WorldWideScience

Sample records for plant hydrogen generation

  1. Hanford Waste Vitrification Plant hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K. [and others

    1996-02-01

    The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H{sub 2}. CO{sub 2}, N{sub 2}0, NO, and NH{sub 3}. For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H{sub 2}, CO, CO{sub 2}, N{sub 2}, N{sub 2}O and NO.

  2. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  3. Investment in hydrogen tri-generation for wastewater treatment plants under uncertainties

    Science.gov (United States)

    Gharieh, Kaveh; Jafari, Mohsen A.; Guo, Qizhong

    2015-11-01

    In this article, we present a compound real option model for investment in hydrogen tri-generation and onsite hydrogen dispensing systems for a wastewater treatment plant under price and market uncertainties. The ultimate objective is to determine optimal timing and investment thresholds to exercise initial and subsequent options such that the total savings are maximized. Initial option includes investment in a 1.4 (MW) Molten Carbonate Fuel Cell (MCFC) fed by mixture of waste biogas from anaerobic digestion and natural gas, along with auxiliary equipment. Produced hydrogen in MCFC via internal reforming, is recovered from the exhaust gas stream using Pressure Swing Adsorption (PSA) purification technology. Therefore the expansion option includes investment in hydrogen compression, storage and dispensing (CSD) systems which creates additional revenue by selling hydrogen onsite in retail price. This work extends current state of investment modeling within the context of hydrogen tri-generation by considering: (i) Modular investment plan for hydrogen tri-generation and dispensing systems, (ii) Multiple sources of uncertainties along with more realistic probability distributions, (iii) Optimal operation of hydrogen tri-generation is considered, which results in realistic saving estimation.

  4. Study of hydrogen generation plant coupled to high temperature gas cooled reactor

    Science.gov (United States)

    Brown, Nicholas Robert

    Hydrogen generation using a high temperature nuclear reactor as a thermal driving vector is a promising future option for energy carrier production. In this scheme, the heat from the nuclear reactor drives an endothermic water-splitting plant, via coupling, through an intermediate heat exchanger. While both high temperature nuclear reactors and hydrogen generation plants have high individual degrees of development, study of the coupled plant is lacking. Particularly absent are considerations of the transient behavior of the coupled plant, as well as studies of the safety of the overall plant. The aim of this document is to contribute knowledge to the effort of nuclear hydrogen generation. In particular, this study regards identification of safety issues in the coupled plant and the transient modeling of some leading candidates for implementation in the Nuclear Hydrogen Initiative (NHI). The Sulfur Iodine (SI) and Hybrid Sulfur (HyS) cycles are considered as candidate hydrogen generation schemes. Several thermodynamically derived chemical reaction chamber models are coupled to a well-known reference design of a high temperature nuclear reactor. These chemical reaction chamber models have several dimensions of validation, including detailed steady state flowsheets, integrated loop test data, and bench scale chemical kinetics. Eight unique case studies are performed based on a thorough literature review of possible events. The case studies are: (1) feed flow failure from one section of the chemical plant to another, (2) product flow failure (recycle) within the chemical plant, (3) rupture or explosion within the chemical plant, (4) nuclear reactor helium inlet overcooling due to a process holding tank failure, (5) helium inlet overcooling as an anticipated transient without SCRAM, (6) total failure of the chemical plant, (7) parametric study of the temperature in an individual reaction chamber, and (8) control rod insertion in the nuclear reactor. Various parametric

  5. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    Science.gov (United States)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  6. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner.

    Science.gov (United States)

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2(•-)). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2(•-) in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA.

  7. Experimental Hydrogen Plant with Metal Hydrides to Store and Generate Electrical Power

    Science.gov (United States)

    Gonzatti, Frank; Nizolli, Vinícius; Ferrigolo, Fredi Zancan; Farret, Felix Alberto; de Mello, Marcos Augusto Silva

    2016-02-01

    Generation of electrical energy with renewable sources is interruptible due to the primary energy characteristics (sun, wind, hydro, etc.). In these cases, it is necessary to use energy storage so increasing penetrability of these sources connected to the distribution system. This paper discusses in details some equipment and accessories of an integrated power plant using fuel cell stack, electrolyzer and metal hydrides. During the plant operation were collected the power consumption data and established the efficiency of each plant component. These data demonstrated an overall efficiency of about 11% due to the low efficiencies of the commercial electrolyzers and power inverters used in the experiments.

  8. Hanford waste vitrification plant hydrogen generation study: Preliminary evaluation of alternatives to formic acid

    Energy Technology Data Exchange (ETDEWEB)

    King, R.B.; Bhattacharyya, N.K.; Kumar, V.

    1996-02-01

    Oxalic, glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids as well as glycine have been evaluated as possible substitutes for formic acid in the preparation of feed for the Hanford waste vitrification plant using a non-radioactive feed stimulant UGA-12M1 containing substantial amounts of aluminum and iron oxides as well as nitrate and nitrite at 90C in the presence of hydrated rhodium trichloride. Unlike formic acid none of these carboxylic acids liberate hydrogen under these conditions and only malonic and citric acids form ammonia. Glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids all appear to have significant reducing properties under the reaction conditions of interest as indicated by the observation of appreciable amounts of N{sub 2}O as a reduction product of,nitrite or, less likely, nitrate at 90C. Glyoxylic, pyruvic, and malonic acids all appear to be unstable towards decarboxylation at 90C in the presence of Al(OH){sub 3}. Among the carboxylic acids investigated in this study the {alpha}-hydroxycarboxylic acids glycolic and lactic acids appear to be the most interesting potential substitutes for formic acid in the feed preparation for the vitrification plant because of their failure to produce hydrogen or ammonia or to undergo decarboxylation under the reaction conditions although they exhibit some reducing properties in feed stimulant experiments.

  9. Hydrogen Generation From Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steven Cohen; Stephen Porter; Oscar Chow; David Henderson

    2009-03-06

    today that perform in a range of efficiencies, >95%, that are suitable for the overall operational goals. The balance of plant scales well both operationally and in terms of cost becoming a smaller portion of the overall cost equation as the systems get larger. Capital cost reduction of the cell stack power supplies is achievable by modifying the system configuration to have the cell stacks in electrical series driving up the DC bus voltage, thereby allowing the use of large-scale DC power supply technologies. The single power supply approach reduces cost. Elements of the cell stack cost reduction and efficiency improvement work performed in the early stage of the program is being continued in subsequent DOE sponsored programs and through internal investment by Proton. The results of the trade study of the 100 kg H2/day system have established a conceptual platform for design and development of a next generation electrolyzer for Proton. The advancements started by this program have the possibility of being realized in systems for the developing fueling markets in 2010 period.

  10. Electrochemical Hydrogen Peroxide Generator

    Science.gov (United States)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  11. A LOPA application to the hydrogen cooling system of the main electric generator of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Flavia M.; Frutuoso e Melo, Paulo Fernando Ferreira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)]. E-mails: flaviamvasconcelos@gmail.com; frutuoso@con.ufrj.br; Saldanha, P.L. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Reatores]. E-mail: saldanha@cnen.gov.br

    2008-07-01

    The Layer of Protection Analysis (LOPA) is a powerful analytical tool for assessing the adequacy of protection layers used to mitigate risks in a process plant. LOPA applies semi-quantitative measures to evaluate the frequency of potential incidents and the probability of failure of protection layers. This paper presents an application of the Layer of Protection Analysis technique to a nuclear power plant in order to evaluate the cooling system of an electric generator, so as to identify scenarios that might lead to a plant shutdown. Next, the frequencies of occurrence of these events and the probability of failure on demand of the independent protection layers are determined. Here a difficulty is related to the lack of failure and initiating event data. The consequences identified are listed as impact events and are classified as to their severity level. The initiating causes are listed for each impact event and the likelihood is estimated for each initiating cause. Independent Protection Layers (ILPs) are listed. The mitigated event likelihood is studied and additional ILPs can be evaluated and added to reduce the risk. As a conclusion, LOPA demonstrated that the hydrogen inner-cooling electric generator system is in compliance with the risk scenarios adopted for this study. Some suggestions were made in order to automate some manual actions to increase the system reliability. (author)

  12. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  13. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Telander, M.R.; Westerman, R.E. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1997-03-01

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  14. Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman

    2007-06-01

    The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

  15. 钢铁厂制氢方法的比较及选用%Comparison and Selection of Hydrogen Generation Methods for Steel Plants

    Institute of Scientific and Technical Information of China (English)

    朱晓莉

    2014-01-01

    介绍了钢铁厂几种制氢方法的比较和选取,分析了各种制氢方法的特点和适用范围,提出工程设计中应考虑的一些因素来选择制氢方案,并提出最佳制氢方案。%Comparison and selection of several hydrogen generation methods for steel plants are introduced, the characteristics and applicable range of the hydrogen generation methods are analyzed, some factors influencing the selection to be considered in project design are presented and the best hydrogen generation plan is forwarded.

  16. Hydrogen embrittlement in power plant steels

    Indian Academy of Sciences (India)

    R K Dayal; N Parvathavarthini

    2003-06-01

    In power plants, several major components such as steam generator tubes, boilers, steam/water pipe lines, water box of condensers and the other auxiliary components like bolts, nuts, screws fasteners and supporting assemblies are commonly fabricated from plain carbon steels, as well as low and high alloy steels. These components often fail catastrophically due to hydrogen embrittlement. A brief overview of our current understanding of the phenomenon of such hydrogen damage in steels is presented in this paper. Case histories of failures of steel components due to hydrogen embrittlement, which are reported in literature, are briefly discussed. A phenomenological assessment of overall process of hydrogen embrittlement and classification of the various damage modes are summarized. Influence of several physical and metallurgical variables on the susceptibility of steels to hydrogen embrittlement, mechanisms of hydrogen embrittlement and current approaches to combat this problem are also presented.

  17. Theoretical Design of a Thermosyphon for Efficient Process Heat Removal from Next Generation Nuclear Plant (NGNP) for Production of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Fred Gunnerson; Akira Tokuhiro; Vivek Utgiker; Kevan Weaver; Steven Sherman

    2007-10-01

    The work reported here is the preliminary analysis of two-phase Thermosyphon heat transfer performance with various alkali metals. Thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are required to transfer heat from the NGNP to the hydrogen plant in the most efficient way possible. The production of power at higher efficiency using Brayton Cycle, and hydrogen production requires both heat at higher temperatures (up to 1000oC) and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. The purpose for selecting a compact heat exchanger is to maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. The IHX design requirements are governed by the allowable temperature drop between the outlet of the NGNP (900oC, based on the current capabilities of NGNP), and the temperatures in the hydrogen production plant. Spiral Heat Exchangers (SHE’s) have superior heat transfer characteristics, and are less susceptible to fouling. Further, heat losses to surroundings are minimized because of its compact configuration. SHEs have never been examined for phase-change heat transfer applications. The research presented provides useful information for thermosyphon design and Spiral Heat Exchanger.

  18. Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Elias Stefanakos; Burton Krakow; Jonathan Mbah

    2007-07-31

    IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

  19. Hydrogen generation from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Loges, Bjoern

    2009-09-04

    In this thesis, the hydrogen generation by dehydrogenation of 2-propanol and formic acid as model substances for renewable resources have been studied, which is of importance for hydrogen storage. For the base-assisted dehydrogenation of 2-propanol, a ruthenium diamine catalyst system has been investigated. For the selective decomposition of formic acid to hydrogen and carbon dioxide, a system has been established containing ruthenium catalysts and formic acid amine adducts as substrates. The best catalyst activity and productivity have been achieved with in situ generated ruthenium phosphine catalysts, e.g. [RuCl{sub 2}(benzene)]{sub 2} / dppe (TOF = 900 h{sup -1}, TON = 260,000). The gas evolved has been directly used in fuel cells. Furthermore, the influence of irradiation with visible light has been described for the ruthenium phosphine catalysts. (orig.)

  20. Design of pilot-scale solar photocatalytic reactor for the generation of hydrogen from alkaline sulfide wastewater of sewage treatment plant.

    Science.gov (United States)

    Priya, R; Kanmani, S

    2013-01-01

    Experiments were conducted for photocatalytic generation of renewable fuel hydrogen from sulphide wastewater from the sewage treatment plant. In this study, pilot-scale solar photocatalytic reactor was designed for treating 1 m3 of sulphide wastewater and also for the simultaneous generation of hydrogen. Bench-scale studies were conducted both in the batch recycle and continuous modes under solar irradiation at similar experimental conditions. The maximum of 89.7% conversion was achieved in the continuous mode. The length of the pilot-scale solar photocatalytic reactor was arrived using the design parameters such as volumetric flow rate (Q) (11 x 10(-2) m3/s), inlet concentration of sulphide ion (C(in)) (28 mol/m3), conversion (89.7%) and average mass flow destruction rate (3.488 x 10(-6) mol/m2 s). The treatment cost of the process was estimated to be 6 US$/m3. This process would be suitable for India like sub-tropical country where sunlight is abundantly available throughout the year.

  1. Hydrogen Generation Via Fuel Reforming

    Science.gov (United States)

    Krebs, John F.

    2003-07-01

    Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

  2. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    Science.gov (United States)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  3. Hydrogen generation in tru waste transportation packages

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B; Sheaffer, M K; Fischer, L E

    2000-03-27

    This document addresses hydrogen generation in TRU waste transportation packages. The potential sources of hydrogen generation are summarized with a special emphasis on radiolysis. After defining various TRU wastes according to groupings of material types, bounding radiolytic G-values are established for each waste type. Analytical methodologies are developed for prediction of hydrogen gas concentrations for various packaging configurations in which hydrogen generation is due to radiolysis. Representative examples are presented to illustrate how analytical procedures can be used to estimate the hydrogen concentration as a function of time. Methodologies and examples are also provided to show how the time to reach a flammable hydrogen concentration in the innermost confinement layer can be estimated. Finally, general guidelines for limiting the hydrogen generation in the payload and hydrogen accumulation in the innermost confinement layer are described.

  4. Next Generation Plant Breeding

    NARCIS (Netherlands)

    Goud, J.C.

    2012-01-01

    Van 11-14 november 2012 vond in de Reehorst de conferentie ‘Next Generation Plant Breeding’ plaats. Tijdens deze bijeenkomst kwamen de grote uitdagingen van de toekomstige plantenveredeling aan de orde: de opkomst van nieuwe sequencing-technieken, de bijbehorende enorme hoeveelheid gegevens die gepr

  5. Next Generation Plant Breeding

    NARCIS (Netherlands)

    Goud, J.C.

    2012-01-01

    Van 11-14 november 2012 vond in de Reehorst de conferentie ‘Next Generation Plant Breeding’ plaats. Tijdens deze bijeenkomst kwamen de grote uitdagingen van de toekomstige plantenveredeling aan de orde: de opkomst van nieuwe sequencing-technieken, de bijbehorende enorme hoeveelheid gegevens die

  6. Next Generation Plant Breeding

    NARCIS (Netherlands)

    Goud, J.C.

    2012-01-01

    Van 11-14 november 2012 vond in de Reehorst de conferentie ‘Next Generation Plant Breeding’ plaats. Tijdens deze bijeenkomst kwamen de grote uitdagingen van de toekomstige plantenveredeling aan de orde: de opkomst van nieuwe sequencing-technieken, de bijbehorende enorme hoeveelheid gegevens die gepr

  7. Differential generation of hydrogen peroxide upon exposure to zinc and cadmium in the hyperaccumulating plant specie (Sedum alfredii Hance)*

    Science.gov (United States)

    Chao, Yue-en; Zhang, Min; Tian, Sheng-ke; Lu, Ling-li; Yang, Xiao-e

    2008-01-01

    Sedum alfredii Hance has been identified as zinc (Zn) and cadmium (Cd) co-hyperaccumulator. In this paper the relationships of Zn or Cd hyperaccumulation to the generation and the role of H2O2 in Sedum alfredii H. were examined. The results show that Zn and Cd contents in the shoots of Sedum alfredii H. treated with 1000 μmol/L Zn2+ and/or 200 μmol/L Cd2+ increased linearly within 15 d. Contents of total S, glutathione (GSH) and H2O2 in shoots also increased within 15 d, and then decreased. Total S and GSH contents in shoots were higher under Cd2+ treatment than under Zn2+ treatment. However, reverse trends of H2O2 content in shoots were obtained, in which much higher H2O2 content was observed in Zn2+-treated shoots than in Cd2+-treated shoots. Similarly, the microscopic imaging of H2O2 accumulation in leaves using H2O2 probe technique showed that much higher H2O2 accumulation was observed in the Zn2+-treated leaf than in the Cd2+-treated one. These results suggest that there are different responses in the generation of H2O2 upon exposure to Zn2+ and Cd2+ for the hyperaccumulator Sedum alfredii H. And this is the first report that the generation of H2O2 may play an important role in Zn hyperaccumulation in the leaves. Our results also imply that GSH may play an important role in the detoxification of dissociated Zn/Cd and the generation of H2O2. PMID:18357627

  8. Differential generation of hydrogen peroxide upon exposure to zinc and cadmium in the hyperaccumulating plant species (Sedum alfredii Hance).

    Science.gov (United States)

    Chao, Yue-en; Zhang, Min; Tian, Sheng-ke; Lu, Ling-li; Yang, Xiao-e

    2008-03-01

    Sedum alfredii Hance has been identified as zinc (Zn) and cadmium (Cd) co-hyperaccumulator. In this paper the relationships of Zn or Cd hyperaccumulation to the generation and the role of H2O2 in Sedum alfredii H. were examined. The results show that Zn and Cd contents in the shoots of Sedum alfredii H. treated with 1000 micromol/L Zn2+ and/or 200 micromol/L Cd2+ increased linearly within 15 d. Contents of total S, glutathione (GSH) and H2O2 in shoots also increased within 15 d, and then decreased. Total S and GSH contents in shoots were higher under Cd2+ treatment than under Zn2+ treatment. However, reverse trends of H2O2 content in shoots were obtained, in which much higher H2O2 content was observed in Zn2+-treated shoots than in Cd2+-treated shoots. Similarly, the microscopic imaging of H2O2 accumulation in leaves using H2O2 probe technique showed that much higher H2O2 accumulation was observed in the Zn2+-treated leaf than in the Cd2+-treated one. These results suggest that there are different responses in the generation of H2O2 upon exposure to Zn2+ and Cd2+ for the hyperaccumulator Sedum alfredii H. And this is the first report that the generation of H2O2 may play an important role in Zn hyperaccumulation in the leaves. Our results also imply that GSH may play an important role in the detoxification of dissociated Zn/Cd and the generation of H2O2.

  9. GEOTHERMAL POWER GENERATION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  10. Geothermal Power Generation Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  11. Room temperature micro-hydrogen-generator

    Science.gov (United States)

    Gervasio, Don; Tasic, Sonja; Zenhausern, Frederic

    A new compact and cost-effective hydrogen-gas generator has been made that is well suited for supplying hydrogen to a fuel-cell for providing base electrical power to hand-carried appliances. This hydrogen-generator operates at room temperature, ambient pressure and is orientation-independent. The hydrogen-gas is generated by the heterogeneous catalytic hydrolysis of aqueous alkaline borohydride solution as it flows into a micro-reactor. This reactor has a membrane as one wall. Using the membrane keeps the liquid in the reactor, but allows the hydrogen-gas to pass out of the reactor to a fuel-cell anode. Aqueous alkaline 30 wt% borohydride solution is safe and promotes long application life, because this solution is non-toxic, non-flammable, and is a high energy-density (≥2200 W-h per liter or per kilogram) hydrogen-storage solution. The hydrogen is released from this storage-solution only when it passes over the solid catalyst surface in the reactor, so controlling the flow of the solution over the catalyst controls the rate of hydrogen-gas generation. This allows hydrogen generation to be matched to hydrogen consumption in the fuel-cell, so there is virtually no free hydrogen-gas during power generation. A hydrogen-generator scaled for a system to provide about 10 W electrical power is described here. However, the technology is expected to be scalable for systems providing power spanning from 1 W to kW levels.

  12. Solar Thermochemical Hydrogen Production Plant Design

    OpenAIRE

    Littlefield, Jesse

    2012-01-01

    A plant was designed that uses a solar sulfur-ammonia thermochemical water-splitting cycle for the production of hydrogen. Hydrogen is useful as a fuel for stationary and mobile fuel cells. The chemical process simulator Aspen Plus® was used to model the plant and conduct simulations. The process utilizes the electrolytic oxidation of aqueous ammonium sulfite in the hydrogen production half cycle and the thermal decomposition of molten potassium pyrosulfate and gaseous sulfur trioxide in t...

  13. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  14. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  15. Nuclear driven water decomposition plant for hydrogen production

    Science.gov (United States)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  16. Hydrogen energy demonstration plant in Patagonia: Description and safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Aprea, Jose Luis [CNEA (Argentine Atomic Energy Commission), AAH, IRAM, Comahue University, CC 805, 8300 Neuquen (Argentina)

    2009-05-15

    Hydrogen safety issues and especially hydrogen hazard's address are key points to remove any safety-related barrier in the implementation process of hydrogen energy systems. Demonstrative systems based on hydrogen technologies represent a clear contribution to the task of showing the feasibility of the new technologies and their beneficial capabilities among the public. In this paper, the safety features of the first hydrogen energy demonstrative plant conceived in Latin America are analyzed. The facilities, located in the village of Pico Truncado, Patagonia, Argentina, serve to gain day-to-day experience in the production, storage, distribution, conversion and use of hydrogen in several applications. The plant uses electrolysis to generate pure hydrogen from renewable primary sources, taking advantage of the installed wind power capacity that is continually growing in the region. The installations were designed to accomplish with two primary objectives: total safety assurance and minimization of human errors. Some details of the plant, including a general layout, are presented here, in addition with design criteria, hydrogen hazards, structural precautions, gas monitoring system, existing regulations and safety requirements. (author)

  17. Hydrogen Generation from Plasmatron Reforming Ethanol

    Institute of Scientific and Technical Information of China (English)

    YOU Fu-bing; HU You-ping; LI Ge-sheng; GAO Xiao-hong

    2006-01-01

    Hydrogen generation through plasmatron reforming of ethanol has been carried out in a dielectric barrier discharge (DBD) reactor. The reforming of pure ethanol and mixtures of ethanol-water have been studied. The gas chromatography (GC) analysis has shown that in all conditions the reforming yield was H2, CO, CH4 and CO2 as the main products, and with little C2* . The hydrogen-rich gas can be used as fuel for gasoline engine and other applications.

  18. Existing large steam power plant upgraded for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Galanti, L.; Franzoni, A.; Traverso, A.; Massardo, A.F. [University of Genoa, Genoa (Italy)

    2011-05-15

    This paper presents and discusses the results of a complete thermoeconomic analysis of an integrated power plant for co-production of electricity and hydrogen via pyrolysis and gasification processes fed by various coals and mixture of coal and biomass, applied to an existing large steam power plant (ENEL Brindisi power plant - 660 MWe). Two different technologies for the syngas production section are considered: pyrolysis process and direct pressurized gasification. Moreover, the proximity of a hydrogen production and purification plants to an existing steam power plant favors the inter-exchange of energy streams, mainly in the form of hot water and steam, which reduces the costs of auxiliary equipment. The high quality of the hydrogen would guarantee its usability for distributed generation and for public transport. The results were obtained using WTEMP thermoeconomic software, developed by the Thermochemical Power Group of the University of Genoa, and this project has been carried out within the framework of the FISR National project 'Integrated systems for hydrogen production and utilization in distributed power generation'.

  19. Hydrogen generation from biogenic and fossil fuels by autothermal reforming

    Science.gov (United States)

    Rampe, Thomas; Heinzel, Angelika; Vogel, Bernhard

    Hydrogen generation for fuel cell systems by reforming technologies from various fuels is one of the main fields of investigation of the Fraunhofer ISE. Suitable fuels are, on the one hand, gaseous hydrocarbons like methane, propane but also, on the other hand, liquid hydrocarbons like gasoline and alcohols, e.g., ethanol as biogenic fuel. The goal is to develop compact systems for generation of hydrogen from fuel being suitable for small-scale membrane fuel cells. The most recent work is related to reforming according to the autothermal principle — fuel, air and steam is supplied to the reactor. Possible applications of such small-scale autothermal reformers are mobile systems and also miniature fuel cell as co-generation plant for decentralised electricity and heat generation. For small stand-alone systems without a connection to the natural gas grid liquid gas, a mixture of propane and butane is an appropriate fuel.

  20. Development of photovoltaic hydrogen and hypochlorite generator

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.L.; Beltran, E.D.; Meas, Y.; Ortega, R.; Orozco, G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Mexico City (Mexico)

    2010-07-15

    Sodium hypochlorite is among the most efficient methods to disinfect water. Although sodium hypochlorite can be generated from chemical reactions of chlorine gas, the transportation of chlorine is a safety concern. In-situ generation of sodium hypochlorite in an electrolysis cell is therefore desirable. This study examined the feasibility of electrolytically producing both hypochlorite and hydrogen using photovoltaic energy. Since the hydrogen can be used in fuel cells to generate electricity and the hypochlorite can be used to purify drinking water, the integrated process may be operated economically because the products from both the anode and the cathode are valuable. The apparatus used in this study was designed and constructed in such a way that the photovoltaic module was coupled to the hydrogen and hypochlorite generator. The apparatus is suitable for operation in remote areas. The rates of hydrogen and hypochlorite generation were measured and the current/voltage characteristics of both the PV module and the electrolysis cell were analyzed. The electrolytic process yielded a sodium hypochlorite solution that was stable at pH 7. This study showed that environmental conditions such as solar intensity, ambient temperature and surface temperature of the photovoltaic module have a small effect on the rate of hydrogen production. Photovoltaic cells can supply the necessary electric current and voltage to produce 5 litres of 3.5 g/l NaOCl daily when a membrane is incorporated in the cell. The quantity of sodium hypochlorite produced by membraneless electrolysis with 2 photovoltaic modules could purify water for 40 families. It was concluded that long-term testing under real operating conditions is needed in order to estimate the capital cost of the equipment. 15 refs., 8 tabs., 5 figs.

  1. 水电解制氢站工程设计中安全问题的探讨%Security Issues in Engineering Design of Hydrogen Generating Plant by Water-electrolysis

    Institute of Scientific and Technical Information of China (English)

    王振升; 王莉莉; 张琳叶; 魏光涛

    2012-01-01

    In order to avoid fire and explosion accidence in hydrogen generating plant by water-electrolysis,three security measures related engineering design were put forward,which were not involved in the current design specifications.Moreover,the implementation cost of those measures and the accident cost without those measures were analyzed and compared.Based on the current design specifications,the safety index of hydrogen generating plant was met by the implementation of such security measures in the design process,and the purpose of safe production was finally obtained.%为了最大程度避免水电解氢气站火灾、爆炸事故的发生,在现行水电解制氢站相关设计规范的基础上,提出了规范中未要求的三点工程设计安全措施,并对该类措施实施增加的投资成本与无对应安全措施所造成的事故成本进行了分析比较。在现有设计规范的基础上,通过该类安全措施使得水电解氢气站设计达到无安全隐患的指标,可最终实现安全生产的目的。

  2. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  3. 核电厂严重事故下卸压对氢气产生的影响分析%Effect of Depressurization on Hydrogen Generation During Severe Accident in PWR Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    陶俊; 李京喜; 佟立丽; 曹学武

    2011-01-01

    研究了1 000 MWe压水堆核电厂在典型的高压严重事故序列下卸压对氢气产生的影响.分析结果表明,开启1列、2列和3列卸压阀进行一回路卸压均会在堆芯熔化进程的3个阶段导致氢气产生率的明显增大:1)堆芯温度1 500~2 100 K;2)堆芯温度2 500~2 800 K;3)从形成由硬壳包容的熔融池(2 800 K)到熔融物向压力容器下封头下落.开启卸压阀的列数越多,氢气产生率的增大越明显.%The effect of depressurization on hydrogen generation during a typical high pressure severe accident sequence in a 1 000 MWe pressurized water reactor (PWR) nuclear power plant was analyzed. Analyses results indicate that the hydrogen generation rate is obviously increased by the reactor coolant system depressurization of opening one, two or three power operated relief valves (PORVs) at three core damage states.The first is peak core temperature from 1 500 K to 2 100 K. The second is peak core temperature from 2 500 K to 2 800 K. The third is from formation of molten pool supported by crust to slumping of molten materials into reactor pressure vessel lower head.The more PORVs are opened the more increment of hydrogen generation rate.

  4. Photoproduction of molecular hydrogen by a plant-algal symbiotic system

    Energy Technology Data Exchange (ETDEWEB)

    Newton, J.W.

    1976-02-13

    The rapidly growing water fern Azolla, which contains a nitrogen-fixing blue-green algal symbiont, has been studied as a possible system for photoproduction of molecular hydrogen. When this plant is grown on a combined nitrogen supply, photochemically generated hydrogen can be diverted through the algal nitrogenase system, which serves as a source of molecular hydrogen generated from water. This symbiosis has several advantages as a possible biological energy conversion system. (auth)

  5. Hydrogen Generation by Solar Photolysis of Water

    Science.gov (United States)

    Graetzel, Michael

    2004-03-01

    Prospects of near term fuel cell applications for transportation and communication have stimulated recently great interest in systems that can generate hydrogen through water cleavage by sunlight. A device that appears very promising to accomplish this goal is a tandem cell based on two superimposed photoactive layers [1]. The top layer consists of nanocrystalline oxide film absorbing the blue part of the solar spectrum and producing oxygen from water under light excitation. This is placed directly on top of a dye-sensitized nanocrystalline TiO2 film (DSC) capturing the green and red part of the solar spectrum. The voltage generated by this second photosystem enables hydrogen production to proceed without application of an external electric bias. The overall reaction corresponds to the splitting of water into hydrogen and oxygen by visible light. The maximum conversion efficiency achieved so far with these systems is about 6-7 electrode a nanocrystalline WO3 film. The use of nanoparticles for the top layer has several great advantages. They are translucent avoiding losses by light scattering and their small size is within the minority carrier diffusion length, allowing the valence band hole reaction with water at the particle surface to proceed with high efficiency. Recent work has focused on replacing the WO3 by semiconductor oxide absorbing a larger fraction of visible light than tungsten trioxide, e.g. Fe2O3.The principles and current state of this research will be briefly reviewed. Literature 1. M. Graetzel, "Photoelectrochemical Cells" Nature, 414, 332-344 (2001)

  6. Photocatalysis in Generation of Hydrogen from Water

    KAUST Repository

    Takanabe, Kazuhiro

    2015-04-18

    Solar energy can be converted by utilizing the thermal or photoelectric effects of photons. Concentrated solar power systems utilize thermal energy from the sun by either making steam and then generating power or shifting the chemical equilibrium of a reaction (e.g., water splitting or CO2 reduction) that occurs at extremely high temperatures. The photocatalytic system contains powder photocatalysts. Each photocatalyst particle should collect sufficient photons from the solar flux to cause the required multielectron reactions to occur. The band gap and band edge positions of semiconductors are the most critical parameters for assessing the suitability of photocatalysts for overall water splitting. The most important requirement when selecting photocatalyst materials is the band positions relative to hydrogen and oxygen evolution potentials. For most photocatalysts, surface modification by cocatalysts was found to be essential to achieve overall water splitting.

  7. One Step Hydrogen Generation Through Sorption Enhanced Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Jeff [Gas Technology Inst., Des Plaines, IL (United States)

    2017-08-03

    One-step hydrogen generation, using Sorption Enhanced Reforming (SER) technology, is an innovative means of providing critical energy and environmental improvements to US manufacturing processes. The Gas Technology Institute (GTI) is developing a Compact Hydrogen Generator (CHG) process, based on SER technology, which successfully integrates previously independent process steps, achieves superior energy efficiency by lowering reaction temperatures, and provides pathways to doubling energy productivity with less environmental pollution. GTI’s prior CHG process development efforts have culminated in an operational pilot plant. During the initial pilot testing, GTI identified two operating risks- 1) catalyst coating with calcium aluminate compounds, 2) limited solids handling of the sorbent. Under this contract GTI evaluated alternative materials (one catalyst and two sorbents) to mitigate both risks. The alternate catalyst met performance targets and did not experience coating with calcium aluminate compounds of any kind. The alternate sorbent materials demonstrated viable operation, with one material enabling a three-fold increase in sorbent flow. The testing also demonstrated operation at 90% of its rated capacity. Lastly, a carbon dioxide co-production study was performed to assess the advantage of the solid phase separation of carbon dioxide- inherent in the CHG process. Approximately 70% lower capital cost is achievable compared to SMR-based hydrogen production with CO2 capture, as well as improved operating costs.

  8. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  9. Double heterojunction nanowire photocatalysts for hydrogen generation

    Science.gov (United States)

    Tongying, P.; Vietmeyer, F.; Aleksiuk, D.; Ferraudi, G. J.; Krylova, G.; Kuno, M.

    2014-03-01

    Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ~434.29 +/- 27.40 μmol h-1 g-1 under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core

  10. Hydrogen peroxide-independent generation of superoxide by plant peroxidase: hypotheses and supportive data employing ferrous ion as a model stimulus

    Science.gov (United States)

    Kimura, Makoto; Umemoto, Yosuke; Kawano, Tomonori

    2014-01-01

    When plants are threaten by microbial attacks or treated with elicitors, alkalization of extracellular space is often induced and thus pH-dependent extracellular peroxidase-mediated oxidative burst reportedly takes place, especially at the site of microbial challenge. However, direct stimulus involved in activation of peroxidase-catalyzed oxidative burst has not been identified to date. Here, we would like to propose a likely role for free ferrous ion in reduction of ferric native peroxidase into ferrous enzyme intermediate which readily produces superoxide anion via mechanism involving Compound III, especially under alkaline condition, thus, possibly contributing to the plant defense mechanism. Through spectroscopic and chemiluminescence (CL) analyses of reactions catalyzed by horseradish peroxidase (HRP), the present study proposed that plant peroxidase-catalyzed production of superoxide anion can be stimulated in the absence of conventional peroxidase substrates but in the presence of free ferrous ion. PMID:25071789

  11. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study

  12. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  13. Scope for solar hydrogen power plants along Indian coasts

    Science.gov (United States)

    Hajra, Debdyut; Mukhopadhyay, Swarnav

    2016-09-01

    Energy is at the core of economic growth and development in the present day world. But relentless and unchecked use of harmful energy resources like fossil fuels (coil and oil), nuclear energy has taken a toll on mother nature. The energy coffers are being rapidly depleted and within a few years all of them will become empty, leaving nothing for the future generations to build on. Their constant usage has degraded the air quality and given way to land and water pollution. Scientists and world leaders have initiated a call for action to shift our dependence from currently popular energy sources to cleaner and renewable energy sources. Search for such energy sources have been going on for many years. Solar energy, wind energy, ocean energy, tidal energy, biofuel, etc. have caught the attention of people. Another such important which has become popular is 'Solar Hydrogen'. Many visionary scientists have called hydrogen the energy of the future. It is produced from water by direct or indirect use of sunlight in a sustainable manner. This paper discusses the current energy scenario, the importance of solar-hydrogen as a fuel and most importantly the scope for solar hydrogen power plants along Indian coastline.

  14. Biochemical Hydrogen Isotope Fractionation during Lipid Biosynthesis in Higher Plants

    Science.gov (United States)

    Kahmen, A.; Gamarra, B.; Cormier, M. A.

    2014-12-01

    Although hydrogen isotopes (δ2H) of leaf wax lipids are increasingly being applied as (paleo-) hydrological proxies, we still do not understand some of the basic processes that shape the δ2H values of these compounds. In general, it is believed that three variables shape the δ2H values of leaf wax lipids: source water δ2H values, evaporative deuterium (2H) enrichment of leaf water and the biosynthetic fractionation (ɛbio) during the synthesis of organic compounds. While the influences of source water δ2H values and leaf water evaporative 2H enrichment have been well documented, very little is known how ɛbio shapes the δ2H values of plant-derived lipids. I will present the results from recent experiments, where we show that the magnitude of ɛbio, and thus the δ2H value of plant-derived lipids, strongly depends on the carbon (C) metabolism of a plant. Specifically, I will show that plants that rely for their tissue formation on recently assimilated C have δ2H values in their n-alkanes that are up to 60‰ more negative than plants that depend for their tissue formation on stored carbohydrates. Our findings can be explained by the fact that NADPH is the primary source of hydrogen in plant lipids and that the δ2H value of NADPH differs whether NADPH was generated directly in the light reaction of photosynthesis or whether it was generated by processing stored carbohydrates. As such, the δ2H values of plant-derived lipids will directly depend on whether the tissue containing these lipids was synthesized using recent assimilates, e.g. in a C autonomous state or, if it was synthesized from stored or otherwise aquired C sources, e.g. in a not C autonomous state. Given the magnidude of this effect, our results have important implications for interpretation of plant-derived lipid δ2H values when used as (paleo-) hydrological proxies. In addition, our results suggest, that δ2H values of plant-derived lipids could be employed as a new tools to assess the C

  15. CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    Energy Technology Data Exchange (ETDEWEB)

    M. S. Sohal; J. E. O' Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

    2008-03-01

    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to

  16. Hydrogen generation from magnesium hydride by using organic acid

    Science.gov (United States)

    Ho, Yen-Hsi

    In this paper, the hydrolysis of solid magnesium hydride has been studied with the high concentration of catalyst at the varying temperature. An organic acid (acetic acid, CH3COOH) has been chosen as the catalyst. The study has three objectives: first, using three different weights of MgH 2 react with aqueous solution of acid for the hydrogen generation experiments. Secondly, utilizing acetic acid as the catalyst accelerates hydrogen generation. Third, emphasizing the combination of the three operating conditions (the weight of MgH2, the concentration of acetic acid, and the varying temperature) influence the amount of hydrogen generation. The experiments results show acetic acid truly can increase the rate of hydrogen generation and the weight of MgH2 can affect the amount of hydrogen generation more than the varying temperature.

  17. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  18. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    Science.gov (United States)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  19. Next Generation Nuclear Plant GAP Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL; Burchell, Timothy D [ORNL; Corwin, William R [ORNL; Fisher, Stephen Eugene [ORNL; Forsberg, Charles W. [Massachusetts Institute of Technology (MIT); Morris, Robert Noel [ORNL; Moses, David Lewis [ORNL

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  20. A self-regulating hydrogen generator for micro fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Moghaddam, Saeed; Pengwang, Eakkachai; Shannon, Mark A. [Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States); Masel, Richard I. [Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 213 Roger Adams Lab, 600 S. Mathews, Urbana, IL 61801 (United States)

    2008-10-15

    The ever-increasing power demands and miniaturization of portable electronics, micro-sensors and actuators, and emerging technologies such as cognitive arthropods have created a significant interest in development of micro fuel cells. One of the major challenges in development of hydrogen micro fuel cells is the fabrication and integration of auxiliary systems for generating, regulating, and delivering hydrogen gas to the membrane electrode assembly (MEA). In this paper, we report the development of a hydrogen gas generator with a micro-scale control system that does not consume any power. The hydrogen generator consists of a hydride reactor and a water reservoir, with a regulating valve separating them. The regulating valve consists of a port from the water reservoir and a movable membrane with via holes that permit water to flow from the reservoir to the hydride reactor. Water flows towards the hydride reactor, but stops within the membrane via holes due to capillary forces. Water vapor then diffuses from the via holes into the hydride reactor resulting in generation of hydrogen gas. When the rate of hydrogen consumed by the MEA is lower than the generation rate, gas pressure builds up inside the hydride reactor, deflecting the membrane, closing the water regulator valve, until the pressure drops, whereby the valve reopens. We have integrated the self-regulating micro hydrogen generator to a MEA and successfully conducted fuel cell tests under varying load conditions. (author)

  1. A self-regulating hydrogen generator for micro fuel cells

    Science.gov (United States)

    Moghaddam, Saeed; Pengwang, Eakkachai; Masel, Richard I.; Shannon, Mark A.

    The ever-increasing power demands and miniaturization of portable electronics, micro-sensors and actuators, and emerging technologies such as cognitive arthropods have created a significant interest in development of micro fuel cells. One of the major challenges in development of hydrogen micro fuel cells is the fabrication and integration of auxiliary systems for generating, regulating, and delivering hydrogen gas to the membrane electrode assembly (MEA). In this paper, we report the development of a hydrogen gas generator with a micro-scale control system that does not consume any power. The hydrogen generator consists of a hydride reactor and a water reservoir, with a regulating valve separating them. The regulating valve consists of a port from the water reservoir and a movable membrane with via holes that permit water to flow from the reservoir to the hydride reactor. Water flows towards the hydride reactor, but stops within the membrane via holes due to capillary forces. Water vapor then diffuses from the via holes into the hydride reactor resulting in generation of hydrogen gas. When the rate of hydrogen consumed by the MEA is lower than the generation rate, gas pressure builds up inside the hydride reactor, deflecting the membrane, closing the water regulator valve, until the pressure drops, whereby the valve reopens. We have integrated the self-regulating micro hydrogen generator to a MEA and successfully conducted fuel cell tests under varying load conditions.

  2. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  3. Thermochemical hydrogen generation of indium oxide thin films

    Science.gov (United States)

    Lim, Taekyung; Ju, Sanghyun

    2017-03-01

    Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD) and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  4. Efficient Electrochemical Hydrogen Peroxide Generation in Water Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical cell is proposed for the efficient generation of 3% hydrogen peroxide (H2O2) in pure water using only power, oxygen and water. H2O2 is an...

  5. Cold weather hydrogen generation system and method of operation

    Energy Technology Data Exchange (ETDEWEB)

    Dreier, Ken Wayne (Madison, CT); Kowalski, Michael Thomas (Seymour, CT); Porter, Stephen Charles (Burlington, CT); Chow, Oscar Ken (Simsbury, CT); Borland, Nicholas Paul (Montpelier, VT); Goyette, Stephen Arthur (New Hartford, CT)

    2010-12-14

    A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

  6. Cold weather hydrogen generation system and method of operation

    Science.gov (United States)

    Dreier, Ken Wayne; Kowalski, Michael Thomas; Porter, Stephen Charles; Chow, Oscar Ken; Borland, Nicholas Paul; Goyette, Stephen Arthur

    2010-12-14

    A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

  7. Low-level hydrogen peroxide generation by unbleached cotton nonwovens: implications for wound healing applications

    Science.gov (United States)

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H2O2) generation during cotton fiber development. The compon...

  8. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    Science.gov (United States)

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  9. Tritium Movement and Accumulation in the NGNP System Interface and Hydrogen Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hirofumi Ohashi; Steven R. Sherman

    2007-06-01

    Tritium movement and accumulation in a Next Generation Nuclear Plant with a hydrogen plant using a high temperature electrolysis process and a thermochemical water splitting sulfur iodine process are estimated by the numerical code THYTAN as a function of design, operational, and material parameters. Estimated tritium concentrations in the hydrogen product and in process chemicals in the hydrogen plant of the Next Generation Nuclear Plant using the high temperature electrolysis process are slightly higher than the drinking water limit defined by the U.S. Environmental Protection Agency and the limit in the effluent at the boundary of an unrestricted area of a nuclear plant as defined by the U.S. Nuclear Regulatory Commission. However, these concentrations can be reduced to within the limits through use of some designs and modified operations. Tritium concentrations in the Next Generation Nuclear Plant using the Sulfur-Iodine Process are significantly higher as calculated and are affected by parameters with large uncertainties (i.e., tritium permeability of the process heat exchanger, the hydrogen concentration in the heat transfer and process fluids, the equilibrium constant of the isotope exchange reaction between HT and H2SO4). These parameters, including tritium generation and the release rate in the reactor core, should be more accurately estimated in the near future to improve the calculations for the NGNP using the Sulfur-Iodine Process. Decreasing the tritium permeation through the heat exchanger between the primary and secondary circuits may be an an effective measure for decreasing tritium concentrations in the hydrogen product, the hydrogen plant, and the tertiary coolant.

  10. Steady-state plant model to predict hydrogen levels in power plant components

    Science.gov (United States)

    Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc

    2017-06-01

    The National Renewable Energy Laboratory (NREL) and Acciona Energy North America developed a full-plant steady-state computational model that estimates levels of hydrogen in parabolic trough power plant components. The model estimated dissolved hydrogen concentrations in the circulating heat transfer fluid (HTF), and corresponding partial pressures within each component. Additionally for collector field receivers, the model estimated hydrogen pressure in the receiver annuli. The model was developed to estimate long-term equilibrium hydrogen levels in power plant components, and to predict the benefit of hydrogen mitigation strategies for commercial power plants. Specifically, the model predicted reductions in hydrogen levels within the circulating HTF that result from purging hydrogen from the power plant expansion tanks at a specified target rate. Our model predicted hydrogen partial pressures from 8.3 mbar to 9.6 mbar in the power plant components when no mitigation treatment was employed at the expansion tanks. Hydrogen pressures in the receiver annuli were 8.3 to 8.4 mbar. When hydrogen partial pressure was reduced to 0.001 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.001 mbar to 0.02 mbar. When hydrogen partial pressure was reduced to 0.3 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.25 mbar to 0.28 mbar. Our results show that controlling hydrogen partial pressure in the expansion tanks allows us to reduce and maintain hydrogen pressures in the receiver annuli to any practical level.

  11. The Next Generation Nuclear Plant (NGNP) Project

    Energy Technology Data Exchange (ETDEWEB)

    F. H. Southworth; P. E. MacDonald

    2003-11-01

    The Next Generation Nuclear Power (NGNP) Project will demonstrate emissions-free nuclearassisted electricity and hydrogen production by 2015. The NGNP reactor will be a helium-cooled, graphite moderated, thermal neutron spectrum reactor with a design goal outlet temperature of 1000 C or higher. The reactor thermal power and core configuration will be designed to assure passive decay heat removal without fuel damage during hypothetical accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. This paper provides a description of the project to build the NGNP at the Idaho National Engineering and Environmental Laboratory (INEEL). The NGNP Project includes an overall reactor design activity and four major supporting activities: materials selection and qualification, NRC licensing and regulatory support, fuel development and qualification, and the hydrogen production plant. Each of these activities is discussed in the paper. All the reactor design and construction activities will be managed under the DOE’s project management system as outlined in DOE Order 413.3. The key elements of the overall project management system discussed in this paper include the client and project management organization relationship, critical decisions (CDs), acquisition strategy, and the project logic and timeline. The major activities associated with the materials program include development of a plan for managing the selection and qualification of all component materials required for the NGNP; identification of specific materials alternatives for each system component; evaluation of the needed testing, code work, and analysis required to qualify each identified material; preliminary selection of component materials; irradiation of needed sample materials; physical, mechanical, and chemical testing of unirradiated and irradiated materials; and documentation of final materials selections. The NGNP will be licensed by the NRC under 10 CFR 50 or 10

  12. Hydrogen generation at ambient conditions: application in fuel cells.

    Science.gov (United States)

    Boddien, Albert; Loges, Björn; Junge, Henrik; Beller, Matthias

    2008-01-01

    The efficient generation of hydrogen from formic acid/amine adducts at ambient temperature is demonstrated. The highest catalytic activity (TOF up to 3630 h(-1) after 20 min) was observed in the presence of in situ generated ruthenium phosphine catalysts. Compared to the previously known methods to generate hydrogen from liquid feedstocks, the systems presented here can be operated at room temperature without the need for any high-temperature reforming processes, and the hydrogen produced can then be directly used in fuel cells. A variety of Ru precursors and phosphine ligands were investigated for the decomposition of formic acid/amine adducts. These catalytic systems are particularly interesting for the generation of H2 for new applications in portable electric devices.

  13. Hydrogen generation via anaerobic fermentation of paper mill wastes.

    Science.gov (United States)

    Valdez-Vazquez, Idania; Sparling, Richard; Risbey, Derek; Rinderknecht-Seijas, Noemi; Poggi-Varaldo, Héctor M

    2005-11-01

    The objective of this work was to determine the hydrogen production from paper mill wastes using microbial consortia of solid substrate anaerobic digesters. Inocula from mesophilic, continuous solid substrate anaerobic digestion (SSAD) reactors were transferred to small lab scale, batch reactors. Milled paper (used as a surrogate paper waste) was added as substrate and acetylene or 2-bromoethanesulfonate (BES) was spiked for methanogenesis inhibition. In the first phase of experiments it was found that acetylene at 1% v/v in the headspace was as effective as BES in inhibiting methanogenic activity. Hydrogen gas accumulated in the headspace of the bottles, reaching a plateau. Similar final hydrogen concentrations were obtained for reactors spiked with acetylene and BES. In the second phase of tests the headspace of the batch reactors was flushed with nitrogen gas after the first plateau of hydrogen was reached, and subsequently incubated, with no further addition of inhibitor nor substrate. It was found that hydrogen production resumed and reached a second plateau, although somewhat lower than the first one. This procedure was repeated a third time and an additional amount of hydrogen was obtained. The plateaux and initial rates of hydrogen accumulation decreased in each subsequent incubation cycle. The total cumulative hydrogen harvested in the three cycles was much higher (approx. double) than in the first cycle alone. We coined this procedure as IV-SSAH (intermittently vented solid substrate anaerobic hydrogen generation). Our results point out to a feasible strategy for obtaining higher hydrogen yields from the fermentation of industrial solid wastes, and a possible combination of waste treatment processes consisting of a first stage IV-SSAH followed by a second SSAD stage. Useful products of this approach would be hydrogen, organic acids or methane, and anaerobic digestates that could be used as soil amenders after post-treatment.

