at electrodes to give useful electrical power. This review gives a concise description of the fundamental processes in photovoltaic devices, with the main emphasis on the characterization of energy transfer and its role in dictating device architecture, including multilayer planar heterojunctions, and on the factors that impact free carrier generation from dissociated excitons. We briefly discuss harvesting of triplet excitons, which now attracts substantial interest when used in conjunction with singlet fission. Finally, we introduce the techniques used by researchers for characterization and engineering of bulk heterojunctions to realize large photocurrents, and examine the formed morphology in three prototypical blends. PMID:27951633

  20. The effect of structural changes on charge transfer states in a light-harvesting carotenoid-diaryl-porphyrin-C{sub 60} molecular triad

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, Marco [Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968 (United States); Basurto, Luis; Zope, Rajendra R. [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Baruah, Tunna, E-mail: tbaruah@utep.edu [Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968 (United States); Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States)

    2014-05-28

    We present a detailed study of charge transfer (CT) excited states for a large number of configurations in a light-harvesting Carotenoid-diaryl-Porphyrin-C{sub 60} (CPC{sub 60}) molecular triad. The chain-like molecular triad undergoes photoinduced charge transfer process exhibiting a large excited state dipole moment, making it suitable for application to molecular-scale opto-electronic devices. An important consideration is that the structural flexibility of the CPC{sub 60} triad impacts its dynamics in solvents. Since experimentally measured dipole moments for the triad of ∼110 D and ∼160 D strongly indicate a range in structural variability in the excited state, studying the effect of structural changes on the CT excited state energetics furthers the understanding of its charge transfer states. We have calculated the variation in the lowest CT excited state energies by performing a scan of possible variation in the structure of the triad. Some of these configurations were generated by incrementally scanning a 360° torsional (dihedral) twist at the C{sub 60}-porhyrin linkage and the porphyrin-carotenoid linkage. Additionally, five different CPC{sub 60} conformations were studied to determine the effect of pi-conjugation and particle-hole Coulombic attraction on the CT excitation energies. Our calculations show that configurational changes in the triad induces a variation of ∼0.6 eV in CT excited state energies in the gas-phase. The corresponding calculated excited state dipoles show a range of 47 D–188 D. The absorption spectra and density of states of these structures show little variation except for the structures where the porphyrin and aryl conjugation is changed.

  1. Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO{sub 2} spheres

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei [Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Lin, Yuan; Xiao, Xurui; Li, Xueping; Zhou, Xiaowen [Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Jia, Jianguang [Department of Chemistry, School of Science, Beijing University of Chemical Technology, Beijing 100029 (China)

    2008-07-15

    Cauliflower-like TiO{sub 2} rough spheres, which are about 200 nm large, have greatly enhanced light harvesting efficiency and energy conversion efficiency of dye-sensitized solar cells (DSC), due to their high light scattering effect and large BET surface area (80.7 m{sup 2} g{sup -1}) even after calcinations at 450 C for 30 min. The large size TiO{sub 2} rough and smooth spheres, produced at different initial temperatures by hydrolysis of Ti(OBu){sub 4} with P105 (EO{sub 37}PO{sub 56}EO{sub 37}) or F68 (EO{sub 78}PO{sub 30}EO{sub 78}) tri-block copolymer as structural agents, have nearly the same diameter of {proportional_to}275 nm and strong light scattering effects in the wavelength of 400-750 nm. However, rough spheres have even higher light scattering effect and larger BET surface area than smooth spheres for the roughness of the surface. By adding 25 wt.% large TiO{sub 2} spheres into the over-layer of TiO{sub 2} film composed of {proportional_to}20 nm TiO{sub 2} particles as light scattering centers, the energy conversion efficiency of the film containing rough spheres reaches 7.36%, much larger than that of smooth spheres (6.25%). From another point of view, the TiO{sub 2} rough spheres may have the satisfying ability in other fields of application such as photo-catalysis, drug carriers and so on. (author)

  2. Optimal load allocation of complex ship power plants

    International Nuclear Information System (INIS)

    Baldi, Francesco; Ahlgren, Fredrik; Melino, Francesco; Gabrielii, Cecilia; Andersson, Karin

    2016-01-01

    Highlights: • The optimal operation of the prime movers of hybrid ship power plants is addressed. • Both mechanical, electric and thermal power demand are considered. • The problem is modelled as a mixed integer-nonlinear programming problem. • Up to 3% savings can be achieved with hybrid power plants. • Including the thermal power demand improves the solution by up to 4%. - Abstract: In a world with increased pressure on reducing fuel consumption and carbon dioxide emissions, the cruise industry is growing in size and impact. In this context, further effort is required for improving the energy efficiency of cruise ship energy systems. In this paper, we propose a generic method for modelling the power plant of an isolated system with mechanical, electric and thermal power demands and for the optimal load allocation of the different components that are able to fulfil the demand. The optimisation problem is presented in the form of a mixed integer linear programming (MINLP) problem, where the number of engines and/or boilers running is represented by the integer variables, while their respective load is represented by the non-integer variables. The individual components are modelled using a combination of first-principle models and polynomial regressions, thus making the system nonlinear. The proposed method is applied to the load-allocation problem of a cruise ship sailing in the Baltic Sea, and used to compare the existing power plant with a hybrid propulsion plant. The results show the benefits brought by using the proposing method, which allow estimating the performance of the hybrid system (for which the load allocation is a non-trivial problem) while also including the contribution of the heat demand. This allows showing that, based on a reference round voyage, up to 3% savings could be achieved by installing the proposed system, compared to the existing one, and that a NPV of 11 kUSD could be achieved already 5 years after the installation of the

  3. Complexes formed by cadmium and chelating agents in plants

    International Nuclear Information System (INIS)

    Strasdeit, H.; Duhme, A.K.; Johanning, J.

    1993-01-01

    Measurements of X-ray absorption spectrums and potentiometric titrations yield some information on the basic complexforming properties of phytochelates. Cadmium-phytochelate complexes are extremely variable as regards composition and structure. This is evident from the fact that the metal's coordination environment (sulphur or oxygen coordination) is dependent uopn pH values. At pH values of about 7 it is normal to find Cd(SCys) 4 units. Given the availability of an adequate number of ligands, these are seen to occur as solitary units even in multinucleate complexes. (orig.) [de

  4. The Complexity of Bioactive Natural Products in Plants

    DEFF Research Database (Denmark)

    Frisch, Tina

    Plants produce a diverse range of bioactive natural products promoting their fitness. These specialized metabolites may serve as chemical defence against herbivores and pathogens and may inhibit the growth and development of competing species. Hydroxynitrile glucosides and glucosinolates are two...... classes of defence compounds, which have diverging properties, but also share common biosynthetic features. Hydroxynitrile glucosides are produced in species across the plant kingdom, whereas glucosinolates are found almost exclusively within the Brassicales, which generally does not contain...... hydroxynitrile glucosides. This division has raised questions regarding possible evolutionary relationships between the biosynthetic pathways. The very rare co-occurrence of hydroxynitrile glucosides and glucosinolates found in Alliaria petiolata (garlic mustard, løgkarse) and Carica papaya (papaya) makes...

  5. Evolutionary loss of light-harvesting proteins Lhcb6 and Lhcb3 in major land plant groups - break-up of current dogma

    Czech Academy of Sciences Publication Activity Database

    Kouřil, R.; Nosek, L.; Bartoš, Jan; Boekema, E. J.; Ilík, P.

    2016-01-01

    Roč. 210, č. 3 (2016), s. 808-814 ISSN 0028-646X R&D Projects: GA ČR GA13-28093S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : conifers * electron microscopy * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.330, year: 2016

  6. Multi-Level, Multi Time-Scale Fluorescence Intermittency of Photosynthetic LH2 Complexes: A Precursor of Non-Photochemical Quenching?

    Science.gov (United States)

    Schörner, Mario; Beyer, Sebastian Reinhardt; Southall, June; Cogdell, Richard J; Köhler, Jürgen

    2015-11-05

    The light harvesting complex LH2 is a chromoprotein that is an ideal system for studying protein dynamics via the spectral fluctuations of the emission of its intrinsic chromophores. We have immobilized these complexes in a polymer film and studied the fluctuations of the fluorescence intensity from individual complexes over 9 orders of magnitude in time. Combining time-tagged detection of single photons with a change-point analysis has allowed the unambigeous identification of the various intensity levels due to the huge statistical basis of the data set. We propose that the observed intensity level fluctuations reflect conformational changes of the protein backbone that might be a precursor of the mechanism from which nonphotochemical quenching of higher plants has evolved.

  7. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes a new approach to detect strong excitonic chlorophyll a/b coupling

    CERN Document Server

    Leupold, D; Ehlert, J; Irrgang, K D; Renger, G; Lokstein, H

    2002-01-01

    Stepwise two-photon excitation of chlorophyll a and b in the higher plant main light-harvesting complex (LHC II) and the minor complex CP29 (as well as in organic solution) with 100-fs pulses in the Q/sub y/ region results in a weak blue fluorescence. The dependence of the spectral shape of the blue fluorescence on excitation wavelength offers a new approach to elucidate the long-standing problem of the origin of spectral "chlorophyll forms" in pigment-protein complexes, in particular the characterization of chlorophyll a/b-heterodimers. As a first result we present evidence for the existence of strong chlorophyll a/b-interactions (excitonically coupled transitions at 650 and 680 nm) in LHC II at ambient temperature. In comparison with LHC II, the experiments with CP29 provide further evidence that the lowest energy chlorophyll a transition (at ~680 nm) is not excitonically coupled to chlorophyll b. (22 refs).

  8. Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation?

    Directory of Open Access Journals (Sweden)

    Nicole Wäschke

    Full Text Available Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts.

  9. Programmable logic control applied to a coal preparation plant complex

    Energy Technology Data Exchange (ETDEWEB)

    Krahenbil, L W

    1979-02-01

    The programmable Logic Controller (PLC), at its present stage of evolution, is now considered as a mature control system. The PLC combines the solid-state reliability of hard-wired logic and computer control systems with the simplicity of a relay ladder logic. Relay symbolic programming through a function-oriented keyboard provides a means which plant personnel can easily become accoustomed to work with. In a large coal facility, it is shown that the control engineer can provide improved control flexibility with the advanced capabilities of the PLC.

  10. Trophic complexity and the adaptive value of damage-induced plant volatiles.

    Directory of Open Access Journals (Sweden)

    Ian Kaplan

    Full Text Available Indirect plant defenses are those facilitating the action of carnivores in ridding plants of their herbivorous consumers, as opposed to directly poisoning or repelling them. Of the numerous and diverse indirect defensive strategies employed by plants, inducible volatile production has garnered the most fascination among plant-insect ecologists. These volatile chemicals are emitted in response to feeding by herbivorous arthropods and serve to guide predators and parasitic wasps to their prey. Implicit in virtually all discussions of plant volatile-carnivore interactions is the premise that plants "call for help" to bodyguards that serve to boost plant fitness by limiting herbivore damage. This, by necessity, assumes a three-trophic level food chain where carnivores benefit plants, a theoretical framework that is conceptually tractable and convenient, but poorly depicts the complexity of food-web dynamics occurring in real communities. Recent work suggests that hyperparasitoids, top consumers acting from the fourth trophic level, exploit the same plant volatile cues used by third trophic level carnivores. Further, hyperparasitoids shift their foraging preferences, specifically cueing in to the odor profile of a plant being damaged by a parasitized herbivore that contains their host compared with damage from an unparasitized herbivore. If this outcome is broadly representative of plant-insect food webs at large, it suggests that damage-induced volatiles may not always be beneficial to plants with major implications for the evolution of anti-herbivore defense and manipulating plant traits to improve biological control in agricultural crops.

  11. Fluorescence spectroscopy of conformational changes of single LH2 complexes

    NARCIS (Netherlands)

    Rutkauskas, D.; Novoderezhkin, V.; Cogdell, R.J.; van Grondelle, R.

    2005-01-01

    We have investigated the energy landscape of the bacterial photosynthetic peripheral light-harvesting complex LH2 of purple bacterium Rhodopseudomonas acidophila by monitoring sequences of fluorescence spectra of single LH2 assemblies, at room temperature, with different excitation intensities as

  12. Molecular and biochemical analysis of symbiotic plant receptor kinase complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Douglas R; Riely, Brendan K

    2010-09-01

    DE-FG02-01ER15200 was a 36-month project, initiated on Sept 1, 2005 and extended with a one-year no cost extension to August 31, 2009. During the project period we published seven manuscripts (2 in review). Including the prior project period (2002-2005) we published 12 manuscripts in journals that include Science, PNAS, The Plant Cell, Plant Journal, Plant Physiology, and MPMI. The primary focus of this work was to further elucidate the function of the Nod factor signaling pathway that is involved in initiation of the legume-rhizobium symbiosis and in particular to explore the relationship between receptor kinase-like proteins and downstream effectors of symbiotic development. During the project period we have map-base cloned two additional players in symbiotic development, including an ERF transcription factor and an ethylene pathway gene (EIN2) that negatively regulates symbiotic signaling; we have also further characterized the subcellular distribution and function of a nuclear-localized symbiosis-specific ion channel, DMI1. The major outcome of the work has been the development of systems for exploring and validating protein-protein interactions that connect symbiotic receptor-like proteins to downstream responses. In this regard, we have developed both homologous (i.e., in planta) and heterologous (i.e., in yeast) systems to test protein interactions. Using yeast 2-hybrid screens we isolated the only known interactor of the nuclear-localized calcium-responsive kinase DMI3. We have also used yeast 2-hybrid methodology to identify interactions between symbiotic signaling proteins and certain RopGTPase/RopGEF proteins that regulate root hair polar growth. More important to the long-term goals of our work, we have established a TAP tagging system that identifies in planta interactions based on co-immuno precipitation and mass spectrometry. The validity of this approach has been shown using known interactors that either co-iummnoprecipate (i.e., remorin) or co

  13. Modeling complex flow structures and drag around a submerged plant of varied posture

    Science.gov (United States)

    Boothroyd, Richard J.; Hardy, Richard J.; Warburton, Jeff; Marjoribanks, Timothy I.

    2017-04-01

    Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000-110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.

  14. Structure and function of complex carbohydrates active in regulating plant-microbe interactions

    Energy Technology Data Exchange (ETDEWEB)

    Albersheim, P; Darvill, A G; McNeil, M

    1981-01-01

    A key regulatory role of complex carbohydrates in the interactions between plants and microbes has been established. The complex carbohydrates act as regulatory molecules or hormones in that the carbohydrates induce de novo protein synthesis in receptive cells. The first complex carbohydrate recognized to possess such regulatory properties is a polysaccharide (PS) present in the walls of fungi. Hormonal concentrations of this PS elicit plant cells to accumulate phytoalexins (antibiotics). More recently we have recognized that a PS in the walls of growing plant cells also elicits phytoalexin accumulation; microbes and viruses may cause the release of active fragments of this endogenous elicitor. Another PS in plant cell walls is the Proteinase Inhibitor Inducing Factor (PIIF). This hormone appears to protect plants by inducing synthesis in plants of proteins which specifically inhibit digestive enzymes of insects and bacteria. Glycoproteins secreted by incompatible races (races that do not infect the plant) of a fungal pathogen of soybeans protect seedlings from attack by compatible races. Glycoproteins from compatible races do not protect the seedlings. The acidic PS secreted by the nitrogen-fixing rhizobia appear to function in the infection of legumes by the rhizobia. W.D. Bauer and his co-workers have evidence that these PS are required for the development of root hairs capable of being infected by symbiont rhizobia. Current knowledge of the structures of these biologically active complex carbohydrates will be presented.

  15. Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype.

    Science.gov (United States)

    Forrest, Kerrie L; Bhave, Mrinal

    2007-10-01

    The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant-water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry.

  16. Study on a quantitative evaluation method of equipment maintenance level and plant safety level for giant complex plant system

    International Nuclear Information System (INIS)

    Aoki, Takayuki

    2010-01-01

    In this study, a quantitative method on maintenance level which is determined by the two factors, maintenance plan and field work implementation ability by maintenance crew is discussed. And also a quantitative evaluation method on safety level for giant complex plant system is discussed. As a result of consideration, the following results were obtained. (1) It was considered that equipment condition after maintenance work was determined by the two factors, maintenance plan and field work implementation ability possessed by maintenance crew. The equipment condition determined by the two factors was named as 'equipment maintenance level' and its quantitative evaluation method was clarified. (2) It was considered that CDF in a nuclear power plant, evaluated by using a failure rate counting the above maintenance level was quite different from CDF evaluated by using existing failure rates including a safety margin. Then, the former CDF was named as 'plant safety level' of plant system and its quantitative evaluation method was clarified. (3) Enhancing equipment maintenance level means an improvement of maintenance quality. That results in the enhancement of plant safety level. Therefore, plant safety level should be always watched as a plant performance indicator. (author)

  17. Ternary WD40 repeat-containing protein complexes: evolution, composition and roles in plant immunity

    Directory of Open Access Journals (Sweden)

    Jimi C. Miller

    2016-01-01

    Full Text Available Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialogue by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect non-self, damaged-self and altered-self-associated molecular patterns and translate these danger signals into largely inducible chemical defenses. The WD40 repeat (WDR-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. Gβ and TTG1 are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.

