WorldWideScience

Sample records for plant growth form

  1. Plant Classification by Growth Form for Field Use.

    Science.gov (United States)

    Kemp, David M.

    1982-01-01

    A simple classification system for terrestrial plants is presented. The method is based on growth forms and avoids the need for identification to genus or species, although students could be encouraged to follow the work through to this level if appropriate. (Author/JN)

  2. Global diversification of a tropical plant growth form: environmental correlates and historical contingencies in climbing palms

    NARCIS (Netherlands)

    Couvreur, T.L.P.; Kissling, W.D.; Condamine, F.L.; Svenning, J.-C.; Rowe, N.P.; Baker, W.J.

    2014-01-01

    Tropical rain forests (TRF) are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale

  3. Global diversification of a tropical plant growth form: environmental correlates and historical contingencies in climbing palms

    NARCIS (Netherlands)

    Couvreur, T.L.P.; Kissling, W.D.; Condamine, F.L.; Svenning, J.-C.; Rowe, N.P.; Baker, W.J.

    2014-01-01

    Tropical rain forests (TRF) are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale patt

  4. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species.

    Science.gov (United States)

    Zhao, Yan-Tao; Ali, Arshad; Yan, En-Rong

    2017-02-01

    The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context. © The Author 2016. Published by Oxford University Press. All rights

  5. Global diversification of a tropical plant growth form: environmental correlates and historical contingencies in climbing palms

    OpenAIRE

    Couvreur, Thomas L.P.; W. Daniel Kissling; Fabien L. Condamine; Jens-Christian eSvenning; Rowe, Nick P.; Baker, William J.

    2015-01-01

    Tropical rain forests (TRF) are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale patterns and drivers of species richness as well as the diversification history of climbing and non-climbing palms (Arecaceae). We quantify to what extent macroecological diversity patterns are related...

  6. Photosynthetic Limitations in Response to Water Stress and Recovery in Mediterranean Plants with Different Growth Forms

    National Research Council Canada - National Science Library

    Jeroni Galmés; Hipólito Medrano; Jaume Flexas

    2007-01-01

    ... on species with different growth forms are compared. Ten Mediterranean species, representing different growth forms, were subjected to different levels of water stress, the most severe followed by rewatering...

  7. Effects of nitrogen form on growth, CO₂ assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants.

    Science.gov (United States)

    Zhou, Yan-hong; Zhang, Yi-li; Wang, Xue-min; Cui, Jin-xia; Xia, Xiao-jian; Shi, Kai; Yu, Jing-quan

    2011-02-01

    Cucumber and rice plants with varying ammonium (NH(4)(+)) sensitivities were used to examine the effects of different nitrogen (N) sources on gas exchange, chlorophyll (Chl) fluorescence quenching, and photosynthetic electron allocation. Compared to nitrate (NO(3)(-))-grown plants, cucumber plants grown under NH(4)(+)-nutrition showed decreased plant growth, net photosynthetic rate, stomatal conductance, intercellular carbon dioxide (CO(2)) level, transpiration rate, maximum photochemical efficiency of photosystem II, and O(2)-independent alternative electron flux, and increased O(2)-dependent alternative electron flux. However, the N source had little effect on gas exchange, Chl a fluorescence parameters, and photosynthetic electron allocation in rice plants, except that NH(4)(+)-grown plants had a higher O(2)-independent alternative electron flux than NO(3)(-)-grown plants. NO(3)(-) reduction activity was rarely detected in leaves of NH(4)(+)-grown cucumber plants, but was high in NH(4)(+)-grown rice plants. These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO(3)(-) assimilation, an effect more significant in NO(3)(-)-grown plants than in NH(4)(+)-grown plants. Meanwhile, NH(4)(+)-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) for NO(3)(-) reduction, regardless of the N form supplied, while NH(4)(+)-sensitive plants had a high water-water cycle activity when NH(4)(+) was supplied as the sole N source.

  8. Phenology and cover of plant growth forms predict herbivore habitat selection in a high latitude ecosystem.

    Science.gov (United States)

    Iversen, Marianne; Fauchald, Per; Langeland, Knut; Ims, Rolf A; Yoccoz, Nigel G; Bråthen, Kari Anne

    2014-01-01

    The spatial and temporal distribution of forage quality is among the most central factors affecting herbivore habitat selection. Yet, for high latitude areas, forage quantity has been found to be more important than quality. Studies on large ungulate foraging patterns are faced with methodological challenges in both assessing animal movements at the scale of forage distribution, and in assessing forage quality with relevant metrics. Here we use first-passage time analyses to assess how reindeer movements relate to forage quality and quantity measured as the phenology and cover of growth forms along reindeer tracks. The study was conducted in a high latitude ecosystem dominated by low-palatable growth forms. We found that the scale of reindeer movement was season dependent, with more extensive area use as the summer season advanced. Small-scale movement in the early season was related to selection for younger stages of phenology and for higher abundances of generally phenologically advanced palatable growth forms (grasses and deciduous shrubs). Also there was a clear selection for later phenological stages of the most dominant, yet generally phenologically slow and low-palatable growth form (evergreen shrubs). As the summer season advanced only quantity was important, with selection for higher quantities of one palatable growth form and avoidance of a low palatable growth form. We conclude that both forage quality and quantity are significant predictors to habitat selection by a large herbivore at high latitude. The early season selectivity reflected that among dominating low palatability growth forms there were palatable phenological stages and palatable growth forms available, causing herbivores to be selective in their habitat use. The diminishing selectivity and the increasing scale of movement as the season developed suggest a response by reindeer to homogenized forage availability of low quality.

  9. Growth-form and spatiality driving the functional difference of native and alien aquatic plants in Europe.

    Science.gov (United States)

    Lukács, Balázs A; Vojtkó, Anna E; Mesterházy, Attila; Molnár V, Attila; Süveges, Kristóf; Végvári, Zsolt; Brusa, Guido; Cerabolini, Bruno E L

    2017-02-01

    Trait-based approaches are widely used in community ecology and invasion biology to unravel underlying mechanisms of vegetation dynamics. Although fundamental trade-offs between specific traits and invasibility are well described among terrestrial plants, little is known about their role and function in aquatic plant species. In this study, we examine the functional differences of aquatic alien and native plants stating that alien and native species differ in selected leaf traits. Our investigation is based on 60 taxa (21 alien and 39 native) collected from 22 freshwater units of Hungarian and Italian lowlands and highlands. Linear mixed models were used to investigate the effects of nativeness on four fundamental traits (leaf area, leaf dry matter content, specific leaf area, and leaf nitrogen content), while the influence of growth-form, altitude, and site were employed simultaneously. We found significantly higher values of leaf areas and significantly lower values of specific leaf areas for alien species if growth-form was included in the model as an additional predictor.We showed that the trait-based approach of autochthony can apply to aquatic environments similar to terrestrial ones, and leaf traits have relevance in explaining aquatic plant ecology whether traits are combined with growth-forms as a fixed factor. Our results confirm the importance of traits related to competitive ability in the process of aquatic plant invasions. Alien aquatic plants can be characterized as species producing soft leaves faster. We argue that the functional traits of alien aquatic plants are strongly growth-form dependent. Using the trait-based approach, we found reliable characteristics of aquatic plants related to species invasions, which might be used, for example, in conservation management.

  10. Growth and Form in Biology:Generation of the Plant Morphology by Spontaneous Symmetry Breaking Based on a Pressure Field

    Institute of Scientific and Technical Information of China (English)

    翁羽翔

    2004-01-01

    Considering the role of mechanical forces playing in the morphogenetic pattern formation, we propose a secondorder differential equation for the growth and form of plants based on the turgor pressure field at the organ and cellular level. The solutions can well describe various kinds of morphological features of flowers under certain hypotheses. The plant morphology is considered as the spontaneous symmetry breaking of a circular growing boundary, while the employed hypotheses are subjected to further experimental confirmation.

  11. Global diversification of a tropical plant growth form: environmental correlates and historical contingencies in climbing palms.

    Science.gov (United States)

    Couvreur, Thomas L P; Kissling, W Daniel; Condamine, Fabien L; Svenning, Jens-Christian; Rowe, Nick P; Baker, William J

    2014-01-01

    Tropical rain forests (TRF) are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale patterns and drivers of species richness as well as the diversification history of climbing and non-climbing palms (Arecaceae). We quantify to what extent macroecological diversity patterns are related to contemporary climate, forest canopy height, and paleoclimatic changes. We test whether diversification rates are higher for climbing than non-climbing palms and estimate the origin of the climbing habit. Climbers account for 22% of global palm species diversity, mostly concentrated in Southeast Asia. Global variation in climbing palm species richness can be partly explained by past and present-day climate and rain forest canopy height, but regional differences in residual species richness after accounting for current and past differences in environment suggest a strong role of historical contingencies in climbing palm diversification. Climbing palms show a higher net diversification rate than non-climbers. Diversification analyses of palms detected a diversification rate increase along the branches leading to the most species-rich clade of climbers. Ancestral character reconstructions revealed that the climbing habit originated between early Eocene and Miocene. These results imply that changes from non-climbing to climbing habits may have played an important role in palm diversification, resulting in the origin of one fifth of all palm species. We suggest that, in addition to current climate and paleoclimatic changes after the late Neogene, present-day diversity of climbing palms can be explained by morpho-anatomical innovations, the biogeographic history of Southeast Asia, and/or ecological opportunities due to the diversification of high-stature dipterocarps in Asian TRFs.

  12. Global diversification of a tropical plant growth form: environmental correlates and historical contingencies in climbing palms

    Directory of Open Access Journals (Sweden)

    Thomas L. P. Couvreur

    2015-01-01

    Full Text Available Tropical rain forests (TRF are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale patterns and drivers of species richness as well as the diversification history of climbing and non-climbing palms (Arecaceae. We quantify to what extent macroecological diversity patterns are related to contemporary climate, forest canopy height and paleoclimatic changes. We test whether diversification rates are higher for climbing than non-climbing palms and estimate the origin of the climbing habit. Climbers account for 22% of global palm species diversity mostly concentrated in Southeast Asia. Global variation in climbing palm species richness can be partly explained by past and present-day climate and rain forest canopy height, but regional differences in residual species richness after accounting for current and past differences in environment suggest a strong role of historical contingencies in climbing palm diversification. Climbing palms show a higher net diversification rate than non-climbers. Diversification analysis of palms detected a diversification rate increase along the branches leading to the most species-rich clade of climbers. Ancestral character reconstructions revealed that the climbing habit originated between early Eocene and Miocene. These results imply that changes from non-climbing to climbing habit may have played an important role in palm diversification, resulting in the origin of one fifth of all palm species. We suggest that, in addition to current climate and paleoclimatic changes after the late Neogene, present-day diversity of climbing palms can be explained by morpho-anatomical innovations, the biogeographic history of Southeast Asia, and/or ecological opportunities due to the diversification of high

  13. Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley

    Directory of Open Access Journals (Sweden)

    Wedad A. Kasim

    2016-12-01

    Full Text Available Formation of biofilm under varying stress conditions is a significant strategy adopted by bacterial strains for their successful survival in plant rhizosphere. In this study, the activity of biofilm formation of 20 isolates and strains of plant growth promoting rhizobacteria (PGPR was determined under different salt concentrations. The results indicated that all of the 20 PGPRs have the activity of biofilm formation under 0.0, 250, 500 or 1000 mM NaCl which was increased with increasing salt concentration. PGPR strains with the highest activity of biofilm formation were selected and used to coat barley grains. The coated grains were sown in clay/sandy soil and left to grow for 25 days. The results showed that bacterial inoculation was effective in alleviating the deleterious effect of salinity on some growth criteria (seedling length, fresh and dry masses as well as relative water content, compared with the control. The isolate HM6 (B6, which showed the highest activity of biofilm formation at all the studied NaCl concentrations, was identified using 16S ribosomal RNA gene amplification and sequencing of the PCR product. The similarity sequence analysis indicated that HM6 isolate has 97.4% similar sequence identity to Bacillus amyloliquifaciens. It could be speculated that the bacterial activity of biofilm formation is helpful for improving salt stress tolerance of barley.

  14. Elevational plant species richness patterns and their drivers across non-endemics, endemics and growth forms in the Eastern Himalaya.

    Science.gov (United States)

    Manish, Kumar; Pandit, Maharaj K; Telwala, Yasmeen; Nautiyal, Dinesh C; Koh, Lian Pin; Tiwari, Sudha

    2017-09-01

    Despite decades of research, ecologists continue to debate how spatial patterns of species richness arise across elevational gradients on the Earth. The equivocal results of these studies could emanate from variations in study design, sampling effort and data analysis. In this study, we demonstrate that the richness patterns of 2,781 (2,197 non-endemic and 584 endemic) angiosperm species along an elevational gradient of 300-5,300 m in the Eastern Himalaya are hump-shaped, spatial scale of extent (the proportion of elevational gradient studied) dependent and growth form specific. Endemics peaked at higher elevations than non-endemics across all growth forms (trees, shrubs, climbers, and herbs). Richness patterns were influenced by the proportional representation of the largest physiognomic group (herbs). We show that with increasing spatial scale of extent, the richness patterns change from a monotonic to a hump-shaped pattern and richness maxima shift toward higher elevations across all growth forms. Our investigations revealed that the combination of ambient energy (air temperature, solar radiation, and potential evapo-transpiration) and water availability (soil water content and precipitation) were the main drivers of elevational plant species richness patterns in the Himalaya. This study highlights the importance of factoring in endemism, growth forms, and spatial scale when investigating elevational gradients of plant species distributions and advances our understanding of how macroecological patterns arise.

  15. Beneath the veil: Plant growth form influences the strength of species richness-productivity relationships in forests

    Science.gov (United States)

    Oberle, B.; Grace, J.B.; Chase, J.M.

    2009-01-01

    Aim: Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness-productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location: We analysed 231 plots ranging from 34.0?? to 48.3?? N latitude and from 75.0?? to 124.2?? W longitude in the United States. Methods: We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light-blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results: Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions: The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species

  16. Mosses Like It Rough—Growth Form Specific Responses of Mosses, Herbaceous and Woody Plants to Micro-Relief Heterogeneity

    Directory of Open Access Journals (Sweden)

    Carl Beierkuhnlein

    2012-02-01

    Full Text Available Micro-relief heterogeneity can lead to substantial variability in microclimate and hence niche opportunities on a small scale. We explored the relationship between plant species richness and small-scale heterogeneity of micro-relief on the subtropical island of La Palma, Canary Islands. Overall, we sampled 40 plots in laurel and pine forests at four altitudinal bands. Species richness was recorded separately for various growth forms (i.e., mosses, herbaceous and woody plants. Site conditions such as altitude, slope, aspect, and tree density were measured. Micro-relief heterogeneity was characterized by surface structure and a subsequently derived surface heterogeneity index. The effect of micro-relief heterogeneity on species richness was analysed by means of linear mixed effect models and variance partitioning. Effects of micro-relief heterogeneity on species richness varied considerably between growth forms. While moss richness was affected significantly by micro-relief heterogeneity, herbaceous and woody plants richness responded mainly to larger-scale site conditions such as aspect and tree density. Our results stress the importance of small-scale relief heterogeneity for the explanation of spatial patterns of species richness. This poses new challenges as small-scale heterogeneity is largely underrepresented, e.g. with regard to its application in species distribution models.

  17. Gravity, light and plant form.

    Science.gov (United States)

    Hangarter, R P

    1997-06-01

    Plants have evolved highly sensitive and selective mechanisms that detect and respond to various aspects of their environment. As a plant develops, it integrates the environmental information perceived by all of its sensory systems and adapts its growth to the prevailing environmental conditions. Light is of critical importance because plants depend on it for energy and, thus, survival. The quantity, quality and direction of light are perceived by several different photosensory systems that together regulate nearly all stages of plant development, presumably in order to maintain photosynthetic efficiency. Gravity provides an almost constant stimulus that is the source of critical spatial information about its surroundings and provides important cues for orientating plant growth. Gravity plays a particularly important role during the early stages of seedling growth by stimulating a negative gravitropic response in the primary shoot that orientates it towards the source of light, and a positive gravitropic response in the primary root that causes it to grow down into the soil, providing support and nutrient acquisition. Gravity also influences plant form during later stages of development through its effect on lateral organs and supporting structures. Thus, the final form of a plant depends on the cumulative effects of light, gravity and other environmental sensory inputs on endogenous developmental programs. This article is focused on developmental interactions modulated by light and gravity.

  18. Plant Growth Regulators.

    Science.gov (United States)

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  19. [Plant hormones, plant growth regulators].

    Science.gov (United States)

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  20. Phytochrome, plant growth and flowering

    Science.gov (United States)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  1. Plant growth and cultivation.

    Science.gov (United States)

    Podar, Dorina

    2013-01-01

    There is a variety of methods used for growing plants indoor for laboratory research. In most cases plant research requires germination and growth of plants. Often, people have adapted plant cultivation protocols to the conditions and materials at hand in their own laboratory and growth facilities. Here I will provide a guide for growing some of the most frequently used plant species for research, i.e., Arabidopsis thaliana, barley (Hordeum vulgare) and rice (Oryza sativa). However, the methods presented can be used for other plant species as well, especially if they are related to the above-mentioned species. The presented methods include growing plants in soil, hydroponics, and in vitro on plates. This guide is intended as a starting point for those who are just beginning to work on any of the above-mentioned plant species. Methods presented are to be taken as suggestive and modification can be made according to the conditions existing in the host laboratory.

  2. Effects of nitrogen form on growth,CO2 assimilation,chlorophyll fluorescence,and photosynthetic electron allocation in cucumber and rice plants

    Institute of Scientific and Technical Information of China (English)

    Yan-hong ZHOU; Yi-li ZHANG; Xue-min WANG; Jin-xia CUI; Xiao-jian XIA; Kai SHI; Jing-quan YU

    2011-01-01

    Cucumber and rice plants with varying ammonium(NH4+)sensitivities were used to examine the effects of different nitrogen(N)sources on gas exchange,chlorophyll(ChI)fluorescence quenching,and photosynthetic electron allocation.Compared to nitrate(NO3-)-grown plants,cucumber plants grown under NH4+-nutdtion showed decreased plant growth,net photosynthetic rate,stomatal conductance,intercellular carbon dioxide(CO2)level,transpiration rate,maximum photochemical efficiency of photosystem Ⅱ,and O2-independent alternative electron flux,and increased O2-dependent alternative electron flux.However,the N source had little effect on gas exchange,ChI a fluorescence parameters,and photosynthetic electron allocation in rice plants,except that NH4+-grown plants had a higher O2-independent alternative electron flux than NO3--grown plants.NO3-reduction activity was rarely detected in leaves of NH4+-grown cucumber plants,but was high in NH4+-grown rice plants.These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO3-assimilation,an effect more significant in NO3--grown plants than in NH4+-grown plants.Meanwhile,NH4+-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate(NADPH)for NO3-reduction,regardless of the N form supplied,while NH4+-sensitive plants had a high water-water cycle activity when NH4+was supplied as the sole N source.

  3. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-04-01

    Full Text Available The purpose of this study is to investigate porous vegetation concrete formed using the industrial by-products blast furnace slag powder and blast furnace slag aggregates. We investigated the void ratio, compressive strength, freeze–thaw resistance, plant growth and water purification properties using concretes containing these by-products, natural jute fiber and latex. The target performance was a compressive strength of ≥12 MPa, a void ratio of ≥25% and a residual compressive strength of ≥80% following 100 freeze–thaw cycles. Using these target performance metrics and test results for plant growth and water purification, an optimal mixing ratio was identified. The study characterized the physical and mechanical properties of the optimal mix, and found that the compressive strength decreased compared with the default mix, but that the void ratio and the freeze–thaw resistance increased. When latex was used, the compressive strength, void ratio and freeze–thaw resistance all improved, satisfying the target performance metrics. Vegetation growth tests showed that plant growth was more active when the blast furnace slag aggregate was used. Furthermore, the use of latex was also found to promote vegetation growth, which is attributed to the latex forming a film coating that suppresses leaching of toxic components from the cement. Water purification tests showed no so significant differences between different mixing ratios; however, a comparison of mixes with and without vegetation indicated improved water purification in terms of the total phosphorus content when vegetation had been allowed to grow.

  4. Plant growth promoting rhizobacterium

    Science.gov (United States)

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  5. Plant growth promoting rhizobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  6. 氮素形态对植物生长影响的研究进展%Research Progress on Effect of Nitrogen Form on Plant Growth

    Institute of Scientific and Technical Information of China (English)

    邢瑶; 马兴华

    2015-01-01

    铵态氮和硝态氮作为植物从土壤中吸收的主要无机态氮素,对植物的形态学特征以及生理过程具有不同的影响。从植物对不同形态氮素的吸收利用机制,氮素形态调控植物养分吸收、根系发育、光合生理、产量与品质形成及氮转运蛋白基因表达等方面进行了综述,阐述了氮素形态调控植物生长的机理,并提出了氮素形态研究中需要进一步阐明的问题。%Ammonium and nitrate,as the main inorganic nitrogen forms absorbed from the soil, had different effects on morphological and physiological processes in higher plants. This paper reviewed the mechanism of different nitrogen forms absorption and utilization in plants, how nitrogen form regulating nutrient uptake, root system development,photosynthesis physiology, yield and quality formation, and nitrogen transporter protein genes expression etc.. The paper also elaborated the mechanism of nitrogen forms regulating plant growth,and put forward problems needed to be clarified in studying nitrogen form.

  7. Adaptive strategies against drought stress of six plant species with different growth forms from karst habitats of southwestern China

    Science.gov (United States)

    Liu, C.; Guo, K.; Liu, Y.

    2012-04-01

    Frequent temporary drought in the rain season, as well as long-term drought in the dry season, is one of the most important factors limiting the survival and growth of plants in the harsh karst habitats of southwestern China. The morphological and physiological responses to drought stress of six native woody plant species were investigated under both temporary and prolonged drought stress. The six plant species included Pyracantha fortuneana (evergreen shrub), Rosa cymosa (deciduous shrub), Cinnamomum bodinieri (evergreen tree), and other three deciduous trees, Broussonetia papyrifera, Platycarya longipes and Pteroceltis tatarinowii. Under severe drought stress, the two shrubs with low leaf area ratio (LAR) maintained higher water status, higher photosynthetic capacity and larger percent biomass increase than the most of the trees, owing to their lower specific leaf area, higher intrinsic water use efficiency and thermal dissipation, and higher capacities of osmotic adjustment and antioxidant protection. The evergreen tree, C. bodinieri, exhibited small decrease of water potential and maintained higher leaf mass ratio (LMR) and LAR than the deciduous species under moderate drought stress, due to the high proline accumulation and high activities of antioxidant enzymes. However, it showed high levels of cellular damages, very low photosynthetic capacity, and sharp decreases of water potential and biomass under severe drought stress. After rewatering, C. bodinieri showed a lower ability to recover from severe drought with the successive repeats of severe drought event. The three deciduous trees developed high root mass ratio for maximizing water uptake, and showed higher LAR and biomass than the two shrubs under well-watered condition. However, drought stress resulted in sharp decreases of biomass in the three deciduous trees, which were attributed to the large drought-induced decreases of LMR, LAR and gas exchange. Under drought conditions, the deciduous trees

  8. Effects of growth form and functional traits on response of woody plants to clearing and fragmentation of subtropical rainforest.

    Science.gov (United States)

    Kooyman, R M; Zanne, A E; Gallagher, R V; Cornwell, W; Rossetto, M; O'Connor, P; Parkes, E A; Catterall, C F; Laffan, S W; Lusk, C H

    2013-12-01

    The conservation implications of large-scale rainforest clearing and fragmentation on the persistence of functional and taxonomic diversity remain poorly understood. If traits represent adaptive strategies of plant species to particular circumstances, the expectation is that the effect of forest clearing and fragmentation will be affected by species functional traits, particularly those related to dispersal. We used species occurrence data for woody plants in 46 rainforest patches across 75,000 ha largely cleared of forest by the early 1900s to determine the combined effects of area reduction, fragmentation, and patch size on the taxonomic structure and functional diversity of subtropical rainforest. We compiled species trait values for leaf area, seed dry mass, wood density, and maximum height and calculated species niche breadths. Taxonomic structure, trait values (means, ranges), and the functional diversity of assemblages of climbing and free-standing plants in remnant patches were quantified. Larger rainforest patches had higher species richness. Species in smaller patches were taxonomically less related than species in larger patches. Free-standing plants had a high percentage of frugivore dispersed seeds; climbers had a high proportion of small wind-dispersed seeds. Connections between the patchy spatial distribution of free-standing species, larger seed sizes, and dispersal syndrome were weak. Assemblages of free-standing plants in patches showed more taxonomic and spatial structuring than climbing plants. Smaller isolated patches retained relatively high functional diversity and similar taxonomic structure to larger tracts of forest despite lower species richness. The response of woody plants to clearing and fragmentation of subtropical rainforest differed between climbers and slow-growing mature-phase forest trees but not between climbers and pioneer trees. Quantifying taxonomic structure and functional diversity provides an improved basis for

  9. Growth and form of spherulites

    Science.gov (United States)

    Gránásy, László; Pusztai, Tamás; Tegze, György; Warren, James A.; Douglas, Jack F.

    2005-07-01

    Many structural materials (metal alloys, polymers, minerals, etc.) are formed by quenching liquids into crystalline solids. This highly nonequilibrium process often leads to polycrystalline growth patterns that are broadly termed “spherulites” because of their large-scale average spherical shape. Despite the prevalence and practical importance of spherulite formation, only rather qualitative concepts of this phenomenon exist. It is established that phase field methods naturally account for diffusional instabilities that are responsible for dendritic single-crystal growth. However, a generalization of this model is required to describe spherulitic growth patterns, and in the present paper we propose a minimal model of this fundamental crystal growth process. Our calculations indicate that the diversity of spherulitic growth morphologies arises from a competition between the ordering effect of discrete local crystallographic symmetries and the randomization of the local crystallographic orientation that accompanies crystal grain nucleation at the growth front [growth front nucleation (GFN)]. This randomization in the orientation accounts for the isotropy of spherulitic growth at large length scales and long times. In practice, many mechanisms can give rise to GFN, and the present work describes and explores three physically prevalent sources of disorder that lead to this kind of growth. While previous phase field modeling elucidated two of these mechanisms—disorder created by particulate impurities or other static disorder or by the dynamic heterogeneities that spontaneously form in supercooled liquids (even pure ones)—the present paper considers an additional mechanism, crystalline branching induced by a misorientation-dependent grain boundary energy, which can significantly affect spherulite morphology. We find the entire range of observed spherulite morphologies can be reproduced by this generalized phase field model of polycrystalline growth.

  10. Toward a better δDalkanes paleoclimate proxy; Partitioning of seasonal water sources and xylem-leaf deuterium enrichment according to plant growth form and phenology

    Science.gov (United States)

    Wispelaere, Lien; Bodé, Samuel; Herve-Fernández, Pedro; Hemp, Andreas; Verschuren, Dirk; Boeckx, Pascal

    2016-04-01

    -water deuterium enrichment, averaged over all plant species, sites and seasons equals 23 ± 27‰. Several factors influence the isotopic enrichment between xylem and leaf water, but according to our results, the growth form and phenology of plant species are the primary factors, while the location (proximity to the lake) and season exert relatively minor effects.

  11. Plant and microbial uptake and allocation of organic and inorganic nitrogen related to plant growth forms and soil conditions at two subarctic tundra sites in Sweden

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Clemmensen, Karina Engelbrecht; Michelsen, Anders

    2008-01-01

    transported a high proportion of 15N to aboveground parts, whereas the dwarf shrubs allocated most 15N to underground storage. Enhanced 13C in Betula nana roots represents the first field evidence of uptake of intact glycine by this important circumpolar plant. Plant and microbial uptake of label...... was complementary as plants took up more inorganic than organic N, while microbes preferred organic N. Microbes initially took up a large part of the added label, but over the following four weeks microbial 15N decreased by 50% and most 15N was recovered in soil organic matter, while a smaller but slowly increasing...

  12. The altitudinal patterns of leaf C∶N∶P stoichiometry are regulated by plant growth form, climate and soil on Changbai Mountain, China.

    Science.gov (United States)

    Zhao, Ning; He, Nianpeng; Wang, Qiufeng; Zhang, Xinyu; Wang, Ruili; Xu, Zhiwei; Yu, Guirui

    2014-01-01

    Understanding the geographic patterns and potential drivers of leaf stoichiometry is critical for modelling the nutrient fluxes of ecosystems and to predict the responses of ecosystems to global changes. This study aimed to explore the altitudinal patterns and potential drivers of leaf C∶N∶P stoichiometry. We measured the concentrations of leaf C, N and P in 175 plant species as well as soil nutrient concentrations along an altitudinal transect (500-2300 m) on the northern slope of Changbai Mountain, China to explore the response of leaf C∶N∶P stoichiometry to plant growth form (PGF), climate and soil. Leaf C, N, P and C∶N∶P ratios showed significant altitudinal trends. In general, leaf C and C∶N∶P ratios increased while leaf N and P decreased with elevation. Woody and herbaceous species showed different responses to altitudinal gradients. Trees had the largest variation in leaf C, C∶N and C∶P ratios, while herbs showed the largest variation in leaf N, P and N∶P ratio. PGF, climate and soil jointly regulated leaf stoichiometry, explaining 17.6% to 52.1% of the variation in the six leaf stoichiometric traits. PGF was more important in explaining leaf stoichiometry variation than soil and climate. Our findings will help to elucidate the altitudinal patterns of leaf stoichiometry and to model ecosystem nutrient cycling.

  13. Effects of actinobacteria on plant disease suppression and growth promotion.

    Science.gov (United States)

    Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Zhang, Lixin; Suh, Joo-Won

    2013-11-01

    Biological control and plant growth promotion by plant beneficial microbes has been viewed as an alternative to the use of chemical pesticides and fertilizers. Bacteria and fungi that are naturally associated with plants and have a beneficial effect on plant growth by the alleviation of biotic and abiotic stresses were isolated and developed into biocontrol (BCA) and plant growth-promoting agents (PGPA). Actinobacteria are a group of important plant-associated spore-forming bacteria, which have been studied for their biocontrol, plant growth promotion, and interaction with plants. This review summarizes the effects of actinobacteria as BCA, PGPA, and its beneficial associations with plants.

  14. Chemical Control of Plant Growth.

    Science.gov (United States)

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  15. Plant/life form considerations in the rangeland hydrology and erosion model (RHEM)

    Science.gov (United States)

    Resilience of rangeland to erosion has largely been attributed to adequate plant cover; however, plant life/growth form, and individual species presence can have a dramatic effect on hydrologic and erosion dynamics on rangelands. Plant life/growth form refers to genetic tendency of a plant to grow i...

  16. Plant growth-promoting bacterial endophytes.

    Science.gov (United States)

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes.

  17. Size-dependent variation in plant form.

    Science.gov (United States)

    Niklas, Karl J; Cobb, Edward D

    2017-09-11

    The study of organic form has a long and distinguished history going at least as far back as Aristotle's Historia Anima¯lium, wherein he identified five basic biological processes that define the forms of animals (metabolism, temperature regulation, information processing, embryo development, and inheritance). Unfortunately, all of Aristotle's writings about plant forms are lost. We know of them only indirectly from his student Theophrastus's companion books, collectively called Historia Plantarum, wherein plant forms are categorized into annual herbs, herbaceous perennials, shrubs, and trees. The study of plant forms did not truly begin until the romantic poet and naturalist Goethe proposed the concept of a hypothetical 'Plant Archetype', declared "Alles ist Blatt", and first coined the word morphologie, which inspired the French anatomist Cuvier (who established the field of comparative morphology), the English naturalist Darwin (who saw his theory of evolution reinforced by it), and the Scottish mathematician D'Arcy Thompson (who attempted to quantify it). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The evolvability of growth form in a clonal seaweed.

    Science.gov (United States)

    Monro, Keyne; Poore, Alistair G B

    2009-12-01

    Although modular construction is considered the key to adaptive growth or growth-form plasticity in sessile taxa (e.g., plants, seaweeds and colonial invertebrates), the serial expression of genes in morphogenesis may compromise its evolutionary potential if growth forms emerge as integrated wholes from module iteration. To explore the evolvability of growth form in the red seaweed, Asparagopsis armata, we estimated genetic variances, covariances, and cross-environment correlations for principal components of growth-form variation in contrasting light environments. We compared variance-covariance matrices across environments to test environmental effects on heritable variation and examined the potential for evolutionary change in the direction of plastic responses to light. Our results suggest that growth form in Asparagopsis may constitute only a single genetic entity whose plasticity affords only limited evolutionary potential. We argue that morphological integration arising from modular construction may constrain the evolvability of growth form in Asparagopsis, emphasizing the critical distinction between genetic and morphological modularity in this and other modular taxa.

  19. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective

    Directory of Open Access Journals (Sweden)

    Munees Ahemad

    2014-01-01

    Full Text Available Plant growth promoting rhizobacteria are the soil bacteria inhabiting around/on the root surface and are directly or indirectly involved in promoting plant growth and development via production and secretion of various regulatory chemicals in the vicinity of rhizosphere. Generally, plant growth promoting rhizobacteria facilitate the plant growth directly by either assisting in resource acquisition (nitrogen, phosphorus and essential minerals or modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens on plant growth and development in the forms of biocontrol agents. Various studies have documented the increased health and productivity of different plant species by the application of plant growth promoting rhizobacteria under both normal and stressed conditions. The plant-beneficial rhizobacteria may decrease the global dependence on hazardous agricultural chemicals which destabilize the agro-ecosystems. This review accentuates the perception of the rhizosphere and plant growth promoting rhizobacteria under the current perspectives. Further, explicit outlooks on the different mechanisms of rhizobacteria mediated plant growth promotion have been described in detail with the recent development and research. Finally, the latest paradigms of applicability of these beneficial rhizobacteria in different agro-ecosystems have been presented comprehensively under both normal and stress conditions to highlight the recent trends with the aim to develop future insights.

  20. LED Systems Target Plant Growth

    Science.gov (United States)

    2010-01-01

    To help develop technologies for growing edible biomass (food crops) in space, Kennedy Space Center partnered with Orbital Technologies Corporation (ORBITEC), of Madison, Wisconsin, through the Small Business Innovation Research (SBIR) program. One result of this research was the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system, components of which have been incorporated into a variety of agricultural greenhouse and consumer aquarium lighting features. The new lighting systems can be adapted to a specific plant species during a specific growth stage, allowing maximum efficiency in light absorption by all available photosynthetic tissues.

  1. Growth form and distribution of introduced plants in their native and non-native ranges in Eastern Asia and North America

    Science.gov (United States)

    Robert E. Ricklefs; Qinfeng Guo; Hong Qian

    2008-01-01

    There is a growing interest in understanding the influence of plant traits on their ability to spread in non-native regions. Many studies addressing this issue have been based on relatively small areas or restricted taxonomic groups. Here, we analyse a large data base involving 1567 plant species introduced between Eastern Asia and North America or from elsewhere to...

  2. Plant responses to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Loon, L.C. van

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant. Se

  3. Plant responses to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Loon, L.C. van

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant.

  4. Effects of Nitrogen Form and Its Application Time on Plant Growth and Tuber Yield of Potato%氮素形态及供应时期对马铃薯生长发育与产量的影响

    Institute of Scientific and Technical Information of China (English)

    苏亚拉其其格; 秦永林; 贾立国; 樊明寿

    2016-01-01

    The effects of nitrogen form on potato plant growth, tuber formation and tuber yield were studied under sand cultural condition using cultivars Kexin 1 and Favorita in 2013 and 2014. The results showed that there were no significantly different influences on plant height, leaf area, leaf SPAD value, plant dry matter accumulation and tuber weight when applied nitrite (NO3-N) or ammonia (NH4-N) before tuberization. However, there were higher leaf SPAD value, faster plant growth and higher tuber yield under application of NH4-N after tuberization compared with that of NO3-N. The plants treated with NO3-N before tuber initiation produced more tubers per plant than those treated with NH4-N. Moreover, no significant effect was detected on tuber dry matter distribution under different forms of nitrogen applied. Thus, potato nitrogen management including N fertilizer form and its application time should be adjusted according to the aim of commercial potato production or seed potato propagation.%选用马铃薯克新1号和费乌瑞它2个品种,于2013—2014年在沙培条件下,研究了氮素形态及供应时期对马铃薯植株生长、块茎形成及发育的影响。结果表明,在块茎形成前供应NO3-N与NH4-N两种条件下,马铃薯植株高度、叶面积、叶片 SPAD 值、整株干物质积累量以及块茎重量无显著差异,而块茎形成后供应 NH4-N 的马铃薯叶片 SPAD值、植株生长速度及块茎产量均显著高于NO3-N处理;块茎形成前供应NO3-N的植株结薯数显著高于NH4-N处理,但是氮素形态对干物质在马铃薯块茎中的分配比例无显著影响。因此,马铃薯的氮素养分管理应根据商品薯和种薯生产的不同目标,在块茎形成前后分别供应适宜形态的氮素。

  5. Growth of fluoride treated Kalanchoe pinnata plants

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H.N.; Applegate, H.G.