  14. Hydrogen generation via anaerobic fermentation of paper mill wastes

    Energy Technology Data Exchange (ETDEWEB)

    Valdez Vazquez, I.; Poggi Varaldo, H.M. [CINVESTAV-IPN, Mexico D.F. (Mexico). Dept. of Biotechnology and Bioengineering; Sparling, R.; Risbey, D. [Manitoba Univ., Winnipeg (Canada). Dept. of Microbiology; Rinderknecht Seijas, N. [ESIQUIE-IPN, Mexico D.F. (Mexico). Division Base Sciences

    2005-11-15

    The objective of this work was to determine the hydrogen production from paper mill wastes using microbial consortia of solid substrate anaerobic digesters. Inocula from mesophilic, continuous solid substrate anaerobic digestion (SSAD) reactors were transferred to small lab scale, batch reactors. Milled paper (used as a surrogate paper waste) was added as substrate and acetylene or 2-bromoethanesulfonate (BES) was spiked for methanogenesis inhibition. In the first phase of experiments it was found that acetylene at 1% v/v in the headspace was as effective as BES in inhibiting methanogenic activity. Hydrogen gas accumulated in the headspace of the bottles, reaching a plateau. Similar final hydrogen concentrations were obtained for reactors spiked with acetylene and BES. In the second phase of tests the headspace of the batch reactors was flushed with nitrogen gas after the first plateau of hydrogen was reached, and subsequently incubated, with no further addition of inhibitor nor substrate. It was found that hydrogen production resumed and reached a second plateau, although somewhat lower than the first one. This procedure was repeated a third time and an additional amount of hydrogen was obtained. The plateaux and initial rates of hydrogen accumulation decreased in each subsequent incubation cycle. The total cumulative hydrogen harvested in the three cycles was much higher (approx. double) than in the first cycle alone. We coined this procedure as IV-SSAH (intermittently vented solid substrate anaerobic hydrogen generation). Our results point out to a feasible strategy for obtaining higher hydrogen yields from the fermentation of industrial solid wastes, and a possible combination of waste treatment processes consisting of a first stage IV-SSAH followed by a second SSAD stage. Useful products of this approach would be hydrogen, organic acids or methane, and anaerobic digestates that could be used as soil amenders after post-treatment. (author)

  15. Durable pd-based alloy and hydrogen generation membrane thereof

    Science.gov (United States)

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  16. Molecular cobalt pentapyridine catalysts for generating hydrogen from water

    Science.gov (United States)

    Long, Jeffrey R; Chang, Christopher J; Sun, Yujie

    2013-11-05

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition including the moiety of the general formula. [(PY5Me.sub.2)CoL].sup.2+, where L can be H.sub.2O, OH.sup.-, a halide, alcohol, ether, amine, and the like. In embodiments of the invention, water, such as tap water or sea water can be subject to low electric potentials, with the result being, among other things, the generation of hydrogen.

  17. Development of a low cost, portable solar hydrogen generation device

    Science.gov (United States)

    Rose, Kyle; Aggarwal, M. D.; Batra, Ashok; Wingo, Dennis

    2014-10-01

    Hydrogen is a clean energy source that is environmentally friendly and safe. It is well known that electrolysis is a common method used to produce hydrogen. Other high cost methods for hydrogen production can be countered by the development of this low cost pulse width modulated circuit, using direct current provided by naturally existing solar energy as a power source. Efforts are being made in the scientific community to produce a low cost, portable, solar hydrogen generating device for a number of clean energy applications such as fuel cells and energy storage. Proof of concept has already been tested in the laboratory and a small prototype system is being designed and fabricated in the workshop at Alabama A&M University. Our results of this study and details of the electronic circuit and the prototype are presented.

  18. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    Energy Technology Data Exchange (ETDEWEB)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  19. Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths.

    Science.gov (United States)

    Safioui, Jassem; Leo, François; Kuyken, Bart; Gorza, Simon-Pierre; Selvaraja, Shankar Kumar; Baets, Roel; Emplit, Philippe; Roelkens, Gunther; Massar, Serge

    2014-02-10

    We report supercontinuum (SC) generation centered on the telecommunication C-band (1550 nm) in CMOS compatible hydrogenated amorphous silicon waveguides. A broadening of more than 550 nm is obtained in 1cm long waveguides of different widths using as pump picosecond pulses with on chip peak power as low as 4 W.

  20. DWPF CATALYTIC HYDROGEN GENERATION PROGRAM - REVIEW OF CURRENT STATUS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.

    2009-07-10

    Significant progress has been made in the past two years in improving the understanding of acid consumption and catalytic hydrogen generation during the Defense Waste Processing Facility (DWPF) processing of waste sludges in the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME). This report reviews issues listed in prior internal reviews, describes progress with respect to the recommendations made by the December 2006 external review panel, and presents a summary of the current understanding of catalytic hydrogen generation in the DWPF Chemical Process Cell (CPC). Noble metals, such as Pd, Rh, and Ru, are historically known catalysts for the conversion of formic acid into hydrogen and carbon dioxide. Rh, Ru, and Pd are present in the DWPF SRAT feed as by-products of thermal neutron fission of {sup 235}U in the original waste. Rhodium appears to become most active for hydrogen as the nitrite ion concentration becomes low (within a factor of ten of the Rh concentration). Prior to hydrogen generation, Rh is definitely active for nitrite destruction to N{sub 2}O and potentially active for nitrite to NO formation. These reactions are all consistent with the presence of a nitro-Rh complex catalyst, although definite proof for the existence of this complex during Savannah River Site (SRS) waste processing does not exist. Ruthenium does not appear to become active for hydrogen generation until nitrite destruction is nearly complete (perhaps less nitrite than Ru in the system). Catalytic activity of Ru during nitrite destruction is significantly lower than that of either Rh or Pd. Ru appears to start activating as Rh is deactivating from its maximum catalytic activity for hydrogen generation. The slow activation of the Ru, as inferred from the slow rate of increase in hydrogen generation that occurs after initiation, may imply that some species (perhaps Ru itself) has some bound nitrite on it. Ru, rather than Rh, is primarily responsible for the

  1. Efficiency of nuclear energy generation by hydrogen burning

    Energy Technology Data Exchange (ETDEWEB)

    Mitalas, R.

    1989-03-01

    An explicit formula for the efficiency of the PP chain energy generation in terms of the branching fractions to the three PP chains is derived and the variation of the efficiency with temperature and hydrogen abundance is illustrated. The PP chain efficiency is shown to have a minimum as a function of Y/X. The combined efficiency of simultaneous nuclear energy generation by the PP chain and the equilibrium CN cycle is then presented. 6 refs.

  2. Dealloyed Ruthenium Film Catalysts for Hydrogen Generation from Chemical Hydrides

    Directory of Open Access Journals (Sweden)

    Ramis B. Serin

    2017-07-01

    Full Text Available Thin-film ruthenium (Ru and copper (Cu binary alloys have been prepared on a Teflon™ backing layer by cosputtering of the precious and nonprecious metals, respectively. Alloys were then selectively dealloyed by sulfuric acid as an etchant, and their hydrogen generation catalysts performances were evaluated. Sputtering time and power of Cu atoms have been varied in order to tailor the hydrogen generation performances. Similarly, dealloying time and the sulfuric acid concentration have also been altered to tune the morphologies of the resulted films. A maximum hydrogen generation rate of 35 mL min−1 was achieved when Cu sputtering power and time were 200 W and 60 min and while acid concentration and dealloying time were 18 M and 90 min, respectively. It has also been demonstrated that the Ru content in the alloy after dealloying gradually increased with the increasing the sputtering power of Cu. After 90 min dealloying, the Ru to Cu ratio increased to about 190 times that of bare alloy. This is the key issue for observing higher catalytic activity. Interestingly, we have also presented template-free nanoforest-like structure formation within the context of one-step alloying and dealloying used in this study. Last but not least, the long-time hydrogen generation performances of the catalysts system have also been evaluated along 3600 min. During the first 600 min, the catalytic activity was quite stable, while about 24% of the catalytic activity decayed after 3000 min, which still makes these systems available for the development of robust catalyst systems in the area of hydrogen generation.

  3. Transportable Hydrogen Research Plant Based on Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikel Fernandez; Carlos Madina; Asier Gil de Muro [LABEIN, Parque Tecnologico, edificio 700, 48160 Derio, Bizkaia (Spain); Jose Angel Alzolab; Iker Marino; Javier Garcia-Tejedor [ROBOTIKER, Parque Tecnologico, edificio 202, 48170 Zamudio, Bizkaia, (Spain); Juan Carlos Mugica; Inaki Azkkrate; Jose Angel Alzola [INASMET, Mikeletegi Pasalekua, Parque Tecnologico, E-20009 San Sebastian, Guipuzcoa (Spain)

    2006-07-01

    Efficiency and cost are nowadays the most important barriers for the penetration of systems based on hydrogen and renewable energies. According to this background, TECNALIA Corporation has started in 2004 the HIDROTEC project: 'Hydrogen Technologies for Renewable Energy Applications'. The ultimate aim of this project is the implementation of a multipurpose demonstration and research plant in order to explore diverse options for sustainable energetic solutions based on hydrogen. The plant is conceived as an independent system that can be easily transported and assembled. Research and demonstration activities can thus be carried out at very different locations, including commercial renewable facilities. Modularity and scalability have also been taken into account for an optimised exploitation. (authors)

  4. A planar microfabricated electrolyzer for hydrogen and oxygen generation

    Science.gov (United States)

    Jiang, L.; Myer, B.; Tellefsen, K.; Pau, S.

    We present the design, fabrication and testing of a microfabricated planar reactor for the hydrogen evolution reaction (HER) using thin film Pt electrodes and polydimethylsiloxane (PDMS) fluidic chamber. The reactor is designed to separate gases by flow dynamics and reactor flow is analyzed by three-dimensional finite element analysis. The planar geometry is scalable, compact and stackable. Using KOH 28 wt% electrolyte, we have achieved a hydrogen generation density of 0.23 kg h -1 m -3 and an efficiency of 48% with a flow rate of 10 ml min -1 and cell voltage of 3 V.

  5. Initial assessment of the operability of the VHTR-HTSE nuclear hydrogen plant.

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Nuclear Engineering Division

    2007-11-01

    The generation of hydrogen from nuclear power will need to compete on three fronts: production, operability, and safety to be viable in the energy marketplace of the future. This work addresses the operability of a coupled nuclear and hydrogen-generating plant while referring to other work for progress on production and safety. Operability is a measure of how well a plant can meet time-varying production demands while remaining within equipment limits. It can be characterized in terms of the physical processes that underlie operation of the plant. In this work these include the storage and transport of energy within components as represented by time constants and energy capacitances, the relationship of reactivity to temperature, and the coordination of heat generation and work production for a near-ideal gas working fluid. Criteria for assessing operability are developed and applied to the Very High Temperature Reactor coupled to the High Temperature Steam Electrolysis process, one of two DOE/INL reference plant concepts for hydrogen production. Results of preliminary plant control and stability studies are described. A combination of inventory control in the VHTR plant and flow control in the HTSE plant proved effective for maintaining hot-side temperatures near constant during quasi-static change in hydrogen production rate. Near constant electrolyzer outlet temperature is achieved by varying electrolyzer cell area to control cell joule heating. It was found that rates of temperature change in the HTSE plant for a step change in hydrogen production rate are largely determined by the thermal characteristics of the electrolyzer. It's comparatively large thermal mass and the presence of recuperative heat exchangers result in a tight thermal coupling of HTSE components to the electrolyzer. It was found that thermal transients arising in the chemical plant are strongly damped at the reactor resulting in a stable combined plant. The large Doppler reactivity

  6. Recycling a hydrogen rich residual stream to the power and steam plant

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, P. [Instituto de Energia y Desarrollo Sustentable, CNEA, CONICET, Av. del Libertador 8250 Buenos Aires, Ciudad Autonoma de Buenos Aires (Argentina); Eliceche, A.M. [Chemical Engineering Department, Universidad Nacional del Sur, PLAPIQUI-CONICET, Camino La Carrindanga Km 7 (8000) Bahia Blanca (Argentina)

    2010-06-15

    The benefits of using a residual hydrogen rich stream as a clean combustion fuel in order to reduce Carbon dioxide emissions and cost is quantified. A residual stream containing 86% of hydrogen, coming from the top of the demethanizer column of the cryogenic separation sector of an ethylene plant, is recycled to be mixed with natural gas and burned in the boilers of the utility plant to generate high pressure steam and power. The main advantage is due to the fact that the hydrogen rich residual gas has a higher heating value and less CO{sub 2} combustion emissions than the natural gas. The residual gas flowrate to be recycled is selected optimally together with other continuous and binary operating variables. A Mixed Integer Non Linear Programming problem is formulated in GAMS to select the operating conditions to minimize life cycle CO{sub 2} emissions. (author)

  7. Marrying gas power and hydrogen energy: A catalytic system for combining methane conversion and hydrogen generation

    NARCIS (Netherlands)

    Beckers, J.; Gaudillère, C.; Farrusseng, D.; Rothenberg, G.

    2009-01-01

    Ceria-based catalysts are good candidates for integrating methane combustion and hydrogen generation. These new, tuneable catalysts are easily prepared. They are robust inorganic crystalline materials, and perform well at the 400 °C-550 °C range, in some cases even without precious metals. This make

  8. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  9. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  10. Possible optimal configurations for the ZECOMIX high efficiency zero emission hydrogen and power plant

    Energy Technology Data Exchange (ETDEWEB)

    Calabro, A.; Deiana, P.; Florini, P.; Girardi, G.; Stendardo, S. [ENEA, Rome (Italy). Italian Agency for New Technology Energy & Environment

    2008-06-15

    Coal use for electricity generation will continue growing in importance. In the present work the optimization of a high efficiency and zero emissions coal-fired plant, which produces both hydrogen and electricity, has been developed. The majority of this paper concerns an integration of gasification unit, which is characterized by coal hydrogasification and carbon dioxide (CO{sub 2}) separation, with a power island, where a high-hydrogen content syngas is burnt with pure oxygen stream. Another issue is the high temperature CO{sub 2} desorption. Because of the elevated temperature heat supply, the regeneration process affects the overall performance of ZECOMIX plant. An advanced steam cycle characterized by a medium pressure steam compressor and expander has been considered for power generation. A preliminary study of different components leads to analyze possible routes for optimization of the whole plant. The plant equipped with a CO{sub 2} capture unit could reach efficiency close to 50%. The simulations of a thermodynamic model were carried out using the software ChemCAD. This study is a part of a larger research project, named ZECOMIX, led by ENEA (Italian Research Agency for New technologies, Energy and Environment), other partners being ANSALDO and different Italian Universities. It is aimed at analyzing an integrated hydrogen and power production plant.

  11. Autotrophic denitrification using hydrogen generated from metallic iron corrosion.

    Science.gov (United States)

    Sunger, Neha; Bose, Purnendu

    2009-09-01

    Hydrogenotrophic denitrification was demonstrated using hydrogen generated from anoxic corrosion of metallic iron. For this purpose, a mixture of hydrogenated water and nitrate solution was used as reactor feed. A semi-batch reactor with nitrate loading of 2000 mg m(-3) d(-1) and hydraulic retention time (HRT) of 50 days produced effluent with nitrate concentration of 0.27 mg N L(-1) (99% nitrate removal). A continuous flow reactor with nitrate loading of 28.9 mg m(-3) d(-1) and HRT of 15.6 days produced effluent with nitrate concentration of approximately 0.025 mg N L(-1) (95% nitrate removal). In both cases, the concentration of nitrate degradation by-products, viz., ammonia and nitrite, were below detection limits. The rate of denitrification in the reactors was controlled by hydrogen availability, and hence to operate such reactors at higher nitrate loading rates and/or lower HRT than reported in the present study, hydrogen concentration in the hydrogenated water must be significantly increased.

  12. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  13. Generator cooling hydrogen purity improvement system using hydrogen absorbing alloy; Suiso kyuzo gokin riyo hatsudenkinai suiso jundo kojo system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, H.; Kabutomori, T.; Wakisaka, Y. [Japan Steel Works, Ltd., Tokyo (Japan); Nishimura, Y.; Kogi, T.; Sato, J.; Haruki, N. [Kansai Electric Power Co. Inc., Osaka (Japan); Fujita, T. [Mitsubishi Electric Corp., Tokyo (Japan)

    1998-09-15

    Described herein is a system which uses a hydrogen-absorbing alloy to purify a hydrogen gas stream used as a coolant for power generator. Hydrogen in the stream containing impurities such as nitrogen can be selectively absorbed by sufficiently cooled hydrogen-absorbing alloy. Impurity gases concentrated in the alloy pores are released, and then the alloy is heated to release hydrogen. This purifies hydrogen to at least 99.99%. This system essentially consists of an hydrogen-absorbing unit, hot water production/supply system which circulates hot water of 80 to 90degC to release hydrogen out of the alloy, pretreatment unit, and temperature and pressure sensors. It is confirmed, by the test in which the system is connected to a commercial power generator of 600MW, that the system can be continuously operated to purify hydrogen to at least 99.9% for an extended period. 4 refs., 18 figs., 1 tab.

  14. Implementation of passive autocatalytic recombiner system as a hydrogen mitigation system in Korean nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyun; Sung, Je Joong; Ha, Sang Jun [Korea Hydro and Nuclear Power Co. Ltd., Central Research Institute, Daejeon (Korea, Republic of); Yeo, In Seon [KEPCO Engineering and Construction Co. Ltd., Gyeonggi-do (Korea, Republic of)

    2015-08-15

    Ensuring the containment integrity during a severe accident in nuclear power reactor by maintaining the hydrogen concentration below an acceptable level has been recognized to be of critical importance since Three Mile Island and Fukushima Daiichi nuclear power plant accidents. Although there exist various mitigation measures for hydrogen risk, a passive autocatalytic recombiner (PAR) has been emphasized as a viable option for the mitigation of hydrogen risk under the extended station blackout conditions due to its passive operation characteristics for the hydrogen removal. To enhance the capability of hydrogen control, the hydrogen mitigation system with various types of PARs has been implemented for all nuclear power plants in Korea. This paper presents an implementation procedure of PAR system and the analysis results to determine the location and capacity of PAR in OPR1000. Various accident scenarios have been adopted considering important event sequences from a combination of probabilistic methods, deterministic methods and sound engineering judgment. A MAAP 4.0.6+ with a multi-compartment model has been used as an analysis tool with conservative hydrogen generation and removal models. The detailed analyses have been performed for selected severe accident scenarios including sensitivity analysis with/without operations of various safety systems. The possibility of global flame acceleration (FA) and deflagration-to-detonation transient (DDT) has been assessed with sigma (flame acceleration potential) and 7-lambda (DDT potential) criterion. It is concluded that the newly designed hydrogen mitigation system with twenty-four (24) PARs can effectively remove hydrogen in the containment atmosphere and prevent global FA and DDT.

  15. Generation of hydrogen from photocatalytic cleavage of water

    Energy Technology Data Exchange (ETDEWEB)

    Mallinson, R.G.; Resasco, D.E.; Lobban, L.L.; Nicholas, K.M. [Univ. of Oklahoma, Norman, OK (United States)

    1998-08-01

    This paper describes the objectives, methods and early results on the US Department of Energy sponsored project to generate hydrogen from splitting of water using photocatalysts. The approach uses organometallic photosensitizers adsorbed onto platinated titania. Platinized titania is a photocatalyst for water splitting, but does not absorb sunlight in the visible range, where most of the sun`s energy is contained. Organometallic photosensitizers are synthesized, attached to platinized titania and characterized by UV-Vis spectroscopy, cyclic voltammetry, action spectra and hydrogen generation ability. Thus far, Copper, Iron and Ruthenium catalyst systems have been produced and characterized in this manner. Suitable sensitized systems that have the desirable properties have not yet been found.

  16. Analysis and optimisation of the Zecomix high efficiency zero emission hydrogen and power plant

    Energy Technology Data Exchange (ETDEWEB)

    Antonio Calabro; Paolo Deiana; Paolo Fiorini; Stefano Stendardo; Giuseppe Girardi [ENEA - Italian Agency for New Technologies, Rome (Italy). Energy and Environment

    2005-07-01

    The paper reports the analysis and the optimization of a high efficiency and zero emissions hydrogen and power production plant. The work is part of a larger project named Zecomix, lead by ENEA, studying an integrated process which produces both hydrogen and electricity from coal. A thermodynamic model of the plant has been realized by adopting a commercial software, ChemCAD. The key element of the proposed plant is the integration of the gasification island characterized by coal hydrogasification, simultaneous steam reforming and carbon dioxide sequestration, with the power island. Crucial characteristics involve the regeneration of the CO{sub 2}-acceptor sorbent, that takes place by a calcination process. The needed heat can be supplied directly, by burning additional coal or a part of the produced syngas in the calciner reactor, or indirectly by mean of an high temperature heat exchanger situated downstream the hydrogen combustor. An advanced steam cycle has been considered for power generation consisting of an internal combustion steam cycle characterized by the presence of innovative components such as the medium pressure steam compressor and medium-pressure high-temperature expander. Possible steps for the optimization of the whole plant have been studied. The solution proposed aims also to identify the most feasible plant configuration, adopting, where possible, current technology solution. The plant could reach an energy conversion efficiency close to 54%, competitive with innovative power cycle proposed in other studies. 6 refs., 3 figs., 2 tabs.

  17. WTP Waste Feed Qualification: Hydrogen Generation Rate Measurement Apparatus Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    The generation rate of hydrogen gas in the Hanford tank waste will be measured during the qualification of the staged tank waste for processing in the Hanford Tank Waste Treatment and Immobilization Plant. Based on a review of past practices in measurement of the hydrogen generation, an apparatus to perform this measurement has been designed and tested for use during waste feed qualification. The hydrogen generation rate measurement apparatus (HGRMA) described in this document utilized a 100 milliliter sample in a continuously-purged, continuously-stirred vessel, with measurement of hydrogen concentration in the vent gas. The vessel and lid had a combined 220 milliliters of headspace. The vent gas system included a small condenser to prevent excessive evaporative losses from the sample during the test, as well as a demister and filter to prevent particle migration from the sample to the gas chromatography system. The gas chromatograph was an on line automated instrument with a large-volume sample-injection system to allow measurement of very low hydrogen concentrations. This instrument automatically sampled the vent gas from the hydrogen generation rate measurement apparatus every five minutes and performed data regression in real time. The fabrication of the hydrogen generation rate measurement apparatus was in accordance with twenty three (23) design requirements documented in the conceptual design package, as well as seven (7) required developmental activities documented in the task plan associated with this work scope. The HGRMA was initially tested for proof of concept with physical simulants, and a remote demonstration of the system was performed in the Savannah River National Laboratory Shielded Cells Mockup Facility. Final verification testing was performed using non-radioactive simulants of the Hanford tank waste. Three different simulants were tested to bound the expected rheological properties expected during waste feed qualification testing. These

  18. WTP Waste Feed Qualification: Hydrogen Generation Rate Measurement Apparatus Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    The generation rate of hydrogen gas in the Hanford tank waste will be measured during the qualification of the staged tank waste for processing in the Hanford Tank Waste Treatment and Immobilization Plant. Based on a review of past practices in measurement of the hydrogen generation, an apparatus to perform this measurement has been designed and tested for use during waste feed qualification. The hydrogen generation rate measurement apparatus described in this document and shown in Figure 0-1 utilized a 100 milliliter sample in a continuously-purged, continuously-stirred vessel, with measurement of hydrogen concentration in the vent gas. The vessel and lid had a combined 220 milliliters of headspace. The vent gas system included a small condenser to prevent excessive evaporative losses from the sample during the test, as well as a demister and filter to prevent particle migration from the sample to the gas chromatography system. The gas chromatograph was an on line automated instrument with a large-volume sample-injection system to allow measurement of very low hydrogen concentrations. This instrument automatically sampled the vent gas from the hydrogen generation rate measurement apparatus every five minutes and performed data regression in real time. The fabrication of the hydrogen generation rate measurement apparatus was in accordance with twenty three (23) design requirements documented in the conceptual design package, as well as seven (7) required developmental activities documented in the task plan associated with this work scope. The HGRMA was initially tested for proof of concept with physical simulants and a remote demonstration of the system was performed in the Savannah River National Laboratory Shielded Cells Mockup Facility. Final verification testing was performed using non-radioactive simulants of the Hanford tank waste. Three different simulants were tested to bound the expected rheological properties expected during waste feed qualification

  19. A Study of a nuclear hydrogen production demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jong Hwa and others [KAERI, Daejeon (Korea, Republic of); Bae, Ki Kwang [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Jung, Kwang Deog [Korea Institute od Science and Technology, Seoul (Korea, Republic of)

    2007-03-15

    The current energy supply system is burdened environmental and supply problems. The concept of a hydrogen economy has been actively discussed worldwide. KAERI has set up a plan to demonstrate massive production of hydrogen using a VHTR by the early 2020s. The technological gap to meet this goal was identified during the past few years. The hydrogen production process, a process heat exchanger, the efficiency of an I/S thermochemical cycle, the manufacturing of components, the analysis tools of VHTR, and a coated particle fuel are key areas that require urgent development. Candidate NHDD plant designs based on a 200 MWth VHTR core and I/S thermochemical process have been studied and some of analysis results are presented in this paper.

  20. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    Energy Technology Data Exchange (ETDEWEB)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  1. Second generation plant health clinics in Uganda

    DEFF Research Database (Denmark)

    Danielsen, Solveig; Matsiko, Frank; Mutebi, Emmanuel

    their leading role. A mismatch between institutional mandates/authority and allocated resources limited the scope of the actions both at district and national level. The plant clinics risk ‘falling between the two chairs’ of extension and pest and disease control. Finding a solid institutional base...... for the ‘orphaned’ clinics will be a major challenge. The plant clinics experienced a noteworthy revival in the study period. Wider stakeholder engagement created momentum for a new generation of the plant clinic initiative with more focus on expansion, consolidation and integration with key actors in plant health....... Ownership was strengthened and clinic management improved with stronger local leadership. It was nonetheless evident that the clinic initiative expanded in a loose and unregulated way. It was not always clear who was leading the activities and providing the overall championship to guarantee that basic...

  2. A comparison between Zecomix High Efficiency Zero Emission Plant and modern Hydrogen and Power IGCC Plants

    Energy Technology Data Exchange (ETDEWEB)

    Deiana, P.; Calabro, A.; Fiorini, P.; Stendardo, S.; Girardi, G.

    2005-07-01

    The paper reports the analysis and the comparison of two different plant concepts in the field of high efficiency and zero emissions hydrogen and power production plant. The study has been made as a part of a larger research project, named Zecomix, leaded by ENEA (Italian Research Agency for New Technologies, Energy and Environment), and aimed at studying an integrated process that produces both hydrogen and electricity from coal. A thermodynamic model of the two different plants has been set using the industrial software ChemCAD. The Zecomix plant is based on coal hydrogasification and simultaneous steam reforming and carbon dioxide sequestration. Other crucial characteristics involve high temperature sorbent regeneration. The combustion occurs with pure oxygen and high temperature steam evolves in a nonconventional advanced gas-steam turbine cycle. The considered IGCC plant is capable of producing hydrogen and power adopting current technology solutions. The plant configuration includes a pressurized oxygen blown entrained flow gasifier, syngas cleanup and decarbonization based on high pressure physical absorption, the adoption of class H gas turbine and three pressure level recovery boiler. Moreover a pressure swing adsorption unit has been considered for further hydrogen purification. The comparative analysis, based on the same coal input, underlines the differences between the two plants in terms of efficiency and performance of the single component. Moreover a simple environmental impact analysis has been considered to compare specific CO2 emissions of each alternative. (Author)

  3. Aluminum chloride for accelerating hydrogen generation from sodium borohydride

    Science.gov (United States)

    Demirci, U. B.; Akdim, O.; Miele, P.

    The present research paper reports preliminary results about the utilization of anhydrous aluminum chloride (AlCl 3) for accelerating hydrogen generation through hydrolysis of aqueous solution of sodium borohydride (NaBH 4) at 80 °C. To the best of our knowledge, AlCl 3 has never been considered for that reaction although many transition metal salts had already been assessed. AlCl 3 reactivity was compared to those of AlCl 3·6H 2O, AlF 3, CoCl 2, RuCl 3 and NiCl 2. With AlCl 3 and a NaBH 4 solution having a gravimetric hydrogen storage capacity (GHSC) of 2.9 wt.%, almost 100% hydrogen was generated in few seconds, i.e., with a hydrogen generation rate (HGR) of 354 L min -1 g -1(Al). This HGR is one of the highest rates ever reported. Higher HGRs were obtained by mixing AlCl 3 with CoCl2, RuCl 3 or NiCl 2. For example, the system RuCl 3:AlCl 3 (50:50 mass proportion) showed a HGR > 1000 L min -1 g -1(Ru:Al). The hydrolysis by-products (once dried) were identified (by XRD, IR and elemental analysis) as being Al(OH) 3, NaCl and Na 2B(OH) 4Cl and it was observed that even in situ formed Al(OH) 3 has catalytic abilities with HGRs of 5 L min -1 g -1(Al). All of these preliminary results are discussed, which concludes that AlCl 3 has a potential as accelerator for single-use NaBH 4-based storage system.

  4. Molecular metal-Oxo catalysts for generating hydrogen from water

    Science.gov (United States)

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  5. Towards numerical simulation of turbulent hydrogen combustion based on flamelet generated manifolds in OpenFOAM

    Science.gov (United States)

    Fancello, A.; Bastiaans, R. J. M.; de Goey, L. P. H.

    2013-10-01

    This work proposes an application of the Flamelet-Generated Manifolds (FGM) technique in the OpenFOAM environment. FGM is a chemical reduced method for combustion modeling. This technique treats the combustion process as the solution of a small amount of controlling variables. Regarding laminar simulation, a progress variable and enthalpy evolution can describe satisfactorily the problem. From a turbulent point of view, FGM can be applied to LES and RANS simulations, where the subgrid chemical terms are described with a β - PDF approach. These approaches apply satisfactorily in relatively simple gases, nevertheless for hydrogen are not more valid, due to preferential diffusion effects and instability of the flame structure. The overall aim of this research is to find technical solution for hydrogen gas turbines design in the next generation of Integrated Gasification Combined Cycle (IGCC) plants.

  6. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krier, James M. [Univ. of California, Berkeley, CA (United States)

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  7. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  8. A New Method for Generating Hydrogen from Water

    Institute of Scientific and Technical Information of China (English)

    MENG Qing-Bo; LI Ke-Xin; LI Hong; FAN Yu-Zun; YU Zhe-Xun; LI Dong-Mei; LUO Yan-Hong; CHEN Li-Quan

    2008-01-01

    A new method for generating hydrogen by the reaction of A1 powder with water using iodine as additive is developed. 12 can penetrate through the surface oxide layer on atuminium to form AlI3. High solubility of AlI3 in water is benefited to activate Al surface. It is found that the production of hydrogen becomes significant above 60℃ and obeys a logarithm rule. The pH value varies from 5 to 3 then back to 4.5 during the reaction,which is determined mainly by the kinetics of hydration reaction of AlI3 and the reaction of Al and HI produced spontaneously.

  9. The ZECOMIX experimental facility for hydrogen and power generation from coal

    Energy Technology Data Exchange (ETDEWEB)

    A. Calabro; P. Deiana; P. Fiorini; S. Stendardo; G. Girardi [ENEA - Italian Agency for New Technologies, Rome (Italy). Energy and Environment Energy and Plants Division

    2006-07-01

    The Zecomix project, conceived by ENEA in the framework of Italian National Hydrogen Project, is aimed at studying an integrated process that produces both hydrogen and electricity from coal, with zero emissions and very high efficiency. The Zero Emission Coal Mixed technology concept combines two different systems: the Zero Emission Coal gasification and the Zero Emission Combustion Technology based on Hydrogen-fuelled internal combustion turbine cycle. The key element is the integration of a gasification process, characterized by coal hydrogasification technology and carbon dioxide sequestration, with the power island, where an oxy-combustion occurs. The experimental facility will be realized at the ENEA Research Centre of Casaccia at about thirty kilometres from the centre of Rome. It consists of a very flexible plant, in which more components can be tested separately or connected together. The plant is provided with an atmospheric fixed bed gasifier coal and a carbonator/calcinator reactor; moreover a pressurized hydrogasifier reactor and a 100 kWe microturbine test bench are present. Other auxiliary components are a gas mixing system, for hydrogen-based syngas production, and a 200 kW steam generator. 5 refs., 5 figs., 1 tab.

  10. Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

    2001-11-06

    Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

  11. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  12. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  13. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  14. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    Science.gov (United States)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  15. In-plant material test experience under hydrogen water chemistry at a Japanese BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Masami; Koshiishi, Masato; Kato, Takahiko [Hitachi Ltd., Ibaraki (Japan). Hitachi Works; Abe, Ayumi; Sekiguchi, Masahiko; Takiguchi, Hideki

    1999-07-01

    Hydrogen injection technology has been applied to Japanese domestic aged BWR plants since 1994 to mitigate corrosive environment regarding Intergranular Stress Corrosion Cracking (IGSCC) of Reactor Internals (RINs). The Tsuruga Unit-1 plant has also been operated with this technology since 1997, considering suppression of radiation increase in the main steam piping system besides mitigation of corrosive environment in the reactor; the hydrogen injection rate in the feed water was about 0.5 ppm. In order to confirm the effects of the hydrogen injection on suppression of SCC susceptibility of the RIN materials, several in-plant material tests have been conducted using the reactor water clean up system (RWCU). Cyclic-Slow Strain Rate Tensile (C-SSRT) test, Slow Strain Rate Tensile (SSRT) test and Compact Tension (CT) test were performed in the test facilities which were installed at the sampling line from the RWCU. Evaluation of SCC life by means of the C-SSRT test was the first application as an accelerated SCC test for in-plant material tests. It was confirmed that the hydrogen injection in the feed water has a good mitigation effects on IGSCC performance of the RIN materials. Results will be discussed from a viewpoint of the test condition such as total oxidant, ECP, conductivity and loading/unloading. (author)

  16. Sum frequency generation spectroscopy study of hydrogenated stepped Si(111) surfaces made by molecular hydrogen exposure

    Science.gov (United States)

    Hien, K. T. T.; Sattar, M. A.; Miyauchi, Y.; Mizutani, G.; Rutt, H. N.

    2017-09-01

    Hydrogen adsorption on stepped Si(111) surfaces 9.5° miscut in the [ 1 ̅ 1 ̅ 2 ] direction has been investigated in situ in a UHV chamber with a base pressure of 10-8 Pa. The H-Si(111)1×1 surface was prepared by exposing the wafer to ultra-pure hydrogen gas at a pressure of 470 Pa. Termination of hydrogen on terraces and steps was observed by sum frequency generation (SFG) with several polarization combinations such as ppp, ssp, pps, spp, psp, sps, pss and sss. Here the 1st, 2nd and 3rd symbols indicate SFG, visible and IR polarizations, respectively. ppp and ssp-SFG clearly showed only two modes: the Si-H stretching vibration terrace mode at 2082 cm-1 (A) and the vertical step dihydride vibration mode at 2094 cm-1 (C1). Interesting points are the appearance of the C1 mode in contrast to the previous SFG spectrum of the H-Si(111)1×1 surface with the same miscut surface angle prepared by wet chemical etching. We suggest that the formation of step dihydride and its orientation on the Si(111) stepped surfaces depend strongly on the preparation method.

  17. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Shane E. Roark

    2006-03-31

    The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

  18. An integrated MEMS infrastructure for fuel processing: hydrogen generation and separation for portable power generation

    Science.gov (United States)

    Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.

    2007-09-01

    Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.

  19. HYDROGEN GENERATION FROM ELECTROLYSIS - REVISED FINAL TECHNICAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    IBRAHIM, SAMIR; STICHTER, MICHAEL

    2008-07-31

    DOE GO13028-0001 DESCRIPTION/ABSTRACT This report is a summary of the work performed by Teledyne Energy Systems to understand high pressure electrolysis mechanisms, investigate and address safety concerns related to high pressure electrolysis, develop methods to test components and systems of a high pressure electrolyzer, and produce design specifications for a low cost high pressure electrolysis system using lessons learned throughout the project. Included in this report are data on separator materials, electrode materials, structural cell design, and dissolved gas tests. Also included are the results of trade studies for active area, component design analysis, high pressure hydrogen/oxygen reactions, and control systems design. Several key pieces of a high pressure electrolysis system were investigated in this project and the results will be useful in further attempts at high pressure and/or low cost hydrogen generator projects. An important portion of the testing and research performed in this study are the safety issues that are present in a high pressure electrolyzer system and that they can not easily be simplified to a level where units can be manufactured at the cost goals specified, or operated by other than trained personnel in a well safeguarded environment. The two key objectives of the program were to develop a system to supply hydrogen at a rate of at least 10,000 scf/day at a pressure of 5000psi, and to meet cost goals of $600/ kW in production quantities of 10,000/year. On these two points TESI was not successful. The project was halted due to concerns over safety of high pressure gas electrolysis and the associated costs of a system which reduced the safety concerns.

  20. Enhanced photocatalytic hydrogen generation from barium tantalate composites.

    Science.gov (United States)

    Marschall, Roland; Soldat, Julia; Busser, G Wilma; Wark, Michael

    2013-04-01

    (111)-layered Ba5Ta4O15 photocatalysts were synthesised by a solid state reaction route and a citrate synthesis route, and their structural and electronic properties were investigated. After citrate route preparation, the presence of a second phase, namely Ba3Ta5O15, was determined by X-ray powder diffraction and absorption spectroscopy. The existence of this phase had a profound effect on the photocatalytic activity of this Ba5Ta4O15/Ba3Ta5O15 composite in comparison to the pure Ba5Ta4O15 materials. The photocatalytic performance of the barium tantalates was evaluated by investigating the capability in ˙OH radical formation and hydrogen generation. Strongly increased hydrogen evolution rates for the Ba5Ta4O15/Ba3Ta5O15 composite, up to 160% higher than for the pure Ba5Ta4O15, were determined, and only very small amounts of Rh co-catalyst, deposited on the photocatalysts by stepwise reductive photo-deposition, were needed to achieve these results.

  1. Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen Generation

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Craig A.

    2014-11-26

    Under program auspices we have investigated material chemistries suitable for the solar generation of hydrogen by water photoelectrolysis. We have built upon, and extended, our knowledge base on the synthesis and application of TiO2 nanotube arrays, a material architecture that appears ideal for water photoelectrolysis. To date we have optimized, refined, and greatly extended synthesis techniques suitable for achieving highly ordered TiO2 nanotube arrays of given length, wall thickness, pore diameter, and tube-to-tube spacing for use in water photoelectrolysis. We have built upon this knowledge based to achieve visible light responsive, photocorrosion stable n-type and p-type ternary oxide nanotube arrays for use in photoelectrochemical diodes.

  2. Nitrogen-Doped Graphene for Photocatalytic Hydrogen Generation.

    Science.gov (United States)

    Chang, Dong Wook; Baek, Jong-Beom

    2016-04-20

    Photocatalytic hydrogen (H2 ) generation in a water splitting process has recently attracted tremendous interest because it allows the direct conversion of clean and unlimited solar energy into the ideal energy resource of H2 . For efficient photocatalytic H2 generation, the role of the photocatalyst is critical. With increasing demand for more efficient, sustainable, and cost-effective photocatalysts, various types of semiconductor photocatalysts have been intensively developed. In particular, on the basis of its superior catalytic and tunable electronic properties, nitrogen-doped graphene is a potential candidate for a high-performance photocatalyst. Nitrogen-doped graphene also offers additional advantages originating from its unique two-dimensional sp(2) -hybridized carbon network including a large specific surface area and exceptional charge transport properties. It has been reported that nitrogen-doped graphene can play diverse but positive functions including photo-induced charge acceptor/meditator, light absorber from UV to visible light, n-type semiconductor, and giant molecular photocatalyst. Herein, we summarize the recent progress and general aspects of nitrogen-doped graphene as a photocatalyst for photocatalytic H2 generation. In addition, challenges and future perspectives in this field are also discussed.

  3. Revisions to the hydrogen gas generation computer model

    Energy Technology Data Exchange (ETDEWEB)

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program`s maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model`s predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  4. Revisions to the hydrogen gas generation computer model

    Energy Technology Data Exchange (ETDEWEB)

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program's maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model's predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  5. Safety Implementation of Hydrogen Igniters and Recombiners for Nuclear Power Plant Severe Accident Management

    Institute of Scientific and Technical Information of China (English)

    XIAO Jianjun; ZHOU Zhiwei; JING Xingqing

    2006-01-01

    Hydrogen combustion in a nuclear power plant containment building may threaten the integrity of the containment. Hydrogen recombiners and igniters are two methods to reduce hydrogen levels in containment buildings during severe accidents. The purpose of this paper is to evaluate the safety implementation of hydrogen igniters and recombiners. This paper analyzes the risk of deliberate hydrogen ignition and investigates three mitigation measures using igniters only, hydrogen recombiners only or a combination of recombiners and igniters. The results indicate that steam can effectively control the hydrogen flame acceleration and the deflagration-to-detonation transition.

  6. Development of a new hydrogen purification system by using hydrogen absorbing alloy for generator cooling; Suiso kyuzo gokin riyo hatsudenkinai suiso jundo kojo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Haruki, N.; Sato, J.; Kogi, T.; Nishimura, Y. [Kansai Electric Power Co., Inc., Osaka (Japan); Takeda, H. [Japan Steel works Ltd., Tokyo (Japan)] Fujita, T. [Mitsubishi Electric Corp., Tokyo (Japan)

    1997-05-20

    Hydrogen absorbing alloys have a number of useful functions, such as energy conversion, hydrogen storage and purification. As an application to separation and purification of hydrogen, we have developed a new hydrogen purification system by using a hydrogen absorbing alloy for generator cooling. For demonstration testing with an actual machine, a hydrogen recovery and purification device using 120kg of alloy was manufactured and installed on No.5 turbine-synchronous generator at Himeji No.2 power station. This device is designed to improve the purity of the hydrogen gas in generator containing impurities such as nitrogen and oxygen. The test results tell that the purity of the hydrogen gas in the generator can be enhanced from 98% to 99.9% and maintained at this level under continuous operation. An application of the hydrogen purification system is expected to decrease the generator`s windage loss, resulting higher generator efficiency. 2 refs., 18 figs.

  7. Systems and methods for generation of hydrogen peroxide vapor

    Science.gov (United States)

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  8. Vogtle Electric Generating Plant ETE Analysis Review

    Energy Technology Data Exchange (ETDEWEB)

    Diediker, Nona H.; Jones, Joe A.

    2006-12-09

    Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

  9. Spark Discharge Generated Nanoparticles for Hydrogen Storage Applications

    NARCIS (Netherlands)

    Vons, V.A.

    2010-01-01

    One of the largest obstacles to the large scale application of hydrogen powered fuel cell vehicles is the absence of hydrogen storage methods suitable for application on-board of these vehicles. Metal hydrides are materials in which hydrogen is reversibly absorbed by one or more metals or

  10. Spark Discharge Generated Nanoparticles for Hydrogen Storage Applications

    NARCIS (Netherlands)

    Vons, V.A.

    2010-01-01

    One of the largest obstacles to the large scale application of hydrogen powered fuel cell vehicles is the absence of hydrogen storage methods suitable for application on-board of these vehicles. Metal hydrides are materials in which hydrogen is reversibly absorbed by one or more metals or combinatio

  11. Hydrogen Peroxide in Plants: a Versatile Molecule of the Reactive Oxygen Species Network

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Plants often face the challenge of severe environmental conditions, which include various biotic and abiotic stresses that exert adverse effects on plant growth and development. During evolution, plants have evolved complex regulatory mechanisms to adapt to various environmental stressors. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species (ROS), which are subsequently converted to hydrogen peroxide (H2O2). Even under normal conditions, higher plants produce ROS during metabolic processes. Excess concentrations of ROS result in oxidative damage to or the apoptotic death of cells. Development of an antioxidant defense system in plants protects them against oxidative stress damage. These ROS and, more particularly, H2O2, play versatile roles in normal plant physiological processes and in resistance to stresses. Recently, H2O2 has been regarded as a signaling molecule and regulator of the expression of some genes in cells. This review describes various aspects of H2O2 function, generation and scavenging,gene regulation and cross-links with other physiological molecules during plant growth, development and resistance responses.

  12. Computational design of materials for solar hydrogen generation

    Science.gov (United States)

    Umezawa, Naoto

    Photocatalysis has a great potential for the production of hydrogen from aquerous solution under solar light. In this talk, two different approaches toward the computational materials desing for solar hydrogen generation will be presented. Tin (Sn), which has two major oxidation states, Sn2+ and Sn4+, is abundant on the earth's crust. Recently, visible-light responsive photocatalytc H2 evolution reaction was identified over a mixed valence tin oxide Sn3O4. We have carried out crystal structure prediction for mixed valence tin oxides in different atomic compositions under ambient pressure condition using advanced computational methods based on the evolutionary crystal-structure search and density-functional theory. The predicted novel crystal structures realize the desirable band gaps and band edge positions for H2 evolution under visible light irradiation. It is concluded that multivalent tin oxides have a great potential as an abundant, cheap and environmentally-benign solar-energy conversion photofunctional materials. Transition metal doping is effective for sensitizing SrTiO3 under visible light. We have theoretically investigated the roles of the doped Cr in STO based on hybrid density-functional calculations. Cr atoms are preferably substituting for Ti under any equilibrium growth conditions. The lower oxidation state Cr3+, which is stabilized under an n-type condition of STO, is found to be advantageous for the photocatalytic performance. It is firther predicted that lanthanum is the best codopant for stabilizing the favorable oxidation state, Cr3+. The prediction was validated by our experiments that La and Cr co-doped STO shows the best performance among examined samples. This work was supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) and International Research Fellow program of Japan Society for the Promotion of Science (JSPS) through project P14207.

  13. Evaluation Of Methods To Measure Hydrogen Generation Rate In A Shielded Cell Environment And A Method Recommendation

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E.

    2012-11-07

    The purpose of this document is to describe the current state of the art for determination of hydrogen generation rates of radioactive slurries and solutions to provide a basis for design, fabrication, testing, and implementation of a measurement method for Hydrogen Generation Rate (HGR) during qualification of waste feeds for the Hanford Waste Treatment and Immobilization Plant (WTP). The HGR measurement will be performed on samples of the Low Activity Waste (LAW) and High Level Waste (HLW) staged waste feeds for the WTP as well as on samples from selected unit operations testing during the qualification program. SRNL has performed a review of techniques utilized to measure HGR of high level radioactive waste slurries, evaluated the Hanford 222-S Laboratory method for measurement of hydrogen, and reviewed the hydrogen generation rate models for Hanford waste.Based on the literature review, method evaluation, and SRNL experience with measuring hydrogen generation rate, SRNL recommends that a continuous flow system with online gas analysis be used as the HGR measurement method during waste qualification.

  14. Evaluation Of Methods To Measure Hydrogen Generation Rate In A Shielded Cell Environment And A Method Recommendation

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E.

    2012-11-07

    The purpose of this document is to describe the current state of the art for determination of hydrogen generation rates of radioactive slurries and solutions to provide a basis for design, fabrication, testing, and implementation of a measurement method for Hydrogen Generation Rate (HGR) during qualification of waste feeds for the Hanford Waste Treatment and Immobilization Plant (WTP). The HGR measurement will be performed on samples of the Low Activity Waste (LAW) and High Level Waste (HLW) staged waste feeds for the WTP as well as on samples from selected unit operations testing during the qualification program. SRNL has performed a review of techniques utilized to measure HGR of high level radioactive waste slurries, evaluated the Hanford 222-S Laboratory method for measurement of hydrogen, and reviewed the hydrogen generation rate models for Hanford waste.Based on the literature review, method evaluation, and SRNL experience with measuring hydrogen generation rate, SRNL recommends that a continuous flow system with online gas analysis be used as the HGR measurement method during waste qualification.

  15. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen...... evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates...... sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively....