  18. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum

    DEFF Research Database (Denmark)

    Selao, Tiago Toscano; Branca, Rui; Chae, Pil Seok

    2011-01-01

    of two-dimensional Blue Native/SDS-PAGE and NSI-LC-LTQ-Orbitrap mass spectrometry. We have identified several membrane protein complexes, including components of the ATP synthase, reaction center, light harvesting, and NADH dehydrogenase complexes. Additionally, we have identified differentially...

  19. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  20. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers.

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  1. Integrated approach to knowledge acquisition and safety management of complex plants with emphasis on human factors

    International Nuclear Information System (INIS)

    Kosmowski, K.T.

    1998-01-01

    In this paper an integrated approach to the knowledge acquisition and safety management of complex industrial plants is proposed and outlined. The plant is considered within a man-technology-environment (MTE) system. The knowledge acquisition is aimed at the consequent reliability evaluation of human factor and probabilistic modeling of the plant. Properly structured initial knowledge is updated in life-time of the plant. The data and knowledge concerning the topology of safety related systems and their functions are created in a graphical CAD system and are object oriented. Safety oriented monitoring of the plant includes abnormal situations due to external and internal disturbances, failures of hard/software components and failures of human factor. The operation and safety related evidence is accumulated in special data bases. Data/knowledge bases are designed in such a way to support effectively the reliability and safety management of the plant. (author)

  2. The role of crown architecture for light harvesting and carbon gain in extreme light environments assessed with a structurally realistic 3-D model

    Directory of Open Access Journals (Sweden)

    Valladares, Fernando

    2000-06-01

    Full Text Available Main results from different studies of crown architecture adaptation to extreme light environments are presented. Light capture and carbon gain by plants from low (forest understory and high (open Mediterranean-type ecosystems light environments were simulated with a 3-D model (YPLANT, which was developed specifically to analyse the structural features that determine light interception and photosynthesis at the whole plant level. Distantly related taxa with contrasting architectures exhibited similar efficiencies of light interception (functional convergence. Between habitats large differences in architecture existed depending on whether light capture must be maximised or whether excess photon flux density must be avoided. These differences are realised both at the species level and within a species because of plastic adjustments of crown architecture to the external light environment. Realistic, 3-D architectural models are indispensable tools in this kind of comparative studies due to the intrinsic complexity of plant architecture. Their efficient development requires a fluid exchange of ideas between botanists, ecologists and plant modellers.Se presentan los resultados principales de varios estudios sobre las adaptaciones del follaje a ambientes lumínicos extremos. Plantas de ambientes oscuros (sotobosques de bosques templados y tropicales y de ambientes muy luminosos (ecosistemas abiertos de tipo Mediterráneo han sido estudiadas mediante un modelo (YPLANT que permite la reconstrucción tridimensional de la parte aérea de las plantas e identificar los rasgos estructurales que determinan la interceptación de luz y la fotosíntesis y transpiraci6n potencial a nivel de toda la copa. Taxones no relacionados y con arquitecturas muy diferentes mostraron una eficiencia en la interceptaci6n de luz similar (convergencia funcional. La comparación entre hábitat revelo grandes diferencias arquitecturales dependiendo de si la absorción de luz deb

  3. Functional analysis for complex systems of nuclear fusion plant

    International Nuclear Information System (INIS)

    Pinna, Tonio; Dongiovanni, Danilo Nicola; Iannone, Francesco

    2016-01-01

    Highlights: • Functional analysis for complex systems. • Functional Flow Block Diagrams (FFBD). • IDEFØ diagrams. • Petri Net algorithm - Abstract: In system engineering context, a functional analysis is the systematic process of identifying, describing and correlating the functions a system must perform in order to be successful at any foreseen life-cycle phase or operational state/mode. By focusing on what the system must do disregarding the implementation, the functional analysis supports an unbiased system requirement allocation analysis. The system function architecture is defined in terms of process, protection (interlock) or nuclear safety functions. Then, the system functions are analyzed from several points of view in order to highlight the various pieces of information defining the way the system is designed to accomplish its mission as defined in the system requirement documents. The process functional flow is identified and represented by Functional Flow Block Diagrams (FFBD) while the system function interfaces are identified and represented by IDEFØ diagrams. Function interfaces are defined as relationships across identified functions in terms of function input (from other functions or requirements), output (added value or outcome of the function), controls (from other functions or systems) and mechanisms necessary to fulfill the function. The function architecture is further detailed by considering for each function: a) the phase of application, b) the actions performed c) the controlled variable and control actions to be foreseen in the implementation of the functions, d) the system involved in the control action, e) the equipment involved in the function, f) the requirements allocated to the function. The methodology here presented are suggested for the designing of fusion facilities and reactors already from the first phases of the pre-conceptual design, as it is now for DEMO.

  4. B Plant Complex generator dangerous waste storage areas inspection plan: Revision 1

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-01-01

    This document contains the inspection plan for the <90 day dangerous/mixed waste storage areas and satellite accumulation areas at B Plant Complex. This inspection plan is designed to comply with all applicable federal, state and US Department of Energy-Richland Operations Office training requirements. In particular, the requirements of WAC 173-303 ''Dangerous Waste Regulations'' are met by this inspection plan. This inspection plan is designed to provide B Plant Complex with the records and documentation showing that the waste storage and handling program is in compliance with applicable regulations. The plan also includes the requirements for becoming a qualified inspector of waste storage areas and the responsibilities of various individuals and groups at B Plant Complex

  5. Size variability of the unit building block of peripheral light-harvesting antennas as a strategy for effective functioning of antennas of variable size that is controlled in vivo by light intensity.

    Science.gov (United States)

    Taisova, A S; Yakovlev, A G; Fetisova, Z G

    2014-03-01

    This work continuous a series of studies devoted to discovering principles of organization of natural antennas in photosynthetic microorganisms that generate in vivo large and highly effective light-harvesting structures. The largest antenna is observed in green photosynthesizing bacteria, which are able to grow over a wide range of light intensities and adapt to low intensities by increasing of size of peripheral BChl c/d/e antenna. However, increasing antenna size must inevitably cause structural changes needed to maintain high efficiency of its functioning. Our model calculations have demonstrated that aggregation of the light-harvesting antenna pigments represents one of the universal structural factors that optimize functioning of any antenna and manage antenna efficiency. If the degree of aggregation of antenna pigments is a variable parameter, then efficiency of the antenna increases with increasing size of a single aggregate of the antenna. This means that change in degree of pigment aggregation controlled by light-harvesting antenna size is biologically expedient. We showed in our previous work on the oligomeric chlorosomal BChl c superantenna of green bacteria of the Chloroflexaceae family that this principle of optimization of variable antenna structure, whose size is controlled by light intensity during growth of bacteria, is actually realized in vivo. Studies of this phenomenon are continued in the present work, expanding the number of studied biological materials and investigating optical linear and nonlinear spectra of chlorosomes having different structures. We show for oligomeric chlorosomal superantennas of green bacteria (from two different families, Chloroflexaceae and Oscillochloridaceae) that a single BChl c aggregate is of small size, and the degree of BChl c aggregation is a variable parameter, which is controlled by the size of the entire BChl c superantenna, and the latter, in turn, is controlled by light intensity in the course of cell

  6. Complex programmable logic device based alarm sequencer for nuclear power plants

    International Nuclear Information System (INIS)

    Khedkar, Ravindra; Solomon, J. Selva; KrishnaKumar, B.

    2001-01-01

    Complex Programmable Logic Device based Alarm Sequencer is an instrument, which detects alarms, memorizes them and displays the sequences of occurrence of alarms. It caters to sixteen alarm signals and distinguishes the sequence among any two alarms with a time resolution of 1 ms. The system described has been designed for continuous operation in process plants, nuclear power plants etc. The system has been tested and found to be working satisfactorily. (author)

  7. Nuclear power desalinating complex with IRIS reactor plant and Russian distillation desalinating unit

    International Nuclear Information System (INIS)

    Kostin, V. I.; Panov, Yu.K.; Polunichev, V. I.; Fateev, S. A.; Gureeva, L. V.

    2004-01-01

    This paper has been prepared as a result of Russian activities on the development of nuclear power desalinating complex (NPDC) with the IRIS reactor plant (RP). The purpose of the activities was to develop the conceptual design of power desalinating complex (PDC) and to evaluate technical and economical indices, commercial attractiveness and economical efficiency of PDC based on an IRIS RP with distillation desalinating plants. The paper presents the main results of studies as applied to dual-purpose PDC based on IRIS RP with different types of desalinating plants, namely: characteristics of nuclear power desalinating complex based on IRIS reactor plant using Russian distillation desalinating technologies; prospective options of interface circuits of the IRIS RP with desalinating plants; evaluations of NPDC with IRIS RP output based on selected desalinating technologies for water and electric power supplied to the grid; cost of water generated by NPDC for selected interface circuits made by the IAEA DEEP code as well as by the Russian TEO-INVEST code; cost evaluation results for desalinated water of PDC operating on fossil fuel and conditions for competitiveness of the nuclear PDC based on IRIS RP compared with analog desalinating complexes operating on fossil fuel.(author)

  8. The water desalination complex based on ABV-type reactor plant

    International Nuclear Information System (INIS)

    Panov, Yu.K.; Fadeev, Yu.P.; Vorobiev, V.M.; Baranaev, Yu.D.

    1997-01-01

    A floating nuclear desalination complex with two barges, one for ABV type reactor plant, with twin reactor 2 x 6 MW(e), and one for reverse osmosis desalination plant, was described. The principal specifications of the ABV type reactor plant and desalination barge were given. The ABV type reactor has a traditional two-circuit layout using an integral type reactor vessel with all mode natural convection of primary coolant. The desalted water cost was estimated to be around US $0.86 per cubic meter. R and D work has been performed and preparations for commercial production are under way. (author)

  9. Distributed Low-Complexity Controller for Wind Power Plant in Derated Operation

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Madjidian, Daria; Spudic, Vedrana

    2013-01-01

    We consider a wind power plant of megawatt wind turbines operating in derated mode. When operating in this mode, the wind power plant controller is free to distribute power set-points to the individual turbines, as long as the total power demand is met. In this work, we design a controller...... that exploits this freedom to reduce the fatigue on the turbines in the wind power plant. We show that the controller can be designed in a decentralized manner, such that each wind turbine is equipped with a local low-complexity controller relying only on few measurements and little communication. As a basis...... for the controller design, a linear wind turbine model is constructed and verified in an operational wind power plant of megawatt turbines. Due to limitations of the wind power plant available for tests, it is not possible to implement the developed controller; instead the final distributed controller is evaluated...

  10. Uptake of Plutonium-238 into Solanum tuberosum L. (potato plants) in presence of complexing agent EDTA.

    Science.gov (United States)

    Tawussi, Frank; Gupta, Dharmendra K; Mühr-Ebert, Elena L; Schneider, Stephanie; Bister, Stefan; Walther, Clemens

    2017-11-01

    Bioavailability and plant uptake of radionuclides depend on various factors. Transfer into different plant parts depends on chemical and physical processes, which need to be known for realistic ingestion dose modelling when these plants are used for food. Within the scope of the present work, the plutonium uptake by potato plants (Solanum tuberosum L.) was investigated in hydroponic solution of low concentration [Pu] = 10 -9  mol L -1 . Particular attention was paid to the speciation of radionuclides in the solution which was modelled by the speciation code PHREEQC. The speciation, the solubility and therefore the plant availability of radionuclides mainly depend on the pH value and the redox potential of the solution. During the contamination period, the redox potential did not change significantly. In contrast, the pH value showed characteristic changes depending on exudates excreted by the plants. Plant roots took up high amounts of plutonium (37%-50% of the added total amount). In addition to the uptake into the roots, the radionuclides can also adsorb to the exterior root surface. The solution-to-plant transfer factor showed values between 0.03 and 0.80 (Bq kg -1 / Bq L -1 ) for the potato tubers. By addition of the complexing agent EDTA (10 -4  mol L-1), the plutonium uptake from solution increased by 58% in tubers and by 155% in shoots/leaves. The results showed that excreted substances by plants affect bioavailability of radionuclides at low concentration, on the one hand. On the other hand, the uptake of plutonium by roots and the accumulation in different plant parts can lead to non-negligible ingestion doses, even at low concentration. We are aware of the limited transferability of data obtained in hydroponic solutions to plants growing in soil. However, the aim of this study is twofold: First we want to investigate the influence of Pu speciation on plant uptake in a rather well defined system which can be modelled using available thermodynamic data

  11. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants

    Directory of Open Access Journals (Sweden)

    Subhasis eSamanta

    2015-09-01

    Full Text Available Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channelling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic and molecular analyses have unravelled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator’s involvement in these processes.

  12. The RTR complex as caretaker of genome stability and its unique meiotic function in plants

    Directory of Open Access Journals (Sweden)

    Alexander eKnoll

    2014-02-01

    Full Text Available The RTR complex consisting of a RecQ helicase, a type IA topoisomerase and the structural protein RMI1 is involved in the processing of DNA recombination intermediates in all eukaryotes. In Arabidopsis thaliana the complex partners RECQ4A, topoisomerase 3α and RMI1 have been shown to be involved in DNA repair and in the suppression of homologous recombination (HR in somatic cells. Interestingly, mutants of AtTOP3A and AtRMI1 are also sterile due to extensive chromosome breakage in meiosis I, a phenotype that seems to be specific for plants. Although both proteins are essential for meiotic recombination it is still elusive on what kind of intermediates they are acting on. Recent data indicate that the pattern of non-crossover (NCO-associated meiotic gene conversion (GC differs between plants and other eukaryotes, as less NCOs in comparison to crossovers (CO could be detected in Arabidopsis. This indicates that NCOs happen either more rarely in plants or that the conversion tract length is significantly shorter than in other organisms. As the TOP3α/RMI1-mediated dissolution of recombination intermediates results exclusively in NCOs, we suggest that the peculiar GC pattern found in plants is connected to the unique role, members of the RTR complex play in plant meiosis.

  13. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants.

    Science.gov (United States)

    Samanta, Subhasis; Thakur, Jitendra K

    2015-01-01

    Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.

  14. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    Science.gov (United States)

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  15. Electron-phonon coupling in solubilized LHC II complexes of green plants investigated by line-narrowing and temperature-dependent fluorescence spectroscopy

    CERN Document Server

    Pieper, J K; Renger, G; Schödel, R; Voigt, J

    2001-01-01

    Line-narrowed and temperature-dependent fluorescence spectra are reported for the solubilized trimeric light-harvesting complex of Photosystem II (LHC II). Special attention has been paid to eliminate effects owing to reabsorption and to ensure that the line-narrowed fluorescence spectra are virtually unaffected by hole burning or scattering artifacts. Analysis of line-narrowed fluorescence spectra at 4.2 K indicates that the lowest Q//y-state of LHC II is characterized by weak electron-phonon coupling with a Huang-Rhys factor of similar to 0.9 and a broad and strongly asymmetric one- phonon profile with a peak frequency omega//m of 15 cm**-**1 and a width of Gamma = 105 cm**-**1. The 4.2 K fluorescence data are further consistent with the assignment of the lowest Q//y-state at similar to 680.0 nm and an inhomogeneous width of similar to 80 cm**- **1 gathered from a recent hole-burning study (Pieper et al. J. Phys. Chem. A 1999, 103, 2412). The temperature dependence of the fluorescence spectra of LHC II is s...

  16. Effects of reactive Mn(III)-oxalate complexes on structurally intact plant cell walls

    Science.gov (United States)

    Summering, J. A.; Keiluweit, M.; Goni, M. A.; Nico, P. S.; Kleber, M.

    2011-12-01

    Lignin components in the in plant litter are commonly assumed to have longer residence times in soil than many other compounds, which are supposedly, more easily degradable. The supposed resistance of lignin compounds to decomposition is generally attributed to the complex chain of biochemical steps required to create footholds in the non-porous structure of ligno-cellulose in cell walls. Interestingly, Mn(III) complexes have shown the ability to degrade ligno-cellulose. Mn(III) chelated by ligands such as oxalate are soluble oxidizers with a high affinity for lignin structures. Here we determined (i) the formation and decay kinetics of the Mn(III)-oxalate complexes in aqueous solution and (ii) the effects that these complexes have on intact ligno-cellulose. UV/vis spectroscopy and iodometric titrations confirmed the transient nature of Mn(III)-oxalate complexes with decay rates being in the order of hours. Zinnia elegans tracheary elements - a model ligno-cellulose substrate - were treated with Mn(III)-oxalate complexes in a newly developed flow-through reactor. Soluble decomposition products released during the treatment were analyzed by GC/MS and the degree of cell integrity was measured by cell counts, pre- and post-treatment counts indicate a decrease in intact Zinnia elegans as a result of Mn(III)-treatment. GC/MS results showed the release of a multitude of solubilized lignin breakdown products from plant cell walls. We conclude that Mn(III)-oxalate complexes have the ability to lyse intact plant cells and solubilize lignin. Lignin decomposition may thus be seen as resource dependent, with Mn(III) a powerful resource that should be abundant in terrestrial characterized by frequent redox fluctuations.