    1962-01-01

    Kalanchoe pinnata plants can absorb fluoride through roots. The absorption is related to the amount of fluoride applied to the soil. There appeared to be a relationship between the amount of fluoride adsorbed and the subsequent growth of the plants. Plants which adsorbed the largest amounts of fluoride had the greatest increase in growth.

  6. Gravity control of growth form in brassica rapa and arabidopsis thaliana (brassicaceae): consequences for secondary metabolism

    NARCIS (Netherlands)

    Allen, J.; Bisbee, P.A.; Darnell, R.L.; Kuang, A.; Levine, L.H.; Musgrave, M.E.; van Loon, J.J.W.A.

    2009-01-01

    How gravity influences the growth form and flavor components of plants is of interest to the space program because plants could be used for food and life support during prolonged missions away from the planet, where that constant feature of Earth’s environment does not prevail. We used plant growth

  7. TCP transcription factors: architectures of plant form.

    Science.gov (United States)

    Manassero, Nora G Uberti; Viola, Ivana L; Welchen, Elina; Gonzalez, Daniel H

    2013-04-01

    After its initial definition in 1999, the TCP family of transcription factors has become the focus of a multiplicity of studies related with plant development at the cellular, organ, and tissue levels. Evidence has accumulated indicating that TCP transcription factors are the main regulators of plant form and architecture and constitute a tool through which evolution shapes plant diversity. The TCP transcription factors act in a multiplicity of pathways related with cell proliferation and hormone responses. In recent years, the molecular pathways of TCP protein action and biochemical studies on their mode of interaction with DNA have begun to shed light on their mechanism of action. However, the available information is fragmented and a unifying view of TCP protein action is lacking, as well as detailed structural studies of the TCP-DNA complex. Also important, the possible role of TCP proteins as integrators of plant developmental responses to the environment has deserved little attention. In this review, we summarize the current knowledge about the structure and functions of TCP transcription factors and analyze future perspectives for the study of the role of these proteins and their use to modify plant development.

  8. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space.

    Science.gov (United States)

    Hoson, Takayuki

    2014-05-16

    The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front) directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms.

  9. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space

    Directory of Open Access Journals (Sweden)

    Takayuki Hoson

    2014-05-01

    Full Text Available The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms.

  10. Effect of plant growth regulators on callus induction and plant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Effect of plant growth regulators on callus induction and plant ... MS media supplemented with different levels of BA and TDZ were employed for shoot ... acre many times that of any grain crop (Burton, 1969) and are used in a ... plant regeneration from explants require the presence of .... light green. 2.50 ± ...

  11. Error estimation in plant growth analysis

    Directory of Open Access Journals (Sweden)

    Andrzej Gregorczyk

    2014-01-01

    Full Text Available The scheme is presented for calculation of errors of dry matter values which occur during approximation of data with growth curves, determined by the analytical method (logistic function and by the numerical method (Richards function. Further formulae are shown, which describe absolute errors of growth characteristics: Growth rate (GR, Relative growth rate (RGR, Unit leaf rate (ULR and Leaf area ratio (LAR. Calculation examples concerning the growth course of oats and maize plants are given. The critical analysis of the estimation of obtained results has been done. The purposefulness of joint application of statistical methods and error calculus in plant growth analysis has been ascertained.

  12. Plant growth conditions alter phytolith carbon

    Directory of Open Access Journals (Sweden)

    Kimberley L Gallagher

    2015-09-01

    Full Text Available Many plants, including grasses and some important human food sources, accumulate and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a glass wastebasket. Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction.

  13. Plant growth conditions alter phytolith carbon.

    Science.gov (United States)

    Gallagher, Kimberley L; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O; Santos, Guaciara M

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a "glass wastebasket." Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction.

  14. Preferential uptake of soil nitrogen forms by grassland plant species.

    Science.gov (United States)

    Weigelt, Alexandra; Bol, Roland; Bardgett, Richard D

    2005-02-01

    In this study, we assessed whether a range of temperate grassland species showed preferential uptake for different chemical forms of N, including inorganic N and a range of amino acids that commonly occur in temperate grassland soil. Preferential uptake of dual-labelled (13C and 15N) glycine, serine, arginine and phenylalanine, as compared to inorganic N, was tested using plants growing in pots with natural field soil. We selected five grass species representing a gradient from fertilised, productive pastures to extensive, low productivity pastures (Lolium perenne, Holcus lanatus, Anthoxanthum odoratum, Deschampsia flexuosa, and Nardus stricta). Our data show that all grass species were able to take up directly a diversity of soil amino acids of varying complexity. Moreover, we present evidence of marked inter-species differences in preferential use of chemical forms of N of varying complexity. L. perenne was relatively more effective at using inorganic N and glycine compared to the most complex amino acid phenylalanine, whereas N. stricta showed a significant preference for serine over inorganic N. Total plant N acquisition, measured as root and shoot concentration of labelled compounds, also revealed pronounced inter-species differences which were related to plant growth rate: plants with higher biomass production were found to take up more inorganic N. Our findings indicate that species-specific differences in direct uptake of different N forms combined with total N acquisition could explain changes in competitive dominance of grass species in grasslands of differing fertility.

  15. Jasmonate action in plant growth and development.

    Science.gov (United States)

    Huang, Huang; Liu, Bei; Liu, Liangyu; Song, Susheng

    2017-03-01

    Phytohormones, including jasmonates (JAs), gibberellin, ethylene, abscisic acid, and auxin, integrate endogenous developmental cues with environmental signals to regulate plant growth, development, and defense. JAs are well- recognized lipid-derived stress hormones that regulate plant adaptations to biotic stresses, including herbivore attack and pathogen infection, as well as abiotic stresses, including wounding, ozone, and ultraviolet radiation. An increasing number of studies have shown that JAs also have functions in a remarkable number of plant developmental events, including primary root growth, reproductive development, and leaf senescence. Since the 1980s, details of the JA biosynthesis pathway, signaling pathway, and crosstalk during plant growth and development have been elucidated. Here, we summarize recent advances and give an updated overview of JA action and crosstalk in plant growth and development. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Increasing rice plant growth by Trichoderma sp.

    Science.gov (United States)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  17. Foreign acquisition, plant survival, and employment growth

    DEFF Research Database (Denmark)

    Bandick, Roger; Görg, Holger

    2010-01-01

    endogeneity of acquisition using IV and propensity score matching approaches suggest that acquisition by foreign owners increases the lifetime of the acquired plants only if the plant was an exporter. The effect is robust to controlling for domestic acquisitions and differs between horizontal and vertical...... acquisitions. We find robust positive employment growth effects only for exporters and only if the takeover is vertical.......This paper analyzes the effect of foreign acquisition on survival and employment growth of targets using data on Swedish manufacturing plants.We separate targeted plants into those within Swedish MNEs, Swedish exporting non-MNEs, and purely domestic firms. The results, controlling for possible...

  18. Plant growth-promoting rhizobacteria and root system functioning

    Directory of Open Access Journals (Sweden)

    Jordan eVacheron

    2013-09-01

    Full Text Available The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, Plant Growth-Promoting Rhizobacteria (PGPR colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

  19. Foreign acquisition, plant survival, and employment growth

    DEFF Research Database (Denmark)

    Bandick, Roger; Görg, Holger

    2010-01-01

    This paper analyzes the effect of foreign acquisition on survival and employment growth of targets using data on Swedish manufacturing plants.We separate targeted plants into those within Swedish MNEs, Swedish exporting non-MNEs, and purely domestic firms. The results, controlling for possible en...

  20. Microbial phytases in phosphorus acquisition and plant growth promotion.

    Science.gov (United States)

    Singh, Bijender; Satyanarayana, T

    2011-04-01

    Phosphorus (P) is one of the major constituents in energy metabolism and biosynthesis of nucleic acids and cell membranes with an important role in regulation of a number of enzymes. Soil phosphorous is an important macronutrient for plant growth. Phosphorus deficiency in soil is a major problem for agricultural production. Total soil P occurs in either organic or in organic form. Phytic acid as phytate (salts of phytic acid) is the major form of organic phosphorus in soil and it is not readily available to plants as a source of phosphorus because it either forms a complex with cations or adsorbs to various soil components. Phosphate solubilizing microorganisms are ubiquitous in soils and could play an important role in supplying P to plants. Microorganisms utilizing phytate are found in cultivated soils as well as in wetland, grassland and forest soils. Various fungi and bacteria (including plant growth promoting rhizobacteria) hydrolyze this organic form of phosphorus secreting phosphatases such as phytases and acidic/alkaline phosphatases. A large number of transgenic plants have been developed which were able to utilize sodium phytate as sole source of phosphorus. However, the recombinant phytases were similar to their wild type counterparts in terms of their properties. Increased phytase/phosphatase activity in transgenic plants may be an effective approach to promote their phytate-phosphorus utilization. The extracellular phytase activity of transgenic plant roots is a significant factor in the utilization of phosphorus from phytate. Furthermore, this indicated that an opportunity exists for using gene technology to improve the ability of plants to utilize accumulated forms of soil organic phosphorus. This review is focused on the role of phytases and phytase producing microbes in promoting the growth of different plants.

  1. A continuous growth model for plant tissue

    Science.gov (United States)

    Bozorg, Behruz; Krupinski, Pawel; Jönsson, Henrik

    2016-12-01

    Morphogenesis in plants and animals involves large irreversible deformations. In plants, the response of the cell wall material to internal and external forces is determined by its mechanical properties. An appropriate model for plant tissue growth must include key features such as anisotropic and heterogeneous elasticity and cell dependent evaluation of mechanical variables such as turgor pressure, stress and strain. In addition, a growth model needs to cope with cell divisions as a necessary part of the growth process. Here we develop such a growth model, which is capable of employing not only mechanical signals but also morphogen signals for regulating growth. The model is based on a continuous equation for updating the resting configuration of the tissue. Simultaneously, material properties can be updated at a different time scale. We test the stability of our model by measuring convergence of growth results for a tissue under the same mechanical and material conditions but with different spatial discretization. The model is able to maintain a strain field in the tissue during re-meshing, which is of particular importance for modeling cell division. We confirm the accuracy of our estimations in two and three-dimensional simulations, and show that residual stresses are less prominent if strain or stress is included as input signal to growth. The approach results in a model implementation that can be used to compare different growth hypotheses, while keeping residual stresses and other mechanical variables updated and available for feeding back to the growth and material properties.

  2. Transgenic plants with enhanced growth characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-09-06

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  3. Plant Growth Modelling and Applications: The Increasing Importance of Plant Architecture in Growth Models

    Science.gov (United States)

    Fourcaud, Thierry; Zhang, Xiaopeng; Stokes, Alexia; Lambers, Hans; Körner, Christian

    2008-01-01

    Background Modelling plant growth allows us to test hypotheses and carry out virtual experiments concerning plant growth processes that could otherwise take years in field conditions. The visualization of growth simulations allows us to see directly and vividly the outcome of a given model and provides us with an instructive tool useful for agronomists and foresters, as well as for teaching. Functional–structural (FS) plant growth models are nowadays particularly important for integrating biological processes with environmental conditions in 3-D virtual plants, and provide the basis for more advanced research in plant sciences. Scope In this viewpoint paper, we ask the following questions. Are we modelling the correct processes that drive plant growth, and is growth driven mostly by sink or source activity? In current models, is the importance of soil resources (nutrients, water, temperature and their interaction with meristematic activity) considered adequately? Do classic models account for architectural adjustment as well as integrating the fundamental principles of development? Whilst answering these questions with the available data in the literature, we put forward the opinion that plant architecture and sink activity must be pushed to the centre of plant growth models. In natural conditions, sinks will more often drive growth than source activity, because sink activity is often controlled by finite soil resources or developmental constraints. PMA06 This viewpoint paper also serves as an introduction to this Special Issue devoted to plant growth modelling, which includes new research covering areas stretching from cell growth to biomechanics. All papers were presented at the Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA06), held in Beijing, China, from 13–17 November, 2006. Although a large number of papers are devoted to FS models of agricultural and forest crop species, physiological and genetic

  4. Growth Characteristics of Rhizophagus clarus Strains and Their Effects on the Growth of Host Plants.

    Science.gov (United States)

    Lee, Eun-Hwa; Eom, Ahn-Heum

    2015-12-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous in the rhizosphere and form symbiotic relationships with most terrestrial plant roots. In this study, four strains of Rhizophagus clarus were cultured and variations in their growth characteristics owing to functional diversity and resultant effects on host plant were investigated. Growth characteristics of the studied R. clarus strains varied significantly, suggesting that AMF retain high genetic variability at the intraspecies level despite asexual lineage. Furthermore, host plant growth response to the R. clarus strains showed that genetic variability in AMF could cause significant differences in the growth of the host plant, which prefers particular genetic types of fungal strains. These results suggest that the intraspecific genetic diversity of AMF could be result of similar selective pressure and may be expressed at a functional level.

  5. Stochasticity in plant cellular growth and patterning

    Directory of Open Access Journals (Sweden)

    Heather M. Meyer

    2014-09-01

    Full Text Available Plants, along with other multicellular organisms, have evolved specialized regulatory mechanisms to achieve proper tissue growth and morphogenesis. During development, growing tissues generate specialized cell types and complex patterns necessary for establishing the function of the organ. Tissue growth is a tightly regulated process that yields highly reproducible outcomes. Nevertheless, the underlying cellular and molecular behaviors are often stochastic. Thus, how does stochasticity, together with strict genetic regulation, give rise to reproducible tissue development? This review draws examples from plants as well as other systems to explore stochasticity in plant cell division, growth, and patterning. We conclude that stochasticity is often needed to create small differences between identical cells, which are amplified and stabilized by genetic and mechanical feedback loops to begin cell differentiation. These first few differentiating cells initiate traditional patterning mechanisms to ensure regular development.

  6. Does seed mass drive the differences in relative growth rate between growth forms?

    Science.gov (United States)

    Houghton, Jennie; Thompson, Ken; Rees, Mark

    2013-07-07

    The idea that herbaceous plants have higher relative growth rates (RGRs) compared with woody plants is fundamental to many of the most influential theories in plant ecology. This difference in growth rate is thought to reflect systematic variation in physiology, allocation and leaf construction. Previous studies documenting this effect have, however, ignored differences in seed mass. As woody species often have larger seeds and RGR is negatively correlated with seed mass, it is entirely possible the lower RGRs observed in woody species is a consequence of having larger seeds rather than different growth strategies. Using a synthesis of the published literature, we explored the relationship between RGR and growth form, accounting for the effects of seed mass and study-specific effects (e.g. duration of study and pot volume), using a mixed-effects model. The model showed that herbaceous species do indeed have higher RGRs than woody species, and that the difference was independent of seed mass, thus at all seed masses, herbaceous species on average grow faster than woody ones.

  7. Microbial phytases in phosphorus acquisition and plant growth promotion

    OpenAIRE

    2011-01-01

    Phosphorus (P) is one of the major constituents in energy metabolism and biosynthesis of nucleic acids and cell membranes with an important role in regulation of a number of enzymes. Soil phosphorous is an important macronutrient for plant growth. Phosphorus deficiency in soil is a major problem for agricultural production. Total soil P occurs in either organic or in organic form. Phytic acid as phytate (salts of phytic acid) is the major form of organic phosphorus in soil and it is not readi...

  8. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size-asymmetric ......A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size...

  9. Foreign acquisition, plant survival, and employment growth

    DEFF Research Database (Denmark)

    Bandick, Roger; Görg, Holger

    This paper analyses the effect of foreign acquisition on survival probability and employment growth of target plant using data on Swedish manufacturing plants during the period 1993-2002.  An improvement over previous studies is that we take into account firm level heterogeneity by separating...... the targeted plants into those within Swedish MNEs, Swedish exporting non-MNEs, and purely domestic firms before foreign takeover. The results, controlling for possible endogeneity of the acquisition dummy using an IV and propensity score matching approach suggest that acquisition by foreign owners increases...

  10. Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria.

    Science.gov (United States)

    Ahmed, Ambreen; Hasnain, Shahida

    2014-01-01

    Plant growth promoting rhizobacteria (PGPR) promote plant growth by various mechanisms such as phytohormone production, enhanced water and nutrient uptake, improved nitrogen availability in the soil, production of ACC-deaminase for ethylene breakdown, phosphate solubilization, siderophore production etc. Microbial auxin production is the major factor not only responsible for strengthening the plant-microbe relationship but it also promotes plant growth and development in a positive manner. Thus, bacterial auxin production potential can be exploited for plant growth improvement that may be effective in reducing the hazardous effects of chemical fertilizers on the ecosystem used to obtain higher yields. The present review gives a better understanding of various factors and mechanisms involved in auxin production by PGPR that may be helpful in proper exploitation of these natural resources in a beneficial way.

  11. Plant growth promoting rhizobacteria (PGPR and their effect on maize

    Directory of Open Access Journals (Sweden)

    Mrkovački Nastasija

    2011-01-01

    Full Text Available Free-living soil bacteria beneficial to plant growth are usually referred to as plant growth promoting rhizobacteria (PGPR, capable of promoting plant growth by colonizing the plant root. Application of PGPR to increase the yield is limited by variability among the results obtained in the laboratory, in greenhouse and field. Rhizobacteria that promote plant growth (PGPR participate in interactions with plants (rice, wheat, maize, sugarcane, sugar beet, cotton and significantly increase their vegetative growth and yield. Apart from Azotobacter and Azospirillum, PGPR also include Acetobacter, Azoarcus and several species of Enterobacteriaceae (Klebsiella, Enterobacter, Citrobacter, and Pseudomonas. PGPR represent an alternative to plant growth enhancement chemicals.

  12. Plant growth responses to polypropylene--biocontainers

    Science.gov (United States)

    The influence of bio-fillers incorporated into polypropylene (PP) on the growth of plants was evaluated. Biocontainers were created by injection molding of PP with 25-40% by weight of Osage orange tree, Paulownia tree, coffee tree wood or dried distillers grain and 5% by weight of maleated polypropy...

  13. Paradigm shift in plant growth control.

    Science.gov (United States)

    Körner, Christian

    2015-06-01

    For plants to grow they need resources and appropriate conditions that these resources are converted into biomass. While acknowledging the importance of co-drivers, the classical view is still that carbon, that is, photosynthetic CO2 uptake, ranks above any other drivers of plant growth. Hence, theory and modelling of growth traditionally is carbon centric. Here, I suggest that this view is not reflecting reality, but emerged from the availability of methods and process understanding at leaf level. In most cases, poorly understood processes of tissue formation and cell growth are governing carbon demand, and thus, CO2 uptake. Carbon can only be converted into biomass to the extent chemical elements other than carbon, temperature or cell turgor permit.

  14. Plant growth strategies are remodeled by spaceflight

    Directory of Open Access Journals (Sweden)

    Paul Anna-Lisa

    2012-12-01

    Full Text Available Abstract Background Arabidopsis plants were grown on the International Space Station within specialized hardware that combined a plant growth habitat with a camera system that can capture images at regular intervals of growth. The Imaging hardware delivers telemetric data from the ISS, specifically images received in real-time from experiments on orbit, providing science without sample return. Comparable Ground Controls were grown in a sister unit that is maintained in the Orbital Environment Simulator at Kennedy Space Center. One of many types of biological data that can be analyzed in this fashion is root morphology. Arabidopsis seeds were geminated on orbit on nutrient gel Petri plates in a configuration that encouraged growth along the surface of the gel. Photos were taken every six hours for the 15 days of the experiment. Results In the absence of gravity, but the presence of directional light, spaceflight roots remained strongly negatively phototropic and grew in the opposite direction of the shoot growth; however, cultivars WS and Col-0 displayed two distinct, marked differences in their growth patterns. First, cultivar WS skewed strongly to the right on orbit, while cultivar Col-0 grew with little deviation away from the light source. Second, the Spaceflight environment also impacted the rate of growth in Arabidopsis. The size of the Flight plants (as measured by primary root and hypocotyl length was uniformly smaller than comparably aged Ground Control plants in both cultivars. Conclusions Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent, and the general patterns of directional root growth typified by a given genotype in unit gravity are recapitulated on orbit, although overall growth patterns on orbit are less uniform. Skewing appears independent of axial orientation on the ISS – suggesting

  15. Short-Chain Chitin Oligomers: Promoters of Plant Growth

    Directory of Open Access Journals (Sweden)

    Alexander J. Winkler

    2017-02-01

    Full Text Available Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL enriched to 92% with dimers (2mer, trimers (3mer and tetramers (4mer was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%, radicle length (25% and total carbon and nitrogen content (6% and 8%, respectively. Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.

  16. Plant growth promotion and Penicillium citrinum

    Directory of Open Access Journals (Sweden)

    Choo Yeon-Sik

    2008-12-01

    Full Text Available Abstract Background Endophytic fungi are known plant symbionts. They produce a variety of beneficial metabolites for plant growth and survival, as well as defend their hosts from attack of certain pathogens. Coastal dunes are nutrient deficient and offer harsh, saline environment for the existing flora and fauna. Endophytic fungi may play an important role in plant survival by enhancing nutrient uptake and producing growth-promoting metabolites such as gibberellins and auxins. We screened roots of Ixeris repenes (L. A. Gray, a common dune plant, for the isolation of gibberellin secreting endophytic fungi. Results We isolated 15 endophytic fungi from the roots of Ixeris repenes and screened them for growth promoting secondary metabolites. The fungal isolate IR-3-3 gave maximum plant growth when applied to waito-c rice and Atriplex gemelinii seedlings. Analysis of the culture filtrate of IR-3-3 showed the presence of physiologically active gibberellins, GA1, GA3, GA4 and GA7 (1.95 ng/ml, 3.83 ng/ml, 6.03 ng/ml and 2.35 ng/ml, respectively along with other physiologically inactive GA5, GA9, GA12, GA15, GA19, GA20 and, GA24. The plant growth promotion and gibberellin producing capacity of IR-3-3 was much higher than the wild type Gibberella fujikuroi, which was taken as control during present study. GA5, a precursor of bioactive GA3 was reported for the first time in fungi. The fungal isolate IR-3-3 was identified as a new strain of Penicillium citrinum (named as P. citrinum KACC43900 through phylogenetic analysis of 18S rDNA sequence. Conclusion Isolation of new strain of Penicillium citrinum from the sand dune flora is interesting as information on the presence of Pencillium species in coastal sand dunes is limited. The plant growth promoting ability of this fungal strain may help in conservation and revegetation of the rapidly eroding sand dune flora. Penicillium citrinum is already known for producing mycotoxin citrinin and cellulose digesting

  17. Form planning Control to growth management

    DEFF Research Database (Denmark)

    Enemark, Stig

    2016-01-01

    The 1950s marked the birth of comprehensive planning in Denmark, when a number of socio-spatial challenges emerged as a result of the country’s rapid economic growth. These challenges were eventually addressed by the administrative reform of 1970 and the following planning reform implemented from...... caused that spatial planning be regarded more as a cost than an asset. Accordingly, it is evident that the Danish planning domain has progressively lost political clout and the focus is changed towards facilitation and management of economic growth.......The 1950s marked the birth of comprehensive planning in Denmark, when a number of socio-spatial challenges emerged as a result of the country’s rapid economic growth. These challenges were eventually addressed by the administrative reform of 1970 and the following planning reform implemented from...... 1970 until 1977. The reforms established an integrated planning system aiming to achieve spatial coordination through a hierarchy of plans occurring at multiple scales and a certain degree of horizontal and vertical integration of policies across sectors and jurisdictions. Since then, Denmark has been...

  18. Klebsiella pneumoniae inoculants for enhancing plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, Eric W. (Middleton, WI); Kaeppler, Shawn M. (Oregon, WI); Chelius, Marisa K. (Greeley, CO)

    2008-07-01

    A biological inoculant for enhancing the growth of plants is disclosed. The inoculant includes the bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101, Pantoea agglomerans P102, Klebsiella pneumoniae 342, Klebsiella pneumoniae zmvsy, Herbaspirillum seropedicae Z152, Gluconacetobacter diazotrophicus PA15, with or without a carrier. The inoculant also includes strains of the bacterium Pantoea agglomerans and K. pneumoniae which are able to enhance the growth of cereal grasses. Also disclosed are the novel bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101 and P102, and Klebsiella pneumoniae 342 and zmvsy.

  19. Modeling Performance of Plant Growth Regulators

    Directory of Open Access Journals (Sweden)

    W. C. Kreuser

    2017-03-01

    Full Text Available Growing degree day (GDD models can predict the performance of plant growth regulators (PGRs applied to creeping bentgrass ( L.. The goal of this letter is to describe experimental design strategies and modeling approaches to create PGR models for different PGRs, application rates, and turf species. Results from testing the models indicate that clipping yield should be measured until the growth response has diminished. This is in contrast to reapplication of a PGR at preselected intervals. During modeling, inclusion of an amplitude-dampening coefficient in the sinewave model allows the PGR effect to dissipate with time.

  20. Klebsiella pneumoniae inoculants for enhancing plant growth

    Science.gov (United States)

    Triplett, Eric W [Middleton, WI; Kaeppler, Shawn M [Oregon, WI; Chelius, Marisa K [Greeley, CO

    2008-07-01

    A biological inoculant for enhancing the growth of plants is disclosed. The inoculant includes the bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101, Pantoea agglomerans P102, Klebsiella pneumoniae 342, Klebsiella pneumoniae zmvsy, Herbaspirillum seropedicae Z152, Gluconacetobacter diazotrophicus PA15, with or without a carrier. The inoculant also includes strains of the bacterium Pantoea agglomerans and K. pneumoniae which are able to enhance the growth of cereal grasses. Also disclosed are the novel bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101 and P102, and Klebsiella pneumoniae 342 and zmvsy.

  1. Effect of cultivation conditions on Seimatosporium hypericinum growth and form morfological structures

    Directory of Open Access Journals (Sweden)

    Beata Zimowska

    2013-12-01

    Full Text Available The present study deals with effects of the air temperature, and the type of medium on the growth and form morfological structures of six Seimatosporium hypericinum isolates tested. St Jonh's Wort extract agar, St Jonh's Wort plant agar and PDA, oatmeal agar has been recognized as most useful for growth and sporulation of S.hypericinum. Mineral agar, appeared the least useful for growth and form acervuli and conidia. S.hypericinum can develop in a wide range of temperature, but the optimum one for the growth and sporulation of the fungus vary between 20°C and 28°C.

  2. Characterisation of phosphorous forms in wastewater treatment plants.

    Science.gov (United States)

    Fernández Dueñas, Joel; Ribas Alonso, Josep; Freixó Rey, Angel; Sánchez Ferrer, Antoni

    2003-02-28

    The removal of different forms of phosphorous (namely total phosphorous, soluble phosphorous, particulate phosphorous and total phosphate) has been studied in two municipal wastewater treatment plants (WWTP) with different characteristics, but without any specific implemented strategy for phosphorous removal. The results obtained for the different forms of phosphorus can be summarised as follows: (1) complete removal of particulate phosphorous is achieved in either primary or secondary clarifiers; (2) total phosphorous concentration in the effluent is mostly soluble phosphorous and this is mainly phosphate; (3) a small amount of soluble phosphorous is removed by biomass growth and/or biosorption; (4) both WWTPs presented a high-buffered behaviour in response to high inlet loading of phosphorous, showing a constant pattern at the outlet of the WWTP; (5) removal of total phosphorous was approximately 60-70% for both WWTPs; and (6) recirculation streams such as supernatant from centrifuge sludge dehydration operation can have a significant contribution to the inlet amount of phosphorous. The results presented in this paper provide a basis to develop prospects for phosphorous removal, which may be adapted to the particular configurations of the WWTP studied.

  3. Low dose radiation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated.

  4. Operational development of small plant growth systems

    Science.gov (United States)

    Scheld, H. W.; Magnuson, J. W.; Sauer, R. L.

    1986-01-01

    The results of a study undertaken on the first phase of an empricial effort in the development of small plant growth chambers for production of salad type vegetables on space shuttle or space station are discussed. The overall effort is visualized as providing the underpinning of practical experience in handling of plant systems in space which will provide major support for future efforts in planning, design, and construction of plant-based (phytomechanical) systems for support of human habitation in space. The assumptions underlying the effort hold that large scale phytomechanical habitability support systems for future space stations must evolve from the simple to the complex. The highly complex final systems will be developed from the accumulated experience and data gathered from repetitive tests and trials of fragments or subsystems of the whole in an operational mode. These developing system components will, meanwhile, serve a useful operational function in providing psychological support and diversion for the crews.

  5. Growth-promotion of plants with depolymerized alginates by irradiation

    Science.gov (United States)

    Hien, Nguyen Quoc; Nagasawa, Naotsugu; Tham, Le Xuan; Yoshii, Fumio; Dang, Vo Huy; Mitomo, Hiroshi; Makuuchi, Keizo; Kume, Tamikazu

    2000-07-01

    Alginate has been degraded by gamma-ray irradiation from a Co-60 source in liquid state (aqueous solution) and in solid state (powder form). The irradiated alginate with a molecular weight less than 10 4 shows a strong effect on the growth-promotion of rice and peanut. Low concentration of degraded alginate from 4% solution irradiated at 100 kGy is effective for the growth-promotion of plants and the suitable concentrations are ca 50 ppm for rice and ca 100 ppm for peanut.

  6. Plant growth and development vs. high and low levels of plant-beneficial heavy metal ions

    Directory of Open Access Journals (Sweden)

    Namira Arif

    2016-11-01

    Full Text Available Heavy metals (HMs exists in the environment in both forms as essential and non-essential. These HM ions enter in soil biota from various sources like natural and anthropogenic. Essential HMs such as cobalt (Co, copper (Cu, iron (Fe, manganese (Mn, molybdenum (Mo, nickel (Ni, and zinc (Zn plays a beneficial role in plant growth and development. At optimum level these beneficial elements improves the plant’s nutritional level and also several mechanisms essential for the normal growth and better yield of plants. The range of their optimality for land plants is varied. Plant uptake heavy metals as a soluble component or solubilized them by root exudates. While their presence in excess become toxic for plants that switches the plant’s ability to uptake and accumulate other nonessential elements. The increased amount of HMs within the plant tissue displays direct and indirect toxic impacts. Such direct effects are the generation of oxidative stress which further aggravates inhibition of cytoplasmic enzymes and damage to cell structures. Although, indirect possession is the substitution of essential nutrients at plant’s cation exchange sites. These ions readily influence role of various enzymes and proteins, arrest metabolism, and reveal phytotoxicity. On account of recent advancements on beneficial HMs ions Co, Cu, Fe, Mn, Mo, Ni, and Zn in soil-plant system, the present paper: overview the sources of HMs in soils and their uptake and transportation mechanism, here we have discussed the role of metal transporters in transporting the essential metal ions from soil to plants. The role played by Co, Cu, Fe, Mn, Mo, Ni, and Zn at both low and high level on the plant growth and development and the mechanism to alleviate metal toxicity at high level have been also discussed. At the end, on concluding the article we have also discussed the future perspective in respect to beneficial HM ions interaction with plant at both levels.

  7. Effects of planting date and plant density on crop growth of cut chrysanthemum

    NARCIS (Netherlands)

    Lee, J.H.; Heuvelink, E.; Challa, H.

    2002-01-01

    The effects of planting date (season) and plant density (32, 48 or 64 plants m-2) on growth of cut chrysanthemum (Chrysanthemum (Indicum group)) were investigated in six greenhouse experiments, applying the expolinear growth equation. Final plant fresh and dry mass and number of flowers per plant de

  8. Agriculture on Mars: Soils for Plant Growth

    Science.gov (United States)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  9. Monoclonal Antibodies to Plant Growth Regulators

    Science.gov (United States)

    Eberle, Joachim; Arnscheidt, Angelika; Klix, Dieter; Weiler, Elmar W.

    1986-01-01

    Four high affinity monoclonal antibodies, which recognize two plant growth regulators from the cytokinin group, namely trans-zeatin riboside and dihydrozeatin riboside and their derivatives are reported. Six hybridomas were produced from three independent fusions of Balb/c spleen cells with P3-NS1-Ag 4-1 (abbreviated NS1) or X63-Ag 8.653 (X63) myeloma cells. The mice had been hyperimmunized with zeatin riboside-bovine serum albumin conjugate or dihydrozeatin riboside-bovine serum albumin conjugate for 3 months. The hybridomas secrete antibodies of the IgG 1 or IgG 2b subclass and allow the detection of femtomole amounts of the free cytokinins, their ribosides, and ribotides in plant extracts. The use of these monoclonals in radio- and enzyme-linked immunosorbent assay is also discussed. PMID:16664848

  10. Gravitational effects on plant growth hormone concentration

    Science.gov (United States)

    Bandurski, Robert S.; Schulze, Aga

    Numerous studies, particularly those of H. Dolk in the 1930's, established by means of bio-assay, that more growth hormone diffused from the lower, than from the upper side of a gravity-stimulated plant shoot. Now, using an isotope dilution assay, with 4,5,6,7 tetradeutero indole-3-acetic acid as internal standard, and selected ion monitoring-gas chromatography-mass spectrometry as the method of determination, we have confirmed Dolk's finding and established that the asymmetrically distributed hormone is, in fact, indole-3-acetic acid (IAA). This is the first physico-chemical demonstration that there is more free IAA on the lower sides of a geo-stimulated plant shoot. We have also shown that free IAA occurs primarily in the conductive vascular tissues of the shoot, whereas IAA esters predominate in the growing cortical cells. Now, using an especially sensitive gas chromatographic isotope dilution assay we have found that the hormone asymmetry also occurs in the non-vascular tissue. Currently, efforts are directed to developing isotope dilution assays, with picogram sensitivity, to determine how this asymmetry of IAA distribution is attained so as to better understand how the plant perceives the geo-stimulus.

  11. PLANT-MICROBIAL INTERACTIONS IN THE RHIZOSPHERE – STRATEGIES FOR PLANT GROWTH-PROMOTION

    OpenAIRE

    Marius Stefan; Neculai Munteanu; Simona Dunca

    2012-01-01

    Plant growth-promoting rhizobacteria (PGPR) are a group of bacteria that can actively colonize plant rootsand enhance plant growth using different mechanisms: production of plant growth regulators like indoleacetic acid,gibberellic acid, cytokinins and ethylene(Zahir et al., 2003), providing the host plant with fixed nitrogen, solubilizationof soil phosphorus, enhance Fe uptake, biocontrol, reducing the concentration of heavy metals. PGPR are perfectcandidates to be used as biofertilizers – e...

  12. Growth analysis of soybean plants treated with plant growth regulators Marcelo Ferraz de Campos

    Directory of Open Access Journals (Sweden)

    João Domingos Rodrigues

    2008-09-01

    Full Text Available This work aimed to verify the effect of plant growth regulators on soybean plant growth and chlorophyll content. In an experiment carried out in a greenhouse, soybean plants were cultivated (Glycine max (L. Merrill cv. BRS-184 in 10-liter pots containing soil from the arable layer, corrected and fertilized according to the soil analysis. The treatments used were: control; GA3 100mg.L-1; BAP 100mg.L-1; IBA 100mg.L-1; Stimulate® (IBA, GA3 and kinetin 20mL.L-1; mepiquat chloride 100mg.L-1 and mepiquat chloride 100mg.L-1 + BAP 100mg.L-1 + IBA 100mg.L-1. Treatments were applied three times at 30-day intervals. Six samplings were taken at 13-day intervals. The results indicated that the highest total dry weight value resulted from the application of IBA and Stimulate®, and that the application of mepiquat chloride in association with IBA and BAP reduced total dry matter production. The leaf area was smaller than the control in most treatments. The chlorophyll content and growth rate were slightly influenced by the treatments. The cytokinin treatment alone or in association with other plant growth regulators retained the chlorophyll content. RGR and NAR decreased from 99 days after sowing with the application of mepiquat chloride.

  13. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  14. Dual Effect of the Cubic Ag₃PO₄ Crystal on Pseudomonas syringae Growth and Plant Immunity

    Directory of Open Access Journals (Sweden)

    Mi Kyung Kim

    2016-04-01

    Full Text Available We previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P. syringae. Induced expression of a plant defense marker gene PR1 by SPC alone is suggestive of its additional plant immunity-stimulating activity. Since SPC can simultaneously inhibit P. syringae growth and induce plant defense responses, it might be used as a more effective plant disease-controlling agent.

  15. Influence of the Tussock Growth Form on Arctic Ecosystem Carbon Stocks

    Science.gov (United States)

    Curasi, S.; Rocha, A. V.; Sonnentag, O.; Wullschleger, S. D.; Myers-Smith, I. H.; Fetcher, N.; Mack, M. C.; Natali, S.; Loranty, M. M.; Parker, T.