  16. Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures

    Science.gov (United States)

    Yang, Li; Li, Xiyu; Zhang, Guozhen; Cui, Peng; Wang, Xijun; Jiang, Xiang; Zhao, Jin; Luo, Yi; Jiang, Jun

    2017-07-01

    The challenge of safe hydrogen storage has limited the practical application of solar-driven photocatalytic water splitting. It is hard to isolate hydrogen from oxygen products during water splitting to avoid unwanted reverse reaction or explosion. Here we propose a multi-layer structure where a carbon nitride is sandwiched between two graphene sheets modified by different functional groups. First-principles simulations demonstrate that such a system can harvest light and deliver photo-generated holes to the outer graphene-based sheets for water splitting and proton generation. Driven by electrostatic attraction, protons penetrate through graphene to react with electrons on the inner carbon nitride to generate hydrogen molecule. The produced hydrogen is completely isolated and stored with a high-density level within the sandwich, as no molecules could migrate through graphene. The ability of integrating photocatalytic hydrogen generation and safe capsule storage has made the sandwich system an exciting candidate for realistic solar and hydrogen energy utilization.

  17. Hydrogen Plasma Generation with 200 MHz RF Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongtae; Park, Kwangmook; Seo, Dong Hyuk; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The ion source for the system is required to be rugged with 2000 hours maintenance free operation time because it is installed in the vessel filled with SF6 gas at the pressure of 10 bar. A 200 MHz RF ion source is considered as an ion source. It is a simple construction and provides long life operation. The specifications of the ion source are 5 kV extraction voltage and 1 mA beam current referenced to the proton. RF ion source has been developed and undergone a performance test. Results of the test are presented. 200 MHz RF ion source is designated and manufactured. First of all test stand test of ion source are set up for a performance test of ion source. It includes a RF ion source, a 200-MHz RF system, beam extraction system, vacuum system, beam extraction system, and beam diagnostic system. At pressure of 1.2E-5 torr, hydrogen plasma is generated with net RF power 70 W. Pyrex tube surrounded by an inductive coil takes the role of vessel and discharge is enhanced with field of permanent magnets.

  18. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor.

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO(2)/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H(2) generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g(-1) at 0.5 A g(-1) and 287 F g(-1) at 1 A g(-1) are obtained with TiO(2)/Ni(OH)(2) nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application.

  19. Hydrogen production by autothermal reforming of ethanol: pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Marin Neto, Antonio Jose; Camargo, Joao Carlos; Lopes, Daniel Gabriel; Ferreira, Paulo F.P. [Hydrogen Technology (HyTron), Campinas, SP (Brazil)], Email: antonio@hytron.com.br; Neves Junior, Newton Pimenta; Pinto, Edgar A. de Godoi Rodrigues; Silva, Ennio Peres da [Universidade Estadual de Campinas (DFA/ IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada; Furlan, Andre Luis [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    This work provides information about the development of an integrated unit for hydrogen production by auto thermal reforming of ethanol with nominal capacity of 1 kg/h H{sub 2} 4.5 (99.995%). The unit is composed by a Fuel Processing Module (FPM), resulting from auto thermal and shift reactor integration, responsible for the thermochemical step, plus an over heater of the liquid input (EtOH and H{sub 2}O), operated recovering thermal energy from PSA blown-down (H{sub 2} Purification Module - MPH2), besides other thermal equipment which completes the integration. Using a computational routine for scaling the process and preliminary performance analysis, it was possible to optimize operating conditions, essential along unit operations design. Likewise, performance estimation of the integrated unit proceeds, which shows efficiency about 72.5% from FPM. Coupled with the PSA recovery rate, 72.7%, the unit could achieve overall energy performance of 52.7%, or 74.4% working in co-generation of hydrogen and heat. (author)

  20. Hydrogen generation by the hydrolysis reaction of ball-milled aluminium-lithium alloys

    Science.gov (United States)

    Chen, Xingyu; Zhao, Zhongwei; Liu, Xuheng; Hao, Mingming; Chen, Ailiang; Tang, Zhongyang

    2014-05-01

    The addition of Li can prevent an inert alumina film from forming on the surface of Al alloy particles, allowing the rapid hydrogen generation of Al alloys to be achieved. However, because the Li content is less than 10%, the hydrogen generation rate and hydrogen yield of Al-Li alloys are significantly decreased. In this work, NaCl is introduced to prepare Al-Li alloys with low Li contents by ball milling. The research results show that by increasing the amount of NaCl added, the ball milling time and Li content can effectively improve the hydrogen generation of the alloys. Under optimal preparation conditions, the ultimate hydrogen yield of Al-Li alloys can reach 100%. The initial water temperature has almost no effect on the generation of hydrogen, even at 0 °C. Ca2+ and Mg2+ can combine with OH- to form the insoluble compounds Ca(OH)2 and Mg(OH)2, which can prevent hydrogen generation. NO3- reacts with Al to form ammonia and reduce the hydrogen yield of the alloys. Therefore, Al-Li alloys should be prevented from reacting with water containing Ca2+, Mg2+ and NO3-. Al-Li alloys must be stored in isolation from air to maintain good hydrogen-generation performances.

  1. Hydrogen reduction in heat transfer fluid in parabolic trough CSP plants

    Science.gov (United States)

    Lang, Christoph; Belkheir, Mohamed; Kim, Eungkyu; Davidson, Chet; Holden, Bruce; Hook, Bruce

    2017-06-01

    Hydrogen (H2) has been found to be generated in very small proportions when diphenyl oxide/ biphenyl heat transfer fluid (HTF) is operated at temperatures close to 400°C. At such temperatures, H2 can permeate through steel walls to the vacuum space of parabolic trough (PT) solar receivers, where it increases heat losses that can significantly impact the economics of PT concentrated solar power plants. A novel process for the reduction of the H2 concentration in HTF via stripping and gas separation has been simulated for the operation in PT CSP plants. Applying the proposed process, the concentration of H2 in HTF can be reduced down to 1 ppb. A cost comparison between the H2 separation process and frequent PT receivers replacement was conducted and found that proposed H2 removal process is more economic.

  2. Electroless Plated Co-Ni-P-B/Ni Foam Catalyst for Hydrogen Generation from Sodium Borohydride.

    Science.gov (United States)

    Park, Daeil; Kim, Taegyu

    2016-02-01

    Co-Ni-P-B catalyst supported on Ni foam was prepared using electroless plating for hydrogen generation from an alkaline NaBH4 solution. Co-B, Co-P-B, and Co-Ni-B were prepared for comparison. Surface morphology of catalyst/Ni foams were observed using SEM analysis. The Co- Ni-P-B/Ni foam catalyst showed the superior performance on hydrogen generation rate due to the uniform formation of catalyst particles on the surface of Ni foam. Characteristics of hydrogen generation rate on the Co-N-P-B/Ni foam catalyst were investigated at the variety of NaBH4 and NaOH concentrations. The hydrogen generation rate increased with decreasing NaBH4 concentration, while increasing NaOH concentration. Durability test was performed, resulting in the stable hydrogen generation for 6 hours.

  3. Control of Hydrogen Generation from Water Molecules Dissociated by Activated Aluminum Particles Based on Fuzzy Logic

    Science.gov (United States)

    Maekawa, Koji; Takahara, Kenji; Kajiwara, Toshinori; Watanabe, Masao

    This paper proposes a control system to keep hydrogen generation by a reaction between water and activated aluminum particles at desired level. Because the activated aluminum particles are produced shredded aluminum sawdust, the characteristics of hydrogen generation vary depending on its samples. Therefore, the fuzzy control system to determine the quantum of the activated aluminum particles is designed based on the measured characteristics of hydrogen generation. Error form a desired value, error rate and dead time of the reaction are chosen as the labels of the proposed fuzzy membership functions. The reactor vessel that the activated aluminum particles are put into is developed to generate hydrogen continuously. Three types of aluminum particles of the characteristic are used for the experiments. The proposed system is confirmed to be useful for the control of hydrogen generation, coping with the effect of reacting characteristic changes according to the activated aluminum samples.

  4. Commercializing larger PEM-based hydrogen generators for energy and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Moulthrop, L.; Anderson, E.; Chow, O.; Friedland, R.; Porter, S. [Distributed Energy Systems, Wallingford, CT (United States)

    2007-07-01

    As economic, security and environmental drivers converge, there is a demand for larger and better on-site hydrogen generators. This paper outlined the measures needed to scale-up a commercial 12 kg/day proton exchange membrane (PEM) hydrogen generator to a 100 to 500 kg hydrogen per day capacity range. The commercial hydrogen generators using PEM water electrolysis are well proven and currently serve industrial applications worldwide in more than 50 countries. However, North American liquid hydrogen shortages, increasing trucking costs, developing economies with no liquid infrastructure, utilities, and forklift fuel cell fueling applications are all working to increase market demand for commercial on-site hydrogen generation. Water electrolysis was recently identified as the hydrogen technology that will enable solar renewable energy to fill the 17 TW carbon free energy gap projected worldwide by 2050. The scale-up must consider fixed cost as well as operating costs of the electrolyzer and power conditioning, compression and storage ancillaries. It was noted that although commercial applications may be well-satisfied with a 100 kg hydrogen/day PEM hydrogen generator module for the next five years, after that, the 500 kg hydrogen/day module will be required for hydrogen vehicle fueling stations, utility load-leveling, and renewables to hydrogen generation. It was suggested that a paced development effort can be synchronized with evolving fuel cell markets and market price points. The projection of future market price points can be generated using market data and specific cases of the H2A model developed by the United States Department of Energy for electrolysis based fueling. H2A modeling and system analysis identify the components and subsystem development priorities, requirements, and challenges. Codes and standards are maturing to help manufacturers and certification authorities make safe and compliant equipment. It was noted that this development effort is

  5. Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, R. K., E-mail: r.joshi@unsw.edu.au, E-mail: alwarappan@cecri.res.in; Sahajwalla, V. [Centre for Sustainable Materials Research and Technology, School of Materials Science and Engineering, University of New South Wales, NSW 2052 (Australia); Shukla, S.; Saxena, S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai (India); Lee, G.-H. [Department of Material Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Alwarappan, S., E-mail: r.joshi@unsw.edu.au, E-mail: alwarappan@cecri.res.in [CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India)

    2016-01-15

    Study on hydrogen generation has been of huge interest due to increasing demand for new energy sources. Photoelectrochemical reaction by catalysts was proposed as a promising technique for hydrogen generation. Herein, we report the hydrogen generation via photoelectrochecmial reaction using films of exfoliated 2-dimensional (2D) MoS{sub 2}, which acts as an efficient photocatalyst. The film of chemically exfoliated MoS{sub 2} layers was employed for water splitting, leading to hydrogen generation. The amount of hydrogen was qualitatively monitored by observing overpressure of a water container. The high photo-current generated by MoS{sub 2} film resulted in hydrogen evolution. Our work shows that 2D MoS{sub 2} is one of the promising candidates as a photocatalyst for light-induced hydrogen generation. High photoelectrocatalytic efficiency of the 2D MoS{sub 2} shows a new way toward hydrogen generation, which is one of the renewable energy sources. The efficient photoelectrocatalytic property of the 2D MoS{sub 2} is possibly due to availability of catalytically active edge sites together with minimal stacking that favors the electron transfer.

  6. Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS2 layers

    Directory of Open Access Journals (Sweden)

    R. K. Joshi

    2016-01-01

    Full Text Available Study on hydrogen generation has been of huge interest due to increasing demand for new energy sources. Photoelectrochemical reaction by catalysts was proposed as a promising technique for hydrogen generation. Herein, we report the hydrogen generation via photoelectrochecmial reaction using films of exfoliated 2-dimensional (2D MoS2, which acts as an efficient photocatalyst. The film of chemically exfoliated MoS2 layers was employed for water splitting, leading to hydrogen generation. The amount of hydrogen was qualitatively monitored by observing overpressure of a water container. The high photo-current generated by MoS2 film resulted in hydrogen evolution. Our work shows that 2D MoS2 is one of the promising candidates as a photocatalyst for light-induced hydrogen generation. High photoelectrocatalytic efficiency of the 2D MoS2 shows a new way toward hydrogen generation, which is one of the renewable energy sources. The efficient photoelectrocatalytic property of the 2D MoS2 is possibly due to availability of catalytically active edge sites together with minimal stacking that favors the electron transfer.

  7. Study on the Hydrogen Generation Rules of Coal Oxidation at Low Temperature

    Directory of Open Access Journals (Sweden)

    Shao He

    2014-07-01

    Full Text Available Based on a hydrogen desorption experiment and a comparative experiment of low-temperature coal oxidation performed prior to and after hydrogen desorption, this paper demonstrates the occurrence of hydrogen adsorption in coal at room temperature and reveals that the hydrogen generated in the process of coal oxidation originates from coal oxidation and desorption. The results show that the hydrogen accumulation generated only by coal oxidation and the hydrogen accumulation generated solely by desorption both exhibit a LangmuirEXT1 function equation relationship with temperature. The result of the present research can provide a theoretical basis for the accurate prediction of spontaneous coal combustion and is of great significance to the prevention and control of coal spontaneous combustion in coal mines, industrial coal storage and transportation.

  8. Conversion of Claus plants of Kurkuk-Iraq to produce hydrogen and sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Naman, S.A.; Veziroglu, A. [Duhok Univ., Duhok City (Iraq). Dept. of Chemistry; International Association for Hydrogen Energy, Miami, FL (United States)

    2009-07-01

    Two Claus plants in Kirkuk, Iraq, convert hydrogen sulfide to elemental sulfur at a capacity of 2,200 tons/day. One of the plants is working at a capacity of only 400 tons/day with an old Claus process. The other uses a modified Claus sulfur recovery process with a capacity of 1800 tons/day. Both of the plants operate with low efficiency due to lack of maintenance. As such, the agricultural area surrounding Kirkuk is highly polluted. This paper described 2 pilot desulphurization plants that have been constructed inside the modified Claus plant. The first pilot plant is based on the flow system tube furnace reactor containing mixed titanium oxide/sulfide with a cold trap for sulfur separation and a bath of 30 per cent dithanolamine to separate and recycle hydrogen sulphide (H{sub 2}S) from hydrogen. The second pilot plant consists of a thermal diffusion ceramic rod inside a silica column containing zeolite 5A as a catalyst. This pilot plant also consists of a trap for continuous separation of sulfur and a system for separation of hydrogen from unreacted H{sub 2}S to recycle. The efficiency of conversion of H{sub 2}S to hydrogen and sulfur has been optimized as a function of catalyst type and mixture, temperature of furnace, flow rate of gas and reactor materials. The pilot plants were suitable with cadmium chalcogens catalysts to produce hydrogen, methane, ethane and sulphur, but with lower efficiency than H{sub 2}S decomposition only. The goal for the second pilot plant was to supply the heat using a solar energy concentrator instead of electricity. It was concluded that a hydrogen production plant in this part of Iraq will save a large area from polluted sulfur gas. The pilot plants can produce about 140 tons of hydrogen gas per day from these waste gases.

  9. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  10. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  11. Engineering Design Elements of a Two-Phase Thermosyphon to Trannsfer NGNP Nuclear Thermal Energy to a Hydrogen Plant

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwal

    2009-07-01

    Two hydrogen production processes, both powered by a Next Generation Nuclear Plant (NGNP), are currently under investigation at Idaho National Laboratory. The first is high-temperature steam electrolysis, which uses both heat and electricity; the second is thermo-chemical production through the sulfur iodine process primarily using heat. Both processes require a high temperature (>850°C) for enhanced efficiency; temperatures indicative of the NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100 m.

  12. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  13. Hydrogen Generator by Methane Pyrolysis with Carbon Capture Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop, fabricate, and test a system to provide 99.999% hydrogen by efficiently performing methane pyrolysis. The system has three unique...

  14. NaBH4 generator integrated with energy conversion device based on hydrogen combustion

    Science.gov (United States)

    Netskina, O. V.; Fursenko, R. V.; Komova, O. V.; Odintsov, E. S.; Simagina, V. I.

    2015-01-01

    A thermoelectric energy conversion device operating on the heat generated by a hydrogen diffusion microflame has been developed. For the first time, a NaBH4 hydrogen generator has been employed as a source of fuel for such type of power generator. A 1%Ru-3%Co/Sibunit catalyst ensures hydrogen generation at a rate of 3 cm3 s-1 during 3 h. Power and efficiency characteristics of the integrated system consisting of a hydrogen generator and an energy converter based on combustion technologies have been studied experimentally. The total efficiency and the generated power of the system were measured to achieve values of up to 1.23% and 0.25 W, respectively. Ways to further improve the system's power output and efficiency characteristics have been discussed.

  15. Leaf water and plant wax hydrogen isotopes in a European sample network

    Science.gov (United States)

    Nelson, D. B.; Kahmen, A.

    2014-12-01

    The hydrogen isotopic composition of plant waxes in sediments is now routinely used as a hydroclimate proxy. This application is based largely on empirical calibrations that have demonstrated continental-scale correlations between source water and lipid hydrogen isotope values. But at smaller spatial scales and for individual locations it is increasingly recognized that factors that modify apparent fractionation between source water and leaf lipid hydrogen isotope values must also be considered. Isotopic enrichment of leaf water during transpiration is key among these secondary factors, and is itself sensitive to changes in hydroclimate. Leaf water enrichment also occurs prior to photosynthetic water uptake, and is therefore independent from cellular-level biomarker synthesis. Recent advances in theory have permitted mechanistic models to be developed that can be used to predict the mean leaf water hydrogen and oxygen isotope composition from readily available meteorological variables. This permits global-scale isoscape maps of leaf water isotopic composition and enrichment above source water to be generated, but these models have not been widely validated at continental spatial scales. We have established a network of twenty-one sites across Europe where we are sampling for leaf-, xylem-, and soil-water isotopes (H and O) at approximately 5-week intervals over the summer growing season. We augment the sample set with weekly to monthly precipitation samples and early- and late-season plant wax lipid samples. Collaborators at each site are conducting the sampling, and most sites are members of the FLUXNET tower network that also record high-resolution meteorological data. We present information on the implementation of the network and preliminary results from the 2014 summer season. The complete dataset will be used to track the evolution of water isotopes from source to leaf water and from leaf water to lipid hydrogen across diverse environments. This will provide

  16. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation.

    Science.gov (United States)

    Viswanathan, Venkatasubramanian; Hansen, Heine A; Nørskov, Jens K

    2015-11-01

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  17. Selective electrochemical generation of hydrogen peroxide from water oxidation

    CERN Document Server

    Viswanathan, Venkatasubramanian; Nørskov, Jens K

    2015-01-01

    Water is a life-giving source, fundamental to human existence, yet, over a billion people lack access to clean drinking water. Present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH$^*$ can be used as a descriptor to screen for selectivity trends between the 2e$^-$ water oxidation to H$_2$O$_2$ and the 4e$^-$ oxidation to O$_2$. We show that materials that bind oxygen intermediates sufficiently weakly, such as SnO$_2$, can activate hydrogen peroxide evolution. We present a rati...

  18. Next generation geothermal power plants. Draft final report

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  19. Effect of water injection on hydrogen generation during severe accident in PWR

    Institute of Scientific and Technical Information of China (English)

    TAO Jun; CAO Xuewu

    2009-01-01

    Effect of water injection on hydrogen generation during severe accident in a 1000 MWe pressurized water reactor was studied.The analyses were carried out with different water injection rates at different core damage stages.The core can be quenched and accident progression can be terminated by water injection at the time before cohesive core debris is formed at lower core region.Hydrogen generation rate decreases with water injection into the core at the peak core temperature of 1700 K,because the core is quenched and reflooded quickly.The water injection at the peak core temperature of 1900 K,the hydrogen generation rate increases at low injection rates of the water,as the core is quenched slowly and the core remains in uncovered condition at high temperatures for a longer time than the situation of high injection rate.At peak core temperature of 2100-2300 K,the Hydrogen generation rate increases by water injection because of the steam serving to the high temperature steam-starved core.Hydrogen generation rate increases significantly after water injection into the core at peak core temperature of 2500 K because of the steam serving to the relocating Zr-U-O mixture.Almost no hydrogen generation can be seen in base case after formation of the molten pool at the lower core region.However,hydrogen is generated if water is injected into the molten pool,because steam serves to the crust supporting the molten pool.Reactor coolant system (RCS) depressurization by opening power operated relief valves has important effect on hydrogen generation.Special attention should be paid to hydrogen generation enhancement caused by RCS depressurization.

  20. Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO2

    Institute of Scientific and Technical Information of China (English)

    Min LI; Yuexiang LI; Shaoqin PENG; Gongxuan LU; Shuben LI

    2009-01-01

    Using glycerol as electron donor, photocataly-tic hydrogen generation over Pt/TiO2 was investigated.The results show that glycerol can not only improve the efficiency of photocatalytic hydrogen generation but can also be decomposed effectively. The factors which affect photocatalytic hydrogen generation, such as irradiation time, initial concentration of the glycerol solution, pH-value of the suspensions and the coexisting substances were studied. The final oxidation products of glycerol were H2O and CO2. Glyceraldhyde, glycoladehyde, glycolic acid and formaldehyde were identified as the intermedi-ates. A possible reaction mechanism was discussed.

  1. Next Generation Nuclear Plant Intermediate Heat Exchanger Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Laboratory

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C to 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium cooled, prismatic or pebble-bed reactor, and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Intermediate Heat Exchanger (IHX).This component will be operated in flowing, impure helium on the primary and secondary side at temperatures up to 950°C. There are major high temperature design, materials availability, and fabrication issues that need to be addressed. The prospective materials are Alloys 617, 230, 800H and X, with Alloy 617 being the leading candidate for the use at 950°C. The material delivery schedule for these materials does not pose a problem for a 2018 start up as the vendors can quote reasonable delivery times at the moment. The product forms and amount needed must be finalized as soon as possible. An

  2. Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide

    Science.gov (United States)

    Rhodes, Christopher P. (Inventor); Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Anderson, Kelvin C. (Inventor)

    2011-01-01

    A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.

  3. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The

  4. An Innovative Test Platform for Hydrogen Production and Zero Emission Power Generation from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Calabro A; Deiana P; Fiorini P; Stendardo S; Girardi G [ENEA - Italian Agency for New Technologies, Energy and Environment Energy and Plants Division - Via Anguillarese - 301 00060 S Maria di Galeria - Rome (Italy)

    2006-07-01

    The ZECOMIX project, conceived by ENEA in the framework of Italian National Hydrogen Project, is aimed at studying an integrated process that produces both hydrogen and electricity from coal, with zero emissions and very high efficiency. The key element is the integration of a gasification process, characterized by coal hydro-gasification technology and carbon dioxide sequestration, with the power island, where an oxy-combustion occurs. Many optimization analysis and simulations have been carried out demonstrating the possibility to achieve very high net efficiencies (higher than 50% LHV) and very low (quasi-zero) emissions. The project schedule consists of the design, already started, the construction and the operation of an experimental facility finalized to demonstrate the feasibility of the described reference process. The facility will be realized in the ENEA Research Center of Casaccia, near Rome. It consists of a very flexible plant, in which more components can be tested separately or connected together. The plant is provided with a 50 kg/h coal atmospheric fluid bed gasifier, a fluid bed decarbonator/calcinator reactor filled with calcium oxide pellets, a pressurized hydro-gasifier reactor characterized by a pressure variable from 30 to 100 bar, a 100 kWe micro-turbine test bench, with the combustor chamber modified because of de-carbonized syngas fuelling and finally an oxygen/hydrogen combustor test bench, for experimental activities about the definition of stability limits, operative conditions (dilution, temperature pattern, chemicals) and combustion control. Other auxiliary components are mixing station for hydrogen-based syngas production, and an ordinary steam generator. The first part of the research project is aimed at testing the single component, in particular the main preliminary design criteria adopted for hydro-gasification reactor and carbonator reactor are presented in this paper. The second part of the Project is focused on the integration

  5. Sensor for measuring hydrogen partial pressure in parabolic trough power plant expansion tanks

    Science.gov (United States)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-01

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  6. Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-27

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  7. Toxicological analysis of 17 autopsy cases of hydrogen sulfide poisoning resulting from the inhalation of intentionally generated hydrogen sulfide gas.

    Science.gov (United States)

    Maebashi, Kyoko; Iwadate, Kimiharu; Sakai, Kentaro; Takatsu, Akihiro; Fukui, Kenji; Aoyagi, Miwako; Ochiai, Eriko; Nagai, Tomonori

    2011-04-15

    Although many cases of fatal hydrogen sulfide poisoning have been reported, in most of these cases, it resulted from the accidental inhalation of hydrogen sulfide gas. In recent years, we experienced 17 autopsy cases of fatal hydrogen sulfide poisoning due to the inhalation of intentionally generated hydrogen sulfide gas. In this study, the concentrations of sulfide and thiosulfate in blood, urine, cerebrospinal fluid and pleural effusion were examined using GC/MS. The sulfide concentrations were blood: 0.11-31.84, urine: 0.01-1.28, cerebrospinal fluid: 0.02-1.59 and pleural effusion: 2.00-8.59 (μg/ml), while the thiosulfate concentrations were blood: 0-0.648, urine: 0-2.669, cerebrospinal fluid: 0.004-0.314 and pleural effusion: 0.019-0.140 (μmol/ml). In previous reports, the blood concentration of thiosulfate was said to be higher than that of sulfide in hydrogen sulfide poisoning cases, although the latter was higher than the former in 8 of the 14 cases examined in this study. These results are believed to be strongly influenced by the atmospheric concentration of hydrogen sulfide the victims were exposed to and the time interval between exposure and death.

  8. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  9. Second generation plant health clinics in Uganda

    DEFF Research Database (Denmark)

    Danielsen, Solveig; Matsiko, Frank; Mutebi, Emmanuel;

    standards and procedures were in place and followed up on. Many of the observed clinic weaknesses were products of missing coordination, follow up and communication. The sustainability of plant clinics is still uncertain. Funds are limited and skilled human resources to man the clinics have yet to reach......The purpose of the present study was to assess the performance of plant clinics in Uganda and to identify system factors that are conducive or constraining to clinic performance. Our analytical framework was derived from the health system model of World Health Organisation (WHO), designed...... their leading role. A mismatch between institutional mandates/authority and allocated resources limited the scope of the actions both at district and national level. The plant clinics risk ‘falling between the two chairs’ of extension and pest and disease control. Finding a solid institutional base...

  10. Enzymatic generation of hydrogen peroxide shows promising antifouling effect

    DEFF Research Database (Denmark)

    Kristensen, J.B.; Olsen, Stefan Møller; Laursen, B.S.

    2010-01-01

    The antifouling (AF) potential of hydrogen peroxide (H2O2) produced enzymatically in a coating containing starch, glucoamylase, and hexose oxidase was evaluated in a series of laboratory tests and in-sea field trials. Dissolved H2O2 inhibited bacterial biofilm formation by eight of nine marine...

  11. Autothermal hydrogen generation from methanol in a ceramic microchannel network

    Science.gov (United States)

    Moreno, Angela M.; Wilhite, Benjamin A.

    In this paper, the authors present the first demonstration of a new class of integrated ceramic microchannel reactors for all-in-one reforming of hydrocarbon fuels. The reactor concept employs precision-machined metal distributors capable of realizing complex flow distribution patterns with extruded ceramic microchannel networks for cost-effective thermal integration of multiple chemical processes. The presently reported reactor is comprised of five methanol steam reforming channels packed with CuO/γ-Al 2O 3, interspersed with four methanol combustion channels washcoated with Pt/γ-Al 2O 3, for autothermal hydrogen production (i.e., without external heating). Results demonstrate the capability of this new device for integrating combustion and steam reforming of methanol for autothermal production of hydrogen, owing to the axially self-insulating nature of distributor-packaged ceramic microchannels. In the absence of any external insulation, stable reforming of methanol to hydrogen at conversions >90% and hydrogen yields >70% was achieved at a maximum reactor temperature of 400 °C, while simultaneously maintaining a packaging temperature <50 °C.

  12. Solar-hydrogen generation and solar concentration (Conference Presentation)

    NARCIS (Netherlands)

    Chinello, Enrico; Modestino, Miquel A.; Schüttauf, Jan-Willem; Lambelet, David; Delfino, Antonio; Domine, Didier; Faes, Antonin; Despeisse, Matthieu; Bailat, Julien; Psaltis, Demetri; Fernandez Rivas, David; Ballif, Christophe; Moser, Christophe; Sulima, Oleg V.; Conibeer, Gavin

    2016-01-01

    We successfully demonstrated and reported the highest solar-to-hydrogen efficiency with crystalline silicon cells and Earth-abundant electrocatalysts under unconcentrated solar radiation. The combination of hetero-junction silicon cells and a 3D printed Platinum/Iridium-Oxide electrolyzer has been p

  13. Hydrogen peroxide homeostasis and signaling in plant cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The increases of H2O2 concentrations in plant cells often occur under biotic and abiotic stress conditions (e.g. light, environmental stresses and plant hormone abscisic acid).Atmospheric H2O2 as an ancient signal molecule not only plays the key role in inducing evolution of oxygenic photosynthesis, but also modulates many physiological events, such as stomatal movement, hypersensitive responses, programmed cell death and gene expressions. H2O2 levels in cells must sustain a fine equilibrium between production and scavenging. H2O2 enters cells from the apoplast or generated sources, and in turn is distributed in sub-cellular compartments.H2O2 can modulate the activities of many components in signaling, such as protein phosphatases,protein kinases, transcription factors (TFs), and calcium channels. Elevated cytosolic calcium concentrations will initiate further downstream responses, via the action of calcium-binding proteins. On the other hand, the research of H2O2 as a signal molecule is still in a comparatively juvenile stage, for example, little is known about how the cells sense H2O2, what the rate-limiting steps and most important cellular events are in cell signaling and what kind of genes is specific or necessary to H2O2 signaling. The answers to all the questions depend on the functional genomic and molecular genetics analysis.

  14. Geothermal power plants at Mt. Amiata (Tuscany-Italy): mercury and hydrogen sulphide deposition revealed by vegetation.

    Science.gov (United States)

    Bacci, E; Gaggi, C; Lanzillotti, E; Ferrozzi, S; Valli, L

    2000-04-01

    At Mt. Amiata (Italy) geothermal energy is used, since 1969, to generate electricity in five plants with a nominal capacity of 88 MW. Anomalous levels of mercury characterise geothermal fluids of Mt. Amiata, an area renowned for its vast cinnabar deposits and for the mercury production carried out in the past. Mercury emission rates range from 300 to 400 g/h, or 3-4 g/h per MW electrical installed capacity. These emissions are coupled with a release of 7-8 kg/(h MW) of hydrogen sulphide (H2S). Mercury is discharged as Hg0 gaseous species and reaches the atmosphere with the non-condensable gas fraction. In this fraction, CO, is the major component (94-98%), H2S is around 1% and mercury concentration is as high as 1-10 mg/Nm3. Leaves of a spontaneous grass (Avena sterilis), at the end of the vegetative cycle, were used as mercury bioconcentrators to map deposition near geothermal power plants and to calculate the corresponding average levels of Hg0 in the air. Direct measurements of mercury and hydrogen sulphide vapours in the air reached by power plant emissions showed a ratio of about 1-2000. This ratio was applied to calculate average levels of hydrogen sulphide starting from mercury deposition mapping: typical concentrations of mercury and hydrogen sulphide were of the order of 10-20 ng/m3 and 20-40 microg/m3, respectively.

  15. Innovative Design of New Geothermal Generating Plants

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R. Gordon; Geyer, John D.; Sifford, B. Alexander III

    1989-07-01

    This very significant and useful report assessed state-of-the-art geothermal technologies. The findings presented in this report are the result of site visits and interviews with plant owners and operators, representatives of major financial institutions, utilities involved with geothermal power purchases and/or wheeling. Information so obtained was supported by literature research and data supplied by engineering firms who have been involved with designing and/or construction of a majority of the plants visited. The interviews were conducted by representatives of the Bonneville Power Administration, the Washington State Energy Office, and the Oregon Department of Energy during the period 1986-1989. [DJE-2005

  16. HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.F.; Molter, T.M. [Proton Energy Systems, Inc., Rocky Hill, CT (United States)

    1997-12-31

    PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

  17. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data through Quarter 4 of 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peters, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-31

    This publication includes 86 composite data products (CDPs) produced for next generation hydrogen stations, with data through the fourth quarter of 2016. These CDPs include data from retail stations only.

  18. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data Through Quarter 3 of 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peters, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jeffers, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-07

    This publication includes 80 composite data products (CDPs) produced in Spring 2016 for next generation hydrogen stations, with data through the third quarter of 2016. These CDPs include data from retail stations only.

  19. Major evolutionary trends in hydrogen isotope fractionation of vascular plant leaf waxes.

    Directory of Open Access Journals (Sweden)

    Li Gao

    Full Text Available Hydrogen isotopic ratios of terrestrial plant leaf waxes (δD have been widely used for paleoclimate reconstructions. However, underlying controls for the observed large variations in leaf wax δD values in different terrestrial vascular plants are still poorly understood, hampering quantitative paleoclimate interpretation. Here we report plant leaf wax and source water δD values from 102 plant species grown in a common environment (New York Botanic Garden, chosen to represent all the major lineages of terrestrial vascular plants and multiple origins of common plant growth forms. We found that leaf wax hydrogen isotope fractionation relative to plant source water is best explained by membership in particular lineages, rather than by growth forms as previously suggested. Monocots, and in particular one clade of grasses, display consistently greater hydrogen isotopic fractionation than all other vascular plants, whereas lycopods, representing the earlier-diverging vascular plant lineage, display the smallest fractionation. Data from greenhouse experiments and field samples suggest that the changing leaf wax hydrogen isotopic fractionation in different terrestrial vascular plants may be related to different strategies in allocating photosynthetic substrates for metabolic and biosynthetic functions, and potential leaf water isotopic differences.

  20. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.

    2004-12-31

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a

  1. Experimental and modelling evaluation of an ammonia-fuelled microchannel reactor for hydrogen generation / Steven Chiuta

    OpenAIRE

    Chiuta, Steven

    2015-01-01

    In this thesis, ammonia (NH3) decomposition was assessed as a fuel processing technology for producing on-demand hydrogen (H2) for portable and distributed fuel cell applications. This study was motivated by the present lack of infrastructure to generate H2 for proton exchange membrane (PEM) fuel cells. An overview of past and recent worldwide research activities in the development of reactor technologies for portable and distributed hydrogen generation via NH3 decomposition wa...

  2. Continuous/Batch Mg/MgH2/H2O-Based Hydrogen Generator

    Science.gov (United States)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    A proposed apparatus for generating hydrogen by means of chemical reactions of magnesium and magnesium hydride with steam would exploit the same basic principles as those discussed in the immediately preceding article, but would be designed to implement a hybrid continuous/batch mode of operation. The design concept would simplify the problem of optimizing thermal management and would help to minimize the size and weight necessary for generating a given amount of hydrogen.

  3. Generation of Hydrogen from Photolysis of Organic Acids by Photosynthetic Bacteria

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Photodecomposition of ten kinds of organic acids by Rhodopseudomonas palustris for producing hydrogen has been investigated. By using acetate as hydrogen donor, dynamics of hydrogen production and cell growth has been determined; the influences of acetate concentration, temperature, light intensity and the effects of the interaction among metal ions (Fe3+, Ni2+), acetate and glutamate in aqueous solution on hydrogen production have been examined for optimizing the conditions of H2 generation. The results show that H2 production is partially correlated with cell growth; Ni2+ inhibits hydrogen production, but enhances cell growth; Fe3+ promotes hydrogen production evidently. The highest rate of H2 production is 22.1 mL L-1 h-1 under the conditions of 35 ~ 37℃, 6000 ~ 8000 lx, 30 mmolL-1 of acetate, 9 mmolL-1 of glutamate, and 50 (molL-1 of Fe3+.

  4. Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A.M.F.R.; Falcao, D.S. [Departamento de Eng. Quimica, Centro de Estudos de Fenomenos de Transporte, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Silva, R.A.; Rangel, C.M. [Instituto Nacional de Engenharia e Tecnologia e Inovacao, Paco do Lumiar 22, 1649-038 (Portugal)

    2006-08-15

    The catalytic hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution was studied using a non-noble; nickel-based powered catalyst exhibiting strong activity even after long time storage. This easy-to-prepare catalyst showed an enhanced activity after being recovered from previous use. The effects of temperature, NaBH{sub 4} concentration, NaOH concentration and pressure on the hydrogen generation rate were investigated. Particular importance has the effect of pressure, since the maximum reached pressure of hydrogen is always substantially lower than predictions (considering 100% conversion) due to solubility effects. The solubility of hydrogen is greatly enhanced by the rising pressure during reaction, leading to storage of hydrogen in the liquid phase. This effect can induce new ways of using this type of catalyst and reactor for the construction of hydrogen generators and even containers for portable and in situ applications. (author)

  5. In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bandi, A.; Specht, M.; Sichler, P.; Nicoloso, N.

    2002-09-20

    The production of hydrogen for fuel cell applications requires cost and energy efficient technologies. The Absorption Enhanced Reforming (AER), developed at ZSW with industrial partners, is aimed to simplify the process by using a high temperature in situ CO2 absorption. The in situ CO2 removal results in shifting the steam reforming reaction equilibrium towards increased hydrogen concentration (up to 95 vol%). The key part of the process is the high temperature CO2 absorbent. In this contribution results of Thermal Gravimetric Analysis (TGA) investigations on natural minerals, dolomites, silicates and synthetic absorbent materials in regard of their CO2 absorption capacity and absorption/desorption cyclic stability are presented and discussed. It has been found that the inert parts of the absorbent materials have a structure stabilizing effect, leading to an improved cyclic stability of the materials.

  6. Solar-hydrogen generation and solar concentration (Conference Presentation)

    Science.gov (United States)

    Chinello, Enrico; Modestino, Miguel A.; Schüttauf, Jan-Willem; Lambelet, David; Delfino, Antonio; Dominé, Didier; Faes, Antonin; Despeisse, Matthieu; Bailat, Julien; Psaltis, Demetri; Fernandez Rivas, David; Ballif, Christophe; Moser, Christophe

    2016-09-01

    We successfully demonstrated and reported the highest solar-to-hydrogen efficiency with crystalline silicon cells and Earth-abundant electrocatalysts under unconcentrated solar radiation. The combination of hetero-junction silicon cells and a 3D printed Platinum/Iridium-Oxide electrolyzer has been proven to work continuously for more than 24 hours in neutral environment, with a stable 13.5% solar-to-fuel efficiency. Since the hydrogen economy is expected to expand to a global scale, we demonstrated the same efficiency with an Earth-abundant electrolyzer based on Nickel in a basic medium. In both cases, electrolyzer and photovoltaic cells have been specifically sized for their characteristic curves to intersect at a stable operating point. This is foreseen to guarantee constant operation over the device lifetime without performance degradation. The next step is to lower the production cost of hydrogen by making use of medium range solar concentration. It permits to limit the photoabsorbing area, shown to be the cost-driver component. We have recently modeled a self-tracking solar concentrator, able to capture sunlight within the acceptance angle range +/-45°, implementing 3 custom lenses. The design allows a fully static device, avoiding the external tracker that was necessary in a previously demonstrated +/-16° angular range concentrator. We will show two self-tracking methods. The first one relies on thermal expansion whereas the second method relies on microfluidics.

  7. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per

  8. Development of generator-cooling hydrogen purity improvement system using hydrogen absorbing alloy; Suiso kyuzo gokin ni yoru hatsudenkinai suiso jundo kojo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Y.; Sato, J.; Haruki, N.; Kogi, T.; Okuno, Y. [The Kansai Electric Power Co. Inc., Osaka (Japan); Takeda, H.; Wakisaka, Y. [The Japan Steel Works, Ltd., Tokyo (Japan); Fujita, T. [Mitsubishi Electric Corp., Tokyo (Japan)

    1997-01-31

    A generator-cooling hydrogen purity improvement system was developed by utilizing hydrogen absorbing and discharging functions of hydrogen storage alloy. For demonstration test with an actual machine, four elements, Ca, Ni, Mm and Al, were used as hydrogen storage alloys. To treat hydrogen gas with a wide range of purity and reduce hydrogen gas feed, flow operation for hydrogen purity improvement, batch operation, and recycle operation for maintaining the hydrogen purity were performed. As a result of the generator-cooling hydrogen purity improvement demonstration test, it was found that the hydrogen purity can be enhanced from 97.69% before operation to 99.9% after operation for 104 hours and to 99.95% after operation for 140 hours. The hydrogen recovery rates during flow test and batch test were between 92 and 95%. For the hydrogen purity maintaining test, it was confirmed that the high hydrogen purity of 99.9% has been continuously maintained for 140 days, and that the hydrogen recovery rate was over 99%. 2 refs., 15 figs., 3 tabs.

  9. Turbines, generators and associated plant incorporating modern power system practice

    CERN Document Server

    Littler, DJ

    1992-01-01

    The introduction of new 500 MW and 660 MW turbine generator plant in nuclear, coal- and oil-fired power stations has been partly responsible for the increase in generating capacity of the CEGB over the last 30 years. This volume provides a detailed account of experience gained in the development, design, manufacture, operation and testing of large turbine-generators in the last 20 years. With the advance in analytical and computational techniques, the application of this experience to future design and operation of large turbine-generator plant will be of great value to engineers in the indust

  10. Chapter 11: Marine and Hydrokinetic Power Generation and Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Yu, Yi-Hsiang

    2017-05-18

    Marine and hydrokinetic (MHK) power generation is a relatively new type of renewable generation. Predecessors such as wind power generation, hydropower plant generation, geothermal generation, photovoltaic generation, and solar thermal generation have gained a lot of attention because of their successful implementation. The successful integration of renewable generation into the electric power grid has energized the power system global communities to take the lessons learned, innovations, and market structure to focus on the large potential of MHK to also contribute to the pool of renewable energy generation. This chapter covers the broad spectrum of MHK generation. The state-of-the-art power takeoff methods will be discussed. Types of electrical generators will be presented, and the options for implementation will be presented.

  11. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

  12. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

  13. Conversion of Claus plants of Kirkuk-Iraq to produce hydrogen and sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Naman, S.A. [Chemistry Dept., Univ. of Duhok, Duhok (Iraq); Veziroglu, A. [International Association of Hydrogen Energy, Miami, Florida (United States)

    2009-07-01

    'Full text': Hydrogen production from rich sub-quality natural gas (SQNG) is visible technically with assessment of cost, safety and environmental toxicology analysis of hydrogen sulfide, is summarized. There are two Claus plants in Kirkuk-Iraq, converting hydrogen sulfide to elemental sulfur capacity of 2200 ton/day. One of these plants is working with only 400 ton/day and it is an old Claus process. The other is a modified Claus sulfur recovery process with a capacity of 1800 ton/day. Both of these plants operate with low efficiency due to lack of maintenance and the present situation in Iraq. Therefore, the agricultural area around Kirkuk is very polluted by this gas. Two pilot plants have been constructed inside the modified Claus plant in Kirkuk The first one is based on the flow system tube furnace reactor containing mixed Titanium oxide/sulfide with a cold trap for sulfur separation and a bath of 30% dithanolamine to separate and recycle H{sub 2}S from hydrogen. The second pilot plant consists of a thermal diffusion ceramic rod inside a silica column containing Zeolit 5A as a catalyst. This pilot plant also consists of a trap for continuous separation of sulfur and a system for separation of hydrogen from unreacted H{sub 2}S to recycle. The efficiency of conversion of H{sub 2}S to hydrogen and sulfur has been optimized as a function of catalyst type and mixture, temperature of furnace, flow rate of gas and reactor materials until the efficiency reaches more than 97%. The Kirkuk natural gas consists of a mixture of CO{sub 2} 10% and H{sub 2}S 12%. We found that these pilot plants were suitable with Cadmium chalcogens catalysts to produce hydrogen, methane, ethane and sulphur, but with lower efficiency than H{sub 2}S decomposition only. Our aim in the second pilot plant, which consists of a silica column, was to supply the heat by solar energy concentrator instead of electricity as our catalyst needs 450 {sup o}C. and the solar intensity is about

  14. Induction of Low-Level Hydrogen Peroxide Generation by Unbleached Cotton Nonwovens as Potential Wound Dressing Materials.

    Science.gov (United States)

    Edwards, J Vincent; Prevost, Nicolette T; Nam, Sunghyun; Hinchliffe, Doug; Condon, Brian; Yager, Dorne

    2017-03-06

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H₂O₂) generation during cotton fiber development. Traditionally, the processing of cotton into gauze involves scouring and bleaching processes that remove the components in the cuticle and primary cell wall. The use of unbleached, greige cotton fibers in dressings, has been relatively unexplored. We have recently determined that greige cotton can generate low levels of H₂O₂ (5-50 micromolar). Because this may provide advantages for the use of greige cotton-based wound dressings, we have begun to examine this in more detail. Both brown and white cotton varieties were examined in this study. Brown cotton was found to have a relatively higher hydrogen peroxide generation and demonstrated different capacities for H₂O₂ generation, varying from 1 to 35 micromolar. The H₂O₂ generation capacities of white and brown nonwoven greige cottons were also examined at different process stages with varying chronology and source parameters, from field to nonwoven fiber. The primary cell wall of nonwoven brown cotton appeared very intact, as observed by transmission electron microscopy, and possessed higher pectin levels. The levels of pectin, SOD, and polyphenolics, correlated with H₂O₂ generation.

  15. Induction of Low-Level Hydrogen Peroxide Generation by Unbleached Cotton Nonwovens as Potential Wound Dressing Materials

    Directory of Open Access Journals (Sweden)

    J. Vincent Edwards

    2017-03-01

    Full Text Available Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD, and trace metals, which are associated with hydrogen peroxide (H2O2 generation during cotton fiber development. Traditionally, the processing of cotton into gauze involves scouring and bleaching processes that remove the components in the cuticle and primary cell wall. The use of unbleached, greige cotton fibers in dressings, has been relatively unexplored. We have recently determined that greige cotton can generate low levels of H2O2 (5–50 micromolar. Because this may provide advantages for the use of greige cotton-based wound dressings, we have begun to examine this in more detail. Both brown and white cotton varieties were examined in this study. Brown cotton was found to have a relatively higher hydrogen peroxide generation and demonstrated different capacities for H2O2 generation, varying from 1 to 35 micromolar. The H2O2 generation capacities of white and brown nonwoven greige cottons were also examined at different process stages with varying chronology and source parameters, from field to nonwoven fiber. The primary cell wall of nonwoven brown cotton appeared very intact, as observed by transmission electron microscopy, and possessed higher pectin levels. The levels of pectin, SOD, and polyphenolics, correlated with H2O2 generation.

  16. Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Russell

    2006-06-01

    This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

  17. CATALYTIC INTERACTIONS OF RHODIUM, RUTHENIUM, AND MERCURY DURING SIMULATED DWPF CPC PROCESSING WITH HYDROGEN GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-10-09

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC) vessels were performed as part of the ongoing investigation into catalytic hydrogen generation. Rhodium, ruthenium, and mercury have been identified as the principal elemental factors affecting the peak hydrogen generation rate in the DWPF Sludge Receipt and Adjustment Tank (SRAT) for a given acid addition. The primary goal of this study is to identify any significant interactions between the three factors. Noble metal concentrations were similar to recent sludge batches. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%. An experimental matrix was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), two duplicate midpoint runs, and two additional replicate runs to assess reproducibility away from the midpoint. Midpoint testing can identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. Six Slurry Mix Evaporator (SME) cycles were performed to supplement the SME hydrogen generation database. Some of the preliminary findings from this study include: (1) Rh was linked to the maximum SRAT hydrogen generation rate in the first two hours after acid addition in preliminary statistical modeling. (2) Ru was linked conclusively to the maximum SRAT hydrogen generation rate in the last four hours of reflux in preliminary statistical modeling. (3) Increasing the ratio of Hg/Rh shifted the noble metal controlling the maximum SRAT hydrogen generation rate from

  18. Control of microbially generated hydrogen sulfide in produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Burger, E.D.; Vance, I.; Gammack, G.F.; Duncan, S.E.

    1995-12-31

    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technology for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.

  19. Microbiome selection could spur next-generation plant breeding strategies

    Directory of Open Access Journals (Sweden)

    Murali Gopal

    2016-12-01

    Full Text Available Plants, though sessile, have developed a unique strategy to counter biotic and abiotic stresses by symbiotically co-evolving with microorganisms and tapping into their genome for this purpose. Soil is the bank of microbial diversity from which a plant selectively sources its microbiome to suit its needs. Besides soil, seeds, which carry the genetic blueprint of plants during trans-generational propagation, are home to diverse microbiota that acts as the principal source of microbial inoculum in crop cultivation. Overall, a plant is ensconced both on the outside and inside with a diverse assemblage of microbiota. Together, the plant genome and the genes of the microbiota that the plant harbours in different plant tissues i.e the ‘plant microbiome’, form the holobiome which is now considered as unit of selection: ‘the holobiont’. The ‘plant microbiome’ not only helps plants to remain fit but also offers critical genetic variability, hitherto, not employed in the breeding strategy by plant breeders, who traditionally have exploited the genetic variability of the host for developing high yielding or disease tolerant or drought resistant varieties. This fresh knowledge of the microbiome, particularly of the rhizosphere, offering genetic variability to plants, opens up new horizons for breeding that could usher in cultivation of next-generation crops depending less on inorganic inputs, resistant to insect pest and diseases and resilient to climatic perturbations. We surmise, from ever increasing evidences, that plants and their microbial symbionts need to be co-propagated as life-long partners in future strategies for plant breeding.