  17. Flower-Visiting Social Wasps and Plants Interaction: Network Pattern and Environmental Complexity

    Directory of Open Access Journals (Sweden)

    Mateus Aparecido Clemente

    2012-01-01

    Full Text Available Network analysis as a tool for ecological interactions studies has been widely used since last decade. However, there are few studies on the factors that shape network patterns in communities. In this sense, we compared the topological properties of the interaction network between flower-visiting social wasps and plants in two distinct phytophysiognomies in a Brazilian savanna (Riparian Forest and Rocky Grassland. Results showed that the landscapes differed in species richness and composition, and also the interaction networks between wasps and plants had different patterns. The network was more complex in the Riparian Forest, with a larger number of species and individuals and a greater amount of connections between them. The network specialization degree was more generalist in the Riparian Forest than in the Rocky Grassland. This result was corroborated by means of the nestedness index. In both networks was found asymmetry, with a large number of wasps per plant species. In general aspects, most wasps had low niche amplitude, visiting from one to three plant species. Our results suggest that differences in structural complexity of the environment directly influence the structure of the interaction network between flower-visiting social wasps and plants.

  18. Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050

    NARCIS (Netherlands)

    Rutkauskas, D.; Novoderezkhin, V.; Cogdell, R.J.; van Grondelle, R.

    2004-01-01

    We have investigated the energy landscape of the bacterial photosynthetic peripheral light-harvesting complex LH2 of purple bacterium Rhodopseudomonas acidophila by monitoring sequences of fluorescence spectra of single LH2 assemblies, at room temperature, with different excitation intensities as

  19. Awarable complexity: a study on CRT picture design based on plant images by NPP operators

    International Nuclear Information System (INIS)

    Kawano, Ryutaro; Ohtsuka, Tsutomu; Masugi, Tsuyoshi

    2000-01-01

    Original pictures installed in the 1st and 2nd generation type central control panels (CCP) and new 'Awarable and Complex' pictures were made on personal computers and evaluated. A total 18 of actual plant operators (M=32.3, SD=10.5 years old) participated in the evaluation. The operators rated the new CRT pictures highly. The response times using the new CRT pictures were shorter than those by the original pictures. Both results suggested that the CRT picture design guidelines based on the operators' plant images were effective for improving their performance. (author)

  20. Complexity and availability for fusion power plants: The potential advantages of inertial fusion energy

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1997-01-01

    Probably the single largest advantage of the inertial route to fusion energy (IFE) is the perception that its power plant embodiments could achieve acceptable capacity factors. This is a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. The author examines these issues in terms of the complexity, reliability, maintainability and, therefore, availability of both magnetic and inertial fusion power plants and compares these factors with corresponding scheduled and unscheduled outage data from present day fission experience. The author stresses that, given the simple nature of a fission core, the vast majority of unplanned outages in fission plants are due to failures outside the reactor vessel itself. Given one must be prepared for similar outages in the analogous plant external to a fusion power core, this puts severe demands on the reliability required of the fusion core itself. The author indicates that such requirements can probably be met for IFE plants. He recommends that this advantage be promoted by performing a quantitative reliability and availability study for a representative IFE power plant and suggests that databases are probably adequate for this task. 40 refs., 4 figs., 3 tabs

  1. Possible evidence for transport of an iron cyanide complex by plants

    International Nuclear Information System (INIS)

    Samiotakis, M.; Ebbs, S.D.

    2004-01-01

    Barley (Hordeum vulgare L.), oat (Avena sativa L.), and wild cane (Sorghum bicolor L.), were exposed to 15 N-labeled ferrocyanide to determine whether these plant species can transport this iron cyanide complex. Plants were treated with ferrocyanide in a nutrient solution that simulated iron cyanide contaminated groundwater and soil solutions. This nutrient solution has been shown to maintain ferrocyanide speciation with minimal dissociation to free cyanide. Following treatment, all three plants showed dramatic enrichments in roots (δ 15 N%o=1000-1500) and shoots (δ 15 N%o=500). Barley and oat showed enrichment primarily in roots while wild cane showed a near equal enrichment in root and shoot tissues. Nitrogen-deficient barley plants treated with ferrocyanide showed a significantly greater 15 N enrichment as compared to nitrogen-sufficient plants. While the results are suggestive of ferrocyanide transport by these plant species, additional study will be required to verify these results. - Results suggest ferrocyanide transport by barley, oat and wild cane

  2. Possible evidence for transport of an iron cyanide complex by plants

    Energy Technology Data Exchange (ETDEWEB)

    Samiotakis, M.; Ebbs, S.D

    2004-01-01

    Barley (Hordeum vulgare L.), oat (Avena sativa L.), and wild cane (Sorghum bicolor L.), were exposed to {sup 15}N-labeled ferrocyanide to determine whether these plant species can transport this iron cyanide complex. Plants were treated with ferrocyanide in a nutrient solution that simulated iron cyanide contaminated groundwater and soil solutions. This nutrient solution has been shown to maintain ferrocyanide speciation with minimal dissociation to free cyanide. Following treatment, all three plants showed dramatic enrichments in roots ({delta} {sup 15}N%o=1000-1500) and shoots ({delta} {sup 15}N%o=500). Barley and oat showed enrichment primarily in roots while wild cane showed a near equal enrichment in root and shoot tissues. Nitrogen-deficient barley plants treated with ferrocyanide showed a significantly greater {sup 15}N enrichment as compared to nitrogen-sufficient plants. While the results are suggestive of ferrocyanide transport by these plant species, additional study will be required to verify these results. - Results suggest ferrocyanide transport by barley, oat and wild cane.

  3. A study on utilization improvement of cogeneration potential in a complex industrial steam and power plant

    International Nuclear Information System (INIS)

    Mierka, O.; Variny, M.

    2012-01-01

    Efficient cogeneration is widely acknowledged as one of measures reducing primary energy use and emissions of greenhouse gases and other pollutants. This contribution bears on analyses of complex industrial power plants, incorporating the concept of exergetic and exergoecomic balances-a concept that has been rarely utilized in Slovakia up to day. Emphasis is laid on synergic use of marginal and exergoecomic analysis, thus assessing the economics of various complex cogeneration units' operational modes. The whole study, together with resulting recommendations for cogeneration efficiency improvement of the given unit is an excerpt of corresponding author's doctoral thesis. (Authors)

  4. Complex monitoring of the surroundings of the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Tylova, E.

    1993-01-01

    Based on a Resolution of the Government of the Czech Republic, the Ministry of the Environment and the Ministry of Health of the Czech Republic shall develop a project of complex environmental pollution and contamination monitoring in the surroundings of the Dukovany nuclear power plant and shall discuss this project with municipalities there till the end of 1993. The objective of the project is to assess in a complex manner the situation in the Dukovany area with respect to all risks and their simultaneous effects, so as to ensure that the population in the area concerned is not burdened to an intolerable extent. (Z.S.)

  5. A study on utilization improvement of cogeneration potential in a complex industrial steam and power plant

    International Nuclear Information System (INIS)

    Mierka, O.; Variny, M.

    2012-01-01

    Efficient cogeneration is widely acknowledged as one of measures reducing primary energy use and emissions of greenhouse gases and other pollutants. This contribution bears on analyses of complex industrial power plants, incorporating the concept of exergetic and exergoeconomic balances-a concept that has been rarely utilized in Slovakia up to day. Emphasis is laid on synergic use of marginal and exergoeconomic analysis, thus assessing the economics of various complex cogeneration units' operational modes. The whole study, together with resulting recommendations for cogeneration efficiency improvement of the given unit is an excerpt of corresponding author's doctoral thesis. (Authors)

  6. Mathematical exergoeconomic optimization of a complex cogeneration plant aided by a professional process simulator

    International Nuclear Information System (INIS)

    Vieira, Leonardo S.; Donatelli, Joao L.; Cruz, Manuel E.

    2006-01-01

    In this work we present the development and implementation of an integrated approach for mathematical exergoeconomic optimization of complex thermal systems. By exploiting the computational power of a professional process simulator, the proposed integrated approach permits the optimization routine to ignore the variables associated with the thermodynamic balance equations and thus deal only with the decision variables. To demonstrate the capabilities of the integrated approach, it is here applied to a complex cogeneration system, which includes all the major components of a typical thermal plant, and requires more than 800 variables for its simulation

  7. B Plant complex hazardous, mixed and low level waste certification plan

    Energy Technology Data Exchange (ETDEWEB)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria.

  8. B Plant complex hazardous, mixed and low level waste certification plan

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria

  9. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant

    OpenAIRE

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-01-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that u...

  10. Use of complex electronic equipment within radiative areas of PWR power plants: feability study

    International Nuclear Information System (INIS)

    Fremont, P.; Carquet, M.

    1988-01-01

    EDF has undertaken a study in order to evaluate the technical and economical feasibility of using complex electronic equipment within radiative areas of PWR power plants. This study lies on tests of VLSI components (Random Access Memories) under gamma rays irradiations, which aims are to evaluate the radiation dose that they can withstand and to develop a selection method. 125 rad/h and 16 rad/h tests results are given [fr

  11. Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Debreczeny, Martin Paul [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

  12. Enhanced light harvesting of TiO{sub 2}/La{sub 0.95}Tb{sub 0.05}PO{sub 4} photoanodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongna; He, Benlin, E-mail: blhe@ouc.edu.cn; Tang, Qunwei, E-mail: tangqunwei@ouc.edu.cn

    2016-04-15

    With an aim of enhancing light harvesting for dye adsorption and therefore photovoltaic performances of dye-sensitized solar cells (DSSCs), we present here an employment of La{sub 0.95}Tb{sub 0.05}PO{sub 4} incorporated TiO{sub 2} nanocrystallites as photoanodes. The preliminary results demonstrate that the dye absorption and therefore electron generation have been markedly enhanced, arising from the conversion of ultraviolet to visible light by La{sub 0.95}Tb{sub 0.05}PO{sub 4}. The crystal structure and light harvesting performances of photoanodes are optimized by adjusting La{sub 0.95}Tb{sub 0.05}PO{sub 4} dosage. The power conversion efficiency is enhanced from 6.52% for pristine TiO{sub 2} based DSSC to 7.27% for the device employing TiO{sub 2}/0.5 wt% La{sub 0.95}Tb{sub 0.05}PO{sub 4}, yielding an efficiency enhancement by 11.35%. This study provides a new strategy for the fabrication of highly efficient DSSCs. - Highlights: • TiO{sub 2}/La{sub 0.95}Tb{sub 0.05}PO{sub 4} nanocrystallites are fabricated by a facile hydrothermal method. • The light intensity and therefore dye excitation have been markedly enhanced. • A conversion efficiency of 7.27% for the DSSC employing TiO{sub 2}/0.5 wt% La{sub 0.95}Tb{sub 0.05}PO{sub 4} is obtained. • The strategy provides new opportunities for efficient DSSCs.

  13. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO{sub 2} overlay coating on TiO{sub 2} nanoparticle working electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueyang; Fang, Jian [Institute for Frontier Materials, Deakin University, VIC 3220 (Australia); Gao, Mei [CSIRO Materials Science and Engineering, Melbourne, VIC 3169 (Australia); Wang, Hongxia [Institute for Frontier Materials, Deakin University, VIC 3220 (Australia); Yang, Weidong [CSIRO Materials Science and Engineering, Melbourne, VIC 3169 (Australia); Lin, Tong, E-mail: tong.lin@deakin.edu.au [Institute for Frontier Materials, Deakin University, VIC 3220 (Australia)

    2015-02-01

    Novel TiO{sub 2} single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO{sub 2} nanorods on TiO{sub 2} nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO{sub 2} nanorods had lower dye loading than TiO{sub 2} nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO{sub 2} nanorods received less resistance than that in TiO{sub 2} nanoparticle aggregation. By just applying a thin layer of TiO{sub 2} nanorods on TiO{sub 2} nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO{sub 2} nanoparticle layer covered with 3 μm thick TiO{sub 2} nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs. - Highlights: • Single crystalline TiO{sub 2} nanorods were prepared for DSSC application. • TiO{sub 2} nanorods show effective light scattering performance. • TiO{sub 2} nanorods have higher electron transfer efficiency than TiO{sub 2} nanoparticles. • TiO{sub 2} nanorods on TiO{sub 2} nanoparticle electrode improve DSSC efficiency.

  14. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO2 overlay coating on TiO2 nanoparticle working electrode

    International Nuclear Information System (INIS)

    Liu, Xueyang; Fang, Jian; Gao, Mei; Wang, Hongxia; Yang, Weidong; Lin, Tong

    2015-01-01

    Novel TiO 2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO 2 nanorods on TiO 2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO 2 nanorods had lower dye loading than TiO 2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO 2 nanorods received less resistance than that in TiO 2 nanoparticle aggregation. By just applying a thin layer of TiO 2 nanorods on TiO 2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO 2 nanoparticle layer covered with 3 μm thick TiO 2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs. - Highlights: • Single crystalline TiO 2 nanorods were prepared for DSSC application. • TiO 2 nanorods show effective light scattering performance. • TiO 2 nanorods have higher electron transfer efficiency than TiO 2 nanoparticles. • TiO 2 nanorods on TiO 2 nanoparticle electrode improve DSSC efficiency

  15. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.

    Science.gov (United States)

    Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X

    2016-01-01

    PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.

  16. The absence of chlorophyll b affects lateral mobility of photosynthetic complexes and lipids in grana membranes of Arabidopsis and barley chlorina mutants.

    Science.gov (United States)

    Tyutereva, Elena V; Evkaikina, Anastasiia I; Ivanova, Alexandra N; Voitsekhovskaja, Olga V

    2017-09-01

    The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.

  17. Reciprocal diversification in a complex plant-herbivore-parasitoid food web

    Directory of Open Access Journals (Sweden)

    Bokma Folmer

    2007-11-01

    Full Text Available Abstract Background Plants, plant-feeding insects, and insect parasitoids form some of the most complex and species-rich food webs. According to the classic escape-and-radiate (EAR hypothesis, these hyperdiverse communities result from coevolutionary arms races consisting of successive cycles of enemy escape, radiation, and colonization by new enemy lineages. It has also been suggested that "enemy-free space" provided by novel host plants could promote host shifts by herbivores, and that parasitoids could similarly drive diversification of gall form in insects that induce galls on plants. Because these central coevolutionary hypotheses have never been tested in a phylogenetic framework, we combined phylogenetic information on willow-galling sawflies with data on their host plants, gall types, and enemy communities. Results We found that evolutionary shifts in host plant use and habitat have led to dramatic prunings of parasitoid communities, and that changes in gall phenotype can provide "enemy-free morphospace" for millions of years even in the absence of host plant shifts. Some parasites have nevertheless managed to colonize recently-evolved gall types, and this has apparently led to adaptive speciation in several enemy groups. However, having fewer enemies does not in itself increase speciation probabilities in individual sawfly lineages, partly because the high diversity of the enemy community facilitates compensatory attack by remaining parasite taxa. Conclusion Taken together, our results indicate that niche-dependent parasitism is a major force promoting ecological divergence in herbivorous insects, and that prey divergence can cause speciation in parasite lineages. However, the results also show that the EAR hypothesis is too simplistic for species-rich food webs: instead, diversification seems to be spurred by a continuous stepwise process, in which ecological and phenotypic shifts in prey lineages are followed by a lagged evolutionary

  18. Discrimination of plant-parasitic nematodes from complex soil communities using ecometagenetics.

    Science.gov (United States)

    Porazinska, Dorota L; Morgan, Matthew J; Gaspar, John M; Court, Leon N; Hardy, Christopher M; Hodda, Mike

    2014-07-01

    Many plant pathogens are microscopic, cryptic, and difficult to diagnose. The new approach of ecometagenetics, involving ultrasequencing, bioinformatics, and biostatistics, has the potential to improve diagnoses of plant pathogens such as nematodes from the complex mixtures found in many agricultural and biosecurity situations. We tested this approach on a gradient of complexity ranging from a few individuals from a few species of known nematode pathogens in a relatively defined substrate to a complex and poorly known suite of nematode pathogens in a complex forest soil, including its associated biota of unknown protists, fungi, and other microscopic eukaryotes. We added three known but contrasting species (Pratylenchus neglectus, the closely related P. thornei, and Heterodera avenae) to half the set of substrates, leaving the other half without them. We then tested whether all nematode pathogens-known and unknown, indigenous, and experimentally added-were detected consistently present or absent. We always detected the Pratylenchus spp. correctly and with the number of sequence reads proportional to the numbers added. However, a single cyst of H. avenae was only identified approximately half the time it was present. Other plant-parasitic nematodes and nematodes from other trophic groups were detected well but other eukaryotes were detected less consistently. DNA sampling errors or informatic errors or both were involved in misidentification of H. avenae; however, the proportions of each varied in the different bioinformatic pipelines and with different parameters used. To a large extent, false-positive and false-negative errors were complementary: pipelines and parameters with the highest false-positive rates had the lowest false-negative rates and vice versa. Sources of error identified included assumptions in the bioinformatic pipelines, slight differences in primer regions, the number of sequence reads regarded as the minimum threshold for inclusion in analysis

  19. Direct Visualization of Exciton Reequilibration in the LH1 and LH2 Complexes of Rhodobacter sphaeroides by Multipulse Spectroscopy

    NARCIS (Netherlands)

    Cohen Stuart, T.A.; Vengris, M.; Novoderezhkin, V.I.; Cogdell, R.J.; Hunter, C.N.; van Grondelle, R.