    2015-12-01

    The influence of plant growth forms on ecosystem carbon (C) cycling has been under appreciated. In arctic tundra, environmental factors and plant traits of the sedge Eriophorum vaginatum cause the formation of mounds that are dense amalgamations of belowground C called tussocks. Tussocks have important implications for arctic ecosystem biogeochemistry and C stocks, but the environmental and biological factors controlling their size and distribution across the landscape are poorly understood. In order to better understand how landscape variation in tussock size and density impact ecosystem C stocks, we formed the Carbon in Arctic Tussock Tundra (CATT) network and recruited an international team to sample locations across the arctic. The CATT network provided a latitudinal and longitudinal gradient along which to improve our understanding of tussocks' influence on ecosystem structure and function. CATT data revealed important insights into tussock formation across the arctic. Tussock density generally declined with latitude, and tussock size exhibited substantial variation across sites. The relationship between height and diameter was similar across CATT sites indicating that both biological and environmental factors control tussock formation. At some sites, C in tussocks comprised a substantial percentage of ecosystem C stocks that may be vulnerable to climate change. It is concluded that the loss of this growth form would offset C gains from projected plant functional shifts from graminoid to shrub tundra. This work highlights the role of plant growth forms on the magnitude and retention of ecosystem C stocks.

  16. Effects of competitive interactions of different life forms submersed plants on biomass allocation in shallow lakes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiu-feng

    2010-01-01

    Plant competition has been recognized as one of the most important factors influencing the structure and function of lake ecosystems.Competition from plants of dissimilar growth form may have profound effects on shallow lakes.An experiment was conducted to investigate the effects of competitive interactions of submersed plants with dissimilar growth forms on the biomass allocations.Hydrilla verticillata and Vallisneria natans were selected and were planted in a single-species monoculture and a mixed-species pattern.Results showed that the growth of Ⅴ.natans was significantly affected by the H.verticillata and caused a sharp reduction of biomass,but the root:shoot ratio of Ⅴ.natans was not affected significantly and there was a minimal increase in mixture: while for H.verticillata,the biomass and the root:shoot ratio were not significantly changed by the competitive interactions of Ⅴ.natans,there was minimal increase qf biomass and minimal decrease of the root:shoot ratio.These results may indicate that the phant which candevelop a dense mat or canopy at the water surface would be a stronger competitor relative to the plant that dependsmore on light availability near the sediment.

  17. Effect of plant growth promoting rhizobacteria on root morphology of ...

    African Journals Online (AJOL)

    Jane

    2011-10-03

    Oct 3, 2011 ... fertilizers, are highly effective in improving root morphology and growth in safflower. .... made by Duncan's Multiple Range Test (Duncan, 1955). ... In case of cv. Saif-32 ..... Previous studies showed that plant growth promotion.

  18. Amorphous nanoshell formed through random growth and related plasmonic behaviors

    Science.gov (United States)

    Wang, Yuwei; Shen, Hongming; He, Yingbo; Cheng, Yuqing; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gong, Qihuang; Lu, Guowei

    2014-08-01

    The optical properties of gold nanoshell formed through random growth process were numerically investigated by employing finite-difference time-domain method. The growth process can be divided approximately into four stages according to the optical spectra and 3D morphology. The incomplete nanoshell with surface coverage ratio (R) around 70% was found to form surface ‘hot spots' with high field enhancement, which are useful for surface enhanced Raman scattering. Additionally, high Purcell factor and quantum efficiency at the core center for the nanoshells with R ∼ 90% are suitable for encapsulated fluorescent probe that can exploit the high surface plasmonic enhancement effect.

  19. Root phototropism: how light and gravity interact in shaping plant form.

    Science.gov (United States)

    Kiss, John Z; Correll, Melanie J; Mullen, Jack L; Hangarter, Roger P; Edelmann, Richard E

    2003-06-01

    The interactions among tropisms can be critical in determining the final growth form of plants and plant organs. We have studied tropistic responses in roots as an example of these type of interactions. While gravitropism is the predominant tropistic response in roots, phototropism also plays a role in the oriented growth in this organ in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism. In the flowering plant Arabidopsis, the photosensitive pigments phytochrome A (phyA) and phytochrome B (phyB) mediate this positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. While blue-light-based negative phototropism is primarily mediated by the phototropin family of photoreceptors, the phyA and phyAB mutants (but not phyB) were inhibited in this response relative to the WT. The differences observed in phototropic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in plants and that phytochrome plays a key role in integrating multiple environmental stimuli.

  20. Root phototropism: how light and gravity interact in shaping plant form

    Science.gov (United States)

    Kiss, John Z.; Correll, Melanie J.; Mullen, Jack L.; Hangarter, Roger P.; Edelmann, Richard E.

    2003-01-01

    The interactions among tropisms can be critical in determining the final growth form of plants and plant organs. We have studied tropistic responses in roots as an example of these type of interactions. While gravitropism is the predominant tropistic response in roots, phototropism also plays a role in the oriented growth in this organ in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism. In the flowering plant Arabidopsis, the photosensitive pigments phytochrome A (phyA) and phytochrome B (phyB) mediate this positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. While blue-light-based negative phototropism is primarily mediated by the phototropin family of photoreceptors, the phyA and phyAB mutants (but not phyB) were inhibited in this response relative to the WT. The differences observed in phototropic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in plants and that phytochrome plays a key role in integrating multiple environmental stimuli.

  1. Ligand Receptor-Mediated Regulation of Growth in Plants.

    Science.gov (United States)

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  2. Isolation of lactic acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Bohn, Jelena; Yüksel-Dadak, Aytül; Dröge, Stefan; König, Helmut

    2017-02-20

    Direct molecular approaches provide hints that lactic acid bacteria play an important role in the degradation process of organic material to methanogenetic substrates in biogas plants. However, their diversity in biogas fermenter samples has not been analyzed in detail yet. For that reason, five different biogas fermenters, which were fed mainly with maize silage and manure from cattle or pigs, were examined for the occurrence of lactic acid-forming bacteria. A total of 197 lactic acid-forming bacterial strains were isolated, which we assigned to 21 species, belonging to the genera Bacillus, Clostridium, Lactobacillus, Pediococcus, Streptococcus and Pseudoramibacter-related. A qualitative multiplex system and a real-time quantitative PCR could be developed for most isolates, realized by the selection of specific primers. Their role in biogas plants was discussed on the basis of the quantitative results and on physiological data of the isolates.

  3. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  4. Emergent patterns of growth controlled by multicellular form and mechanics

    Science.gov (United States)

    Nelson, Celeste M.; Jean, Ronald P.; Tan, John L.; Liu, Wendy F.; Sniadecki, Nathan J.; Spector, Alexander A.; Chen, Christopher S.

    2005-01-01

    Spatial patterns of cellular growth generate mechanical stresses that help to push, fold, expand, and deform tissues into their specific forms. Genetic factors are thought to specify patterns of growth and other behaviors to drive morphogenesis. Here, we show that tissue form itself can feed back to regulate patterns of proliferation. Using microfabrication to control the organization of sheets of cells, we demonstrated the emergence of stable patterns of proliferative foci. Regions of concentrated growth corresponded to regions of high tractional stress generated within the sheet, as predicted by a finite-element model of multicellular mechanics and measured directly by using a micromechanical force sensor array. Inhibiting actomyosin-based tension or cadherin-mediated connections between cells disrupted the spatial pattern of proliferation. These findings demonstrate the existence of patterns of mechanical forces that originate from the contraction of cells, emerge from their multicellular organization, and result in patterns of growth. Thus, tissue form is not only a consequence but also an active regulator of tissue growth. PMID:16049098

  5. New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell

    NARCIS (Netherlands)

    Helder, M.; Strik, D.P.B.T.B.; Hamelers, H.V.M.; Kuijken, R.C.P.; Buisman, C.J.N.

    2012-01-01

    In a Plant-Microbial Fuel Cell anode-conditions must be created that are favorable for plant growth and electricity production. One of the major aspects in this is the composition of the plant-growth medium. Hoagland medium has been used until now, with added phosphate buffer to reduce potential

  6. Species Diversity and Growth Forms in Tropical American Palm Communities

    DEFF Research Database (Denmark)

    Balslev, Henrik; Kahn, Francis; Millán, Betty;

    2011-01-01

    To advance our understanding of the processes that govern the assembly of palm communities and the local coexistence of numerous palm species, we here synthesize available information in the literature on species diversity and growth-form composition in palm communities across the Americas. Ameri...

  7. Production of Plant Growth-Regulating Substances by the Vesicular-Arbuscular Mycorrhizal Fungus Glomus mosseae

    OpenAIRE

    Barea, José M.; Azcón-Aguilar, Concepción

    1982-01-01

    Glomus mosseae, a representative species of Endogonaceae (Phycomycetes) able to form vesicular-arbuscular mycorrhiza, was investigated for phytohormone production. Spores of G. mosseae were axenically germinated in water, and the resultant mycelial growth was assayed by standard procedures for extracting plant hormones from microbial cultures. Paper partition chromatography and specific bioassays were used to separate and identify plant growth-regulating substances. The microorganism synthesi...

  8. Plant growth, assimilation,and development: a conceptual framework

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, J.A.

    1976-05-01

    Formulations are presented which describe the energy and material balances of plants in order to describe and interrelate more completely and clearly the various plant processes and physiological and ecological questions. The general relationship developed is Assimilation rate = Growth rate + Storage rate + Loss rate. This fundamental relationship is then used to examine seasonal changes, growth, and differentiation. 11 references, 4 tables.

  9. Productivity growth patterns in US dairy products manufacturing plants

    NARCIS (Netherlands)

    Geylani, P.C.; Stefanou, S.E.

    2011-01-01

    We analyse the productivity growth patterns in the US dairy products industry using the Census Bureau's plant-level data set. We decompose Total Factor Productivity (TFP) growth into the scale and technical change components and analyse variability of plants' productivity by constructing transition

  10. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Russell J. Rodriguez; D. Carl Freeman; E. Durant McArthur; Yong Ok Kim; Regina S. Redman

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at...

  11. Productivity growth patterns in US dairy products manufacturing plants

    NARCIS (Netherlands)

    Geylani, P.C.; Stefanou, S.E.

    2011-01-01

    We analyse the productivity growth patterns in the US dairy products industry using the Census Bureau's plant-level data set. We decompose Total Factor Productivity (TFP) growth into the scale and technical change components and analyse variability of plants' productivity by constructing transition

  12. Carrageenans from red seaweeds as promoters of growth and elicitors of defense response in plants

    Directory of Open Access Journals (Sweden)

    Pushp Sheel Shukla

    2016-05-01

    Full Text Available Plants incessantly encounter abiotic and biotic stresses that limit their growth and productivity. However, conversely, plant growth can also be induced by treatments with various abiotic and biotic elicitors. Carrageenans are sulfated linear polysaccharides that represent major cellular constituents of seaweeds belonging to red algae (Rhodophyta. Recent research has unraveled the biological activity of carrageenans and of their oligomeric forms, the oligo carrageenans (OCs, as promoters of plant growth and as elicitors of defense responses against pests and diseases. In this review, we discuss the molecular mechanisms by which carrageenans and OCs mediate plant growth and plant defense responses. Carrageenans and OCs improve plant growth by regulating various metabolic processes such as photosynthesis and ancillary pathways, cell division, purine and pyrimidine synthetic pathways as well as metabolic pathways involved in nitrogen and sulfur assimilation. Carrageenans and OCs also induce plant defense responses against viroids, viruses, bacteria, fungi and insects by modulating the activity of different defense pathways, including salicylate, jasmonate and ethylene signaling pathways. Further studies will likely substantiate the beneficial effects of carrageenans and of OCs on plant growth and plant defense responses and open new avenues for their use in agriculture and horticultural industry.

  13. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    Science.gov (United States)

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Plant growth-promoting bacteria as inoculants in agricultural soils.

    Science.gov (United States)

    Souza, Rocheli de; Ambrosini, Adriana; Passaglia, Luciane M P

    2015-12-01

    Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.

  15. Plant growth-promoting bacteria as inoculants in agricultural soils

    Directory of Open Access Journals (Sweden)

    Rocheli de Souza

    2015-01-01

    Full Text Available AbstractPlant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.

  16. The regulation of plant growth by the circadian clock.

    Science.gov (United States)

    Farré, E M

    2012-05-01

    Circadian regulated changes in growth rates have been observed in numerous plants as well as in unicellular and multicellular algae. The circadian clock regulates a multitude of factors that affect growth in plants, such as water and carbon availability and light and hormone signalling pathways. The combination of high-resolution growth rate analyses with mutant and biochemical analysis is helping us elucidate the time-dependent interactions between these factors and discover the molecular mechanisms involved. At the molecular level, growth in plants is modulated through a complex regulatory network, in which the circadian clock acts at multiple levels. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Hydraulic integration and shrub growth form linked across continental aridity gradients.

    Science.gov (United States)

    Schenk, H Jochen; Espino, Susana; Goedhart, Christine M; Nordenstahl, Marisa; Cabrera, Hugo I Martinez; Jones, Cynthia S

    2008-08-12

    Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of independent redundancy should increase with increasing risk of fatal system failure. Here we show that hydraulic systems of plants function as predicted by this engineering rule. Hydraulic systems of shrubs sampled along two transcontinental aridity gradients changed with increasing aridity from highly integrated to independently redundant modular designs. Shrubs in humid environments tend to be hydraulically integrated, with single, round basal stems, whereas dryland shrubs typically have modular hydraulic systems and multiple, segmented basal stems. Modularity is achieved anatomically at the vessel-network scale or developmentally at the whole-plant scale through asymmetric secondary growth, which results in a semiclonal or clonal shrub growth form that appears to be ubiquitous in global deserts.

  18. Control of the actin cytoskeleton in plant cell growth

    NARCIS (Netherlands)

    Hussey, P.J.; Ketelaar, M.J.; Deeks, M.J.

    2006-01-01

    Plant cells grow through increases in volume and cell wall surface area. The mature morphology of a plant cell is a product of the differential rates of expansion between neighboring zones of the cell wall during this process. Filamentous actin arrays are associated with plant cell growth, and the a

  19. Induced systemic resistance by plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Pelt, J.A. van; Verhagen, B.W.M.; Ton, J.; Wees, A.C.M. van; Léon-Kloosterziel, K.M.; Loon, L.C. van

    2003-01-01

    Rhizobacteria are present in large numbers on the root surface, where plant exudates and lysates provide nutrients. Selected strains of beneficial, plant growth-promoting rhizobacteria (PGPR) trigger a plant-mediated induced systemic resistance (ISR) response that is effective against a broad spectr

  20. Versatile roles of plastids in plant growth and development.

    Science.gov (United States)

    Inaba, Takehito; Ito-Inaba, Yasuko

    2010-11-01

    Plastids, found in plants and some parasites, are of endosymbiotic origin. The best-characterized plastid is the plant cell chloroplast. Plastids provide essential metabolic and signaling functions, such as the photosynthetic process in chloroplasts. However, the role of plastids is not limited to production of metabolites. Plastids affect numerous aspects of plant growth and development through biogenesis, varying functional states and metabolic activities. Examples include, but are not limited to, embryogenesis, leaf development, gravitropism, temperature response and plant-microbe interactions. In this review, we summarize the versatile roles of plastids in plant growth and development.

  1. Plant growth regulation of Bt-cotton through Bacillus species

    OpenAIRE

    Pindi, Pavan Kumar; Sultana, Tasleem; Vootla, Praveen Kumar

    2013-01-01

    Deccan plateau in India periodically experiences droughts due to irregular rain fall and the soil in many parts of the region is considered to be poor for farming. Plant growth promoting rhizobacteria are originally defined as root-colonizing bacteria, i.e., Bacillus that cause either plant growth promotion or biological control of plant diseases. The study aims at the isolation of novel Bacillus species and to assess the biotechnological potential of the novel species as a biofertilizer, wit...

  2. Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. Plants are known to rapidly respond to pathogen and herbivore attack b

  3. Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. Plants are known to rapidly respond to pathogen and herbivore attack b

  4. How Will Global Environmental Changes Affect the Growth of Alien Plants?

    Directory of Open Access Journals (Sweden)

    Jujie Jia

    2016-11-01

    Full Text Available Global environmental changes can create novel habitats, promoting the growth of alien plants that often exhibit broad environmental tolerance and high phenotypic plasticity. However, the mechanisms underlying these growth promotory effects are unknown at present. Here, we conducted a phylogenetically controlled meta-analysis using data from 111 published studies encompassing the responses of 129 alien plants to global warming, increased precipitation, N deposition, and CO2 enrichment. We compared the differences in the responses of alien plants to the four global environmental change factors across six categories of functional traits between woody and non-woody life forms as well as C3 and C4 photosynthetic pathways. Our results showed that all four global change factors promote alien plant growth. Warming had a more positive effect on C4 than C3 plants. Although the effects of the four factors on the functional traits of alien plants were variable, plant growth was mainly promoted via an increase in growth rate and size. Our data suggest that potential future global environmental changes could further facilitate alien plant growth.

  5. BOOK REVIEW: New Visions on Form and Growth

    Science.gov (United States)

    Howard, M.

    2005-03-01

    It is now nearly 90 years since the publication of D'Arcy Thompson's book On Growth and Form, a classic work that attempted a unification of pattern-forming phenomena in systems ranging from inanimate to living matter. Thompson's book came early in the development of mathematical techniques in biology. His work has had enormous influence in succeeding decades and has helped inspire the rapid growth in the application of theoretical techniques to biological phenomena. Pelcé's book New Visions on Form and Growth takes its inspiration and title directly from D'Arcy Thompson. Furthermore, Pelcé attempts what could not be achieved in D'Arcy Thompson's time, namely the presentation of a quantitative analysis of pattern forming phenomena. However, it should be emphasised that the vast majority of this book is concerned with inanimate matter, with rather little discussion of biology. The book begins with a presentation of the basic physics, including surface tension, first-order phase transition kinetics and a brief outline of chemical kinetics. With the essential physics established, Pelcé then investigates simple growth forms, before showing how these regular geometries are destabilized into more complex forms by instabilities. The problem of velocity selection of growing patterns is then extensively discussed, before the question of (secondary) instabilities of the more complex growth forms is analysed. A chapter on stochastic patterns is also included. For the most part, the book concentrates on a few intensively studied pattern forming systems in physics, particularly viscous fingering in Hele Shaw cells, the growth of dendrites, electrodeposition, flames, and, in the chapter on stochastic patterns, diffusion-limited aggregation. Only in a rather brief final chapter is a more speculative link made with biological pattern formation and morphogenesis. In general, I found the book to be a useful reference work on the theory of pattern forming systems. However, the

  6. Optimization of plant mineral nutrition under growth-limiting conditions in a lunar greenhouse

    Science.gov (United States)

    Zaets, I.; Voznyuk, T.; Kovalchuk, M.; Rogutskyy, I.; Lukashov, D.; Mytrokhyn, O.; Mashkovska, S.; Foing, B.; Kozyrovska, N.

    It may be assumed that the first plants in a lunar base will play a main role in forming a protosoil of acceptable fertility needed for purposively growing second generation plants like wheat, rice, tulips, etc. The residues of the first-generation plants could be composted and transformed by microorganisms into a soil-like substrate within a loop of regenerative life support system. The lunar regolith may be used as a substrate for plant growth at the very beginning of a mission to reduce its cost. The use of microbial communities for priming plants will allow one to facilitate adaption to stressful conditions and to support the plant development under growth limiting conditions. Well-defined plant-associated bacteria were used for growing three cultivars to colonize French marigold (Tagetes patula L.) in anorthosite, a substrate of low bioavailability, analogous to a lunar rock. The consortium was composed of plant growth promoting rhizobacteria and the bacterium Paenibacillus sp. IMBG156 which stimulated seed germination, better plant development, and finally, the flowering of inoculated tagetes. In contrast, control plants grew poorly in the anorthosite and practically did not survive until flowering. Analysis of bacterial community composition showed that all species colonized plant roots, however, the rate of colonization depended on the allelopatic characteristics of marigold varieties. Bacteria of consortium were able to liberate some elements (Ca, Fe, Mn, Si, Ni, Cu, Zn) from substrate anorthosite. Plant colonization by mixed culture of bacterial strains resulted in the increase of accumulation of K, Mg, Mn by the plant and in the lowering of the level of toxic metal accumulation. It was assumed that a rationally assembled consortium of bacterial strains promoted germination of marygold seeds and supported the plant development under growth limiting conditions by means of bioleaching plant essential nutritional elements and by protecting the plant against

  7. Gibberellins - a multifaceted hormone in plant growth regulatory network.

    Science.gov (United States)

    Gantait, Saikat; Sinniah, Uma Rani; Ali, Md Nasim; Sahu, Narayan Chandra

    2015-01-01

    Plants tend to acclimatize to unfavourable environs by integrating growth and development to environmentally activated signals. Phytohormones strongly regulate convergent developmental and stress adaptive procedures and synchronize cellular reaction to the exogenous and endogenous conditions within the adaptive signaling networks. Gibberellins (GA), a group of tetracyclic diterpenoids, being vital regulators of plant growth, are accountable for regulating several aspects of growth and development of higher plants. If the element of reproduction is considered as an absolute requisite then for a majority of the higher plants GA signaling is simply indispensable. Latest reports have revealed unique conflicting roles of GA and other phytohormones in amalgamating growth and development in plants through environmental signaling. Numerous physiological researches have detailed substantial crosstalk between GA and other hormones like abscisic acid, auxin, cytokinin, and jasmonic acid. In this review, a number of explanations and clarifications for this discrepancy are explored based on the crosstalk among GA and other phytohormones.

  8. [Influence endophytic bacteria to promote plants growth in stress conditions].

    Science.gov (United States)

    Napora, Anna; Kacprzak, Małgorzata; Nowak, Kamil; Grobelak, Anna

    2015-01-01

    The growth of plants under stress conditions is often assisted by microorganisms colonizing the rhizosphere (the root zone of the highest microbial activity). One of the most important bacterial groups to encourage the growth of plants (PGPB) are endophytes. These microorganisms penetrate living cells of plants and there they lead the microbiological activity as endosymbionts. These microorganisms can effectively promote the growth of plants under stress conditions and stimulate biochemical activities: nitrogen fixation, production of growth hormones (auxins, cytokinins and gibberellins), reduction of the high concentration of ethylene as well as facilitation of the collection plant minerals and water. This paper is an attempt to summarize the current state of knowledge about the biochemical activity of bacterial endophytes.

  9. Changes in alpine plant growth under future climate conditions

    Directory of Open Access Journals (Sweden)

    A. Rammig

    2010-06-01

    Full Text Available Alpine shrub- and grasslands are shaped by extreme climatic conditions such as a long-lasting snow cover and a short vegetation period. Such ecosystems are expected to be highly sensitive to global environmental change. Prolonged growing seasons and shifts in temperature and precipitation are likely to affect plant phenology and growth. In a unique experiment, climatology and plant growth was monitored for almost a decade at 17 snow meteorological stations in different alpine regions along the Swiss Alps. Regression analyses revealed highly significant correlations between mean air temperature in May/June and snow melt out, onset of plant growth, and plant height. These correlations were used to project plant growth phenology for future climate conditions based on the gridded output of a set of regional climate models runs. Melt out and onset of growth were projected to occur on average 17 days earlier by the end of the century than in the control period from 1971–2000 under the future climate conditions of the low resolution climate model ensemble. Plant height and biomass production were expected to increase by 77% and 45%, respectively. The earlier melt out and onset of growth will probably cause a considerable shift towards higher growing plants and thus increased biomass. Our results represent the first quantitative and spatially explicit estimates of climate change impacts on future growing season length and the respective productivity of alpine plant communities in the Swiss Alps.

  10. Plant growth regulators enhance gold uptake in Brassica juncea.

    Science.gov (United States)

    Kulkarni, Manoj G; Stirk, Wendy A; Southway, Colin; Papenfus, Heino B; Swart, Pierre A; Lux, Alexander; Vaculík, Marek; Martinka, Michal; Van Staden, Johannes

    2013-01-01

    The use of plant growth regulators is well established and they are used in many fields of plant science for enhancing growth. Brassica juncea plants were treated with 2.5, 5.0 and 7.5 microM auxin indole-3-butyric acid (IBA), which promotes rooting. The IBA-treated plants were also sprayed with 100 microM gibberellic acid (GA3) and kinetin (Kin) to increase leaf-foliage. Gold (I) chloride (AuCl) was added to the growth medium of plants to achieve required gold concentration. The solubilizing agent ammonium thiocyanate (1 g kg(-1)) (commonly used in mining industries to solubilize gold) was added to the nutrient solution after six weeks of growth and, two weeks later, plants were harvested. Plant growth regulators improved shoot and root dry biomass of B. juncea plants. Inductively Coupled Plasma Optical Emission Spectrometry analysis showed the highest Au uptake for plants treated with 5.0 microM IBA. The average recovery of Au with this treatment was significantly greater than the control treatment by 45.8 mg kg(-1) (155.7%). The other IBA concentrations (2.5 and 7.5 microM) also showed a significant increase in Au uptake compared to the control plants by 14.7 mg kg(-1) (50%) and 42.5 mg kg(-1) (144.5%) respectively. A similar trend of Au accumulation was recorded in the roots of B. juncea plants. This study conducted in solution culture suggests that plant growth regulators can play a significant role in improving phytoextraction of Au.

  11. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana

    Directory of Open Access Journals (Sweden)

    Yong-Soon Park

    2015-09-01

    Full Text Available Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  12. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    Science.gov (United States)

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  13. Tubular Membrane Plant-Growth Unit

    Science.gov (United States)

    Dreschel, Thomas W.

    1992-01-01

    Hydroponic system controls nutrient solution for growing crops in space. Pump draws nutrient solution along inside of tubular membrane in pipe from reservoir, maintaining negative pressure in pipe. Roots of plants in slot extract nutrient through membrane within pipe. Crop plants such as wheat, rice, lettuce, tomatoes, soybeans, and beans grown successfully with system.

  14. Plant growth promotion by Pseudomonas fluorescens

    NARCIS (Netherlands)

    Cheng, X.

    2016-01-01

    Pseudomonas fluorescens is a Gram-negative rod shaped bacterium that has a versatile metabolism and is widely spread in soil and water. P. fluorescens strain SBW25 (Pf.SBW25) is a well-known model strain to study bacterial evolution, plant colonization and biocontrol of plant diseases. It produces t

  15. Potato crop growth as affected by nitrogen and plant density

    Directory of Open Access Journals (Sweden)

    OLIVEIRA CARLOS ALBERTO DA SILVA

    2000-01-01

    Full Text Available Growth and development variables and dry matter characteristics were studied for cultivar Snowden of potato (Solanum tuberosum L. to evaluate nitrogen and plant density influence. Disregarding ending of season plant stress, the average number of actives haulms per plant was five and it was not affected by plant spacing. However, seasonal and final number of active haulms per plant were increased at 200 kg/ha of nitrogen. Maximum stem elongation was reached quickly with double density and had the tendency to keep constant at the highest and lowest nitrogen levels after 70 days after planting. Specific stem mass defined as mass per unit stem length was established as an indirect measure of stem thickness and load capacity. Specific leaf mass position in plant was higher at upper stem leaves, increased as plant density increased and did not vary markedly over time throughout the season. The rate of leaf appearance increased drastically due to more branching caused by high nitrogen level, and increased above ground dry matter per plant. Canopy growth and development influenced main tuber yield components. The number of active tubers per haulm decreased after 60 days after planting showing that tuberization is reversible. Tuber growth functions were established allowing the estimate of dry biomass partitioning coefficients for each plant organ.

  16. Expert System Control of Plant Growth in an Enclosed Space

    Science.gov (United States)

    May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.

    2008-01-01

    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.

  17. Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types.

    Science.gov (United States)

    Pérez, Marisela; Urcelay, Carlos

    2009-10-01

    The effect of arbuscular mycorrhizal fungi (AMF) on plant growth was examined in two wild plant species belonging to contrasting functional types: an annual forb (Bidens pilosa, Asteraceae) and a deciduous shrub (Acacia caven, Fabaceae) at three contrasting plant densities (one, two, and three individuals per pot). AMF had a slightly negative effect on B. pilosa when the species grew in isolation while they positively affected A. caven. Positive effects of AMF on shoot mass of A. caven decreased at higher plant densities, while shoot mass of individuals of B. pilosa showed less marked differences between plant densities. When considering total biomass per pot, AMF positively affected A. caven growth while negatively affecting B. pilosa, at all three plant densities. Root/shoot ratio per pot was negatively affected by AMF but not plant density in both species. These findings highlight the importance of including plants belonging to different life forms and/or traits in research regarding the interaction between AMF and intraspecific plant competition.

  18. Effect of Plant Growth-Promoting Rhizobacteria on Growth,Nodulation and Nutrient Accumulation of Lentil Under Controlled Conditions

    Institute of Scientific and Technical Information of China (English)

    M.ZAFAR; M.K.ABBASI; M.A.KHAN; A.KHALIQ; T.SULTAN; M.ASLAM

    2012-01-01

    Application of plant growth-promoting rhizobacteria (PGPR) has been shown to increase legume growth and development under field and controlled environmental conditions.The present study was conducted to isolate plant growth-promoting rhizobacteria (PGPR) from the root nodules of lentil (Lens culinaris Medik.) grown in arid/semi-arid region of Punjab,Pakistan and examined their plant growth-promoting abilities.Five bacterial isolates were isolated,screened in vitro for plant growth-promoting (PGP)characteristics and their effects on the growth of lentil were assessed under in vitro,hydroponic and greenhouse (pot experiment)conditions.All the isolates were Gram negative,rod-shaped and circular in form and exhibited the plant growth-promoting attributes of phosphate solubilization and auxin (indole acetic acid,IAA) production.The IAA production capacity ranged in 0.5-11.0 μgmL-1and P solubilization ranged in 3 16 mg L-1.When tested for their effects on plant growth,the isolated strains had a stimulatory effect on growth,nodulation and nitrogen (N) and phosphorus (P) uptake in plants on nutrient-deficient soil.In the greenhouse pot experiment,application of PGPR significantly increased shoot length,fresh weight and dry weight by 65%,43% and 63% and the increases in root length,fresh weight and dry weight were 74%,54% and 92%,respectively,as compared with the uninoculated control.The relative increases in growth characteristics under in vitro and hydroponic conditions were even higher.PGPR also increased the number of pods per plant,1000-grain weight,dry matter yield and grain yield by 50%,13%,28% and 29%,respectively,over the control.The number of nodules and nodule dry mass increased by 170% and 136%,respectively.After inoculation with effective bacterial strains,the shoot,root and seed N and P contents increased,thereby increasing both N and P uptake in plants. The root elongation showed a positive correlation (R2 =0.67) with the IAA

  19. Dichotomous branching: the plant form and integrity upon the apical meristem bifurcation

    Directory of Open Access Journals (Sweden)

    Edyta M. Gola

    2014-06-01

    Full Text Available The division of the apical meristem into two independently functioning axes is defined as dichotomous branching. This type of branching typically occurs in non-vascular and non-seed vascular plants, whereas in seed plants it presents a primary growth form only in several taxa. Dichotomy is a complex process, which requires a re-organization of the meristem structure and causes changes in the apex geometry and activity. However, the mechanisms governing the repetitive apex divisions are hardly known. Here, an overview of dichotomous branching is presented, occurring in structurally different apices of phylogenetically distant plants, and in various organs (e.g. shoots, roots, rhizophores. Additionally, morphogenetic effects of dichotomy are reviewed, including its impact on organogenesis and mechanical constraints. At the end, the hormonal and genetic regulation of the dichotomous branching is discussed.

  20. PLANT-MICROBIAL INTERACTIONS IN THE RHIZOSPHERE – STRATEGIES FOR PLANT GROWTH-PROMOTION

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2012-03-01

    Full Text Available Plant growth-promoting rhizobacteria (PGPR are a group of bacteria that can actively colonize plant rootsand enhance plant growth using different mechanisms: production of plant growth regulators like indoleacetic acid,gibberellic acid, cytokinins and ethylene(Zahir et al., 2003, providing the host plant with fixed nitrogen, solubilizationof soil phosphorus, enhance Fe uptake, biocontrol, reducing the concentration of heavy metals. PGPR are perfectcandidates to be used as biofertilizers – eco-friendly alternative to common applied chemical fertilizer in today’sagriculture. The most important benefit of PGPR usage is related to the reduction of environmental pollution in conditionof increasing crop yield. This review presents the main mechanisms involved in PGPR promotion of plant growth.

  1. Regeneration and growth rates of allofragments in four common stream plants

    DEFF Research Database (Denmark)

    Riis, Tenna; Madsen, Tom Vindbæk; Sennels, R. S. H.

    2009-01-01

    Colonisation by stream plants occurs to a large extent from simple stem fragments. Allofragments are stem fragments formed by mechanical breakage. We studied regeneration, colonisation, and growth rates in four common stream plants: Elodea canadensis Michx., Myriophyllum spicatum L., Potamogeton...... perfoliatus L. and Ranunculus baudotii x pseudofluitans. The objectives of this study were to determine (1) if shoots with an apical tip have higher regeneration (growth of new shoots and rhizomes from allofragments) and colonisation (root attachment in sediment) abilities and higher relative growth rates...

  2. Clinostat Delivers Power To Plant-Growth Cabinets

    Science.gov (United States)

    Bushong, Wilton E.; Fox, Ronald C.; Brown, Christopher S.; Biro, Ronald R.; Dreshel, Thomas W.

    1993-01-01

    Clinostat rotates coaxial pair of plant-growth cabinets about horizontal axis while supplying cabinets with electric power for built-in computers, lamps, fans, and auxiliary equipment, such as nutrient pumps. Each cabinet self-contained unit for growing plants in controlled environment. By rotating cabinets and contents about horizontal axis, scientists simulate and study some of effects of microgravity on growth of plants. Clinostat includes vertical aluminum mounting bracket on horizontal aluminum base. Bearings on bracket hold shaft with V-belt pulley. At each end of shaft, circular plate holds frame mount for cabinet. Mounting plates also used to hold transparent sealed growth chambers described in article, "Sealed Plant-Growth Chamber For Clinostat" (KSC-11538).

  3. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health

    Directory of Open Access Journals (Sweden)

    Martina eKöberl

    2013-12-01

    Full Text Available Past medicinal plant research primarily focused on bioactive phytochemicals, however the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is i to introduce novel insights into the plant microbiome with a focus on medicinal plants, ii to provide details about plant- and microbe-derived ingredients of medicinal plants, and iii to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn. cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants’ flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  4. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  5. Magnetic field effects on plant growth, development and evolution

    Directory of Open Access Journals (Sweden)

    Massimo E. Maffei

    2014-09-01

    Full Text Available The geomagnetic field (GMF is a natural component of our environment. Plants, which are known to sense different wavelengths of light, respond to gravity, react to touch and electrical signaling, cannot escape the effect of GMF. While phototropism, gravitropism, and tigmotropism have been thoroughly studied, the impact of GMF on plant growth and development is not well understood. This review describes the effects of altering MF conditions on plants by considering plant responses to MF values either lower or higher than those of the GMF. The possible role of GMF on plant evolution and the nature of the magnetoreceptor is also discussed.

  6. The influence of humic acids derived from earthworm-processed organic wastes on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Atiyeh, R.M.; Lee, S.; Edwards, C.A.; Arancon, N.Q.; Metzger, J.D. [Ohio State University, Columbus, OH (United States). Soil Ecology Lab.

    2002-08-01

    Some effects of humic acids, formed during the breakdown of organic wastes by earthworms (vermicomposting), on plant growth were evaluated. In the first experiment, humic acids were extracted from pig manure vermicompost using the classic alkali/acid fractionation procedure and mixed with a soilless container medium (Metro-Mix 360), to provide a range of 0, 50, 100, 150, 200, 250, 500, 1000, 2000 and 4000 mg of humate per kg of dry weight of container medium, and tomato seedlings were grown in the mixtures. In the second experiment, humates extracted from pig manure and food wastes vermicomposts were mixed with vermiculite to provide a range of 0, 50, 125, 250, 500, 1000 and 4000 mg of humate per kg of dry weight of the container medium, and cucumber seedlings were grown in the mixtures. Both tomato and cucumber seedlings were watered daily with a solution containing all nutrients required to ensure that any differences in growth responses were not nutrient-mediated. The incorporation of both types of vermicompost-derived humic acids, into either type of soilless plant growth media, increased the growth of tomato and cucumber plants significantly, in terms of plant heights, leaf areas, shoot and root dry weights. Plant growth increased with increasing concentrations of humic acids incorporated into the medium up to a certain proportion, but this differed according to the plant species, the source of the vermicompost, and the nature of the container medium. Plant growth tended to be increased by treatments of the plants with 50-500 mg/kg humic acids, but often decreased significantly when the concentrations of humic acids derived in the container medium exceeded 500-1000 mg/kg. These growth responses were most probably due to hormone-like activity of humic acids from the vermicomposts or could have been due to plant growth hormones adsorbed onto the humates. (author)

  7. [Protective properties of avermectine complex and plant growth regulators].