  20. Next-Generation Sequencing and Genome Editing in Plant Virology

    OpenAIRE

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21–24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant vir...

  1. Design and Control of Integrated Systems for Hydrogen Production and Power Generation

    Science.gov (United States)

    Georgis, Dimitrios

    Growing concerns on CO2 emissions have led to the development of highly efficient power plants. Options for increased energy efficiencies include alternative energy conversion pathways, energy integration and process intensification. Solid oxide fuel cells (SOFC) constitute a promising alternative for power generation since they convert the chemical energy electrochemically directly to electricity. Their high operating temperature shows potential for energy integration with energy intensive units (e.g. steam reforming reactors). Although energy integration is an essential tool for increased efficiencies, it leads to highly complex process schemes with rich dynamic behavior, which are challenging to control. Furthermore, the use of process intensification for increased energy efficiency imposes an additional control challenge. This dissertation identifies and proposes solutions on design, operational and control challenges of integrated systems for hydrogen production and power generation. Initially, a study on energy integrated SOFC systems is presented. Design alternatives are identified, control strategies are proposed for each alternative and their validity is evaluated under different operational scenarios. The operational range of the proposed control strategies is also analyzed. Next, thermal management of water gas shift membrane reactors, which are a typical application of process intensification, is considered. Design and operational objectives are identified and a control strategy is proposed employing advanced control algorithms. The performance of the proposed control strategy is evaluated and compared with classical control strategies. Finally SOFC systems for combined heat and power applications are considered. Multiple recycle loops are placed to increase design flexibility. Different operational objectives are identified and a nonlinear optimization problem is formulated. Optimal designs are obtained and their features are discussed and compared

  2. Thermodynamic analysis of SCW NPP cycles with thermo-chemical co-generation of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Naidin, N.; Mokry, S.; Monichan, R.; Chophla, K.; Pioro, I. [Faculty of Energy Systems and Nuclear Science, Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)], E-mail: Maria.Naidin@mycampus.uoit.ca, Sarah.Mokry@mycampus.uoit.ca, Romson.Monichan@uoit.ca, Karan.Chophla@mycampus.uoit.ca, Igor.Pioro@uoit.ca; Naterer, G.; Gabriel, K. [Faculty of Engineering and Applied Science, Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)], E-mail: Greg.Naterer@uoit.ca, Kamiel.Gabriel@uoit.ca

    2009-07-01

    Research activities are currently conducted worldwide to develop Generation IV nuclear reactor concepts with the objective of improving thermal efficiency and increasing economic competitiveness of Generation IV Nuclear Power Plants (NPPs) compared to modern thermal power plants. The Super-Critical Water-cooled Reactor (SCWR) concept is one of the six Generation IV options chosen for further investigation and development in several countries including Canada and Russia. Water-cooled reactors operating at subcritical pressures (10 - 16 MPa) have provided a significant amount of electricity production for the past 50 years. However, the thermal efficiency of the current NPPs is not very high (30 - 35%). As such, more competitive designs, with higher thermal efficiencies, which will be close to that of modern thermal power plants (45 - 50%), need to be developed and implemented. Super-Critical Water (SCW) NPPs will have much higher operating parameters compared to current NPPs (i.e., steam pressures of about 25 MPa and steam outlet temperatures up to 625{sup o}C). Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermochemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. The two SCW NPP cycles proposed by this paper are based on direct, regenerative, no-reheat and single-reheat configurations. As such, the main parameters and performance in terms of thermal efficiency of the SCW NPP concepts mentioned above are being analyzed. The cycles are generally comprised of: an SCWR, a SC turbine, one deaerator, ten feedwater heaters, and pumps. The SC turbine of the no-reheat cycle consists of one High-Pressure (HP) cylinder and two Low-Pressure (LP) cylinders. Alternatively, the SC turbine for the single-reheat cycle is comprised of one High-Pressure (HP) cylinder, one Intermediate-Pressure (IP) cylinder and two Low-Pressure (LP) cylinders. Since the single

  3. Hydrogen generation from steam reforming of ethanol in dielectric barrier discharge

    Institute of Scientific and Technical Information of China (English)

    Baowei Wang; Yijun Lü; Xu Zhang; Shuanghui Hu

    2011-01-01

    Dielectric barrier discharge(DBD)was used for the generation of hydrogen from ethanol reforming.Effects of reaction conditions,such as vaporization temperature,ethanol flow rate,water/ethanol ratio,and addition of oxygen,on the ethanol conversion and hydrogen yield,were studied.The results showed that the increase of ethanol flow rate decreased ethanol conversion and hydrogen yield,and high water/ethanol ratio and addition of oxygen were advantageous.Ethanol conversion and hydrogen yield increased with the vaporization room temperature up to the maximum at first,and then decreased slightly.The maximum hydrogen yield of 31.8% was obtained at an ethanol conversion of 88.4% under the optimum operation conditions of vaporization room temperature of 120℃,ethanol flux of 0.18 mL/min,water/ethanol ratio of 7.7 and oxygen volume concentration of 13.3%.

  4. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Anthony F. Sammells; Richard Mackay; Richard Treglio; Sara L. Rolfe; Richard Blair; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Jon P. Wagner; Clive Brereton; Warren Wolfs

    2004-07-26

    During this quarter, work was focused on testing layered composite membranes under varying feed stream flow rates at high pressure. By optimizing conditions, H{sub 2} permeation rates as high as 423 mL {center_dot} min{sup -1} {center_dot} cm{sup -2} at 440 C were measured. Membrane stability was investigated by comparison to composite alloy membranes. Permeation of alloyed membranes showed a strong dependence on the alloying element. Impedance analysis was used to investigate bulk and grain boundary conductivity in cermets. Thin film cermet deposition procedures were developed, hydrogen dissociation catalysts were evaluated, and hydrogen separation unit scale-up issues were addressed.

  5. Enviro-Friendly Hydrogen Generation from Steel Mill-Scale via Metal-Steam Reforming

    Science.gov (United States)

    Azad, Abdul-Majeed; Kesavan, Sathees

    2006-01-01

    An economically viable and environmental friendly method of generating hydrogen for fuel cells is by the reaction of certain metals with steam, called metal-steam reforming (MSR). This technique does not generate any toxic by-products nor contributes to the undesirable greenhouse effect. From the standpoint of favorable thermodynamics, total…

  6. Radiolytic hydrogen generation at silicon carbide–water interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Jennifer [School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Dalton Cumbrian Facility, The University of Manchester, Westlakes Science & Technology Park, Moor Row CA24 3HA (United Kingdom); Reiff, Sarah C. [Radiation Laboratory and Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Pimblott, Simon M. [School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Dalton Cumbrian Facility, The University of Manchester, Westlakes Science & Technology Park, Moor Row CA24 3HA (United Kingdom); LaVerne, Jay A., E-mail: laverne.1@nd.edu [Radiation Laboratory and Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-02-15

    While many of the proposed uses of SiC in the nuclear industry involve systems that are assumed to be dry, almost all materials have dissociated chemisorbed water associated with their surface, which can undergo chemistry in radiation fields. Silicon carbide α-phase and β-phase nanoparticles with water were irradiated with γ-rays and 5 MeV {sup 4}He ions followed by the determination of the production of molecular hydrogen, H{sub 2}, and characterization of changes in the particle surface. The yields of H{sub 2} from SiC–water slurries were always greater than expected from a simple mixture rule indicating that the presence of SiC was influencing the production of H{sub 2} from water, probably through an energy transfer from the solid to liquid phase. Although the increase in H{sub 2} yields was modest, a decrease in the water mass percentage led to an increase in H{sub 2} yields, especially for very low amounts of water. Surface analysis techniques included diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), nitrogen absorption with the Brunauer – Emmett – Teller (BET) methodology for surface area determination, X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Little change in the SiC surface was observed following radiolysis except for some conversion of β-phase SiC to the α-phase and the formation of SiO{sub 2} with He ion radiolysis. - Highlights: • SiC–water interfaces were irradiated with γ-rays and 5 MeV He ions. • Hydrogen production from SiC–water slurries was greater than that for pure water. • Raman spectroscopy shows conversion of the α-phase SiC to the β-phase. • He ion radiolysis resulted in the formation of SiO{sub 2} on the surface.

  7. Steam generators, industrial power plants, and cogeneration plants. Lectures; Dampferzeuger, Industrie- und Heizkraftwerke 2010. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The proceedings of the meeting on steam generators, industrial power plants, and cogeneration plants include the following lectures: Assignments and scopes of the VGB working group ''industry and thermal power plants, BHKW''. Combustion power and process control - application of feed grate firing in industrial technology - experiences and perspectives. A new possibility of biomass co-combustion. Biomass co-combustion in Vattenfall Waerme AG. Biomass plant with optimized control. The new energy supply concept for the paper plant in Plattling. Efficient steam boiler facilities for industry and thermal power plants - case studies. Adaptation of flue gas purification for co-combustion with experiences of prototype plants. Modern risk and insurance management for power plants. Reliability oriented maintenance. Surrogate fuel IHKW Gersthofen - planning, construction and preliminary operational experiences. Assignments and scopes of the VGB working group ''steam generators''. New developments in process safety management of E.ON UK coal-fired power plants. Station-supply reduction by power drive reconstruction to frequency control - modern injection technology at high plant parameters. Self-optimizing control of fuel/air regulation. CO{sub 2} reduction by automatic power plant modeling. Virtual reality as QA tool in 3D planning. Thermodynamic studies in power plants using VDI 2048. Heating surface cleaning with explosion generators - an alternative to soot blowers. results of laboratory study on urgent material questions.

  8. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  9. Electroless Nickel-Based Catalyst for Diffusion Limited Hydrogen Generation through Hydrolysis of Borohydride

    Directory of Open Access Journals (Sweden)

    Shannon P. Anderson

    2013-07-01

    Full Text Available Catalysts based on electroless nickel and bi-metallic nickel-molybdenum nanoparticles were synthesized for the hydrolysis of sodium borohydride for hydrogen generation. The catalysts were synthesized by polymer-stabilized Pd nanoparticle-catalyzation and activation of Al2O3 substrate and electroless Ni or Ni-Mo plating of the substrate for selected time lengths. Catalytic activity of the synthesized catalysts was tested for the hydrolyzation of alkaline-stabilized NaBH4 solution for hydrogen generation. The effects of electroless plating time lengths, temperature and NaBH4 concentration on hydrogen generation rates were analyzed and discussed. Compositional analysis and surface morphology were carried out for nano-metallized Al2O3 using Scanning Electron Micrographs (SEM and Energy Dispersive X-Ray Microanalysis (EDAX. The as-plated polymer-stabilized electroless nickel catalyst plated for 10 min and unstirred in the hydrolysis reaction exhibited appreciable catalytic activity for hydrolysis of NaBH4. For a zero-order reaction assumption, activation energy of hydrogen generation using the catalyst was estimated at 104.6 kJ/mol. Suggestions are provided for further work needed prior to using the catalyst for portable hydrogen generation from aqueous alkaline-stabilized NaBH4 solution for fuel cells.

  10. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  11. Minimising hydrogen sulphide generation during steam assisted production of heavy oil

    OpenAIRE

    Wren Montgomery; Sephton, Mark A.; Watson, Jonathan S.; Huang Zeng; Andrew C. Rees

    2015-01-01

    The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strateg...

  12. Efficiency and economics of large scale hydrogen liquefaction. [for future generation aircraft requirements

    Science.gov (United States)

    Baker, C. R.

    1975-01-01

    Liquid hydrogen is being considered as a substitute for conventional hydrocarbon-based fuels for future generations of commercial jet aircraft. Its acceptance will depend, in part, upon the technology and cost of liquefaction. The process and economic requirements for providing a sufficient quantity of liquid hydrogen to service a major airport are described. The design is supported by thermodynamic studies which determine the effect of process arrangement and operating parameters on the process efficiency and work of liquefaction.

  13. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  14. Effects of acid accelerators on hydrogen generation from solid sodium borohydride using small scale devices

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Sankaran; Subramanian, Vaidyanathan (Ravi) [Department of Chemical and Metallurgical Engineering, University of Nevada, Reno, NV 89557 (United States)

    2009-02-01

    This work describes hydrogen generation using a heterogeneous chemical system for small scale portable applications. Hydrogen generation using acidified water and solid sodium borohydride (NaBH{sub 4}) is presented. The effects of two modes of contacts - (1) a flow through type and (2) a diffusion type - contact in a 5 mm{sup 3} device are discussed. The effects of contacting several mineral and benign acids with NaBH{sub 4} are compared by monitoring hydrogen yield. Among the mineral acids examined, HCl generates a maximum hydrogen yield of 97% of the theoretical yield at 3N concentration. The benign acids are required in higher concentration compared to mineral acids. Formic acid produces 87% of the hydrogen yield at 12N. The products of the reaction have been characterized using scanning electron microscopy and X-ray diffraction. A combination of acid strength, porosity of the interface, and solubility of the byproducts contributes to the different hydrogen yields in the presence of various acids. (author)

  15. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Katherine [Proton OnSite; Dalton, Luke [Proton OnSite; Roemer, Andy [Proton OnSite; Carter, Blake [Proton OnSite; Niedzwiecki, Mike [Proton OnSite; Manco, Judith [Proton OnSite; Anderson, Everett [Proton OnSite; Capuano, Chris [Proton OnSite; Wang, Chao-Yang [Penn State University; Zhao, Wei [Penn State University

    2014-02-05

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  16. Root cause study on hydrogen generation and explosion through radiation-induced electrolysis in the Fukushima Daiichi accident

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Genn, E-mail: sajig@bd5.so-net.ne.jp

    2016-10-15

    Highlights: • Reviewed how LWRs have coped with “water radiolysis”, during normal operation to severe accidents. • Concluded “water radiolysis” is not likely a route course of the hydrogen explosions at Fukushima. • Performed modeling studies based on “radiation-induced electrolysis” on Unit 1–Unit 4. • Generation of several tens of thousands cubic meters hydrogen gas is predicted before the hydrogen explosions. • Upon SBO, early safe disposal of hydrogen from RPVs is indispensable in BWRs. - Abstract: Since the scientific cause for a series of hydrogen explosions during the Fukushima accident has not been established, the author investigated his basic theory named “radiation-induced electrolysis (RIE)” by applying the estimation of the amounts of H{sub 2} generation during the active phase of the Fukushima accident. The author's theory was originally developed by including Faraday's law of electrolysis into the basic time-dependent material balance equation of radiation-chemical species for his study on accelerated corrosion phenomena which is widely observed in aged plants. As such this theory applies to the early phase of the accident before the loss of water levels in the reactor cores, although the simulations were performed from the time of seismic reactor trip to the hydrogen explosions in this paper. Through this mechanism as much as 29,400 m{sup 3}-STP of hydrogen gas is estimated to be accumulated inside the PCV just prior to the hydrogen explosion which occurred one day after the reactor trip in 1F1. With this large volume of hydrogen gas the explosion was a viable possibility upon the “venting” operation. In view of this observation, hydrogen generation from the spent fuel pools was also investigated. For the investigation of the 1F4 SFP, the pool water temperature and flow velocity due to natural circulation were changed widely to identify conditions of large hydrogen generation. During the trial calculations

  17. How do bryophytes govern generative recruitment of vascular plants?

    Science.gov (United States)

    Soudzilovskaia, Nadejda A; Graae, Bente J; Douma, Jacob C; Grau, Oriol; Milbau, Ann; Shevtsova, Anna; Wolters, Loes; Cornelissen, Johannes H C

    2011-06-01

    Interactions between vascular plants and bryophytes determine plant community composition in many ecosystems. Yet, little is known about the importance of interspecific differences between bryophytes with respect to their effects on vascular plants. We compared the extent to which species-specific bryophyte effects on vascular plant generative recruitment depend on the following underlying mechanisms: allelopathy, mechanical obstruction, soil moisture and temperature control. We sowed 10 vascular plant species into monospecific mats of six chemically and structurally diverse bryophytes, and examined 1-yr seedling recruitment. Allelopathic effects were also assessed in a laboratory phyto-assay. Although all bryophytes suppressed vascular plant regeneration, there were significant differences between the bryophyte species. The lack of interactions indicated the absence of species-specific adaptations of vascular plants for recruitment in bryophyte mats. Differences between bryophyte species were best explained by alterations in temperature regime under bryophyte mats, mostly by reduced temperature amplitudes during germination. The temperature regime under bryophyte mats was well predicted by species-specific bryophyte cushion thickness. The fitness of established seedlings was not affected by the presence of bryophytes. Our results suggest that climatically or anthropogenically driven changes in the species' composition of bryophyte communities have knock-on effects on vascular plant populations via generative reproduction.

  18. 76 FR 32237 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability...

    Science.gov (United States)

    2011-06-03

    ... COMMISSION Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability... Plants and Public Meetings for the License Renewal of Crystal River Unit 3 Nuclear Generating Plant... operation for Crystal River Unit 3 Nuclear Generating Plant. Crystal River Unit 3 Nuclear Generating Plant...

  19. In-vessel Zircaloy oxidation/hydrogen generation behavior during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Cronenberg, A.W. (Science and Engineering Associates, Inc., Albuquerque, NM (USA))

    1990-09-01

    In-vessel Zircaloy oxidation and hydrogen generation data from various US Nuclear Regulatory Commission severe-fuel damage test programs are presented and compared, where the effects of Zircaloy melting, bundle reconfiguration, and bundle quenching by reflooding are assessed for common findings. The experiments evaluated include fuel bundles incorporating fresh and previously irradiated fuel rods, as well as control rods. Findings indicate that the extent of bundle oxidation is largely controlled by steam supply conditions and that high rates of hydrogen generation continued after melt formation and relocation. Likewise, no retardation of hydrogen generation was noted for experiments which incorporated control rods. Metallographic findings indicate extensive oxidation of once-molten Zircaloy bearing test debris. Such test results indicate no apparent limitations to Zircaloy oxidation for fuel bundles subjected to severe-accident coolant-boiloff conditions. 46 refs., 22 figs., 12 tabs.

  20. Dye-Sensitized Photocatalytic Water Splitting and Sacrificial Hydrogen Generation: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Pankaj Chowdhury

    2017-05-01

    Full Text Available Today, global warming and green energy are important topics of discussion for every intellectual gathering all over the world. The only sustainable solution to these problems is the use of solar energy and storing it as hydrogen fuel. Photocatalytic and photo-electrochemical water splitting and sacrificial hydrogen generation show a promise for future energy generation from renewable water and sunlight. This article mainly reviews the current research progress on photocatalytic and photo-electrochemical systems focusing on dye-sensitized overall water splitting and sacrificial hydrogen generation. An overview of significant parameters including dyes, sacrificial agents, modified photocatalysts and co-catalysts are provided. Also, the significance of statistical analysis as an effective tool for a systematic investigation of the effects of different factors and their interactions are explained. Finally, different photocatalytic reactor configurations that are currently in use for water splitting application in laboratory and large scale are discussed.

  1. Carbon and hydrogen isotopic composition and generation pathway of biogenic gas in China

    Institute of Scientific and Technical Information of China (English)

    SHEN Ping; WANG Xiaofeng; XU Yin; SHI Baoguang; XU Yongchang

    2009-01-01

    The carbon and hydrogen isotopic composition of biogenic gas is of great importance for the study of its generation pathway and reservoiring characteristics. In this paper, the formation pathways and reservoiring characteristics of biogenic gas reservoirs in China are described in terms of the carbon and hydrogen isotopic compositions of 31 gas samples from 10 biogenic gas reservoirs. The study shows that the hydrogen isotopic compositions of these biogenic gas reservoirs can be divided into three intervals:δDCH4>-200‰,-250‰<δDCH4<-200‰ and δDCH4<-250‰. The forerunners believed that the main generation pathway of biogenic gas under the condition of continental fresh water is acetic fermentation. Our research results showed that the generation pathway of biogenic gas under the condition of marine facies is typical CO2- reduction, the biogenic gas has heavy hydrogen isotopic composition: its δDCH4 values are higher than -200‰; that the biogenic gas under the condition of continental facies also was generated by the same way, but its hydrogen isotopic composition is lighter than that of biogenetic gas generated under typical marine facies condition: -250‰<δDCH4<-200‰, the δDCH4 values may be related to the salinity of the water medium in ancient lakes. From the relevant data of the Qaidam Basin, it can be seen that the hydrogen isotopic composition of biogenic methane has the same variation trend with increasing salinity of water medium. There are biogenic gas reservoirs formed in transitional regions under the condition of continental facies. These gas reservoirs resulted from both CO2- reduction and acetic fermentation, the formation of which may be related to the non-variant salinity of ancient water medium and the relatively high geothermal gradient, as is the case encountered in the Baoshan Basin. The biogenic gas generating in these regions has light hydrogen isotopic composition: δDCH4<-250‰, and relatively heavy carbon isotopic

  2. Minimising hydrogen sulphide generation during steam assisted production of heavy oil

    Science.gov (United States)

    Montgomery, Wren; Sephton, Mark A.; Watson, Jonathan S.; Zeng, Huang; Rees, Andrew C.

    2015-02-01

    The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product.

  3. Thermal analysis of solar biomass hybrid co-generation plants

    Science.gov (United States)

    Kaushika, N. D.; Mishra, Anuradha; Chakravarty, M. N.

    2005-12-01

    This article describes a co-generation plant based on the biogas being produced from the waste of distillery plant and highlights the possible configuration in which the plant can be hybridized with auxiliary solar energy source having the advantage of using financial incentives in several countries. In hybridization, the solar heat is used for heating the boiler feed water. The solar heat-generating unit consists of line focus parabolic trough collector, heat transportation system and heat delivery unit such as heat exchanger. The simulation model of heat and mass transfer processes in the solar field as well as the balance of the system is developed to investigate the technological feasibility of the concept in terms of plant yield and matching of subsystems.

  4. Voltage Control in Wind Power Plants with Doubly Fed Generators

    DEFF Research Database (Denmark)

    Garcia, Jorge Martinez

    In this work, the process of designing a wind power plant composed of; doubly fed induction generators, a static compensator unit, mechanically switched capacitors and on-load tap changer, for voltage control is shown. The selected control structure is based on a decentralized system, since...... supplied by the doubly fed induction generator wind turbines is overcome by installing a reactive power compensator, i.e. a static compensator unit, which is coordinated with the plant control by a specific dispatcher. This dispatcher is set according to the result of the wind power plant load flow....... To release the operation of the converters during steady-state disturbances, mechanically switched capacitors are installed in the wind power plant, which due to their characteristics, they are appropriate for permanent disturbances compensation. The mechanically switched capacitors are controlled to allow...

  5. Thermal generating plant (100 MW+) availability and unavailability factors 1995

    Energy Technology Data Exchange (ETDEWEB)

    Glorian, D.; Spiegelberg-Planer, R.

    1995-12-31

    This paper was presented at Working Group Session 8: Performance of thermal generating plant. Results are presented of a survey undertaken every three years on the availability and unavailability of both fossil fired and nuclear power plants world-wide. For fossil-fuel thermal generating units data is presented by eight unit sizes and three classes of fuel, and for nuclear thermal generating units data is presented by type of reactor. Analysis is presented of the overall performance of both types of unit. For fossil-fuel units the lesson learnt through this survey covering 40 countries are consistent with those presented in the 1992 report. For the period 1991-1993 they reveal a further 1.9% improvement in plant availability. This improvement is almost solely due to a reduction in unplanned availability. This clearly demonstrates the better usage of planned outages and improved preventive maintenance practices. 4 refs., 29 figs., 40 tabs.

  6. Next-Generation Sequencing and Genome Editing in Plant Virology

    Directory of Open Access Journals (Sweden)

    Ahmed Hadidi

    2016-08-01

    Full Text Available Next-generation sequencing (NGS has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus; beet curly top virus and beet severe curly top virus (curtovirus; and bean yellow dwarf virus (mastrevirus. The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus and cucumber vein yellowing virus (ipomovirus, family, Potyviridae by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.Keywords: Next-generation sequencing, NGS, plant virology, plant viruses, viroids, resistance to plant viruses by CRISPR-Cas9

  7. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for

  8. Generating hydrogen for mobile devices; Wasserstofferzeugung fuer die mobile Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, W. [Vodafone Pilotentwicklung GmbH, Muenchen (Germany)

    2001-10-01

    In future vehicles, more and more functions will be powered by electricity. These are for example ''steer by wire'', ''break by wire'', air conditioning and infotainment. This growing demand for electricity is a new challenge for the automotive industry. The so called APU (auxilliary power unit) is a convincing solution. This power generating unit based on fuel cell technology will provide electrical power in all operation situations. The article deals with the main focus of P{sup 21}-power for the 21st century, the Mannesmann Fuel Cell Product Center of the Vodafone Pilotentwicklung. (orig.)

  9. Optimization and field demonstration of hybrid hydrogen generator/high efficiency furnace system

    Energy Technology Data Exchange (ETDEWEB)

    Entchev, E.; Coyle, I.; Szadkowski, F. [CANMET Energy Technology Centre, 1 Haanel Dr., Ottawa, Ontario K1A-1M1 (Canada); Manning, M.; Swinton, M. [National Research Council Ottawa, Ontario (Canada); Graydon, J.; Kirk, D. [University of Toronto, Toronto, Ontario (Canada)

    2009-05-15

    Hydrogen is seen as an energy carrier of the future and significant research on hydrogen generation, storage and utilization is accomplished around the world. However, an appropriate intermediate step before wide hydrogen introduction will be blending conventional fuels such as natural gas, oil or diesel with hydrogen and follow up combustion through conventional means. Due to changes in the combustion and flame characteristics of the system additional research is needed to access the limits and the impact of the fuel mix on the combustion systems performance. The hybrid system consists of a 5 kW{sub el} electrolyzer and a residential 15 kW{sub th} high efficiency gas fired furnace. The electrolyzer was integrated with the furnace gas supply and setup to replace 5-25% of the furnace natural gas flow with hydrogen. A mean for proper mixing of hydrogen with natural gas was provided and a control system for safe system operation was developed. Prior to the start of the field trial the hybrid system was investigated in laboratory environment. It was subjected to a variety of steady state and cycling conditions and a detailed performance and optimization analysis was performed with a range of hydrogen/natural gas mixtures. The optimized system was then installed at the Canadian Centre for Housing Technologies (CCHT) Experimental research house. The energy performance of the hybrid system was compared to the energy performance of an identical high efficiency furnace in the Control research house next door. (author)

  10. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m3 H2/m3·d, with a hydrogen yield of 3.4 mol H2/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes. © 2012 American Chemical Society.

  11. Hydrogen generation in microbial reverse-electrodialysis electrolysis cells using a heat-regenerated salt solution.

    Science.gov (United States)

    Nam, Joo-Youn; Cusick, Roland D; Kim, Younggy; Logan, Bruce E

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m(3) H(2)/m(3)·d, with a hydrogen yield of 3.4 mol H(2)/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes.

  12. Hydrogen generation from small-scale wind-powered electrolysis system in different power matching modes

    Energy Technology Data Exchange (ETDEWEB)

    Goekcek, Murat [Department of Mechanical Engineering, Faculty of Engineering, Nigde University, Campus, 51100 Nigde (Turkey)

    2010-10-15

    This study presents a techno-economic evaluation on hydrogen generation from a small-scale wind-powered electrolysis system in different power matching modes. For the analysis, wind speed data, which measured as hourly time series in Kirklareli, Turkey, were used to predict the electrical energy and hydrogen produced by the wind-hydrogen energy system and their variation according to the height of the wind turbine. The system considered in this study is primarily consisted of a 6 kW wind-energy conversion system and a 2 kW PEM electrolyzer. The calculation of energy production was made by means of the levelized cost method by considering two different systems that are the grid-independent system and the grid-integrated system. Annual production of electrical energy and hydrogen was calculated as 15,148.26 kWh/year and 102.37 kg/year, respectively. The highest hydrogen production is obtained in January. The analyses showed that both electrical energy and hydrogen production depend strongly on the hub height of wind turbine in addition to the economic indicators. In the grid-integrated system, the calculated levelized cost of hydrogen changes in the range of 0.3485-4.4849 US$/kg for 36 m hub height related to the specific turbine cost. The grid-integrated system can be considered as profitable when the excess electrical energy delivered by system sold to the grid. (author)

  13. Flight Hydrogen Sensor for use in the ISS Oxygen Generation Assembly

    Science.gov (United States)

    MSadoques, George, Jr.; Makel, Darby B.

    2005-01-01

    This paper provides a description of the hydrogen sensor Orbital Replacement Unit (ORU) used on the Oxygen Generation Assembly (OGA), to be operated on the International Space Station (ISS). The hydrogen sensor ORU is being provided by Makel Engineering, Inc. (MEI) to monitor the oxygen outlet for the presence of hydrogen. The hydrogen sensor ORU is a triple redundant design where each sensor converts raw measurements to actual hydrogen partial pressure that is reported to the OGA system controller. The signal outputs are utilized for system shutdown in the event that the hydrogen concentration in the oxygen outlet line exceeds the specified shutdown limit. Improvements have been made to the Micro-Electro-Mechanical Systems (MEMS) based sensing element, screening, and calibration process to meet OGA operating requirements. Two flight hydrogen sensor ORUs have successfully completed the acceptance test phase. This paper also describes the sensor s performance during acceptance testing, additional tests planned to extend the operational performance calibration cycle, and integration with the OGA system.

  14. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule.

    Science.gov (United States)

    Calderwood, Alexander; Kopriva, Stanislav

    2014-09-15

    Sulfur is essential in all organisms for the synthesis of amino acids cysteine and methionine and as an active component of numerous co-factors and prosthetic groups. However, only plants, algae, fungi, and some prokaryotes are capable of using the abundant inorganic source of sulfur, sulfate. Plants take sulfate up, reduce it, and assimilate into organic compounds with cysteine being the first product of the pathway and a donor of reduced sulfur for synthesis of other S-containing compounds. Cysteine is formed in a reaction between sulfide, derived from reduction of sulfite and an activated amino acid acceptor, O-acetylserine. Sulfide is thus an important intermediate in sulfur metabolism, but numerous other functions in plants has been revealed. Hydrogen sulfide can serve as an alternative source of sulfur for plants, which may be significant in anaerobic conditions of waterlogged soils. On the other hand, emissions of hydrogen sulfide have been detected from many plant species. Since the amount of H2S discharged correlated with sulfate supply to the plants, the emissions were considered a mechanism for dissipation of excess sulfur. Significant hydrogen sulfide emissions were also observed in plants infected with pathogens, particularly with fungi. H2S thus seems to be part of the widely discussed sulfur-induced-resistance/sulfur-enhanced-defense. Recently, however, more evidence has emerged for a role for H2S in regulation and signaling. Sulfide stabilizes the cysteine synthase complex, increasing so the synthesis of its acceptor O-acetylserine. H2S has been implicating in regulation of plant stress response, particularly draught stress. There are more and more examples of processes regulated by H2S in plants being discovered, and hydrogen sulfide is emerging as an important signaling molecule, similar to its role in the animal and human world. How similar the functions, and homeostasis of H2S are in these diverse organisms, however, remains to be elucidated.

  15. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01

    . Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

  16. Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Albanil Sanchez, Loyda; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. CP 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad, UPCH, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    High purity hydrogen was generated from the chemical reaction of aluminum and sodium hydroxide. The aluminum used in this study was obtained from empty soft drink cans and treated with concentrated sulfuric acid to remove the paint and plastic film. One gram of aluminum was reacted with a solution of 2moldm{sup -3} of sodium hydroxide to produce hydrogen. The hydrogen produced from aluminum cans and oxygen obtained from a proton exchange membrane electrolyzer or air, was fed to a proton exchange membrane (PEM) fuel cell to produce electricity. Yields of 44 mmol of hydrogen contained in a volume of 1.760dm{sup 3} were produced from one gram of aluminum in a time period of 20 min. (author)

  17. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  18. Engineering design elements of a two-phase thermosyphon to transfer nuclear thermal energy to a hydrogen plant

    Science.gov (United States)

    Sabharwall, Piyush

    Two hydrogen production processes, both powered by Next Generation Nuclear Plant (NGNP), are currently under investigation at the Idaho National Laboratory. The first is high-temperature steam electrolysis utilizing both heat and electricity and the second is thermo-chemical production through the sulfur-iodine process primarily utilizing heat. Both processes require high temperature (>850°C) for enhanced efficiency; temperatures indicative of NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100m. There are several options to transferring multi-megawatt thermal power over such a distance. One option is simply to produce only electricity, transfer by wire to the hydrogen plant, and then reconvert the electric energy to heat via Joule or induction heating. Electrical transport, however, suffers energy losses of 60-70% due to the thermal to electric conversion inherent in the Brayton cycle. A second option is thermal energy transport via a single-phase forced convection loop where a fluid is mechanically pumped between heat exchangers at the nuclear and hydrogen plants. High temperatures, however, present unique materials and pumping challenges. Single phase, low pressure helium is an attractive option for NGNP, but is not suitable for a single purpose facility dictated to hydrogen production because low pressure helium requires higher pumping power and makes the process very inefficient. A third option is two-phase heat transfer utilizing a high temperature thermosyphon. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. Thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are desired to transfer heat from

  19. Hydrogen from renewable energy: A pilot plant for thermal production and mobility

    Science.gov (United States)

    Degiorgis, L.; Santarelli, M.; Calì, M.

    In the mainframe of a research contract, a feasibility pre-design study of a hydrogen-fuelled Laboratory-Village has been carried out: the goals are the design and the simulation of a demonstration plant based on hydrogen as primary fuel. The hydrogen is produced by electrolysis, from electric power produced by a mix of hydroelectric and solar photovoltaic plants. The plant will be located in a small remote village in Valle d'Aosta (Italy). This country has large water availability from glaciers and mountains, so electricity production from fluent water hydroelectric plants is abundant and cheap. Therefore, the production of hydrogen during the night (instead of selling the electricity to the grid at very low prices) could become a good economic choice, and hydrogen could be a competitive local fuel in term of costs, if compared to oil or gas. The H 2 will be produced and stored, and used to feed a hydrogen vehicle and for thermal purposes (heating requirement of three buildings), allowing a real field test (Village-Laboratory). Due to the high level of pressure requested for H 2 storage on-board in the vehicle, the choice has been the experimental test of a prototype laboratory-scale high-pressure PEM electrolyzer: a test laboratory has been designed, to investigate the energy savings related to this technology. In the paper, the description of the dynamic simulation of the plant (developed with TRNSYS) together with a detailed design and an economic analysis (proving the technical and economical feasibility of the installation) has been carried out. Moreover, the design of the high-pressure PEM electrolyzer is described.

  20. Power plant project success through total productive generation

    Energy Technology Data Exchange (ETDEWEB)

    Kaivola, R.; Tamminen, L.

    1996-11-01

    The Total Productive Generation concept (TPG) defines the lines of action adopted by IVO Generation Services Ltd (IGS) for the operation and maintenance of power plants. The TPG concept is based on procedures tested in practice. The main idea of TPG is continuous development of quality, which is a joint effort of the entire staff. Its objective is to benefit IGS`s own staff and, in particular, the company`s customers. (orig.)

  1. Power plant project success through total productive generation

    Energy Technology Data Exchange (ETDEWEB)

    Kaivola, R.; Tamminen, L.

    1996-11-01

    The Total Productive Generation concept (TPG) defines the lines of action adopted by IVO Generation Services Ltd (IGS) for the operation and maintenance of power plants. The TPG concept is based on procedures tested in practice. The main idea of TPG is continuous development of quality, which is a joint effort of the entire staff. Its objective is to benefit IGS`s own staff and, in particular, the company`s customers. (orig.)

  2. Hot-Wire generated atomic hydrogen and its impact on thermal ALD in $TiCl_4/NH_3$ system

    NARCIS (Netherlands)

    Van Bui, H.; Kovalgin, A.Y.; Aarnink, A.A.I.; Wolters, R.A.M.

    2013-01-01

    We present the generation of atomic hydrogen made by the dissociation of molecular hydrogen upon collision with a tungsten (W) filament kept at a high temperature (T ≈ 1600–1900◦C). We demonstrate the ability to create atomic hydrogen and to introduce it in short pulses in experiments on etching of

  3. Performance of Generating Plant: Managing the Changes. Part 2: Thermal Generating Plant Unavailability Factors and Availability Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Curley, G. Michael [North American Electric Reliability Corporation (United States); Mandula, Jiri [International Atomic Energy Agency (IAEA)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 2 (WG2). WG2's main task is to facilitate the collection and input on an annual basis of power plant performance data (unit-by-unit and aggregated data) into the WEC PGP database. The statistics will be collected for steam, nuclear, gas turbine and combined cycle, hydro and pump storage plant. WG2 will also oversee the ongoing development of the availability statistics database, including the contents, the required software, security issues and other important information. The report is divided into two sections: Thermal generating, combined cycle/co-generation, combustion turbine, hydro and pumped storage unavailability factors and availability statistics; and nuclear power generating units.

  4. Chemiluminescence assay for catechin based on generation of hydrogen peroxide in basic solution

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Hidetoshi; Kanemitsu, Mahina; Tajima, Noriko; Maeda, Masako

    2002-11-20

    We have determined that the catechin group in basic solution efficiently produces hydrogen peroxide; moreover, a highly sensitive analysis methodology was developed to measure catechin employing a peroxalate chemiluminescence detection system. Identification of hydrogen peroxide generated by catechin was determined by ESR as well as peroxalate chemiluminescence using catalase and SOD. As a result, catechin-generated superoxide by electron reduction to dissolved oxygen in basic solution, followed by production of hydrogen peroxide through dismutation reaction. This method could measure several tea catechins, (+)-catechin (CC), (-)-epigallocatechin-3-gallate (EGCg), (-)-epicatechin-3-gallate (ECG) and gallic acid, with measurement range from 10{sup -7} to 10{sup -3} mol/l and sensitivity of 10{sup -8} mol/l. This method was also applied to the determination of total catechin levels in green tea, black tea and roasted green tea.

  5. Performance of Generating Plant: Managing the Changes. Part 1: International availability data exchange for thermal generating plant

    Energy Technology Data Exchange (ETDEWEB)

    Stallard, G.S.; Deschaine, R. [Black and Veatch (United States)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 1 (WG1). WG1's primary focus is to analyse the best ways to measure, evaluate, and apply power plant performance and availability data to promote plant performance improvements worldwide. The paper explores the specific work activities of 2004-2007 to extend traditional analysis and benchmarking frameworks. It is divided into two major topics: Overview of current electric supply industry issues/trends; and, Technical Methods/Tools to evaluate performance in today's ESI.

  6. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Maheshwar; Bhardwaj, Sunil; Jaybhaye, Sandesh [Nanotechnology Research Center, Birla College, Kalyan 421304 (India); Soga, T.; Afre, Rakesh [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya (Japan); Sathiyamoorthy, D.; Dasgupta, K. [Powder Metallurgy Division, BARC, Trombay 400 085 (India); Sharon, Madhuri [Monad Nanotech Pvt. Ltd., A702 Bhawani Tower, Powai, Mumbai 400 076 (India)

    2007-12-15

    Carbon materials of various morphologies have been synthesized by pyrolysis of various oil-seeds and plant's fibrous materials. These materials are characterized by SEM and Raman. Surface areas of these materials are determined by methylene blue method. These carbon porous materials are used for hydrogen storage. Carbon fibers with channel type structure are obtained from baggas and coconut fibers. It is reported that amongst the different plant based precursors studied, carbon from soyabean (1.09 wt%) and baggas (2.05 wt%) gave the better capacity to store hydrogen at 11kg/m{sup 2} pressure of hydrogen at room temperature. Efforts are made to correlate the hydrogen adsorption capacity with intensities and peak positions of G- and D-band obtained with carbon materials synthesized from plant based precursors. It is suggested that carbon materials whose G-band is around 1575cm{sup -1} and the intensity of D-band is less compared to G-band, may be useful material for hydrogen adsorption study. (author)

  7. High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.C.

    2002-11-01

    OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best

  8. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    Science.gov (United States)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  9. New Generation Nuclear Plant -- High Level Functions and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Ryskamp; E. J. Gorski; E. A. Harvego; S. T. Khericha; G. A. Beitel

    2003-09-01

    This functions and requirements (F&R) document was prepared for the Next Generation Nuclear Plant (NGNP) Project. The highest-level functions and requirements for the NGNP preconceptual design are identified in this document, which establishes performance definitions for what the NGNP will achieve. NGNP designs will be developed based on these requirements by commercial vendor(s).

  10. Performance of Generating Plant: New Metrics for Industry in Transition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    This report is the result of the work of the Performance of Generating Plant task force of the World Energy Council. The report examines the challenges of measuring and improving performance and considers some of the issues related to this field.

  11. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  12. The Effects of CO2 Addition on the Partial Oxidation of Heptane for Hydrogen Generation

    Institute of Scientific and Technical Information of China (English)

    Ran RAN; Guo Xing XIONG; Shi Shan SHENG; Wei Shen YANG

    2004-01-01

    The effects of CO2 on the partial oxidation of heptane for hydrogen generation have been studied. Based on the experimental results and thermodynamic equilibrium calculations, the validity of CO2 addition to weaken the hot spots, and the feasibility of the autothermal operation are discussed.

  13. High performance photoelectrochemical hydrogen generation and solar cells with a double type II heterojunction

    NARCIS (Netherlands)

    Lai, Lai-Hung; Gomulya, Widianta; Protesescu, Loredana; Kovalenko, Maksym V.; Loi, Maria A.

    2014-01-01

    We report on the fabrication of CdSe quantum dot (QD) sensitized electrodes by direct adsorption of colloidal QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid (MPA) ligand exchange. High efficiency photoelectrochemical hydrogen generation is demonstrated by means of these electrodes. The

  14. Early-time photodynamics of ruthenium-based photocatalysts for light-induced hydrogen generation

    NARCIS (Netherlands)

    Pan, Qing

    2016-01-01

    This thesis aims to provide a fundamental understanding of the early-time photodynamics of a series of Ru/M (M = Pd or Pt) bimetallic photocatalysts for light-induced hydrogen generation. This class of complexes adopts a general structure involving a Ru(II) center coordinated to two peripheral ligan

  15. Simultaneous in situ generation of hydrogen peroxide and Fenton reaction over Pd-Fe catalysts

    OpenAIRE

    Yalfani, Mohammad S.; Contreras, Sandra; Llorca Piqué, Jordi; Domínguez Escalante, Montserrat; Sueiras, Jesús; Medina, Francesc

    2010-01-01

    High mineralization degree of organic compounds can be achieved by a novel environmentally-friendly full heterogeneous Pd–Fe catalytic system, which involves in situ generation of hydrogen peroxide from formic acid and oxygen, and oxidation of organic compounds by Fenton process in a one-pot reaction.

  16. Waste/By-Product Hydrogen

    Science.gov (United States)

    2011-01-13

    By‐ product Hydrogen Fuel Flexibility Biogas : generated from organic waste �Wastewater treatment plants can provide multiple MW of renewable... Waste /By product Hydrogen Waste H2 sources include: � Waste bio‐mass: biogas to high temp fuel cells to produce H2 – there are over two dozen sites...13 Waste /By product Hydrogen ‐ Biogas

  17. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells?

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Flyvbjerg, Henrik; Møller, Ian Max

    2012-01-01

    Amplitude- and frequency-modulated waves of Ca(2+) ions transmit information inside cells. Reactive Oxygen Species (ROS), specifically hydrogen peroxide, have been proposed to have a similar role in plant cells. We consider the feasibility of such an intracellular communication system in view...

  18. Compost in plant microbial fuel cell for bioelectricity generation.

    Science.gov (United States)

    Moqsud, M A; Yoshitake, J; Bushra, Q S; Hyodo, M; Omine, K; Strik, David

    2015-02-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells (PMFCs) in soil mixed with compost. A total of six buckets filled with the same soil were used with carbon fiber as the electrodes for the test. Rice plants were planted in five of the buckets, with the sixth bucket containing only soil and an external resistance of 100 ohm was used for all cases. It was observed that the cells with rice plants and compost showed higher values of voltage and power density with time. The highest value of voltage showed around 700 mV when a rice plant with 1% compost mixed soil was used, however it was more than 95% less in the case of no rice plant and without compost. Comparing cases with and without compost but with the same number of rice plants, cases with compost depicted higher voltage to as much as 2 times. The power density was also 3 times higher when the compost was used in the paddy PMFCs which indicated the influence of compost on bio-electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  20. Multi-purpose hydrogen isotopes separation plant design

    Energy Technology Data Exchange (ETDEWEB)

    Boniface, H.A.; Gnanapragasam, N.V.; Ryland, D.K.; Suppiah, S.; Castillo, I. [Atomic Energy of Canada Limited - AECL, Chalk River, ON (Canada)

    2015-03-15

    There is a potential interest at AECL's Chalk River Laboratories to remove tritium from moderately tritiated light water and to reclaim tritiated, downgraded heavy water. With only a few limitations, a single CECE (Combined Electrolysis and Catalytic Exchange) process configuration can be designed to remove tritium from heavy water or light water and upgrade heavy water. Such a design would have some restrictions on the nature of the feed-stock and tritium product, but could produce essentially tritium-free light or heavy water that is chemically pure. The extracted tritium is produced as a small quantity of tritiated heavy water. The overall plant capacity is fixed by the total amount of electrolysis and volume of catalyst. In this proposal, with 60 kA of electrolysis a throughput of 15 kg*h{sup -1} light water for detritiation, about 4 kg*h{sup -1} of heavy water for detritiation and about 27 kg*h{sup -1} of 98% heavy water for upgrading can be processed. Such a plant requires about 1,000 liters of AECL isotope exchange catalyst. The general design features and details of this multi-purpose CECE process are described in this paper, based on some practical choices of design criteria. In addition, we outline the small differences that must be accommodated and some compromises that must be made to make the plant capable of such flexible operation. (authors)

  1. A third-generation dispersion and third-generation hydrogen bonding corrected PM6 method

    DEFF Research Database (Denmark)

    Kromann, Jimmy Charnley; Christensen, Anders Steen; Svendsen, Casper Steinmann;

    2014-01-01

    We present new dispersion and hydrogen bond corrections to the PM6 method, PM6-D3H+, and its implementation in the GAMESS program. The method combines the DFT-D3 dispersion correction by Grimme et al. with a modified version of the H+ hydrogen bond correction by Korth. Overall, the interaction en...... vibrational free energies. While the GAMESS implementation is up to 10 times slower for geometry optimizations of proteins in bulk solvent, compared to MOPAC, it is sufficiently fast to make geometry optimizations of small proteins practically feasible....... energy of PM6-D3H+ is very similar to PM6-DH2 and PM6-DH+, with RMSD and MAD values within 0.02 kcal/mol of one another. The main difference is that the geometry optimizations of 88 complexes result in 82, 6, 0, and 0 geometries with 0, 1, 2, and 3 or more imaginary frequencies using PM6-D3H+ implemented...

  2. Economic comparison of solar hydrogen generation by means of thermochemical cycles and electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Graf, D.; Monnerie, N.; Roeb, M.; Schmitz, M.; Sattler, C. [German Aerospace Center, Institute of Technical Thermodynamics, Solar Research, Linder Hoehe, 51147 Cologne (Germany)

    2008-09-15

    Hydrogen is acclaimed to be an energy carrier of the future. Currently, it is mainly produced by fossil fuels, which release climate-changing emissions. Thermochemical cycles, represented here by the hybrid-sulfur cycle and a metal oxide based cycle, along with electrolysis of water are the most promising processes for 'clean' hydrogen mass production for the future. For this comparison study, both thermochemical cycles are operated by concentrated solar thermal power for multistage water splitting. The electricity required for the electrolysis is produced by a parabolic trough power plant. For each process investment, operating and hydrogen production costs were calculated on a 50 MW{sub th} scale. The goal is to point out the potential of sustainable hydrogen production using solar energy and thermochemical cycles compared to commercial electrolysis. A sensitivity analysis was carried out for three different cost scenarios. As a result, hydrogen production costs ranging from 3.9-5.6 EUR/kg for the hybrid-sulfur cycle, 3.5-12.8 EUR/kg for the metal oxide based cycle and 2.1-6.8 EUR/kg for electrolysis were obtained. (author)

  3. Hydrogen Isotope Biogeochemistry of Plant Biomarkers in Tropical Trees from the Andes to Amazon

    Science.gov (United States)

    Feakins, S. J.; Ponton, C.; West, A. J.; Malhi, Y.; Goldsmith, G.; Salinas, N.; Bentley, L. P.