    2011-01-01

    The dynamics of the excited states of the light-harvesting complexes LH1 and LH2 of Rhodobacter sphaeroides are governed, mainly, by the excitonic nature of these ring-systems. In a pump-dump-probe experiment, the first pulse promotes LH1 or LH2 to its excited state and the second pulse dumps a

  20. Ecological significance and complexity of N-source preference in plants.

    Science.gov (United States)

    Britto, Dev T; Kronzucker, Herbert J

    2013-10-01

    Plants can utilize two major forms of inorganic N: NO3(-) (nitrate) and NH4(+) (ammonium). In some cases, the preference of one form over another (denoted as β) can appear to be quite pronounced for a plant species, and can be an important determinant and predictor of its distribution and interactions with other species. In many other cases, however, assignment of preference is not so straightforward and must take into account a wide array of complex physiological and environmental features, which interact in ways that are still not well understood. This Viewpoint presents a discussion of the key, and often co-occurring, factors that join to produce the complex phenotypic composite referred to by the deceptively simple term 'N-source preference'. N-source preference is much more complex a biological phenomenon than is often assumed, and general models predicting how it will influence ecological processes will need to be much more sophisticated than those that have been so far developed.

  1. A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro.

    Science.gov (United States)

    Canetta, Elisabetta; Kim, Sang Hyon; Kalinina, Natalia O; Shaw, Jane; Adya, Ashok K; Gillespie, Trudi; Brown, John W S; Taliansky, Michael

    2008-02-29

    Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2'-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized plant vascular system, has been shown to strictly depend on the interaction of one of its proteins, the ORF3 protein (protein encoded by open reading frame 3), with fibrillarin. This interaction is essential for several stages in the groundnut rosette virus life cycle such as nucleolar import of the ORF3 protein via Cajal bodies, relocalization of some fibrillarin from the nucleolus to cytoplasm, and assembly of cytoplasmic umbraviral ribonucleoprotein particles that are themselves required for the long-distance spread of the virus and systemic infection. Here, using atomic force microscopy, we determine the architecture of these complexes as single-layered ringlike structures with a diameter of 18-22 nm and a height of 2.0+/-0.4 nm, which consist of several (n=6-8) distinct protein granules. We also estimate the molar ratio of fibrillarin to ORF3 protein in the complexes as approximately 1:1. Based on these data, we propose a model of the structural organization of fibrillarin-ORF3 protein complexes and discuss potential mechanistic and functional implications that may also apply to other viruses.

  2. The role of human performance in safe operation of complex plants

    International Nuclear Information System (INIS)

    Preda, Irina Aida; Lazar, Roxana Elena; Croitoru, Cornelia

    1999-01-01

    According to statistics, about 20-30% from the failures occurring in plants are caused directly or indirectly by human errors. Furthermore, it was established that 10-15 percents of the global failures are related to the human errors. These are mainly due to the wrong actions, maintenance errors, and misinterpretation of instruments. The human performance is influenced by: professional ability, complexity and danger of the plant, experience in the same working place, level of skills, events in personal and/or professional life, discipline, social ambience and somatic health. The human performances assessment in the probabilistic safety assessment offers the possibility of evaluation for human contribution to the events sequences outcome. A human error may be recovered before the unwanted consequences had been occurred on system. This paper presents the possibilities to use the probabilistic methods (event tree, fault tree) to identify the solution for human reliability improvement in order to minimise the risk in industrial plant operation. Also, are defined the human error types and their causes and the 'decision tree method' is presented as technique in our analyses for human reliability assessment. The exemplification of human error analysis method was achieved based on operation data for Valcea heavy water pilot plant. (authors)

  3. The role of human performance in the safety complex plants' operation

    International Nuclear Information System (INIS)

    Preda, Irina Aida; Lazar, Roxana Elena; Croitoru, Cornelia

    1999-01-01

    According to statistics, about 20-30% from the failures occurred in the plants are caused directly or indirectly by human errors. Furthermore, it was established that 10-15% of the global failures are related with the human errors. These are mainly due to the wrong actions, maintenance errors, and misinterpretation of instruments. The human performance is influenced by: professional ability, complexity and danger to the plant experience in the working place, level of skills, events in personal and/or professional life, discipline, social ambience, somatic health. The human performances' assessment in the probabilistic safety assessment offers the possibility of evaluation of human contribution to the events sequences outcome. Not all the human errors have impact on the system. A human error may be recovered before the unwanted consequences had been occurred on system. This paper presents the possibilities to use the probabilistic method (event tree, fault tree) to identify the solutions for human reliability improved in order to minimize the risk in industrial plants' operation. Also, the human error types and their causes are defined and the 'decision tree method' as technique in our analysis for human reliability assessment is presented. The exemplification of human error analysis method was achieved based on operation data for Valcea Heavy Water Pilot Plant. As initiating event for the accident state 'the steam supply interruption' event has been considered. The human errors' contribution was analysed for the accident sequence with the worst consequences. (authors)

  4. Complex nuclear safety evaluation of the Bohunice V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Kriz, Z.

    1991-01-01

    The safety concept of V-230 type reactor units dates back to the late 1960s. The units fail to be sufficiently dimensioned for emergency cooling of the reactor core and are fitted with no containment. So far, operating experience is good. The availability factor is 71.5% for unit 1 and 77.8% for unit 2. There occur 1 to 3 unscheduled shutdowns annually. The quality of steam generator tubes is very good. A complex safety assessment of the plant was accomplished in 1990. It concerned the concept and criteria of safety assessment, the earthquake situation, the condition of the primary coolant circuit equipment, the control system, the effect of the human factor, and preparedness of emergency plans. OSART and ASSET missions were accomplished at the plant. Based on the results of the missions as well as of inspections by the State Surveillance over Nuclear Safety, the decision has been adopted to operate the plant not longer than till 1995; the further fate of the plant will be decided on according to a future technical and economic analysis. (M.D.)

  5. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals.

    Science.gov (United States)

    Chevalier, Adrien S; Chaumont, François

    2015-05-01

    Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Complex analysis of hazards to the man and natural environment due to electricity production in nuclear and coal power plants

    International Nuclear Information System (INIS)

    Strupczewski, A.

    1990-01-01

    The report presents a complex analysis of hazards connected with electrical energy production in nuclear power plants and coal power plants, starting with fuel mining, through power plant construction, operation, possible accidents and decommissioning to long term global effects. The comparison is based on contemporary, proven technologies of coal fired power plants and nuclear power plants with pressurized water reactors. The hazards to environment and man due to nuclear power are shown to be much smaller than those due to coal power cycle. The health benefits due to electrical power availability are shown to be much larger than the health losses due to its production. (author). 71 refs, 17 figs, 12 tabs

  7. Efficiency mark of the two-product power complex of nuclear power plant

    Science.gov (United States)

    Khrustalev, V. A.; Suchkov, V. M.

    2017-11-01

    The article discusses the combining nuclear power plants (NPP) with pressurized water reactors and distillation-desalination plants (DDP), their joint mode of operation during periods of coating failures of the electric power load graphs and thermo-economical efficiency. Along with the release of heat and generation of electric energy a desalination complex with the nuclear power plant produces distillate. Part of the selected steam “irretrievably lost” with a mix of condensation of this vapor in a desalination machine with a flow of water for distillation. It means that this steam transforms into condition of acquired product - distillate. The article presents technical solutions for the return of the working fluid for turbine К-1000-60/1500-2 и К-1200-6,8/50, as well as permissible part of low pressure regime according to the number of desalination units for each turbine. Patent for the proposed two-product energy complex, obtained by Gagarin State Technical University is analyzed. The energy complex has such system advantages as increasing the capacity factor of a nuclear reactor and also allows to solve the problem of shortage of fresh water. Thermo-economics effectiveness of this complex is determined by introducing a factor-“thermo-economic index”. During analyzing of the results of the calculations of a thermo-economic index we can see a strong influence of the cost factor of the distillate on the market. Then higher participation of the desalination plant in coverage of the failures of the graphs of the electric loading then smaller the payback period of the NPP. It is manifested more clearly, as it’s shown in the article, when pricing options depend on time of day and the configuration of the daily electric load diagram. In the geographical locations of the NPPs with PWR the Russian performance in a number of regions with low freshwater resources and weak internal electrical connections combined with DDP might be one of the ways to improve the

  8. Production of complex multiantennary N-glycans in Nicotiana benthamiana plants.

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J M; Pabst, Martin; Callewaert, Nico; Weterings, Koen

    2011-03-01

    In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions.

  9. Production of Complex Multiantennary N-Glycans in Nicotiana benthamiana Plants1[W][OA

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J.M.; Pabst, Martin; Callewaert, Nico; Weterings, Koen

    2011-01-01

    In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions. PMID:21233332

  10. Overview of the ITER Tokamak complex building and integration of plant systems toward construction

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, Jean-Jacques, E-mail: jean-jacques.cordier@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Bak, Joo-Shik [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Baudry, Alain [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Benchikhoune, Magali [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Carafa, Leontin; Chiocchio, Stefano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Darbour, Romaric [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Elbez, Joelle; Di Giuseppe, Giovanni; Iwata, Yasuhiro; Jeannoutot, Thomas; Kotamaki, Miikka; Kuehn, Ingo; Lee, Andreas; Levesy, Bruno; Orlandi, Sergio [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Packer, Rachel [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Patisson, Laurent; Reich, Jens; Rigoni, Giuliano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); and others

    2015-10-15

    The ITER Tokamak complex consists of Tokamak, diagnostic and tritium buildings. The Tokamak machine is located in the bioshield pit of the Tokamak building. Plant systems are implemented in the three buildings and are strongly interfacing with the Tokamak. The reference baseline (3D) configuration is a set of over 1000 models that today defines in an exhaustive way the overall layout of Tokamak and plant systems, needed for fixing the interfaces and to complete the construction design of the buildings. During the last two years, one of the main ITER challenges was to improve the maturity of the plant systems layout in order to confirm their integration in the building final design and freeze the interface definitions in-between the systems and to the buildings. The propagation of safety requirements in the design of the nuclear building like confinement, fire zoning and radiation shielding is of first priority. A major effort was placed by ITER Organization together with the European Domestic Agency (F4E) and the Architect Engineer as a joint team to fix the interfaces and the loading conditions to buildings. The most demanding systems in terms of interface definition are water cooling, cryogenic, detritiation, vacuum, cable trays and building services. All penetrations through the walls for piping, cables and other equipment have been defined, as well as all temporary openings needed for the installation phase. Project change requests (PCR) impacting the Tokamak complex buildings have been implemented in a tight allocated time schedule. The most demanding change was to implement a new design of the Tokamak basic machine supporting system. The 18 supporting columns of the cryostat (2001 baseline) were replaced at the end of 2012 by a concrete crown and radial concrete ribs linked to the basemat and to the bioshield surrounding the Tokamak. The change was implemented successfully in the building construction design to allow basemat construction phase being performed

  11. Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum

    Czech Academy of Sciences Publication Activity Database

    Andresen, Elisa; Kappel, S.; Stärk, H.-J.; Riegger, U.; Borovec, Jakub; Mattusch, J.; Heinz, A.; Schmelzer, C.E.H.; Matoušková, Šárka; Dickinson, B.; Küpper, Hendrik

    2016-01-01

    Roč. 210, č. 4 (2016), s. 1244-1258 ISSN 0028-646X Institutional support: RVO:60077344 ; RVO:67985831 Keywords : Ceratophyllum demersum * Environmentally relevant * Light-harvesting complexes (LHCs) * Toxic metals Subject RIV: CE - Biochemistry; DD - Geochemistry (GLU-S) Impact factor: 7.330, year: 2016

  12. Plant-beneficial elements status assessment in soil-plant system in the vicinity of a chemical industry complex: shedding light on forage grass safety issues.

    Science.gov (United States)

    Anjum, Naser A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2015-02-01

    Human health is closely linked with soils via plants, grazers, or plant-based products. This study estimated plant-beneficial elements (macronutrients: K, P; secondary macronutrients: Ca, Mg; micronutrients: Mo, Mn, Na, Ni, Se) in both soils and shoots of two forage grass species (Eriophorum angustifolium and Lolium perenne) prevalent in the vicinity of a chemical industry complex (Estarreja, Portugal). Both soils and plants from the chemical industrial areas exhibited differential concentrations of the studied elements. In soils, the role of contamination was evidenced as insignificant in context of its impact on all the tested macro and secondary macronutrients except P, and micronutrients such as Mo and Ni. In forage grass plant shoots, the role of contamination was evidenced as insignificant in relation to its impact on all the tested macro and secondary macronutrients except K. Between the two forage grass plants, high Se-harboring L. perenne cannot be recommended for its use as animal feed.

  13. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    Energy Technology Data Exchange (ETDEWEB)

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  14. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    International Nuclear Information System (INIS)

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-01-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR - nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second 14 CO 2 pulse, the total 14 C incorporation of the mutant leaves was approximately 20 5 of that of the control. The 14 C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second 14 CO 2 pulse followed by a 60 second chase with normal CO 2 , 14 C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus

  15. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    Energy Technology Data Exchange (ETDEWEB)

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-05-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second /sup 14/CO/sub 2/ pulse, the total /sup 14/C incorporation of the mutant leaves was approximately 20/sup 5/ of that of the control. The /sup 14/C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second /sup 14/CO/sub 2/ pulse followed by a 60 second chase with normal CO/sub 2/, /sup 14/C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus.

  16. Antenna complexes protect Photosystem I from Photoinhibition

    Science.gov (United States)

    Alboresi, Alessandro; Ballottari, Matteo; Hienerwadel, Rainer; Giacometti, Giorgio M; Morosinotto, Tomas

    2009-01-01

    Background Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. Results In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. Conclusion We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed. PMID:19508723

  17. The effects of overtime work and task complexity on the performance of nuclear plant operators: A proposed methodology

    International Nuclear Information System (INIS)

    Banks, W.W.; Potash, L.

    1985-01-01

    This document presents a very general methodology for determining the effect of overtime work and task complexity on operator performance in response to simulated out-of-limit nuclear plant conditions. The independent variables consist of three levels of overtime work and three levels of task complexity. Multiple dependent performance measures are proposed for use and discussion. Overtime work is operationally defined in terms of the number of hours worked by nuclear plant operators beyond the traditional 8 hours per shift. Task complexity is operationalized in terms of the number of operator tasks required to remedy a given plant anomalous condition and bring the plant back to a ''within limits'' or ''normal'' steady-state condition. The proposed methodology would employ a 2 factor repeated measures design along with the analysis of variance (linear) model

  18. Complex Outcomes from Insect and Weed Control with Transgenic Plants: Ecological Surprises?

    Directory of Open Access Journals (Sweden)

    Thomas Bøhn

    2017-09-01

    Full Text Available Agriculture is fundamental for human survival through food production and is performed in ecosystems that, while simplified, still operate along ecological principles and retain complexity. Agricultural plants are thus part of ecological systems, and interact in complex ways with the surrounding terrestrial, soil, and aquatic habitats. We discuss three case studies that demonstrate how agricultural solutions to pest and weed control, if they overlook important ecological and evolutionary factors, cause “surprises”: (i the fast emergence of resistance against the crop-inserted Bt-toxin in South Africa, (ii the ecological changes generated by Bt-cotton landscapes in China, and (iii the decline of the monarch butterfly, Danaus plexippus, in North America. The recognition that we work with complex systems is in itself important, as it should limit the belief in reductionist solutions. Agricultural practices lacking eco-evolutionary understanding result in “surprises” like resistance evolution both in weeds and pest insects, risking the reappearance of the “pesticide treadmill”—with increased use of toxic pesticides as the follow-up. We recommend prioritization of research that counteracts the tendencies of reductionist approaches. These may be beneficial on a short term, but with trade-off costs on a medium- to long-term. Such costs include loss of biodiversity, ecosystem services, long-term soil productivity, pollution, and reduced food quality.

  19. Surface complexation modeling of uranyl adsorption on corrensite from the Waste Isolation Pilot Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Won; Leckie, J.O. [Stanford Univ., CA (United States); Siegel, M.D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-09-01

    Corrensite is the dominant clay mineral in the Culebra Dolomite at the Waste Isolation Pilot Plant. The surface characteristics of corrensite, a mixed chlorite/smectite clay mineral, have been studied. Zeta potential measurements and titration experiments suggest that the corrensite surface contains a mixture of permanent charge sites on the basal plane and SiOH and AlOH sites with a net pH-dependent charge at the edge of the clay platelets. Triple-layer model parameters were determined by the double extrapolation technique for use in chemical speciation calculations of adsorption reactions using the computer program HYDRAQL. Batch adsorption studies showed that corrensite is an effective adsorbent for uranyl. The pH-dependent adsorption behavior indicates that adsorption occurs at the edge sites. Adsorption studies were also conducted in the presence of competing cations and complexing ligands. The cations did not affect uranyl adsorption in the range studied. This observation lends support to the hypothesis that uranyl adsorption occurs at the edge sites. Uranyl adsorption was significantly hindered by carbonate. It is proposed that the formation of carbonate uranyl complexes inhibits uranyl adsorption and that only the carbonate-free species adsorb to the corrensite surface. The presence of the organic complexing agents EDTA and oxine also inhibits uranyl sorption.