    Science.gov (United States)

    Iamborko, N A; Pindrus, A A

    2009-01-01

    Antimutagen properties of avermectine complex of Avercom synthesized by Streptomyces avermitilis UCM Ac-2161, and growth regulators of plants (GRP) of bioagrostim-extra, ivin and emistim-C have been revealed in experiments with test-cultures of Salmonella typhimurium TA 100, TA 98. Avercom and plant growth regulators neutralize by toxication 27-48% and mutagen action of pesticides on soil microbial associations by 19.0-30.0%.

  8. Functional and Structural Optimality in Plant Growth: A Crop Modelling Case Study

    Science.gov (United States)

    Caldararu, S.; Purves, D. W.; Smith, M. J.

    2014-12-01

    Simple mechanistic models of vegetation processes are essential both to our understanding of plant behaviour and to our ability to predict future changes in vegetation. One concept that can take us closer to such models is that of plant optimality, the hypothesis that plants aim to achieve an optimal state. Conceptually, plant optimality can be either structural or functional optimality. A structural constraint would mean that plants aim to achieve a certain structural characteristic such as an allometric relationship or nutrient content that allows optimal function. A functional condition refers to plants achieving optimal functionality, in most cases by maximising carbon gain. Functional optimality conditions are applied on shorter time scales and lead to higher plasticity, making plants more adaptable to changes in their environment. In contrast, structural constraints are optimal given the specific environmental conditions that plants are adapted to and offer less flexibility. We exemplify these concepts using a simple model of crop growth. The model represents annual cycles of growth from sowing date to harvest, including both vegetative and reproductive growth and phenology. Structural constraints to growth are represented as an optimal C:N ratio in all plant organs, which drives allocation throughout the vegetative growing stage. Reproductive phenology - i.e. the onset of flowering and grain filling - is determined by a functional optimality condition in the form of maximising final seed mass, so that vegetative growth stops when the plant reaches maximum nitrogen or carbon uptake. We investigate the plants' response to variations in environmental conditions within these two optimality constraints and show that final yield is most affected by changes during vegetative growth which affect the structural constraint.

  9. In vitro propagation of plant virus using different forms of plant tissue culture and modes of culture operation.

    Science.gov (United States)

    Shih, Sharon M-H; Doran, Pauline M

    2009-09-10

    Plant virus accumulation was investigated in vitro using three different forms of plant tissue culture. Suspended cells, hairy roots and shooty teratomas of Nicotiana benthamiana were infected with tobacco mosaic virus (TMV) using the same initial virus:biomass ratio. Viral infection did not affect tissue growth or morphology in any of the three culture systems. Average maximum virus concentrations in hairy roots and shooty teratomas were similar and about an order of magnitude higher than in suspended cells. Hairy roots were considered the preferred host because of their morphological stability in liquid medium and relative ease of culture. The average maximum virus concentration in the hairy roots was 0.82+/-0.14 mg g(-1) dry weight; viral coat protein represented a maximum of approximately 6% of total soluble protein in the biomass. Virus accumulation in hairy roots was investigated further using different modes of semi-continuous culture operation aimed at prolonging the root growth phase and providing nutrient supplementation; however, virus concentrations in the roots were not enhanced compared with simple batch culture. The relative infectivity of virus in the biomass declined by 80-90% during all the cultures tested, irrespective of the form of plant tissue used or mode of culture operation. Hairy root cultures inoculated with a transgenic TMV-based vector in batch culture accumulated green fluorescent protein (GFP); however, maximum GFP concentrations in the biomass were relatively low at 39 microg g(-1) dry weight, probably due to genetic instability of the vector. This work highlights the advantages of using hairy roots for in vitro propagation of TMV compared with shooty teratomas and suspended plant cells, and demonstrates that batch root culture is more effective than semi-continuous operations for accumulation of high virus concentrations in the biomass.

  10. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum).

    Science.gov (United States)

    Boldrin, Paulo F; de Figueiredo, Marislaine A; Yang, Yong; Luo, Hongmei; Giri, Shree; Hart, Jonathan J; Faquin, Valdemar; Guilherme, Luiz R G; Thannhauser, Theorodore W; Li, Li

    2016-09-01

    Selenium (Se) is an essential micronutrient for animals and humans and a target for biofortification in crops. Sulfur (S) is a crucial nutrient for plant growth. To gain better understanding of Se and S nutrition and interaction in plants, the effects of Se dosages and forms on plant growth as well as on S level in seven wheat lines were examined. Low dosages of both selenate and selenite supplements were found to enhance wheat shoot biomass and show no inhibitory effect on grain production. The stimulation on plant growth was correlated with increased APX antioxidant enzyme activity. Se forms were found to exert different effects on S metabolism in wheat plants. Selenate treatment promoted S accumulation, which was not observed with selenite supplement. An over threefold increase of S levels following selenate treatment at low dosages was observed in shoots of all wheat lines. Analysis of the sulfate transporter gene expression revealed an increased transcription of SULTR1;1, SULTR1;3 and SULTR4;1 in roots following 10 μM Na2 SeO4 treatment. Mass spectrometry-based targeted protein quantification confirmed the gene expression results and showed enhanced protein levels. The results suggest that Se treatment mimics S deficiency to activate specific sulfate transporter expression to stimulate S uptake, resulting in the selenate-induced S accumulation. This study supports that plant growth and nutrition benefit from low dosages of Se fertilization and provides information on the basis underlying Se-induced S accumulation in plants.

  11. Plant growth regulation of Bt-cotton through Bacillus species.

    Science.gov (United States)

    Pindi, Pavan Kumar; Sultana, Tasleem; Vootla, Praveen Kumar

    2014-06-01

    Deccan plateau in India periodically experiences droughts due to irregular rain fall and the soil in many parts of the region is considered to be poor for farming. Plant growth promoting rhizobacteria are originally defined as root-colonizing bacteria, i.e., Bacillus that cause either plant growth promotion or biological control of plant diseases. The study aims at the isolation of novel Bacillus species and to assess the biotechnological potential of the novel species as a biofertilizer, with respect to their plant growth promoting properties as efficient phosphate-solubilizing bacteria. Seven different strains of Bacillus were isolated from cotton rhizosphere soil near boys' hostel of Palamuru University which belongs to Deccan plateau. Among seven isolated strains, Bacillus strain-7 has shown maximum support for good growth of eight cotton cultivars. This bacterial species is named Bacillus sp. PU-7 based on the phenotypic and phylogenetic analysis. Among eight cotton cultivars, Mahyco has shown high levels of IAA, proteins, chlorophyll, sugars and low level of proline. Efficacy of novel Bacillus sp. PU-7 with Mahyco cultivar has been checked experimentally at field level in four different cotton grown agricultural soils. The strains supported plant growth in almost all the cases, especially in the deep black soil, with a clear evidence of maximum plant growth by increased levels of phytohormone production and biochemical analysis, followed by shallow black soil. Hence, it is inferred that the novel isolate can be used as bioinoculant in the cotton fields.

  12. Effects of different plant growth inhibitors on growth and flowering of narcissus

    Institute of Scientific and Technical Information of China (English)

    Ren Xuqin

    2003-01-01

    This study was conducted to determine effects of four plant growth inhibitors viz. PP333, Het, CCC and B9 with different concentrations on growth and flowering of narcissus. The results indicated that the narcissus treated with certain concentration inhibitors could grow shorter plants with shorter scapes of flower and smaller leaves than the check, and the compact, straight and coordinate plants improve the decorative value obviously.

  13. Plant growth with new fluorescent lamps : II. Growth and reproduction of mature bean plants and dwarf marigold plants.

    Science.gov (United States)

    Thomas, A S; Dunn, S

    1966-06-01

    Bean and marigold plants were grown to maturity under several kinds of fluorescent lamps to evaluate the effects of spectral differences on development and reproduction. Six kinds of lamps were tested including five lamps that were used in closely related experiments on tomato seedling growth (THOMAS and DUNN, 1967). Evaluation was by fresh- and dry-weight yields of immature and mature pods, and of vegetative tops of plants for bean; and by flowering and fresh-and dry-weight yields for marigold.Bean plants grown under two experimental lamps, Com I and IR III produced significantly higher fresh- and dry-weight yields of both mature and total pods than under Warm-white lamps. This effect could be attributed largely to the considerable energy emitted by the experimental lamps in the red and far-red, as compared to a larger emission in the green and blue for the Warm-white lamps. The differences in the yields for immature pods and vegetative portions of the mature tops were not significant.In a comparison of the effects of three experimental lamps with those of three commercial lamps on growth response of bean plants, the yields were in general higher for the experimental lamps, except for immature pods. The yields of vegetative tops were significantly greater for the 78/22 lamp over the yields for all other lamps. The larger proportion of red and far-red light emitted by the experimental lamps is again the probable cause of the higher yields with these lamps.Two sets of experiments on growth and flowering of marigold under various experimental and commercial lamps were largely inconclusive although there was some indication of beneficial effects by the experimental lamps.In general, the results with bean agree with those for tomato (THOMAS and DUNN, 1967), in that best growth was obtained with a lamp high in red light emission, a moderate amount in the far-red, and very little in the blue part of the spectrum.

  14. Grain Diversity Effects on Banker Plant Growth and Parasitism by Aphidius colemani

    Directory of Open Access Journals (Sweden)

    Travis McClure

    2015-09-01

    Full Text Available Green peach aphid (Myzus persicae Sulzer (Hemiptera: Aphididae is a serious greenhouse pest with a short generation time, parthenogenetic reproduction and a broad host range. Banker plant systems are becoming a more common form of biological control for this pest. This system consists of grain “banker plants” infested with R. padi, an alternative hosts for the parasitoid Aphidius colemani. Thus A. colemani can reproduce on the banker plant when M. persicae populations are low. This system can increase pest suppression; however, like other biological control tools, efficacy is inconsistent. One reason is because several different grain species have been used. Our studies determined if there were benefits to planting interspecific mixture banker plants, similar to when open agricultural systems use mixed cropping. Our study found that although banker plants grow larger when planted as mixtures this added plant growth does not increase in the number of aphids, or mummies an individual banker plant can sustain. Rye banker plants grew larger, and sustained more mummies than the other species we tested, but barley banker plants resulted in a similar number of aphids in a more condensed area. Ultimately, we did not see any differences in pest suppression between monoculture banker plants, mixture banker plants, or our augmentative release treatment. However, using banker plants resulted in more female parasitoids than the augmentative release, a benefit to using banker plant systems.

  15. Long term effects on petrochemical activated sludge on plants and soil. Plant growth and metal absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M.J.; Gianello, C. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Solos; Ribas, P.I.F.; Carvalho, E.B. [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao

    1993-12-31

    An experiment to study the effects of several application rates of excess activated sludge on plants, soil and leached water was started in 1985. Sludge was applied for six years and increased plant growth due to its nitrogen and phosphorous contribution, even though the decomposition rate in soil is low. Plant zinc, cadmium and nickel content increased with sludge application, while liming decreased the amounts of these metals taken up by plants. 9 refs., 8 tabs.

  16. 48 CFR 245.7101-4 - DD Form 1640, Request for Plant Clearance.

    Science.gov (United States)

    2010-10-01

    ... Plant Clearance. 245.7101-4 Section 245.7101-4 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT GOVERNMENT PROPERTY Plant Clearance Forms 245.7101-4 DD Form 1640, Request for Plant Clearance. Use to request plant clearance assistance...

  17. The interactions between plant life form and fungal traits of arbuscular mycorrhizal fungi determine the symbiotic community.

    Science.gov (United States)

    López-García, Álvaro; Azcón-Aguilar, Concepción; Barea, José M

    2014-12-01

    Arbuscular mycorrhizal (AM) fungi have traditionally been considered generalist symbionts. However, an increasing number of studies are pointing out the selectivity potential of plant hosts. Plant life form, determined by plant life history traits, seems to drive the AM fungal community composition. The AM fungi also exhibit a wide diversity of functional traits known to be responsible for their distribution in natural ecosystems. However, little is known about the role of plant and fungal traits driving the resultant symbiotic assemblages. With the aim of testing the feedback relationship between plant and fungal traits on the resulting AM fungal community, we inoculated three different plant life forms, i.e. annual herbs, perennial herbs and perennial semi-woody plants, with AM fungal communities sampled in different seasons. We hypothesized that the annual climate variation will induce changes in the mean traits of the AM fungal communities present in the soil throughout the year. Furthermore, the association of plants with different life forms with AM fungi with contrasting life history traits will show certain preferences according to reciprocal traits of the plants and fungi. We found changes in the AM fungal community throughout the year, which were differentially disrupted by disturbance and altered by plant growth form and plant biomass. Both plant and fungal traits clearly contributed to the resultant AM fungal communities. The revealed process can have implications for the functioning of ecosystems since changes in dominant plant life forms or climatic variables could influence the traits of AM fungal communities in soil and hence ecosystem processes.

  18. Growth, Nitrogen Uptake and Flow in Maize Plants Affected by Root Growth Restriction

    Institute of Scientific and Technical Information of China (English)

    Liang-zheng Xu; Jun-fang Niu; Chun-jian Li; Fu-suo Zhang

    2009-01-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  19. Materials and methods to increase plant growth and yield

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias

    2017-05-16

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  20. The role of microbial signals in plant growth and development.

    Science.gov (United States)

    Ortíz-Castro, Randy; Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; López-Bucio, José

    2009-08-01

    Plant growth and development involves a tight coordination of the spatial and temporal organization of cell division, cell expansion and cell differentiation. Orchestration of these events requires the exchange of signaling molecules between the root and shoot, which can be affected by both biotic and abiotic factors. The interactions that occur between plants and their associated microorganisms have long been of interest, as knowledge of these processes could lead to the development of novel agricultural applications. Plants produce a wide range of organic compounds including sugars, organic acids and vitamins, which can be used as nutrients or signals by microbial populations. On the other hand, microorganisms release phytohormones, small molecules or volatile compounds, which may act directly or indirectly to activate plant immunity or regulate plant growth and morphogenesis. In this review, we focus on recent developments in the identification of signals from free-living bacteria and fungi that interact with plants in a beneficial way. Evidence has accumulated indicating that classic plant signals such as auxins and cytokinins can be produced by microorganisms to efficiently colonize the root and modulate root system architecture. Other classes of signals, including N-acyl-L-homoserine lactones, which are used by bacteria for cell-to-cell communication, can be perceived by plants to modulate gene expression, metabolism and growth. Finally, we discuss the role played by volatile organic compounds released by certain plant growth-promoting rhizobacteria in plant immunity and developmental processes. The picture that emerges is one in which plants and microbes communicate themselves through transkingdom signaling systems involving classic and novel signals.

  1. Plant growth control by light spectrum

    NARCIS (Netherlands)

    Ieperen, van W.

    2016-01-01

    Plants are sessile organisms that have to cope with their environment as it is exposed to them in nature. To do so, they developed systems to sense environmental signals and to integrate these with endogenous developmental programs. As a result, they are well equipped to survive and flourish in

  2. Plant growth control by light spectrum

    NARCIS (Netherlands)

    Ieperen, van W.

    2016-01-01

    Plants are sessile organisms that have to cope with their environment as it is exposed to them in nature. To do so, they developed systems to sense environmental signals and to integrate these with endogenous developmental programs. As a result, they are well equipped to survive and flourish in v

  3. Design and construction of an inexpensive homemade plant growth chamber.

    Directory of Open Access Journals (Sweden)

    Fumiaki Katagiri

    Full Text Available Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W x 1.8 m (D x 2 m (H, providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant

  4. Design and construction of an inexpensive homemade plant growth chamber.

    Science.gov (United States)

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  5. Plant Growth Promotion Induced by Phosphate Solubilizing Endophytic Pseudomonas Isolates

    Directory of Open Access Journals (Sweden)

    Nicholas eOtieno

    2015-07-01

    Full Text Available The use of plant growth promoting bacterial inoculants as live microbial biofertilisers provides a promising alternative to chemical fertilisers and pesticides. Inorganic phosphate solubilisation is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilise the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilisation. The study presented here describes the ability of endophytic bacterial isolates to produce gluconic acid, solubilise insoluble phosphate and stimulate the growth of Pea plants (Pisum sativum. This study also describes the genetic systems within three of these endophyte isolates thought to be responsible for their effective phosphate solubilising abilities. The results showed that many of the endophytic isolates produced gluconic acid (14-169 mM and have moderate to high phosphate solubilisation capacities (~ 400-1300 mg L-1. When inoculated to Pea plants grown in sand/soil under soluble phosphate limiting conditions, the endophyte isolates that produced medium to high levels of gluconic acid also displayed enhanced plant growth promotion effects.

  6. of Effect of different organic materials on plant growth

    Directory of Open Access Journals (Sweden)

    mehrnosh eskandari

    2009-06-01

    Full Text Available Using organic matter, such as, peat and vermicompost as soil amendment, increases aeration, water infiltration, water holding capacity and nutrients of soil . A greenhouse experiment was performed to study the effect of organic materials on plant growth characteristics, total biomass and grain weight of chickpea with four treatments; 1 Soil + 3% peat (PS, 2 Sterile soil + 3% peat (SPS, 3 Soil + vermicompost (1:6 (VCS, 4 control (C in a completely randomized design with four replications. The results showed that the maximum germination percentage, number of branch and number of pod per plant were observed in SPS treatment due to the avoidance of harmful microbial impacts. Plant height in this treatment reduced, whereas, no significant differences in total dry matter per plant and dry weight of chickpea per plant were observed compared to control. Plant growth consist of plant height, number of branch and number of pod per plant in vermicompost and soil + peat treatment reduced in the early stages probably because of plant - microbes interaction effects. Application of vermicompost increased fresh and dry weight, pod dry weight and single grain weight, probably due to more plant nutrient availability in this treatment when compared with other treatments.

  7. Photosynthesis in developing leaf of juveniles and adults of three Mediterranean species with different growth forms.

    Science.gov (United States)

    Chondrogiannis, Christos; Grammatikopoulos, George

    2016-12-01

    Leaf development is influenced by almost all the prevailing environmental conditions as well as from the conditions at the time of bud formation. Furthermore, the growth form of a plant determines the leaf longevity and subsequently the investment in biomass and the internal structure of the mesophyll. Therefore, photosynthetic traits of a growing leaf, though, partly predetermined, should also acclimate to temporal changes during developmental period. In addition, the age of the plant can affect photosynthesis of the growing leaf, yet, in the majority of studies, the age is associated to the size of the plant. To test if the reproductive status of the plant affects the time kinetics of the photosynthetic capacity of a growing leaf and the relative contribution of the plants' growth form to the whole procedure, field measurements were conducted in juveniles (prereproductive individuals) and adults (fully reproductive individuals) of an evergreen sclerophyllous shrub (Nerium oleander), a semi-deciduous dimorphic shrub (Phlomis fruticosa), and a winter deciduous tree with pre-leafing flowering (Cercis siliquastrum). PSII structural and functional integrity was progressively developed in all species, but already completed, only some days after leaf expansion in P. fruticosa. Developing leaf as well as fully developed leaf in adults of C. siliquastrum showed enhanced relative size of the pool of final PSI electron acceptors. Photosynthetic traits between juveniles and adults of P. fruticosa were similar, though the matured leaf of adults exhibited lower transpiration rates and improved water-use efficiency than that of juveniles. Adults of the evergreen shrub attained higher CO2 assimilation rate than juveniles in matured leaf which can be attributed to higher electron flow devoted to carboxylation, and lower photorespiration rate. The reproductive phase of the plant seemed to be involved in modifications of the PSII and PSI functions of the deciduous tree, in

  8. Effect of plant-biostimulant on cassava initial growth

    Directory of Open Access Journals (Sweden)

    João Emílio de Souza Magalhães

    2016-04-01

    Full Text Available ABSTRACT Biostimulants are complex substances that promote hormonal balance in plants, favor the genetic potential expression, and enhance growth of shoots and root system. The use of these plant growth promoters in crops can increase quantitatively and qualitatively crop production. Therefore, the aim of this study was to evaluate the effect of a commercial biostimulant on the initial growth of cassava. The experiment was arranged in a 2 x 5 factorial design, corresponding to two cassava cultivars (Cacau-UFV and Coimbra and five biostimulant concentrations (0, 4, 8, 12 and 16 mL L-1. At 90 days after planting, the characteristics leaf area, plant height, stem diameter, leaf number, total dry matter and dry matter of roots, stems and leaves were evaluated. The biostimulant promoted linear increases in plant height, leaf number, leaf area, total dry matter, dry matter of stems, leaves and roots. The cultivar Cacau-UFV had a higher growth rate than the cultivar Coimbra. The growth promoter stimulated the early growth of the cassava crop.

  9. Dynamical Riemannian Geometry and Plant Growth

    CERN Document Server

    Pulwicki, Julia

    2010-01-01

    A new model for biological growth is introduced that couples the geometry of an organism (or part of the organism) to the flow and deposition of material. The model has three dynamical variables (a) a Riemann metric tensor for the geometry, (b) a transport velocity of the material and (c) a material density. While the model was developed primarily to determine the effects of geometry (i.e. curvature and scale changes) in two-dimensional systems such as leaves and petals, it can be applied to any dimension. Results for one dimensional systems are presented and compared to measurements of growth made on blades of grass and corn roots. It is found that the model is able to reproduce many features associated with botanical growth.

  10. Isolation of phytohormones producing plant growth promoting ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... soil of Pakistan and their growth promoting effects have been documented on rice ... tion of total salt and salt ions: Cl-, Mg, Na, K and HCO3. - in .... IAA was eluted at 280 nm wavelength while GA3, t-zr and ABA were eluted at ...

  11. Continuous monitoring of plant growth using fiber-optic interferrometric sensing

    Science.gov (United States)

    Chatterjee, Julius; Grossman, Barry G.

    2011-06-01

    Dendrometers, dendrographs and dry weight measurements have been successfully used for measurements of plant growth. These sensors have been used with Linear Variable Differential Transformer (LVDT) based data logging systems for continuous monitoring. In this paper the preliminary results for a prototype technique is presented as a proof of concept for the continuous monitoring of plant growth using an approach based on fiber-optic interferrometric sensing. The advantage of this sensing technique over the others is the ability to measure and analyze with very high sensitivities such as micron changes in dimensions allowing measurements over short time spans. The sensor was mounted on a Dracaena Sanderiana (Lucky Bamboo) shoot and the change in shoot length dimensions resulted in changes in the output signal display which is in the form of interferrometric fringes. The data acquisition is performed over a long duration using labVIEW based data logging. Filtered output of the data has been presented where an attempt has been made to relate the fringes to length changes. The sensing system is nondestructive and noninvasive and has been targeted to respond to changes in stem length due to changes in plant growth parameters. The objective is to provide a measurement system to do research in optimizing plant growth in greatly reduced time spans. This form of sensing application is also applicable for monitoring the growth of plants growing at much slower rates.

  12. Leaf and life history traits predict plant growth in a green roof ecosystem.

    Science.gov (United States)

    Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler

    2014-01-01

    Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less

  13. Leaf and life history traits predict plant growth in a green roof ecosystem.

    Directory of Open Access Journals (Sweden)

    Jeremy Lundholm

    Full Text Available Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that

  14. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    Directory of Open Access Journals (Sweden)

    Intae Ryoo

    2011-04-01

    Full Text Available This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  15. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Wintermans, Paul C A; Bakker, Peter A H M; Pieterse, Corné M J

    2016-04-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Here, we performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis for the ability to profit from rhizobacteria-mediated plant growth-promotion. To this end, 302 Arabidopsis accessions were tested for root architecture characteristics and shoot fresh weight in response to exposure to WCS417r. Although virtually all Arabidopsis accessions tested responded positively to WCS417r, there was a large variation between accessions in the increase in shoot fresh weight, the extra number of lateral roots formed, and the effect on primary root length. Correlation analyses revealed that the bacterially-mediated increase in shoot fresh weight is related to alterations in root architecture. GWA mapping for WCS417r-stimulated changes in root and shoot growth characteristics revealed 10 genetic loci highly associated with the responsiveness of Arabidopsis to the plant growth-promoting activity of WCS417r. Several of the underlying candidate genes have been implicated in important plant growth-related processes. These results demonstrate that plants possess natural genetic variation for the capacity to profit from the plant growth-promoting function of a beneficial rhizobacterium in their rhizosphere. This knowledge is a promising starting point for sustainable breeding strategies for future crops that are better able to maximize profitable functions from their root microbiome.

  16. Analysing growth and development of plants jointly using developmental growth stages.

    Science.gov (United States)

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Alleviation of Salt Stress in Pepper (Capsicum annum L.) Plants by Plant Growth-Promoting Rhizobacteria.

    Science.gov (United States)

    Hahm, Mi-Seon; Son, Jin-Soo; Hwang, Ye-Ji; Kwon, Duk-Ki; Ghim, Sa-Youl

    2017-08-08

    In the present study, we demonstrate that the growth of salt-stressed pepper plants is improved by inoculation with plant growth-promoting rhizobacteria (PGPR). Three PGPR strains (Microbacterium oleivorans KNUC7074, Brevibacterium iodinum KNUC7183, and Rhizobium massiliae KNUC7586) were isolated from the rhizosphere of pepper plants growing in saline soil, and pepper plants inoculated with these PGPR strains exhibited significantly greater plant height, fresh weight, dry weight, and total chlorophyll content than non-inoculated plants. In addition, salt-stressed pepper plants that were inoculated with B. iodinum KNUC7183 and R. massiliae KNUC7586 possessed significantly different total soluble sugar and proline contents from non-inoculated controls, and the activity of several antioxidant enzymes (ascorbate peroxidase, guaiacol peroxidase, and catalase) was also elevated in PGPR-treated plants under salt stress. Overall, these results suggest that the inoculation of pepper plants with M. oleivorans KNUC7074, B. iodinum KNUC7183, and R. massiliae KNUC7586 can alleviate the harmful effects of salt stress on plant growth.

  18. Salt Stress Perception and Plant Growth Regulators in the Halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Thomas, J. C.; Bohnert, H. J.

    1993-01-01

    We selected indicators of four different metabolic processes (Crassulacean acid metabolism [CAM], amino acid and nitrogen mobilization metabolism, osmoprotection, and plant defense mechanisms) to study the relationship between salt-stress-mediated and plant growth regulator (PGR)-induced responses in Mesembryanthemum crystallinum (ice plant). Nacl and PGRs (cytokinin and abscisic acid [ABA]) are efficient elicitors of the well-studied Nacl stress responses: induction of the CAM form of phosphoenolpyruvate carboxylase, proline pinitol accumulation, and the increase of an osmotin-like protein. NaCl and cytokinin are more effective than ABA in stimulating accumulation of proline and an osmotin-like protein before the plants are committed to flowering. The results are consistent with a plant defense-induction model, in which environmental stress and PGRs are distinct signals whose subsequent effects lead to overlapping responses, the magnitude of which depends on plant developmental status. PMID:12232022

  19. Effects of plant growth regulators on survival and recovery growth following cryopreservation.

    Science.gov (United States)

    Turner, S R; Touchell, D H; Senaratna, T; Bunn, E; Tan, B; Dixon, K W

    2001-01-01

    Studies on the effects of plant growth regulators (PGRs) on survival, recovery and post-recovery growth of shoot apices following cryopreservation are limited. In this study, the effects of plant growth regulators in both the culture phase and the recovery phase of cryostorage were examined for the rare plant species, Anigozanthos viridis ssp terraspectans Hopper. Survival of shoot apices was not correlated to cytokinin or auxin treatments administered in culture media prior to cryostorage. In recovery media, the plant growth regulators, kinetin, zeatin (cytokinins), IAA, (auxin) and GA3 were examined for their effect following cryopreservation. It was found that the application of a combination of cytokinin and 0.5 microM GA3 from day zero was the most appropriate for obtaining vigorously growing plantlets following LN immersion. This combination proved to be more effective than basal medium, zeatin or kinetin treatments.

  20. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  1. Effect of planting density on plant growth and camptothecin content of Camptotheca acuminata seedlings

    Institute of Scientific and Technical Information of China (English)

    WEIHuan-yong; WANGYang; WANGZhen-yue; YANXiu-feng

    2005-01-01

    C. acuminata seedlings cultivated in greenhouse were transplanted into the fields with 5 designed planting densities (11, 16, 25,44 and 100 plants·m-2) in May of 2004 and were harvested in the middle of September of 2004. The seedling growth indexes including plant height and crown width, biomass allocation, camptothecin (CPT) content and CPT yield of different organs (young leaf, old leaf, stem,and root) were studied. For the 5 selected planting densities, the plant biomass, height, crown width, and total leaf area of C. acuminata seedlings all showed highest values at the planting density of 25 plants ·m-2. CPT content in young leaves was higher than that in other organs of seedlings and presented an obvious change with the variation of planting densities and with the highest value at density of 100plants·m-2, while for other organs no significant variation in CPT content was found with change of planting density. The accumulation of CPT was enhanced significantly at the planting density of 25 plants·m-2. It is concluded that for the purpose to get raw materials with more CPT from C. acuminata, the optimal planting density of C. acuminata seedlings should be designed as 25 plants·m-2.

  2. Cyperus esculentus - differences in growth and tuber production between cultivated and wild forms

    Directory of Open Access Journals (Sweden)

    Holec, Josef

    2014-02-01

    Full Text Available Cyperus esculentus (yellow nutsedge belongs to the world most important weeds on arable land. This species is classified as an invasive one in Central and North-western Europe. It is not yet present as a weed in the Czech Republic, but its occurrence in neighbouring countries and its ability to survive winters in this region must be taken into account. A cultivated form of C. esculentus, known as Chufa or Tiger nuts, is occasionally grown in home gardens as a crop for its edible tubers. In pot experiments we tested the growth of both forms, weedy and cultivated one. Weight of both fresh and dry biomass of plant parts (leaves, roots, rhizomes, tubers, inflorescences was measured in monthly intervals from May till September 2012. Results show that there were no significant differences in leaf and root biomass. The weight of rhizomes was approximately 50-80 times higher in the wild form. Number of tubers was also higher in the wild form (max. 1118 pcs; crop max. 342 pcs in single pot, but the total weight of tubers was not significantly different. The cultivated form did not produce inflorescences at all, the wild form produced in average 13 inflorescences per plot. Based on our results we can state that growing of the cultivated form does not pose any risk – plants do not show intensive vegetative spread and do not produce inflorescences so crossing with the weedy form is not possible. The wild form can produce high amounts of rhizomes and tubers and is able to produce flowers under our conditions. That makes it a potentially dangerous weed in warmer regions of the Czech Republic.

  3. Gravity sensing, a largely misunderstood trigger of plant orientated growth.

    Science.gov (United States)

    Lopez, David; Tocquard, Kévin; Venisse, Jean-Stéphane; Legué, Valerie; Roeckel-Drevet, Patricia

    2014-01-01

    Gravity is a crucial environmental factor regulating plant growth and development. Plants have the ability to sense a change in the direction of gravity, which leads to the re-orientation of their growth direction, so-called gravitropism. In general, plant stems grow upward (negative gravitropism), whereas roots grow downward (positive gravitropism). Models describing the gravitropic response following the tilting of plants are presented and highlight that gravitropic curvature involves both gravisensing and mechanosensing, thus allowing to revisit experimental data. We also discuss the challenge to set up experimental designs for discriminating between gravisensing and mechanosensing. We then present the cellular events and the molecular actors known to be specifically involved in gravity sensing.

  4. Gravity sensing, a largely misunderstood trigger of plant orientated growth

    Directory of Open Access Journals (Sweden)

    David eLopez

    2014-11-01

    Full Text Available Gravity is a crucial environmental factor regulating plant growth and development. Plants have the ability to sense a change in the direction of gravity, which leads to the re-orientation of their growth direction, so-called gravitropism. In general, plant stems grow upward (negative gravitropism, whereas roots grow downward (positive gravitropism. Models describing the gravitropic response following the tilting of plants are presented and highlight that gravitropic curvature involves both gravisensing and mechanosensing, thus allowing to revisit experimental data. We also discuss the challenge to set up experimental designs for discriminating between gravisensing and mechanosensing. We then present the cellular events and the molecular actors known to be specifically involved in gravity sensing.

  5. Light-regulated plant growth and development.

    Science.gov (United States)

    Kami, Chitose; Lorrain, Séverine; Hornitschek, Patricia; Fankhauser, Christian

    2010-01-01

    Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).

  6. Straw gasification biochar increases plant available water capacity and plant growth in coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant available water capacity (AWC) and plant growth in diverse soil types needs further reserach. A pot experiment with spring barley...

  7. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    OpenAIRE

    Farzad Aslani; Samira Bagheri; Nurhidayatullaili Muhd Julkapli; Abdul Shukor Juraimi; Farahnaz Sadat Golestan Hashemi; Ali Baghdadi

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ra...

  8. The Mars Plant Growth Experiment and Implications for Planetary Protection

    Science.gov (United States)

    Smith, Heather

    Plants are the ultimate and necessary solution for O2 production at a human base on Mars. Currently it is unknown if seeds can germinate on the Martian surface. The Mars Plant growth experiment (MPX) is a proposal for the first step in the development of a plant- based O2 production system by demonstrating plant germination and growth on the Martian surface. There is currently no planetary protection policy in place that covers plants on the Martian surface. We describe a planetary protection plan in compliance with NASA and COSPAR policy for a closed plant growth chamber on a Mars rover. We divide the plant growth chamber into two categories for planetary protection, the Outside: the outside of the chamber exposed to the Martian environment, and the Inside: the inside of the chamber which is sealed off from Mars atmosphere and contains the plant seeds and ancillary components for seed growth. We will treat outside surfaces of the chamber as other outside surfaces on the rover, wiped with a mixture of isopropyl alcohol and water as per Category IVb planetary protection requirements. All internal components of the MPX except the seeds and camera (including the water system, the plant growth stage and interior surface walls) will be sterilized by autoclave and subjected to sterilizing dry heat at a temperature of 125°C at an absolute humidity corresponding to a relative humidity of less than 25 percent referenced to the standard conditions of 0°C and 760 torr pressure. The seeds and internal compartments of the MPX in contact with the growth media will be assembled and tested to be free of viable microbes. MPX, once assembled, cannot survive Dry Heat Microbial Reduction. The camera with the radiation and CO2 sensors will be sealed in their own container and vented through HEPA filters. The seeds will be vernalized (microbe free) as per current Space Station methods described by Paul et al. 2001. Documentation of the lack of viable microbes on representative seeds

  9. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    Directory of Open Access Journals (Sweden)

    Bernard R. Glick

    2012-01-01

    Full Text Available The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  10. Designing Extraterrestrial Plant Growth Habitats with Low Pressure Atmospheres

    Science.gov (United States)

    Corey, Kenneth A.

    2002-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  11. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    Science.gov (United States)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  12. Evaluating and optimizing horticultural regimes in space plant growth facilities

    Science.gov (United States)

    Berkovich, Y. A.; Chetirkin, P. V.; Wheeler, R. M.; Sager, J. C.

    2004-01-01

    In designing innovative space plant growth facilities (SPGF) for long duration space flight, various limitations must be addressed including onboard resources: volume, energy consumption, heat transfer and crew labor expenditure. The required accuracy in evaluating onboard resources by using the equivalent mass methodology and applying it to the design of such facilities is not precise. This is due to the uncertainty of the structure and not completely understanding the properties of all associated hardware, including the technology in these systems. We present a simple criteria of optimization for horticultural regimes in SPGF: Qmax = max [ M · (EBI) 2/( V · E · T) ], where M is the crop harvest in terms of total dry biomass in the plant growth system; EBI is the edible biomass index (harvest index), V is volume occupied by the crop; E is the crop light energy supply during growth; T is the crop growth duration. The criterion reflects directly on the consumption of onboard resources for crop production.

  13. Isolation and selection of fluorescent pseudomonads based on multiple plant growth promotion traits and siderotyping

    Directory of Open Access Journals (Sweden)

    Jayamohan Subramanian

    2014-09-01

    Full Text Available Fluorescent pseudomonads, acclaimed plant associated bacterial group, are well-known plant growth promoting-biocontrol agents in rhizosphere arena. In this study, 144 fluorescent pseudomonad isolates from rhizosphere soil samples were screened with King's medium B supplemented with 8-hydroxyquinoline (8-HQ chelator and comprehensively profiled for plant growth promotion viz., production of indole acetic acid (IAA, siderophore, ammonia, hydrogen cyanide, motility, phosphate solubilization, root growth promotion, and biofilm forming ability, along with two known control strains of pseudomonads. Iron and IAA regulated secondary metabolite siderophore production were investigated quantitatively. All isolates were positive for ammonia production and motility; 46% isolates were positive for hydrogen cyanide, 44% shown positivity for phosphate solubilization, and 40% isolates for siderophore production. Siderotyping showed production of hydroxamate type of siderophores which are known to be more efficient biocontrol agents. All isolates stimulated root growth to varying extent and had potentiality to form biofilms, a critical constituent for survival on different environments. Forty-two isolates of pseudomonads showed antagonistic behavior against the deleterious fungal pathogen Fusarium oxysporum (MTCC1755. Based on the above observations and statistical analysis, 11 isolates were shortlisted for further scrutiny. The study of biogeographic correlation and secondary metabolite profiling in association with plant growth promotion focalizes significant assessment on the behavior and antagonistic action, which probably brings out a competent biocontrol agent in a sustainable eco-friendly dimension.