    2014-12-01

    Plant leaf waxes are well known biomarkers for terrestrial vegetation. Generally, their hydrogen isotopic composition (D/H) records the isotopic composition of precipitation, modulated by leaf water processes and a large biosynthetic fractionation. In addition, the D/H of methoxyl groups on tree wood lignin is an emerging technique thought to record the D/H of source waters, without leaf water complications. Using each of these biomarkers as proxies requires understanding D/H fractionations in plant systems, but few studies have directly studied hydrogen isotope biogeochemistry in tropical plants. An approach that has proven helpful is the paired analysis of plant waters and plant biomarkers: in order that fractionations can be directly computed rather than assumed. This presents logistical challenges in remote tropical forest environments. We report on a unique dataset collected by tree-climbers from 6 well-studied vegetation plots across a 4km elevation transect in the Peruvian Andes and Amazonia. We have measured the D/H of stem water and leaf water, and we compare these to precipitation isotopes and stream waters. The goal of the plant water studies is to understand plant water uptake and stem-leaf water isotopic offsets which can vary due to both transpiration and foliar uptake of water in tropical montane forests. We are in the process of measuring the D/H of plant biomarkers (n-alkanoic acids, n-alkanes and lignin methoxyl) in order to assess how these water isotopic signals are encoded in plant biomarkers. We compare the species-specific modern plant insights to the plant leaf wax n-alkanoic acid D/H that we have recently reported from soils and river sediments from the same region, in order to understand how signals of plant biogeochemistry are integrated into geological sedimentary archives. Progress and open questions in tropical isotope biogeochemistry will be discussed at the meeting.

  4. The Effect of Herbicides on Hydrogen Peroxide Generation in Isolated Vacuoles of Red Beet Root (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    E.V. Pradedova

    2015-12-01

    Full Text Available Influence of herbicides on the hydrogen peroxide generation in vacuolar extracts of red beet root (Beta vulgaris L. was investigated. Belonging to different chemical classes of herbicide compounds have been used. Herbicides differ from each other in the mechanism of effects on plants. Clopyralid (aromatic acid herbicide, derivative of picolinic acid and 2.4-D (phenoxyacetic herbicide, characterized by hormone-like effects, contributed to the formation of H2O2 in vacuolar extracts. Fluorodifen (nitrophenyl ether herbicide and diuron (urea herbicide also have increased contents H2O2. These compounds inhibit the electron transport, photosynthesis, and photorespiration in sensitive plants. Herbicidal effect of glyphosate (organophosphorus herbicide is due to the inhibition of amino acid synthesis in plant cells. Glyphosate did not affect the content of H2O2 in vacuolar extracts. Herbicide dependent H2O2-generation did not occur with oxidoreductase inhibitors, potassium cyanide and sodium azide. The results suggest that the formation of ROS in the vacuoles due to activity of oxidoreductases, which could interact with herbicides.

  5. Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter sphaeroides O.U. 001

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, K.; Waligorska, M.; Laniecki, M. [Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan (Poland)

    2010-05-15

    Rhodobacter sphaeroides O.U. 001 (concentration of inoculum-0.36 g dry wt/l) and brewery wastewaters were applied in photobiogeneration of hydrogen under illumination of 116 W/m{sup 2}. The best results were obtained with filtered wastewaters sterilized at 120 C for 20 min and maximal concentration of waste in medium equal 10% v/v. The main product in generated biogas was hydrogen (90%). After sterilization the amount of generated hydrogen was tripled (from 0.76 to 2.2 l H{sub 2}/l medium), whereas waste concentration of 10% v/v resulted in the best substrate yield (0.22 l H{sub 2}/l of waste). Under these conditions the amount of generated hydrogen was 2.24 l H{sub 2}/l medium and light conversion efficiency reached value of 1.7%. The modified Gompertz equations served in modeling of the kinetics of the studied process. (author)

  6. Helium-3 Generation from the Interaction of Deuterium Plasma inside a Hydrogenated Lattice: Red Fusion

    Science.gov (United States)

    Leal-Quiros, Edbertho; Leal-Escalante, David A.

    2015-03-01

    Helium-3 has been created in a nuclear fusion reaction by fusing deuterium ions from deuterium plasma with hydrogen ions in a “RED” (the Spanish word for net) or crystal lattice, a method we called red fusion ("Fusion en la red cristalina"), because is a new method to make nuclear fusion reaction. In this paper, it will be show the experimental results where the helium-3 has been generated for the first time in this kind of new method to confine deuterium and hydrogen inside the RED or lattice of the hydrogenated crystal and that confinement inside the RED facilitated overcoming the Coulomb barrier between them and helium-3 and phonons are produced in this fusion reaction. The results of a long time research in which helium-3, has been created in a fusion reaction inside the lattice or RED of the crystal that contained hydrogen after adequate interaction of deuterium plasma at appropriate high temperature and magnetic confinement of the Mirror/Cusp Plasma Machine at Polytechnic University of Puerto Rico, designed by the authors. Several mass spectra and visible light spectrum where the presence of helium-3 was detected are shown. The experiment was repeated more than 200 times showing always the generation of helium-3. In this experiment no gamma rays were detected. For this experiment several diagnostic instruments were used. The data collection with these control instrumentation are shown. Thus, it is an important new way to generate Helium-3. reserved.

  7. Comprehensive analysis of passive generation of parabolic similaritons in tapered hydrogenated amorphous silicon photonic wires.

    Science.gov (United States)

    Mei, Chao; Li, Feng; Yuan, Jinhui; Kang, Zhe; Zhang, Xianting; Yan, Binbin; Sang, Xinzhu; Wu, Qiang; Zhou, Xian; Zhong, Kangping; Wang, Liang; Wang, Kuiru; Yu, Chongxiu; Wai, P K A

    2017-06-19

    Parabolic pulses have important applications in both basic and applied sciences, such as high power optical amplification, optical communications, all-optical signal processing, etc. The generation of parabolic similaritons in tapered hydrogenated amorphous silicon photonic wires at telecom (λ ~ 1550 nm) and mid-IR (λ ≥ 2100 nm) wavelengths is demonstrated and analyzed. The self-similar theory of parabolic pulse generation in passive waveguides with increasing nonlinearity is presented. A generalized nonlinear Schrödinger equation is used to describe the coupled dynamics of optical field in the tapered hydrogenated amorphous silicon photonic wires with either decreasing dispersion or increasing nonlinearity. The impacts of length dependent higher-order effects, linear and nonlinear losses including two-photon absorption, and photon-generated free carriers, on the pulse evolutions are characterized. Numerical simulations show that initial Gaussian pulses will evolve into the parabolic pulses in the waveguide taper designed.

  8. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    Science.gov (United States)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  9. Theoretical Design of Thermosyphon for Process Heat Transfer from NGNP to Hydrogen Plant

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Mike Patterson; Fred Gunnerson

    2008-09-01

    The Next Generation Nuclear Plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ~ 1300K) and industrial scale power transport (=50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization / condensing process. The condensate is further returned to the hot source by gravity, i.e. without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) or vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  10. Lens Endogenous Peptide αA66-80 Generates Hydrogen Peroxide and Induces Cell Apoptosis.

    Science.gov (United States)

    Raju, Murugesan; Santhoshkumar, Puttur; Sharma, K Krishna

    2017-02-01

    In previous studies, we reported the presence of a large number of low-molecular-weight (LMW) peptides in aged and cataract human lens tissues. Among the LMW peptides, a peptide derived from αA-crystallin, αA66-80, was found in higher concentration in aged and cataract lenses. Additional characterization of the αA66-80 peptide showed beta sheet signature, and it formed well-defined unbranched fibrils. Further experimental data showed that αA66-80 peptide binds α-crystallin, impairs its chaperone function, and attracts additional crystallin proteins to the peptide α-crystallin complex, leading to the formation of larger light scattering aggregates. It is well established that Aβ peptide exhibits cell toxicity by the generation of hydrogen peroxide. The αA66-80 peptide shares the principal properties of Aβ peptide. Therefore, the present study was undertaken to determine whether the fibril-forming peptide αA66-80 has the ability to generate hydrogen peroxide. The results show that the αA66-80 peptide generates hydrogen peroxide, in the amount of 1.2 nM H2O2 per µg of αA66-80 peptide by incubation at 37°C for 4h. We also observed cytotoxicity and apoptotic cell death in αA66-80 peptide-transduced Cos7 cells. As evident, we found more TUNEL-positive cells in αA66-80 peptide transduced Cos7 cells than in control cells, suggesting peptide-mediated cell apoptosis. Additional immunohistochemistry analysis showed the active form of caspase-3, suggesting activation of the caspase-dependent pathway during peptide-induced cell apoptosis. These results confirm that the αA66-80 peptide generates hydrogen peroxide and promotes hydrogen peroxide-mediated cell apoptosis.

  11. Alkali free hydrolysis of sodium borohydride for hydrogen generation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.J.F.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Gales, L. [Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto and Instituto de Ciencias Biomedicas Abel Salazar, Largo Prof. Abel Salazar 2, 4099-003 Porto (Portugal); Fernandes, V.R.; Rangel, C.M. [Laboratorio Nacional de Energia e Geologia - LNEG, Fuel Cells and Hydrogen Unit Estrada do Paco do Lumiar 22, 1649-038 Lisboa (Portugal)

    2010-09-15

    The present study is related with the production of hydrogen gas (H{sub 2}), at elevated pressures and with high gravimetric storage density, to supply a PEM fuel cell on-demand. To achieve this goal, solid sodium borohydride (NaBH{sub 4}) was mixed with a proper amount of a powder reused nickel-ruthenium based catalyst (Ni-Ru based/NaBH{sub 4}: 0.2 and 0.4 g/g; {approx}150 times reused) inside the bottom of a batch reactor. Then, a stoichiometric amount of pure liquid water (H{sub 2}O/NaBH{sub 4}: 2-8 mol/mol) was added and the catalyzed NaBH{sub 4} hydrolysis evolved, in the absence of an alkali inhibitor. In this way, this research work is designated alkali free hydrolysis of NaBH{sub 4} for H{sub 2} generation. This type of hydrolysis is excellent from an environmental point of view because it does not involve strongly caustic solutions. Experiments were performed in three batch reactors with internal volumes 646, 369 and 229 cm{sup 3}, and having different bottom geometries (flat and conical shapes). The H{sub 2} generated was a function of the added water and completion was achieved with H{sub 2}O/NaBH{sub 4} = 8 mol/mol. The results show that hydrogen yields and rates increase remarkably increasing both system temperature and pressure. Reactor bottom shape influences deeply H{sub 2} generation: the conical bottom shape greatly enhances the rate and practically eliminates the reaction induction time. Our system of compressed hydrogen generation up to 1.26 MPa shows 6.3 wt% and 70 kg m{sup -3}, respectively, for gravimetric and volumetric hydrogen storage capacities (materials-only basis) and therefore is a viable hydrogen storage candidate for portable applications. (author)

  12. Hydrogen peroxide and polyamines act as double edged swords in plant abiotic stress responses

    Directory of Open Access Journals (Sweden)

    Kamala Gupta

    2016-09-01

    Full Text Available The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signalling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signalling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signalling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death.

  13. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2016-01-01

    Full Text Available We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  14. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  15. Direct Chlorination Process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5% hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90% excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process Compared to the Stretford Process, the Direct Chlorination process requires about one-third the initial capital investment and about one-fourth the net daily expenditure. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

  16. SLUDGE BATCH 4 FOLLOW-UP QUALIFICATION STUDIES TO EVALUATE HYDROGEN GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; David Koopman, D; Dan Lambert, D; Cj Bannochie, C

    2007-08-23

    Follow-up testing was conducted to better understand the excessive hydrogen generation seen in the initial Sludge Batch 4 (SB4) qualification Sludge Receipt and Adjustment Tank/Slurry Mix Evaporator (SRAT/SME) simulation in the Savannah River National Laboratory (SRNL) Shielded Cells. This effort included both radioactive and simulant work. The initial SB4 qualification test produced 0.59 lbs/hr hydrogen in the SRAT, which was just below the DWPF SRAT limit of 0.65 lbs/hr, and the test produced over 0.5 lbs/hr hydrogen in the SME cycle on two separate occasions, which were over the DWPF SME limit of 0.223 lbs/hr.

  17. Prediction of gas pressurization and hydrogen generation for shipping hazard analysis : Six unstabilized PU 02 samples

    Energy Technology Data Exchange (ETDEWEB)

    Moody, E. W. (Eddie W.); Veirs, D. K. (Douglas Kirk); Lyman, J. L. (John L.)

    2001-01-01

    Radiolysis of water to form hydrogen gas is a safety concern for safe storage and transport of plutonium-bearing materials. Hydrogen gas is considered a safety hazard if its concentration in the container exceeds five percent hydrogen by volume, DOE Docket No. 00-1 1-9965. Unfortunately, water cannot be entirely avoided in a processing environment and these samples contain a range of water inherently. Thermodynamic, chemical, and radiolysis modeling was used to predict gas generation and changes in gas composition as a function of time within sealed containers containing plutonium bearing materials. The results are used in support of safety analysis for shipping six unstabilized (i.e. uncalcined) samples from Rocky Flats Environmental Technology Sits (RFETS) to the Material Identification and Surveillance (MIS) program at Los Alamos National Lab (LANL). The intent of this work is to establish a time window in which safe shipping can occur.

  18. A Novel Self-Assembling Al-based Composite Powder with High Hydrogen Generation Efficiency

    Science.gov (United States)

    Wang, Cuiping; Liu, Yuheng; Liu, Hongxin; Yang, Tao; Chen, Xinren; Yang, Shuiyuan; Liu, Xingjun

    2015-11-01

    In this study, a novel self-assembling hydrogen generation powder comprised of 80Al-10Bi-10Sn wt.% was prepared using the gas atomization method and then collected in an air environment. The morphological and hydrolysis properties of the powders were investigated. The results indicated that the powders formed unique core/shell microstructures with cracked surfaces and (Bi, Sn)-rich phases distributed on the Al grain boundaries. The powders exhibited good oxidation resistance and reacted violently with distilled water at temperatures as low as 0 °C. Furthermore, at 30 °C, the powders exhibited a hydrogen conversion yield of 91.30% within 16 minutes. The hydrogen produced by this powder could be directly used in proton exchange membrane fuel cells. The mechanisms of the hydrolysis reactions were also analyzed.

  19. Light-dependent emission of hydrogen sulfide from plants

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, L.G.; Bressan, R.A.; Filner, P.

    1978-02-01

    With the aid of a sulfur-specific flame photometric detector, an emission of volatile sulfur was detected from leaves of cucumber (Cucumis sativus L.), squash and pumpkin (Cucurbita pepo L.), cantaloupe (Cucumis melo L.), corn (Zea mays L.), soybean (Glycine max (L.) Merr.) and cotton (Gossypium hirsutum L.). The emission was studied in detail in squash and pumpkin. It occurred following treatment of the roots of plants with sulfate and was markedly higher from either detached leaves treated via the cut petiole, or whole plants treated via mechanically injured roots. Bisulfite elicited higher rates of emission than sulfate. The emission was completely light-dependent and increased with light intensity. The rate of emission rose to a maximum and then declined steadily toward zero in the course of a few hours. However, emission resumed after reinjury of roots, an increase in light intensity, an increase in sulfur anion concentration, or a dark period of several hours. The emission was identified as H/sub 2/S by the following criteria: it had the odor of H/sub 2/S; it was not trapped by distilled H/sub 2/O, but was trapped by acidic CdCl/sub 2/ resulting in the formation of a yellow precipitate, CdS; it was also trapped by base and the contents of the trap formed methylene blue when reacted with N,N-dimethyl-p-phenylenediamine and Fe/sup 3 +/. H/sub 2/S emission is not the cause of leaf injury by SO/sub 2/, since bisulfite produced SO/sub 2/ injury symptoms in dim light when H/sub 2/S emission was low, while sulfate did not produce injury symptoms in bright light when H/sub 2/S emission was high. The maximum rates of emission observed, about 8 nmol min/sup -1/ g fresh weight/sup -1/, are about the activity that would be expected for the sulfur assimilation pathway of a normal leaf. H/sub 2/S emission may be a means by which the plant can rid itself of excess inorganic sulfur when HS/sup -/ acceptors are not available in sufficient quantity.

  20. The effectiveness of power-generating complexes constructed on the basis of nuclear power plants combined with additional sources of energy determined taking risk factors into account

    Science.gov (United States)

    Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.

    2015-02-01

    The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.

  1. DWPF Hydrogen Generation Study-Form of Noble Metal SRAT Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C

    2005-09-01

    The Defense Waste Processing Facility, DWPF, has requested that the Savannah River National Laboratory, SRNL, investigate the factors that contribute to hydrogen generation to determine if current conservatism in setting the DWPF processing window can be reduced. A phased program has been undertaken to increase understanding of the factors that influence hydrogen generation in the DWPF Chemical Process Cell, CPC. The hydrogen generation in the CPC is primarily due to noble metal catalyzed decomposition of formic acid with a minor contribution from radiolytic processes. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Two sludge simulants were obtained, one with co-precipitated noble metals and one without noble metals. Co-precipitated noble metals were expected to better match real waste behavior than using trimmed noble metals during CPC simulations. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The two original and two heat-treated sludge simulants were then used as feeds to Sludge Receipt and Adjustment Tank, SRAT, process simulations. Testing was done at relatively high acid stoichiometries, {approx}175%, and without mercury in order to ensure significant hydrogen generation. Hydrogen generation rates were monitored during processing to assess the impact of the form of noble metals. The following observations were made on the data: (1) Co-precipitated noble metal simulant processed similarly to trimmed noble metal simulant in most respects, such as nitrite to nitrate conversion, formate destruction, and pH, but differently with respect to hydrogen generation: (A

  2. NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER

    Energy Technology Data Exchange (ETDEWEB)

    Mark Holbrook

    2010-09-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

  3. Electrical calculations and guidelines for generating station and industrial plants

    CERN Document Server

    Baker, Thomas E

    2011-01-01

    ""This is really a practical, hands-on book for the working engineer."" --Phillip Wheeler, former Southern California Edison supervising electrical apparatus engineer and regional IEEE PES/IAS leader Electrical Calculations and Guidelines for Generating Stations and Industrial Plants: Covers, in a single reference, more than 160 calculations for the design, operation, and maintenance support of generating stations and industrial facilities Is supported by inexpensive, simple-to-use software that automates presented calculations Explores electrical theory at the atomic level: How can AC current

  4. Next-Generation Sequencing and Genome Editing in Plant Virology.

    Science.gov (United States)

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.

  5. Next-Generation Sequencing and Genome Editing in Plant Virology

    Science.gov (United States)

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21–24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology. PMID:27617007

  6. Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yan; Dai, Hong-Bin; Ma, Lai-Peng; Wang, Ping; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2010-04-15

    The catalyst with high activity and durability plays a crucial role in the hydrogen generation systems for the portable fuel cell generators. In the present study, a ruthenium supported on graphite catalyst (Ru/G) for hydrogen generation from sodium borohydride (NaBH{sub 4}) solution is prepared by a modified impregnation method. This is done by surface pretreatment with NH{sub 2} functionalization via silanization, followed by adsorption of Ru (III) ion onto the surface, and then reduced by a reducing agent. The obtained catalyst is characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Very uniform Ru nanoparticles with sizes of about 10 nm are chemically bonded on the graphite surface. The hydrolysis kinetics measurements show that the concentrations of NaBH{sub 4} and NaOH all exert considerable influence on the catalytic activity of Ru/G catalyst towards the hydrolysis reaction of NaBH{sub 4}. A hydrogen generation rate of 32.3 L min{sup -1} g{sup -1} (Ru) in a 10 wt.% NaBH{sub 4} + 5 wt.% NaOH solution has been achieved, which is comparable to other noble catalysts that have been reported. (author)

  7. Large photovoltages generated by plant photosystem I crystals

    Energy Technology Data Exchange (ETDEWEB)

    Toporik, Hila; Carmeli, Chanoch; Nelson, Nathan [Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Carmeli, Itai [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Volotsenko, Irina; Molotskii, Michel; Rosenwaks, Yossi [Department of Physical Electronics, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2012-06-12

    Micrometer-thick plant photosystem I crystals made of up to 1000 layers of serially arranged protein complexes generate unprecedented high photovoltages when placed on a conducting solid surface and measured using Kelvin probe force microscopy. The successive layers form serially photoinduced dipoles in the crystal that give rise to electric fields as large as 100 kV cm{sup -1}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Direct steam generation (DSG) solar thermal power plant in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sukchai, Sukruedee; Chramsa-ard, Wisut; Sonsaree, Sorawit; Boonsu, Rungrudee [Naresuan Univ., Phitsanulok (Thailand). School of Renewable Energy Technology; Krueger, Joachim; Pandian, Yuvaraj [Solarlite GmbH, Duckwitz (Germany)

    2012-07-01

    In 2010, the total electricity consumption in Thailand was 149,301 GWh, increased by 10.5% compared with that in the previous year. The economic sector accounting for the highest share of national electricity consumption was the industrial sector, holding a share of 46%; while the household and commercial sectors accounted for a share of 22% and 15% respectively. The electricity is generated from natural gas, coal, oil, hydro, import and other of 72%, 18%, 0.4%, 3%, 4%, and 2% respectively. In the past, the Electricity Generating Authority of Thailand (EGAT) was the sole power producer. Later, the government had formulated a policy promoting the private sector role in the power generation sector in order to encourage competition in the generation business. Currently, it is resulting in a growing number of Very Small Power Producers (VSPP), using renewable energy as main fuel, supplying power to the grid. In this presentation, general background and situation of solar thermal power plant (DSG) in Thailand will be presented. The resource potential which presented by solar map for the central, north and northeast parts of the country is quite clear sky that receive the highest direct normal irradiation of 1,350 - 1,400 kWh/m{sup 2}-year stand for 43% of the total areas of the country. Together with the high direct normal irradiation is received during summer from January to April about 14-17 MJ/m{sup 2}-day. The first of solar thermal power plant in Thailand is presented. Solar energy development that is one of renewable energy promotion program in the nation master plan has been reviewed and discussed to indicate the recommendation. Barriers as educational, technical and financial to promote solar thermal power plant is also presented. From the investigation, this presentation proposes some idea to be the guideline for policy setting, overcome the solar thermal power plant barrier in Thailand. (orig.)

  9. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  10. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.

    Science.gov (United States)

    Wang, X; Shih, K; Li, X Y

    2010-01-01

    A microemulsion technique was employed to synthesize nano-sized photocatalysts with a core (CdS)/shell (ZnS) structure. The primary particles of the photocatalysts were around 10 nm, and the mean size of the catalyst clusters in water was about 100 nm. The band gaps of the catalysts ranged from 2.25 to 2.46 eV. The experiments of photocatalytic H(2) generation showed that the catalysts (CdS)(x)/(ZnS)(1-x) with x ranging from 0.1 to 1 were able to produce hydrogen from water photolysis under visible light. The catalyst with x=0.9 had the highest rate of hydrogen production. The catalyst loading density also influenced the photo-hydrogen production rate, and the best catalyst concentration in water was 1 g L(-1). The stability of the nano-catalysts in terms of size, morphology and activity was satisfactory during an extended test period for a specific hydrogen production rate of 2.38 mmol g(-1) L(-1) h(-1) and a quantum yield of 16.1% under visible light (165 W Xe lamp, lambda>420 nm). The results demonstrate that the (CdS)/(ZnS) core/shell nano-particles are a novel photo-catalyst for renewable hydrogen generation from water under visible light. This is attributable to the large band-gap ZnS shell that separates the electron/hole pairs generated by the CdS core and hence reduces their recombinations.

  11. Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid.

    Science.gov (United States)

    Boatright, William L

    2016-04-01

    The effect of oxygen on the two separate one-electron reactions involved in the oxidation of ascorbic acid was investigated. The rate of ascorbate radical (Asc(-)) formation (and stability) was strongly dependent on the presence of oxygen. A product of ascorbic acid oxidation was measurable levels of hydrogen peroxide, as high as 32.5 μM from 100 μM ascorbic acid. Evidence for a feedback mechanism where hydrogen peroxide generated during the oxidation of ascorbic acid accelerates further oxidation of ascorbic acid is also presented. The second one-electron oxidation reaction of ascorbic acid leading to the disappearance of Asc(-) was also strongly inhibited in samples flushed with argon. In the range of 0.05-1.2 mM ascorbic acid, maximum levels of measurable hydrogen peroxide were achieved with an initial concentration of 0.2 mM ascorbic acid. Hydrogen peroxide generation was greatly diminished at ascorbic acid levels of 0.8 mM or above.

  12. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  13. Acetaldehyde behavior over platinum based catalyst in hydrogen stream generated by ethanol reforming

    Energy Technology Data Exchange (ETDEWEB)

    de Lima, Adriana F.F. [Laboratorio de Catalise, Instituto Nacional de Tecnologia, Av. Venezuela 82/507, 20081-310 Rio de Janeiro, RJ (Brazil); Instituto de Quimica e INOG (Instituto Nacional de Oleo Gas), UERJ-CNPq, FAPERJ, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ (Brazil); Colman, Rita C. [Departamento de Engenharia Quimica e de Petroleo, Universidade Federal Fluminense, Av. Passos da Patria, 156/bl E/240, 24210-240 Niteroi, RJ (Brazil); Zotin, Fatima M.Z. [Instituto de Quimica e INOG (Instituto Nacional de Oleo Gas), UERJ-CNPq, FAPERJ, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ (Brazil); CETEM-MCT, Av. Pedro Calmon, 900, Cidade Universitaria, 21941-908 Rio de Janeiro, RJ (Brazil); Appel, Lucia G. [Laboratorio de Catalise, Instituto Nacional de Tecnologia, Av. Venezuela 82/507, 20081-310 Rio de Janeiro, RJ (Brazil)

    2010-12-15

    Due to the greenhouse effect, hydrogen production from bioethanol reforming is a very important subject in heterogeneous catalysis research. Pt based catalysts are employed in H{sub 2} purification processes and also as electrocatalysts of PEM (''Proton Exchange Membrane'') fuel cells. Hydrogen obtained from ethanol reforming may contain, as contaminants, acetaldehyde and small amounts of CO. This aldehyde can be decarbonylated on Pt based catalysts generating carbon monoxide and methane, rendering the hydrogen purification more challenging. Moreover, acetaldehyde might also change the electrocatalyst behavior. Therefore, this contribution aims at studying the acetaldehyde behavior in the presence of platinum based catalysts in hydrogen atmosphere. The Pt/SiO{sub 2}, Pt/USY catalysts and an electrocatalyst were characterized by n-butylamine, H{sub 2} and CO{sub 2} adsorption, ATG/DTG measurements and cyclohexane dehydrogenation reaction. It was observed that the acid-basic properties of the supports promote condensation reactions. When in contact with Pt based catalysts, acetaldehyde undergoes C-C and C=O bond scissions. The former occurs at a wide range of temperatures, whereas the latter only at low temperatures (<200 C). The C-C bond scission (decarbonylation) produces methane and CO. The C=O bond scission generates carbon residues on the catalyst as well as oxygen species, which in turn is able to eliminate CO from the catalytic surface. The data also show that decarbonylation is not a structure-sensitive reaction. (author)

  14. Hydrogen generation from deliquescence of ammonia borane using Ni-Co/r-GO catalyst

    Science.gov (United States)

    Chou, Chang-Chen; Chen, Bing-Hung

    2015-10-01

    Hydrogen generation from the catalyzed deliquescence/hydrolysis of ammonia borane (AB) using the Ni-Co catalyst supported on the graphene oxide (Ni-Co/r-GO catalyst) under the conditions of limited water supply was studied with the molar feed ratio of water to ammonia borane (denoted as H2O/AB) at 2.02, 3.97 and 5.93, respectively. The conversion efficiency of ammonia borane to hydrogen was estimated both from the cumulative volume of the hydrogen gas generated and the conversion of boron chemistry in the hydrolysates analyzed by the solid-state 11B NMR. The conversion efficiency of ammonia borane could reach nearly 100% under excess water dosage, that is, H2O/AB = 3.97 and 5.93. Notably, the hydrogen storage capacity could reach as high as 6.5 wt.% in the case with H2O/AB = 2.02. The hydrolysates of ammonia borane in the presence of Ni-Co/r-GO catalyst were mainly the mixture of boric acid and metaborate according to XRD, FT-IR and solid-state 11B NMR analyses.

  15. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zawodzinski, C.; Wilson, M.; Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1996-10-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. A central objective of a LANL/Industry collaborative effort supported by the Hydrogen Program is to integrate PEM fuel cell and novel stack designs at LANL with stack technology of H-Power Corporation (H-Power) in order to develop a manufacturable, low-cost/high-performance hydrogen/air fuel cell stack for stationary generation of electric power. A LANL/H-Power CRADA includes Tasks ranging from exchange, testing and optimization of membrane-electrode assemblies of large areas, development and demonstration of manufacturable flow field, backing and bipolar plate components, and testing of stacks at the 3-5 cell level and, finally, at the 4-5 kW level. The stack should demonstrate the basic features of manufacturability, overall low cost and high energy conversion efficiency. Plans for future work are to continue the CRADA work along the time line defined in a two-year program, to continue the LANL activities of developing and testing stainless steel hardware for longer term stability including testing in a stack, and to further enhance air cathode performance to achieve higher energy conversion efficiencies as required for stationary power application.

  16. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants

    Directory of Open Access Journals (Sweden)

    Paola Costamagna

    2016-08-01

    Full Text Available The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements.

  17. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants.

    Science.gov (United States)

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-08-22

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements.

  18. High-purity hydrogen generation by ultraviolet illumination with the membrane composed of titanium dioxide nanotube array and Pd layer

    Science.gov (United States)

    Hattori, Masashi; Noda, Kei; Matsushige, Kazumi

    2011-09-01

    High-purity hydrogen generation was observed by using a membrane composed of a bilayer of an anodized titanium dioxide nanotube array (TNA) and a hydrogen permeable metal. This membrane was fabricated by transferring a TNA embedded in a titanium foil onto a sputtered 10-μm-thick palladium film. Alcohols are reformed photocatalytically and concurrently generated hydrogen is purified through the Pd layer. H2 with a purity of more than 99% was obtained from liquid alcohols under ultraviolet illumination onto the membrane. Thus, we demonstrated the integration of photocatalytic hydrogen production and purification within a single membrane.

  19. HyPEP-FY 07 Annual Report: A Hydrogen Production Plant Efficiency Calculation Program

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2007-09-01

    The Very High Temperature Gas-Cooled Reactor (VHTR) coupled to the High Temperature Steam Electrolysis (HTSE) process is one of two reference integrated systems being investigated by the U.S. Department of Energy and Idaho National Laboratory for the production of hydrogen. In this concept the VHTR outlet temperature of 900 °C provides thermal energy and high efficiency electricity for the electrolysis of steam in the HTSE process. In the second reference system the Sulfur Iodine (SI) process is coupled to the VHTR to produce hydrogen thermochemically. In the HyPEP project we are investigating and characterizing these two reference systems with respect to production, operability, and safety performance criteria. Under production, plant configuration and working fluids are being studied for their effect on efficiency. Under operability, control strategies are being developed with the goal of maintaining equipment within operating limits while meeting changes in demand. Safety studies are to investigate plant response for equipment failures. Specific objectives in FY07 were (1) to develop HyPEP Beta and verification and validation (V&V) plan, (2) to perform steady state system integration, (3) to perform parametric studies with various working fluids and power conversion unit (PCU) configurations, (4) the study of design options such as pressure, temperature, etc. (5) to develop a control strategy and (6) to perform transient analyses for plant upsets, control strategy, etc for hydrogen plant with PCU. This report describes the progress made in FY07 in each of the above areas. (1) The HyPEP code numeric scheme and Graphic User Interface have been tested and refined since the release of the alpha version a year ago. (2) The optimal size and design condition for the intermediate heat exchanger, one of the most important components for integration of the VHTR and HTSE plants, was estimated. (3) Efficiency calculations were performed for a variety of working fluids for

  20. A fatal case of hydrogen sulfide poisoning in a geothermal power plant.

    Science.gov (United States)

    Kage, S; Ito, S; Kishida, T; Kudo, K; Ikeda, N

    1998-07-01

    An adult man entered an oil separator room to remove waste oil from a vacuum pump in a geothermal power plant. He suddenly collapsed and died soon after. Since hydrogen sulfide gas was detected in the atmosphere at the scene of the accident, poisoning by this gas was suspected and toxicological analysis of sulfide and thiosulfate in blood, brain, lung, femoral muscle was made using the extractive alkylation technique combined with gas chromatography/mass spectrometry (GC/MS). The concentrations of sulfide in these tissues were similar to those previously reported for fatal cases of hydrogen sulfide gas. The concentration of thiosulfate in the blood was at least 48 times higher than the level in control samples. Based on these results, the cause of death was attributed to hydrogen sulfide gas poisoning.

  1. Photoassisted electrolysis of water for hydrogen generation with TiO{sub 2} aggregate film

    Energy Technology Data Exchange (ETDEWEB)

    Cao Guanying [Research Institute of Photonics, Dalian Polytechnic University, Dalian, 116034 (China); Zhang Qifeng; Liu Dawei; Xi Junting; Cao Guozhong, E-mail: gzcao@uw.edu, E-mail: gycao@dlpu.edu.cn [Department of Materials Science and Engineering, University of Washington, Seattle, 98195 (United States)

    2011-02-01

    In this paper, the nanocrystallite aggregates of TiO{sub 2} were synthesized and characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET). The aggregates are of submicron size, formed by nano-sized crystallites and able to offer both a large specific surface area and desirable size comparable to the wavelength of visible light. Therefore, the TiO{sub 2} aggregates were also studied as photoelectrode in photoelectrochemical cell for hydrogen generation. The results show that the hydrogen generation rates are 0.47 ml/h*cm{sup 2} and 0.27 ml/h*cm{sup 2} during the first test with and without illumination, respectively. The current density also presented continually increasing during the light-on period. This was attributed to the photogenerated current, which benefited from the TiO{sub 2} aggregates and may significantly enhance the electrolysis rate of water.

  2. Radcalc for Windows 2.0 transportation packaging software to determine hydrogen generation and transportation classification

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.R.

    1996-10-21

    Radclac for Windows is a user friendly menu-driven Windows compatible software program with applications in the transportation of radioactive materials. It calculates the radiolytic generation of hydrogen gas in the matrix of low-level and high-level radioactive wastes. It also calculates pressure buildup due to hydrogen and the decay heat generated in a package at seal time. It computes the quantity of a radionuclide and its associated products for a given period of time. In addition, the code categorizes shipment quantities as reportable quantity (RQ), radioactive Type A or Type B, limited quality (LQ), low specific activity (LSA), highway road controlled quality (HRCQ), and fissile excepted using US Department of Transportation (DOT) definitions and methodologies.

  3. Study of CO2 recovery in a carbonate fuel cell tri-generation plant

    Science.gov (United States)

    Rinaldi, Giorgio; McLarty, Dustin; Brouwer, Jack; Lanzini, Andrea; Santarelli, Massimo

    2015-06-01

    The possibility of separating and recovering CO2 in a biogas plant that co-produces electricity, hydrogen, and heat is investigated. Exploiting the ability of a molten carbonate fuel cell (MCFC) to concentrate CO2 in the anode exhaust stream reduces the energy consumption and complexity of CO2 separation techniques that would otherwise be required to remove dilute CO2 from combustion exhaust streams. Three potential CO2 concentrating configurations are numerically simulated to evaluate potential CO2 recovery rates: 1) anode oxidation and partial CO2 recirculation, 2) integration with exhaust from an internal combustion engine, and 3) series connection of molten carbonate cathodes initially fed with internal combustion engine (ICE) exhaust. Physical models have been calibrated with data acquired from an operating MCFC tri-generating plant. Results illustrate a high compatibility between hydrogen co-production and CO2 recovery with series connection of molten carbonate systems offering the best results for efficient CO2 recovery. In this case the carbon capture ratio (CCR) exceeds 73% for two systems in series and 90% for 3 MCFC in series. This remarkably high carbon recovery is possible with 1.4 MWe delivered by the ICE system and 0.9 MWe and about 350 kg day-1 of H2 delivered by the three MCFC.

  4. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  5. Hydrogen generation by photoelectrochemical effect of the Cu-doped TiO2 photoanode

    Science.gov (United States)

    Ly, Ngoc Tai; Hoa Dao, Thi; Hoang To, Le Hong; Vu, Dinh Lam; Le, Van Hong

    2014-09-01

    TiO2 film photoanodes with a size of 1 × 1 cm2 were fabricated by a spin coating method. Cu-doped TiO2 powder with various Cu concentrations (0.2, 0.4, 0.6 and 0.8 at%) and surfactant were used as starting materials in coating Cu-doped TiO2 thin films onto FTO/glass substrate. Crystalline structure of TiO2 material, microstructure of the photoanode films and their thickness were identified by x-ray diffraction and Raman scattering. Hydrogen generation from water by photoelectrochemical effect in the visible light was observed by recording I/V characteristics of the photoanode in dark and light regimes. The obtained results have shown that the hydrogen generation efficiency of photoanode nonlinearly depends on Cu concentration. The nonlinear dependence of the hydrogen generation efficiency may be due to a change of resistivity of the film photoanode that is related with the random distribution of the hetero-junction between interfaces of TiO2 and CuO nanoparticles.

  6. Easy synthesis of bismuth iron oxide nanoparticles as photocatalyst for solar hydrogen generation from water

    Science.gov (United States)

    Deng, Jinyi

    In this study, high purity bismuth iron oxide (BiFeO3/BFO) nanoparticles of size 50-80 nm have been successfully synthesized by a simple sol-gel method using urea and polyvinyl alcohol at low temperature. X-ray diffraction (XRD) measurement is used to optimize the synthetic process to get highly crystalline and pure phase material. Diffuse reflectance ultraviolet-visible (DRUV-Vis) spectrum indicates that the absorption cut-off wavelength of the nanoparticles is about 620 nm, corresponding to an energy band gap of 2.1 eV. Compared to BaTiO3, BFO has a better degradation of methyl orange under light radiation. Also, photocatalytic tests prove this material to be efficient towards water splitting under simulated solar light to generate hydrogen. The simple synthetic methodology adopted in this paper will be useful in developing low-cost semiconductor materials as effective photocatalysts for hydrogen generation. Photocatalytic tests followed by gas chromatography (GC) analyses show that BiFeO3 generates three times more hydrogen than commercial titania P25 catalyst under the same experimental conditions.

  7. Wind-hydrogen-biomass. The hybrid power plant of ENERTRAG AG

    Energy Technology Data Exchange (ETDEWEB)

    Miege, Andreas; Luschtinetz, T. [Fachhochschule Stralsund (Germany); Wenske, M.; Gamallo, F. [ENERTRAG AG (Germany)

    2010-07-01

    The ENERTRAG Hybrid Power Plant is designed around the following components: three wind turbines of 2 MW each, an electrolyser of 500 kW, a hydrogen storage system, and two CHP units of 350 kW each, able to run with variable mixtures of biogas and hydrogen. The use of the electrolyser - acting as a deferrable load, and running under variable power - and the possibility of reconverting the hydrogen again into electricity will allow a feeding-in of the produced electricity to the grid, free of any of the changing characteristics of the wind power. Besides of that renewable electricity, the Hybrid Power Plant will also be able of delivering hydrogen as a clean fuel for the transport sector, as well as oxygen and heat. The project will show that renewable energy sources, like wind and solar, will be able, in the future, of producing back-up power without any support of fossile sources; and also of feeding electricity to the grid as a part of the base-load demand. As a first step towards this direction, the project has the goal of assuring that the energy production of the three wind turbines will be in accordance to the 24-h-forecasted wind power values. (orig.)

  8. Hydrocarbon reforming catalysts and new reactor designs for compact hydrogen generators

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A.; Schwab, E.; Urtel, H. [BASF SE, Ludwigshafen (Germany); Farrauto, R. [BASF Catalysts LLC, Iselin, NJ (United States)

    2010-12-30

    A hydrogen based future energy scenario will use fuel cells for the conversion of chemically stored energy into electricity. Depending upon the type of fuel cell, different specifications will apply for the feedstock which is converted in the cell, ranging from very clean hydrogen for PEM-FC's to desulfurized methane for SOFC and MCFC technology. For the foreseeable future, hydrogen will be supplied by conventional reforming, however operated in compact and dynamic reformer designs. This requires that known catalyst formulations are offered in specific geometries, giving flexibility for novel reactor design options. These specific geometries can be special tablet shapes as well as monolith structures. Finally, also nonhydrocarbon feedstock might be used in special applications, e.g. bio-based methanol and ethanol. BASF offers catalysts for the full process chain starting from feedstock desulfurization via reforming, high temperature shift, low temperature shift to CO fine polishing either via selective oxidation or selective methanation. Depending upon the customer's design, most stages can be served either with precious metal based monolith solutions or base metal tablet solutions. For the former, we have taken the automobile catalyst monolith support and extended its application to the fuel cell hydrogen generation. Washcoats of precious metal supported catalysts can for example be deposited on ceramic monoliths and/or metal heat exchangers for efficient generation of hydrogen. Major advantages are high through puts due to more efficient heat transfer for catalysts on metal heat exchangers, lower pressure drop with greater catalyst mechanical and thermal stability compared to particulate catalysts. Base metal tablet catalysts on the other hand can have intrinsic cost advantages, larger fractions of the reactor can be filled with active mass, and if produced in unconventional shape, again novel reactor designs are made possible. Finally, if it comes to

  9. Mixed Ionic and Electonic Conductors for Hydrogen Generation and Separation: A New Approach

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth Gopalan

    2006-12-31

    Composite mixed conductors comprising one electronic conducting phase, and one ionic conducting phase (MIECs) have been developed in this work. Such MIECs have applications in generating and separating hydrogen from hydrocarbon fuels at high process rates and high purities. The ionic conducting phase comprises of rare-earth doped ceria and the electronic conducting phase of rare-earth doped strontium titanate. These compositions are ideally suited for the hydrogen separation application. In the process studied in this project, steam at high temperatures is fed to one side of the MIEC membrane and hydrocarbon fuel or reformed hydrocarbon fuel to the other side of the membrane. Oxygen is transported from the steam side to the fuel side down the electrochemical potential gradient thereby enriching the steam side flow in hydrogen. The remnant water vapor can then be condensed to obtain high purity hydrogen. In this work we have shown that two-phase MIECs comprising rare-earth ceria as the ionic conductor and doped-strontium titanate as the electronic conductor are stable in the operating environment of the MIEC. Further, no adverse reaction products are formed when these phases are in contact at elevated temperatures. The composite MIECs have been characterized using a transient electrical conductivity relaxation technique to measure the oxygen chemical diffusivity and the surface exchange coefficient. Oxygen permeation and hydrogen generation rates have been measured under a range of process conditions and the results have been fit to a model which incorporates the oxygen chemical diffusivity and the surface exchange coefficient from the transient measurements.

  10. Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon

    Science.gov (United States)

    Feakins, Sarah J.; Bentley, Lisa Patrick; Salinas, Norma; Shenkin, Alexander; Blonder, Benjamin; Goldsmith, Gregory R.; Ponton, Camilo; Arvin, Lindsay J.; Wu, Mong Sin; Peters, Tom; West, A. Joshua; Martin, Roberta E.; Enquist, Brian J.; Asner, Gregory P.; Malhi, Yadvinder

    2016-06-01

    Plant leaf waxes have been found to record the hydrogen isotopic composition of precipitation and are thus used to reconstruct past climate. To assess how faithfully they record hydrological signals, we characterize leaf wax hydrogen isotopic compositions in forest canopy trees across a highly biodiverse, 3 km elevation range on the eastern flank of the Andes. We sampled the dominant tree species and assessed their relative abundance in the tree community. For each tree we collected xylem and leaf samples for analysis of plant water and plant leaf wax hydrogen isotopic compositions. In total, 176 individuals were sampled across 32 species and 5 forest plots that span the gradient. We find both xylem water and leaf wax δD values of individuals correlate (R2 = 0.8 and R2 = 0.3 respectively) with the isotopic composition of precipitation (with an elevation gradient of -21‰ km-1). Minimal leaf water enrichment means that leaf waxes are straightforward recorders of the isotopic composition of precipitation in wet climates. For these tropical forests we find the average fractionation between source water and leaf wax for C29n-alkanes, -129 ± 2‰ (s.e.m., n = 136), to be indistinguishable from that of temperate moist forests. For C28n-alkanoic acids the average fractionation is -121 ± 3‰ (s.e.m., n = 102). Sampling guided by community assembly within forest plots shows that integrated plant leaf wax hydrogen isotopic compositions faithfully record the gradient of isotopes in precipitation with elevation (R2 = 0.97 for n-alkanes and 0.60 for n-alkanoic acids). This calibration study supports the use of leaf waxes as recorders of the isotopic composition of precipitation in lowland tropical rainforest, tropical montane cloud forests and their sedimentary archives.

  11. Characterization of residues from plant biomass for use in energy generation

    Directory of Open Access Journals (Sweden)

    Luana Elis de Ramos e Paula

    2011-06-01

    Full Text Available The use of plant residues for energy purposes is already a reality, yet in order to ensure suitability and recommend a given material as being a good energy generator, it is necessary to characterize the material through chemical analysis and determine its calorific value. This research aimed to analyze different residues from plant biomass, characterizing them as potential sources for energy production. For the accomplishment of this study, the following residues were used: wood processing residue (sawdust and planer shavings; coffee bean parchment and coffee plant stem; bean stem and pod; soybean stem and pod; rice husk; corn leaf, stem, straw and cob; and sugar cane straw and bagasse. For residue characterization the following analyses were done: chemical analysis, immediate chemical analysis, calorific value and elemental analysis. All procedures were conducted at the Laboratory of Forest Biomass Energy of the Federal University of Lavras. In general, all residues showed potential for energetic use. Rice husk was found to have higher lignin content, which is an interesting attribute as far as energy production is concerned. Its high ash content, however, led to a reduction in calorific value and fixed carbon. The remaining residues were found to have similar energetic characteristics, with corn cob showing greater calorific value, followed by coffee plant stem, both also containing higher levels of carbon and fixed carbon. A high correlation was found of higher calorific value with volatile materials, carbon and hydrogen contents.

  12. The hydrogen sulfide emissions abatement program at the Geysers Geothermal Power Plant

    Science.gov (United States)

    Allen, G. W.; Mccluer, H. K.

    1974-01-01

    The scope of the hydrogen sulfide (H2S) abatement program at The Geysers Geothermal Power Plant and the measures currently under way to reduce these emissions are discussed. The Geysers steam averages 223 ppm H2S by weight and after passing through the turbines leaves the plant both through the gas ejector system and by air-stripping in the cooling towers. The sulfide dissolved in the cooling water is controlled by the use of an oxidation catalyst such as an iron salt. The H2S in the low Btu ejector off gases may be burned to sulfur dioxide and scrubbed directly into the circulating water and reinjected into the steam field with the excess condensate. Details are included concerning the disposal of the impure sulfur, design requirements for retrofitting existing plants and modified plant operating procedures. Discussion of future research aimed at improving the H2S abatement system is also included.

  13. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  14. Multi-Generation Concentrating Solar-Hydrogen Power System for Sustainable Rural Development

    Energy Technology Data Exchange (ETDEWEB)

    Krothapalli, A.; Greska, B.