  20. Surface complexation modeling of uranyl adsorption on corrensite from the Waste Isolation Pilot Plant Site

    International Nuclear Information System (INIS)

    Park, Sang-Won; Leckie, J.O.; Siegel, M.D.

    1995-09-01

    Corrensite is the dominant clay mineral in the Culebra Dolomite at the Waste Isolation Pilot Plant. The surface characteristics of corrensite, a mixed chlorite/smectite clay mineral, have been studied. Zeta potential measurements and titration experiments suggest that the corrensite surface contains a mixture of permanent charge sites on the basal plane and SiOH and AlOH sites with a net pH-dependent charge at the edge of the clay platelets. Triple-layer model parameters were determined by the double extrapolation technique for use in chemical speciation calculations of adsorption reactions using the computer program HYDRAQL. Batch adsorption studies showed that corrensite is an effective adsorbent for uranyl. The pH-dependent adsorption behavior indicates that adsorption occurs at the edge sites. Adsorption studies were also conducted in the presence of competing cations and complexing ligands. The cations did not affect uranyl adsorption in the range studied. This observation lends support to the hypothesis that uranyl adsorption occurs at the edge sites. Uranyl adsorption was significantly hindered by carbonate. It is proposed that the formation of carbonate uranyl complexes inhibits uranyl adsorption and that only the carbonate-free species adsorb to the corrensite surface. The presence of the organic complexing agents EDTA and oxine also inhibits uranyl sorption

  1. Novel type of red-shifted chlorophyll alpha antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems

    Czech Academy of Sciences Publication Activity Database

    Kotabová, Eva; Jarešová, Jana; Kaňa, Radek; Sobotka, Roman; Bína, David; Prášil, Ondřej

    2014-01-01

    Roč. 1837, č. 6 (2014), s. 734-743 ISSN 0005-2728 R&D Projects: GA ČR GBP501/12/G055 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : Chromera velia * Chromatic adaptation * red-shifted chloroplhyl * light-harvesting complex Subject RIV: BO - Biophysics; CE - Biochemistry (MBU-M) Impact factor: 5.353, year: 2014

  2. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Bajpai, M.B.; Shenoi, M.R.K.; Keni, V.S.

    1994-01-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author)

  3. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, M B; Shenoi, M R.K.; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author). 3 figs., 2 tabs.

  4. Industrial Complex for Solid Radwaste Management at Chernobyle Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ahner, S.; Fomin, V. V.

    2002-02-26

    In the framework of the preparation for the decommissioning of the Chernobyl Nuclear Power Plant (ChNPP) an Industrial Complex for Solid Radwaste Management (ICSRM) will be built under the EC TACIS Program in the vicinity of ChNPP. The paper will present the proposed concepts and their integration into existing buildings and installations. Further, the paper will consider the safety cases, as well as the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper will provide information on the status of the interim design and the effects of value engineering on the output of basic design phase. The paper therefor summarizes the design results of the involved design engineers of the Design and Process Providers BNFL (LOT 1), RWE NUKEM GmbH (LOT 2 and General) and INITEC (LOT 3).

  5. Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in Plant Breeding.

    Science.gov (United States)

    Bhat, Javaid A; Ali, Sajad; Salgotra, Romesh K; Mir, Zahoor A; Dutta, Sutapa; Jadon, Vasudha; Tyagi, Anshika; Mushtaq, Muntazir; Jain, Neelu; Singh, Pradeep K; Singh, Gyanendra P; Prabhu, K V

    2016-01-01

    Genomic selection (GS) is a promising approach exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. In plant breeding, it provides opportunities to increase genetic gain of complex traits per unit time and cost. The cost-benefit balance was an important consideration for GS to work in crop plants. Availability of genome-wide high-throughput, cost-effective and flexible markers, having low ascertainment bias, suitable for large population size as well for both model and non-model crop species with or without the reference genome sequence was the most important factor for its successful and effective implementation in crop species. These factors were the major limitations to earlier marker systems viz., SSR and array-based, and was unimaginable before the availability of next-generation sequencing (NGS) technologies which have provided novel SNP genotyping platforms especially the genotyping by sequencing. These marker technologies have changed the entire scenario of marker applications and made the use of GS a routine work for crop improvement in both model and non-model crop species. The NGS-based genotyping have increased genomic-estimated breeding value prediction accuracies over other established marker platform in cereals and other crop species, and made the dream of GS true in crop breeding. But to harness the true benefits from GS, these marker technologies will be combined with high-throughput phenotyping for achieving the valuable genetic gain from complex traits. Moreover, the continuous decline in sequencing cost will make the WGS feasible and cost effective for GS in near future. Till that time matures the targeted sequencing seems to be more cost-effective option for large scale marker discovery and GS, particularly in case of large and un-decoded genomes.

  6. Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution.

    Science.gov (United States)

    Pratap Sahi, Vaidurya; Cifrová, Petra; García-González, Judith; Kotannal Baby, Innu; Mouillé, Gregory; Gineau, Emilie; Müller, Karel; Baluška, František; Soukup, Aleš; Petrášek, Jan; Schwarzerová, Katerina

    2017-12-25

    The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Heat-induced reorganization of the structure of photosystem II membranes: role of oxygen evolving complex.

    Science.gov (United States)

    Busheva, Mira; Tzonova, Iren; Stoitchkova, Katerina; Andreeva, Atanaska

    2012-12-05

    The sensitivity of the green plants' photosystem II (PSII) to high temperatures is investigated in PSII enriched membranes and in membranes, from which the oxygen evolving complex is removed. Using steady-state 77 K fluorescence and resonance Raman spectroscopy we analyze the interdependency between the temperature-driven changes in structure and energy distribution in the PSII supercomplex. The results show that the heat treatment induces different reduction of the 77 K fluorescence emission in both types of investigated membranes: (i) an additional considerable decrease of the overall fluorescence emission in Tris-washed membranes as compared to the native membranes; (ii) a transition point at 42°C(,) observed only in native membranes; (iii) a sharp reduction of the PSII core fluorescence in Tris-washed membranes at temperatures higher than 50°C; (iv) a 3 nm red-shift of F700 band's maximum in Tris-washed membranes already at 20°C and its further shift by 1 nm at temperature increase. Both treatments intensified their action by increasing the aggregation and dissociation of the peripheral light harvesting complexes. The oxygen-evolving complex, in addition to its main function to produce O(2), increases the thermal stability of PSII core by strengthening the connection between the core and the peripheral antenna proteins and by keeping their structural integrity. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Definition of Storage Complex for the Technological Development Plant and the Evaluation Scenarios

    International Nuclear Information System (INIS)

    Recreo, F.; Hurtado, A.; Eguilior, S.

    2015-01-01

    This report intends a geological description of the site for the Technological Development Plant that CIUDEN is conducting in Hontomín (Burgos) for the improvement, both technological and economic, of the key aspects of geological storage of CO2 in deep permeable formations. Safety studies of this site began in 2008 with a preliminary appraisal of several pre-selected areas in the western part of the so-called "Cantabrian Basin". However, the modelling of the processes acting in the permanent sequestration of CO2 requires a much more detailed knowledge of the geological formations that form the complex storage and of its lithologic, petrophysical, hydrogeological, geochemical and geomechanical characteristics. This report presents a summary of the geological and hydrogeological information available from the documentation provided by the Geological Survey of Spain (IGME) and the published studies conducted in the area for oil research campaigns between 1965-68 and 1991–96. This information has allowed to deriving a preliminary conceptualization of what would be the system model of the geological system where the Technological Development Plant will be installed as well as identifying the remaining uncertainties.

  9. The Plant Circadian Clock: From a Simple Timekeeper to a Complex Developmental Manager.

    Science.gov (United States)

    Sanchez, Sabrina E; Kay, Steve A

    2016-12-01

    The plant circadian clock allows organisms to anticipate the predictable changes in the environment by adjusting their developmental and physiological traits. In the last few years, it was determined that responses known to be regulated by the oscillator are also able to modulate clock performance. These feedback loops and their multilayer communications create a complex web, and confer on the clock network a role that exceeds the measurement of time. In this article, we discuss the current knowledge of the wiring of the clock, including the interplay with metabolism, hormone, and stress pathways in the model species Arabidopsis thaliana We outline the importance of this system in crop agricultural traits, highlighting the identification of natural alleles that alter the pace of the timekeeper. We report evidence supporting the understanding of the circadian clock as a master regulator of plant life, and we hypothesize on its relevant role in the adaptability to the environment and the impact on the fitness of most organisms. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. The role of risk analysis in control of complex plant safe operation

    International Nuclear Information System (INIS)

    Dumitrescu, Maria; Preda, Irina Aida; Lazar, Roxana Elena; Carcadea, Elena

    1999-01-01

    The problem of risk estimation assessment and control is necessary to be discussed in every decision making level of an activity. Performances of a system, action or technology, by indicating the possible consequences on environment, people or property should be qualitatively assessed. The paper presents methodologies of risk assessment successful applied on isotopic separation plants. The quantitative methodologies presented, use fault tree and event tree to determine the accident states frequency, physical models to analyse the dispersion in atmosphere of dangerous substances. The qualitative methodologies use the fuzzy models for the multicriterial decision making, models based on risk matrix build on the base of combination between the severity and the probability of maximum admissible consequence. These methodologies present the following steps for applying: familiarising with the activity in study, establishing the adequate method of risk assessment, building the model of risk assessment for the activity or objective in study, developing the applications of the proposed model. Applying this methodology to isotopic separation plants have led to: analysis of operation events and establishing of principal types of events potentially dangerous, analysis of human error in these plant operations and operating experience assessment, technical specifications for optimisation by probabilistic safety assessment, reliability analysis and development of reliability and exploitation of events database, post accident events analysis (releases, fires, explosions) and mathematical modelling of dispersion in atmosphere of dangerous substances. The risk concept being complex and with multiple implications, is not the case of a rigid approaching neither of existence of some methods universally valid. Because of these reasons, choosing of the most appropriate method for the risk assessment of an activity, leads to a solution in useful time, of some problems with economic, social

  11. The role of risk analysis in control of complex plants' safety operation

    International Nuclear Information System (INIS)

    Dumitrescu, Maria; Preda, Irina Aida; Lazar, Roxana Elena; Carcadea, Elena

    1999-01-01

    The problem of risk estimation, assessment and control is necessary to be discussed at every decision level of an activity. In this way the performances of a system, action or technology are qualitatively assessed by indicating the possible consequences on environmental, people or property. The paper presents methodologies of risk assessment successfully applied on isotopic separation plants. The quantitative methodologies presented use fault tree and event tree to determine the accident states frequency and physical models to analyse the dispersion in atmosphere of dangerous substances. The qualitative methodologies use fuzzy models for the multi-criteria decision making, models based on risk matrix built on the basis of a combination between severity and probability of maximum admissible consequence. These methodologies present the following steps for applying: familiarising with the activity in study, establishing the adequate method of risk assessment, realising of the model of risk assessment for the activity or objective in study, developing of application of the proposed model. Applying this methodology to isotopic separation plants has led to: analysis of operation events and establishing of principal types of events potentially dangerous, analysis of human error in these plants operation and operating experience assessment, technical specifications optimisation by probabilistic safety assessment, reliability analysis and development of reliability and exploitation events database, post accident events analysis (releases, fires, explosions) and mathematical modelling of dispersion in atmosphere of dangerous substances. The risk concept being complex and with multiple implications, it is not the case of a rigid approaching neither of existence of some methods universally valid. Because of these reasons choosing of the most appropriate method for the risk assessment of an activity, leads to solution in due time, of some problems with economic, social

  12. Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A Timeline of Loss, Gain, Expansion, and Correlation with Complexity

    OpenAIRE

    Lang, Daniel; Weiche, Benjamin; Timmerhaus, Gerrit; Richardt, Sandra; Ria?o-Pach?n, Diego M.; Corr?a, Luiz G. G.; Reski, Ralf; Mueller-Roeber, Bernd; Rensing, Stefan A.

    2010-01-01

    Evolutionary retention of duplicated genes encoding transcription-associated proteins (TAPs, comprising transcription factors and other transcriptional regulators) has been hypothesized to be positively correlated with increasing morphological complexity and paleopolyploidizations, especially within the plant kingdom. Here, we present the most comprehensive set of classification rules for TAPs and its application for genome-wide analyses of plants and algae. Using a dated species tree and phy...

  13. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Felipe eMoraga

    2015-10-01

    Full Text Available Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt–Ada–Gcn5 Acetyltransferase is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.

  14. Linear-dichroism measurements on the LH2 antenna complex of Rhodopseudomonas Acidophila strain 10050 show that the transition dipole moment of the Carotenoid Rhodopin Glucoside us nit collinair with the long molecular axis

    NARCIS (Netherlands)

    Georgakopoulou, S.; Gogdell, R.J.; Grondelle, van R.; Amerongen, van H.

    2003-01-01

    We have applied linear-dichroism experiments to determine the orientation of the transition dipole moment, corresponding to the main absorption band of the carotenoid, rhodopin glucoside, in the light-harvesting complex LH2 from Rhodopseudomonas acidophila strain 10050. The crystal structure of this

  15. Light harvesting by dye linked conducting polymers

    DEFF Research Database (Denmark)

    Nielsen, Kim Troensegaard

    2006-01-01

    The fact that the fossil fuel is finite and that the detrimental long-term effects of letting CO2 into our atmosphere exist, have created an enormous interest in developing new, cheap, renewable and less polluting energy resources. One of the most obviousabundant sources of energy in the solar...... system is the sun. Unfortunately the well developed silicon solar cells are very costly to produce. In an attempt to produce cheap and flexible solar cells, plastic solar cells have received a lot of attention inthe last decades. There are still a lot of parameters to optimize if the plastic solar cell...... an nconductor and a pconductor. The facts that the charge carrier separation only happens at the heterojunctionslimits the thickness of the active layer in solar cells and thereby the effectiveness of the solar cells. In this project the charge carrier separation is attempted optimized by making plastic solar...

  16. Synthesis of green TiO{sub 2}/ZnO/CdS hybrid nano-catalyst for efficient light harvesting using an elegant pulsed laser ablation in liquids method

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M.; Fasasi, T.A.; Dastageer, M.A. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Seddigi, Z.S. [Department of Environmental Health, Faculty of Public Health and Health Informatics, Umm Al-Qura University, 21955 Makkah (Saudi Arabia); Qahtan, T.F.; Faiz, M.; Khattak, G.D. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2015-12-01

    Graphical abstract: - Highlights: • Facile strategy for synthesis of green catalyst (TiO{sub 2}/ZnO/CdS) was developed. • Clean synthesis of green catalyst was done using pulsed laser ablation in liquids. • Synthesized composite size ranges between 10 and 40 nm confirmed by HRTEM studies. • Enhanced improvement was noticed in the carriers transport in the visible region. • Visible region absorption opens door to many applications for solar energy harvesting. - Abstract: The main limitation on the applications of TiO{sub 2} as a photocatalyst is its large band gap (3.2 eV) which limits its absorption only to the ultraviolet region of the solar spectrum. To overcome this problem, a facile strategy for clean synthesis of a nanocomposite green catalyst of zinc oxide (ZnO), titanium dioxide (TiO{sub 2}) and cadmium sulphide (CdS) was developed using pulsed laser ablation in liquids (PLAL) technique for the first time to the best of our knowledge. The main aim of addition of ZnO is to reduce the electron–hole recombination in the TiO{sub 2} while CdS is used to increase the light harvesting efficiency of TiO{sub 2} in the visible spectral region. The absorption spectrum of the TiO{sub 2}/ZnO/CdS composite obtained from the UV–vis spectrophotometer exhibits strong absorption in the visible region as compared to the pure TiO{sub 2} whose absorption band lies around 380 nm which is in the UV-region. The morphology of the composite quantum dots was also investigated using high resolution TEM technique which shows that the synthesized composite size ranges between 10 and 40 nm. These nanocomposites have demosntarted noticible improvement in the carriers transport in the visible region which could enhance its efficiency for many applications in the visible region especially for energy harvesting using solar radiations.