  14. DNA from soil mirrors plant taxonomic and growth form diversity

    DEFF Research Database (Denmark)

    Yoccoz, N.G.; Bråthen, K.A.; Gielly, L.

    2012-01-01

    Ecosystems across the globe are threatened by climate change and human activities. New rapid survey approaches for monitoring biodiversity would greatly advance assessment and understanding of these threats. Taking advantage of next-generation DNA sequencing, we tested an approach we call metabar...

  15. Ethylene production throughout growth and development of plants

    Science.gov (United States)

    Wheeler, Raymond M.; Peterson, Barbara V.; Stutte, Gary W.

    2004-01-01

    Ethylene production by 10 or 20 m2 stands of wheat, soybean, lettuce, potato, and tomato was monitored throughout growth and development in an atmospherically closed plant chamber. Chamber ethylene levels varied among species and rose during periods of canopy expansion and rapid growth for all species. Following this, ethylene levels either declined during seed fill and maturation for wheat and soybean, or remained relatively constant for potato and tomato (during flowering and early fruit development). Lettuce plants were harvested during rapid growth and peak ethylene production. Chamber ethylene levels increased rapidly during tomato ripening, reaching concentrations about 10 times that measured during vegetative growth. The highest ethylene production rates during vegetative growth ranged from 1.6 to 2.5 nmol m-2 d-1 during rapid growth of lettuce and wheat stands, or about 0.3 to 0.5 nmol g-1 fresh weight per hour. Estimates of stand ethylene production during tomato ripening showed that rates reached 43 nmol m-2 d-1 in one study and 93 nmol m-2 d-1 in a second study with higher lighting, or about 50x that of the rate during vegetative growth of tomato. In a related test with potato, the photoperiod was extended from 12 to 24 hours (continuous light) at 58 days after planting (to increase tuber yield), but this change in the environment caused a sharp increase in ethylene production from the basal rate of 0.4 to 6.2 nmol m-2 d-1. Following this, the photoperiod was changed back to 12 h at 61 days and ethylene levels decreased. The results suggest three separate categories of ethylene production were observed with whole stands of plants: 1) production during rapid vegetative growth, 2) production during climacteric fruit ripening, and 3) production from environmental stress.

  16. Dynamics of Plant Growth; A Theory Based on Riemannian Geometry

    CERN Document Server

    Pulwicki, Julia

    2016-01-01

    In this work, a new model for macroscopic plant tissue growth based on dynamical Riemannian geometry is presented. We treat 1D and 2D tissues as continuous, deformable, growing geometries for sizes larger than 1mm. The dynamics of the growing tissue are described by a set of coupled tensor equations in non-Euclidean (curved) space. These coupled equations represent a novel feedback mechanism between growth and curvature dynamics. For 1D growth, numerical simulations are compared to two measures of root growth. First, modular growth along the simulated root shows an elongation zone common to many species of plant roots. Second, the relative elemental growth rate (REGR) calculated in silico exhibits temporal dynamics recently characterized in high-resolution root growth studies but which thus far lack a biological hypothesis to explain them. Namely, the REGR can evolve from a single peak localized near the root tip to a double-peak structure. In our model, this is a direct consequence of considering growth as b...

  17. SPATULA links daytime temperature and plant growth rate.

    Science.gov (United States)

    Sidaway-Lee, Kate; Josse, Eve-Marie; Brown, Alanna; Gan, Yinbo; Halliday, Karen J; Graham, Ian A; Penfield, Steven

    2010-08-24

    Plants exhibit a wide variety of growth rates that are known to be determined by genetic and environmental factors, and different plants grow optimally at different temperatures, indicating that this is a genetically determined character. Moderate decreases in ambient temperature inhibit vegetative growth, but the mechanism is poorly understood, although a decrease in gibberellin (GA) levels is known to be required. Here we demonstrate that the basic helix-loop-helix transcription factor SPATULA (SPT), previously known to be a regulator of low temperature-responsive germination, mediates the repression of growth by cool daytime temperatures but has little or no growth-regulating role under warmer conditions. We show that only daytime temperatures affect vegetative growth and that SPT couples morning temperature to growth rate. In seedlings, warm temperatures inhibit the accumulation of the SPT protein, and SPT autoregulates its own transcript abundance in conjunction with diurnal effects. Genetic data show that repression of growth by SPT is independent of GA signaling and phytochrome B, as previously shown for PIF4. Our data suggest that SPT integrates time of day and temperature signaling to control vegetative growth rate.

  18. Growth Chambers on the International Space Station for Large Plants

    Science.gov (United States)

    Massa, Gioia D.; Wheeler, Raymond M.; Morrow, Robert C.; Levine, Howard G.

    2016-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species under LED (Light Emitting Diodes) lighting, and those capabilities continue to expand. The Veggie vegetable production system was deployed to the ISS as an applied research platform for food production in space. Veggie is capable of growing a wide array of horticultural crops. It was designed for low power usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nanometers), blue, (455 nanometers) and green (530 nanometers) LEDs. Interfacing with the light cap is an extendable bellowsbaseplate for enclosing the plant canopy. A second large plant growth chamber, the Advanced Plant Habitat (APH), is will fly to the ISS in 2017. APH will be a fully controllable environment for high-quality plant physiological research. APH will control light (quality, level, and timing), temperature, CO2, relative humidity, and irrigation, while scrubbing any cabin or plant-derived ethylene and other volatile organic compounds. Additional capabilities include sensing of leaf temperature and root zone moisture, root zone temperature, and oxygen concentration. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs (4100K). There will be several internal cameras (visible and IR) to monitor and record plant growth and operations. Veggie and APH are available for research proposals.

  19. Effects of engineered nanomaterials on plants growth: an overview.

    Science.gov (United States)

    Aslani, Farzad; Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan; Baghdadi, Ali

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.

  20. Short Communication: In vitro response of papaya (Carica papaya to plant growth regulators

    Directory of Open Access Journals (Sweden)

    JAIME A. TEIXEIRA DA SILVA

    2016-01-01

    Full Text Available Abstract. Teixeira da Silva JA. 2016. In vitro response of papaya (Carica papaya to multiple plant growth regulators. Nusantara Bioscience 8: 77-82. The use of plant growth regulators (PGRs in papaya (Carica papaya L. tissue culture is essential for tissue and organ culture in vitro. In this study, in a bid to expand the information available on the response to PGRs, a wide range of PGRs, roughly divided into four groups (auxins, cytokinins, alternative PGRs, growth inhibitors and retardants was tested. Among them, the auxins 2,4-D, dicamba and picloram formed most callus (hard and soft. Callus inductions by chitosan and coconut water are novel results for papaya. Shoots only formed in response to BA and TDZ, but TDZ-induced shoots were fasciated and/or hyperhydric. These results provide novel perspectives for papaya researchers who may have recalcitrant genotypes or tissues that are unresponsive in vitro.

  1. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.

    Science.gov (United States)

    Asari, Shashidar; Matzén, Staffan; Petersen, Mikael Agerlin; Bejai, Sarosh; Meijer, Johan

    2016-06-01

    Biotic interactions through volatile organic compounds (VOC) are frequent in nature. This investigation aimed to study the role of ITALIC! BacillusVOC for the beneficial effects on plants observed as improved growth and pathogen control. Four ITALIC! Bacillus amyloliquefacienssubsp. ITALIC! plantarumstrains were screened for VOC effects on ITALIC! Arabidopsis thalianaCol-0 seedlings and ITALIC! Brassicafungal phytopathogens. VOC from all four ITALIC! Bacillusstrains could promote growth of ITALIC! Arabidopsisplants resulting in increased shoot biomass but the effects were dependent on the growth medium. Dose response studies with UCMB5113 on MS agar with or without root exudates showed significant plant growth promotion even at low levels of bacteria. ITALIC! BacillusVOC antagonized growth of several fungal pathogens ITALIC! in vitro However, the plant growth promotion efficacy and fungal inhibition potency varied among the ITALIC! Bacillusstrains. VOC inhibition of several phytopathogens indicated efficient microbial antagonism supporting high rhizosphere competence of the ITALIC! Bacillusstrains. GC-MS analysis identified several VOC structures where the profiles differed depending on the growth medium. The ability of ITALIC! Bacillusstrains to produce both volatile and soluble compounds for plant growth promotion and disease biocontrol provides examples of rhizosphere microbes as an important ecosystem service with high potential to support sustainable crop production.

  2. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects

    Science.gov (United States)

    Plant growth-promoting rhizobacteria (PGPR) have garnered interest in agriculture due to their ability to influence the growth and production of host plants. ATP-binding cassette (ABC) transporters play important roles in plant-microbe interactions by modulating plant root exudation. The present stu...

  3. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    Science.gov (United States)

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  4. Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis.

    Science.gov (United States)

    Jayne, Benjamin; Quigley, Martin

    2014-02-01

    Despite a large body of literature that describes the effects of arbuscular mycorrhizal colonization on plant response to water deficit, reviews of these works have been mainly in narrative form, and it is therefore difficult to quantify the magnitude of the effect. We performed a meta-analysis to examine the effect of mycorrhizal colonization on growth and yield of plants exposed to water deficit stress. Data were compared in the context of annual vs. perennial plants, herbaceous vs. woody plants, field vs. greenhouse conditions, degree of stress, functional group, regions of plant growth, and mycorrhizal and host species. We found that, in terms of biomass measurements, mycorrhizal plants have better growth and reproductive response under water stress compared to non-mycorrhizal plants. When variables such as habit, life cycle, or water stress level are considered, differences in mycorrhizal effect on plant growth between variables are observed. While growth of both annual and perennial plants is improved by symbiosis, perennials respond more favorably to colonization than annuals. Overall, our meta-analysis reveals a quantifiable corroboration of the commonly held view that, under water-deficit conditions, plants colonized by mycorrhizal fungi have better growth and reproductive response than those that are not.

  5. Effects of the plant growth regulator, chlormequat, on mammalian fertility.

    Science.gov (United States)

    Sørensen, Martin T; Danielsen, Viggo

    2006-02-01

    This paper summarizes the consequences of exposure to chlormequat, a plant growth regulator, on reproduction in mammals. Plant growth regulators are chemicals used to manipulate plant growth, flowering and fruit yield. In grain crops, plant growth regulators are applied to promote sturdier growth and reduce the risk of lodging. Chlormequat is the most common plant growth regulator. Maximum residue limits of chlormequat in food products are 10 mg/kg in oat and pear, 3 mg/kg in wheat and rye, and 0.5 mg/kg in milk. In Denmark, results from experiments with pigs in the late 1980s showed sows that display impaired reproduction, mainly impaired oestrus, when fed grain from crop treated with chlormequat. Subsequently, the advisory body to the Danish pig industry recommended limiting the use of grain (maximum 30% of diet energy) from crop treated with chlormequat given to breeding stock due to the risk of reproduction problems. More recently, experiments have been conducted to evaluate the influence of chlormequat-treated wheat crop on reproductive function in male and female mice. These experiments showed that epididymal spermatozoa from mice on feed or water containing chlormequat had compromised fertilizing competence in vitro, while reproduction in female mice was not compromised. The estimated intake of chlormequat in the pig (0.0023 mg/kg bw/day) and the mouse (0.024 mg/kg bw/day) experiments was below the acceptable daily intake of 0.05 mg/kg bw/day. Reports from the industry do not show any effects at these low levels.

  6. The cytoskeleton in plant and fungal cell tip growth

    NARCIS (Netherlands)

    Geitmann, A.; Emons, A.M.C.

    2000-01-01

    Tip-growing cells have a particular lifestyle that is characterized by the following features: (1) the cells grow in one direction, forming a cylindrical tube; (2) tip-growing cells are able to penetrate their growth environment, thus having to withstand considerable external forces; (3) the growth

  7. Plant growth promoting rhizobacteria: Beneficial effects for healthy ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-07-06

    Jul 6, 2016 ... bacteria colonize actively the root system of plants and improve their growth and yield. The PGPR use ..... nodules number, nodule dry weight, seed yield, nutrients availability ... (1984) observed a reduction of pH from 7 to 3. The study ..... microorganisms included Gram-positive bacteria such as. B. pumilus ...

  8. Cytokinin production by plant growth promoting rhizobacteria and selected mutants.

    Science.gov (United States)

    García de Salamone, I E; Hynes, R K; Nelson, L M

    2001-05-01

    One of the proposed mechanisms by which rhizobacteria enhance plant growth is through the production of plant growth regulators. Five plant growth promoting rhizobacterial (PGPR) strains produced the cytokinin dihydrozeatin riboside (DHZR) in pure culture. Cytokinin production by Pseudomonas fluorescens G20-18, a rifampicin-resistant mutant (RIF), and two TnphoA-derived mutants (CNT1, CNT2), with reduced capacity to synthesize cytokinins, was further characterized in pure culture using immunoassay and thin layer chromatography. G20-18 produced higher amounts of three cytokinins, isopentenyl adenosine (IPA), trans-zeatin ribose (ZR), and DHZR than the three mutants during stationary phase. IPA was the major metabolite produced, but the proportion of ZR and DHZR accumulated by CNT1 and CNT2 increased with time. No differences were observed between strain G20-18 and the mutants in the amounts of indole acetic acid synthesized, nor were gibberellins detected in supernatants of any of the strains. Addition of 10(-5) M adenine increased cytokinin production in 96- and 168-h cultures of strain G20-18 by approximately 67%. G20-18 and the mutants CNT1 and CNT2 may be useful for determination of the role of cytokinin production in plant growth promotion by PGPR.

  9. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion

    OpenAIRE

    Majeed, Afshan; Abbasi, M. Kaleem; Hameed, Sohail; Imran, Asma; Rahim, Nasir

    2015-01-01

    The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-suppleme...

  10. Effect of microenvironmental quantitative regulation on growth of Korean pine trees planted under secondary forest

    Institute of Scientific and Technical Information of China (English)

    CONG Jian; Shen Hai-Long; YANG Wen-Hua; FAN Shao-Hui; ZHANG Qun

    2011-01-01

    Korean pine (Pinus koraiensis) and broadleaved mixed forest in Northeast China has been changed regressively into secondary forest with almost no conifers. Planting Korean pine trees under the canopy of secondary forest is a feasible approach for recovering Korean pine and broadleaved mixed forest. For establishing an effective growth promotion method for under-canopy planted young Korean pine trees, two stands were selected as the experiment plots, Stand A (planted in 1989)and Stand B (planted in 1982), and an experiment of microenvironment regulation was conducted relying mainly on Opening degree (K=1,K=1.5, K=2, CK) in 2004. The results were shown that the adjustment had promoted growth of diameter and height of Korean pine planted in Stand A and Stand B, and had a significant influence on the growth rate of basal diameter, diameter at breast height and height in the two growth stands. The four years periodic increment of mean diameter and height of Korean pine planted in 1989 and in 1982 after regulation in K=1 level were 63.4% (D0) and 82.7% (H), 64.8% (D1.3) and 69.7% (H) higher than that of control respectively. Quantitative regulation had significant influence on specific leaf area of Korean pine planted in 1989, and the current year specific leaf area (SLA) was lager than perennial year SLA. Quality indexes of natural priming capacity, normal form quotient and crown size was not significantly changed but shown a positive tendency. The regulation scheme of Opening degree K=I might be proper for adjusting the micreenvironment of Korean pine trees planted under the canopy of secondary forest when the Korean pine trees were in the growth period of 15 to 26 years old in the experiment region.

  11. Diverse Plant-Associated Pleosporalean Fungi from Saline Areas: Ecological Tolerance and Nitrogen-Status Dependent Effects on Plant Growth.

    Science.gov (United States)

    Qin, Yuan; Pan, Xueyu; Kubicek, Christian; Druzhinina, Irina; Chenthamara, Komal; Labbé, Jessy; Yuan, Zhilin

    2017-01-01

    Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance). Despite considerable work in selected model systems, it is generally poorly understood how plant-associated fungi are structured in habitats with extreme conditions and to what extent they contribute to improved plant performance. Here, we investigate the community composition of root and seed-associated fungi from six halophytes growing in saline areas of China, and found that the pleosporalean taxa (Ascomycota) were most frequently isolated across samples. A total of twenty-seven representative isolates were selected for construction of the phylogeny based on the multi-locus data (partial 18S rDNA, 28S rDNA, and transcription elongation factor 1-α), which classified them into seven families, one clade potentially representing a novel lineage. Fungal isolates were subjected to growth response assays by imposing temperature, pH, ionic and osmotic conditions. The fungi had a wide pH tolerance, while most isolates showed a variable degree of sensitivity to increasing concentration of either salt or sorbitol. Subsequent plant-fungal co-culture assays indicated that most isolates had only neutral or even adverse effects on plant growth in the presence of inorganic nitrogen. Interestingly, when provided with organic nitrogen sources the majority of the isolates enhanced plant growth especially aboveground biomass. Most of the fungi preferred organic nitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralize organic nitrogen into inorganic nitrogen. Microscopy revealed that several isolates can successfully colonize roots and form melanized hyphae and/or microsclerotia-like structures within cortical cells suggesting a phylogenetic assignment as dark septate endophytes. This work provides a better understanding of the symbiotic relationship between plants and

  12. Effects of Different Substrate Composition on Growth of Gesneriaceae Plants

    Institute of Scientific and Technical Information of China (English)

    Zhijing QIU; Chunqing ZOU; Zhengjun SHI; Yaoliang DAI; Ruixing XIE

    2014-01-01

    The cultivation experiment was carried out to investigate the effects of dif-ferent proportions of peat soil, perlite, vermiculite and yel ow mud on growth of Gesneriaceae species (Chirita gueilinensis, Sinningia speciosa, Lysionotus pauci-florus, Hemiboea henryi, Aeschynanthus acuminatus, Saintpaulia ionantha). The growth traits of each plant growing in 7 different matrix materials were investigated. The plant height, crown width and chlorophyl content of each plant were mea-sured. The results showed that the best substrate ratio was peat soil∶vermiculite=2∶1 for C. gueilinensis, L. pauciflorus and H. henryi; peat soil∶perlite∶vermiculite = 2∶1∶1 for S. ionantha; peat soil∶vermiculite∶yel ow mud=2∶1∶1 for S. speciosa; peat soil∶per-lite∶vermiculite∶yel ow mud=2∶1∶1∶1 for A. acuminatus.

  13. Influence of Plant Growth Regulators (PGRs and Planting Method on Growth and Yield in Oil Pumpkin (Cucurbita pepo var. styriaca

    Directory of Open Access Journals (Sweden)

    Shirzad SURE

    2012-05-01

    Full Text Available The effect of plant growth regulators IBA (indole butyric acid, GA3 (gibberellin and ethylene (as ethephon in two methods of planting was investigated (each method was considered as a separate experiment on morphological characters and yield of medicinal pumpkin. The experiments were carried out in a factorial trial based on completely randomized block design, with four replicates. The treatments were combined with priming and spraying with the above PGRs. The first seed priming with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm, and when seedling developed to 4 leaf stage sprayed there with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm for three times. In both planting methods, there were all of these treatments. The result showed that PGRs and planting method had significant effects on vegetative, flowering and yield characteristics including: leaf area %DM plant, number of male and female flowers per plant, number of fruit/plant, fruits fresh weight, seeds length and width, number of seed per fruit, seed yield, % seeds oil and oil yield. Hence spraying with GA3 25 ppm in four leaf stage at trellis method could be a suitable treatment for enhancing growth and yield of medicinal pumpkin.

  14. Influence of Plant Growth Regulators (PGRs and Planting Method on Growth and Yield in Oil Pumpkin (Cucurbita pepo var. styriaca

    Directory of Open Access Journals (Sweden)

    Shirzad SURE

    2012-05-01

    Full Text Available The effect of plant growth regulators IBA (indole butyric acid, GA3 (gibberellin and ethylene (as ethephon in two methods of planting was investigated (each method was considered as a separate experiment on morphological characters and yield of medicinal pumpkin. The experiments were carried out in a factorial trial based on completely randomized block design, with four replicates. The treatments were combined with priming and spraying with the above PGRs. The first seed priming with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm, and when seedling developed to 4 leaf stage sprayed there with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm for three times. In both planting methods, there were all of these treatments. The result showed that PGRs and planting method had significant effects on vegetative, flowering and yield characteristics including: leaf area %DM plant, number of male and female flowers per plant, number of fruit/plant, fruits fresh weight, seeds length and width, number of seed per fruit, seed yield, % seeds oil and oil yield. Hence spraying with GA3 25 ppm in four leaf stage at trellis method could be a suitable treatment for enhancing growth and yield of medicinal pumpkin.

  15. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    Directory of Open Access Journals (Sweden)

    Peter Baas

    2016-06-01

    Full Text Available Phosphorus (P is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity.

  16. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens

    Directory of Open Access Journals (Sweden)

    W. H. Gera eHol

    2013-04-01

    Full Text Available Plant growth-promoting rhizobacteria (PGPR are increasingly appreciated for their contributions to primary productivity through promotion of growth and triggering of induced systemic resistance in plants. Here we focus on the beneficial effects of one particular species of PGPR (Pseudomonas fluorescens on plants through induced plant defence. This model organism has provided much understanding of the underlying molecular mechanisms of PGPR-induced plant defence. However, this knowledge can only be appreciated at full value once we know to what extent these mechanisms also occur under more realistic, species-diverse conditions as are occurring in the plant rhizosphere. To provide the necessary ecological context, we review the literature to compare the effect of P. fluorescens on induced plant defence when it is present as a single species or in combination with other soil dwelling species. Specifically, we discuss combinations with other plant mutualists (bacterial or fungal, plant pathogens (bacterial or fungal, bacterivores (nematode or protozoa and decomposers. Synergistic interactions between P. fluorescens and other plant mutualists are much more commonly reported than antagonistic interactions. Recent developments have enabled screenings of P. fluorescens genomes for defence traits and this could help with selection of strains with likely positive interactions on biocontrol. However, studies that examine the effects of multiple herbivores, pathogens, or herbivores and pathogens together on the effectiveness of PGPR to induce plant defences are underrepresented and we are not aware of any study that has examined interactions between P. fluorescens and bacterivores or decomposers. As co-occurring soil organisms can enhance but also reduce the effectiveness of PGPR, a better understanding of the biotic factors modulating P. fluorescens -plant interactions will improve the effectiveness of introducing P. fluorescens to enhance plant production

  17. Characterization of Minnesota lunar simulant for plant growth

    Science.gov (United States)

    Oglesby, James P.; Lindsay, Willard L.; Sadeh, Willy Z.

    1993-01-01

    Processing of lunar regolith into a plant growth medium is crucial in the development of a regenerative life support system for a lunar base. Plants, which are the core of such a system, produce food and oxygen for humans and, at the same time, consume carbon dioxide. Because of the scarcity of lunar regolith, simulants must be used to infer its properties and to develop procedures for weathering and chemical analyses. The Minnesota Lunar Simulant (MLS) has been identified to date as the best available simulant for lunar regolith. Results of the dissolution studies reveal that appropriately fertilized MLS can be a suitable medium for plant growth. The techniques used in conducting these studies can be extended to investigate the suitability of actual lunar regolith as a plant growth medium. Dissolution experiments were conducted using the MLS to determine its nutritional and toxicity characteristics for plant growth and to develop weathering and chemical analysis techniques. Two weathering regimes, one with water and one with dilute organic acids simulating the root rhizosphere microenvironment, were investigated. Elemental concentrations were measured using inductively-coupled-plasma (ICP) emission spectrometry and ion chromatography (IC). The geochemical speciation model, MINTEQA2, was used to determine the major solution species and the minerals controlling them. Acidification was found to be a useful method for increasing cation concentrations to meaningful levels. Initial results indicate that MLS weathers to give neutral to slightly basic solutions which contain acceptable amounts of the essential elements required for plant nutrition (i.e., potassium, calcium, magnesium, sulfur, zinc, sodium, silicon, manganese, copper, chlorine, boron, molybdenum, and cobalt). Elements that need to be supplemented include carbon, nitrogen, and perhaps phosphorus and iron. Trace metals in solution were present at nontoxic levels.

  18. Plant growth promoting bacteria from Crocus sativus rhizosphere.

    Science.gov (United States)

    Ambardar, Sheetal; Vakhlu, Jyoti

    2013-12-01

    Present study deals with the isolation of rhizobacteria and selection of plant growth promoting bacteria from Crocus sativus (Saffron) rhizosphere during its flowering period (October-November). Bacterial load was compared between rhizosphere and bulk soil by counting CFU/gm of roots and soil respectively, and was found to be ~40 times more in rhizosphere. In total 100 bacterial isolates were selected randomly from rhizosphere and bulk soil (50 each) and screened for in-vitro and in vivo plant growth promoting properties. The randomly isolated bacteria were identified by microscopy, biochemical tests and sequence homology of V1-V3 region of 16S rRNA gene. Polyphasic identification categorized Saffron rhizobacteria and bulk soil bacteria into sixteen different bacterial species with Bacillus aryabhattai (WRF5-rhizosphere; WBF3, WBF4A and WBF4B-bulk soil) common to both rhizosphere as well as bulk soil. Pseudomonas sp. in rhizosphere and Bacillus and Brevibacterium sp. in the bulk soil were the predominant genera respectively. The isolated rhizobacteria were screened for plant growth promotion activity like phosphate solubilization, siderophore and indole acetic acid production. 50 % produced siderophore and 33 % were able to solubilize phosphate whereas all the rhizobacterial isolates produced indole acetic acid. The six potential PGPR showing in vitro activities were used in pot trial to check their efficacy in vivo. These bacteria consortia demonstrated in vivo PGP activity and can be used as PGPR in Saffron as biofertilizers.This is the first report on the isolation of rhizobacteria from the Saffron rhizosphere, screening for plant growth promoting bacteria and their effect on the growth of Saffron plant.

  19. Plant growth promoters and methods of using them

    KAUST Repository

    Al-Babili, Salim

    2017-01-05

    New plant growth regulators, including compounds and compositions, and methods of use including for promoting root growth. The compounds are carotenoid oxidation products, and a preferred example is 3-OH--β-apo-13-Carotenone. A method comprising promoting the growth of at least one plant with use of an effective amount of at least one composition comprising an effective amount of at least one compound which is represented by A-B-C, wherein B is a bivalent polyene moiety, A is a monovalent moiety linked to B by a six-membered carbon ring, wherein the ring has at least one substituent linked to the ring by an oxygen atom, and C is a monovalent moiety linked to B by a carbonyl group. Synergistic effects can be used with combinations of compounds.

  20. Optimization of Plant Growth and Yield Through Innovation of The Materials and Medium Verticulture

    Directory of Open Access Journals (Sweden)

    Sitawati Sitawati

    2016-12-01

    Full Text Available Vertikultur is one of effort to agricultural of narrow as urban farming. Efforts to obtain plant container and plant medium on vegetables pakcoy to compare the productivity model of vertical planting and horizontally with the application of fertilizer on strawberry plants optimally. The first study aimed to determine the combination of growing medium and materials vertikultur which efficient and effective for pakchoy growth in vertikultur, then continued a second study that application of a combination of materials vertikultur and fertilizer N, P and K on the strawberry plants at planting vertical and horizontal models. Combination treatment is the first study consisted of the first factor is the material vertikultur form of carpet, gunny sacks and plastic, while the second factor is the growing media consisting of soil, humus, rice husk and cocopeat using a randomized design factorial with three replications conducted in Gresik, East Java. In the research into two, the first factor is a model of planting both horizontally and vertically, while the factor two is a dose of NPK (0%, 25%, 50%, 75% and 100% on strawberry plants by using Design Grid Divided by 3 replications implemented in Batu, East Java. The results showed that the material vertikultur carpets and plastic with humus media have fresh weight pachoy same plant with soil media. Average penamaman with vertical and horizontal models have the same weight of strawberries where urea 3.75 g / tan, SP36 5g / tan and KCl 5 g / tan increase the yield per plant.

  1. Effects of plant growth regulators on the growth and lipid accumulation of Nannochloropsis oculata (droop) Hibberd

    Science.gov (United States)

    Trinh, Cam Tu; Tran, Thanh Huong; Bui, Trang Viet

    2017-09-01

    Nannochloropsis oculata cells were grown in f/2 modified medium of Chiu et al. (2009) supplemented with the plant growth regulators in different concentrations. Lipid accumulation of N. oculata cells was evaluated by using Nile Red dye and Fiji Image J with Analyze Particles. Indole-3-acetic acid (IAA) stimulated the increase of cell density in rapid growth phase (day 6) at high concentration (0.75 mg/L) and in slow growth phase (day 10) at lower concentration (0.50 mg/L). IAA, gibberellic acid (GA3) and zeatin increased content of chlorophyll a, in particular, in f/2 modified medium supplemented with 0.5 mg/L zeatin at the 10th day of culture. Roles of plant growth regulators in growth and lipid accumulation of N. oculata were discussed.

  2. 15. international conference on plant growth substances: Program -- Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Since the 14th Conference in Amsterdam in 1991, progress in plant hormone research and developmental plant biology has been truly astonishing. The five ``classical`` plant hormones, auxin, gibberellin, cytokinin, ethylene, and abscisic acid, have been joined by a number of new signal molecules, e.g., systemin, jasmonic acid, salicylic acid, whose biosynthesis and functions are being understood in ever greater detail. Molecular genetics has opened new vistas in an understanding of transduction pathways that regulate developmental processes in response to hormonal and environmental signals. The program of the 15th Conference includes accounts of this progress and brings together scientists whose work focuses on physiological, biochemical, and chemical aspects of plant growth regulation. This volume contains the abstracts of papers presented at this conference.

  3. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height.

    Science.gov (United States)

    Li, Zhaoxia; Zhang, Xinrui; Zhao, Yajie; Li, Yujie; Zhang, Guangfeng; Peng, Zhenghua; Zhang, Juren

    2017-05-12

    Maize is a globally important food, feed crop and raw material for the food and energy industry. Plant architecture optimization plays important roles in maize yield improvement. PIN-FORMED (PIN) proteins are important for regulating auxin spatiotemporal asymmetric distribution in multiple plant developmental processes. In this study, ZmPIN1a overexpression in maize increased the number of lateral roots and inhibited their elongation, forming a developed root system with longer seminal roots and denser lateral roots. ZmPIN1a overexpression reduced plant height, internode length and ear height. This modification of the maize phenotype increased the yield under high-density cultivation conditions, and the developed root system improved plant resistance to drought, lodging and a low-phosphate environment. IAA concentration, transport capacity determination and application of external IAA indicated that ZmPIN1a overexpression led to increased IAA transport from shoot to root. The increase in auxin in the root enabled the plant to allocate more carbohydrates to the roots, enhanced the growth of the root and improved plant resistance to environmental stress. These findings demonstrate that maize plant architecture can be improved by root breeding to create an ideal phenotype for further yield increases. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion.

    Science.gov (United States)

    Vendan, Regupathy Thamizh; Yu, Young Joon; Lee, Sun Hee; Rhee, Young Ha

    2010-10-01

    Endophytic bacteria have been found in virtually every plant studied, where they colonize the internal tissues of their host plant and can form a range of different beneficial relationships. The diversity of bacterial endophytes associated with ginseng plants of varying age levels in Korea was investigated. Fifty-one colonies were isolated from the interior of ginseng stems. Although a mixed composition of endophyte communities was recovered from ginseng based on the results of 16S rDNA analysis, bacteria of the genus Bacillus and Staphylococcus dominated in 1-year-old and 4-year-old plants, respectively. Phylogenetic analysis revealed four clusters: Firmicutes, Actinobacteria, α-Proteobacteria, and γ-Proteobacteria, with Firmicutes being predominant. To evaluate the plant growth promoting activities, 18 representative isolates were selected. Amplification of nifH gene confirmed the presence of diazotrophy in only two isolates. Half of the isolates solubilized mineral phosphate. Except four, all the other endophytic isolates produced significant amounts of indole acetic acid in nutrient broth. Iron sequestering siderophore production was detected in seven isolates. Isolates E-I-3 (Bacillus megaterium), E-I-4 (Micrococcus luteus), E-I-8 (B. cereus), and E-I-20 (Lysinibacillus fusiformis) were positive for most of the plant growth promoting traits, indicating their role in growth promotion of ginseng.

  5. [Systemic production of cytokines and growth factors in various forms of syndrome of delayed fetal growth].

    Science.gov (United States)

    Makarenko, M V

    2014-11-01

    The syndrome of delayed fetal growth (SDFG) is one of the most wide-spread pathological conditions while course of pregnancy; it is characterized by disorder of the feto-placental system function. Its incidence is from 3 to 8%. The studying of peculiarities of the system and local immune disorders, coinciding with SDFG, would permit to establish the immune mechanisms of its formation. Revealing of immunoregulation disorders on systemic and local levels would promote the creation of a concept, depicting participation of the immune system in formation of asymmetrical and symmetrical forms of SDFG, to elaborate new approaches for prognosis and diagnosis.

  6. Effect of Media Culture on Growth and Sucker Pandanus Plant

    Directory of Open Access Journals (Sweden)

    ali salehi sardoei

    2017-02-01

    Full Text Available Introduction: One factor that is of great importance to the cultivation of flowers and ornamental plants, is the media. Planting plants in containers as an important component of the nursery technology has grown. Compared with farm volume, growth media used for each plant greatly reduce plant growth that largely influence by the physical and chemical properties of growth media used. Therefore, good management of potted plants bed will cause the plants have good quality. A good growth media with optimal physical and biological properties, relatively inexpensive, stable and style enough to work should be available. The Burgers showed that composted green waste can be used as substrates for soilless cultivation and improve the water-holding capacity of soil. The garden has a range of materials including hardwood and softwood bark, leaves, soil, waste, sewage sludge and coconut (cocopeat that has been used as a seed bed. According to the economic issues and increasing moisture storage, palm peat substrates are primary material that can be prepared as a good growth medium for the producing's presented level Country. Peat moss is not applicable to all plants because of high cost and poor absorption characteristics like low pH and low water holding capacity . This study was conducted to investigate the possibility of replacing peat moss palm waste and the effect of it on growth characteristics were studied. Materials and Methods: The experimental design was completely randomized design with four replications of eight treatments. The compressed unit (block was supplied and commercial cocopeat was used because of reducing the cost of transportation. Before applying this material, the amount of water was added for opening up and voluminous and become it completely uniform.. In treatments containing sand + perlite, these four types volume ratio of 1:1 and mixed with sand + perlite were used. First, wooden cuttings of pandanus in a bed of sand rooted in the

  7. The effect of differential growth rates across plants on spectral predictions of physiological parameters.

    Directory of Open Access Journals (Sweden)

    Tal Rapaport

    Full Text Available Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants--often based on leaves' position but not age--becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R(2 = 0.98 to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI-based stomatal conductance prediction was substantially affected by differential growth rates. As various

  8. Membrane nanodomains in plants: capturing form, function, and movement.

    Science.gov (United States)

    Tapken, Wiebke; Murphy, Angus S

    2015-03-01

    The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Simulation model for plant growth in controlled environment systems

    Science.gov (United States)

    Raper, C. D., Jr.; Wann, M.

    1986-01-01

    The role of the mathematical model is to relate the individual processes to environmental conditions and the behavior of the whole plant. Using the controlled-environment facilities of the phytotron at North Carolina State University for experimentation at the whole-plant level and methods for handling complex models, researchers developed a plant growth model to describe the relationships between hierarchial levels of the crop production system. The fundamental processes that are considered are: (1) interception of photosynthetically active radiation by leaves, (2) absorption of photosynthetically active radiation, (3) photosynthetic transformation of absorbed radiation into chemical energy of carbon bonding in solube carbohydrates in the leaves, (4) translocation between carbohydrate pools in leaves, stems, and roots, (5) flow of energy from carbohydrate pools for respiration, (6) flow from carbohydrate pools for growth, and (7) aging of tissues. These processes are described at the level of organ structure and of elementary function processes. The driving variables of incident photosynthetically active radiation and ambient temperature as inputs pertain to characterization at the whole-plant level. The output of the model is accumulated dry matter partitioned among leaves, stems, and roots; thus, the elementary processes clearly operate under the constraints of the plant structure which is itself the output of the model.