    2007-07-01

    This paper describes an energy system that is designed to meet the demands of rural populations that currently have no access to grid-connected electricity. Besides electricity, it is well recognized that rural populations need at least a centralized refrigeration system for storage of medicines and other emergency supplies, as well as safe drinking water. Here we propose a district system that will employ a multi-generation concentrated solar power (CSP) system that will generate electricity and supply the heat needed for both absorption refrigeration and membrane distillation (MD) water purification. The electricity will be used to generate hydrogen through highly efficient water electrolysis and individual households can use the hydrogen for generating electricity, via affordable proton exchange membrane (PEM) fuel cells, and as a fuel for cooking. The multi-generation system is being developed such that its components will be easy to manufacture and maintain. As a result, these components will be less efficient than their typical counterparts but their low cost-to-efficiency ratio will allow for us to meet our installation cost goal of $1/Watt for the entire system. The objective of this paper is to introduce the system concept and discuss the system components that are currently under development. (auth)

  15. Detection and isolation of plant-associated bacteria scavenging atmospheric molecular hydrogen.

    Science.gov (United States)

    Kanno, Manabu; Constant, Philippe; Tamaki, Hideyuki; Kamagata, Yoichi

    2016-09-01

    High-affinity hydrogen (H2 )-oxidizing bacteria possessing group 5 [NiFe]-hydrogenase genes are important contributors to atmospheric H2 uptake in soil environments. Although previous studies reported the occurrence of a significant H2 uptake activity in vegetation, there has been no report on the identification and diversity of the responsible microorganisms. Here, we show the existence of plant-associated bacteria with the ability to consume atmospheric H2 that may be a potential energy source required for their persistence in plants. Detection of the gene hhyL - encoding the large subunit of group 5 [NiFe]-hydrogenase - in plant tissues showed that plant-associated high-affinity H2 -oxidizing bacteria are widely distributed in herbaceous plants. Among a collection of 145 endophytic isolates, seven Streptomyces strains were shown to possess hhyL gene and exhibit high- or intermediate-affinity H2 uptake activity. Inoculation of Arabidopsis thaliana (thale cress) and Oryza sativa (rice) seedlings with selected isolates resulted in an internalization of the bacteria in plant tissues. H2 uptake activity per bacterial cells was comparable between plant and soil, demonstrating that both environments are favourable for the H2 uptake activity of streptomycetes. This study first demonstrated the occurrence of plant-associated high-affinity H2 -oxidizing bacteria and proposed their potential contribution as atmospheric H2 sink.

  16. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL

    2008-03-01

    A phenomena identification and ranking table (PIRT) process was conducted for the Next Generation Nuclear Plant (NGNP) design. This design (in the conceptual stage) is a modular high-temperature gas-cooled reactor (HTGR) that generates both electricity and process heat for hydrogen production. Expert panels identified safety-relevant phenomena, ranked their importance, and assessed the knowledge levels in the areas of accidents and thermal fluids, fission-product transport and dose, high-temperature materials, graphite, and process heat for hydrogen production. This main report summarizes and documents the process and scope of the reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings of the phenomena, plus a summary of each panel's findings, are presented. Individual panel reports for these areas are provided as attached volumes to this main report and provide considerably more detail about each panel's deliberations as well as a more complete listing of the phenomena that were evaluated.

  17. White-light emission from solid carbon in aqueous solution during hydrogen generation induced by nanosecond laser pulse irradiation

    Science.gov (United States)

    Akimoto, Ikuko; Yamamoto, Shota; Maeda, Kosuke

    2016-07-01

    We previously discovered a novel method of hydrogen generation from high-grade charcoal in an aqueous solution using nanosecond laser pulse irradiation. In this paper, white-light emission during this reaction is reported: A broad spectrum over the visible range is observed above a threshold excitation energy density. The white-light emission is a simultaneous product of the hydrogen generation reaction and is attributed to blackbody radiation in accordance with Planck's Law at a temperature above 3800 K. Consequently, we propose that hydrogen generation induced by laser irradiation proceeds similarly to classical coal gasification, which features reactions at high pressure and high temperature.

  18. Commercial Optimization of a 100 kg/day PEM based Hydrogen Generator For Energy and Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Moulthrop, L.; Anderson, E.; Chow, O.; Friedland, R.; Maloney, T.; Schiller, M. [Hydrogen Technology Group of Proton Energy, a Distributed Energy Systems Company Wallingford, CT USA 06492 (United States)

    2006-07-01

    Commercial hydrogen generators using PEM water electrolysis are well proven, serving industrial applications worldwide in over 50 countries. Now, market and environmental requirements are converging to demand larger on-site hydrogen generators. North American liquid H{sub 2} shortages, increasing trucking costs, developing economies with no liquid infrastructure, utilities, and forklift fuel cell fueling applications are all working to increase market demand for commercial on-site H{sub 2} generation. These commercial applications may be satisfied by a 100 kg H{sub 2}/day module; this platform can be the pathway towards a 500 kg H{sub 2}/day generator desired for small fore-court hydrogen vehicle fueling stations. This paper discusses the steps necessary and activities already underway to develop a 100 to 500 kg H{sub 2}/day PEM hydrogen generator platform to meet commercial market cost targets and approach US DoE transportation fueling cost targets. (authors)

  19. Hydrogen Generation Through Renewable Energy Sources at the NASA Glenn Research Center

    Science.gov (United States)

    Colozza, Anthony; Prokopius, Kevin

    2007-01-01

    An evaluation of the potential for generating high pressure, high purity hydrogen at the NASA Glenn Research Center (GRC) was performed. This evaluation was based on producing hydrogen utilizing a prototype Hamilton Standard electrolyzer that is capable of producing hydrogen at 3000 psi. The present state of the electrolyzer system was determined to identify the refurbishment requirements. The power for operating the electrolyzer would be produced through renewable power sources. Both wind and solar were considered in the analysis. The solar power production capability was based on the existing solar array field located at NASA GRC. The refurbishment and upgrade potential of the array field was determined and the array output was analyzed with various levels of upgrades throughout the year. The total available monthly and yearly energy from the array was determined. A wind turbine was also sized for operation. This sizing evaluated the wind potential at the site and produced an operational design point for the wind turbine. Commercially available wind turbines were evaluated to determine their applicability to this site. The system installation and power integration were also addressed. This included items such as housing the electrolyzer, power management, water supply, gas storage, cooling and hydrogen dispensing.

  20. Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System

    KAUST Repository

    Hatzell, Marta C.

    2014-09-02

    Waste acid streams produced at industrial sites are often co-located with large sources of waste heat (e.g., industrial exhaust gases, cooling water, and heated equipment). Reverse electrodialysis (RED) systems can be used to generate electrical power and hydrogen gas using waste heat-derived solutions, but high electrode overpotentials limit system performance. We show here that an ammonium bicarbonate (AmB) RED system can achieve simultaneous waste acid neutralization and in situ hydrogen production, while capturing energy from excess waste heat. The rate of acid neutralization was dependent on stack flow rate and increased 50× (from 0.06 ± 0.04 to 3.0 ± 0.32 pH units min -1 m-2 membrane), as the flow rate increased 6× (from 100 to 600 mL min-1). Acid neutralization primarily took place due to ammonium electromigration (37 ± 4%) and proton diffusion (60 ± 5%). The use of a synthetic waste acid stream as a catholyte (pH ≈ 2) also increased hydrogen production rates by 65% (from 5.3 ± 0.5 to 8.7 ± 0.1 m3 H2 m-3 catholyte day -1) compared to an AmB electrolyte (pH ≈ 8.5). These findings highlight the potential use of dissimilar electrolytes (e.g., basic anolyte and acidic catholyte) for enhanced power and hydrogen production in RED stacks. © 2014 American Chemical Society.

  1. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  2. 浅析330MW发电机漏氢原因与防范措施%Analysis of Hydrogen Leakage Causes and Preventive Measures of 330MW Generator

    Institute of Scientific and Technical Information of China (English)

    朱敬伟

    2015-01-01

    The hydrogen leakage amount (rate) of hydrogen-cooled turbo generator directly affects the safety and economic operation of generator, and the amount (rate) of hydrogen leakage is one of the major technical indicators of the operation of turbo generator and an important indicator of the safety evaluation of generator. This article focuses on the cause analysis and preventive measures of excessive hydrogen content of two domestic 330MW generator stator cooling water tank in Datang Jilin Hunchun power generation plant and the methods to control the hydrogen leakage of 330MW hydrogen-cooled generator.%氢内冷汽轮发电机漏氢量(率)的大小直接影响发电机的安全、经济运行,漏氢量(率)是汽轮发电机组运行的主要技术指标之一,也是发电机安全性评价的一个重要指标。本文着重介绍了大唐吉林珲春发电厂运行的产两台国产330MW发电机定冷水箱含氢量超标的原因分析和防范措施以及治理330MW氢内冷发电机漏氢的方法。

  3. Methanolysis of ammonia borane by shape-controlled mesoporous copper nanostructures for hydrogen generation.

    Science.gov (United States)

    Yao, Qilu; Huang, Ming; Lu, Zhang-Hui; Yang, Yuwen; Zhang, Yuxin; Chen, Xiangshu; Yang, Zhen

    2015-01-21

    Diverse mesoporous CuO nanostructures have been prepared by a facile and scaleable wet-chemical method and reduced to mesoporous Cu nanostructures by using the reductant ammonia borane (AB). These mesoporous Cu nanostructures have been applied as a catalyst for hydrogen generation from the methanolysis of AB. The catalytic results show that the reaction rate and the amount of hydrogen evolution significantly relied on their morphologies. Compared with the nanosheet-like, bundle-like and dandelion-like Cu, the flower-like Cu nanostructures exhibit the highest catalytic activity with a total turnover frequency (TOF) value of 2.41 mol H2 mol catalyst(-1) min(-1) and a low activation energy value of 34.2 ± 1.2 kJ mol(-1) at room temperature. Furthermore, the flower-like Cu nanostructures have also shown excellent activity in recycling tests. The low cost and high performance of Cu nanocatalysts may offer high potential for its practical application in hydrogen generation from the methanolysis of AB.

  4. Ultrahigh figure-of-merit for hydrogen generation from sodium borohydride using ternary metal catalysts

    Science.gov (United States)

    Hu, Lunghao; Ceccato, R.; Raj, R.

    We report further increase in the figure-of-merit (FOM) for hydrogen generation from NaBH 4 than reported in an earlier paper [1], where a sub-nanometer layer of metal catalysts are deposited on carbon nanotube paper (CNT paper) that has been functionalized with polymer-derived silicon carbonitride (SiCN) ceramic film. Ternary, Ru-Pd-Pt, instead of the binary Pd-Pt catalyst used earlier, together with a thinner CNT paper is shown to increase the figure-of-merit by up to a factor of six, putting is above any other known catalyst for hydrogen generation from NaBH 4. The catalysts are prepared by first impregnating the functionalized CNT-paper with solutions of the metal salts, followed by reduction in a sodium borohydride solution. The reaction mechanism and the catalyst efficiency are described in terms of an electric charge transfer, whereby the negative charge on the BH 4 - ion is exchanged with hydrogen via the electronically conducting SiCN/CNT substrate [1].

  5. Generation Performance of a Fuel Cell Using Hydrogen and Di-methyl-ether (DME) Mixed Gas

    Science.gov (United States)

    Haraguchi, Tadao; Watanabe, Takashi; Yamashita, Masahiro; Tsutsumi, Yasuyuki; Yamashita, Susumu

    Di-methyl-ether (DME), an oxygenated hydrocarbon, can facilitate hydrogen manufacture by steam reforming reaction at low temperature. Methanol and DME steam reforming at 250-300°C, reforming DME into hydrogen, can be performed easily with small-scale and simple equipment. Whether the hydrogen output from the reformer for supply to the fuel cell includes DME, and how this affects the generation performance has yet to be confirmed. The purpose of this paper is to investigate the supply of a fuel cell with mixtures of DME and H2 in varying proportions and to clarify the effect on generation performance. Conclusions are as follows: (1) For a supply of DME and H2 mixed gas, DME is consumed after the H2 is consumed. By comparing the experimental values with theoretical values of consumption of pure H2, a mixture of DME and H2, and pure DME, it proved to be possible to roughly predict the experimental values by calculation. (2) The voltage value moved to near the DME voltage after the H2 was consumed, the current density increased after the H2 was consumed. (3) During continuous running the voltage load was observed to fluctuate.

  6. Graphene Porous Foam Loaded with Molybdenum Carbide Nanoparticulate Electrocatalyst for Effective Hydrogen Generation.

    Science.gov (United States)

    Wang, Jie; Xia, Han; Peng, Zhen; Lv, Cuncai; Jin, Lihuang; Zhao, Yaoxing; Huang, Zhipeng; Zhang, Chi

    2016-04-21

    A facile method is developed for the synthesis of graphene porous foam (Gr PF) loaded with dispersed molybdenum carbide (Mo2 C) nanoparticles; the material exhibits effective catalytic activity in the hydrogen evolution reaction (HER). Mo2 C/Gr PF is synthesized by the carbonization of glucose and the carbothermal reduction of hexaammonium molybdate in a confined space defined by the intervals between sodium chloride nanoparticles. The synthesis in the confined space results in thin Gr PF (≈8 nm) loaded with aggregation-free small Mo2 C nanoparticles [(13±2) nm]. The overpotential required for a current density of 20 mA cm(-2) in the electrochemical hydrogen generation is as small as 199 mV in acidic solution and 380 mV in basic solution. The performance is superior to that of a Mo2 C/C composite and compares favorably to those reported for Mo2 C nanostructures. The Mo2 C/Gr PF affords stable water electrolysis in both acidic and basic solution and exhibits nearly 100 % faradaic efficiency. The prominent performance, long-term stability, and high faradic efficiency make Mo2 C/Gr PF a promising HER catalyst for practical hydrogen generation from water electrolysis.

  7. Purge gas recovery of ammonia synthesis plant by integrated configuration of catalytic hydrogen-permselective membrane reactor and solid oxide fuel cell as a novel technology

    Science.gov (United States)

    Siavashi, Fakhteh; Saidi, Majid; Rahimpour, Mohammad Reza

    2014-12-01

    The purge gas emission of ammonia synthesis plant which contains hazardous components is one of the major sources of environmental pollution. Using integrated configuration of catalytic hydrogen-permselective membrane reactor and solid oxide fuel cell (SOFC) system is a new approach which has a great impact to reduce the pollutant emission. By application of this method, not only emission of ammonia and methane in the atmosphere is prevented, hydrogen is produced through the methane steam reforming and ammonia decomposition reactions that take place simultaneously in a catalytic membrane reactor. The pure generated hydrogen by recovery of the purge gas in the Pd-Ag membrane reactor is used as a feed of SOFC. Since water is the only byproduct of the electrochemical reaction in the SOFC, it is recycled to the reactor for providing the required water of the reforming reaction. Performance investigation of the reactor represents that the rate of hydrogen permeation increases with enhancing the reactor temperature and pressure. Also modeling results indicate that the SOFC performance improves with increasing the temperature and fuel utilization ratio. The generated power by recovery of the purging gas stream of ammonia synthesis plant in the Razi petrochemical complex is about 8 MW.

  8. Modelling of hydrogen sulfide dispersion from the geothermal power plants of Tuscany (Italy)

    Science.gov (United States)

    Renato, Somma; Domenico, Granieri; Claudia, Troise; Carlo, Terranova; Natale Giuseppe, De; Maria, Pedone

    2017-04-01

    The hydrogen sulfide (H2S) is one of the main gaseous substances contained in deep fluids exploited by geo-thermoelectric plant. Therefore, it is a "waste" pollutant product by plants for energy production. Hydrogen sulfide is perceived by humans at very low concentrations in the air ( 0,008 ppm, World Health Organization, hereafter WHO, 2003) but it becomes odorless in higher concentrations (> 100 ppm, WHO, 2003) and, for values close to the ones lethal (> 500 ppm), produces an almost pleasant smell. The typical concentration in urban areas is plants (out of 35 active) belonging to the geothermal districts of Larderello, Travale-Radicondoli and Monte Amiata, in Tuscany (Italy). DISGAS code has simulated scenarios consistent with the prevailing wind conditions, estimating reasonable H2S concentrations for each area, and for each active power plant. The results suggest that H2S plumes emitted from geothermal power plants are mainly concentrated around the stacks of emission (H2S concentration up to 1100 ug/m3) and rapidly dilute along the dominant local wind direction. Although estimated values of air H2S concentrations are orders of magnitude higher than in unpolluted areas, they do not indicate an immediate health risk for nearby communities, under the more frequent local atmospheric conditions. Starting from the estimated values, validated by measurements in the field, we make some considerations about the environmental impact of the H2S emission in all the geothermal areas of the Tuscany region. Furthermore, this study indicates the potential of DISGAS as a tool for an improved understanding of the atmospheric and environmental impacts of the H2S continuous degassing from geothermal plants but also its potential for reliable prediction of H2S pollution in case of unexpected events, like the blowout of a geothermal well or the malfunctioning of a geothermal plant resulting in an anomalous and not-controlled emission of harmful gas in the atmosphere.

  9. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung

    2012-10-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  10. Reducing Risk for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  11. Carbon quantum dots coated BiVO{sub 4} inverse opals for enhanced photoelectrochemical hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Feng; Shen, Mingrong; Fang, Liang, E-mail: zhkang@suda.edu.cn, E-mail: lfang@suda.edu.cn [College of Physics, Optoelectronics and Energy and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn, E-mail: lfang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Wang, Junling [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-04-13

    Carbon quantum dots (CQDs) coated BiVO{sub 4} inverse opal (io-BiVO{sub 4}) structure that shows dramatic improvement of photoelectrochemical hydrogen generation has been fabricated using electrodeposition with a template. The io-BiVO{sub 4} maximizes photon trapping through slow light effect, while maintaining adequate surface area for effective redox reactions. CQDs are then incorporated to the io-BiVO{sub 4} to further improve the photoconversion efficiency. Due to the strong visible light absorption property of CQDs and enhanced separation of the photoexcited electrons, the CQDs coated io-BiVO{sub 4} exhibit a maximum photo-to-hydrogen conversion efficiency of 0.35%, which is 6 times higher than that of the pure BiVO{sub 4} thin films. This work is a good example of designing composite photoelectrode by combining quantum dots and photonic crystal.

  12. Co-generation of acetylene and hydrogen for a carbide-based fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Carreiro, Louis G.; Burke, A. Alan [Naval Undersea Warfare Center Division Newport, Code 8231, 1176 Howell Street, Newport, RI 02841 (United States); Dubois, Lily [Stonehill College, Department of Chemistry, 320 Washington Street, Easton, MA 02357 (United States)

    2010-09-15

    The co-generation of acetylene and hydrogen from the hydrolysis of calcium carbide and calcium hydride was investigated as part of a unique carbide-based fuel system intended for high-temperature fuel cells. To gain better control of this highly energetic reaction, glycerin was used to coat the reactant particles to form slurry prior to their reaction with water. This process was shown to moderate the rate of gas production, as well as to provide a means for preparing slurry that could be pumped into the reactor vessel. It was also observed that the presence of calcium hydroxide, a by-product of hydrolysis, lowered the solubility of acetylene resulting in a higher initial flow rate due to less acetylene being dissolved in solution. However, the buildup of calcium hydroxide with time inhibited the hydrolysis of both calcium carbide and calcium hydride causing the acetylene and hydrogen flow rates to decrease. (author)

  13. Molecular molybdenum persulfide and related catalysts for generating hydrogen from water

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R.; Chang, Christopher J.; Karunadasa, Hemamala I.; Majda, Marcin

    2016-11-22

    New metal persulfido compositions of matter are described. In one embodiment the metal is molybdenum and the metal persulfido complex mimics the structure and function of the triangular active edge site fragments of MoS.sub.2, a material that is the current industry standard for petroleum hydro desulfurization, as well as a promising low-cost alternative to platinum for electrocatalytic hydrogen production. This molecular [(PY5W.sub.2)MoS.sub.2].sup.x+ containing catalyst is capable of generating hydrogen from acidic-buffered water or even seawater at very low overpotentials at a turnover frequency rate in excess of 500 moles H.sub.2 per mole catalyst per second, with a turnover number (over a 20 hour period) of at least 19,000,000 moles H.sub.2 per mole of catalyst.

  14. Molecular molybdenum persulfide and related catalysts for generating hydrogen from water

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R.; Chang, Christopher J.; Karunadasa, Hemamala I.; Majda, Marcin

    2016-04-19

    New metal persulfido compositions of matter are described. In one embodiment the metal is molybdenum and the metal persulfido complex mimics the structure and function of the triangular active edge site fragments of MoS.sub.2, a material that is the current industry standard for petroleum hydro desulfurization, as well as a promising low-cost alternative to platinum for electrocatalytic hydrogen production. This molecular [(PY5W.sub.2)MoS.sub.2].sup.x+ containing catalyst is capable of generating hydrogen from acidic-buffered water or even seawater at very low overpotentials at a turnover frequency rate in excess of 500 moles H.sub.2 per mole catalyst per second, with a turnover number (over a 20 hour period) of at least 19,000,000 moles H.sub.2 per mole of catalyst.

  15. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  16. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  17. Experimental Study of Plasma Under-liquid Electrolysis in Hydrogen Generation

    Institute of Scientific and Technical Information of China (English)

    严宗诚; 陈砺; 王红林

    2006-01-01

    The application and characteristics of relatively big volume plasma produced with cathodic glow discharges taking place across a gaseous envelope over the cathode which was dipped into electrolyte in hydrogen generation were studied. A critical investigation of the influence of methanol concentration and voltage across the circuit on the composition and power consumption per cubic meter of cathode liberating gas was carried out. The course of plasma under-liquid electrolysis has the typical characteristics of glow discharge electrolysis. The cathode liberating gas was in substantial excess of the Faraday law value. When the voltage across the circuit was equal to 550 V, the volume of cathodic gas with sodium carbonate solution was equal to 16.97 times the Faraday law value. The study showed that methanol molecules are more active than water molecules.The methanol molecules were decomposed at the plasma-catholyte interface by the radicals coming out the plasma mantle.Energy consumption per cubic meter of cathodic gases (WV) decreased while methanol concentration of the electrolytes increased. When methanol concentration equaled 5% (ψ), WV was 10.381×103 kJ/m3, less than the corresponding theoretic value of conventional water electrolysis method. The cathodic liberating gas was a mixture of hydrogen, carbon dioxide and carbon monoxide with over 95% hydrogen, if methanol concentration was more than 15% (ψ). The present research work revealed an innovative application of glow discharge and a new highly efficient hydrogen generation method, which depleted less resource and energy than normal electrolysis and is environmentally friendly.

  18. [Russian oxygen generation system "Elektron-VM": hydrogen content in electrolytically produced oxygen for breathing by International Space Station crews].

    Science.gov (United States)

    Proshkin, V Yu; Kurmazenko, E A

    2014-01-01

    The article presents the particulars of hydrogen content in electrolysis oxygen produced aboard the ISS Russian segment by oxygen generator "Elektron-VM" (SGK) for crew breathing. Hydrogen content was estimated as in the course of SGK operation in the ISS RS, so during the ground life tests. According to the investigation of hydrogen sources, the primary path of H2 appearance in oxygen is its diffusion through the porous diaphragm separating the electrolytic-cell cathode and anode chambers. Effectiveness of hydrogen oxidation in the SGK reheating unit was evaluated.

  19. Classical Dynamics of Harmonic Generation of the Hydrogen Molecular Ion Interacting with Ultrashort Intense Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    LI Chao-Hong; DUAN Yi-Wu; Wing-Ki Liu; Jian-Min Yuan

    2001-01-01

    Within Born-Oppenheimer approximation, by using the classical trajectory theory, a description for the high order harmonic generation of the hydrogen molecular ion interacting with ultrashort laser pulses has been pre sented. The Coulomb singularities have been remedied by the regularization. The action-angle variables have been used to generate the initial inversion symmetry microcanonical distribution. Within a proper intensity range, a harmonic plateau with only odd harmonics appears. For a larger intensity, because of the existence of chaos, the harmonic spectra become noisier. For a large enough intensity, the ionization takes place and the harmonics disappear. So the chaos causes the noises, the ionization suppresses the harmonic generation, and the onset of the ionization follows the onset of chaos.

  20. Hydrogen monitoring for power plant applications using SiC sensors

    Energy Technology Data Exchange (ETDEWEB)

    Loloee, R. (Michigan State Univ., E. Lansing, MI); Chorpening, B.T.; Beer, S.K.; Ghosh, R.N. (Michigan State Univ., E. Lansing, MI)

    2008-01-29

    We have developed a high-temperature gas sensing system for the detection of combustion products under harsh conditions, such as an energy plant. The sensor, based on the wide band gap semiconductor silicon carbide (SiC), is a catalytic gate field-effect device (Pt–SiO2–SiC) that can detect hydrogen-containing species in chemically reactive, high-temperature environments. The hydrogen response of the device in an industrially robust module was determined under both laboratory and industrial conditions (1000 sccm of 350 °C gas) from 52 ppm to 50% H2, with the sensor held at 620 °C. From our data we find that the hydrogen adsorption kinetics at the catalyst–oxide interface are well fitted by the linearized Langmuir adsorption isotherm. For hydrogen monitoring in a coal gasification application, we investigated the effect of common interferants on the device response to a 20% H2 gas stream. Within our signal to noise ratio, 40% CO and 5% CH4 had no measurable effect and a 2000 ppm pulse of H2S did not poison the Pt sensing film. We have demonstrated the long-term reliability of our SiC sensor and the robustness of the sensor packaging techniques, as all the data are from a single device, obtained during 5 days of industrial measurements in addition to 480 continuous hours of operation under laboratory conditions.

  1. Recovery of Hydrogen from Ammonia Plant Tail Gas by Absorption-Hydration Hybrid Method

    Institute of Scientific and Technical Information of China (English)

    刘蓓; 王秀林; 唐绪龙; 杨兰英; 孙长宇; 陈光进

    2011-01-01

    In this work, the absorption-hydration hybrid method was used to recover (hydrogen + nitrogen) from (hydrogen + nitrogen + methane + argon) tail gas mixtures of synthetic ammonia plant through hydrate formation/dissociation. A high-pressure reactor with magnetic stirrer was used to study the separation efficiency. The in-fluences of the concentration of anti-agglomerant, temperature, pressure, initial gas-liquid volume ratio, and oil-water volume ratio on the separation efficiency were systematically investigated in the presence of tetrahydro-furan (THF). Anti-agglomerant was used to disperse hydrate particles into the condensate phase for water-in-oil emulsion system. Since nitrogen is the material for ammonia production, the objective production in our separation process is (hydrogen + nitrogen). Our experimental results show that by adopting appropriate operating conditions, high concentration of (hydrogen + nitrogen) can be obtained using the proposed technology based on forming hydrate.

  2. Use of hydrogen peroxide in scrubbing towers for odor removal in wastewater treatment plants.

    Science.gov (United States)

    Charron, I; Féliers, C; Couvert, A; Laplanche, A; Patria, L; Requieme, B

    2004-01-01

    The aim of this work was to replace sodium hypochlorite (NaCIO) with hydrogen peroxide (H202) in chemical scrubbing towers, in order to avoid the formation of chlorinated species, harmful for human health. Some previous studies have already shown the ability of H2O2 to treat the hydrogen sulfide (H2S) pollution. However, an important decomposition of the oxidant was observed in the scrubbing solution (carbonates, transition metal and high pH are responsible for this decomposition) leading to high reactant consumption. Consequently, this study first focused on research into a compound able to reduce the hydrogen peroxide degradation. Experiments were conducted on a pilot unit (3,000 m3 h(-1)) in a wastewater treatment plant. The sodium silicate (Na2SiO3) proved to be a good scrubbing solution stabilizer. A very good removal of hydrogen sulfide (up to 98%) was also obtained. Finally, the study resulted in the determination of the best operating conditions to achieve both an efficient and economical process.

  3. Improvement of the efficiency of a space oxygen-hydrogen electrochemical generator

    Science.gov (United States)

    Glukhikh, I. N.; Shcherbakov, A. N.; Chelyaev, V. F.

    2014-12-01

    This paper describes the method used for cooling of an on-board oxygen-hydrogen electrochemical generator (ECG). Apart from electric power, such a unit produces water of reaction and heat; the latter is an additional load on the thermal control system of a space vehicle. This load is undesirable in long-duration space flights, when specific energy characteristics of on-board systems are the determining factors. It is suggested to partially compensate the energy consumption by the thermal control system of a space vehicle required for cooling of the electrochemical generator through evaporation of water of reaction from the generator into a vacuum (or through ice sublimation if the pressure in the ambient space is lower than that in the triple point of water.) Such method of cooling of an electrochemical generator improves specific energy parameters of an on-board electric power supply system, and, due to the presence of the negative feedback, it makes the operation of this system more stable. Estimates suggest that it is possible to compensate approximately one half of heat released from the generator through evaporation of its water of reaction at the electrical efficiency of the electrochemical generator equal to 60%. In this case, even minor increase in the efficiency of the generator would result in a considerable increase in the efficiency of the evaporative system intended for its cooling.

  4. Endogenous generation of hydrogen sulfide and its regulation in Shewanella oneidensis

    Directory of Open Access Journals (Sweden)

    Genfu eWu

    2015-04-01

    Full Text Available Hydrogen sulfide (H2S has been recognized as a physiological mediator with a variety of functions across all domains of life. In this study, mechanisms of endogenous H2S generation in Shewanella oneidensis were investigated. As a research model with highly diverse anaerobic respiratory pathways, the microorganism is able to produce H2S by respiring on a variety of sulfur-containing compounds with SirACD and PsrABC enzymatic complexes, as well as through cysteine degradation with three enzymes, MdeA, SO_1095, and SseA. We showed that the SirACD and PsrABC complexes, which are predominantly, if not exclusively, responsible for H2S generation via respiration of sulfur species, do not interplay with each other. Strikingly, a screen for regulators controlling endogenous H2S generation by transposon mutagenesis identified global regulator Crp to be essential to all H2S-generating processes. In contrast, Fnr and Arc, two other global regulators that have a role in respiration, are dispensable in regulating H2S generation via respiration of sulfur species. Interestingly, Arc is involved in the H2S generation through cysteine degradation by repressing expression of the mdeA gene. We further showed that expression of the sirA and psrABC operons is subjected to direct regulation of Crp, but the mechanisms underlying the requirement of Crp for H2S generation through cysteine degradation remain elusive.

  5. Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacterium Plectonema boryanum.

    Science.gov (United States)

    Huesemann, Michael H; Hausmann, Tom S; Carter, Blaine M; Gerschler, Jared J; Benemann, John R

    2010-09-01

    The nitrogen-fixing nonheterocystous cyanobacterium Plectonema boryanum was used as a model organism to study hydrogen generation by indirect biophotolysis in nitrogen-limited batch cultures that were continuously illuminated and sparged with argon/CO(2) to maintain anaerobiosis. The highest hydrogen-production rate (i.e., 0.18 mL/mg day or 7.3 micromol/mg day) was observed in cultures with an initial medium nitrate concentration of 1 mM at a light intensity of 100 micromol/m(2) s. The addition of photosystem II (PSII) inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) did not reduce hydrogen-production rates relative to unchallenged controls for 50 to 150 h, and intracellular glycogen concentrations decreased significantly during the hydrogen generation period. The insensitivity of the hydrogen-production process to DCMU is indicative of the fact that hydrogen was not derived from water splitting at PSII (i.e., direct biophotolysis) but rather from electrons provided by intracellular glycogen reserves (i.e., indirect biophotolysis). It was shown that hydrogen generation could be sustained for long time periods by subjecting the cultures to alternating cycles of aerobic, nitrogen-limited growth and anaerobic hydrogen production.

  6. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems

    KAUST Repository

    Hatzell, Marta C.

    2014-01-01

    Currently, there is an enormous amount of energy available from salinity gradients, which could be used for clean hydrogen production. Through the use of a favorable oxygen reduction reaction (ORR) cathode, the projected electrical energy generated by a single pass ammonium bicarbonate reverse electrodialysis (RED) system approached 78 W h m-3. However, if RED is operated with the less favorable (higher overpotential) hydrogen evolution electrode and hydrogen gas is harvested, the energy recovered increases by as much ∼1.5× to 118 W h m-3. Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 W h m-3 or ∼1/3 of that produced through direct hydrogen generation.

  7. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems.

    Science.gov (United States)

    Hatzell, Marta C; Ivanov, Ivan; Cusick, Roland D; Zhu, Xiuping; Logan, Bruce E

    2014-01-28

    Currently, there is an enormous amount of energy available from salinity gradients, which could be used for clean hydrogen production. Through the use of a favorable oxygen reduction reaction (ORR) cathode, the projected electrical energy generated by a single pass ammonium bicarbonate reverse electrodialysis (RED) system approached 78 W h m(-3). However, if RED is operated with the less favorable (higher overpotential) hydrogen evolution electrode and hydrogen gas is harvested, the energy recovered increases by as much ~1.5× to 118 W h m(-3). Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 W h m(-3) or ~1/3 of that produced through direct hydrogen generation.

  8. [Isolation of a high hydrogen-producing mutant TB34 generated by transposon insertion and analysis of hydrogen production].

    Science.gov (United States)

    Liu, Hong-Yan; Wang, Guang-Ce; Shi, Liu-Yang; Zhu, Da-Ling

    2012-07-01

    To increase the hydrogen-producing capacity of Pantoea agglomerans BH18, isolated from mangrove sludge, we constructed a stable transposon mutagenesis library of this strain. A Tn7-based transposon was randomly inserted into the genomic DNA. Mutants were screened by kanamycin resistance and identified by amplification of the inserted transposon sequences. A mutant strain TB34 was isolated, whose hydrogen production capacity was significantly improved compared to the wild type strain. In seawater-containing medium supplemented with 10 g x L(-1) glucose and had an initial pH of 7.0, the hydrogen yield (H2/glucose) of the mutant strain was (2.04 +/- 0.04) mol x mol(-1), which was 43% higher than that of the wild type strain. The mutant TB34 showed steady hydrogen production capacity for five consecutive passages. Different carbon sources were tested in the hydrogen production by the mutant TB34 and the results showed that both the mutant strain TB34 and the wild type strain BH18 were able to produce hydrogen on sucrose, glucose and fructose. However, different from the wild type strain, the mutant strain TB34 was also able to produce hydrogen using xylose as substrate, with a hydrogen yield (H2/xylose) of (1.34 +/- 0.09) mol x mol(-1), indicating a broader substrate spectrum in the mutant.

  9. Enhanced Solar-to-Hydrogen Generation with Broadband Epsilon-Near-Zero Nanostructured Photocatalysts

    KAUST Repository

    Tian, Yi

    2017-05-08

    The direct conversion of solar energy into fuels or feedstock is an attractive approach to address increasing demand of renewable energy sources. Photocatalytic systems relying on the direct photoexcitation of metals have been explored to this end, a strategy that exploits the decay of plasmonic resonances into hot carriers. An efficient hot carrier generation and collection requires, ideally, their generation to be enclosed within few tens of nanometers at the metal interface, but it is challenging to achieve this across the broadband solar spectrum. Here the authors demonstrate a new photocatalyst for hydrogen evolution based on metal epsilon-near-zero metamaterials. The authors have designed these to achieve broadband strong light confinement at the metal interface across the entire solar spectrum. Using electron energy loss spectroscopy, the authors prove that hot carriers are generated in a broadband fashion within 10 nm in this system. The resulting photocatalyst achieves a hydrogen production rate of 9.5 µmol h-1  cm-2 that exceeds, by a factor of 3.2, that of the best previously reported plasmonic-based photocatalysts for the dissociation of H2 with 50 h stable operation.

  10. Possibly scalable solar hydrogen generation with quasi-artificial leaf approach.

    Science.gov (United States)

    Patra, Kshirodra Kumar; Bhuskute, Bela D; Gopinath, Chinnakonda S

    2017-07-26

    Any solar energy harvesting technology must provide a net positive energy balance, and artificial leaf concept provided a platform for solar water splitting (SWS) towards that. However, device stability, high photocurrent generation, and scalability are the major challenges. A wireless device based on quasi-artificial leaf concept (QuAL), comprising Au on porous TiO2 electrode sensitized by PbS and CdS quantum dots (QD), was demonstrated to show sustainable solar hydrogen (490 ± 25 µmol/h (corresponds to 12 ml H2 h(-1)) from ~2 mg of photoanode material coated over 1 cm(2) area with aqueous hole (S(2-)/SO3(2-)) scavenger. A linear extrapolation of the above results could lead to hydrogen production of 6 L/h.g over an area of ~23 × 23 cm(2). Under one sun conditions, 4.3 mA/cm(2) photocurrent generation, 5.6% power conversion efficiency, and spontaneous H2 generation were observed at no applied potential (see S1). A direct coupling of all components within themselves enhances the light absorption in the entire visible and NIR region and charge utilization. Thin film approach, as in DSSC, combined with porous titania enables networking of all the components of the device, and efficiently converts solar to chemical energy in a sustainable manner.

  11. Integration of direct carbon and hydrogen fuel cells for highly efficient power generation from hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Choi, Pyoungho; Smith, Franklyn; Bokerman, Gary [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922-5703 (United States)

    2010-02-15

    In view of impending depletion of hydrocarbon fuel resources and their negative environmental impact, it is imperative to significantly increase the energy conversion efficiency of hydrocarbon-based power generation systems. The combination of a hydrocarbon decomposition reactor with a direct carbon and hydrogen fuel cells (FC) as a means for a significant increase in chemical-to-electrical energy conversion efficiency is discussed in this paper. The data on development and operation of a thermocatalytic hydrocarbon decomposition reactor and its coupling with a proton exchange membrane FC are presented. The analysis of the integrated power generating system including a hydrocarbon decomposition reactor, direct carbon and hydrogen FC using natural gas and propane as fuels is conducted. It was estimated that overall chemical-to-electrical energy conversion efficiency of the integrated system varied in the range of 49.4-82.5%, depending on the type of fuel and FC used, and CO{sub 2} emission per kW{sub el}h produced is less than half of that from conventional power generation sources. (author)

  12. Steam generator tube degradation at the Doel 4 plant influence on plant operation and safety

    Energy Technology Data Exchange (ETDEWEB)

    Scheveneels, G. [AIB-Vincotte Nuclear, Brussels (Belgium)

    1997-02-01

    The steam generator tubes of Doel 4 are affected by a multitude of corrosion phenomena. Some of them have been very difficult to manage because of their extremely fast evolution, non linear evolution behavior or difficult detectability and/or measurability. The exceptional corrosion behavior of the steam generator tubes has had its drawbacks on plant operation and safety. Extensive inspection and repair campaigns have been necessary and have largely increased outage times and radiation exposure to personnel. Although considerable effort was invested by the utility to control corrosion problems, non anticipated phenomena and/or evolution have jeopardized plant safety. The extensive plugging and repairs performed on the steam generators have necessitated continual review of the design basis safety studies and the adaptation of the protection system setpoints. The large asymmetric plugging has further complicated these reviews. During the years many preventive and recently also defence measures have been implemented by the utility to manage corrosion and to decrease the probability and consequences of single or multiple tube rupture. The present state of the Doel 4 steam generators remains troublesome and further examinations are performed to evaluate if continued operation until June `96, when the steam generators will be replaced, is justified.

  13. Development of binary cycle generation plant (Development of 10 MW class plant)

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-20

    In a binary cycle power generation system, medium/high temperature water, unutilized because of insufficient flowing force, is poured up with a DHP (Down Haul Pump) and a generator turbine is driven by an air medium obtained by heat-exchanging between the geothermal water and low boiling point medium. Merits of this system are as follows: Reduction of well drilling risk. High output obtained by a compact turbine. Enhancement of goethermal utilization. This report describes the following items. History of development (Drilling of a test well, plant design). Results in 1987 (Test well drilling, production regenerating test, reservoir analysis, plant design, natural earthwuake observation and underground water variation observation). (8 figs, 3 tabs)

  14. Analysis of some enzymes activities of hydrogen sulfide metabolism in plants.

    Science.gov (United States)

    Li, Zhong-Guang

    2015-01-01

    Hydrogen sulfide (H2S) which is considered as a novel gasotransmitter after reactive oxygen species and nitric oxide in plants has dual character, that is, toxicity that inhibits cytochrome oxidase at high concentration and as signal molecule which is involved in plant growth, development, and the acquisition of tolerance to adverse environments such as extreme temperature, drought, salt, and heavy metal stress at low concentration. Therefore, H2S homeostasis is very important in plant cells. The level of H2S in plant cells is regulated by its synthetic and degradative enzymes, L-/D-cysteine desulfhydrase (L-/D-DES), sulfite reductase (SiR), and cyanoalanine synthase (CAS), which are responsible for H2S synthesis, while cysteine synthase (CS) takes charge of the degradation of H2S, but its reverse reaction also can produce H2S. Here, after crude enzyme is extracted from plant tissues, the activities of L-/D-DES, SiR, CAS, and CS are measured by spectrophotometry, the aim is to further understand homeostasis of H2S in plant cells and its potential mechanisms.

  15. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Oscar [Millennium Cell Inc., Eatontown, NJ (United States)

    2017-02-22

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  16. Hydrogen generation arising from the {sup 59}Ni(n,p) reaction and its impact on fission-fusion correlations

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Garner, A.F.

    1996-04-01

    Whilte the influence of transmutant helium on radiation-induced microstructural evolution has often been studied, there is a tendency to overlook the influence of concurrently-generated hydrogen. There have been some recent speculation and studies, however, that suggest that the influence of hydrogen may be enhanced in the presence of large amounts of helium, especially at lower irradiation temperatures typical of projected ITER operation. The impact of the (n,p) reaction on both hydrogen generation rates and displacement rates are evaluated in this paper for a variety of neutron spectra employed in fission-fusion correlation.

  17. An numerical analysis of high-temperature helium reactor power plant for co-production of hydrogen and electricity

    Science.gov (United States)

    Dudek, M.; Podsadna, J.; Jaszczur, M.

    2016-09-01

    In the present work, the feasibility of using a high temperature gas cooled nuclear reactor (HTR) for electricity generation and hydrogen production are analysed. The HTR is combined with a steam and a gas turbine, as well as with the system for heat delivery for medium temperature hydrogen production. Industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high temperature electrolysis. Presented cycle shows a very promising route for continuous, efficient, large-scale and environmentally benign hydrogen production without CO2 emissions. The results show that the integration of a high temperature helium reactor, with a combined cycle for electric power generation and hydrogen production, may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  18. Room temperature hydrogen generation from hydrolysis of ammonia-borane over an efficient NiAgPd/C catalyst

    KAUST Repository

    Hu, Lei

    2014-12-01

    NiAgPd nanoparticles are successfully synthesized by in-situ reduction of Ni, Ag and Pd salts on the surface of carbon. Their catalytic activity was examined in ammonia borane (NH3BH3) hydrolysis to generate hydrogen gas. This nanomaterial exhibits a higher catalytic activity than those of monometallic and bimetallic counterparts and a stoichiometric amount of hydrogen was produced at a high generation rate. Hydrogen production rates were investigated in different concentrations of NH3BH3 solutions, including in the borates saturated solution, showing little influence of the concentrations on the reaction rates. The hydrogen production rate can reach 3.6-3.8 mol H2 molcat -1 min-1 at room temperature (21 °C). The activation energy and TOF value are 38.36 kJ/mol and 93.8 mol H2 molcat -1 min-1, respectively, comparable to those of Pt based catalysts. This nanomaterial catalyst also exhibits excellent chemical stability, and no significant morphology change was observed from TEM after the reaction. Using this catalyst for continuously hydrogen generation, the hydrogen production rate can be kept after generating 6.2 L hydrogen with over 10,000 turnovers and a TOF value of 90.3 mol H2 molcat -1 min-1.

  19. Histological responses of some plant leaves to hydrogen fluoride and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.F.; Solberg, R.A.

    1956-12-01

    Dicotyledonous plants were fumigated with hydrogen fluoride and/or sulfur dioxide. Samples were taken of injured and control leaves, processed microtechnically, and examined microscopically. Histological responses to hydrogen fluoride and sulfur dioxide were indistinguishable. The spongy mesophyll and lower epidermis first collapsed, followed by distortion and chloroplast disruption in the palisade cells. The upper epidermis finally distorted and collapsed. Microscopically injured leaf tissues were selectively stained with safranin. Various postulates are discussed concerning the means and pathways by which a phytotoxic air pollutant may enter the leaf and produce injury therein. The evidence indicates that should fluoride enter a leaf in sub-phytotoxic concentrations, it is transported acropetally. Should phytotoxic levels be reached, visible marginal injury results.

  20. Tungsten dust nanoparticles generation from blistering bursts under hydrogen environment in microwave ECR discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ouaras, K., E-mail: ouaras@lspm.cnrs.fr; Hassouni, K.; Delacqua, L. Colina; Lombardi, G.; Vrel, D.; Bonnin, X.

    2015-11-15

    Blistering burst induced tungsten dust nanoparticles were observed for the first time when a tungsten sample is submitted to a hydrogen low-temperature discharge under low flux and low incident energy values (20, 120 and 220 eV) at a surface temperature of 500 K. Tungsten nanoparticles (∼50 nm) were organized in 2D domains with diameter that is well correlated to the blister volume losses by burst. These observations suggest that dust nanoparticles were generated from blistering burst.

  1. Possibly scalable solar hydrogen generation with quasi-artificial leaf approach

    OpenAIRE

    Patra, Kshirodra Kumar; Bhuskute, Bela D.; Chinnakonda S. Gopinath

    2017-01-01

    Any solar energy harvesting technology must provide a net positive energy balance, and artificial leaf concept provided a platform for solar water splitting (SWS) towards that. However, device stability, high photocurrent generation, and scalability are the major challenges. A wireless device based on quasi-artificial leaf concept (QuAL), comprising Au on porous TiO2 electrode sensitized by PbS and CdS quantum dots (QD), was demonstrated to show sustainable solar hydrogen (490???25??mol/h (co...

  2. Investigation of cold cathodes of plasma sources generating of hydrogen ion beams

    CERN Document Server

    Veresov, L P; Dzkuya, M I; Zhukov, Y N; Kuznetsov, G V; Tsekvava, I A

    2001-01-01

    Designs of a hollow cellular cathode (HCC) and of an inverse cylindrical multichamber magnetronic cathode (ICMMC), used as cold cathodes in duoplasmatron for hydrogen ion beam generation, are described. Their service characteristics are compared. It is ascertained that emission ability of both HCC and ICMMC is approximately the same. However, duoplasmatron with ICMMC features a three times higher gas effectiveness compared with HCC. Service life of duoplasmatron with both types of cathodes amounts to several thousand hours. On the basis of test results the choice is made in favour of ICMMC

  3. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  4. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  5. Field test of thermoelectric generating system at Komatsu plant

    Energy Technology Data Exchange (ETDEWEB)

    Kaibe, Hiromasa T.; Fujimoto, Sinichi; Mizukami, Hiroyuki; Morimoto, Shigeo [Komatsu Ltd., Kanagawa (Japan)

    2011-07-01

    At the end of October 2009, Komatsu Ltd. started a field test of the thermoelectric generation (TEG) system at a carburizing facility of Awazu plant. Residual carburizing gas based on such as CO, N and H{sub 2} is burned resulting that 20-30 kW range of flame constantly heats up the hot side of TEG. 16 of the Bi-Te thermo-modules, which were separated into 4 groups, were employed, each of which has a size of 50 by 50 by 4.2 mm{sup 3} and can generate better than 25 W under the circumstance of 280 C and 30 C of hot side and cold side temperature, respectively. Each module has a single booster-type DC/DC converter controlled by one chip computer and Maximum Power point Tracking (MPPT) was well facilitated to search for the maximum output power depending on the hot and cold side temperature. The electric output power from the four modules is summed up to charge a single lead storage battery (GS Yuasa Corp. 12V-65Ah) and then through a DC/AC inverter electricity goes to fluorescent light tubes inside the factory. Typically from 4 groups 200 W can be generated and 170 W is delivered to the batteries. (orig.)

  6. Role of hydrogen generation by Klebsiella pneumoniae in the oral cavity.

    Science.gov (United States)

    Kanazuru, Tomoko; Sato, Eisuke F; Nagata, Kumiko; Matsui, Hiroshi; Watanabe, Kunihiko; Kasahara, Emiko; Jikumaru, Mika; Inoue, June; Inoue, Masayasu

    2010-12-01

    Some gastrointestinal bacteria synthesize hydrogen (H(2)) by fermentation. Despite the presence of bactericidal factors in human saliva, a large number of bacteria also live in the oral cavity. It has never been shown that oral bacteria also produce H(2) or what role H(2) might play in the oral cavity. It was found that a significant amount of H(2) is synthesized in the oral cavity of healthy human subjects, and that its generation is enhanced by the presence of glucose but inhibited by either teeth brushing or sterilization with povidone iodine. These observations suggest the presence of H(2)-generating bacteria in the oral cavity. The screening of commensal bacteria in the oral cavity revealed that a variety of anaerobic bacteria generate H(2). Among them, Klebsiella pneumoniae (K. pneumoniae) generated significantly large amounts of H(2) in the presence of glucose. Biochemical analysis revealed that various proteins in K. pneumoniae are carbonylated under standard culture conditions, and that oxidative stress induced by the presence of Fe(++) and H(2)O(2) increases the number of carbonylated proteins, particularly when their hydrogenase activity is inhibited by KCN. Inhibition of H(2) generation markedly suppresses the growth of K. pneumoniae. These observations suggest that H(2) generation and/or the reduction of oxidative stress is important for the survival and growth of K. pneumoniae in the oral cavity.

  7. Dedicated nuclear facilities for electrolytic hydrogen production

    Science.gov (United States)

    Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.

    1979-01-01

    An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.

  8. Effects of hydrogen fluoride on plant-pathogen interactions. [Lycopersicon esculentum; Phaseolus vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    McCune, D.C.; Weinstein, L.H.; Mancini, J.F.; van Lueken, P.