  17. N -annulated perylene as an efficient electron donor for porphyrin-based dyes: Enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells

    KAUST Repository

    Luo, Jie

    2014-01-08

    Porphyrin-based dyes recently have become good candidates for dye-sensitized solar cells (DSCs). However, the bottleneck is how to further improve their light-harvesting ability. In this work, N-annulated perylene (NP) was used to functionalize the Zn-porphyrin, and four "push-pull"-type NP-substituted and fused porphyrin dyes with intense absorption in the visible and even in the near-infrared (NIR) region were synthesized. Co(II/III)-based DSC device characterizations revealed that dyes WW-5 and WW-6, in which an ethynylene spacer is incorporated between the NP and porphyrin core, showed pantochromatic photon-to-current conversion efficiency action spectra in the visible and NIR region, with a further red-shift of about 90 and 60 nm, respectively, compared to the benchmark molecule YD2-o-C8. As a result, the short-circuit current density was largely increased, and the devices displayed power conversion efficiencies as high as 10.3% and 10.5%, respectively, which is comparable to that of the YD2-o-C8 cell (η = 10.5%) under the same conditions. On the other hand, the dye WW-3 in which the NP unit is directly attached to the porphyrin core showed a moderate power conversion efficiency (η = 5.6%) due to the inefficient π-conjugation, and the NP-fused dye WW-4 exhibited even poorer performance due to its low-lying LUMO energy level and nondisjointed HOMO/LUMO profile. Our detailed physical measurements (optical and electrochemical), density functional theory calculations, and photovoltaic characterizations disclosed that the energy level alignment, the molecular orbital profile, and dye aggregation all played very important roles on the interface electron transfer and charge recombination kinetics. © 2013 American Chemical Society.

  18. Genome size as a key to evolutionary complex aquatic plants: polyploidy and hybridization in Callitriche (Plantaginaceae.

    Directory of Open Access Journals (Sweden)

    Jan Prančl

    Full Text Available Despite their complex evolutionary histories, aquatic plants are highly underrepresented in contemporary biosystematic studies. Of them, the genus Callitriche is particularly interesting because of such evolutionary features as wide variation in chromosome numbers and pollination systems. However, taxonomic difficulties have prevented broader investigation of this genus. In this study we applied flow cytometry to Callitriche for the first time in order to gain an insight into evolutionary processes and genome size differentiation in the genus. Flow cytometry complemented by confirmation of chromosome counts was applied to an extensive dataset of 1077 Callitriche individuals from 495 localities in 11 European countries and the USA. Genome size was determined for 12 taxa. The results suggest that many important processes have interacted in the evolution of the genus, including polyploidization and hybridization. Incongruence between genome size and ploidy level, intraspecific variation in genome size, formation of autotriploid and hybridization between species with different pollination systems were also detected. Hybridization takes place particularly in the diploid-tetraploid complex C. cophocarpa-C. platycarpa, for which the triploid hybrids were frequently recorded in the area of co-occurrence of its parents. A hitherto unknown hybrid (probably C. hamulata × C. cophocarpa with a unique chromosome number was discovered in the Czech Republic. However, hybridization occurs very rarely among most of the studied species. The main ecological preferences were also compared among the taxa collected. Although Callitriche taxa often grow in mixed populations, the ecological preferences of individual species are distinctly different in some cases. Anyway, flow cytometry is a very efficient method for taxonomic delimitation, determination and investigation of Callitriche species, and is even able to distinguish homoploid taxa and identify introduced

  19. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant.

    Science.gov (United States)

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-08-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that upon the calculations of normalized sensitivity coefficient (S(i,j)) 17 (steady-state) or 19 (dynamic conditions) kinetic and stoichiometric parameters are sensitive. Most of them are associated with growth and decay of ordinary heterotrophic organisms and phosphorus accumulating organisms. The rankings of ten most sensitive parameters established on the basis of the calculations of the mean square sensitivity measure (δ(msqr)j) indicate that irrespective of the fact, whether the steady-state or dynamic calibration was performed, there is an agreement in the sensitivity of parameters.

  20. Basic data report for drillholes at the H-11 complex (Waste Isolation Pilot Plant-WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.W. (Sandia National Labs., Albuquerque, NM (USA)); Snyder, R.P. (Geological Survey, Denver, CO (USA))

    1990-05-01

    Drillholes H-11b1, H-11b2, and H-11b3 were drilled from August to December 1983 for site characterization and hydrologic studies of the Culebra Dolomite Member of the Upper Permian Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. In October 1984, the three wells were subjected to a series of pumping tests designed to develop the wells, provide information on hydraulic communication between the wells, provide hydraulic properties information, and to obtain water samples for quality of water measurements. Based on these tests, it was determined that this location would provide an excellent pad to conduct a convergent-flow non-sorbing tracer test in the Culebra dolomite. In 1988, a fourth hole (H-11b4) was drilled at this complex to provide a tracer-injection hole for the H-11 convergent-flow tracer test and to provide an additional point at which the hydraulic response of the Culebra H-11 multipad pumping test could be monitored. A suite of geophysical logs was run on the drillholes and was used to identify different lithologies and aided in interpretation of the hydraulic tests. 4 refs., 6 figs., 6 tabs.

  1. Basic data report for drillholes at the H-11 complex (Waste Isolation Pilot Plant-WIPP)

    International Nuclear Information System (INIS)

    Mercer, J.W.; Snyder, R.P.

    1990-05-01

    Drillholes H-11b1, H-11b2, and H-11b3 were drilled from August to December 1983 for site characterization and hydrologic studies of the Culebra Dolomite Member of the Upper Permian Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. In October 1984, the three wells were subjected to a series of pumping tests designed to develop the wells, provide information on hydraulic communication between the wells, provide hydraulic properties information, and to obtain water samples for quality of water measurements. Based on these tests, it was determined that this location would provide an excellent pad to conduct a convergent-flow non-sorbing tracer test in the Culebra dolomite. In 1988, a fourth hole (H-11b4) was drilled at this complex to provide a tracer-injection hole for the H-11 convergent-flow tracer test and to provide an additional point at which the hydraulic response of the Culebra H-11 multipad pumping test could be monitored. A suite of geophysical logs was run on the drillholes and was used to identify different lithologies and aided in interpretation of the hydraulic tests. 4 refs., 6 figs., 6 tabs

  2. Operational planning optimization of steam power plants considering equipment failure in petrochemical complex

    International Nuclear Information System (INIS)

    Luo, Xianglong; Zhang, Bingjian; Chen, Ying; Mo, Songping

    2013-01-01

    Highlights: ► We develop a systematic programming methodology to address equipment failure. ► We classify different operation conditions into real periods and virtual periods. ► The formulated MILP models guarantee cost reduction and enough operation safety. ► The consideration of reserving operation redundancy is effective. - Abstract: One or more interconnected steam power plants (SPPs) are constructed in a petrochemical complex to supply utility energy to the process. To avoid large economic penalties or process shutdowns, these SPPs should be flexible and reliable enough to meet the process energy requirement under varying conditions. Unexpected utility equipment failure is inevitable and difficult to be predicted. Most of the conventional methods are based on the assumption that SPPs do not experience any kind of equipment failure. Unfortunately, a process shutdown cannot be avoided when equipment fails unexpectedly. In this paper, a systematic methodology is presented to minimize the total cost under normal conditions while reserving enough flexibility and safety for unexpected equipment failure conditions. The proposed method transforms the different conditions into real periods to indicate normal scenarios and virtual periods to indicate unexpected equipment failure scenarios. The optimization strategy incorporating various operation redundancy scheduling, the transition constraints from equipment failure conditions to normal conditions, and the boiler load increase behavior modeling are presented to save cost and guarantee operation safety. A detailed industrial case study shows that the proposed systematic methodology is effective and practical in coping with equipment failure conditions with only few additional cost penalties

  3. Innate responses of the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae) to volatiles from different plant-herbivore complexes.

    NARCIS (Netherlands)

    Geervliet, J.B.F.; Vet, L.E.M.; Dicke, M.

    1996-01-01

    To determine and compare innate preferences of the parasitoid species Cotesia glomerata and C. rubecula for different plant-herbivore complexes, long-range (1-m) foraging behavior was studied in dual-choice experiments in a wind tunnel. In this study we tested the hypothesis that naive females of

  4. Structural studies of complex carbohydrates of plant cell walls. Progress report, June 15, 1992--June 14, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, A.G.

    1994-10-01

    This report contains the abstracts of fourteen papers published, in press, or in preparation reporting on research activities to investigate the structure, as well as the function of cell walls in plants. This document also contains research on methods to determine the structure of complex carbohydrates of the cell walls.

  5. A quantitative approach to design of material accounting system for a complex facility. Study at the PNC reprocessing plants

    International Nuclear Information System (INIS)

    Ikawa, K.

    1994-01-01

    An approach to a design of nuclear materials accounting sysyem for a complex facility in Japan is discussed. Near-real-time materials accountancy model studied at the PNC reprocessing plant is described. Main features of the computerized nuclear materials accounting system are considered as well as the PROMAC - C code algorithm for statistical data processing is presented. 18 refs., 5 figs., 1 tab

  6. The genetic architecture of a complex ecological trait: host plant use in the specialist moth, HELIOTHIS SUBFLEXA

    Science.gov (United States)

    The study of the genetic basis of ecological adaptation remains in its infancy, and most studies have focused on phenotypically simple traits. Host plant use by herbivorous insects is phenotypically complex. While research has illuminated the evolutionary determinants of host use, knowledge of its...

  7. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling.

    Science.gov (United States)

    Wang, Feng; Liang, Yuting; Jiang, Yuji; Yang, Yunfeng; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; Sun, Bo

    2015-09-23

    Plants have an important impact on soil microbial communities and their functions. However, how plants determine the microbial composition and network interactions is still poorly understood. During a four-year field experiment, we investigated the functional gene composition of three types of soils (Phaeozem, Cambisols and Acrisol) under maize planting and bare fallow regimes located in cold temperate, warm temperate and subtropical regions, respectively. The core genes were identified using high-throughput functional gene microarray (GeoChip 3.0), and functional molecular ecological networks (fMENs) were subsequently developed with the random matrix theory (RMT)-based conceptual framework. Our results demonstrated that planting significantly (P soils and 83.5% of microbial alpha-diversity can be explained by the plant factor. Moreover, planting had significant impacts on the microbial community structure and the network interactions of the microbial communities. The calculated network complexity was higher under maize planting than under bare fallow regimes. The increase of the functional genes led to an increase in both soil respiration and nitrification potential with maize planting, indicating that changes in the soil microbial communities and network interactions influenced ecological functioning.

  8. Assembly of Photosynthetic Antenna Protein Complexes from Algae for Development of Nano-biodevice and Its Fuelization

    Science.gov (United States)

    2013-05-20

    bacterial photosynthesis . The structure of the reaction center (RC, the first membrane protein to have its structure determined to high resolution...Introduction] In a bacterial photosynthesis , light-harvesting complex 2 (LH2) and lightharvesting-reaction center complex (LH1-RC) play the key...Artificial Leaf 6CO2 + 6H2O C6H12O6 (Glucose) +6O2 Natural Leaf Photosynthesis and redox proteins are well-organized into thylakoid membrane in natural leaf

  9. Functional genomics tools applied to plant metabolism: a survey on plant respiration, its connections and the annotation of complex gene functions

    Directory of Open Access Journals (Sweden)

    Wagner L. Araújo

    2012-09-01

    Full Text Available The application of post-genomic techniques in plant respiration studies has greatly improved our ability to assign functions to gene products. In addition it has also revealed previously unappreciated interactions between distal elements of metabolism. Such results have reinforced the need to consider plant respiratory metabolism as part of a complex network and making sense of such interactions will ultimately require the construction of predictive and mechanistic models. Transcriptomics, proteomics, metabolomics and the quantification of metabolic flux will be of great value in creating such models both by facilitating the annotation of complex gene function, determining their structure and by furnishing the quantitative data required to test them. In this review we highlight how these experimental approaches have contributed to our current understanding of plant respiratory metabolism and its interplay with associated process (e.g. photosynthesis, photorespiration and nitrogen metabolism. We also discuss how data from these techniques may be integrated, with the ultimate aim of identifying mechanisms that control and regulate plant respiration and discovering novel gene functions with potential biotechnological implications.

  10. Interplay between Dephasing and Geometry and Directed Heat Flow in Exciton Transfer Complexes

    OpenAIRE

    Dubi, Yonatan

    2015-01-01

    The striking efficiency of energy transfer in natural photosynthetic systems and the recent evidence of long-lived quantum coherence in biological light harvesting complexes has triggered much excitement, due to the evocative possibility that these systems - essential to practically all life on earth -- use quantum mechanical effects to achieve optimal functionality. A large body of theoretical work has addressed the role of local environments in determining the transport properties of excito...

  11. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    International Nuclear Information System (INIS)

    Hopkins, A.M.; Heineman, R.; Norton, S.; Miller, M.; Oates, L.

    2003-01-01

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site

  12. Spectroscopic properties of a reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a

    DEFF Research Database (Denmark)

    Pedersen, Marie Østergaard; Pham, Lan; Steensgaard, Dorte Bjerre

    2008-01-01

    chlorosomes were lyophilized and extracted with chloroform/methanol (1:1, v/v). The . Isolated chlorosomes were lyophilized and extracted with chloroform/methanol (1:1, v/v). The extract was further purified using gel filtration and reverse-phase HPLC and the purity of the preparation confirmed by SDS...

  13. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant.

    Science.gov (United States)

    Zhang, Li; Lilley, Catherine J; Imren, Mustafa; Knox, J Paul; Urwin, Peter E

    2017-01-01

    Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida , Heterodera glycines , Heterodera avenae and Heterodera filipjevi , in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines . Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  14. Photoprotection and triplet energy transfer in higher plants: the role of electronic and nuclear fluctuations.

    Science.gov (United States)

    Cupellini, Lorenzo; Jurinovich, Sandro; Prandi, Ingrid G; Caprasecca, Stefano; Mennucci, Benedetta

    2016-04-28

    Photosynthetic organisms employ several photoprotection strategies to avoid damage due to the excess energy in high light conditions. Among these, quenching of triplet chlorophylls by neighboring carotenoids (Cars) is fundamental in preventing the formation of singlet oxygen. Cars are able to accept the triplets from chlorophylls by triplet energy transfer (TET). We have here studied TET rates in CP29, a minor light-harvesting complex (LHC) of the Photosystem II in plants. A fully atomistic strategy combining classical molecular dynamics of the LHC in its natural environment with a hybrid time-dependent density functional theory/polarizable MM description of the TET is used. We find that the structural fluctuations of the pigment-protein complex can largely enhance the transfer rates with respect to those predicted using the crystal structure, reducing the triplet quenching times in the subnanosecond scale. These findings add a new perspective for the interpretation of the photoprotection function and its relation with structural motions of the LHC.

  15. Some physiological aspects of nitrate reductase-deficient Nicotiana plumbaginifolia plants

    International Nuclear Information System (INIS)

    Saux, C.; Morot-Gaudry, J.F.; Lemoine, Y.; Caboche, M.

    1986-01-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv. Viviani) mutants were found to be defective in the nitrate reductase apoprotein (NR - nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild type Nicotiana tabacum. The grafts of NR - plants were found to contain less malate but more amino acids, sugars and starch than the wild type. Moreover they were chlorotic, with a slight increase of the proportion of LH Chl a/b protein complexes and they exhibited a lowering of the efficiency of energy transfer between the light-harvesting complexes and the active centers. After 14 CO 2 pulse and chase experiments. The total 14 C incorporation of the mutant leaves was approximately 20% of that of the control. The NR - leaves mainly accumulated 14 C in the whole intermediates of the Calvin-cycle and in sucrose. In the most deficient NR leaves, chloroplasts were stuffed with large starch inclusions disorganizing the lamellar system

  16. Some physiological aspects of nitrate reductase-deficient Nicotiana plumbaginifolia plants

    Energy Technology Data Exchange (ETDEWEB)

    Saux, C.; Morot-Gaudry, J.F.; Lemoine, Y.; Caboche, M.

    1986-04-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv. Viviani) mutants were found to be defective in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild type Nicotiana tabacum. The grafts of NR/sup -/ plants were found to contain less malate but more amino acids, sugars and starch than the wild type. Moreover they were chlorotic, with a slight increase of the proportion of LH Chl a/b protein complexes and they exhibited a lowering of the efficiency of energy transfer between the light-harvesting complexes and the active centers. After /sup 14/CO/sub 2/ pulse and chase experiments. The total /sup 14/C incorporation of the mutant leaves was approximately 20% of that of the control. The NR/sup -/ leaves mainly accumulated /sup 14/C in the whole intermediates of the Calvin-cycle and in sucrose. In the most deficient NR leaves, chloroplasts were stuffed with large starch inclusions disorganizing the lamellar system.

  17. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-06-01

    Full Text Available Plant–parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  18. Experimental study of the combined utilization of nuclear power heating plants for big towns and industrial complexes

    International Nuclear Information System (INIS)

    Neumann, J.; Barabas, K.