  10. Coumarin-related compounds as plant growth inhibitors from two rutaceous plants in Thailand.

    Science.gov (United States)

    Jiwajinda, S; Santisopasri, V; Ohigashi, H

    2000-02-01

    Chemical investigation of naturally occurring plant growth inhibitors from Rutaceous plants in Thailand led us to identify five 7-methoxycoumarins and one 5,7-dimethoxycoumarin from Murraya paniculata, and six furanocoumarins from Citrus aurantifolia. Of these compounds, murranganon senecioate (1) is a new natural compound found in M. paniculata. Minumicrolin (6) was found to be highly active against the 2nd leaf sheath elongation of rice seedlings.

  11. Reduced wind speed improves plant growth in a desert city.

    Directory of Open Access Journals (Sweden)

    Christofer Bang

    Full Text Available BACKGROUND: The often dramatic effects of urbanization on community and ecosystem properties, such as primary productivity, abundances, and diversity are now well-established. In most cities local primary productivity increases and this extra energy flows upwards to alter diversity and relative abundances in higher trophic levels. The abiotic mechanisms thought to be responsible for increases in urban productivity are altered temperatures and light regimes, and increased nutrient and water inputs. However, another abiotic factor, wind speed, is also influenced by urbanization and well known for altering primary productivity in agricultural systems. Wind effects on primary productivity have heretofore not been studied in the context of urbanization. METHODOLOGY/PRINCIPAL FINDINGS: We designed a field experiment to test if increased plant growth often observed in cities is explained by the sheltering effects of built structures. Wind speed was reduced by protecting Encelia farinosa (brittlebush plants in urban, desert remnant and outlying desert localities via windbreaks while controlling for water availability and nutrient content. In all three habitats, we compared E. farinosa growth when protected by experimental windbreaks and in the open. E. farinosa plants protected against ambient wind in the desert and remnant areas grew faster in terms of biomass and height than exposed plants. As predicted, sheltered plants did not differ from unprotected plants in urban areas where wind speed is already reduced. CONCLUSION/SIGNIFICANCE: Our results indicate that reductions in wind speed due to built structures in cities contribute to increased plant productivity and thus also to changes in abundances and diversity of higher trophic levels. Our study emphasizes the need to incorporate wind speed in future urban ecological studies, as well as in planning for green space and sustainable cities.

  12. Dynamic Plant-Plant-Herbivore Interactions Govern Plant Growth-Defence Integration

    NARCIS (Netherlands)

    Vries, de Jorad; Evers, Jochem B.; Poelman, Erik H.

    2017-01-01

    Plants downregulate their defences against insect herbivores upon impending competition for light. This has long been considered a resource trade-off, but recent advances in plant physiology and ecology suggest this mechanism is more complex. Here we propose that to understand why plants regulate an

  13. Increasing plant growth by modulating omega-amidase expression in plants

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2015-06-30

    The present disclosure relates to compositions and methods for increasing the leaf-to-root ratio of the signal metabolite 2-oxoglutaramate and related proline molecules in plants by modulating levels of .omega.-amidase to increase nitrogen use efficiency, resulting in enhanced growth, faster growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, increased tolerance to high salt conditions, and increased biomass yields.

  14. Increasing plant growth by modulating omega-amidase expression in plants

    Science.gov (United States)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2015-06-30

    The present disclosure relates to compositions and methods for increasing the leaf-to-root ratio of the signal metabolite 2-oxoglutaramate and related proline molecules in plants by modulating levels of .omega.-amidase to increase nitrogen use efficiency, resulting in enhanced growth, faster growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, increased tolerance to high salt conditions, and increased biomass yields.

  15. Effect of plant growth regulators on somatic embryogenesis in leaf cultures of Coffea canephora.

    Science.gov (United States)

    Hatanaka, T; Arakawa, O; Yasuda, T; Uchida, N; Yamaguchi, T

    1991-07-01

    The effects of plant growth regulators on somatic embryogenesis were studied in leaf cultures of Coffea canephora. The maximum number of somatic embryos were obtained on media that contained only cytokinin as a plant growth regulator. All of the auxins tested (NAA, IBA, IAA and 2, 4-D) inhibited the formation of embryos. The optimal concentration of each cytokinin (2-iP, BA and kinetin) for somatic embryogenesis was 5 μM. Under optimal conditions, each explant formed more than 100 embryoids with little callus and few adventitious roots. Embryoids were formed only at the cut edges of the leaf discs. Cytokinins were absorbed only at the cut edges of leaf discs that were in contact with the medium, and were not transported to other parts of the explant.

  16. Effects of New Plant Growth Regulators on Growth and Quality in Potato

    Directory of Open Access Journals (Sweden)

    Chen Weiyan

    2015-04-01

    Full Text Available This experiment aimed to explore the effects of new plant growth regulators on the growth and quality of potato, we conduct potato tubers with different concentrations of the regulators and cultivated in the seedling pot, with water as the control treatment. The results showed that sorbic amide (5%, sorbic amide quaternary ammonium salt (5%, Cinnamamide (5%, betaine Cinnamamide (5%, naphthalene dicarboxamide (5%, betaine naphthalenedicarboxamide (5% these 6 new regulators have good activity in improving and enhancing the content of chlorophyll, soluble protein, soluble sugar and free amino acids with 400 times dilution and 800 times dilution on potato seedling. At the same time, we compared the changes of the physiological indexes in different periods. As can be seen from the experiment, these 6 compounds have a strong role in promoting growth and improving the quality of the potato so that they can be called plant growth regulators.

  17. Plant development in space: Observations on root formation and growth

    Science.gov (United States)

    Levine, H. G.; Kann, R. P.; Krikorian, Abraham D.

    1990-01-01

    Root growth in space is discussed and observations on root production from plants flown as part of the Chromex project that were defined as to their origin, stage of development and physiological status, are presented. Roots were generated from fully differentiated, aseptically maintained individuals of Haplopappus gracilis (Compositae) under spaceflight conditions. Results are compared for tissue culture generated plantlets and comparably sized seedling clone individuals, both of which had their roots trimmed on Earth before they were loaded into NASA's plant growth unit and subjected to a 5 day shuttle flight (STS-29). Asepsis was maintained throughout the experiment. Overall root production was 40 to 50 percent greater under spaceflight conditions than during ground control tests. However, root formation slowed down towards the end of the flight. This decrease in new roots did not occur in the ground controls that sought to simulate flight except for microgravity.

  18. Impact of accelerated plant growth on seed variety development

    Science.gov (United States)

    Christophersen, Eric

    1998-01-01

    The commercial lives of agricultural seed products have steadily declined in recent years. The introduction of genetically engineered crop seeds in 1966 has accentuated that trend. Widespread grower demand for genetically engineered seed requires competitive response by industry followers in order to avert market share losses to the industry leaders. Limitations on plant transformation technology, regulatory requirements and patent impediments require companies to rapidly convert transformed lines into elite commercial products. Massive multigenerational backcrossing efforts are required to distribute genetically engineered traits into a broad product mix. Significant incidents of expression failures, or ``gene silencing,'' have occurred unexpectedly, requiring product substitution strategies. First-to-market strategies, competitive response, broad germplasm conversion and rescue of product failures all share the element of urgency. Technologies which reliably accelerate product development rates can expect favorable reception by commercial seed developers. A growth chamber which dramatically accelerates the rate of plant growth is described.

  19. Study of creep cavity growth for power plant lifetime assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wu Rui; Sandstroem, Rolf

    2001-01-01

    This report aims to the sub project lifetime assessment by creep (livslaengdspredikteringar vid kryp), which is involved in the project package strength in high temperature power plant, KME 708. The physical creep damage includes mainly cavities and their development. Wu and Sandstroem have observed that cavity size increases linearly with increasing creep strain in a 12%Cr steel. Sandstroem has showed that, based on the relations between the nucleation and growth of creep cavities with creep strain, the physical creep damage can be modelled as a function of creep strain. In the present paper the growth of creep cavity radius R in relation to time t and strain {epsilon} in low alloy and 12%Cr steels as well as a Type 347 steel has been studied. The results exhibit that the power law cavity radius with creep time (R-t) and with creep strain (R-{epsilon}) relations are found for these materials at various testing conditions. The power law R-t and R-{epsilon} relations are in most cases dependent and independent on testing conditions, respectively. The empirical power law R-{epsilon} relations give a description of cavity evolution, which can be used for lifetime assessment. Experimental data have also been compared to the estimations by the classical models for cavity growth, including the power law growth due to Hancock, the diffusion growth due to Speight and Harris, the constrained diffusion growths due to Dyson and due to Rice and the enhanced diffusion growth due to Beere. It appears that the constraint diffusion growth models give a reasonable estimation of R-{epsilon} relation in many cases. The diffusion growth model is only applicable for limited cases where the power over t in R-t relation takes about 1/3. The power law and the enhanced diffusion models are found in most cases to overestimate the cavity growth.

  20. Aromatic fluorine compounds. VIII. Plant growth regulators and intermediates

    Science.gov (United States)

    Finger, G.C.; Gortatowski, M.J.; Shiley, R.H.; White, R.H.

    1959-01-01

    The preparation and properties of 41 fluorophenoxyacetic acids, 4 fluorophenoxypropionic acids, 2 fluorobenzoic acids, several indole derivatives, and a number of miscellaneous compounds are described. Data are given for many intermediates such as new fluorinated phenols, anisoles, anilines and nitrobenzenes. Most of the subject compounds are related to a number of well-known herbicides or plant growth regulators such as 2,4-D, 2,4,5-T and others.

  1. Network news: prime time for systems biology of the plant circadian clock truncated form of the title: Plant circadian clocks

    Science.gov (United States)

    McClung, C. Robertson; Gutiérrez, Rodrigo A.

    2011-01-01

    Summary Whole-transcriptome analyses have established that the plant circadian clock regulates virtually every plant biological process and most prominently hormonal and stress response pathways. Systems biology efforts have successfully modeled the plant central clock machinery and an iterative process of model refinement and experimental validation has contributed significantly to the current view of the central clock machinery. The challenge now is to connect this central clock to the output pathways for understanding how the plant circadian clock contributes to plant growth and fitness in a changing environment. Undoubtedly, systems approaches will be needed to integrate and model the vastly increased volume of experimental data in order to extract meaningful biological information. Thus, we have entered an era of systems modeling, experimental testing, and refinement. This approach, coupled with advances from the genetic and biochemical analyses of clock function, is accelerating our progress towards a comprehensive understanding of the plant circadian clock network. PMID:20889330

  2. A Unifying Modeling of Plant Shoot Gravitropism With an Explicit Account of the Effects of Growth

    Directory of Open Access Journals (Sweden)

    Renaud eBastien

    2014-04-01

    Full Text Available Gravitropism, the slow reorientation of plant growth in response to gravity, is a major determinant of the form and posture of land plants. Recently a universal model of shoot gravitropism, the AC model, has been presented, in which the dynamics of the tropic movement is only determined by the contradictory controls of i graviception, that tends to curve the plants towards the vertical, and ii proprioception, that tends to keep the stem straights. This model was found valid over a large range of species and over two order of magnitude in organ size. However the motor of the movement, the elongation, has been neglected in the AC model. Taking into account explicit growth effects, however, requires consideration of the material derivative, i.e. the rate of change of curvature bound to an expanding and convected organ elements. Here we show that it is possible to rewrite the material equation of curvature in a compact simplified form that express directly the curvature variation as a function of the median elongation andof the distribution of the differential growth. Through this extended model, called the ACE model, two main destabilizing effects of growth on the tropic movement are identified : i the passive orientation drift, which occurs when a curved element elongates without differential growth and ii the fixed curvature which occurs when a element leaves the elongation zone and is no longer able to change its curvature actively. By comparing the AC and ACE models to experiments, these two effects were however found negligible, revealing a probable selection for rapid convergence to the steady state shape during the tropic movement so as to escape the growth destabilizing effects, involving in particular a selection over proprioceptive sensitivity. Then the simplified AC mode can be used to analyze gravitropism and posture control in actively elongating plant organs without significant information loss.

  3. A hydroponic method for plant growth in microgravity

    Science.gov (United States)

    Wright, B. D.

    1985-01-01

    A hydroponic apparatus under development for long-term microgravity plant growth is described. The capillary effect root environment system (CERES) is designed to keep separate the nutrient and air flows, although both must be simultaneously available to the roots. Water at a pressure slightly under air pressure is allowed to seep into a plastic depression covered by a plastic screen and a porous membrane. A root in the air on the membrane outer surface draws the moisture through it. The laboratory model has a wire-based 1.241 mm mesh polyethylene screen and a filter membrane with 0.45 micron pores, small enough to prohibit root hair penetration. The design eliminates the need to seal-off the plant environment. Problems still needing attention include scaling up of the CERES size, controlling biofouling of the membrane, and extending the applications to plants without fibrous root systems.

  4. Sowing quality of seeds sunflower, depending on the influence of plant growth regulators and protectants

    OpenAIRE

    Буряк, Ю. І.; Огурцов, Ю. Є.; Чернобаб, О. В.; Клименко, І. І.

    2014-01-01

    Aim. The aim of this work was to study the influence of plant growth regulators and protectants on the sowing quality of seeds parental forms and hybrids of sunflower.Methodology and materials. Research conducted in the Plant Production Institute named after V.Ya. Yuriev NAAS. The predecessor of sunflower – winter wheat. Sunflower seeds parent lines Сх1010А, Х720В, Х526В and hybrids F1 Romance and Maximus were sown in optimal terms with the seeding norm of 57 thousand pieces of viable seeds p...

  5. Early Growth of Improved Acacia mangium at Different Planting Densities

    Directory of Open Access Journals (Sweden)

    Arif Nirsatmanto

    2016-08-01

    Full Text Available Integrating tree improvement into silvicultural practices is essential in forest plantation. Concerning this fact, Acacia mangium spacing trial planted using genetically improved seed was established in West Java. This study was aimed to evaluate the impact of ages and planting density on early growth of improved seed A. mangium in the spacing trial. Improved seed from 2 seed orchards (SSO-5 and SSO-20 and a control of unimproved seed from seed stand (SS-7 were tested together in spacing 3 × 3 m and 2 × 2 m. Height, diameter, stem volume, and stand volume were observed at 3 ages. The results showed that improved seed consistently outperformed to unimproved seed. Ages were highly significant for all traits, but the significant difference varied among traits and seed sources for planting density and the interactions. High density performed better growth than low density at first year, and they were varied in subsequent ages depending on traits and seed sources. Improved seed from less intensity selection orchard was less tolerance to high density than that from high intensity selection orchard, but the tolerance was reversed in low density. Improved seed A. mangium from different level of genetic selection has responded differently in behavior to the changes of planting density.

  6. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors.

    Science.gov (United States)

    Cortés-Flores, Jorge; Hernández-Esquivel, Karen Beatriz; González-Rodríguez, Antonio; Ibarra-Manríquez, Guillermo

    2017-01-01

    Analyses of the influence of temporal variation in abiotic factors on flowering phenology of tropical dry forest species have not considered the possible response of species with different growth forms and pollination syndromes, while controlling for phylogenetic relationships among species. Here, we investigated the relationship between flowering phenology, abiotic factors, and plant functional attributes, while controlling for phylogenetic relationship among species, in a dry forest community in Mexico. We characterized flowering phenology (time and duration) and pollination syndromes of 55 tree species, 49 herbs, 24 shrubs, 15 lianas, and 11 vines. We tested the influence of pollination syndrome, growth form, and abiotic factors on flowering phenology using phylogenetic generalized least squares. We found a relationship between flowering duration and time. Growth form was related to flowering time, and the pollination syndrome had a more significant relationship with flowering duration. Flowering time variation in the community was explained mainly by abiotic variables, without an important phylogenetic effect. Flowering time in lianas and trees was negatively and positively correlated with daylength, respectively. Functional attributes, environmental cues, and phylogeny interact with each other to shape the diversity of flowering patterns. Phenological differentiation among species groups revealed multiples strategies associated with growth form and pollination syndromes that can be important for understanding species coexistence in this highly diverse plant community. © 2017 Botanical Society of America.

  7. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales.

    Science.gov (United States)

    Smith, Sally E; Smith, F Andrew

    2011-01-01

    Root systems of most land plants form arbuscular mycorrhizal (AM) symbioses in the field, and these contribute to nutrient uptake. AM roots have two pathways for nutrient absorption, directly through the root epidermis and root hairs and via AM fungal hyphae into root cortical cells, where arbuscules or hyphal coils provide symbiotic interfaces. New physiological and molecular evidence shows that for phosphorus the mycorrhizal pathway (MP) is operational regardless of plant growth responses (positive or negative). Amounts delivered cannot be determined from plant nutrient contents because when responses are negative the contribution of the direct pathway (DP) is reduced. Nitrogen (N) is also delivered to roots via an MP, but the contribution to total N requirement and the costs to the plant are not clear. The functional interplay between activities of the DP and MP has important implications for consideration of AM symbioses in ecological, agronomic, and evolutionary contexts.

  8. Key Gaps for Enabling Plant Growth in Future Missions

    Science.gov (United States)

    Anderson, Molly; Motil, Brian; Barta, Dan; Fritsche, Ralph; Massa, Gioia; Quincy, Charlie; Romeyn, Matthew; Wheeler, Ray; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017. Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space

  9. Florigen and anti-florigen - a systemic mechanism for coordinating growth and termination in flowering plants.

    Science.gov (United States)

    Lifschitz, Eliezer; Ayre, Brian G; Eshed, Yuval

    2014-01-01

    Genetic studies in Arabidopsis established FLOWERING LOCUS T (FT) as a key flower-promoting gene in photoperiodic systems. Grafting experiments established unequivocal one-to-one relations between SINGLE FLOWER TRUSS (SFT), a tomato homolog of FT, and the hypothetical florigen, in all flowering plants. Additional studies of SFT and SELF PRUNING (SP, homolog of TFL1), two antagonistic genes regulating the architecture of the sympodial shoot system, have suggested that transition to flowering in the day-neutral and perennial tomato is synonymous with "termination." Dosage manipulation of its endogenous and mobile, graft-transmissible levels demonstrated that florigen regulates termination and transition to flowering in an SP-dependent manner and, by the same token, that high florigen levels induce growth arrest and termination in meristems across the tomato shoot system. It was thus proposed that growth balances, and consequently the patterning of the shoot systems in all plants, are mediated by endogenous, meristem-specific dynamic SFT/SP ratios and that shifts to termination by changing SFT/SP ratios are triggered by the imported florigen, the mobile form of SFT. Florigen is a universal plant growth hormone inherently checked by a complementary antagonistic systemic system. Thus, an examination of the endogenous functions of FT-like genes, or of the systemic roles of the mobile florigen in any plant species, that fails to pay careful attention to the balancing antagonistic systems, or to consider its functions in day-neutral or perennial plants, would be incomplete.

  10. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds

    NARCIS (Netherlands)

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M.; Park, Kyungseok

    2015-01-01

    Abstract Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens

  11. Nucleation and Growth of Atomizing Droplets during Spray Forming

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the behaviors of nucleation and growth of atomizing droplets were investigated by means of microstructure observation and theoretical analysis. The results showed that, there is a unique heterogeneous nucleation mechanism for atomizing process that pre-solid smaller particles colliding with and embedding in liquid-state larger ones act as heterogeneous nuclei. In addition, the reasons of presenting the dendritic growth was analyzed based on the nonequilibrium solute distribution theory, and the relationship between the microstructural refinement and the cooling rate of the material was given.

  12. Effects of N Forms and Rates on Vegetable Growth and Nitrate Accumulation

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-Hui; LI Sheng-Xiu

    2003-01-01

    Experiments were carried out on a vegetable field with Peking cabbage (Brassica pekinensis (Lour.)Rupr.), cabbage (Brassica chinensis var. Oleifera Makino and nemoto), green cabbage (Brassica chinensis L.), spinach (Spinacia oleracea L.) and rape (Brassica campestris L.) to study the effects of N forms and N rates on their growth and nitrate accumulation. The results indicated that application of ammonium chloride,ammonium nitrate, sodium nitrate and urea significantly increased the yields and nitrate concentrations of Peking cabbage and spinach. Although no significant difference was found in the yields after application of the 4 N forms, nitrate N increased nitrate accumulation in vegetables much more than ammonium N. The vegetable yields were not increased continuously with N rate increase, and oversupply of N reduced the plant growth, leading to a yield decline. This trend was also true for nitrate concentrations in some vegetables and at some sampling times. However, as a whole, the nitrate concentrations in vegetables were positively correlated with N rates. Thus, addition of N fertilizer to soil was the major cause for increases in nitrate concentrations in vegetables. Nitrate concentrations were much higher in roots, stems and petioles than in blades at any N rate.

  13. Effects of biogas digestate on soil properties and plant growth

    Science.gov (United States)

    Gulyás, Miklós; Füleky, György

    2013-04-01

    Farming methods and food industries generate large amounts manure and other useful raw materials that need safe disposal. Following the international trends great numbers of biogas plants were opened during the last few years in Hungary. However this issue presents a number of new questions, including the subsequent use of anaerobic fermentation residues. So far we have only limited information about it's agricultural applications. Farmers and authorities are very skeptic because feedstocks are very different so the endproduct will be different, too. However, this endproduct can be applied as fertilizer. The aim of our work is to determine the effects of this product in plant-soil system. Digestate contains high amount of nitrogen which is present mainly ammonium form and this form can cause root depression and lower germination rates. Pot experiments were established with different rates of nitrogen content (80 kg ha-1N, 120 kg ha-1N, 170 kg ha-1N, and control). Maximum rates were determine by the Nitrate Directive. Soil moisture was 60% of maximum of water capacity. Digestate and distilled water were homogenized and added to 200g loamy soil. Rye-grass (Lolium perenne) was applied as a test plant. Treatments were randomized design and 10 replications. Three pot from each treatment were used to observe the germination and progress of plants. We investigated the effect of the digestate on nitrate- and ammonium-ion content of soil. The amount of nitrate- and ammonium-N of soil was determine with distillation. The ammonium-N levels increased with the doses on the first day but on the sixth-seventh day this amount totally falled down, because NH4-N transformed to NO3-N. Nitrate level increased continuously untill the tenth day, later decreased as the result of the plant and microbes consumption. The increasing doses inhibited the germination and root development of the plants. We experienced fewer roots, which were different form control.

  14. Minimising toxicity of cadmium in plants--role of plant growth regulators.

    Science.gov (United States)

    Asgher, Mohd; Khan, M Iqbal R; Anjum, Naser A; Khan, Nafees A

    2015-03-01

    A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.

  15. Plant hydraulic traits govern forest water use and growth

    Science.gov (United States)

    Matheny, Ashley; Bohrer, Gil; Fiorella, Rich; Mirfenderesgi, Golnazalsadat

    2016-04-01

    Biophysical controls at the leaf, stem, and root levels govern plant water acquisition and use. Suites of sometimes co-varying traits afford plants the ability to manage water stress at each of these three levels. We studied the contrasting hydraulic strategies of red oaks (Q. rubra) and red maples (A. rubrum) in northern Michigan, USA. These two species differ in stomatal regulation strategy and xylem architecture, and are thought to root at different depths. Water use was monitored through sap flux, stem water storage, and leaf water potential measurements. Depth of water acquisition was determined on the basis of stable oxygen and hydrogen isotopes from xylem water samples taken from both species. Fifteen years of bole growth records were used to compare the influence of the trees' opposing hydraulic strategies on carbon acquisition and growth. During non-limiting soil moisture conditions, transpiration from red maples typically exceeded that of red oak. However, during a 20% soil dry down, transpiration from red maples decreased by more than 80%, while transpiration from red oaks only fell by 31%. Stem water storage in red maple also declined sharply, while storage in red oaks remained nearly constant. The more consistent isotopic compositions of xylem water samples indicated that oaks can draw upon a steady, deep supply of water which red maples cannot access. Additionally, red maple bole growth correlated strongly with mean annual soil moisture, while red oak bole growth did not. These results indicate that the deeper rooting strategy of red oaks allowed the species to continue transpiration and carbon uptake during periods of intense soil water limitation, when the shallow-rooted red maples ceased transpiration. The ability to root deeply could provide an additional buffer against drought-induced mortality, which may permit some anisohydric species, like red oak, to survive hydrologic conditions that would be expected to favor survival of more isohydric

  16. Effects of Planting Density on Growth of New Clones in Populus tomentosa

    Institute of Scientific and Technical Information of China (English)

    Zhang Zihui; Zhang Zhiyi; Lin Shanzhi; Li Xinguo

    2003-01-01

    Effects of seven planting densities on the growth and tree form of nine 5-year-old new clones in Populus tomentosa were studied. The plantations, arranged with completely random block design, were located in Wuzhi County, Henan Province. Results indicated that effects of planting density on the diameter at breast height (DBH), individual volume and growing stock increment of all new clones in P. tomentosa were significant at the 1% level of probability, effects of planting density on the tree height increment of new clones B2 and B31 and on the live branches height (LBH) increment of new clones B5 and B30 were significant at the 5% level of probability, while the interaction between planting density and clone was not significant at the 5% level of probability. It was concluded that the degree of differences among new clones within the same planting density was different with different planting densities and traits. For short rotation industrial timber, clones B1, B3, B4, B5, B7, B9, B31 were suitable with the density of 1 000-2 500 trees per hectare, while for bigger diameter timber, clones B1, B3, B4, B7, B9, B31 could be used with the planting density of 660-833 trees per hectare. Clonal repeatability was also different in different planting densities.

  17. Influence of growth regulators on plant growth, yield, and skin color of specialty potatoes

    Science.gov (United States)

    2,4-D has been used since the 1950’s to enhance color in red-skinned potatoes, but there is little research on the potential use of other plant growth regulators to improve tuber skin color in the wide range of specialty potatoes now available on the market. Field trials conducted at Parma, ID in 20...

  18. Phenotypic plasticity of fine root growth increases plant productivity in pine seedlings

    Directory of Open Access Journals (Sweden)

    Grissom James E

    2004-09-01

    Full Text Available Abstract Background The plastic response of fine roots to a changing environment is suggested to affect the growth and form of a plant. Here we show that the plasticity of fine root growth may increase plant productivity based on an experiment using young seedlings (14-week old of loblolly pine. We use two contrasting pine ecotypes, "mesic" and "xeric", to investigate the adaptive significance of such a plastic response. Results The partitioning of biomass to fine roots is observed to reduce with increased nutrient availability. For the "mesic" ecotype, increased stem biomass as a consequence of more nutrients may be primarily due to reduced fine-root biomass partitioning. For the "xeric" ecotype, the favorable influence of the plasticity of fine root growth on stem growth results from increased allocation of biomass to foliage and decreased allocation to fine roots. An evolutionary genetic analysis indicates that the plasticity of fine root growth is inducible, whereas the plasticity of foliage is constitutive. Conclusions Results promise to enhance a fundamental understanding of evolutionary changes of tree architecture under domestication and to design sound silvicultural and breeding measures for improving plant productivity.

  19. Influence of Nitrogen Sources and Plant Growth-Promoting Rhizobacteria Inoculation on Growth, Crude Fiber and Nutrient Uptake in Squash (Cucurbita moschata Duchesne ex Poir.) Plants

    OpenAIRE

    Alice I. TCHIAZE; Victor D. TAFFOUO; Henri FANKEM; Kenne, Martin; Régis BAZIRAMAKENGA; Ekodeck, Georges E.; Antoun, Hani

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR, B) have immense potential application in sustainable agriculture as ecofriendly biofertilizers and biopesticides. In this study, the effects of three nitrogen (N) sources (NO3-, NH4+ and NO3NH4) and PGPR on growth, crude fiber and nutrient uptake were investigated in squash plants. Some growth parameters [root dry weight (RDW), shoot dry weight (SDW), total plant dry weight (PDW), number of leaves (NL), shoot length (SL), stem diameter (SD) and numb...

  20. Dynamics of seed-borne rice endophytes on early plant growth stages

    NARCIS (Netherlands)

    Hardoim, Pablo R.; Hardoim, Cristiane C. P.; van Overbeek, Leonard S.; van Elsas, Jan Dirk

    2012-01-01

    Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However,

  1. Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages

    NARCIS (Netherlands)

    Hardoim, P.R.; Hardoim, C.C.P.; Overbeek, van L.S.; Elsas, van J.D.

    2012-01-01

    Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However,

  2. EFFICIENCY OF PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR IN SUGARCANE

    Directory of Open Access Journals (Sweden)

    Antonio Morgado González

    2015-12-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR are an alternative for promoting sugarcane (Saccharum spp. development. Growth promotion was evaluated in sugarcane vitroplants inoculated separately with twenty-four strains of seven different bacterial species. Total indole synthesis and phosphate solubilization activity were determined in each strain. The experimental unit was one 5 L pot filled with a sterile mixture of farm soil-agrolite and one plant. The experimental design was completely random. Inoculation consisted of 1.0 mL of bacterial suspension (1 × 107 CFU. Plant height, stem diameter, number of shoots, leaf area and dry matter of shoot and root were determined every two weeks. The Ochrobactrum anthropi strains N208 and IMP311 and Pseudomonas luteola IMPCA244 had the highest production of total indoles (116.69, 115.70 and 117.34 µg mL-1, respectively. The Stenotrophomonas maltophilia strains CA158 and 79 exhibited the highest values of phosphate solubilization (222.43 and 216.38 µg mL-1, respectively. In general, plant height increased 27.75%, stem diameter 30.75%, number of tillers 38.5%, leaf area 49%, aerial dry matter 59.75% and root dry matter 59.5%. P. luteola, P. f luorescens, O. anthropi and S. maltophilia exhibited the highest values of the leaf area index, net assimilation, and relative and absolute growth rates. P. luteola IMPCA244, O. anthropi IMP311, Aeromonas salmonicida N264, Burkholderia cepacia N172, P. f luorescens N50 and S. maltophilia 79 promoted the highest values in different response variables throughout the study. Before using these strains as sugarcane biofertilizer, additional studies are required.

  3. Light and Plants. A Series of Experiments Demonstrating Light Effects on Seed Germination, Plant Growth, and Plant Development.

    Science.gov (United States)

    Downs, R. J.; And Others

    A brief summary of the effects of light on plant germination, growth and development, including photoperiodism and pigment formation, introduces 18 experiments and demonstrations which illustrate aspects of these effects. Detailed procedures for each exercise are given, the expected results outlined, and possible sources of difficulty discussed.…

  4. Plant growth modeling at the JSC variable pressure growth chamber - An application of experimental design

    Science.gov (United States)

    Miller, Adam M.; Edeen, Marybeth; Sirko, Robert J.

    1992-01-01

    This paper describes the approach and results of an effort to characterize plant growth under various environmental conditions at the Johnson Space Center variable pressure growth chamber. Using a field of applied mathematics and statistics known as design of experiments (DOE), we developed a test plan for varying environmental parameters during a lettuce growth experiment. The test plan was developed using a Box-Behnken approach to DOE. As a result of the experimental runs, we have developed empirical models of both the transpiration process and carbon dioxide assimilation for Waldman's Green lettuce over specified ranges of environmental parameters including carbon dioxide concentration, light intensity, dew-point temperature, and air velocity. This model also predicts transpiration and carbon dioxide assimilation for different ages of the plant canopy.

  5. On Growth and Form of the Zebrafish Gut Microbiome

    Science.gov (United States)

    Jemielita, Matthew; Taormina, Michael; Rolig, Annah; Burns, Adam; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2014-03-01

    The vertebrate gut is home to a diverse microbial community whose composition has a strong influence on the development and health of the host organism. Researchers can identify the members of the microbiota, yet little is known about the spatial and temporal dynamics of these microbial communities, including the mechanisms guiding their nucleation, growth, and interactions. We address these issues using the larval zebrafish (Danio rerio) as a model organism, which are raised microbe-free and then inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging using light sheet fluorescence microscopy enables visualization of the gut's entire microbial population over the first 24 hours of colonization. Image analysis allows us to quantify microbial populations that range from a few individuals to tens of thousands of microbes, and analyze the structure and growth kinetics of gut bacterial communities. We find that genetically-identical microbes can show surprisingly different growth rates and colonization abilities depending on their order of arrival. This demonstrates that knowing only the constituents of the gut community is insufficient to determine their dynamics; rather, the history of colonization matters.

  6. Characterization of Plant Growth under Single-Wavelength Laser Light Using the Model Plant Arabidopsis Thaliana

    KAUST Repository

    Ooi, Amanda

    2016-12-01

    Indoor horticulture offers a promising solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available lighting is suboptimal, therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. Lasers are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Besides, laser beams can be tailored to match the absorption profiles of different plants. We have developed a prototype laser growth chamber and demonstrate that laser-grown plants can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteomic data show that the singlewavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. Furthermore, stomatal movement partly determines the plant productivity and stress management. Abscisic acid (ABA) induces stomatal closure by promoting net K+-efflux from guard cells through outwardrectifying K+ (K+ out) channels to regulate plant water homeostasis. Here, we show that the Arabidopsis thaliana guard cell outward-rectifying K+ (ATGORK) channel is a direct target for ABA in the regulation of stomatal aperture and hence gas exchange and transpiration. Addition of (±)-ABA, but not the biologically inactive (−)-isomer, increases K+ out channel activity in Vicia faba guard cell protoplast. A similar ABA

  7. Lichen physiological traits and growth forms affect communities of associated invertebrates.

    Science.gov (United States)

    Bokhorst, Stef; Asplund, Johan; Kardol, Paul; Wardle, David A

    2015-09-01

    While there has been much interest in the relationships between traits of primary producers and composition of associated invertebrate consumer communities, our knowledge is largely based on studies from vascular plants, while other types of functionally important producers, such as lichens, have rarely been considered. To address how physiological traits of lichens drive community composition of invertebrates, we collected thalli from 27 lichen species from southern Norway and quantified the communities of associated springtails, mites, and nematodes. For each lichen species, we measured key physiological thallus traits and determined whether invertebrate communities were correlated with these traits. We also explored whether invertebrate communities differed among lichen groups, categorized according to nitrogen-fixing ability, growth form, and substratum. Lichen traits explained up to 39% of the variation in abundances of major invertebrate groups. For many invertebrate groups, abundance was positively correlated with lichen N and P concentrations, N:P ratio, and the percentage of water content on saturation (WC), but had few relationships with concentrations of carbon-based secondary compounds. Diversity and taxonomic richness of invertebrate groups were sometimes also correlated with lichen N and N:P ratios. Nitrogen-fixing lichens showed higher abundance and diversity of some invertebrate groups than did non-N-fixing lichens. However, this emerged in part because most N-fixing lichens have a foliose growth form that benefits invertebrates, through, improving the microclimate, independently of N concentration. Furthermore, invertebrate communities associated with terricolous lichens were determined more by their close proximity to the soil invertebrate pool than by lichen traits. Overall, our results reveal that differences between lichen species have a large impact on the invertebrate communities that live among the thalli. Different invertebrate groups show

  8. Preferential Promotion of Lycopersicon esculentum (Tomato) Growth by Plant Growth Promoting Bacteria Associated with Tomato.

    Science.gov (United States)

    Vaikuntapu, Papa Rao; Dutta, Swarnalee; Samudrala, Ram Babu; Rao, Vukanti R V N; Kalam, Sadaf; Podile, Appa Rao

    2014-12-01

    A total of 74 morphologically distinct bacterial colonies were selected during isolation of bacteria from different parts of tomato plant (rhizoplane, phylloplane and rhizosphere) as well as nearby bulk soil. The isolates were screened for plant growth promoting (PGP) traits such as production of indole acetic acid, siderophore, chitinase and hydrogen cyanide as well as phosphate solubilization. Seven isolates viz., NR4, NR6, RP3, PP1, RS4, RP6 and NR1 that exhibited multiple PGP traits were identified, based on morphological, biochemical and 16S rRNA gene sequence analysis, as species that belonged to four genera Aeromonas, Pseudomonas, Bacillus and Enterobacter. All the seven isolates were positive for 1-aminocyclopropane-1-carboxylate deaminase. Isolate NR6 was antagonistic to Fusarium solani and Fusarium moniliforme, and both PP1 and RP6 isolates were antagonistic to F. moniliforme. Except RP6, all isolates adhered significantly to glass surface suggestive of biofilm formation. Seed bacterization of tomato, groundnut, sorghum and chickpea with the seven bacterial isolates resulted in varied growth response in laboratory assay on half strength Murashige and Skoog medium. Most of the tomato isolates positively influenced tomato growth. The growth response was either neutral or negative with groundnut, sorghum and chickpea. Overall, the results suggested that bacteria with PGP traits do not positively influence the growth of all plants, and certain PGP bacteria may exhibit host-specificity. Among the isolates that positively influenced growth of tomato (NR1, RP3, PP1, RS4 and RP6) only RS4 was isolated from tomato rhizosphere. Therefore, the best PGP bacteria can also be isolated from zones other than rhizosphere or rhizoplane of a plant.