    1973-01-01

    Experiments in fumigation chambers with tomato (Lycopersicon esculentum) and pinto bean (Phaseolus vulgaris) plants were performed to assess the effects of hydrogen fluoride on plant-pathogen (fungal and bacterial) interactions. Hydrogen fluoride was found to alter the plant-pathogen interaction, although the kind and consistency of effect caused by HF depended upon the host, pathogen, and several other factors. A reduction in powdery mildew probably indicates that HF was affecting the infectivity of the pathogen itself because reduction in disease was proportional to the length of the exposure period, infection was continuous during the exposure period, and the pathogen itself was epiphytic. The effect of fluoride on bean rust may have been due to accumulated fluoride in the leaf having a direct or indirect effect on the pathogen because both pre- and post-inoculation exposures to HF were effective and additive. Other evidence for an indirect effect of fluoride was found in halo-blight where stem collapse was affected but foliar symptoms were not, and the site affected was spatially removed from the site of fluoride accumulation. Effects on early blight of tomato also indicated an effect of fluoride in the leaf.

  9. Covariance of oxygen and hydrogen isotopic composition in plant water: Species effects

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, L.W.; DeNiro, M.J. (Univ. of California, Los Angeles (United States))

    1989-12-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species-specific factors on leaf water enrichment of D and {sup 18}O have not been studied for different plants growing together. To learn whether leaf water enrichment patterns and processes for D and {sup 18}O are different for individual species growing under the same environmental conditions the authors tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show high sloped (m in the leaf water equation {delta}D = m {delta}{sup 18}O + b) than in C{sub 3} plants. They determined the relationships between the stable hydrogen ({delta}D) and oxygen ({delta}{sup 18}O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes.

  10. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  11. Hydrogen Generation from Biomass-Derived Surgar Alcohols via the Aqueous-Phase Carbohydrate Reforming (ACR) Process

    Energy Technology Data Exchange (ETDEWEB)

    Randy Cortright

    2006-06-30

    This project involved the investigation and development of catalysts and reactor systems that will be cost-effective to generate hydrogen from potential sorbitol streams. The intention was to identify the required catalysts and reactors systems as well as the design, construction, and operation of a 300 grams per hour hydrogen system. Virent was able to accomplish this objective with a system that generates 2.2 kgs an hour of gas containing both hydrogen and alkanes that relied directly on the work performed under this grant. This system, funded in part by the local Madison utility, Madison, Gas & Electric (MGE), is described further in the report. The design and development of this system should provide the necessary scale-up information for the generation of hydrogen from corn-derived sorbitol.

  12. Development of HyPEP, A Hydrogen Production Plant Efficiency Calculation Program

    Energy Technology Data Exchange (ETDEWEB)

    C. H. Oh; C. B. Davis; S. R. Sherman; S. Vilim; Y. J. Lee; W. J. Lee

    2006-03-01

    The Department of Energy envisions the next generation very high temperature gas-cooled reactor (VHTR) as a single-purpose or dual-purpose facility that produces hydrogen and electricity. The Ministry of Science and Technology (MOST) of the Republic of Korea also selected VHTR for the Nuclear Hydrogen Development and Demonstration (NHDD) Project. The report will address the evaluation of hydrogen and electricity production cycle efficiencies for such systems as the VHTR and NHDD, and the optimization of system configurations. Optimization of such complex systems as VHTR and NHDD will require a large number of calculations involving a large number of operating parameter variations and many different system configurations. The research will produce (a) the HyPEP which is specifically designed to be an easy-to-use and fast running tool for the hydrogen and electricity production evaluation with flexible system layout, (b) thermal hydraulic calculations using reference design, (c) verification and validation of numerical tools used in this study, (d) transient analyses during start-up operation and off-normal operation. This project will also produce preliminary cost estimates of the major components.

  13. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-12-01

    OAK-B135 Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy [1-1,1-2]. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties [1-3,1-4]. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily

  14. Dynamic flowgraph modeling of process and control systems of a nuclear-based hydrogen production plant

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dabbagh, Ahmad W. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada); Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-09-15

    Modeling and analysis of system reliability facilitate the identification of areas of potential improvement. The Dynamic Flowgraph Methodology (DFM) is an emerging discrete modeling framework that allows for capturing time dependent behaviour, switching logic and multi-state representation of system components. The objective of this research is to demonstrate the process of dynamic flowgraph modeling of a nuclear-based hydrogen production plant with the copper-chlorine (Cu-Cl) cycle. Modeling of the thermochemical process of the Cu-Cl cycle in conjunction with a networked control system proposed for monitoring and control of the process is provided. This forms the basis for future component selection. (author)

  15. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging.

    Science.gov (United States)

    Flores Orozco, Adrián; Kemna, Andreas; Oberdörster, Christoph; Zschornack, Ludwig; Leven, Carsten; Dietrich, Peter; Weiss, Holger

    2012-08-01

    Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (contaminants at BTEX contaminated sites. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Next Generation Nuclear Plant Methods Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Richard R.; Ougouag, Abderrafi M.; Nigg, David W.; Gougar, Hans D.; Johnson, Richard W; Terry, William K.; Oh, Chang H.; McEligot, Donald W.; Johnsen, Gary W.; McCreery, Glenn E.; Yoon, Woo Y.; Sterbentz, James W.; Herring, J. Steve; Taiwo, Temitope A.; Wei, Thomas Y. C.; Pointer, William D.; Yang, Won S.; Farmer, Michael T.; Khalil, Hussein S.; Feltus, Madeline A.

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  17. Next Generation Nuclear Plant Methods Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  18. Next Generation Nuclear Plant Methods Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2007-01-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  19. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  20. Optimization of solar power plants with rotating electric generators

    Science.gov (United States)

    Ruppe, Harry O.; Blumenberg, J.

    It is shown how such electric power plants can be optimized for space applications, including space-based solar power systems generating electric energy for Earth usage. Reradiation from the energy collector and optical properties of the collector are of significant influence. Main conclusions are: -simple (i.e optically inferior), but light-weight concentrators should not be ruled out, -optimum temperatures are not extremely high, -the ratio of power plant mass to electric power is comparable to corresponding data for such systems deriving primary power from nuclear reactors. This paper consists of two parts: Firstly (H. O. Ruppe), somewhat extreme and idealized design examples are presented and the method is developed. Only the Rankine (really, derated Carnot) cycle is considered. All of this information is based strongly on pp. 225-241 of Ruppe, Introduction to Astronautica, Vol. 2. Academic Press, New York (1967). Secondly (J. Blumenberg), more refined information is included. This is largely taken from Blumenberg, Acta Astronautica8, 839-854 (1981), and additional data which were developed for this publication.

  1. Plant Generation of TM-1 via Tissue Culture

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-liang; LI Fu-guang; XU Leng-chun

    2008-01-01

    @@ Plant generation of TM-1 via tissue culture was established.The hypocotyledon sections as explants which were cultured in a series of improved MS media containing 0.05~0.10 mg · L-1 IAA, 0.1~0.15 mg · L-1 Kt,0.07~0.14 mg · L-1 2,4-D could produce a large number of calli which were easier to regeneration in this system.The calli,which were subcuhured in another MS media containing 0.03~0.05 mg · L-1 Kt for 3-4 times produced embryoid callus in a rate of 35%.Fifty-six somatic embryoid calli were subcultured in an improved MS medium containing 0.1 mg·L-1 BA and 0.1~0.15 mg · L-1 IAA for plant regenerating,and 47 cotton plantlets were regenerated from them.

  2. Hydrothermal Synthesis of Co-Ru Alloy Particle Catalysts for Hydrogen Generation from Sodium Borohydride

    Directory of Open Access Journals (Sweden)

    Marija Kurtinaitienė

    2013-01-01

    Full Text Available We report the synthesis of μm and sub-μm-sized Co, Ru, and Co-Ru alloy species by hydrothermal approach in the aqueous alkaline solutions (pH ≥ 13 containing CoCl2 and/or RuCl3, sodium citrate, and hydrazine hydrate and a study of their catalytic properties for hydrogen generation by hydrolysis of sodium borohydride solution. This way provides a simple platform for fabrication of the ball-shaped Co-Ru alloy catalysts containing up to 12 wt% Ru. Note that bimetallic Co-Ru alloy bowls containing even 7 at.% Ru have demonstrated catalytic properties that are comparable with the ones of pure Ru particles fabricated by the same method. This result is of great importance in view of the preparation of cost-efficient catalysts for hydrogen generation from borohydrides. The morphology and composition of fabricated catalyst particles have been characterized using scanning electron microscopy, energy dispersive X-ray diffraction, and inductively coupled plasma optical emission spectrometry.

  3. Sulfur-Doped Graphene Oxide Quantum Dots as Photocatalysts for Hydrogen Generation in the Aqueous Phase.

    Science.gov (United States)

    Gliniak, Jacek; Lin, Jia-Hoa; Chen, Yi-Ting; Li, Chuen-Ru; Jokar, Efat; Chang, Chin-Hao; Peng, Chun-Sheng; Lin, Jui-Nien; Lien, Wan-Hsiang; Tsai, Hui-Min; Wu, Tung-Kung

    2017-08-24

    Sulfur-doped graphene oxide quantum dots (S-GOQDs) were synthesized and investigated for efficient photocatalytic hydrogen generation application. The UV/Vis, FTIR, and photoluminescence spectra of the synthesized S-GOQDs exhibit three absorption bands at 333, 395, and 524 nm, characteristic of C=S and C-S stretching vibration signals at 1075 and 690 cm(-1) , and two excitation-wavelength-independent emission signals with maxima at 451 and 520 nm, respectively, confirming the successful doping of S atom into the GOQDs. Electronic structural analysis suggested that the S-GOQDs exhibit conduction band minimum (CBM) and valence band maximum (VBM) levels suitable for water splitting. Under direct sunlight irradiation, an initial rate of 18 166 μmol h(-1)  g(-1) in pure water and 30 519 μmol h(-1)  g(-1) in 80 % ethanol aqueous solution were obtained. Therefore, metal-free and inexpensive S-GOQDs hold great potential in the development of sustainable and environmentally friendly photocatalysts for efficient hydrogen generation from water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydrogen generation from methanolysis of sodium borohydride over Co/Al2O3 catalyst

    Institute of Scientific and Technical Information of China (English)

    Dongyan Xu; Lin Zhao; Ping Dai; Shengfu Ji

    2012-01-01

    Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH4) for hydrogen generation.At solution temperature of 0℃,the methanolysis reaction can be effectively accelerated using Co/Al2O3 catalyst and provide a desirable hydrogen generation rate,which makes it suitable for apphcations under the circumstance of low environmental temperature.The byproduct of methanolysis reaction is analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).The characterization results indicate that methanol can be easily recovered after methanolysis reaction by hydrolysis of the methanolysis byproduct,NaB(OCH3)4.The catalytic activity of Co/Al2O3 towards NaBH4 methanolysis can be further improved by appropriate calcination treatment.The catalytic methanolysis kinetics and catalyst reusability are also studied over the Co/Al2O3 catalyst calcined at the optimized temperature.

  5. Synthesis and Characterization of K-Ta Mixed Oxides for Hydrogen Generation in Photocatalysis

    Directory of Open Access Journals (Sweden)

    Beata Zielińska

    2012-01-01

    Full Text Available K-Ta mixed oxides photocatalysts have been prepared by impregnation followed by calcination. The influence of the reaction temperature (450°C–900°C on the phase formation, crystal morphology, and photocatalytic activity in hydrogen generation of the produced materials was investigated. The detailed analysis has revealed that all products exhibit high crystallinity and irregular structure. Moreover, two different crystal structures of potassium tantalates such as KTaO3 and K2Ta4O11 were obtained. It was also found that the sample composed of KTaO3 and traces of unreacted Ta2O5 (annealed at 600°C exhibits the highest activity in the reaction of photocatalytic hydrogen generation. The crystallographic phases, optical and vibronic properties were examined by X-ray diffraction (XRD and diffuse reflectance (DR UV-vis and resonance Raman spectroscopic methods, respectively. Morphology and chemical composition of the produced samples were studied using a high-resolution transmission electron microscope (HR-TEM and an energy dispersive X-ray spectrometer (EDX as its mode.

  6. Aerobic Methane Generation From Plants (AMP)? Yes, Mostly!

    Science.gov (United States)

    Whiticar, M. J.; Ednie, A. C.

    2007-12-01

    In 2006, Keppler et al. (K) published an intriguing and revolutionary idea that aerobic methane is produced in plants (AMP) and released to the atmosphere. Their initial scaling calculations estimated the amount of AMP fluxing from living plants to range from 62-236 Tg/y and 1-7 Tg/y for plant litter. Houweling et al. (2006) (H) refined this flux to ca. 85 Tg/y PIH and 125 Tg/y present day. More recently, Dueck et al. (2007) (D) challenged the claim of AMP from intact plants. Their experiments cited "...No evidence for substantial aerobic methane emission by terrestrial plants..." (max. 0.4 ng/g h-1). Due to the significance of AMP in understanding present and palaeo-atmospheric budgets (e.g., Whiticar and Schaefer, 2007), we conducted a wide range of experiments to confirm or refute the existence and magnitude of AMP. For explanation, experiments of K were time-series batch samples measured by gas chromatography on purged and ambient samples, whereas D used continuous-flow cuvettes and measured by optical PAS with time series single injections. Our longer-term experiments with corn, wheat, tomato, red cedar, chestnut, moss and lichen (3-97 h, 32 °C) used a plant chamber, flow-through system with a GYRO, an optical spectrometer that enables continuous 1 Hz CH4 measurements with a precision of ca. 1 ppbv. We conducted over 100 chamber experiments on sterilized and non-sterilized (Cs-137 radiation) samples of: 1) intact living plants (IP), 2) fresh leaves (FL) and 3) dried leaves (DL); under both 1) high and 2) low light conditions (HL, LL), and with 1) ambient CH4 (AM, ca. 1.92 ppmv) and 2) purged methane (PM, 10 and 96 ppbv) levels. Our results demonstrate that IP-AMs have CH4 flux rates of 0.74-3.48 ng/g h-1. In contrast, IP-PMs show intense CH4 uptake rates of -28.5 to -57.9 ng/g h-1 (substantially different than K's reported emissions of 12-370 ng/g h-1 values). Our FL-AM-LL have CH4 flux rates of 0.36-2.05 ng/g h-1, whereas FL-AM-HL have significant CH4

  7. Optimized Flow Sheet for a Reference Commercial-Scale Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    M. G. McKellar; J. E. O' Brien; E. A. Harvego; J. S. Herring

    2007-11-01

    This report presents results from the development and optimization of a reference commercialscale high-temperature electrolysis (HTE) plant for hydrogen production. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540° C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4.176 × 10 6 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 49.07% at a hydrogen production rate of 2.45 kg/s with the high-temperature helium-cooled reactor concept. The information presented in this report is intended to establish an optimized design for the reference nuclear-driven HTE hydrogen production plant so that parameters can be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics.

  8. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells?

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Flyvbjerg, Henrik; Møller, Ian Max

    2012-01-01

    Amplitude- and frequency-modulated waves of Ca(2+) ions transmit information inside cells. Reactive Oxygen Species (ROS), specifically hydrogen peroxide, have been proposed to have a similar role in plant cells. We consider the feasibility of such an intracellular communication system in view...... of the physical and biochemical conditions in plant cells. As model system, we use a H(2)O(2) signal originating at the plasma membrane (PM) and spreading through the cytosol. We consider two maximally simple types of signals, isolated pulses and harmonic oscillations. First we consider the basic limits...... which diffusion-mediated signaling is possible. We show that purely diffusive transmission of intracellular information by H(2)O(2) over a distance of 1 μm (typical distance between organelles, which may function as relay stations) is possible at frequencies well above 1 Hz, which is the highest...

  9. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells?

    DEFF Research Database (Denmark)

    Vestergaard, Christian Lyngby; Flyvbjerg, Henrik; Møller, Ian Max

    2012-01-01

    Amplitude- and frequency-modulated waves of Ca2+ ions transmit information inside cells. Reactive Oxygen Species (ROS), specifically hydrogen peroxide, have been proposed to have a similar role in plant cells. We consider the feasibility of such an intracellular communication system in view...... of the physical and biochemical conditions in plant cells. As model system, we use a H2O2 signal originating at the plasma membrane (PM) and spreading through the cytosol. We consider two maximally simple types of signals, isolated pulses and harmonic oscillations. First we consider the basic limits...... diffusion-mediated signaling is possible. We show that purely diffusive transmission of intracellular information by H2O2 over a distance of 1 μm (typical distance between organelles, which may function as relay stations) is possible at frequencies well above 1 Hz, which is the highest frequency observed...

  10. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall

  11. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  12. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-12-15

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

  13. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Yaseen; Shen, Chong; Li, Chunxi [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Lu, Yingzhou [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-02-15

    Catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) was carried out in a temperature range of 320-400 C using in situ generated hydrogen coupled with the effect of selected organic additives for the first time. Four kinds of alumina based catalysts i.e. Co-Mo/Al{sub 2}O{sub 3}, Ni-Mo/Al{sub 2}O{sub 3}, Ru-Co-Mo/Al{sub 2}O{sub 3} and Ru-Ni-Mo/Al{sub 2}O{sub 3} were used for the desulfurization process, which were prepared following incipient impregnation method with fixed metal loadings (wt.%) of Co, Ni, Mo and Ru. The surface area, average pore diameter and pore volume distribution of the fresh and used catalysts were measured by N{sub 2} adsorption using BET method. Catalytic activity was investigated in a batch autoclave reactor in the complete absence of external hydrogen gas. Addition and mutual reaction of specific quantities of water and ethanol provided the necessary in situ hydrogen for the desulfurization reaction. Organic additives like diethylene glycol (DEG), phenol, naphthalene, anthracene, o-xylene, tetralin, decalin and pyridine did impinge the HDS activity of the catalysts in different ways. Liquid samples from reaction products were quantitatively analyzed by HPLC technique while qualitative analyses were made using GC-MS. Both of these techniques showed that Ni-based catalysts were more active than Co-based ones at all conditions. Moreover, incorporation of Ru to both Co and Ni-based catalysts greatly promoted desulfurization activity of these catalysts. DBT conversion of up to 84% was achieved with Ru-Ni-Mo/Al{sub 2}O{sub 3} catalyst at 380 C temperature for 11 h. Catalyst systems followed the HDS activity order as: Ru-Ni-Mo/Al{sub 2}O{sub 3}> Ni-Mo/Al{sub 2}O{sub 3}> Ru-Co-Mo/Al{sub 2}O{sub 3}> Co-Mo/Al{sub 2}O{sub 3} at all conditions. Cost effectiveness, mild operating conditions and reasonably high catalytic activity using in situ generated hydrogen mechanism proved our process to be useful for HDS of DBT. (author)

  14. The use of renewable energy in the form of methane via electrolytic hydrogen generation using carbon dioxide as the feedstock

    Science.gov (United States)

    Hashimoto, Koji; Kumagai, Naokazu; Izumiya, Koichi; Takano, Hiroyuki; Shinomiya, Hiroyuki; Sasaki, Yusuke; Yoshida, Tetsuya; Kato, Zenta

    2016-12-01

    The history reveals the continuous increase in world energy consumption and carbon emissions. For prevention of intolerable global warming and complete exhaustion of fossil fuels we need complete conversion from fossil fuel consumption to renewable energy. We have been performing the research and development of global carbon dioxide recycling for more than 25 years to supply renewable energy to the world in the form of methane produced by the reaction of carbon dioxide captured from chimney with hydrogen generated electrolytically using electricity generated by renewable energy. We created the cathode and anode for electrolytic hydrogen generation and the catalyst for carbon dioxide methanation by the reaction with hydrogen. The methane formation from renewable energy will be the most convenient and efficient key technology for the use of renewable energy by storage of intermittent and fluctuating electricity generated from renewable energy and by regeneration of stable electricity. Domestic and international cooperation of companies for industrialization is in progress.

  15. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  16. Prediction of hydrogen concentration in nuclear power plant containment under severe accidents using cascaded fuzzy neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geon Pil; Kim, Dong Yeong; Yoo, Kwae Hwan; Na, Man Gyun, E-mail: magyna@chosun.ac.kr

    2016-04-15

    Highlights: • We present a hydrogen-concentration prediction method in an NPP containment. • The cascaded fuzzy neural network (CFNN) is used in this prediction model. • The CFNN model is much better than the existing FNN model. • This prediction can help prevent severe accidents in NPP due to hydrogen explosion. - Abstract: Recently, severe accidents in nuclear power plants (NPPs) have attracted worldwide interest since the Fukushima accident. If the hydrogen concentration in an NPP containment is increased above 4% in atmospheric pressure, hydrogen combustion will likely occur. Therefore, the hydrogen concentration must be kept below 4%. This study presents the prediction of hydrogen concentration using cascaded fuzzy neural network (CFNN). The CFNN model repeatedly applies FNN modules that are serially connected. The CFNN model was developed using data on severe accidents in NPPs. The data were obtained by numerically simulating the accident scenarios using the MAAP4 code for optimized power reactor 1000 (OPR1000) because real severe accident data cannot be obtained from actual NPP accidents. The root-mean-square error level predicted by the CFNN model is below approximately 5%. It was confirmed that the CFNN model could accurately predict the hydrogen concentration in the containment. If NPP operators can predict the hydrogen concentration in the containment using the CFNN model, this prediction can assist them in preventing a hydrogen explosion.

  17. Reduction of hazards from copper(I) chloride in a Cu-Cl thermochemical hydrogen production plant

    Energy Technology Data Exchange (ETDEWEB)

    Ghandehariun, Samane, E-mail: samane.ghandehariun@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Wang, Zhaolin, E-mail: zhaolin.wang@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Rosen, Marc A., E-mail: marc.rosen@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Naterer, Greg F., E-mail: greg.naterer@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Hazards are quantified for each process of the cycle where the CuCl may be present. Black-Right-Pointing-Pointer Using Cu{sub 2}OCl{sub 2} to absorb CuCl vapour is the most preferable option. Black-Right-Pointing-Pointer Utilization of a cooler at the outlet of the oxygen reactor is unadvisable. Black-Right-Pointing-Pointer If an atomization method is used for heat recovery, the fluid should be circulated. - Abstract: The copper-chlorine cycle of thermochemical water splitting, using various heat sources, is a promising technology for hydrogen production. The chemical hazards accompanying the new technology affect significantly the industrialization of the cycle, but have scarcely been examined. This paper addresses this need by examining the copper(I) chloride (CuCl) hazards that may be generated in the cycle. Regardless of the variations of Cu-Cl cycle, copper(I) chloride is always present, serving as an intermediate compound that may cause health concerns. In this paper, the CuCl hazards are quantified for each process from the generation source of the hazards along with the paths where the CuCl may be present. The processes of greatest relevance include oxygen production, heat recovery, solidification, and dissolution. The options for reducing the CuCl hazards in a Cu-Cl thermochemical hydrogen production plant are evaluated from the perspectives of variations of the Cu-Cl cycle, process integration, heat recovery, and equipment design. It is concluded that using the intake reactant Cu{sub 2}OCl{sub 2} for the oxygen production step to absorb CuCl vapor is the most preferable option compared with other alternatives such as absorbing CuCl vapor with water or CuCl{sub 2}, building additional structures inside the oxygen production reactor, and cooling the exiting gas at the outlet of the oxygen reactor.

  18. CANDU steam generator life management: laboratory data and plant experience

    Energy Technology Data Exchange (ETDEWEB)

    Tapping, R.L. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Nickerson, J.H.; Subash, N. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Wright, M.D

    2001-10-01

    As CANDU reactors enter middle age, and the potential value of the plants in a deregulated market is realized, life management and life extension issues become increasingly important. An accurate assessment of critical components, such as the CANDU 6 steam generators (SGs), is crucial for successful life extension, and in this context, material issues are a key factor. For example, service experience with Alloy 900 tubing indicates very low levels of degradation within CANDU SGs; the same is also noted worldwide. With little field data for extrapolation, life management and life extension decisions for the tube bundles rely heavily on laboratory data. Similarly, other components of the SGs, in particular the secondary side internals, have only limited inspection data upon which to base a condition assessment. However, in this case there are also relatively little laboratory data. Decisions on life management and life extension are further complicated--not only is inspection access often restricted, but repair or replacement options for internal components are, by definition, also limited. The application of CANDU SG life management and life extension requires a judicious blend of in-service data, laboratory research and development (R and D) and materials and engineering judgment. For instance, the available laboratory corrosion and fretting wear data for Alloy 800 SG tubing have been compared with plant experience (with all types of tubing), and with crevice chemistry simulations, in order to provide an appropriate inspection guide for a 50-year SG life. A similar approach has been taken with other SG components, where the emphasis has been on known degradation mechanisms worldwide. This paper provides an outline of the CANDU SG life management program, including the results to date, a summary of the supporting R and D program showing the integration with condition assessment and life management activities, and the approach taken to life extension for a typical

  19. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schwartz

    2004-12-01

    This report describes the work performed, accomplishments and conclusion obtained from the project entitled ''Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants'' under the United States Department of Energy Contract DE-FC26-01NT40973. ITN Energy Systems was the prime contractor. Team members included: the Idaho National Engineering and Environmental Laboratory; Nexant Consulting; Argonne National Laboratory and Praxair. The objective of the program was to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The separation technology module is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner. The program developed and evaluated composite membranes and catalysts for hydrogen separation. Components of the monolithic modules were fabricated by plasma spray processing. The engineering and economic characteristics of the proposed Ion Conducting Ceramic Membrane (ICCM) approach, including system integration issues, were also assessed. This resulted in a comprehensive evaluation of the technical and economic feasibility of integration schemes of ICCM hydrogen separation technology within Vision 21 fossil fuel plants. Several results and conclusion

  20. Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst

    Directory of Open Access Journals (Sweden)

    Hongbin Dai

    2017-02-01

    Full Text Available The synthesis of highly active and selective catalysts is the central issue in the development of hydrous hydrazine (N2H4·H2O as a viable hydrogen carrier. Herein, we report the synthesis of bimetallic Ni-Ir nanocatalyts supported on CeO2 using a one-pot coprecipitation method. A combination of XRD, HRTEM and XPS analyses indicate that the Ni-Ir/CeO2 catalyst is composed of tiny Ni-Ir alloy nanoparticles with an average size of around 4 nm and crystalline CeO2 matrix. The Ni-Ir/CeO2 catalyst exhibits high catalytic activity and excellent selectivity towards hydrogen generation from N2H4·H2O at mild temperatures. Furthermore, in contrast to previously reported Ni-Pt catalysts, the Ni-Ir/CeO2 catalyst shows an alleviated requirement on alkali promoter to achieve its optimal catalytic performance.

  1. Efficiency Evaluation of a Photovoltaic System Simultaneously Generating Solar Electricity and Hydrogen for Energy Storage

    Directory of Open Access Journals (Sweden)

    Abermann S.

    2012-10-01

    Full Text Available The direct combination of a photovoltaic system with an energy storage component appears desirable since it produces and stores electrical energy simultaneously, enabling it to compensate power generation fluctuations and supply sufficient energy during low- or non-irradiation periods. A novel concept based on hydrogenated amorphous silicon (a-Si:H triple-junction solar cells, as for example a-Si:H/a-SiGe:H/a-SiGe:H, and a solar water splitting system integrating a polymer electrolyte membrane (PEM electrolyser is presented. The thin film layer-by-layer concept allows large-area module fabrication applicable to buildings, and exhibits strong cost-reduction potential as compared to similar concepts. The evaluation shows that it is possible to achieve a sufficient voltage of greater than 1.5 V for effective water splitting with the a-Si based solar cell. Nevertheless, in the case of grid-connection, the actual energy production cost for hydrogen storage by the proposed system is currently too high.

  2. An effective low Pd-loading catalyst for hydrogen generation from formic acid

    DEFF Research Database (Denmark)

    Huang, Yunjie; Xu, Junlei; Ma, Xin

    2017-01-01

    roles. In addition, Ag additive was found to benefit catalyst stability. Most interestingly, the obtained low Pd-loading Pd1Ag6/N-rGO catalyst showed a specific Pd loading turnover frequency of 171 mol Pd−1 h−1 and a specific metal cost turnover frequency of 64.2 $−1 h−1, which were predominant among......As an interesting hydrogen carrier, formic acid is bio-renewable, non-toxic and available in the liquid state at room temperature. The development of active and low-cost catalyst is of significance for hydrogen generation from formic acid. In this study, both a relatively cheap metal (Ag......) and a functional support (nitrogen modified reduced graphene oxide, N-rGO) were applied to prepare Pd catalyst. It was found that the Ag atoms facilitated the formation of Pd-rich surface in the preparation strategy, in which the reductive N-rGO and a two-step feeding process of metal precursors played important...

  3. Trehalose enhancing microbial electrolysis cell for hydrogen generation in low temperature (0 °C).

    Science.gov (United States)

    Xu, Linji; Liu, Wenzong; Wu, Yining; Lee, Poheng; Wang, Aijie; Li, Shuai

    2014-08-01

    This work explored the feasibility of a method combining physical (sonication and base) and biological (partial fermentation) processes for sludge treatment and the effects of trehalose on the hydrogen generation of microbial electrolysis cell at 0 °C. The results demonstrated that the above pretreatment method was favorable, which promoted organics decomposing into lower molecular weight matter. The promotion of trehalose for MEC efficiency was obvious and the optimal concentration of trehalose was 50 mmol/L. With this concentration, the highest hydrogen recovery rate was 0.25 m(3)-H₂/-m(3)-reactor per day. Coulomb efficiency and energy recovery efficiency were 46.4% and 203%, respectively. Further, the consumption order of mixed substances was VFAs>proteins>carbohydrates. For microorganism community, SEM photographs illustrated that the selectivity of environmental temperature for the species of anode bacteria was strong and denaturing gradient gel electrophoresis indicated that Microbacterium and Proteobacteria were the two main species and Proteobacteria may be one of the species that produced electrons.

  4. Hydrogen generation from polyvinyl alcohol-contaminated wastewater by a process of supercritical water gasification

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Gasification of polyvinyl alcohol (PVA)-contaminated wastewater in supercritical water (SCW) was investigated in a continuous flow reactor at 723-873 K, 20-36 MPa and residence time of 20-60 s. The gas and liquid products were analyzed by GC/TCD, TOC analyzer and GC/MS. The main gas products were H2, CH4, CO and CO2. Pressure change had no significant influence on gasification efficiency. Higher temperature and longer residence time enhanced gasification efficiency, and lower temperature favored the production of H2. The effects of KOH catalyst on gas product composition were studied, and gasification efficiency were analyzed. The TOC removal efficiency (TOCR), carbon gasification ratio (CGR) and hydrogen gasification ratio (HGR) were up to 96.00%, 95.92% and 126.40% at 873 K and 60 s, respectively, which suggests PVA can be completely gasified in SCW. The results indicate supercritical water gasification for hydrogen generation is a promising process for the treatment of PVA wastewater.

  5. Removal of SU-8 resists using hydrogen radicals generated by tungsten hot-wire catalyzer

    Science.gov (United States)

    Kono, Akihiko; Arai, Yu; Goto, Yousuke; Horibe, Hideo

    2012-03-01

    We investigated removal of chemically amplified negative-tone i-line resist SU-8 using hydrogen radicals, which was generated by the catalytic decomposition of H2/N2 mixed gas (H2:N2 = 10:90vol.%) using tungsten hot-wire catalyzer. SU-8 with exposure dose from 7 (Dg100×0.5) to 280mJ/cm2 (Dg100×20) were removed by hydrogen radicals without a residual layer. When the distance between the catalyzer and the substrate was 100mm, the catalyzer temperature was 2400°C, and the initial substrate temperature was 50°C, removal rate of SU-8 was 0.17μm/min independent of exposure dose to the SU-8. Finally, we obtained high removal rate for SU-8 (exposure dose = 14mJ/cm2 (Dg100)) of approximately 4μm/min when the distance between the catalyzer and the substrate was 20mm, the catalyzer temperature was 2400°C, and the initial substrate temperature was 165°C.

  6. Organic Polymer Dots as Photocatalysts for Visible Light-Driven Hydrogen Generation.

    Science.gov (United States)

    Wang, Lei; Fernández-Terán, Ricardo; Zhang, Lei; Fernandes, Daniel L A; Tian, Lei; Chen, Hong; Tian, Haining

    2016-09-26

    For the first time, organic semiconducting polymer dots (Pdots) based on poly[(9,9'-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3} thiadiazole)] (PFBT) and polystyrene grafting with carboxyl-group-functionalized ethylene oxide (PS-PEG-COOH) are introduced as a photocatalyst towards visible-light-driven hydrogen generation in a completely organic solvent-free system. With these organic Pdots as the photocatalyst, an impressive initial rate constant of 8.3 mmol h(-1)  g(-1) was obtained for visible-light-driven hydrogen production, which is 5-orders of magnitude higher than that of pristine PFBT polymer under the same catalytic conditions. Detailed kinetics studies suggest that the productive electron transfer quench of the excited state of Pdots by an electron donor is about 40 %. More importantly, we also found that the Pdots can tolerate oxygen during catalysis, which is crucial for further application of this material for light-driven water splitting.

  7. Deep-cavity cavitand octa acid as a hydrogen donor: photofunctionalization with nitrenes generated from azidoadamantanes.

    Science.gov (United States)

    Choudhury, Rajib; Gupta, Shipra; Da Silva, José P; Ramamurthy, V

    2013-03-01

    1-azidoadamantane and 2-azidoadamantane form a 1:1 complex with hosts octa acid (OA) and cucurbit[7]uril (CB7) in water. Isothermal titration calorimetric measurements suggest these complexes to be very stable in aqueous solution. The complexes have been characterized by (1)H NMR in solution and by ESI-MS in gas phase. In both phases, the complexes are stable. Irradiation of these complexes (λ > 280 nm) results in nitrenes via the loss of nitrogen from the guest azidoadamantanes. The behavior of nitrenes within OA differs from that in solution. Nitrenes included within octa acid attack one of the four tertiary benzylic hydrogens present at the lower interior part of OA. While in solution intramolecular insertion is preferred, within OA intermolecular C-H insertion seems to be the choice. When azidoadamantanes included in CB7 were irradiated (λ > 280 nm) the same products as in solution resulted but the host held them tightly. Displacement of the product required the use of a higher binding guest. In this case, no intermolecular C-H insertion occurred. Difference in reactivity between OA and CB7 is the result of the location of hydrogens; in OA they are in the interior of the cavity where the nitrene is generated, and in CB7 they are at the exterior. Reactivity of nitrenes within OA is different from that of carbenes that do not react with the host.

  8. Modeling strategic competition in hydro-thermal electricity generation markets with cascaded reservoir-hydroelectric generation plants

    Science.gov (United States)

    Uluca, Basak

    This dissertation aims to achieve two goals. The first is to model the strategic interactions of firms that own cascaded reservoir-hydro plants in oligopolistic and mixed oligopolistic hydrothermal electricity generation markets. Although competition in thermal generation has been extensively modeled since the beginning of deregulation, the literature on competition in hydro generation is still limited; in particular, equilibrium models of oligopoly that study the competitive behavior of firms that own reservoir-hydro plants along the same river in hydrothermal electricity generation markets are still under development. In competitive markets, when the reservoirs are located along the same river, the water released from an upstream reservoir for electricity generation becomes input to the immediate downstream reservoir, which may be owned by a competitor, for current or future use. To capture the strategic interactions among firms with cascaded reservoir-hydro plants, the Upstream-Conjecture approach is proposed. Under the Upstream-Conjecture approach, a firm with an upstream reservoir-hydro plant assumes that firms with downstream reservoir-hydro plants will respond to changes in the upstream firm's water release by adjusting their water release by the same amount. The results of the Upstream Conjecture experiments indicate that firms that own upstream reservoirs in a cascade may have incentive to withhold or limit hydro generation, forcing a reduction in the utilization of the downstream hydro generation plants that are owned by competitors. Introducing competition to hydroelectricity generation markets is challenging and ownership allocation of the previously state-owned cascaded reservoir-hydro plants through privatization can have significant impact on the competitiveness of the generation market. The second goal of the dissertation is to extract empirical guidance about best policy choices for the ownership of the state-owned generation plants, including the

  9. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design

    Science.gov (United States)

    Natesan, K.; Moisseytsev, A.; Majumdar, S.

    2009-07-01

    The Next Generation Nuclear Plant, with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 850-950 °C. In this concept, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, a nitrogen/helium mixture, or a molten salt. This paper assesses the issues pertaining to shell-and-tube and compact heat exchangers. A detailed thermal-hydraulic analysis was performed to calculate heat transfer, temperature distribution, and pressure drop inside both printed circuit and shell-and-tube heat exchangers. The analysis included evaluation of the role of key process parameters, geometrical factors in heat exchanger designs, and material properties of structural alloys. Calculations were performed for helium-to-helium, helium-to-helium/nitrogen, and helium-to-salt heat exchangers.

  10. Photocatalytic hydrogen generation over lanthanum doped TiO2 under UV light irradiation.

    Science.gov (United States)

    Liu, Y; Xie, L; Li, Y; Qu, J L; Zheng, J; Li, X G

    2009-02-01

    TiO2 nanoparticles doped with different amount of lanthanum were obtained by sol-gel approach and followed annealing at different temperature. The crystal size of TiO2 doped with lanthanum was smaller than that of pure TiO2. Photocatalytic activity of TiO2 doped with lanthanum for water splitting into H2 was investigated. The photocatalytic activity of TiO2 doped with lanthanum for water splitting into H2 is higher than that of pure TiO2. It was found that the optimal photocatalyst was TiO2 doped with 2 wt% lanthanum and calcined at 600 degrees C for 4 h which had hydrogen generation rate 700.6 micromol h(-1).

  11. Gel-combustion-synthesized ZnO nanoparticles for visible light-assisted photocatalytic hydrogen generation

    Indian Academy of Sciences (India)

    2017-04-01

    Zinc oxide nanoparticles (ZnO NPs) synthesized by the gel combustion technique using a bio-fuel, cassava starch (root tubers of Manihot esculenta), have been characterized by various techniques. The X-ray diffractionpattern reveals hexagonal wurtzite structure. The particle size averaged around 45nm with an excellent band gap of 2.5 eV. The scanning electron and transmission electron microscopic images confirm the ZnO NPs to be agglomerated with loop- and chain-like morphology. The ZnO NPs prepared by this method is a promising candidate for photocatalytic hydrogen generation (41 $\\mu$mol h$^{−1}$ g$^{−1}$) under UV light illumination and (140 $\\mu$mol h$^{−1}$ g$^{−1}$) under visible light illumination.

  12. Acoustically induced optical second harmonic generation in hydrogenated amorphous silicon films

    CERN Document Server

    Ebothe, J; Cabarrocas, P R I; Godet, C; Equer, B

    2003-01-01

    Acoustically induced second harmonic generation (AISHG) in hydrogenated amorphous silicon (a-Si : H) films of different morphology has been observed. We have found that with increasing acoustical power, the optical SHG of Gd : YAB laser light (lambda = 2.03 mu m) increases and reaches its maximum value at an acoustical power density of about 2.10 W cm sup - sup 2. With decreasing temperature, the AISHG signal strongly increases below 48 K and correlates well with the temperature behaviour of differential scanning calorimetry indicating near-surface temperature phase transition. The AISHG maxima were observed at acoustical frequencies of 10-11, 14-16, 20-22 and 23-26 kHz. The independently performed measurements of the acoustically induced IR spectra have shown that the origin of the observed phenomenon is the acoustically induced electron-phonon anharmonicity in samples of different morphology.

  13. Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%

    Science.gov (United States)

    Yan, Yong; Crisp, Ryan W.; Gu, Jing; Chernomordik, Boris D.; Pach, Gregory F.; Marshall, Ashley R.; Turner, John A.; Beard, Matthew C.

    2017-04-01

    Multiple exciton generation (MEG) in quantum dots (QDs) has the potential to greatly increase the power conversion efficiency in solar cells and in solar-fuel production. During the MEG process, two electron-hole pairs (excitons) are created from the absorption of one high-energy photon, bypassing hot-carrier cooling via phonon emission. Here we demonstrate that extra carriers produced via MEG can be used to drive a chemical reaction with quantum efficiency above 100%. We developed a lead sulfide (PbS) QD photoelectrochemical cell that is able to drive hydrogen evolution from aqueous Na2S solution with a peak external quantum efficiency exceeding 100%. QD photoelectrodes that were measured all demonstrated MEG when the incident photon energy was larger than 2.7 times the bandgap energy. Our results demonstrate a new direction in exploring high-efficiency approaches to solar fuels.

  14. Gas generation from radiolytic attack of TRU-contaminated hydrogenous waste

    Energy Technology Data Exchange (ETDEWEB)

    Zerwekh, A.

    1979-06-01

    In 1970, the Waste Management and Transportation Division of the Atomic Energy Commission ordered a segregation of transuranic (TRU)-contaminated solid wastes. Those below a contamination level of 10 nCi/g could still be buried; those above had to be stored retrievably for 20 y. The possibility that alpha-radiolysis of hydrogenous materials might produce toxic, corrosive, and flammable gases in retrievably stored waste prompted an investigation of gas identities and generation rates in the laboratory and field. Typical waste mixtures were synthesized and contaminated for laboratory experiments, and drums of actual TRU-contaminated waste were instrumented for field testing. Several levels of contamination were studied, as well as pressure, temperature, and moisture effects. G (gas) values were determined for various waste matrices, and degradation products were examined.

  15. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    Science.gov (United States)

    Wroblewski, David; Katrompas, Alexander M.; Parikh, Neel J.

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  16. Generation of hydrogen peroxide from San Joaquin Valley particles in a cell-free solution

    Directory of Open Access Journals (Sweden)

    H. Shen

    2010-09-01

    Full Text Available Epidemiological studies have shown a correlation between exposure to ambient particulate matter (PM and adverse health effects. One proposed mechanism of PM-mediated health effects is the generation of reactive oxygen species (ROS – e.g., superoxide (•O2, hydrogen peroxide (HOOH, and hydroxyl radical (•OH – followed by oxidative stress. There are very few quantitative, specific measures of individual ROS generated from PM, but this information would help to more quantitatively address the link between ROS and the health effects of PM. To address this gap, we quantified the generation of HOOH by PM collected at an urban (Fresno and rural (Westside site in the San Joaquin Valley (SJV of California during summer and winter from 2006 to 2009. HOOH was quantified by HPLC after extracting the PM in a cell-free, phosphate-buffered saline (PBS solution with or without 50 μM ascorbate (Asc. Our results show that the urban PM generally generates much more HOOH than the rural PM but that there is no apparent seasonal difference in HOOH generation. In nearly all of the samples the addition of a physiologically relevant concentration of Asc greatly enhances HOOH formation, but a few of the coarse PM samples were able to generate a considerable amount of HOOH in the absence of added Asc, indicating the presence of unknown reductants. Normalized by air volume, the fine PM (PM2.5 generally makes more HOOH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm, primarily because the mass concentration of PM2.5 is much higher than that of PMcf. However, normalized by PM mass, the coarse PM typically generates more HOOH than the fine PM. The amount of HOOH produced by SJV PM is reduced on average by (78±15% when the transition metal chelator desferoxamine (DSF is added to the extraction solution, indicating that transition metals play a dominant role in HOOH generation. By

  17. Generation of hydrogen peroxide from San Joaquin Valley particles in a cell-free solution

    Directory of Open Access Journals (Sweden)

    H. Shen

    2011-01-01

    Full Text Available Epidemiological studies have shown a correlation between exposure to ambient particulate matter (PM and adverse health effects. One proposed mechanism of PM-mediated health effects is the generation of reactive oxygen species (ROS – e.g., superoxide (O2, hydrogen peroxide (HOOH, and hydroxyl radical (OH – followed by oxidative stress. There are very few quantitative, specific measures of individual ROS generated from PM, but this information would help to more quantitatively address the link between ROS and the health effects of PM. To address this gap, we quantified the generation of HOOH by PM collected at an urban (Fresno and rural (Westside site in the San Joaquin Valley (SJV of California during summer and winter from 2006 to 2009. HOOH was quantified by HPLC after extracting the PM in a cell-free, phosphate-buffered saline (PBS solution with or without 50 μM ascorbate (Asc. Our results show that the urban PM generally generates much more HOOH than the rural PM but that there is no apparent seasonal difference in HOOH generation. In nearly all of the samples the addition of a physiologically relevant concentration of Asc greatly enhances HOOH formation, but a few of the coarse PM samples were able to generate a considerable amount of HOOH in the absence of added Asc, indicating the presence of unknown reductants. Normalized by air volume, the fine PM (PM2.5 generally makes more HOOH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm, primarily because the mass concentration of PM2.5 is much higher than that of PMcf. However, normalized by PM mass, the coarse PM typically generates more HOOH than the fine PM. The amount of HOOH produced by SJV PM is reduced on average by (78 ± 15% when the transition metal chelator desferoxamine (DSF is added to the extraction solution, indicating that transition metals play a dominant role in HOOH

  18. Revamping of existent chlor-alkali plants for conversion of hydrogen to electricity, hydrogen community germination step

    Energy Technology Data Exchange (ETDEWEB)

    Iordache, Ioan; Laurentiu, Patularu [National R and D Institute for Cryogenics and Isotopic Technologies - ICSI, Rm. Valcea (Romania); Delfrate, Alessandro [UHDENORA SpA (Italy); Iordache, Mihaela [National R and D Institute for Industrial Ecology - ECOIND, Rm. Valcea (Romania)

    2010-07-01

    The transition towards hydrogen becoming widespread in future energy systems and may be one of the greatest social and technical challenges facing society. A wide range of stakeholders will need to work together over extended periods of time to make the sustainable hydrogen ''vision'' a reality. Community-based projects are seen as a route to stimulate the start of the transformation, leading to more widespread early adoption of these new technologies. Valcea have premises to develop some local projects in order to become a Hydrogen Community. This ''Community'' fulfills both an economic-technical background and a scientifically potential. (orig.)

  19. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Model simulations

    Science.gov (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. In a membrane reactor process, the thermal energy needed for the endothermic hydrocarbon reforming may be provided by combustion of the membrane reject gas. The energy efficiency of the overall hydrogen generation is maximized by controlling the hydrogen product yield such that the heat value of the membrane reject gas is sufficient to provide all of the heat necessary for the integrated process. Optimization of the system temperature, pressure and operating parameters such as net hydrogen recovery is necessary to realize an efficient integrated membrane reformer suitable for compact portable hydrogen generation. This paper presents results of theoretical model simulations of the integrated membrane reformer concept elucidating the effect of operating parameters on the extent of fuel conversion to hydrogen and hydrogen product yield. Model simulations indicate that the net possible hydrogen product yield is strongly influenced by the efficiency of heat recovery from the combustion of membrane reject gas and from the hot exhaust gases. When butane is used as a fuel, a net hydrogen recovery of 68% of that stoichiometrically possible may be achieved with membrane reformer operation at 600 °C (873 K) temperature and 100 psig (0.791 MPa) pressure provided 90% of available combustion and exhaust gas heat is recovered. Operation at a greater pressure or temperature provides a marginal improvement in the performance whereas operation at a significantly lower temperature or pressure will not be able to achieve the optimal hydrogen yield. Slightly higher, up to 76%, net hydrogen recovery is possible when methanol is used as a fuel due to the lower heat

  20. A novel power generation system based on combination of hydrogen and direct carbon fuel cells for decentralized applications

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; Choi, Pyoungho; Bokerman, Gary [Central Florida Univ., FL (United States)

    2010-07-01

    Fuel cell (FC) based power generation systems are characterized by highest chemical-toelectrical (CTE) energy conversion efficiency compared to conventional power generators (e.g., internal combustion and diesel engines, turbines). Most efforts in this area relate to hydrogen-FC coupled with hydrocarbon fuel reformers (HFR). However, the overall CTE efficiency of the combined HFR-FC systems is relatively low (about 30-35%). The objective of this work is to develop a highly-efficient power generation system integrating a hydrocarbon decomposition reactor (HDR) with both hydrogen and direct-carbon FC. A unique feature of direct carbon FC is that its theoretical CTE efficiency is close to 100% and the practical efficiency could rich 80-90%. The concept of the integrated hydrogen and direct carbon FC system is discussed and the experimental data on the performance testing of a HDR coupled with PEM FC are presented in this paper. (orig.)

  1. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal

  2. [Medicinal plant hairy roots generating and their applications].

    Science.gov (United States)

    Zhang, Meng; Gao, Wei; Wang, Xiu-Juan

    2014-06-01

    As a kind of the plant tissue cultures, hairy root culture is characterized by rapid growth without exogenous hormones source and high yield of secondary metabolites, which attracted the attention of scholars in resent years. This work systematically summarized the research of medicinal plant hairy roots, including the mechanism, current situation of medicinal plant hairy roots, and their applications.