    1977-01-01

    The paper describes a comparison of nuclear power heating plants with an output corresponding to 1000MW(e) with plants of the same output using coal or oil. The economic aspects are compared, both as regards investment and operation costs. The comparison of the environmental aspects is performed on the atmospheric pollution from exhausts and gaseous emission and on the thermal pollutions in hydrosphere and atmosphere. Basic nuclear power plant schemes with two PWRs, each of 1500MW(th), are described. The plant supplies electric power and heat for factories and municipal heating systems (apartments, shops, and other auxiliary municipal facilities). At the same time the basic heat-flow diagram of a nuclear power heating plant is given, together with the relative losses. The study emphasizes the possible utilization of waste heat for heating glasshouses of 200m 2 . The problems of utilizing waste heat, and the needs of a big town and of industrial complexes in the vicinity of the nuclear power heating plant are also considered. (author)

  19. Complexity of plant volatile-mediated interactions beyond the third trophic level

    NARCIS (Netherlands)

    Poelman, E.H.; Kos, M.

    2016-01-01

    Food chains of plant-associated communities typically reach beyond three trophic levels. The predators and parasitoids in the third trophic level are under attack by top predators or parasitised by hyperparasitoids. These higher trophic level organisms respond to plant volatiles in search of their

  20. The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi

    NARCIS (Netherlands)

    Bolton, M.D.; Thomma, B.P.H.J.

    2008-01-01

    Plant pathogens secrete effector molecules that contribute to the establishment of disease in their plant hosts. The identification of cellular cues that regulate effector gene expression is an important aspect of understanding the infection process. Nutritional status in the cell has been

  1. [Importance of competition for pollination in formation of the entomophylous plants complex structure].

    Science.gov (United States)

    Dlusskiĭ, G M

    2013-01-01

    Many species of entomophylous plants have a wide range of pollinators, and the same insects visit flowers of many plants. The competition for pollination leads to decreasing in seed production of competing species. However, there exists a variety of adaptations that allow plants to reduce the intensity of competition. A comparative analysis of pollinators spectra has allowed to designate groups (subcomplexes) of plants with regard to dominance of various groups of pollinators: myiophylous (flies from the superfamily Muscomorha dominate), syphidophylous (flies from the family Syrphidae dominate), psychophylous (butterflies dominate), cantharophylous (beetles dominate), nonspecialized and specialized melittophylous (Apidae, mainly bumblebees, dominate). The belonging of plants to a specific subcomplex is defined mainly by the structure of flowers and inflorescences. Modes of mechanical and attractive isolation are discussed that lead to restriction of pollinators composition. Competition abatement between species with similar spectra of pollinators and belonging to the same subcomplex is achieved mainly by spatial (ecological) and temporal (different timing of flowering) isolation.

  2. Assessing organizational culture in complex sociotechnical systems. Methodological evidence from studies in nuclear power plant maintenance organizations

    International Nuclear Information System (INIS)

    Reiman, T.

    2007-03-01

    Failures in industrial organizations dealing with hazardous technologies can have widespread consequences for the safety of the workers and the general population. Psychology can have a major role in contributing to the safe and reliable operation of these technologies. Most current models of safety management in complex sociotechnical systems such as nuclear power plant maintenance are either non-contextual or based on an overly-rational image of an organization. Thus, they fail to grasp either the actual requirements of the work or the socially-constructed nature of the work in question. The general aim of the present study is to develop and test a methodology for contextual assessment of organizational culture in complex sociotechnical systems. This is done by demonstrating the findings that the application of the emerging methodology produces in the domain of maintenance of a nuclear power plant (NPP). The concepts of organizational culture and organizational core task (OCT) are operationalized and tested in the case studies

  3. Assessing organizational culture in complex sociotechnical systems. Methodological evidence from studies in nuclear power plant maintenance organizations

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, T.

    2007-03-15

    Failures in industrial organizations dealing with hazardous technologies can have widespread consequences for the safety of the workers and the general population. Psychology can have a major role in contributing to the safe and reliable operation of these technologies. Most current models of safety management in complex sociotechnical systems such as nuclear power plant maintenance are either non-contextual or based on an overly-rational image of an organization. Thus, they fail to grasp either the actual requirements of the work or the socially-constructed nature of the work in question. The general aim of the present study is to develop and test a methodology for contextual assessment of organizational culture in complex sociotechnical systems. This is done by demonstrating the findings that the application of the emerging methodology produces in the domain of maintenance of a nuclear power plant (NPP). The concepts of organizational culture and organizational core task (OCT) are operationalized and tested in the case studies

  4. The center for plant and microbial complex carbohydrates at the University of Georgia Complex Carbohydrate Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Albersheim, P.; Darvill, A.

    1991-08-01

    Research from the Complex Carbohydrates Research Center at the University of Georgia is presented. Topics include: Structural determination of soybean isoflavones which specifically induce Bradyrhizobium japonicum nodD1 but not the nodYABCSUIJ operon; structural analysis of the lipopolysaccharides (LPSs) from symbiotic mutants of Bradyrhizobium japonicum; structural characterization of lipooligosaccharides from Bradyrhizobium japonicum that are required for the specific nodulation of soybean; structural characterization of the LPSs from R. Leguminosarum biovar phaseoli, the symbiont of bean; characterization of bacteroid-specific LPS epitopes in R. leguminosarum biovar viciae; analysis of the surface polysaccharides of Rhizobium meliloti mutants whose lipopolysaccharides and extracellular polysaccharides can have the same function in symbiosis; characterization of a polysaccharide produced by certain Bradyrhizobium japonicum strains within soybean nodules; structural analysis of a streptococcal adhesin polysaccharide receptor; conformational studies of xyloglucan, the role of the fucosylated side chain in surface-specific cellulose-xyloglucan interactions; the structure of an acylated glucosamine oligosaccharide signal molecule (nod factor) involved in the symbiosis of Rhizobium leguminosarum biovar viciae with its host Vicia sativa; investigating membrane responses induced by oligogalacturonides in cultured cells; the polygalacturonase inhibitor protein; characterization of the self-incompatability glycoproteins from Petunia hybrida; investigation of the cell wall polysaccharide structures of Arabidopsis thaliana; and the glucan inhibition of virus infection of tabacco.

  5. Involvement of lipid-protein complexes in plant-microorganism interactions

    Directory of Open Access Journals (Sweden)

    Blein Jean-Pierre

    2002-01-01

    Full Text Available Increasing concerns about the environmental impact of modern agricultural have prompted research for alternate practices to pesticide treatments, notably using plant defense mechanisms. Thus, isolation and characterization of plant defense elicitors have been the main step of studies in many groups. Moreover, in the global concept of interactions between organisms and their environment, a major concern is to discriminate recognition between exogenous and endogenous signals, notably during pathogenic or allergenic interactions involving small proteins, such as elicitins or lipid transfer proteins (LTPs. Elicitins and lipid transfer proteins (LTP are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defense mechanisms, the biological function of LTPs is still an enigma. They are ubiquitous plant proteins able to load and transfer hydrophobic molecules such as fatty acids or phospholipids. Among them, LTPs1 (type 1 lipid transfer proteins constitute a multigenic family of secreted plant lipid binding proteins that are constitutively expressed in specific tissues and/or induced in response to biotic and abiotic stress (for reviews [1-4]. Their biological function is still unknown, even if some data provide arguments for a role of these proteins in the assembly of extracellular hydrophobic polymers (i.e., cutin and suberin [2, 4] and/or in plant defense against fungal pathogens [1, 3]. Beside their involvement in plant defense, LTPs1 are also known to be pan-allergens of plant-derived foods [5]. Finally, the discovery of the sterol carrier-properties of elicitins has opened new perspectives dealing with the relationship between this function and the elicitor activity of these small cystein-rich proteins. Nevertheless, this elicitor activity is restrained to few plant species, and thus does not appear in accordance with a universal lipid transfer

  6. Model-Based Approach to the Evaluation of Task Complexity in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ham, Dong Han

    2007-02-01

    This study developed a model-based method for evaluating task complexity and examined the ways of evaluating the complexity of tasks designed for abnormal situations and daily task situations in NPPs. The main results of this study can be summarised as follows. First, this study developed a conceptual framework for studying complexity factors and a model of complexity factors that classifies complexity factors according to the types of knowledge that human operators use. Second, this study developed a more practical model of task complexity factors and identified twenty-one complexity factors based on the model. The model emphasizes that a task is a system to be designed and its complexity has several dimensions. Third, we developed a method of identifying task complexity factors and evaluating task complexity qualitatively based on the developed model of task complexity factors. This method can be widely used in various task situations. Fourth, this study examined the applicability of TACOM to abnormal situations and daily task situations, such as maintenance and confirmed that it can be reasonably used in those situations. Fifth, we developed application examples to demonstrate the use of the theoretical results of this study. Lastly, this study reinterpreted well-know principles for designing information displays in NPPs in terms of task complexity and suggested a way of evaluating the conceptual design of displays in an analytical way by using the concept of task complexity. All of the results of this study will be used as a basis when evaluating the complexity of tasks designed on procedures or information displays and designing ways of improving human performance in NPPs

  7. Novel aspects of chlorophyll a/b-binding proteins

    NARCIS (Netherlands)

    Bassi, Roberto; Sandonà, Dorianna; Croce, Roberta

    1997-01-01

    The light-harvesting proteins (LHC) constitute a multigene family including, in higher plants, at least 12 members whose location, within the photosynthetic membrane, relative abundance and putative function appear to be very different. The major light-harvesting complex of photosystem II (LHCII) is

  8. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Thomas [NUKEM Technologies GmbH, Alzenau (Germany); NUKEM Technologies GmbH, Slavutich (Ukraine)

    2009-07-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  9. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    International Nuclear Information System (INIS)

    Pietsch, Thomas

    2009-01-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  10. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity

    Science.gov (United States)

    Hertzog, Lionel R.; Meyer, Sebastian T.; Weisser, Wolfgang W.; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  11. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    Science.gov (United States)

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  12. Search path of a fossorial herbivore, Geomys bursarius, foraging in structurally complex plant communities

    Science.gov (United States)

    Andersen, Douglas C.

    1990-01-01

    The influence of habitat patchiness and unpalatable plants on the search path of the plains pocket gopher (Geomys bursarius) was examined in outdoor enclosures. Separate experiments were used to evaluate how individual animals explored (by tunnel excavation) enclosures free of plants except for one or more dense patches of a palatable plant (Daucus carota), a dense patch of an unpalatable species (Pastinaca sativa) containing a few palatable plants (D. carota), or a relatively sparse mixture of palatable (D. carota) and unpalatable (Raphanus sativus) species. Only two of eight individuals tested showed the predicted pattern of concentrating search effort in patches of palatable plants. The maintenance of relatively high levels of effort in less profitable sites may reflect the security afforded food resources by the solitary social system and fossorial lifestyle of G. bursarius. Unpalatable plants repelled animals under some conditions, but search paths in the sparsely planted mixed-species treatment suggest animals can use visual or other cues to orient excavations. Evidence supporting area-restricted search was weak. More information about the use of visual cues by G. bursarius and the influence of experience on individual search mode is needed for refining current models of foraging behavior in this species.

  13. SUMO-, MAPK- and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity

    NARCIS (Netherlands)

    Burg, van den H.A.; Takken, F.L.W.

    2010-01-01

    Upon pathogen perception plant innate immune receptors activate various signaling pathways that trigger host defenses. PAMP-triggered defense signaling requires mitogen-activated protein kinase (MAPK) pathways, which modulate the activity of transcription factors through phosphorylation. Here, we

  14. SUMO-, MAPK-, and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity

    NARCIS (Netherlands)

    van den Burg, H.A.; Takken, F.L.W.

    2010-01-01

    Upon pathogen perception plant innate immune receptors activate various signaling pathways that trigger host defenses. PAMP-triggered defense signaling requires mitogen-activated protein kinase (MAPK) pathways, which modulate the activity of transcription factors through phosphorylation. Here, we

  15. Advances in Multi-Sensor Scanning and Visualization of Complex Plants: the Utmost Case of a Reactor Building

    Science.gov (United States)

    Hullo, J.-F.; Thibault, G.; Boucheny, C.

    2015-02-01

    In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".

  16. MODELING OF OPERATION MODES OF SHIP POWER PLANT OF COMBINED PROPULSION COMPLEX WITH CONTROL SYSTEM BASED ON ELECTRONIC CONTROLLERS

    Directory of Open Access Journals (Sweden)

    E. A. Yushkov

    2016-12-01

    Full Text Available Purpose. Designing of diagrams to optimize mathematic model of the ship power plant (SPP combined propulsion complexes (CPC for decreasing operational loss and increasing fuel efficiency with simultaneous load limiting on medium revolutions diesel generator (MRDG by criterion reducing of wear and increasing operation time between repairs. Methodology. After analyzing of ship power plant modes of CPC proposed diagrams to optimize mathematic model of the above mentioned complex. The model based on using of electronic controllers in automatic regulation and control systems for diesel and thruster which allow to actualize more complicated control algorithm with viewpoint of increasing working efficiency of ship power plant at normal and emergency modes. Results. Determined suitability of comparative computer modeling in MatLab Simulink for building of imitation model objects based on it block diagrams and mathematic descriptions. Actualized diagrams to optimize mathematic model of the ship’s power plant (SPP combined propulsion complexes (CPC with Azipod system in MatLab Simulink software package Ships_CPC for decreasing operational loss and increasing fuel efficiency with simultaneous load limiting on medium revolutions diesel generator (MRDG by criterion reducing of wear and increasing operation time between repairs. The function blocks of proposed complex are the main structural units which allow to investigate it normal and emergency modes. Originality. This model represents a set of functional blocks of the components SPP CPC, built on the principle of «input-output». For example, the function boxes outputs of PID-regulators of MRDG depends from set excitation voltage and rotating frequency that in turn depends from power-station load and respond that is a ship moving or dynamically positioning, and come on input (inputs of thruster rotating frequency PID-regulator models. Practical value. The results of researches planned to use in

  17. Clarification of complex phenomena in nuclear plants present status and future trend of fluid analysis by cellular automaton methods

    International Nuclear Information System (INIS)

    Kato, Yasuyoshi

    1999-01-01

    Since most of complex phenomena comprise of various elementary processes e.g., fluid flow, heat conduction, phase transition, chemical reaction, structural deformation, and these processes interact each other nonlinearly, the complex phenomena cannot be easily clarified by such the conventional topdown approaches as describe phenomena by using differential equations. In contrast to the topdown approaches where the differential equations are located at the top of the analysis procedures, these are bottomup approaches where phenomena are reproduced by local interaction of particles on cells. Cellular automata are one of the typical bottomup approaches. The basic principle, computer simulation results, and massively parallel processors for the cellular automata are reviewed and perspectives of the bottomup approach are discussed on clarification of the complex phenomena in nuclear plants. The computer simulations mainly deal with fluid flows and phase interfacial phenomena. (author)

  18. Ruthenium nitrosyl complexes in radioactive waste solutions in reprocessing plants. Pt. 3

    International Nuclear Information System (INIS)

    Blasius, E.; Mueller, K.

    1984-01-01

    With capillary isotachophoresis and free-flow isotachophoresis it is possible to separate and isolate preparatively the mononuclear cationic ruthenium nitrosyl nitrato complexes. The behaviour of these complexes during storage, concentration and calcination is studied: The conversion of six ruthenium nitrosyl nitrato complexes as a function of time is studied at -36 0 C, 0 0 C, +3 0 C and 100 0 C. The percentage of ruthenium nitrosyl complexes with NO 3 - as ligand increased markedly during concentration experiments. Above 250 0 C NOsub(x) is liberated and the colour of the residue changes from brown to brownish-grey. At 400 0 C ruthenium complexes are no longer detected and the inner walls of the apparatus are covered with RuO 2 . (orig.)

  19. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation.

    Science.gov (United States)

    Zhang, Xiaoyang; Rogowski, Artur; Zhao, Lei; Hahn, Michael G; Avci, Utku; Knox, J Paul; Gilbert, Harry J

    2014-01-24

    Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.

  20. Construction and comparison of gene co-expression networks shows complex plant immune responses

    Directory of Open Access Journals (Sweden)

    Luis Guillermo Leal

    2014-10-01

    Full Text Available Gene co-expression networks (GCNs are graphic representations that depict the coordinated transcription of genes in response to certain stimuli. GCNs provide functional annotations of genes whose function is unknown and are further used in studies of translational functional genomics among species. In this work, a methodology for the reconstruction and comparison of GCNs is presented. This approach was applied using gene expression data that were obtained from immunity experiments in Arabidopsis thaliana, rice, soybean, tomato and cassava. After the evaluation of diverse similarity metrics for the GCN reconstruction, we recommended the mutual information coefficient measurement and a clustering coefficient-based method for similarity threshold selection. To compare GCNs, we proposed a multivariate approach based on the Principal Component Analysis (PCA. Branches of plant immunity that were exemplified by each experiment were analyzed in conjunction with the PCA results, suggesting both the robustness and the dynamic nature of the cellular responses. The dynamic of molecular plant responses produced networks with different characteristics that are differentiable using our methodology. The comparison of GCNs from plant pathosystems, showed that in response to similar pathogens plants could activate conserved signaling pathways. The results confirmed that the closeness of GCNs projected on the principal component space is an indicative of similarity among GCNs. This also can be used to understand global patterns of events triggered during plant immune responses.