  9. Contributions of green light to plant growth and development.

    Science.gov (United States)

    Wang, Yihai; Folta, Kevin M

    2013-01-01

    Light passing through or reflected from adjacent foliage provides a developing plant with information that is used to guide specific genetic and physiological processes. Changes in gene expression underlie adaptation to, or avoidance of, the light-compromised environment. These changes have been well described and are mostly attributed to a decrease in the red light to far-red light ratio and/or a reduction in blue light fluence rate. In most cases, these changes rely on the integration of red/far-red/blue light signals, leading to changes in phytohormone levels. Studies over the last decade have described distinct responses to green light and/or a shift of the blue-green, or red-green ratio. Responses to green light are typically low-light responses, suggesting that they may contribute to the adaptation to growth under foliage or within close proximity to other plants. This review summarizes the growth responses in artificially manipulated light environments with an emphasis on the roles of green wavebands. The information may be extended to understanding the influence of green light in shade avoidance responses as well as other plant developmental and physiological processes.

  10. Chrysosporium pseudomerdarium produces gibberellins and promotes plant growth.

    Science.gov (United States)

    Hamayun, Muhammad; Khan, Sumera Afzal; Iqbal, Ilyas; Na, Chae-In; Khan, Abdul Latif; Hwang, Young-Hyun; Lee, Byung-Hyun; Lee, In-Jung

    2009-08-01

    We isolated 10 endophytic fungi from the roots of drought stressed soybean cultivar Hwangkeumkong and bioassayed on waito-c rice and soybean seedlings, in order to identify plant growth-promoting fungi. The fungal isolate D-2-1 provided the best result for plant height and biomass promotion as compared to wild type Gibberella fujikuroi. The D-2-1 culture filtrate (CF) was analyzed for the presence of gibberellins (GAs) and it was observed that all physiologically active GAs, especially gibberellic acid, were present in higher amounts (GA1, 0.24 ng/ml; GA3, 8.99 ng/ml; GA4, 2.58 ng/ml and GA7, 1.39 ng/ml) in conjunction with physiologically inactive GA5, GA9, GA15, GA19, and GA24. The fungal isolate D-2-1 was identified as a new strain of Chrysosporium pseudomerdarium through phylogenetic analysis of 18S rDNA sequence. Plant growth promotion and GAs production capacity of genus Chrysosporium have been reported for the first time in this study.

  11. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress

    Directory of Open Access Journals (Sweden)

    ِArafat eAbdel Latef

    2016-03-01

    Full Text Available Silicon (Si has been known to augment plant defense against biotic and abiotic pressures. Maize (Zea maize L. is classified as a Si accumulator and is relatively susceptible to alkaline stress. In this work, grains of maize were grown in pots and exposed to various concentrations of Na2CO3 (0, 25, 50 and 75 mM with or without 1.5 mM Si in the form of sodium metasilicate Na2O3Si.5H2O for 25 days. Alkaline-stressed plants showed a decrease in growth parameters, leaf relative water content (LRWC, and the contents of photosynthetic pigments, soluble sugars, total phenols and potassium ion (K+, as well as potassium/sodium ion (K+/Na+ ratio. By contrast, alkaline stress increased the contents of soluble proteins, total free amino acids, proline, Na+ and malondialdehyde (MDA, as well as the activities of superoxide dismutase (SOD, catalase (CAT and peroxidase (POD in stressed plants. On the other hand, application of Si by grain priming improved growth of stressed plants, which was accompanied by the enhancement in LRWC, levels of photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids, K+ and activities of SOD, CAT and POD enzymes. Furthermore, Si supplement resulted in a decrease in the contents of proline, MDA and Na+, which together with enhanced K+ level led to a favorable adjustment of K+/Na+ ratio, in stressed plants relative to plants treated with alkaline stress alone. Taken together, these results indicate that Si plays a pivotal role in alleviating the negative effects of alkaline stress on the maize growth by improving water status, enhancing photosynthetic pigments, accumulating osmoprotectants rather than proline, activating the antioxidant machinery, and maintaining the balance of K+/Na+. Thus, our findings demonstrate that seed priming with Si is an efficient strategy that can be used to boost tolerance of maize plants to alkaline stress.

  12. Experimental determination of magnesium isotope fractionation during higher plant growth

    Science.gov (United States)

    Bolou-Bi, Emile B.; Poszwa, Anne; Leyval, Corinne; Vigier, Nathalie

    2010-05-01

    Two higher plant species (rye grass and clover) were cultivated under laboratory conditions on two substrates (solution, phlogopite) in order to constrain the corresponding Mg isotope fractionations during plant growth and Mg uptake. We show that bulk plants are systematically enriched in heavy isotopes relative to their nutrient source. The Δ 26Mg plant-source range from 0.72‰ to 0.26‰ for rye grass and from 1.05‰ to 0.41‰ for clover. Plants grown on phlogopite display Mg isotope signatures (relative to the Mg source) ˜0.3‰ lower than hydroponic plants. For a given substrate, rye grass display lower δ 26Mg (by ˜0.3‰) relative to clover. Magnesium desorbed from rye grass roots display a δ 26Mg greater than the nutrient solution. Adsorption experiments on dead and living rye grass roots also indicate a significant enrichment in heavy isotopes of the Mg adsorbed on the root surface. Our results indicate that the key processes responsible for heavy isotope enrichment in plants are located at the root level. Both species also exhibit an enrichment in light isotopes from roots to shoots (Δ 26Mg leaf-root = -0.65‰ and -0.34‰ for rye grass and clover grown on phlogopite respectively, and Δ 26Mg leaf-root of -0.06‰ and -0.22‰ for the same species grown hydroponically). This heavy isotope depletion in leaves can be explained by biological processes that affect leaves and roots differently: (1) organo-Mg complex (including chlorophyll) formation, and (2) Mg transport within plant. For both species, a positive correlation between δ 26Mg and K/Mg was observed among the various organs. This correlation is consistent with the link between K and Mg internal cycles, as well as with formation of organo-magnesium compounds associated with enrichment in heavy isotopes. Considering our results together with the published range for δ 26Mg of natural plants and rivers, we estimate that a significant change in continental vegetation would induce a change of

  13. The Effect of Plant Growth Promoting Bacteria on Transplants Growth and Lettuce Yield in Organic Production

    Directory of Open Access Journals (Sweden)

    Szczech Magdalena

    2016-12-01

    Full Text Available Application of beneficial bacterial strain B125 (Enterobacter sp. and strain PZ9 (Bacillus sp. in lettuce transplants production significantly enhanced seed germination and plant biomass. The best effect was obtained when the mixture of B125 and PZ9 was used. Combined application of these bacteria significantly increased transplants biomass, which was about 45% higher than that in the control. However, after planting these transplants in organic field, generally, there were no differences in yield and nutrient content in plants treated and not treated with the bacteria, except for nitrogen and vitamin C. The lettuce grown from transplants treated with bacterial mixture B125 + PZ9 contained significantly higher nitrogen than plants from other treatments. Opposite to nitrogen, bacterial applications decreased the amount of vitamin C. The growth and organic lettuce composition was affected by planting time. The yield was higher in spring, but the concentration of nutrients in these plants was lower than that in plants harvested in autumn. Climatic and light conditions in the late season were the reasons for increased dry matter content, minerals, phenolic compounds, and vitamin C, as well as high concentration of nitrates.

  14. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion

    Directory of Open Access Journals (Sweden)

    M. Kaleem eABBASI

    2015-03-01

    Full Text Available AbstractThe present study was conducted to characterize the native plant growth promoting bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK, Pakistan. Nine bacterial isolates were purified, screened in vitro for plant growth promoting (PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.. Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK–3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these PGPR strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76% and root N contents (up to 32% was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK.

  15. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion.

    Science.gov (United States)

    Majeed, Afshan; Abbasi, M Kaleem; Hameed, Sohail; Imran, Asma; Rahim, Nasir

    2015-01-01

    The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram-positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK-3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these Plant growth-promoting rhizobacteria (PGPR) strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76%) and root N contents (up to 32%) was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK.

  16. THE RESURRECTION PLANT TRIPOGON SPICATUS (POACEAE HARBORS A DIVERSITY OF PLANT GROWTH PROMOTING BACTERIA IN NORTHEASTERN BRAZILIAN CAATINGA

    Directory of Open Access Journals (Sweden)

    Paulo Ivan Fernandes-Júnior

    2015-08-01

    Full Text Available Plant species that naturally occur in the Brazilian Caatinga(xeric shrubland adapt in several ways to these harsh conditions, and that can be exploited to increase crop production. Among the strategic adaptations to confront low water availability, desiccation tolerance stands out. Up to now, the association of those species with beneficial soil microorganisms is not well understood. The aim of this study was to characterize Tripogon spicatusdiazotrophic bacterial isolates from the Caatingabiome and evaluate their ability to promote plant growth in rice. Sixteen bacterial isolates were studied in regard to their taxonomic position by partial sequencing of the 16S rRNA gene, putative diazotrophic capacity, in vitro indole-acetic acid (IAA production and calcium phosphate solubilization, metabolism of nine different C sources in semi-solid media, tolerance to different concentrations of NaCl to pHs and intrinsic resistance to nine antibiotics. Finally, the ability of the bacterial isolates to promote plant growth was evaluated using rice (Oryza sativa as a model plant. Among the 16 isolates evaluated, eight of them were classified as Enterobacteriaceae members, related to Enterobacter andPantoeagenera. Six other bacteria were related toBacillus, and the remaining two were related toRhizobiumand Stenotrophomonas.The evaluation of total N incorporation into the semi-solid medium indicated that all the bacteria studied have putative diazotrophic capacity. Two bacteria were able to produce more IAA than that observed for the strain BR 11175Tof Herbaspirillum seropedicae.Bacterial isolates were also able to form a microaerophilic pellicle in a semi-solid medium supplemented with different NaCl concentrations up to 1.27 mol L-1. Intrinsic resistance to antibiotics and the metabolism of different C sources indicated a great variation in physiological profile. Seven isolates were able to promote rice growth, and two bacteria were more efficient than the

  17. Phosphate solubilizing bacteria and their role in plant growth promotion.

    Science.gov (United States)

    Rodríguez, H; Fraga, R

    1999-10-01

    The use of phosphate solubilizing bacteria as inoculants simultaneously increases P uptake by the plant and crop yield. Strains from the genera Pseudomonas, Bacillus and Rhizobium are among the most powerful phosphate solubilizers. The principal mechanism for mineral phosphate solubilization is the production of organic acids, and acid phosphatases play a major role in the mineralization of organic phosphorous in soil. Several phosphatase-encoding genes have been cloned and characterized and a few genes involved in mineral phosphate solubilization have been isolated. Therefore, genetic manipulation of phosphate-solubilizing bacteria to improve their ability to improve plant growth may include cloning genes involved in both mineral and organic phosphate solubilization, followed by their expression in selected rhizobacterial strains. Chromosomal insertion of these genes under appropriate promoters is an interesting approach.

  18. Logistic Growth and Ergodic Properties of Urban Forms

    CERN Document Server

    Masucci, A Paolo; Wang, Jiaqiu; Hatna, Erez; Stanilov, Kiril; Batty, Michael

    2015-01-01

    Urban morphology has presented significant intellectual challenges to mathematicians and physicists ever since the eighteenth century, when Euler first explored the famous Konigsberg bridges problem. Many important regularities and allometries have been observed in urban studies, including Zipf's law and Gibrat's law, rendering cities attractive systems for analysis within statistical physics. Nevertheless, a broad consensus on how cities and their boundaries are defined is still lacking. Applying percolation theory to the street intersection space, we show that growth curves for the maximum cluster size of the largest cities in the UK and in California collapse to a single curve, namely the logistic. Subsequently, by introducing the concept of the condensation threshold, we show that natural boundaries of cities can be well defined in a universal way. This allows us to study and discuss systematically some of the allometries that are present in cities, thus casting light on the concept of ergodicity as relat...

  19. Distribution System Optimization Planning Based on Plant Growth Simulation Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Chun; CHENG Hao-zhong; HU Ze-chun; WANG Yi

    2008-01-01

    An approach for the integrated optimization of the construction/expansion capacity of high-voltage/medium-voltage (HV/MV) substations and the configuration of MV radial distribution network was presented using plant growth simulation algorithm (PGSA). In the optimization process, fixed costs correspondent to the investment in lines and substations and the variable costs associated to the operation of the system were considered under the constraints of branch capacity, substation capacity and bus voltage. The optimization variables considerably reduce the dimension of variables and speed up the process of optimizing. The effectiveness of the proposed approach was tested by a distribution system planning.

  20. Late Jurassic-Early Cretaceous coal-forming plants of the Bureya Basin, Russian Far East

    Science.gov (United States)

    Markevich, V. S.; Bugdaeva, E. V.

    2014-05-01

    The analysis of the composition of fossil palynomorphs from coals and clastic rocks of the Talyndzhan, Dublikan, Soloni, Chagdamyn, and Chemchuko formations of the Bureya coaliferous Basin revealed that the main coal-forming plants during the Talyndzhan and Dublikan time were represented by cyatheaceous ferns, plants similar to Pinaceae, and plants produced Ginkgocycadophytus pollen. In the Soloni time, the boggy plant communities were composed of dominant Cyatheaceae, subordinate Pinaceae, rare Gleichenaceae representatives, and Ginkgocycadophytus-producing plants. During the Chagdamyn time, the main coal-forming role belonged to gleicheniaceous ferns, bryophytes, and lycopsids, while the Chemchuko time was marked by the dominant contribution of Gleicheniaceae, Cyatheaceae, Ginkgocycadophytus, and plants close to Taxodiaceae to the coal formation.

  1. Hierarchical Helical Order in the Twisted Growth of Plant Organs

    Science.gov (United States)

    Wada, Hirofumi

    2012-09-01

    The molecular and cellular basis of left-right asymmetry in plant morphogenesis is a fundamental issue in biology. A rapidly elongating root or hypocotyl of twisting mutants of Arabidopsis thaliana exhibits a helical growth with a handedness opposite to that of the underlying cortical microtubule arrays in epidermal cells. However, how such a hierarchical helical order emerges is currently unknown. We propose a model for investigating macroscopic chiral asymmetry in Arabidopsis mutants. Our elastic model suggests that the helical pattern observed is a direct consequence of the simultaneous presence of anisotropic growth and tilting of cortical microtubule arrays. We predict that the root helical pitch angle is a function of the microtubule helical angle and elastic moduli of the tissues. The proposed model is versatile and is potentially important for other biological systems ranging from protein fibrous structures to tree trunks.

  2. Dwarfing effects of plant growth regulators on narcissi

    Institute of Scientific and Technical Information of China (English)

    RENXu-qin; LIANGHong-wei; CHENBo-qing; JIMei-yun

    2003-01-01

    The effects of four kinds of plant growth regulators with different concentrations on narcissi were studied in 2001.The results showed that the regulators could inhibit the growths of height and leaves of narcissi. Of the four regulators, the dwarfing effects of paclobatrazol (PP333) and uniconazole (S3307) on narcissi were better than those of chlorocholine (CCC) and dimethyl amino-sussinamic acid (B9). All of the regulators did not have significant effect on the root length. Moreover, the time of flowering was later for the narcissi treated with regulators than that of the control to a certain extent, and the range delayed was from 2 days to 19 days. The correlation analysis results showed that there was a significant correlation between the time of flowering and the concentrations of regulators. The ornament value of narcissi was obviously improved by using the regulators.

  3. Pochonia chlamydosporia promotes the growth of tomato and lettuce plants

    Directory of Open Access Journals (Sweden)

    Rosangela Dallemole-Giaretta

    2015-10-01

    Full Text Available The fungus Pochonia chlamydosporia is one of the most studied biological agents used to control plant-parasitic nematodes. This study found that the isolates Pc-3, Pc-10 and Pc-19 of this fungus promote the growth of tomato and lettuce seedlings. The isolate Pc-19 colonized the rhizoplane of tomato seedlings in only 15 days and produced a large quantity of chlamydospores. This isolate was able to use cellulose as a carbon source, in addition to glucose and sucrose. Scanning electron microscopy (SEM revealed that hyphae of the P. chlamydosporia isolate Pc-10 penetrated the epidermal cells of the tomato roots. These three P. chlamydosporia isolates promote the growth of tomato and lettuce.

  4. Reversal of an immunity associated plant cell death program by the growth regulator auxin

    Directory of Open Access Journals (Sweden)

    Gopalan Suresh

    2008-12-01

    Full Text Available Abstract Background One form of plant immunity against pathogens involves a rapid host programmed cell death at the site of infection accompanied by the activation of local and systemic resistance to pathogens, termed the hypersensitive response (HR. In this work it was tested (i if the plant growth regulator auxin can inhibit the cell death elicited by a purified proteinaceous HR elicitor, (ii how far down the process this inhibition can be achieved, and (iii if the inhibition affects reporters of immune response. The effect of constitutive modulation of endogenous auxin levels in transgenic plants on this cell death program was also evaluated. Results The HR programmed cell death initiated by a bacterial type III secretion system dependent proteinaceous elicitor harpin (from Erwinia amylovora can be reversed till very late in the process by the plant growth regulator auxin. Early inhibition or late reversal of this cell death program does not affect marker genes correlated with local and systemic resistance. Transgenic plants constitutively modulated in endogenous levels of auxin are not affected in ability or timing of cell death initiated by harpin. Conclusion These data indicate that the cell death program initiated by harpin can be reversed till late in the process without effect on markers strongly correlated with local and systemic immunity. The constitutive modulation of endogenous auxin does not affect equivalent signaling processes affecting cell death or buffers these signals. The concept and its further study has utility in choosing better strategies for treating mammalian and agricultural diseases.

  5. Nitrogen forms and levels influence on growth and nutrition of cacao

    Science.gov (United States)

    Ammonium and nitrate are the major forms of N present in tropical soils. A climatically controlled growth chamber experiment was conducted to assess the influence of forms (NO3-, NH4+, and mix of NO3- + NH4+) and levels (1.5 to 12.0 mM) of N on the growth and nutrition of cacao (Theobroma cacao L). ...

  6. Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition

    Directory of Open Access Journals (Sweden)

    Yachana Jha

    2013-09-01

    Full Text Available The possible role of plant growth-promoting rhizobacteria (PGPR to alleviate salt stress during plant growth has been studied on paddy rice (Oryza sativa L. 'GJ-17' under greenhouse conditions; the study included growth parameters, mineral concentration, and antioxidant enzyme level. Salinity reduced plant growth, but PGPR inoculation reduced its harmful effect up to 1% salinity. Plants inoculated with PGPR under saline conditions showed 16% higher germination, 8% higher survival, 27% higher dry weight, and 31% higher plant height. Similarly, PGPR inoculated plants showed increased concentrations of N(26%, P (16%, K (31%, and reduced concentrations of Na (71% and Ca (36% as compared to non-inoculated control plants under saline conditions. Plants inoculated with PGPR under saline conditions also showed significant variations in antioxidant levels and growth physiology. Results suggested that inoculation with PGPR Bacillus pumilus and Pseudomonas pseudoalcaligenes in salt-stressed plants could help to alleviate salt stress in the paddy.

  7. Plant growth-promoting rhizobacteria affect the growth and nutrient uptake of Fraxinus americana container seedlings.

    Science.gov (United States)

    Liu, Fangchun; Xing, Shangjun; Ma, Hailin; Du, Zhenyu; Ma, Bingyao

    2013-05-01

    Plant growth-promoting rhizobacteria (PGPR) are important catalysts that regulate the functional properties of agricultural systems. However, there is little information on the effect of PGPR inoculation on the growth and nutrient accumulation of forest container seedlings. This study determined the effects of a growth medium inoculated with PGPR on the nutrient uptake, nutrient accumulation, and growth of Fraxinus americana container seedlings. PGPR inoculation with fertilizer increased the dry matter accumulation of the F. americana aerial parts with delayed seedling emergence time. Under fertilized conditions, the accumulation time of phosphorous (P) and potassium (K) in the F. americana aerial parts was 13 days longer due to PGPR inoculation. PGPR increased the maximum daily P and K accumulations in fertilized seedlings by 9.31 and 10.44 %, respectively, but had little impact on unfertilized ones. Regardless of fertilizer application, the root exudates, namely sugars, amino acids, and organic acids significantly increased because of PGPR inoculation. PGPR inoculation with fertilizer increased the root, shoot, and leaf yields by 19.65, 22.94, and 19.44 %, respectively, as well as the P and K contents by 8.33 and 10.60 %, respectively. Consequently, the N, P, and K uptakes increased by 19.85, 31.97, and 33.95 %, respectively. Hence, PGPR inoculation with fertilizer can be used as a bioenhancer for plant growth and nutrient uptake in forest container seedling nurseries.

  8. Life-form and Density of Valuable Non-timber Plants in Ukpom ...

    African Journals Online (AJOL)

    Nekky Umera

    State, Nigeria was assessed for the abundance of plant species producing ... vegetables, twigs, nuts and industrial products like rafter, gum, tannin, latex and dyes ... classified into four life-forms, namely: trees, shrubs, herbs and climbers. The.

  9. Effects of nutrients on Microcystis growth more easily forming bloom

    Institute of Scientific and Technical Information of China (English)

    OU Ming-ming; ZHOU Bao-xue; XIE Wei-jie; JIANG Ju-hui; CAI Wei-min

    2004-01-01

    Different nutrient media experimentally were N, P and Fe-limited conditions and a serial of diluted BG11 media. The cell change of morphology and life history, cell number, cell color and cell area of Microcystis were analyzed quantitatively. First, the effects of nitrogen, phosphorus and iron depletion were distinctively different. Phosphorus and iron depletion caused more special division cells, slowly growth increasing, the easier change of bigger cell area. Second, the nitrogen and iron depletion could make the color of alga from green to brown. Finally, according to the resource competition and Monod equation, Microcystis kinetics of phosphorus and iron were also examined. Ks and μmax of phosphorus absorption were 0.0352 μmol/L, 0.493 d-1 respectively; iron absorption: 0.00323 μmol/L, 0.483 d-1. In a word, some evidences of the Microcystis bloom privilege in certain nutrient conditions were indicated in the experiments. The privileges were determined as the reviving under the adverse circumstances through the special division, the various nitrogen resources, and the lower kinetics of phosphorus and iron than that of most of other algae. The conclusions provided the scientific basis for preventing and managing Microcystis bloom in freshwater.

  10. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs).

    Science.gov (United States)

    Moons, Ann

    2005-01-01

    Plant glutathioneS-transferases (GSTs) are a heterogeneous superfamily of multifunctional proteins, grouped into six classes. The tau (GSTU) and phi (GSTF) class GSTs are the most represented ones and are plant-specific, whereas the smaller theta (GSTT) and zeta (GSTZ) classes are also found in animals. The lambda GSTs (GSTL) and the dehydroascorbate reductases (DHARs) are more distantly related. Plant GSTs perform a variety of pivotal catalytic and non-enzymatic functions in normal plant development and plant stress responses, roles that are only emerging. Catalytic functions include glutathione (GSH)-conjugation in the metabolic detoxification of herbicides and natural products. GSTs can also catalyze GSH-dependent peroxidase reactions that scavenge toxic organic hydroperoxides and protect from oxidative damage. GSTs can furthermore catalyze GSH-dependent isomerizations in endogenous metabolism, exhibit GSH-dependent thioltransferase safeguarding protein function from oxidative damage and DHAR activity functioning in redox homeostasis. Plant GSTs can also function as ligandins or binding proteins for phytohormones (i.e., auxins and cytokinins) or anthocyanins, thereby facilitating their distribution and transport. Finally, GSTs are also indirectly involved in the regulation of apoptosis and possibly also in stress signaling. Plant GST genes exhibit a diversity of expression patterns during biotic and abiotic stresses. Stress-induced plant growth regulators (i.e., jasmonic acid [JA], salicylic acid [SA], ethylene [ETH], and nitric oxide [NO] differentially activate GST gene expression. It is becoming increasingly evident that unique combinations of multiple, often interactive signaling pathways from various phytohormones and reactive oxygen species or antioxidants render the distinct transcriptional activation patterns of individual GSTs during stress. Underestimated post-transcriptional regulations of individual GSTs are becoming increasingly evident and roles

  11. Selection and Assessment of Plant Growth-Promoting Rhizobacteria for Biological Control of Multiple Plant Diseases.

    Science.gov (United States)

    Liu, Ke; Newman, Molli; McInroy, John A; Hu, Chia-Hui; Kloepper, Joseph W

    2017-08-01

    A study was designed to screen individual strains of plant growth-promoting rhizobacteria (PGPR) for broad-spectrum disease suppression in vitro and in planta. In a preliminary screen, 28 of 196 strains inhibited eight different tested pathogens in vitro. In a secondary screen, these 28 strains showed broad spectrum antagonistic activity to six different genera of pathogens, and 24 of the 28 strains produced five traits reported to be related to plant growth promotion, including nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore production, and biofilm formation. In advanced screens, the 28 PGPR strains selected in vitro were tested in planta for biological control of multiple plant diseases including bacterial spot of tomato caused by Xanthomonas axonopodis pv. vesicatoria, bacterial speck of tomato caused by Pseudomonas syringae pv. tomato, damping-off of pepper caused by Rhizoctonia solani, and damping-off of cucumber caused by Pythium ultimum. In all, 5 of the 28 tested strains significantly reduced three of the four tested diseases, and another 19 strains showed biological control to two tested diseases. To understand the observed broad-spectrum biocontrol capacity, antiSMASH was used to predict secondary metabolite clusters of selected strains. Multiple gene clusters encoding for secondary metabolites, e.g., bacillibactin, bacilysin, and microcin, were detected in each strain. In conclusion, selected individual PGPR strains showed broad-spectrum biocontrol activity to multiple plant diseases.

  12. Effect of vanadium on plant growth and its accumulation in plant tissues

    Directory of Open Access Journals (Sweden)

    Narumol Vachirapatama

    2011-06-01

    Full Text Available Hydroponic experiments were conducted to investigate vanadium uptake by Chinese green mustard and tomato plantsand its effect on their growth. Twenty-eight (Chinese green mustard and 79 days (tomato after germination, the plants wereexposed for a further seven days to a solution containing six different concentrations of ammonium metavanadate (0-80 mg/lNH4VO3. The vanadium accumulated in the plant tissues were determined by ion-interaction high performance liquid chromatography,with confirmation by magnetic sector ICP-MS.The results indicated that nutrient solution containing more than 40 mg/l NH4VO3 affected plant growth for bothChinese green mustard and tomato plant. Chinese green mustard grown in the solution containing NH4VO3 at the concentrationsof 40 and 80 mg/l had stem length, number of leaves, dry weight of leaf, stem and root significantly lower than those ofplants grown in the solution containing 0-20 mg/l NH4VO3. Tomato plants were observed to wilt after four days in contactwith the nutrient solutions containing 40 and 80 mg/l NH4VO3. As the vanadium concentrations increased, a resultantdecrease in the stem length, root fresh weight, and fruit fresh weight were noted. The accumulation of vanadium was higher inthe root compared with leaf, stem, or fruit. Measured levels of vanadium, from a nutrient solution containing 40 mg/l NH4VO3,were 328, 340, and 9.66x103 g/g in the leaf, stem and root for Chinese green mustard, and 4.04 and 4.01x103 g/g in the fruitand roots for tomato plants, respectively.

  13. Plant growth in amended molybdenum mine waste rock.

    Science.gov (United States)

    Burney, Owen T; Redente, Edward F; Lambert, Charles E

    2017-04-01

    This greenhouse study examined the use of organic and inorganic soil amendments in waste rock material from the former Questa Molybdenum Mine in northern New Mexico to promote beneficial soil properties. Waste rock material was amended with 11 soil amendment treatments that included municipal composted biosolids, Biosol®, inorganic fertilizer, and two controls (pure waste rock and sand). Elymus trachycaulus and Robinia neomexicana growth performance and plant chemistry were assessed across all treatments over a period of 99 and 141 days, respectively. Even though waste rock material had more than 200 times the molybdenum concentration of native soils, adverse effects were not observed for either species. The two main limiting factors in this study were soil nutritional status and soil water retention. The biosolid amendment was found to provide the greatest buffer against these limiting factors due to significant increases in both nutrition and soil water retention. As a result, both species responded with the highest levels of biomass production and the least amount of required water demands. Use of organic amendments such as biosolids, even though short lived in the soil, may provide plants the necessary growth stimulus to become more resilient to the harsh conditions found on many mine reclamation sites.

  14. Laboratory bioassay for assessing the effects of sludge supernatant on plant growth and vesicular-arbuscular mycorrhiza formation

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, K.S.; Liberta, A.E.

    1982-12-01

    A laboratory bioassay is described for assessing the effects of sludge supernatant on juvenile corn growth and the ability of vesicular-arbuscular (VA) mycorrhizal fungi, indigenous to coal spoil, to form mycorrhizae. The bioassay demonstrated that application rates can be identified that have the potential to promote increased plant dry weight without suppressing the formation of VA mycorrhizae in a plant's root system.

  15. Bacterial strains from floodplain soils perform different plant-growth promoting processes and enhance cowpea growth

    Directory of Open Access Journals (Sweden)

    Elaine Martins da Costa

    2016-08-01

    Full Text Available ABSTRACT Certain nodulating nitrogen-fixing bacteria in legumes and other nodule endophytes perform different plant-growth promoting processes. The objective of this study was to evaluate 26 bacterial strains isolated from cowpea nodules grown in floodplain soils in the Brazilian savannas, regarding performance of plant-growth promoting processes and ability to enhance cowpea growth. We also identified these strains by 16S rRNA sequencing. The following processes were evaluated: free-living biological nitrogen fixation (BNF, solubilization of calcium, aluminum and iron phosphates and production of indole-3-acetic acid (IAA. The abilities to nodulate and promote cowpea growth were evaluated in Leonard jars. Partial sequencing of the 16S rRNA gene identified 60 % of the strains as belonging to genus Paenibacillus. The following four genera were also identified: Bacillus, Bradyrhizobium, Enterobacter and Pseudomonas. None of the strains fixed N2 free-living. Among the strains, 80 % solubilized Ca phosphate and one solubilized Al phosphate and none solubilized Fe phosphate. The highest IAA concentrations (52.37, 51.52 and 51.00 μg mL−1 were obtained in the 79 medium with tryptophan by Enterobacter strains UFPI B5-7A, UFPI B5-4 and UFPI B5-6, respectively. Only eight strains nodulated cowpea, however, all increased production of total dry matter. The fact that the strains evaluated perform different biological processes to promote plant growth indicates that these strains have potential use in agricultural crops to increase production and environmental sustainability.

  16. Arbuscular mycorrhizae formed by Penicillium pinophilum improve the growth, nutrient uptake and photosynthesis of strawberry with two inoculum-types.

    Science.gov (United States)

    Fan, Yongqiang; Luan, Yushi; An, Lijia; Yu, Kun

    2008-08-01

    Penicillium pinophilum was isolated from the soil in a commercial strawberry field. The strain readily formed arbuscular mycorrhizae (AM) with the roots of strawberry 'Zoji' (Fragaria x ananassa Duch. CV.) when plants were inoculated with either fresh cultured hyphae or root/soil mixtures. Fresh hyphae, however, resulted in higher amounts of colonization than root/soil inoculum. Compared with uninoculated strawberries, inoculation increased plant dry weight by 31%, as well as nitrogen content (47%), phosphorus content (57%), and photosynthetic rate (71%). AM inoculation also shortened the blossom and ripening date by 3 and 4 days, respectively. This is the first report of a P. pinophilum strain resulting in mycorrhiza with strawberry roots. The significant advantages of this strain are that it is easy to culture and inoculation of plants results in significant growth benefits that may be useful in strawberry production.

  17. Copper-resistant bacteria enhance plant growth and copper phytoextraction.

    Science.gov (United States)

    Yang, Renxiu; Luo, Chunling; Chen, Yahua; Wang, Guiping; Xu, Yue; Shen, Zhenguo

    2013-01-01

    In this study, we investigated the role of rhizospheric bacteria in solubilizing soil copper (Cu) and promoting plant growth. The Cu-resistant bacterium DGS6 was isolated from a natural Cu-contaminated soil and was identified as Pseudomonas sp. DGS6. This isolate solubilized Cu in Cu-contaminated soil and stimulated root elongation of maize and sunflower. Maize was more sensitive to inoculation with DGS6 than was sunflower and exhibited greater root elongation. In pot experiment, inoculation with DGS6 increased the shoot dry weight of maize by 49% and sunflower by 34%, and increased the root dry weight of maize by 85% and sunflower by 45%. Although the concentrations of Cu in inoculated and non-inoculated seedlings did not differ significantly, the total accumulation of Cu in the plants increased after inoculation. DGS6 showed a high ability to solubilize P and produce iron-chelating siderophores, as well as significantly improved the accumulation of P and Fe in both maize and sunflower shoots. In addition, DGS6 produced indole-3-acetic acid (IAA) and ACC deaminase, which suggests that it may modulate ethylene levels in plants. The bacterial strain DGS6 could be a good candidate for re-vegetation of Cu-contaminated sites. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

  18. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants

    NARCIS (Netherlands)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A.; van Wees, Saskia C M

    2014-01-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the ph

  19. Maize yield and quality in response to plant density and application of a novel plant growth regulator

    NARCIS (Netherlands)

    Zhang, Q.; Zhang, L.; Evers, J.B.; Werf, van der W.; Zhang, W.; Duan, L.

    2014-01-01

    Farmers in China have gradually increased plant density in maize to achieve higher yields, but this has increased risk of lodging due to taller and weaker stems at higher plant densities. Plant growth regulators can be used to reduce lodging risk. In this study, for the first time, the performance o

  20. Maize yield and quality in response to plant density and application of a novel plant growth regulator

    NARCIS (Netherlands)

    Zhang, Q.; Zhang, L.; Evers, J.B.; Werf, van der W.; Zhang, W.; Duan, L.

    2014-01-01

    Farmers in China have gradually increased plant density in maize to achieve higher yields, but this has increased risk of lodging due to taller and weaker stems at higher plant densities. Plant growth regulators can be used to reduce lodging risk. In this study, for the first time, the performance

  1. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants

    NARCIS (Netherlands)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A.; van Wees, Saskia C M

    2014-01-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the

  2. Trickle water and feeding system in plant culture and light-dark cycle effects on plant growth

    Science.gov (United States)

    Takano, T.; Inada, K.; Takanashi, J.

    Rockwool, as an inert medium covered or bagged with polyethylene film, can be effectively used for plant culture in space station. The most important machine is the pump adjusting the dripping rate in the feeding system. Hydro-aeroponics may be adaptable to a space laboratory. The shortening of the light-dark cycles inhibits plant growth and induces an abnormal morphogenesis. A photoperiod of 12-hr-dark may be needed for plant growth.

  3. Leaf growth dynamics in four plant species of the Patagonian Monte, Argentina.

    Science.gov (United States)

    Campanella, M Victoria; Bertiller, Mónica B

    2013-07-01

    Studying plant responses to environmental variables is an elemental key to understand the functioning of arid ecosystems. We selected four dominant species of the two main life forms. The species selected were two evergreen shrubs: Larrea divaricata and Chuquiraga avellanedae and two perennial grasses: Nassella tenuis and Pappostipa speciosa. We registered leaf/shoot growth, leaf production and environmental variables (precipitation, air temperature, and volumetric soil water content at two depths) during summer-autumn and winter-spring periods. Multiple regressions were used to test the predictive power of the environmental variables. During the summer-autumn period, the strongest predictors of leaf/shoot growth and leaf production were the soil water content of the upper layer and air temperature while during the winter-spring period, the strongest predictor was air temperature. In conclusion, we found that the leaf/shoot growth and leaf production were associated with current environmental conditions, specially to soil water content and air temperature.

  4. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil.

    Science.gov (United States)

    Kumar, Kalpna V; Patra, D D

    2013-01-01

    The present study was undertaken to examine the effect of the application of fly ash (FA) into Garden soil (GS), with and without inoculation of plant growth promoting bacteria (PGPB), on the growth and metal uptake by Zea mays plants. Three FA tolerant PGPB strains, Pseudomonas sp. PS5, PS14, and Bacillus sp. BC29 were isolated from FA contaminated soils and assessed for their plant growth promoting features on the Z. mays plants. All three strains were also examined for their ability to solubilize phosphate and to produce Indole Acetic Acid (IAA), siderophores, and hydrogencynide acid (HCN) production. Although inoculation of all strains significantly enhanced the growth of plants at both the concentration of FA but maximum growth was observed in plants inoculated with BC29 and PS14 at low level (25%) of FA concentration. The experimental results explored the plant growth promoting features of selected strains which not only enhanced growth and biomass of plants but also protected them from toxicity of FA.

  5. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  6. The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants.

    Directory of Open Access Journals (Sweden)

    Tereza Lukešová

    Full Text Available The unresolved ecophysiological significance of Dark Septate Endophytes (DSE may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.--Acephala applanata species complex (PAC. We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE

  7. The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants.

    Science.gov (United States)

    Lukešová, Tereza; Kohout, Petr; Větrovský, Tomáš; Vohník, Martin

    2015-01-01

    The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.--Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without

  8. [The effect of soil inoculation with microbial pesticide destructors on plant growth and development].