  3. Development of hydrothermal power generation plant. Development of binary cycle power generation plant (development of 10 MW-class plant); 1995 nendo nessui riyo hatsuden plant nado kaihatsu binary cycle hatsuden plant no kaihatsu. 10MW kyu plant no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    A 10 MW-class binary cycle power generation plant has been developed using a down hole pump (DHP) which exchanges the hydrothermal energy with secondary medium in the heat exchanger. For constructing the plant at Kuju-machi, Oita Prefecture, site preparation works, foundation of cooling tower, reconstruction of roads, and survey on environmental influences were conducted. To investigate installation and removal methods of DHP, a geothermal water pump-up system, current status of the binary cycle power generating system in the USA was surveyed. In this survey, a trailer mounting handling machine was inspected. Based on the survey results, a simple assembled, easy-installation type handling equipment was designed. In addition, the replacement work for motor connector joint of DHP and the strength of coil end were improved. Construction and method allowing reuse of the motor cable were considered by improving the cable and cable end portion. The air tight soundness of incoloy corrugate sheath was confirmed. Finally, a reproduction system for waste oil of DHP bearing oil was investigated. 106 figs., 52 tabs.

  4. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [570 MWe plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The design, arrangement, thermodynamics, and economics of a 592 MW(e) (nominal gross) electric power generating plant equipped with a Babcock and Wilcox Company (B and W) atmospheric fluidized bed (AFB) boiler are described. Information is included on capital and operating costs, process systems, electrical systems, control and instrumentation, and environmental systems. This document represents a portion of an overall report describing the conceptual designs of two atmospheric fluidized bed boilers and balance of plants for the generation of electric power and the analysis and comparison of these conceptual designs to a conventional pulverized coal-fired electric power generation plant equipped with a wet limestone flue gas desulfurization system.

  5. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [570 MWe plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The design, arrangement, thermodynamics, and economics of a 578 MW(e) (nominal gross) electric power generating plant equipped with a Foster Wheeler Energy Corporation (FWEC) atmospheric fluidized bed (AFB) boiler are described. Information is included on capital and operating costs, process systems, electrical systems, control and instrumentation, and environmental systems. This document represents a portion of an overall report describing the conceptual designs of two atmospheric fluidized bed boilers and balance of plants for the generation of electric power and the analysis and comparison of these conceptual designs to a conventional pulverized coal-fired electric power generation plant equipped with a wet limestone flue gas desulfurization system.

  6. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  7. Control of hydrogen sulfide emission from geothermal power plants. Volume I. Summary of results. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, F.C.; Harvey, W.W.; Warren, R.B.

    1979-01-01

    A program of laboratory and pilot plant tests, detailed process and project engineering work, and process engineering and economic evaluation studies has been carried out in support of the design of a test facility for demonstration of the copper sulfate process for the removal of hydrogen sulfide from geothermal steam at turbine upstream conditions. A demonstration plant has been designed which is capable of removing 99% of the H/sub 2/S, 90% of the NH/sub 3/, and significant amounts of H/sub 3/BO/sub 3/ and particulates from 100,000 lb/hr of geothermal steam of The Geysers composition. Criteria for the mechanical and process design of the scrubber have been confirmed in field tests of fifty hours duration on an eight-inch diameter scrubber at PG and E's Unit No. 7, The Geysers. The background of the problem and the technical approach to its solution, the scope and results of the first-phase laboratory testing, the scope and results of the experimental and analytical studies carried out in the second phase, and a description of the configuration of the demonstration plant and the test plan for its operation are summarized. (MHR)

  8. Estimation of hydrogen sulfide emission rates at several wastewater treatment plants through experimental concentration measurements and dispersion modeling.

    Science.gov (United States)

    Llavador Colomer, Fernando; Espinós Morató, Héctor; Mantilla Iglesias, Enrique

    2012-07-01

    The management and operation of wastewater treatment plants (WWTP) usually involve the release into the atmosphere of malodorous substances with the potential to reduce the quality of life of people living nearby. In this type of facility, anaerobic degradation processes contribute to the generation of hydrogen sulfide (H2S), often at quite high concentrations; thus, the presence of this chemical compound in the atmosphere can be a good indicator of the occurrence and intensity of the olfactory impact in a specific area. The present paper describes the experimental and modelling work being carried out by CEAM-UMH in the surroundings of several wastewater treatment plants located in the Valencia Autonomous Community (Spain). This work has permitted the estimation of H2S emission rates at different WWTPs under different environmental and operating conditions. Our methodological approach for analyzing and describing the most relevant aspects of the olfactory impact consisted of several experimental campaigns involving intensive field measurements using passive samplers in the vicinity of several WWTPs, in combination with numerical simulation results from a diagnostic dispersion model. A meteorological tower at each WWTP provided the input values for the dispersion code, ensuring a good fit of the advective component and therefore more confidence in the modelled concentration field in response to environmental conditions. Then, comparisons between simulated and experimental H2S concentrations yielded estimates of the global emission rate for this substance at several WWTPs at different time periods. The results obtained show a certain degree of temporal and spatial (between-plant) variability (possibly due to both operational and environmental conditions). Nevertheless, and more importantly, the results show a high degree of uniformity in the estimates, which consistently stay within the same order of magnitude.

  9. Nitric Oxide Reduces Hydrogen Peroxide Accumulation Involved in Water Stress-induced Subcellular Anti-oxidant Defense in Maize Plants

    Institute of Scientific and Technical Information of China (English)

    Jianrong Sang; Mingyi Jiang; Fan Lin; Shucheng Xu; Aying Zhang; Mingpu Tan

    2008-01-01

    Nitric oxide (NO) Is a bioactive molecule involved in many biological events, and has been reported as pro-oxidant as well as anti-oxidant in plants. In the present study, the sources of NO production under water stress, the role of NO in water stress-induced hydrogen peroxide (H2O2) accumulation and subcellular activities of anti-oxidant enzymes in leaves of maize (Zea mays L.) plants were investigated. Water stress Induced defense increases in the generation of NO In maize mesphyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. Water stress-induced defense increases in the production of NO were blocked by pretreatments with Inhibitors of NOS and nitrate reductase (NR), suggesting that NO is produced from NOS and NR in leaves of maize plants exposed to water stress. Water stress also induced increases in the activities of the chloroplastic and cytosolic anti-oxidant enzymes superoxide dismutase (SOD), ascorbate peroxidass (APX), and glutathione reductase (GR), and the increases in the activities of anti-oxidant enzymes were reduced by pretreatments with inhibitors of NOS and NR. Exogenous NO increases the activities of water stress-induced subcellular anti-oxidant enzymes, which decreases accumulation of H2O2. Our results suggest that NOS and NR are involved in water strese-induced NO production and NOS is the major source of NO. The potential ability of NO to scavenge H2O2 is, at least in part, due to the induction of a subcellular anti-oxidant defense.

  10. Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system

    Science.gov (United States)

    Zhi, Xiaohua; Yang, Haijun; Berthold, Sascha; Doetsch, Christian; Shen, Jianquan

    Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A 2/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m 3 pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A 2/O process. When the grid is connected, the system cost achieved is 0.238 US t -1 wastewater, which is lower than 0.257 US t -1 by the A 2/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A 2/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid.

  11. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  12. Hydrogen peroxide generation and photocatalytic degradation of estrone by microstructural controlled ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yangsi; Han Jie; Qiu Wei [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Gao Wei, E-mail: w.gao@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} generated by ZnO nanorod arrays during UV irradiation was detected. Black-Right-Pointing-Pointer ZnO nanorod arrays were synthesized via a facile hydrothermal technique. Black-Right-Pointing-Pointer The microstructure can be controlled by varying reactants' concentration. Black-Right-Pointing-Pointer Photocatalytic degradation of estrone by ZnO nanorod arrays was studied. Black-Right-Pointing-Pointer Microstructures' effect on photocatalysis and H{sub 2}O{sub 2} generation was discussed. - Abstract: The strong oxidant, hydrogen peroxide (H{sub 2}O{sub 2}), generated by ZnO nanorod arrays under UV light irradiation was monitored by fluorescence analysis. The ZnO nanorod arrays were synthesized via a low temperature hydrothermal method and their dimensions, i.e., diameter and height, can be controlled by adjusting the concentration of zinc nitrate (Zn(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O) and hexamethylenetetramine (HMT). The morphology, nanostructure, surface roughness and optical property were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM) and transmittance spectra, respectively. The ZnO nanorod arrays were applied in the degradation of estrone, which is an emerging steroid estrogen contaminant. The results revealed that the ZnO nanorod array produced from 25 mM Zn{sup 2+} and HMT had the highest aspect ratio, the largest surface roughness and the lowest band gap energy, which was beneficial to the efficiency of UV light utilization, photocatalytic degradation of estrone and H{sub 2}O{sub 2} generation.

  13. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  14. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    Directory of Open Access Journals (Sweden)

    Nathália Rocco-Machado

    Full Text Available Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2 generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.

  15. Carbon Monoxide-induced Stomatal Closure Involves Generation of Hydrogen Peroxide in Vicia faba Guard Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ping She; Xi-Gui Song

    2008-01-01

    Here the regulatory role of CO during stomatal movement In Vicla faba L. was surveyed. Results Indicated that, like hydrogen peroxide (H2O2), CO donor Hematin induced stomatal closure in dose- and time-dependent manners. These responses were also proven by the addition of gaseous CO aqueous solution with different concentrations, showing the first time that CO and H2O2 exhibit the similar regulation role in the atomatal movement. Moreover, our data showed that ascorbic acid (ASA, an important reducing substrate for H2O2 removal) and diphenylene iodonium (DPI, an inhibitor of the H2O2-generating enzyme NADPH oxidase) not only reversed stomatal closure by CO, but also suppressed the H2O2 fluorescence induced by CO, implying that CO induced-atomatal closure probably involves H2O2 signal. Additionally, the CO/NO scavenger hemoglobin (Hb) and CO specific synthetic inhibitor ZnPPIX, ASA and DPI reversed the darkness-induced stomatal closure and H2O2 fluorescence. These results show that, perhaps like H2O2, the levels of CO in guard cells of V. faba are higher In the dark than in light, HO-1 and NADPH oxidase are the enzyme systems responsible for generating endogenous CO and H2O2 in darkness respectively, and that CO is involved in darkness-induced H2O2 synthesis in V. faba guard cells.

  16. Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis

    Directory of Open Access Journals (Sweden)

    Guangzai Nong

    2015-12-01

    Full Text Available Black liquor is generated in Kraft pulping of wood or non-wood raw material in pulp mills, and regarded as a renewable resource. The objective of this paper was to develop an effective means to remove the water pollutants by recovery of both lignin and sodium hydroxide from black liquor, based on electrolysis. The treatment of a 1000 mL of black liquor (122 g/L solid contents consumed 345.6 kJ of electric energy, and led to the generation of 30.7 g of sodium hydroxide, 0.82 g of hydrogen gas and 52.1 g of biomass solids. Therefore, the recovery ratios of elemental sodium and biomass solids are 80.4% and 76%, respectively. Treating black liquor by electrolysis is an environmentally friendly technology that can, in particular, be an alternative process in addressing the environmental issues of pulping waste liquor to the small-scale mills without black liquor recovery.

  17. Modelling studies to proper size a hydrogen generator for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maggio, G.; Recupero, V.; Di Leonardo, R.; Lagana, M. [Istituto CNR-TAE, Lucia, Messina (Italy)

    1996-12-31

    Based upon an extensive survey of literature a mathematical model has been developed to study the temperature profile along the catalytic bed of a reactor for the methane partial oxidation. The model allowed a preliminary design of a 5 Nm{sup 3} syngas/h prototype to be integrated with second generation fuel cells as hydrogen generator (in the framework of the EC-JOU2 contract). This design was based on some target features, including the choice of a GHSV (gas hour space velocity) equal to 80000 h{sup -1}, a catalyst particle size of 1/8inches, a molar air/methane ratio of 2.7 (i.e. O{sub 2}/CH{sub 4}=0.53), a linear velocity in the catalytic bed of about 2 m/sec, and an inert/catalyst ratio 3:1. Starting from this data, the work has been concerned with the identification of the controlling regime (kinetic or diffusional), and then with the estimation of the gas composition and temperature profiles along the reactor. A comparison between experimental and model results has also been accomplished.

  18. A Rapid Microwave-Assisted Thermolysis Route to Highly Crystalline Carbon Nitrides for Efficient Hydrogen Generation.

    Science.gov (United States)

    Guo, Yufei; Li, Jing; Yuan, Yupeng; Li, Lu; Zhang, Mingyi; Zhou, Chenyan; Lin, Zhiqun

    2016-11-14

    Highly crystalline graphitic carbon nitride (g-C3 N4 ) with decreased structural imperfections benefits from the suppression of electron-hole recombination, which enhances its hydrogen generation activity. However, producing such g-C3 N4 materials by conventional heating in an electric furnace has proven challenging. Herein, we report on the synthesis of high-quality g-C3 N4 with reduced structural defects by judiciously combining the implementation of melamine-cyanuric acid (MCA) supramolecular aggregates and microwave-assisted thermolysis. The g-C3 N4 material produced after optimizing the microwave reaction time can effectively generate H2 under visible-light irradiation. The highest H2 evolution rate achieved was 40.5 μmol h(-1) , which is two times higher than that of a g-C3 N4 sample prepared by thermal polycondensation of the same supramolecular aggregates in an electric furnace. The microwave-assisted thermolysis strategy is simple, rapid, and robust, thereby providing a promising route for the synthesis of high-efficiency g-C3 N4 photocatalysts. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ion acceleration enhancement in laser-generated plasmas by metallic doped hydrogenated polymers

    Directory of Open Access Journals (Sweden)

    Angela Maria Mezzasalma

    2009-05-01

    Full Text Available Laser-generated plasmas in vacuum were obtained by ablating hydrogenated polymers at the Physics Department of the University of Messina and at the PALS Laboratory in Prague. In the first case a 3 ns,532 nm Nd:Yag laser, at 1010 W/cm2 intensity was employed.In the second case a 300 ps, 438 nm iodine laser, at 5x1014W/cm2 intensity was employed. Different ion collectors were usedin a time-of-flight configuration to monitor the ejected ions from theplasma at different angles with respect to the direction normal tothe target surface. Measurements demonstrated that the mean ionvelocity, directed orthogonally to the target surface, increases forablation of polymers doped with metallic elements with respect tothe nondoped one. The possible mechanism explaining theresults can be found in the different electron density of theplasma, due to the higher number of electrons coming from the dopingelements. This charge enhancement increases the equivalent ionvoltage acceleration, i.e. the electric field generated in the non-equilibrium plasma placed in front of the ablated target surface.

  20. Hydrogen isotopic compositions and their environmental significance for individual n-alkanes in typical plants from land in China

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi; WU BaoXiang

    2009-01-01

    Hydrogen isotopes of n-alkanes in grasses, tree leaves and reeds from six regions with latitudes of 20° to 39°N in China are measured by GC-TC-IRMS analytical technique in order to understand their hy-drogen isotopic compositions and environmental significance. The results show that a difference in δD values (from -42.1‰ to -66.6‰) of n-alkanes exists among the same kinds of plants from various re-gions. Hydrogen isotopic compositions of most even carbon numbered n-alkanes in every plant are slightly heavier than that of the odd homologues. A trend toward D-enrichment with increasing chain length of n-alkanes in most plant samples is observed. Mean δD values of n-alkanes in the studied plants range from -202.6‰ to -130.7‰ and the reed from a salt marsh has the largest value. The mean δD values of individual n-alkanes among the same kinds of plants from various regions have the characteristics of leaf > reed > grass. The hydrogen isotopic compositions of n-alkanes are apparently distinct among various kinds of plants from the same region and the mean δD values exhibit a distri-bution of tree leaf > reed > grass. It is observed that the mean δD values of n-alkanes and δD values of C27 and C29 n-alkanes in the grasses and tree leaves from these studied regions correlate clearly nega-tively with latitude and positively with temperature, indicating that these values can be used as excel-lent indicators of environment and climate. These results provide important basic data for under-standing the distributional law of hydrogen isotopes of individual n-aikanes and their applied research.

  1. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Experimental studies

    Science.gov (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite ® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd-Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H 2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite ® indicated very good match between theoretical predictions and

  2. Investigation of advanced nanostructured multijunction photoanodes for enhanced solar hydrogen generation via water splitting

    Science.gov (United States)

    Ishihara, Hidetaka

    As the worldwide demand for fossil-based fuel increases every day and the fossil reserve continues to be depleted, the need for alternative/renewable energy sources has gained momentum. Electric, hybrid, and hydrogen cars have been at the center of discussion lately among consumers, automobile manufacturers, and politicians, alike. The development of a fuel-cell based engine using hydrogen has been an ambitious research area over the last few decades-ever since Fujishima showed that hydrogen can be generated via the solar-energy driven photo-electrolytic splitting of water. Such solar cells are known as Photo-Electro-Chemical (PEC) solar cells. In order to commercialize this technology, various challenges associated with photo-conversion efficiency, chemical corrosion resistance, and longevity need to be overcome. In general, metal oxide semiconductors such as titanium dioxide (TiO 2, titania) are excellent candidates for PEC solar cells. Titania nanotubes have several advantages, including biocompatibility and higher chemical stability. Nevertheless, they can absorb only 5-7% of the solar spectrum which makes it difficult to achieve the higher photo-conversion efficiency required for successful commercial applications. A two-prong approach was employed to enhance photo-conversion efficiency: 1) surface modification of titania nanotubes using plasma treatment and 2) nano-capping of the titania nanotubes using titanium disilicide. The plasma surface treatment with N2 was found to improve the photo-current efficiency of titania nanotubes by 55%. Similarly, a facile, novel approach of nano-capping titania nanotubes to enhance their photocurrent response was also investigated. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using RF magnetron sputtering technique. The optical properties of titania nanotubes were not found to change due to the capping; however, a considerable increase (40%) in the photocurrent

  3. Optimizing power plant cycling operations while reducing generating plant damage and costs

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S.A.; Besuner, P.H.; Grimsrud, P. [Aptech Engineering Services, Inc., Sunnyvale, CA (United States); Bissel, A. [Electric Supply Board, Dublin (Ireland)

    1998-12-31

    This presentation describes a method for analyzing, quantifying, and minimizing the total cost of fossil, combined cycle, and pumped hydro power plant cycling operation. The method has been developed, refined, and applied during engineering studies at some 160 units in the United States and 8 units at the Irish Electric Supply Board (ESB) generating system. The basic premise of these studies was that utilities are underestimating the cost of cycling operation. The studies showed that the cost of cycling conventional boiler/turbine fossil power plants can range from between $2,500 and $500,000 per start-stop cycle. It was found that utilities typically estimate these costs by factors of 3 to 30 below actual costs and, thus, often significantly underestimate their true cycling costs. Knowledge of the actual, or total, cost of cycling will reduce power production costs by enabling utilities to more accurately dispatch their units to manage unit life expectancies, maintenance strategies and reliability. Utility management responses to these costs are presented and utility cost savings have been demonstrated. (orig.) 7 refs.

  4. Analysis of synchronous and induction generators used at hydroelectric power plant

    Science.gov (United States)

    Diniş, C. M.; Popa, G. N.; lagăr, A.

    2017-01-01

    In this paper is presented an analysis of the operating electric generators (synchronous and induction) within a small capacity hydroelectric power plant. Such is treated the problem of monitoring and control hydropower plant using SCADA systems. Have been carried an experimental measurements in small hydropower plant for different levels of water in the lake and various settings of the operating parameters.

  5. Educating the Next Generation of Plant Breeders: The Need and the Challenge

    Science.gov (United States)

    Plant breeding is critical to the future of productive agriculture, food security, and economic prosperity. Increasingly, many plant breeders are working in industry or governmental agencies that do not include education of the next generation of plant breeders as part of their mission. At the sam...

  6. Hydrogen Generation from Ammonia Borane and Water Through the Combustion Reactions with Mechanically Alloyed Al/Mg Powder

    Science.gov (United States)

    2014-08-11

    synthesis of ammonia -A ‘‘never ending story? " Angewandte...34 # && , (/ -%(/ &$’$) ) ! -( ( !( &" # ( %’ !&% # ’)( (% (" %’% (" ( & *%" # ’)( *! % + 3 HYDROGEN GENERATION FROM AMMONIA BORANE AND WATER THROUGH THE...FROM AMMONIA BORANE AND WATER THROUGH THE COMBUSTION REACTIONS WITH MECHANICALLY ALLOYED AL/MG POWDER by DANIEL RODRIGUEZ THESIS Presented to

  7. Generation of core–shell nanoparticles Al@Ti by laser ablation in liquid for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9, Institutsky lane, 141700, Dolgoprudny, Moscow (Russian Federation); Barmina, E.V.; Simakin, A.V. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 119991 Moscow (Russian Federation); Kuzmin, P.G., E-mail: qzzzma@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 119991 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye highway, 115409 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Core–shell Al@Ti NPs are generated by laser ablation in isopropanol. • Isopropanol was saturated with molecular hydrogen. • The composite metallic Al-Ti target was used. • HR TEM characterization shows that Ti core is covered by epitaxial Al shell. • Al@Ti NPs are promising for hydrogen storage. - Abstract: Core–shell Al@Ti nanoparticles are generated by ablation of a composite Ti–Al target in liquid isopropanol saturated with molecular hydrogen using a Nd:YAG laser with pulse duration of 10 ps and repetition rate of 200 kHz. The target is made of two plates of corresponding metals stacked together and placed into a flowing cell reactor. Transmission Electron Microscopy analysis of generated NPs reveals their core–shell structure with Ti core and Al shell. Average size of NPs determined by means of measuring disk centrifuge is around 40 nm. Saturation of NPs by hydrogen is due to sharp dependence of its solubility in these metals on temperature. XRD studies of generated NPs show the peaks of both metallic Ti and Al with some amount of TiO{sub 2}. No peaks of Ti–Al alloys are observed.

  8. Hydrogen generation using the corrosion of Al-Sn and Al-Si alloys in an alkaline solution

    Science.gov (United States)

    Yoo, Jeong-Hyun; Yun, Kwi-Sub; Kalubarme, Ramchandra S.; Park, Choong-Nyeon; Park, Chan-Jin

    2014-07-01

    We investigated the effects of adding Sn and Si to Al alloys on the corrosion of the alloys and the generation of hydrogen from an alkaline solution using the alloys. With increasing Sn content of up to 20 wt% in the Al-Sn alloy, the volume fraction of the Sn phase as a cathodic site at grain boundaries increased, and consequently, the hydrogen generation rate from an alkaline solution by the alloy also increased. In addition, the quenched Al-Sn alloys had smaller grain sizes compared to the furnace-cooled alloys, and accordingly, exhibited a slightly higher hydrogen generation rate. A galvanic cell was formed between the Al grain and the Sn phase of the grain boundary, and accordingly, intergranular type corrosion was observed on the Al-Sn alloys. Compared with the Al-Sn alloys, a more uniform type corrosion was observed on the Al-Si alloys because the nobler Si was uniformly distributed in the eutectic region formed between the primary Al grains. The hydrogen generation rate increased with an increasing Si content up to 10 wt% and was greater for the furnace-cooled samples than that for the quenched samples due to the more clearly formed eutectic structure.

  9. Methodical Approaches to Creation of Dividing Automation at Industrial Enterprises with Generating Power Plants

    Directory of Open Access Journals (Sweden)

    E. V. Kalentionok

    2010-01-01

    Full Text Available The paper considers a problem pertaining to creation of dividing automation at industrial enterprises which have their own generating plants. Algorithms for action of dividing automation that permit to ensure minimum possible power non-balance while using generating plants for autonomous operation and possible parameters for its response are proposed in the paper.

  10. 78 FR 16302 - Crystal River Unit 3 Nuclear Generating Plant, Application for Amendment to Facility Operating...

    Science.gov (United States)

    2013-03-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Crystal River Unit 3 Nuclear Generating Plant, Application for Amendment to Facility Operating... Operating License No. DPR-72 for the Crystal River Unit 3 Nuclear Generating Plant (CR-3), located in...

  11. 76 FR 53972 - Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of...

    Science.gov (United States)

    2011-08-30

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of... Facility Operating License No. DPR-72 for Crystal River Unit 3 Nuclear generating Plant (CR-3), currently...

  12. Generation of a VUV-to-visible Raman frequency comb in hydrogen-filled kagom\\'e photonic crystal fiber

    OpenAIRE

    Mridha, M. K.; Novoa, D.; Bauerschmidt, S. T.; Abdolvand, A.; Russell, P. St. J.

    2016-01-01

    We report the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagom\\'e-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the fiber-gas system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-...

  13. Modelling of hydrogen sulfide dispersion from the geothermal power plants of Tuscany (Italy).

    Science.gov (United States)

    Somma, Renato; Granieri, Domenico; Troise, Claudia; Terranova, Carlo; De Natale, Giuseppe; Pedone, Maria

    2017-04-01

    We applied the Eulerian code DISGAS (DISpersion of GAS) to investigate the dispersion of the hydrogen sulfide (H2S) from 32 geothermal power plants (out of 35 active) belonging to the geothermal districts of Larderello, Travale-Radicondoli and Monte Amiata, in Tuscany (Italy). An updated geographic database, for use in a GIS environment, was realized in order to process input data required by the code and to handle the outputs. The results suggest that H2S plumes emitted from geothermal power plants are mainly concentrated around the stacks of emission (H2S concentration up to 1100μg/m(3)) and rapidly dilute along the dominant local wind direction. Although estimated values of air H2S concentrations are orders of magnitude higher than in unpolluted areas, they do not indicate an immediate health risk for nearby communities, under the more frequent local atmospheric conditions. Starting from the estimated values, validated by measurements in the field, we make some considerations about the environmental impact of the H2S emission in all the geothermal areas of the Tuscany region. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Operation And Fault Handling Of The Qinshan Second Nuclear Power Plant's Hydrogen Gas Dryer%秦山第二核电厂氢气干燥器的运行及故障处理

    Institute of Scientific and Technical Information of China (English)

    王瑞军

    2016-01-01

    氢气湿度超标对氢冷发电机组内部部件会产生不良影响,甚至威胁到发电机组的安全可靠运行。调节氢气湿度的主要设备---氢气干燥器的运行状态好坏,直接关系到发电机运行状态的好坏。了解氢气干燥器的运行原理,及时处理氢气干燥器运行中出现的故障,是每一位电厂运行人员的必修功课。%Hydrogen humidity levels More than the standard will have an adverse influence on hydrogen-cooled generator internal components , and even threat the safe and reliable operation of the generator set. Adjust the main equipment of the hydrogen humidity.The success or failure of the operation of hydrogen gas dryer, directly relates to the stand or fall of running state of generator. Understanding of hydrogen gas dryer operation principle and in a timely manner to deal with the faults in the operation of hydrogen gas dryer ,is a compulsory lesson to every power plant operators.

  15. Optimized hydrogen generation in a semicontinuous sodium borohydride hydrolysis reactor for a 60 W-scale fuel cell stack

    Science.gov (United States)

    Arzac, G. M.; Fernández, A.; Justo, A.; Sarmiento, B.; Jiménez, M. A.; Jiménez, M. M.

    Catalyzed hydrolysis of sodium borohydride (SBH) is a promising method for the hydrogen supply of fuel cells. In this study a system for controlled production of hydrogen from aqueous sodium borohydride (SBH) solutions has been designed and built. This simple and low cost system operates under controlled addition of stabilized SBH solutions (fuel solutions) to a supported CoB catalyst. The system works at constant temperature delivering hydrogen at 1 L min -1 constant rate to match a 60-W polymer electrolyte membrane fuel cell (PEMFC). For optimization of the system, several experimental conditions were changed and their effect was investigated. A simple model based only on thermodynamic considerations was proposed to optimize system parameters at constant temperature and hydrogen evolution rate. It was found that, for a given SBH concentration, the use of the adequate fuel addition rate can maximize the total conversion and therefore the gravimetric storage capacity. The hydrogen storage capacity was as high as 3.5 wt% for 19 wt% SBH solution at 90% fuel conversion and an operation temperature of 60 °C. It has been demonstrated that these optimized values can also be achieved for a wide range of hydrogen generation rates. Studies on the durability of the catalyst showed that a regeneration step is needed to restore the catalytic activity before reusing.

  16. Hydrogen generation from ammonia borane and water through the combustion reactions with mechanically alloyed Al/Mg powder

    Science.gov (United States)

    Rodriguez, Daniel

    Finding and developing a safe and effective method for hydrogen storage is integral to its use as an alternative source of energy. The goal of the studies described in this thesis was to investigate the feasibility of developing combustible hydrogen-generating compositions based on ammonia borane and novel energetic materials such as nanocomposite and mechanically alloyed reactive materials, recently obtained by Prof. Edward Dreizin's team at the New Jersey Institute of Technology (NJIT). Such compositions could be stored for long time and release hydrogen on demand, upon ignition. The first phase of the research included thermodynamic calculations for combustion of ammonia borane with various reactive materials obtained at NJIT. The second phase involved experiments with compositions that appeared to be promising based on thermodynamic calculations. An experimental setup with laser ignition of mixtures was developed for these experiments. As a result of these tests, further work was focused on mixtures of ammonia borane, gelled water, and mechanically alloyed Al/Mg powder. The last part of the research revealed the reaction mechanisms during combustion of these mixtures. For this purpose, isotopic tests, involving use of heavy water and mass-spectroscopy of gaseous combustion products, were conducted. The results of the present work indicate that combustible mixtures of ammonia borane, water, and mechanically alloyed Al/Mg powder are promising for the development of hydrogen generators that release large amounts of hydrogen upon ignition.

  17. Did Convergent Protein Evolution Enable Phytoplasmas to Generate 'Zombie Plants'?

    Science.gov (United States)

    Rümpler, Florian; Gramzow, Lydia; Theißen, Günter; Melzer, Rainer

    2015-12-01

    Phytoplasmas are pathogenic bacteria that reprogram plant development such that leaf-like structures instead of floral organs develop. Infected plants are sterile and mainly serve to propagate phytoplasmas and thus have been termed 'zombie plants'. The developmental reprogramming relies on specific interactions of the phytoplasma protein SAP54 with a small subset of MADS-domain transcription factors. Here, we propose that SAP54 folds into a structure that is similar to that of the K-domain, a protein-protein interaction domain of MADS-domain proteins. We suggest that undergoing convergent structural and sequence evolution, SAP54 evolved to mimic the K-domain. Given the high specificity of resulting developmental alterations, phytoplasmas might be used to study flower development in genetically intractable plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Converting Chemical Energy to Electricity through a Three-Jaw Mini-Generator Driven by the Decomposition of Hydrogen Peroxide.

    Science.gov (United States)

    Xiao, Meng; Wang, Lei; Ji, Fanqin; Shi, Feng

    2016-05-11

    Energy conversion from a mechanical form to electricity is one of the most important research advancements to come from the horizontal locomotion of small objects. Until now, the Marangoni effect has been the only propulsion method to produce the horizontal locomotion to induce an electromotive force, which is limited to a short duration because of the specific property of surfactants. To solve this issue, in this article we utilized the decomposition of hydrogen peroxide to provide the propulsion for a sustainable energy conversion from a mechanical form to electricity. We fabricated a mini-generator consisting of three parts: a superhydrophobic rotator with three jaws, three motors to produce a jet of oxygen bubbles to propel the rotation of the rotator, and three magnets integrated into the upper surface of the rotator to produce the magnet flux. Once the mini-generator was placed on the solution surface, the motor catalyzed the decomposition of hydrogen peroxide. This generated a large amount of oxygen bubbles that caused the generator and integrated magnets to rotate at the air/water interface. Thus, the magnets passed under the coil area and induced a change in the magnet flux, thus generating electromotive forces. We also investigated experimental factors, that is, the concentration of hydrogen peroxide and the turns of the solenoid coil, and found that the mini-generator gave the highest output in a hydrogen peroxide solution with a concentration of 10 wt % and under a coil with 9000 turns. Through combining the stable superhydrophobicity and catalyst, we realized electricity generation for a long duration, which could last for 26 000 s after adding H2O2 only once. We believe this work provides a simple process for the development of horizontal motion and provides a new path for energy reutilization.

  19. Analysis and control of an in situ hydrogen generation and fuel cell power system for automotive applications

    Science.gov (United States)

    Kolavennu, Panini K.

    A new future in automotive transportation is approaching where vehicles are powered by new, clean and efficient energy sources. While different technologies will contribute to this future, many see fuel cells as the leading long term candidate for becoming the power source for emissions-free, mass produced light vehicles. The development of emissions-free vehicles, which run directly on hydrogen, is the true long term goal. However significant difficulties exist in developing these vehicles, due to hydrogen storage problems. For automotive applications, it is desirable to use a carbon-based hydrogenous fuel. The focus of this research was to analyze a fuel cell system for automotive applications, which generated hydrogen in situ using methane as a fuel source. This system consists of four parts: (1) an in situ hydrogen generation subsystem, (2) a power generation subsystem, (3) a thermal management subsystem and (4) a switching control subsystem. The novelty of this research lies in the fact that the entire system was considered from a systems engineering viewpoint with realistic constraints. A fuel processor subsystem was designed and its volume optimized to less than 100 liters. A relationship between the fuel fed into the fuel processor and the hydrogen coming out of it was developed. Using a fuel cell model an overall relationship between the fuel feed rate and the power output was established. The fuel cell car must be fully operational within a minute or so of a cold-start and must respond to rapidly varying loads. Significant load transitions occur frequently as a result of changes in driving conditions. These engineering constraints were addressed by coupling a battery to the fuel cell. A switching controller was designed and it was validated using realistic power profiles. Finally, a model reference adaptive controller was designed to handle nonlinearities and load transitions. The adaptive controller performance was enhanced by adding dead zone

  20. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have

  1. Minimum Entropy Generation Theorem Investigation and Optimization of Metal Hydride Alloy Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2014-05-01

    Full Text Available The main purpose of this paper is to carry out numerical simulation of the hydrogen storage on exothermic reaction of metal hydride LaNi5 alloy container. In addition to accelerating the reaction speed of the internal metal hydride by internal control tube water-cooled mode, analyze via the application of second law of thermodynamics the principle of entropy generation. Use COMSOL Mutilphysics 4.3 a to engage in finite element method value simulation on two-dimensional axisymmetric model. Also on the premise that the internal control tube parameters the radius ri, the flow rate U meet the metal hydride saturation time, observe the reaction process of two parameters on the tank, entropy distribution and the results of the accumulated entropy. And try to find the internal tube parameter values of the minimum entropy, whose purpose is to be able to identify the reaction process and the reaction results of internal tank’s optimum energy conservation.

  2. Gain generator optimization for hydrogen fluoride overtone and fundamental chemical lasers

    Science.gov (United States)

    Duncan, William A.; Patterson, Stanley P.; Graves, Bruce R.; Sollee, Jeffrey L.; Yonehara, Gordon N.; Dering, John P.

    1993-06-01

    The hydrogen fluoride (HF) chemical laser is the baseline concept for SDIO space based laser (SBL) weapons systems. Ground based tests at power levels appropriate for this application have been demonstrated. Because the brightness of a laser beam projected to the far field is inversely proportional to the square of the wavelength, shorter wavelengths are desirable to enhance brightness on target. Development of the HF overtone chemical laser ((lambda) equals 1.3 - 1.4 micrometers ) as a growth technology for SBL applications has proceeded rapidly during the past several years. This paper reviews the parametric characterization and optimization of the Hypersonic, Low-Temperature (HYLTE) nozzle concept for HF overtone and HF fundamental performance. The experiments utilize advanced multilayer dielectric coatings on uncooled silicon substrates. The experimental results reported include laser power, small signal gain, mode footprint, and spectral content. The design of a multiple nozzle HYLTE module as a building block to an advanced high power HF chemical laser device is presented. Design philosophy emphasizes traceability from an intermediate size linear module to a full scale cylindrical gain generator for SBL applications. The key issues addressed are power scalability, fabricability, regenerative cooling capability, and thermal/structural performance.

  3. RADIOLYTIC HYDROGEN GENERATION INSAVANNAH RIVER SITE (SRS) HIGH LEVEL WASTETANKS COMPARISON OF SRS AND HANFORDMODELING PREDICTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C; Ned Bibler, N

    2009-04-15

    In the high level waste tanks at the Savannah River Site (SRS), hydrogen is produced continuously by interaction of the radiation in the tank with water in the waste. Consequently, the vapor spaces of the tanks are purged to prevent the accumulation of H{sub 2} and possible formation of a flammable mixture in a tank. Personnel at SRS have developed an empirical model to predict the rate of H{sub 2} formation in a tank. The basis of this model is the prediction of the G value for H{sub 2} production. This G value is the number of H{sub 2} molecules produced per 100 eV of radiolytic energy absorbed by the waste. Based on experimental studies it was found that the G value for H{sub 2} production from beta radiation and from gamma radiation were essentially equal. The G value for H{sub 2} production from alpha radiation was somewhat higher. Thus, the model has two equations, one for beta/gamma radiation and one for alpha radiation. Experimental studies have also indicated that both G values are decreased by the presence of nitrate and nitrite ions in the waste. These are the main scavengers for the precursors of H{sub 2} in the waste; thus the equations that were developed predict G values for hydrogen production as a function of the concentrations of these two ions in waste. Knowing the beta/gamma and alpha heat loads in the waste allows one to predict the total generation rate for hydrogen in a tank. With this prediction a ventilation rate can be established for each tank to ensure that a flammable mixture is not formed in the vapor space in a tank. Recently personnel at Hanford have developed a slightly different model for predicting hydrogen G values. Their model includes the same precursor for H{sub 2} as the SRS model but also includes an additional precursor not in the SRS model. Including the second precursor for H{sub 2} leads to different empirical equations for predicting the G values for H{sub 2} as a function of the nitrate and nitrite concentrations in

  4. Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Michael M. Bobek

    2012-10-01

    Full Text Available A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM and electron dispersive X-ray spectroscopy (EDS, the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.

  5. Different hydrogen isotope fractionations during lipid formation in higher plants: Implications for paleohydrology reconstruction at a global scale.

    Science.gov (United States)

    Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong

    2016-01-25

    Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (εwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (εwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of -140‰ for monocotyledonous species, -107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the εwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants.

  6. Hydrogen generation during melter feed preparation of Tank 42 sludge and salt washed loaded CST in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W.E.

    1999-12-08

    The main objective of these scoping tests was to measure the rate of hydrogen generation in a series of experiments designed to duplicate the expected SRAT and SME processing conditions in laboratory scale vessels. This document details the testing performed to determine the maximum hydrogen generation expected with a coupled flowsheet of sludge, loaded CST [crystalline silicotitanate], and frit.

  7. Polymer membrane based electrolytic cell and process for the direct generation of hydrogen peroxide in liquid streams

    Science.gov (United States)

    White, James H. (Inventor); Schwartz, Michael (Inventor); Sammells, Anthony F. (Inventor)

    1997-01-01

    An electrolytic cell for generating hydrogen peroxide is provided including a cathode containing a catalyst for the reduction of oxygen, and an anode containing a catalyst for the oxidation of water. A polymer membrane, semipermeable to either protons or hydroxide ions is also included and has a first face interfacing to the cathode and a second face interfacing to the anode so that when a stream of water containing dissolved oxygen or oxygen bubbles is passed over the cathode and a stream of water is passed over the anode, and an electric current is passed between the anode and the cathode, hydrogen peroxide is generated at the cathode and oxygen is generated at the anode.

  8. Hydrogen generation from methylamine using silicon carbide nanotubes as a dehydrogenation catalyst: a density functional theory study.

    Science.gov (United States)

    Esrafili, Mehdi D; Nurazar, Roghaye

    2015-02-01

    The adsorption and decomposition of methylamine on the surface of a pristine silicon-carbide nanotube (SiCNT) are investigated by density functional theory calculations. The adsorption energies of possible stable configurations and the activation energies for possible elementary reactions involved are obtained in the present study. The most favorable reaction channel that generates a hydrogen cyanide molecule and four hydrogen atoms is slightly endothermic; the energy barrier for the decomposition of the CH3NH2 molecule is about 45 kcal/mol. Since the activation energy for the side reaction that generates CH3 and NH2 fragments is relatively high, the generation of side products may be depressed by decreasing the temperature.

  9. Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato.

    Science.gov (United States)

    Fang, Tao; Cao, Zeyu; Li, Jiale; Shen, Wenbiao; Huang, Liqin

    2014-03-01

    Similar to auxin, hydrogen sulfide (H2S), mainly produced by l-cysteine desulfhydrase (DES; EC 4.4.1.1) in plants, could induce lateral root formation. The objective of this study was to test whether H2S is also involved in auxin-induced lateral root development in tomato (Solanum lycopersicum L.) seedlings. We observed that auxin depletion-induced down-regulation of transcripts of SlDES1, decreased DES activity and endogenous H2S contents, and the inhibition of lateral root formation were rescued by sodium hydrosulfide (NaHS, an H2S donor). However, No additive effects were observed when naphthalene acetic acid (NAA) was co-treated with NaHS (lower than 10 mM) in the induction of lateral root formation. Subsequent work revealed that a treatment with NAA or NaHS could simultaneously induce transcripts of SlDES1, DES activity and endogenous H2S contents, and thereafter the stimulation of lateral root formation. It was further confirmed that H2S or HS(-), not the other sulfur-containing components derived from NaHS, was attributed to the stimulative action. The inhibition of lateral root formation and decreased of H2S metabolism caused by an H2S scavenger hypotaurine (HT) were reversed by NaHS, but not NAA. Molecular evidence revealed that both NaHS- or NAA-induced modulation of some cell cycle regulatory genes, including the up-regulation of SlCDKA;1, SlCYCA2;1, together with simultaneous down-regulation of SlKRP2, were differentially reversed by HT pretreatment. To summarize, above results clearly suggested that H2S might, at least partially, act as a downstream component of auxin signaling to trigger lateral root formation.

  10. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    Science.gov (United States)

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-07

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  11. PTA装置氢气回收方法分析%Analysis of hydrogen recovery process of PTA plant

    Institute of Scientific and Technical Information of China (English)

    李红坤; 崔国刚; 陈学佳; 杨立平; 孙爱军

    2016-01-01

    The hydrogen utilization and emission situation was introduced during the production of purified terephthalic acid ( PTA) .The necessity of hydrogen recovery process was put forward for PTA plants .The widely applied hydrogen recovery tech-niques were analyzed , including cryogenic separation , pressure swing adsorption and membrane separation .Their advantages and disadvantages were compared .The hydrogen recovery technological process was preliminarily designed for PTA plants and its eco -nomical efficiency was predicted .The membrane separation technique was suitable for the hydrogen recovery of PTA plants due to the advantages of high recovered hydrogen concentration and low investment .The consumption of hydrogen , nitrogen and steam could be considerably decreased as the membrane separation technique was applied in the hydrogen recovery of PTA plants .The membrane separation technique provided significant energy conservation effect and possessed wonderful prospects .%介绍了精对苯二甲酸( PTA)生产过程中氢气的使用和排放现状,指出了PTA装置氢气回收的必要性。分析了目前工业中应用较为广泛的氢气回收方法,包括深冷分离法、变压吸附法和膜分离法,对比了3种方法的优缺点。初步设计了PTA装置氢气回收工艺流程,预估了PTA装置氢气回收的经济性。膜分离法具有回收氢气浓度高、投资少等优点,用于 PTA装置氢气回收较为适合;膜分离法用于PTA 装置氢气回收后,可大幅降低装置的氢气、氮气和蒸汽的使用量,节能效果显著,具有良好的应用前景。

  12. The hydrogen emission of young stellar objects : Key science for next-generation instruments and facilities

    NARCIS (Netherlands)

    Garcia, Paulo J. V.; Benisty, Myriam; Rajabi, Samira; Dougados, Catherine; Massi, Fabrizzio; Bacciotti, Francesca; Le Bouquin, Jean-Baptiste; Malbet, Fabien; Podio, Linda; Renard, Stephanie; Whelan, Emma

    2010-01-01

    The hydrogen emission line is a defining characteristic of young stellar objects probing the planet forming regions of the disks. The limiting sensitivity of current interferometers has precluded it's detailed study. We'll review our current understanding of hydrogen emission, recent results and pro

  13. Metal Alloys for The New Generation of Compressors at Hydrogen Stations: Parametric study of Corrosion Behavior

    DEFF Research Database (Denmark)

    Arjomand Kermani, Nasrin; Petrushina, Irina; Nikiforov, Aleksey Valerievich

    2017-01-01

    Compressors are one of the most costly components at hydrogen stations, which leads to the high price of hydrogen production. The substitution of a solid piston with ionic liquid is a promising option that may solve some of the challenges related to conventional reciprocating compressors and, con...

  14. Methane Formation by Flame-Generated Hydrogen Atoms in the Flame Ionization Detector

    DEFF Research Database (Denmark)

    Holm, Torkil; Madsen, Jørgen Øgaard

    1996-01-01

    The precombustion degradation of organic compounds in the flame ionization detector has been studied (1) by heating the additives in hydrogen in a quartz capillary and analyzing the reaction products by GC and (2) by following the degradation of the additives in a hydrogen flame, by means of a th...

  15. Down-conversion photoluminescence sensitizing plasmonic silver nanoparticles on ZnO nanorods to generate hydrogen by water splitting photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Po-Yen; Huang, Li-Wen; Shen, Tin-Wei; Wang, Wen-Lin; Su, Yen-Hsun [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lin, Melody I. [Department of Physics, University of California, Berkeley, California, 94720 (United States)

    2015-01-12

    Silver nanoparticles fabricated onto the surface of the ZnO nanorods form the photoanode and generate photoelectric current due to surface plasmon resonance, which serves as anode electrodes in photoelectrochemical hydrogen production. In order to increase the absorption spectrum of photoanode, organic pigments were utilized as photo-sensitizers to generate down-conversion photoluminescence to excite surface plasmon resonances of silver nanoparticles. The way of using light to carry the energy in electronic scattering regime runs the system for the enhancement of solar water splitting efficiency. It was significantly tuned in environmentally sustainable applications for power generation and development of alternative energy.

  16. Feasibility Study of Hydrogen Production from Existing Nuclear Power Plants Using Alkaline Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Dana R. Swalla

    2008-12-31

    The mid-range industrial market currently consumes 4.2 million metric tons of hydrogen per year and has an annual growth rate of 15% industries in this range require between 100 and 1000 kilograms of hydrogen per day and comprise a wide range of operations such as food hydrogenation, electronic chip fabrication, metals processing and nuclear reactor chemistry modulation.

  17. Engineering design and testing of a ground water remediation system using electrolytically generated hydrogen with a palladium catalyst for dehalogenation of chlorinated hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, R.

    1997-12-01

    Recent studies have shown that dissolved hydrogen causes rapid dehalogenation of chlorinated hydrocarbons in the presence of a palladium catalyst. The speed and completeness of these reactions offer advantages in designing remediation technologies for certain ground water contamination problems. However, a practical design challenge arises in the need to saturate the aqueous phase with hydrogen in an expeditious manner. To address this issue, a two-stage treatment reactor has been developed. The first stage consists of an electrolytic cell that generates hydrogen by applying a voltage potential across the influent water stream. The second stage consists of a catalyst column of palladium metal supported on alumina beads. A bench-scale reactor has been used to test this design for treating ground water contaminated with trichloroethene and other chlorinated hydrocarbons. In influent streams containing contaminant concentrations up to 4 ppm, initial results confirm that destruction efficiencies greater than 95% may be achieved with residence times short enough to allow practical implementation in specially designed flow-through treatment wells. Results from the bench-scale tests are being used to design a pilot ground water treatment system.

  18. Engineering design and testing of a ground water remediation system using electrolytically generated hydrogen with a palladium catalyst for dehalogenation of chlorinated hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, R.

    1997-12-01

    Recent studies have shown that dissolved hydrogen causes rapid dehalogenation of chlorinated hydrocarbons in the presence of a palladium catalyst. The speed and completeness of these reactions offer advantages in designing remediation technologies for certain ground water contamination problems. However, a practical design challenge arises in the need to saturate the aqueous phase with hydrogen in an expeditious manner. To address this issue, a two-stage treatment reactor has been developed. The first stage consists of an electrolytic cell that generates hydrogen by applying a voltage potential across the influent water stream. The second stage consists of a catalyst column of palladium metal supported on alumina beads. A bench-scale reactor has been used to test this design for treating ground water contaminated with trichloroethene and other chlorinated hydrocarbons. In influent streams containing contaminant concentrations up to 4 ppm, initial results confirm that destruction efficiencies greater than 95% may be achieved with residence times short enough to allow practical implementation in specially designed flow-through treatment wells. Results from the bench-scale tests are being used to design a pilot ground water treatment system.

  19. Compost in plant microbial fuel cell for bioelectricity generation