  1. Systemic delivery of siRNA in pumpkin by a plant PHLOEM SMALL RNA-BINDING PROTEIN 1-ribonucleoprotein complex.

    Science.gov (United States)

    Ham, Byung-Kook; Li, Gang; Jia, Weitao; Leary, Julie A; Lucas, William J

    2014-11-01

    In plants, the vascular system, specifically the phloem, functions in delivery of small RNA (sRNA) to exert epigenetic control over developmental and defense-related processes. Although the importance of systemic sRNA delivery has been established, information is currently lacking concerning the nature of the protein machinery involved in this process. Here, we show that a PHLOEM SMALL-RNA BINDING PROTEIN 1 (PSRP1) serves as the basis for formation of an sRNA ribonucleoprotein complex (sRNPC) that delivers sRNA (primarily 24 nt) to sink organs. Assembly of this complex is facilitated through PSRP1 phosphorylation by a phloem-localized protein kinase, PSRPK1. During long-distance transport, PSRP1-sRNPC is stable against phloem phosphatase activity. Within target tissues, phosphatase activity results in disassembly of PSRP1-sRNPC, a process that is probably required for unloading cargo sRNA into surrounding cells. These findings provide an insight into the mechanism involved in delivery of sRNA associated with systemic gene silencing in plants. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  2. Terpyridine and Quaterpyridine Complexes as Sensitizers for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Davide Saccone

    2016-02-01

    Full Text Available Terpyridine and quaterpyridine-based complexes allow wide light harvesting of the solar spectrum. Terpyridines, with respect to bipyridines, allow for achieving metal-complexes with lower band gaps in the metal-to-ligand transition (MLCT, thus providing a better absorption at lower energy wavelengths resulting in an enhancement of the solar light-harvesting ability. Despite the wider absorption of the first tricarboxylate terpyridyl ligand-based complex, Black Dye (BD, dye-sensitized solar cell (DSC performances are lower if compared with N719 or other optimized bipyridine-based complexes. To further improve BD performances several modifications have been carried out in recent years affecting each component of the complexes: terpyridines have been replaced by quaterpyridines; other metals were used instead of ruthenium, and thiocyanates have been replaced by different pinchers in order to achieve cyclometalated or heteroleptic complexes. The review provides a summary on design strategies, main synthetic routes, optical and photovoltaic properties of terpyridine and quaterpyridine ligands applied to photovoltaic, and focuses on n-type DSCs.

  3. Lipids and pigment-protein complexes of photosynthetic apparatus of Deschampsia antarctica Desv. plants under UV-B radiation

    Directory of Open Access Journals (Sweden)

    Svietlova N. B.

    2012-01-01

    Full Text Available Aim. To investigate structural and functional modifications of major components of photosynthetic membranes of endemic antarctic species D. antarctica under UV-B radiation. Methods. For quantitative determination of photosynthetic membrane components we used Arnon’s method (for chlorophylls and carotenoids; separation of carotenoids was carried out by Merzlyak’s method; polar lipids were isolated by Zill and Harmon method in modification of Yakovenko and Mihno; glycolipids separation and identification we carried out by Yamamoto method; and sulfoquinovosyl diacylglycerol content was determined by Kean method. The separation, disintegration and determination of pigment-protein complexes of chloroplasts were carried out by Anderson method. Authenticity of differences between the mean arithmetic values of indices was set after the Student criterion. Differences were considered as reliable at p 0.05. Results. We determined structural and functional changes in lipids, carotenoids and pigment-protein complexes at the photosyntetic apparatus level in D. antarctica plants under UV-B radiation. Conclusions. Adaptation of D. antarctica plants to UV-B radiation is accompanied by a cascade of physiological and biochemical rearrangements at the level of photosynthetic apparatus, manifested as the changes in pigment, lipid and pigment-protein complexes content

  4. The Interiors Plant Shutdown: Using Dialectic Inquiry in a Complex Ethical Decision

    Science.gov (United States)

    Lenaghan, Janet; Smith, Charles

    2004-01-01

    The experiential exercise presented here, using a dialectic process similar to that found within Strategic Assumption Surfacing and Testing (SAST), developed by Mason and Mitroff, offers graduate and undergraduate management students the opportunity to study a contemporary ethical problem in a new way. The ethical issues of a plant closedown…

  5. Exocytosis and polarity in plant cells: insights by studying cellulose synthase complexes and the exocyst

    NARCIS (Netherlands)

    Ying Zhang, Ying

    2012-01-01

    The work presented in this thesis covers aspects of exocytosis, plant cell growth and cell wall formation. These processes are strongly linked as cell growth and cell wall formation occur simultaneously and exocytosis is the process that delivers cell wall components to the existing cell wall

  6. Complex inheritance of larval adaptation in Plutella xylostella to a novel host plant

    NARCIS (Netherlands)

    Henniges-Janssen, K.; Reineke, A.; Heckel, D.G.; Groot, A.T.

    2011-01-01

    Studying the genetics of host shifts and range expansions in phytophagous insects contributes to our understanding of the evolution of host plant adaptation. We investigated the recent host range expansion to pea, in the pea-adapted strain (P-strain) of the crucifer-specialist diamondback moth,

  7. Agent-based Integration of Complex and Heterogeneous Distributed Energy Resources in Virtual Power Plants

    DEFF Research Database (Denmark)

    Clausen, Anders; Umair, Aisha; Demazeau, Yves

    2017-01-01

    A Virtual Power Plant aggregates several Distributed Energy Resources in order to expose them as a single, controllable entity. This enables smaller Distributed Energy Resources to take part in Demand Response programs which traditionally only targeted larger consumers. To date, models for Virtual...

  8. Polyphenol-aluminum complex formation: Implications for aluminum tolerance in plants

    Science.gov (United States)

    Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al3+ and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and ...

  9. RNase MRP RNA and RNase P activity in plants are associated with a Pop1p containing complex.

    Science.gov (United States)

    Krehan, Mario; Heubeck, Christian; Menzel, Nicolas; Seibel, Peter; Schön, Astrid

    2012-09-01

    RNase P processes the 5'-end of tRNAs. An essential catalytic RNA has been demonstrated in Bacteria, Archaea and the nuclei of most eukaryotes; an organism-specific number of proteins complement the holoenzyme. Nuclear RNase P from yeast and humans is well understood and contains an RNA, similar to the sister enzyme RNase MRP. In contrast, no protein subunits have yet been identified in the plant enzymes, and the presence of a nucleic acid in RNase P is still enigmatic. We have thus set out to identify and characterize the subunits of these enzymes in two plant model systems. Expression of the two known Arabidopsis MRP RNA genes in vivo was verified. The first wheat MRP RNA sequences are presented, leading to improved structure models for plant MRP RNAs. A novel mRNA encoding the central RNase P/MRP protein Pop1p was identified in Arabidopsis, suggesting the expression of distinct protein variants from this gene in vivo. Pop1p-specific antibodies precipitate RNase P activity and MRP RNAs from wheat extracts. Our results provide evidence that in plants, Pop1p is associated with MRP RNAs and with the catalytic subunit of RNase P, either separately or in a single large complex.

  10. Towards Plant Species Identification in Complex Samples: A Bioinformatics Pipeline for the Identification of Novel Nuclear Barcode Candidates.

    Directory of Open Access Journals (Sweden)

    Alexandre Angers-Loustau

    Full Text Available Monitoring of the food chain to fight fraud and protect consumer health relies on the availability of methods to correctly identify the species present in samples, for which DNA barcoding is a promising candidate. The nuclear genome is a rich potential source of barcode targets, but has been relatively unexploited until now. Here, we show the development and use of a bioinformatics pipeline that processes available genome sequences to automatically screen large numbers of input candidates, identifies novel nuclear barcode targets and designs associated primer pairs, according to a specific set of requirements. We applied this pipeline to identify novel barcodes for plant species, a kingdom for which the currently available solutions are known to be insufficient. We tested one of the identified primer pairs and show its capability to correctly identify the plant species in simple and complex samples, validating the output of our approach.

  11. 1170-MW(t) HTGR-PS/C plant application study report: Geismar, Louisiana refinery/chemical complex application

    International Nuclear Information System (INIS)

    McMain, A.T. Jr.; Stanley, J.D.

    1981-05-01

    This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to an industrial complex at Geismar, Louisiana. This study compares the HTGR with coal and oil as process plant fuels. This study uses a previous broad energy alternative study by the Stone and Webster Corporation on refinery and chemical plant needs in the Gulf States Utilities service area. The HTGR-PS/C was developed by General Atomic (GA) specifically for industries which require both steam and electric energy. The GA 1170-MW(t) HTGR-PC/C design is particularly well suited to industrial applications and is expected to have excellent cost benefits over other energy sources

  12. Land-use history affects understorey plant species distributions in a large temperate-forest complex, Denmark

    DEFF Research Database (Denmark)

    Svenning, J.-C.; Baktoft, Karen H.; Balslev, Henrik

    2009-01-01

    In Europe, forests have been strongly influenced by human land-use for millennia. Here, we studied the importance of anthropogenic historical factors as determinants of understorey species distributions in a 967 ha Danish forest complex using 156 randomly placed 100-m2 plots, 15 environmental, 9...... dispersal and a strong literature record as ancient-forest species, were still concentrated in areas that were high forest in 1805. Among the younger forests, there were clear floristic differences between those on reclaimed bogs and those not. Apparently remnant populations of wet-soil plants were still...

  13. Design and implementation of the control system for nuclear plant VVER-1000. Instrumentation (program technical complexes)

    International Nuclear Information System (INIS)

    Siora, A.; Tokarev, V.; Bakhmach, E.

    2004-01-01

    Program-technical complexes (PTC) are designed as control and protection systems in water-moderated atomic reactors, including emergency and preventive systems, automatic control, unloading, reactor capacity limitation and accelerated preventive protection systems. Utilization of programmable logic integrated circuits from world leading manufacturers makes the complexes simple in structure, compact, with low energy demands and mutually independent for key and supporting functions The results of PTC assessment and implementation in Ukraine are outlined. Opportunities for a future development of RADIJ company in the area of control and protection systems for VVER reactors are also discussed

  14. Study on how to evaluate the effectiveness of maintenance activities for giant complex plant system

    International Nuclear Information System (INIS)

    Aoki, Takayuki

    2010-01-01

    If we try to check the effectiveness of maintenance activities in nuclear power plant, it is necessary to evaluate plant performance from the viewpoint of nuclear safety and economy. So, in this paper, after the relation among maintenance optimization, maintenance performance targets, maintenance effectiveness indicator and maintenance key parameters important to nuclear safety and economy was made clear, a method to evaluate the effectiveness of maintenance activities was discussed. As a result of consideration, it was concluded that the maintenance effectiveness indicator proposed in this paper can evaluate maintenance effectiveness and can show the direction of improving existing maintenance program because the relation with maintenance performance target and maintenance key parameters is clear. (author)

  15. Site layout and balance of plant design for an accelerator-driven materials processing complex

    Energy Technology Data Exchange (ETDEWEB)

    Cunliffe, J.; Taussig, R.; Ghose, S. [Bechtel Corporation, San Francisco, CA (United States)] [and others

    1995-10-01

    High energy proton beam accelerators are under consideration for use in radioisotope production, surplus weapons material destruction, radioactive waste transmutation, and thorium-based energy conversion cycles. While there are unique aspects to each of these applications that must be accommodated in the design of the associated facility, all share a set of fundamental characteristics that in large measure dictate the site layout features and many balance-of-plant (BOP) design requirements found to be common to all. This paper defines these key design determinants and goes on to discuss the manner in which they have been accommodated in the pre-conceptual design for a particular materials production application. An estimate of the costs associated with this BOP design is also presented with the aim of guiding future evaluations where the basic plant designs are similar to that of this specific case.

  16. On analgesic and narcotic plants: Pliny and his Greek sources, the history of a complex graft.

    Science.gov (United States)

    Bonet, Valérie

    2014-01-01

    Grafting is an important concept in the study of Pliny the Elder, who is a compiler of written sources. We intend to examine how this grafting works in Pliny's discussion of analgesic and narcotic plants, especially the most famous: opium poppy, henbane, mandrake, and hound's berry. We will study Pliny's use of Greek sources and ask how he took up his predecessors' works while integrating the changes that took place during the centuries in the diagnosis and treatment of pain. This cultural graft remains elusive because we do not have access to all of Pliny's Greek sources. When Pliny speaks about these plants, he sometimes copies out information, adding or removing details, and occasionally makes significant mistakes. The graft was particularly difficult in this case because these analgesic plants were considered so special and poisonous that they were sometimes rejected or even condemned. Nevertheless, we can say that this cultural graft succeeded, despite some obstacles, because Pliny assimilated and adapted these old Greek materials to his own time, society, and project.

  17. History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S., Fluor Daniel Hanford

    1997-02-18

    The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

  18. Simulation modeling and analysis of a complex system of a thermal power plant

    Directory of Open Access Journals (Sweden)

    Sorabh Gupta

    2009-09-01

    Full Text Available The present paper deals with the opportunities for the modeling of flue gas and air system of a thermal power plant by making the performance evaluation using probabilistic approach. The present system of thermal plant under study consists of four subsystems with three possible states: full working, reduced capacity working and failed. Failure and repair rates for all the subsystems are assumed to be constant. Formulation of the problem is carried out using Markov Birth-Death process using probabilistic approach and a transition diagram represents the operational behavior of the system. Interrelationship among the full working and reduced working has been developed. A probabilistic model has been developed, considering some assumptions. Data in feasible range are selected from a survey of thermal plant and the effect of each subsystem on the system availability is tabulated in the form of availability matrices, which provides various performance/availability levels for different combinations of failure and repair rates of all subsystems. Based upon various availability values obtained in availability matrices and graphs of failure/repair rates of different subsystems, performance and optimum values of failure/repair rates for maximum availability, of each subsystem is analyzed and then maintenance priorities are decided for all subsystems.

  19. Universal Plant DNA Barcode Loci May Not Work in Complex Groups: A Case Study with Indian Berberis Species

    Science.gov (United States)

    Roy, Sribash; Tyagi, Antariksh; Shukla, Virendra; Kumar, Anil; Singh, Uma M.; Chaudhary, Lal Babu; Datt, Bhaskar; Bag, Sumit K.; Singh, Pradhyumna K.; Nair, Narayanan K.; Husain, Tariq; Tuli, Rakesh

    2010-01-01

    Background The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI). In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task. Methodology and Principal Findings We investigated the species discriminatory power of four reportedly most promising plant DNA barcoding loci (one from nuclear genome- ITS, and three from plastid genome- trnH-psbA, rbcL and matK) in species of Indian Berberis L. (Berberidaceae) and two other genera, Ficus L. (Moraceae) and Gossypium L. (Malvaceae). Berberis species were delineated using morphological characters. These characters resulted in a well resolved species tree. Applying both nucleotide distance and nucleotide character-based approaches, we found that none of the loci, either singly or in combinations, could discriminate the species of Berberis. ITS resolved all the tested species of Ficus and Gossypium and trnH-psbA resolved 82% of the tested species in Ficus. The highly regarded matK and rbcL could not resolve all the species. Finally, we employed amplified fragment length polymorphism test in species of Berberis to determine their relationships. Using ten primer pair combinations in AFLP, the data demonstrated incomplete species resolution. Further, AFLP analysis showed that there was a tendency of the Berberis accessions to cluster according to their geographic origin rather than species affiliation. Conclusions/Significance We reconfirm the earlier reports that the concept of universal barcode in plants may not work in a number of genera. Our results also suggest that the matK and rbcL, recommended as universal barcode loci for plants, may not work in all the genera of land plants. Morphological, geographical and molecular data analyses of Indian species of Berberis suggest probable reticulate evolution and thus barcode markers may

  20. Universal plant DNA barcode loci may not work in complex groups: a case study with Indian berberis species.

    Directory of Open Access Journals (Sweden)

    Sribash Roy

    Full Text Available BACKGROUND: The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI. In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the species discriminatory power of four reportedly most promising plant DNA barcoding loci (one from nuclear genome--ITS, and three from plastid genome--trnH-psbA, rbcL and matK in species of Indian Berberis L. (Berberidaceae and two other genera, Ficus L. (Moraceae and Gossypium L. (Malvaceae. Berberis species were delineated using morphological characters. These characters resulted in a well resolved species tree. Applying both nucleotide distance and nucleotide character-based approaches, we found that none of the loci, either singly or in combinations, could discriminate the species of Berberis. ITS resolved all the tested species of Ficus and Gossypium and trnH-psbA resolved 82% of the tested species in Ficus. The highly regarded matK and rbcL could not resolve all the species. Finally, we employed amplified fragment length polymorphism test in species of Berberis to determine their relationships. Using ten primer pair combinations in AFLP, the data demonstrated incomplete species resolution. Further, AFLP analysis showed that there was a tendency of the Berberis accessions to cluster according to their geographic origin rather than species affiliation. CONCLUSIONS/SIGNIFICANCE: We reconfirm the earlier reports that the concept of universal barcode in plants may not work in a number of genera. Our results also suggest that the matK and rbcL, recommended as universal barcode loci for plants, may not work in all the genera of land plants. Morphological, geographical and molecular data analyses of Indian species of Berberis suggest probable reticulate evolution and thus