    Science.gov (United States)

    Lisina, T O; Garan'kina, N G; Kruglov, Iu V

    2001-01-01

    Soil inoculation with liquid cultures of Bacillus megaterium 501 and Exophiala nigrum A-29 capable of degrading several organophosphorus pesticides accelerated growth and development of experimental plants, formation of their generative organs, and improved their productivity. This was particularly observed under stress plant growth conditions on phytotoxic peach substrates. The microorganisms inoculated can probably degrade phytotoxins present in soils, thereby favoring the plant development.

  9. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens PS006.

    Science.gov (United States)

    Gamez, Rocío M; Rodríguez, Fernando; Ramírez, Sandra; Gómez, Yolanda; Agarwala, Richa; Landsman, David; Mariño-Ramírez, Leonardo

    2016-05-05

    Pseudomonas fluorescens is a well-known plant growth-promoting rhizobacterium (PGPR). We report here the first whole-genome sequence of PGPR P. fluorescens evaluated in Colombian banana plants. The genome sequences contains genes involved in plant growth and defense, including bacteriocins, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and genes that provide resistance to toxic compounds.

  10. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L.

    OpenAIRE

    Neyser De La Torre-Ruiz; Víctor Manuel Ruiz-Valdiviezo; Clara Ivette Rincón-Molina; Martha Rodríguez-Mendiola; Carlos Arias-Castro; Federico Antonio Gutiérrez-Miceli; Héctor Palomeque-Dominguez; Reiner Rincón-Rosales

    2016-01-01

    ABSTRACT The effect of plant growth-promoting bacteria inoculation on plant growth and the sugar content in Agave americana was assessed. The bacterial strains ACO-34A, ACO-40, and ACO-140, isolated from the A. americana rhizosphere, were selected for this study to evaluate their phenotypic and genotypic characteristics. The three bacterial strains were evaluated via plant inoculation assays, and Azospirillum brasilense Cd served as a control strain. Phylogenetic analysis based on the 16S rRN...

  11. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture.

    Science.gov (United States)

    Berg, Gabriele

    2009-08-01

    Plant-associated microorganisms fulfill important functions for plant growth and health. Direct plant growth promotion by microbes is based on improved nutrient acquisition and hormonal stimulation. Diverse mechanisms are involved in the suppression of plant pathogens, which is often indirectly connected with plant growth. Whereas members of the bacterial genera Azospirillum and Rhizobium are well-studied examples for plant growth promotion, Bacillus, Pseudomonas, Serratia, Stenotrophomonas, and Streptomyces and the fungal genera Ampelomyces, Coniothyrium, and Trichoderma are model organisms to demonstrate influence on plant health. Based on these beneficial plant-microbe interactions, it is possible to develop microbial inoculants for use in agricultural biotechnology. Dependent on their mode of action and effects, these products can be used as biofertilizers, plant strengtheners, phytostimulators, and biopesticides. There is a strong growing market for microbial inoculants worldwide with an annual growth rate of approximately 10%. The use of genomic technologies leads to products with more predictable and consistent effects. The future success of the biological control industry will benefit from interdisciplinary research, e.g., on mass production, formulation, interactions, and signaling with the environment, as well as on innovative business management, product marketing, and education. Altogether, the use of microorganisms and the exploitation of beneficial plant-microbe interactions offer promising and environmentally friendly strategies for conventional and organic agriculture worldwide.

  12. Biochar treatment resulted in a combined effect on soybean growth promotion and a shift in plant growth promoting rhizobacteria

    Directory of Open Access Journals (Sweden)

    Dilfuza eEgamberdieva

    2016-02-01

    Full Text Available The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC, wood biochar (WBC, and hydrochar (HTC were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2% showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits.Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria.

  13. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Wintermans, P.C.A.; Bakker, P.A.H.M.; Pieterse, C.M.J.

    2016-01-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium.

  14. The Effect of Bio-Fertilizers on Plant Growth and Growth Rate of Grafted Avocado (Persea americana Mill.

    Directory of Open Access Journals (Sweden)

    Lazarus Agus Sukamto

    2014-01-01

    Full Text Available Avocado (Persea americana Mill. is considered the most nutritious of all fruits. Avocado fruit contain high unsaturated fat, protein, and energy. It could be eaten fresh for food, drinks, cooking, and cosmetics. Recently, it has become a significant commodity in international trade. Indonesia is the 2nd avocado producing country, but only little quantity of avocado fruits could be exported. The farmers usually grow avocado plants from the seeds, without proper fertilizers in their backyards or small gardens. The problems could be solved by using grafted plants, proper fertilizers, and growing in a large scale of areas. This research was conducted to find out the effect of two liquid bio-fertilizers namely Mega Rhizo and Beyonic StarTmik on the plant growth and growth rate of grafted avocado plants. Some plant growths and growth rates of grafted avocado were influenced significantly by genotype accession, kind of bio-fertilizer, and weather (temperature.  Plant growth and growth rate of most avocado accessions were not significant differences to bio-fertilizer applications, but some avocado accessions on certain months were significant differently. Growth rate ranks of plant height based on accession were no. 10, 28, 13, 1, 5, 2, and 14 consecutively. Those of canopy width were no. 28, 10, 1, 2, 14, 5, and 13 consecutively. Those of trunk diameters were no. 28, 10, 2, 5, 1, 13, and 14 consecutively. All growth rate ranks based on bio-fertilizer were Mega Rhizo, Beyonic StarTmik, and control consecutively.

  15. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  16. Do firms share the same functional form of their growth rate distribution? A new statistical test

    CERN Document Server

    Lunardi, Josè T; Lillo, Fabrizio; Mantegna, Rosario N; Gallegati, Mauro

    2011-01-01

    We introduce a new statistical test of the hypothesis that a balanced panel of firms have the same growth rate distribution or, more generally, that they share the same functional form of growth rate distribution. We applied the test to European Union and US publicly quoted manufacturing firms data, considering functional forms belonging to the Subbotin family of distributions. While our hypotheses are rejected for the vast majority of sets at the sector level, we cannot rejected them at the subsector level, indicating that homogenous panels of firms could be described by a common functional form of growth rate distribution.

  17. A method of variable spacing for controlled plant growth systems in spaceflight and terrestrial agriculture applications

    Science.gov (United States)

    Knox, J.

    1986-01-01

    A higher plant growth system for Controlled Ecological Life Support System (CELSS) applications is described. The system permits independent movement of individual plants during growth. Enclosed within variable geometry growth chambers, the system allocates only the volume required by the growing plants. This variable spacing system maintains isolation between root and shoot environments, providing individual control for optimal growth. The advantages of the system for hydroponic and aeroponic growth chambers are discussed. Two applications are presented: (1) the growth of soybeans in a space station common module, and (2) in a terrestrial city greenhouse.

  18. Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents.

    Science.gov (United States)

    George, Emrin; Kumar, S Nishanth; Jacob, Jubi; Bommasani, Bhaskara; Lankalapalli, Ravi S; Morang, P; Kumar, B S Dileep

    2015-05-01

    A plant growth-promoting bacterial strain, PM 105, isolated from a tea plantation soil from the North Eastern region of India was identified as Pseudomonas aeruginosa through classical and 16S ribosomal DNA (rDNA) gene sequencing. Further studies with this strain confirmed broad spectrum antifungal activity against ten human and plant pathogenic fungal pathogens viz. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Candida albicans, Colletotrichum gloeosporioides, Fusarium oxysporum, Pencillium expansum, Rhizoctonia solani, Trichophyton rubrum besides growth-promoting property in cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan). However, no antibacterial property was exhibited by this strain against the four test bacterial pathogens tested in agar overlay method. The crude bioactive metabolites produced by this strain were isolated with three different solvents that exhibited significant antimicrobial and plant growth-promoting activity. Chloroform extract recorded significant antimicrobial and plant growth-promoting activity. Three major compounds viz. 1-hydroxyphenazine, pyocyanin, and phenazine-1-carboxamide were purified and characterized from crude extracts of this strain by various spectral data. The purified compounds recorded prominent antimicrobial activity but failed to establish the plant growth promotion activity in test crop plants under gnotobiotic conditions. Pyocyanin recorded significant antimicrobial activity, and best activity was recorded against T. rubrum (29 mm), followed by P. expansum (28 mm). These results suggest the use of PM 105 as plant growth-promoting agent in crop plants after successful field trials.

  19. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants.

    Science.gov (United States)

    Wei, Wei; Li, Qing-Tian; Chu, Ya-Nan; Reiter, Russel J; Yu, Xiao-Min; Zhu, Dan-Hua; Zhang, Wan-Ke; Ma, Biao; Lin, Qing; Zhang, Jin-Song; Chen, Shou-Yi

    2015-02-01

    Melatonin is a well-known agent that plays multiple roles in animals. Its possible function in plants is less clear. In the present study, we tested the effect of melatonin (N-acetyl-5-methoxytryptamine) on soybean growth and development. Coating seeds with melatonin significantly promoted soybean growth as judged from leaf size and plant height. This enhancement was also observed in soybean production and their fatty acid content. Melatonin increased pod number and seed number, but not 100-seed weight. Melatonin also improved soybean tolerance to salt and drought stresses. Transcriptome analysis revealed that salt stress inhibited expressions of genes related to binding, oxidoreductase activity/process, and secondary metabolic processes. Melatonin up-regulated expressions of the genes inhibited by salt stress, and hence alleviated the inhibitory effects of salt stress on gene expressions. Further detailed analysis of the affected pathways documents that melatonin probably achieved its promotional roles in soybean through enhancement of genes involved in cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis, and ascorbate metabolism. Our results demonstrate that melatonin has significant potential for improvement of soybean growth and seed production. Further study should uncover more about the molecular mechanisms of melatonin's function in soybeans and other crops.

  20. Variation in antibacterial and anti-inflammatory activity of different growth forms of Malva parviflora and evidence for synergism of the anti-inflammatory compounds.

    Science.gov (United States)

    Shale, T L; Stirk, W A; van Staden, J

    2005-01-01

    Malva parviflora leaves and roots were collected from five sites within the Qacha's Nek District in Lesotho. These plants had two distinct growth forms--upright and prostrate. Hexane, methanol and water extracts were made from the plant material and tested for antibacterial and anti-inflammatory activity using the disc diffusion and cyclooxygenase-1 (Cox-1) bioassays, respectively. Hexane, methanol and water extracts made from Malva parviflora with a prostrate growth form inhibited the growth of Gram-positive and Gram-negative bacteria, while extracts made from plants with an upright growth form inhibited the growth of Gram-positive bacteria only. Cox-1 anti-inflammatory activity of hexane, methanol and water extracts did not show any variation between the two growth forms. The hexane extracts of both the leaves and roots were the most inhibitory. The water extracts had the least inhibitory activity. Bioassay-guided fractionation of the root dichloromethane extract showed that Cox-1 anti-inflammatory activity was caused by at least two compounds that acted synergistically to produce the biological effect.

  1. Multitrait plant growth promoting (PGP) rhizobacterial isolates from Brassica juncea rhizosphere : Keratin degradation and growth promotion.

    Science.gov (United States)

    Anwar, Mohmmad Shahbaz; Siddique, Mohammad Tahir; Verma, Amit; Rao, Yalaga Rama; Nailwal, Tapan; Ansari, Mohammad; Pande, Veena

    2014-01-01

    Plant growth promoting (PGP) rhizobacteria, a beneficial microbe colonizing plant roots, enhanced crop productivity and offers an attractive way to replace chemical fertilizers, pesticides, and supplements. The keratinous waste which comprises feathers, hairs, nails, skin and wool creates problem of solid waste management due to presence of highly recalcitrant keratin. The multi traits rhizobacteria effective to remove both keratine from the environment by producing keratinase enzyme and to eradicate the chemical fertilizer by providing different PGP activity is novel achievement. In the present study, the effective PM2 strain of PGPR was isolated from rhizospheric soil of mustard (Brassica juncea) field, Pantnagar and they were identified on the basis of different biochemical tests as belonging to Bacillus genera. Different plant growth promoting activity, feather degradation and keratinolytic activity was performed and found very effective toward all the parameters. Furthermore, the efficient strain PM2 was identified on the basis of 16s rRNA sequencing and confirmed as Bacillus cereus. The strain PM2 might be used efficiently for keratinous waste management and PGP activity. Therefore, the present study suggests that Bacillus cereus have multi traits activity which extremely useful for different PGP activity and biotechnological process involving keratin hydrolysis, feather biodegradation or in the leather industry.

  2. A soil irrigation method for experimental plant growth

    Science.gov (United States)

    Pop, M. N.; Soran, M. L.

    2015-12-01

    An irrigation method developed in order to ensure periodic wetting of several batches of soil, for experimental plant growth, is proposed. An experimental irrigation installation, intended to perform real-time soil moisturizing, by adding known quantities (preset for a certain batch of soil) of aqueous solutions has been built and tested. The prototype installation comprises six miniature pumps for water dosage, each meant to moisturize a batch of soil. Each pump is actuated from the mains power supply, with zero-crossing synchronization. The administrated quantity of aqueous solution is a multiple of the minimum volume, 0.2±0.01 ml of fluid. Due to its structure, the system allows the administration of different aqueous solutions for each batch of soil. Due to its modular construction the experimental installation can be expanded in order to ensure water disposal over an increased number of soil batches and the method may be suited also for micro irrigation systems.

  3. Chromium Resistant Bacteria: Impact on Plant Growth in Soil Microcosm

    Directory of Open Access Journals (Sweden)

    Sayel Hanane

    2014-07-01

    Full Text Available Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.

  4. Photosynthetic Determinants of Growth in Maize Plants: Effects of Nitrogen Nutrition on Growth, Carbon Fixation and Photochemical Features

    OpenAIRE

    S. C., Huber; Tatsuo, SUGIYAMA; R.S, Alberte; Department of Agriculture, Agricultural Research Service; Department of Agricultural Chemistry, Faculty of Agriculture, Tohoku University; Department of Molecular Genetics and Cell Biology, The University of Chicago

    1989-01-01

    Maize (Zea mays L.) plants were grown in a greenhouse with different levels of nitrate-N (2 to 20 millimolar). Nitrogen nutrition had dramatic effects on plant growth and photosynthetic characteristics of mature leaves. Increasing nitrogen resulted in greater biomass production, shoot/root ratios, and rates of leaf expansion during the day. The elongating zone of high-N plants had higher activities (per gram fresh weight) of sucrose synthase and neutral invertase than low-N plants, suggesting...

  5. Utilization of {gamma}-irradiation technique on plant mutation breeding and plant growth regulation in Tokyo Metropolitan Isotope Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Hirokatsu [Tokyo Metropolitan Isotope Research Center (Japan)

    1997-03-01

    During about 30-years, we have developed {gamma}-irradiation technique and breeding back pruning method for the study of mutation breeding of ornamental plants. As a result, we have made a wide variety of new mutant lines in chrysanthemum, narcissus, begonia rex, begonia iron cross, winter daphne, zelkova, sweet-scented oleander, abelia, kobus, and have obtained 7 plant patents. By the use of {gamma}-irradiation to plant mutation breeding, we often observed that plants irradiated by low dose of {gamma}-rays showed superior or inferior growth than the of non-irradiated plants. Now, we established the irradiation conditions of {gamma}-rays for mutation breeding and growth of regulation in narcissus, tulip, Enkianthus perulatus Schneid., komatsuna, moyashi, african violet. In most cases, irradiation dose rate is suggested to be a more important factor to induce plant growth regulators than irradiation dose. (author)

  6. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    NARCIS (Netherlands)

    Denance, N.; Sanchez Vallet, A.; Goffner, D.; Molina, A.

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokini

  7. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    1. Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. 2. Plants are known to rapidly respond to pathogen and herbivore at

  8. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    NARCIS (Netherlands)

    Denance, N.; Sanchez Vallet, A.; Goffner, D.; Molina, A.

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokini

  9. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    1. Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. 2. Plants are known to rapidly respond to pathogen and herbivore

  10. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    1. Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. 2. Plants are known to rapidly respond to pathogen and herbivore at

  11. Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant.

    Science.gov (United States)

    Tripti; Kumar, Adarsh; Usmani, Zeba; Kumar, Vipin; Anshumali

    2017-04-01

    Overuse of agrochemical fertilizers alarmingly causes deterioration in soil health and soil-flora. Persistence of these agrochemicals exerts detrimental effects on environment, potentially inducing toxic effects on human health, thus pronouncing an urgent need for a safer substitute. The present study investigates the potential use of agricultural and industrial wastes as carrier materials, viz. biochar and flyash, respectively, for preparation of bioformulations (or biofertilizers) using two plant growth promoting rhizobacteria, Bacillus sp. strain A30 and Burkholderia sp. strain L2, and its effect on growth of Lycopersicon esculentum Mill. (tomato). The viability of strains was determined based on colony forming units (cfu) count of each bioformulation at an interval of 60 days for a period of 240 days. Seeds were coated with different carrier based bioformulations and pot experiment(s) were carried out to access its effects on plant growth parameters. Biochar based bioformulations showed higher cfu count and maximum viability for strain L2 (10(7) cfu g(-1)) at 240 days of storage. Maximum percentage of seed germination was also observed in biochar inoculated with strain L2. Significant (p < 0.05) increase in plant growth parameters (dry and fresh biomass, length, number of flowers) were ascertained from the pot experiment and amongst all bioformulations, biochar inoculated with strain L2 performed consistently thriving results for tomato yield. Furthermore, post-harvest study of this bioformulation treated soil improved physico-chemical properties and dehydrogenase activity as compared to pre-plantation soil status. Overall, we show that prepared biochar based bioformulation using Burkholderia sp. L2 as inoculum can tremendously enhance the productivity of tomato, soil fertility, and can also act as a sustainable substitute for chemical fertilizers. In addition, mixture of biochar and flyash inoculated with strain L2 also showed noteworthy results for the

  12. Antiphase light and temperature cycles disrupt rhythmic plant growth : the Arabidopsis jetlag

    NARCIS (Netherlands)

    Bours, R.M.E.H.

    2014-01-01

      Light and temperature are important determinants of plant growth and development. Plant elongation is stimulated by positively increasing differences between day and night temperature (+DIF, phased cycles). In contrast, a negative temperature difference (-DIF, antiphased cycles) reduces

  13. Antiphase light and temperature cycles disrupt rhythmic plant growth : the Arabidopsis jetlag

    NARCIS (Netherlands)

    Bours, R.M.E.H.

    2014-01-01

      Light and temperature are important determinants of plant growth and development. Plant elongation is stimulated by positively increasing differences between day and night temperature (+DIF, phased cycles). In contrast, a negative temperature difference (-DIF, antiphased cycles) reduces

  14. Plant extracts used as growth promoters in broilers

    Directory of Open Access Journals (Sweden)

    MSR Barreto

    2008-06-01

    Full Text Available Two experiments were carried out to assess the efficacy of plant extracts as alternatives for antimicrobial growth promoters in broiler diets. The performance experiment included 1,200 male broilers raised from 1 to 42 days of age. The metabolism experiment used 96 male broilers in the grower phase housed in metabolic cages for total excreta collection. At the end of the metabolism experiment, 24 birds were sacrificed to assess organ morphometrics. In both experiments, the following treatments were applied: control diet (CD; CD + 10 ppm avilamycin; CD + 1000 ppm oregano extract; CD + 1000 ppm clove extract; CD + 1000 ppm cinnamon extract; and CD + 1000 ppm red pepper extract. The microencapsulated extracts contained 20% of essential oil. No significant differences (P>0.05 in the studied performance parameters were observed among treatments. The dietary supplementation of the extracts did not influence (P>0.05 nitrogen-corrected apparent metabolizable energy values. In general, organ morphometrics was not affected by the experimental treatments, but birds fed the control diet had higher liver relative weight (P<0.05 as compared to those fed the diet containing red pepper extract, which presented the lowest liver relative weight. These results showed that there was no effect of the tested plant extracts on live performance or in organ morphometrics.

  15. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement

    Directory of Open Access Journals (Sweden)

    Shamsa Akbar

    Full Text Available ABSTRACT Background: Since 1960s, the organophosphate pesticide chlorpyrifos has been widely used for the purpose of pest control. However, given its persistence and toxicity towards life forms, the elimination of chlorpyrifos from contaminated sites has become an urgent issue. For this process bioremediation is the method of choice. Results: Two bacterial strains, JCp4 and FCp1, exhibiting chlorpyrifos-degradation potential were isolated from pesticide contaminated agricultural fields. These isolates were able to degrade 84.4% and 78.6% of the initial concentration of chlorpyrifos (100 mg L-1 within a period of only 10 days. Based on 16S rRNA sequence analysis, these strains were identified as Achromobacter xylosoxidans (JCp4 and Ochrobactrum sp. (FCp1. These strains exhibited the ability to degrade chlorpyrifos in sterilized as well as non-sterilized soils, and were able to degrade 93-100% of the input concentration (200 mg kg-1 within 42 days. The rate of degradation in inoculated soils ranged from 4.40 to 4.76 mg-1 kg-1 d-1 with rate constants varying between 0.047 and 0.069 d-1. These strains also displayed substantial plant growth promoting traits such as phosphate solubilization, indole acetic acid production and ammonia production both in absence as well as in the presence of chlorpyrifos. However, presence of chlorpyrifos (100 and 200 mg L-1 was found to have a negative effect on indole acetic acid production and phosphate solubilization with percentage reduction values ranging between 2.65-10.6% and 4.5-17.6%, respectively. Plant growth experiment demonstrated that chlorpyrifos has a negative effect on plant growth and causes a decrease in parameters such as percentage germination, plant height and biomass. Inoculation of soil with chlorpyrifos-degrading strains was found to enhance plant growth significantly in terms of plant length and weight. Moreover, it was noted that these strains degraded chlorpyrifos at an increased rate (5

  16. Plant hormone cross-talk: the pivot of root growth.

    Science.gov (United States)

    Pacifici, Elena; Polverari, Laura; Sabatini, Sabrina

    2015-02-01

    Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process. A pool of stem cells, placed in a niche at the apex of the meristem, is a source of self-renewing cells that provides cells for tissue formation. During the first days post-germination, the meristem reaches its final size as a result of a balance between cell division and cell differentiation. A complex network of interactions between hormonal pathways co-ordinates such developmental inputs. In recent years, by means of molecular and computational approaches, many efforts have been made aiming to define the molecular components of these networks. In this review, we focus our attention on the molecular mechanisms at the basis of hormone cross-talk during root meristem size determination. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Computational insight into the chemical space of plant growth regulators.

    Science.gov (United States)

    Bushkov, Nikolay A; Veselov, Mark S; Chuprov-Netochin, Roman N; Marusich, Elena I; Majouga, Alexander G; Volynchuk, Polina B; Shumilina, Daria V; Leonov, Sergey V; Ivanenkov, Yan A

    2016-02-01

    An enormous technological progress has resulted in an explosive growth in the amount of biological and chemical data that is typically multivariate and tangled in structure. Therefore, several computational approaches have mainly focused on dimensionality reduction and convenient representation of high-dimensional datasets to elucidate the relationships between the observed activity (or effect) and calculated parameters commonly expressed in terms of molecular descriptors. We have collected the experimental data available in patent and scientific publications as well as specific databases for various agrochemicals. The resulting dataset was then thoroughly analyzed using Kohonen-based self-organizing technique. The overall aim of the presented study is to investigate whether the developed in silico model can be applied to predict the agrochemical activity of small molecule compounds and, at the same time, to offer further insights into the distinctive features of different agrochemical categories. The preliminary external validation with several plant growth regulators demonstrated a relatively high prediction power (67%) of the constructed model. This study is, actually, the first example of a large-scale modeling in the field of agrochemistry.

  18. Bioprospecting glacial ice for plant growth promoting bacteria.

    Science.gov (United States)

    Balcazar, Wilvis; Rondón, Johnma; Rengifo, Marcos; Ball, María M; Melfo, Alejandra; Gómez, Wileidy; Yarzábal, Luis Andrés

    2015-08-01

    Glaciers harbor a wide diversity of microorganisms, metabolically versatile, highly tolerant to multiple environmental stresses and potentially useful for biotechnological purposes. Among these, we hypothesized the presence of bacteria able to exhibit well-known plant growth promoting traits (PGP). These kinds of bacteria have been employed for the development of commercial biofertilizers; unfortunately, these biotechnological products have proven ineffective in colder climates, like the ones prevailing in mountainous ecosystems. In the present work, we prospected glacial ice collected from two small tropical glaciers, located above 4.900 m in the Venezuelan Andes, for cold-active PGP bacteria. The initial screening strategy allowed us to detect the best inorganic-P solubilizers at low temperatures, from a sub-sample of 50 bacterial isolates. Solubilization of tricalcium phosphate, aluminum- and iron-phosphate, occurred in liquid cultures at low temperatures and was dependent on medium acidification by gluconic acid production, when bacteria were supplied with an appropriate source of carbon. Besides, the isolates were psychrophilic and in some cases exhibited a broad range of growth-temperatures, from 4 °C to 30 °C. Additional PGP abilities, including phytohormone- and HCN production, siderophore excretion and inhibition of phytopathogens, were confirmed in vitro. Nucleotidic sequence analysis of 16S rRNA genes allowed us to place the isolates within the Pseudomonas genus. Our results support the possible use of these strains to develop cold-active biofertilizers to be used in mountainous agriculture.

  19. Parametric scaling from species to growth-form diversity: an interesting analogy with multifractal functions.

    Science.gov (United States)

    Ricotta, Carlo; Pacini, Alessandra; Avena, Giancarlo

    2002-01-01

    We propose a measure of divergence from species to life-form diversity aimed at summarizing the ecological similarity among different plant communities without losing information on traditional taxonomic diversity. First, species and life-form relative abundances within a given plant community are determined. Next, using Rényi's generalized entropy, the diversity profiles of the analyzed community are computed both from species and life-form relative abundances. Finally, the speed of decrease from species to life-form diversity is obtained by combining the outcome of both profiles. Interestingly, the proposed measure shows some formal analogies with multifractal functions developed in statistical physics for the analysis of spatial patterns. As an application for demonstration, a small data set from a plant community sampled in the archaeological site of Paestum (southern Italy) is used.

  20. Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium.

    Science.gov (United States)

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Singh, Harikesh Bahadur

    2015-08-01

    The beneficial plant-microbe interactions play crucial roles in protection against large number of plant pathogens causing disease. The present study aims to investigate the growth promoting traits induced by beneficial microbes namely Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27, and Bacillus subtilis BHHU100 treated singly and in combinations under greenhouse and field conditions to control Sclerotinia sclerotiorum. Plants treated with three microbe consortium enhanced plant growth maximally both in the presence and absence of the pathogen. Increase in plant length, total biomass, number of leaves, nodules and secondary roots, total chlorophyll and carotenoid content, and yield were recorded in plants treated with microbial consortia. Also, a decrease in plant mortality was observed in plants treated with microbial consortia in comparison to untreated control plants challenged with S. sclerotiorum. Furthermore, the decrease in disease of all the treatments can be associated with differential improvement of growth induced in pea.

  1. Differential growth stimulation response of potato towards inoculation with taxonomically diverse plant growth promoting rhizobacteria

    Directory of Open Access Journals (Sweden)

    Tahir eNaqqash

    2016-02-01

    Full Text Available Rhizosphere engineering with beneficial plant growth promoting bacteria offers great promise for sustainable crop yield. Potato is an important food commodity that needs large inputs of nitrogen and phosphorus fertilizers. To overcome high fertilizer demand (especially nitrogen, five bacteria, i.e. Azospirillum sp.TN10, Agrobacterium sp.TN14, Pseudomonas sp.TN36, Enterobactersp. TN38 and Rhizobium sp. TN42 were isolated from the potato rhizosphere on nitrogen-free malate medium and identified based on their 16S rRNA gene sequences. Three strains, i.e. TN10, TN38 and TN42, showed nitrogen fixation (92.67-134.54 nmol h-1mg-1protein, while all showed the production of indole acetic acid in the presence and/or absence of L-tryptophan. Azospirillum sp. TN10 produced the highest amount of IAA, as measured by spectrophotometry (312.14 µg mL-1 and HPLC (18.3 µg mL-1. Inoculation with these bacteria under axenic conditions resulted in differential growth responses of potato. Azospirillum sp. TN10 incited the highest increase in potato fresh and dry weight over control plants, along with increased N contents of shoot and roots. All strains were able to colonize and maintain their population densities in the potato rhizosphere for upto 60 days, with Azospirillum sp. and Rhizobium sp. showing the highest survival. Plant root colonization potential was analyzed by transmission electron microscopy of root sections inoculated with Azospirillum sp. TN10. Of the five test strains, Azospirillum sp. TN10 has the greatest potential to increase the growth and nitrogen uptake of potato. Hence, it is suggested as a good candidate for the production of potato biofertilizer for integrated nutrient management with potato.

  2. [Advances in studies on growth metabolism and response mechanisms of medicinal plants under drought stress].

    Science.gov (United States)

    Si, Can; Zhang, Jun-Yi; Xu, Hu-Chao

    2014-07-01

    Drought stress exerts a considerable effect on growth, physiology and secondary metabolisms of the medicinal plants. It could inhabit the growth of the medicinal plants but promote secretion of secondary metabolites. Other researches indicated that the medicinal plants could depend on the ABA signaling pathway and secreting osmotic substances to resist the drought stress and reduce the damage by it. The article concludes the changes in growth, physiology, secondary metabolisms and response mechanisms of medicinal plants to drought stress that provides a theoretical basis for exploring the relationship between medicinal plants and drought stress.

  3. Are cactus growth forms related to germination responses to light? A test using Echinopsis species

    Science.gov (United States)

    Ortega-Baes, Pablo; Aparicio-González, Mónica; Galíndez, Guadalupe; del Fueyo, Patricia; Sühring, Silvia; Rojas-Aréchiga, Mariana

    2010-05-01

    In this study, we investigated the effect of light regimen (white light vs. darkness) on the germination of 12 species of the Echinopsis genus (tribe Trichocereeae, Cactaceae). This genus presents a variety of growth forms and relatively small and uniform seed size. These traits allowed us to test, within the same linage and removing seed mass effect, the hypothesis that the germination response to light (indifferent to light or positive photoblastic) is related to growth form. Our results reject this hypothesis since no seeds germinated in darkness, so all of the species can be classified as being positively photoblastic. The proportion of seed germination with white light was significantly different among cactus growth forms. Columnar cacti (arborescent, creeping and short) showed a greater proportion of seed germination than barrel and globose cacti. The germination rate differed among growth forms and species. At constant temperatures, creeping columnar cacti presented a significantly higher germination rate than the other growth forms. With alternating temperatures, columnar cacti showed higher germination rates than the other growth forms. The low proportion of seeds that germinated for some species indicates that they show seed dormancy. Our results suggest that germination responses to light in the cactus family could be related to seed mass and phylogenetic constraints.

  4. Polyacrylamide gels with selective recognition of the tetrameric molecular form of human growth hormone

    Directory of Open Access Journals (Sweden)

    R. Kublickas

    2017-08-01

    Full Text Available Networks of polyacrylamide were studied for the possibility of imprinting of the oligomeric form of human growth hormone. The tetrameric molecular form of human growth hormone was molecularly imprinted for the first time. The results show that approximately 50–70% (w/w of the templates (depending on polymerization conditions could be extracted from the molecularly imprinted acrylamide polymers. The resulting ‘gel antibodies’ against this form of human growth hormone in the form of granules of polyacrylamide were compared with granules of non-imprinted polymer. The selectivity of the artificial gel antibodies was studied. Investigation of the binding to imprinted polymer of the template hormone, other molecular forms of the hormone and other proteins shows the selectivity of the developed artificial gel antibodies.

  5. Reakcii rastenij raznyh zhiznennyh form na izmenenija prirodnoj sredy [The response of different plant life forms to natural environment changes

    Directory of Open Access Journals (Sweden)

    Schmidt Svetlana

    2011-01-01

    Full Text Available This paper contains test results revealing norm and stress reactions of various life-form plants: trees — Betula pendula Roth, Tilia platyphyllos Scop., Pinus sylvetris L; water-plant -Galium palustre L.; grass — Solidago Canadensis; cereal — Secale cereal L. Collection and processing of the material was made in the area of Berlin/Brandenburg, Germany. Clark sensor-based method made it possible to determine the amount and rate of the oxygen evolution by plants in the dark and light phase. Under the reaction norm the average amount of the oxygen evolved and the average rate of metabolism processes during dark and light phases are changing simultaneously. Parabolic and periodic dependences of these changes during the vegetation period has been found. Under the stress reaction (drought, illness the rate of metabolism dark reactions is increased by 2—3 times as compared with light reactions. The obtained results may be use for bioindication of the climate change in the Baltic Region.

  6. Peniamidienone and penidilamine, plant growth regulators produced by the fungus Penicillium sp. No. 13.

    Science.gov (United States)

    Kimura, Y; Mizuno, T; Kawano, T; Okada, K; Shimada, A

    2000-04-01

    Peniamidienone and penidilamine were isolated from cultures of the fungus Penicillium sp. No. 13 as new plant growth regulators and their structures were established by NMR spectroscopic studies. Peniamidienone showed weak inhibition of lettuce seedling growth.

  7. A native plant growth promoting bacterium, Bacillus sp. B55, rescues growth performance of an ethylene-insensitive plant genotype in nature.

    Science.gov (United States)

    Meldau, Dorothea G; Long, Hoang H; Baldwin, Ian T

    2012-01-01

    Many plants have intimate relationships with soil microbes, which improve the plant's growth and fitness through a variety of mechanisms. Bacillus sp. isolates are natural root-associated bacteria, isolated from Nicotiana attenuata plant roots growing in native soils. A particular isolate B55, was found to have dramatic plant growth promotion (PGP) effects on wild type (WT) and transgenic plants impaired in ethylene (ET) perception (35S-etr1), the genotype from which this bacterium was first isolated. B55 not only improves N. attenuata growth under in vitro, glasshouse, and field conditions, but it also "rescues" many of the deleterious phenotypes associated with ET insensitivity. Most notably, B55 dramatically increases the growth and survival of 35S-etr1 plants under field conditions. To our knowledge, this is the first demonstration of a PGP effect in a native plant-microbe association under natural conditions. Our study demonstrates that this facultative mutualistic plant-microbe interaction should be viewed as part of the plant's extended phenotype. Possible modalities of recruitment and mechanisms of PGP are discussed.

  8. Plant Growth Experiments in Zeoponic Substrates: Applications for Advanced Life Support Systems

    Science.gov (United States)

    Ming, Douglas W.; Gruener, J. E.; Henderson, K. E.; Steinberg, S. L.; Barta, D. J.; Galindo, C.; Henninger, D. L.

    2001-01-01

    A zeoponic plant-growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component (Allen and Ming, 1995). Zeolites are crystalline, hydrated aluminosilicate minerals that have the ability to exchange constituent cations without major change of the mineral structure. Recently, zeoponic systems developed at the National Aeronautics and Space Administration (NASA) slowly release some (Allen et at., 1995) or all of the essential plant-growth nutrients (Ming et at., 1995). These systems have NH4- and K-exchanged clinoptilolite (a natural zeolite) and either natural or synthetic apatite (a calcium phosphate mineral). For the natural apatite system, Ca and P were made available to the plant by the dissolution of apatite. Potassium and NH4-N were made available by ion-exchange reactions involving Ca(2+) from apatite dissolution and K(+) and NH4(+) on zeolitic exchange sites. In addition to NH4-N, K, Ca, and P, the synthetic apatite system also supplied Mg, S, and other micronutrients during dissolution (Figure 1). The overall objective of this research task is to develop zeoponic substrates wherein all plant growth nutrients are supplied by the plant growth medium for several growth seasons with only the addition of water. The substrate is being developed for plant growth in Advanced Life Support (ALS) testbeds (i.e., BioPLEX) and microgravity plant growth experiments. Zeoponic substrates have been used for plant growth experiments on two Space Shuttle flight experiments (STS-60; STS-63; Morrow et aI., 1995). These substrates may be ideally suited for plant growth experiments on the International Space Station and applications in ALS testbeds. However, there are several issues that need to be resolved before zeoponics will be the choice substrate for plant growth experiments in space. The objective of this paper is to provide an overview on recent research directed toward the refinement of zeoponic plant growth substrates.

  9. Characterization and inhibitory activity of chitosan on hyphae growth and morphology of Botrytis cinerea plant pathogen

    Directory of Open Access Journals (Sweden)

    Sebastião Silva Junior

    2014-07-01

    Full Text Available Summary. Low and high molecular weight chitosan were tested in different concentrations and growth times with the aim to evaluate the inhibitory activity against Botrytis cinerea, a very important plant pathogen. Tested chitosans were characterized by vibratory spectroscopy and elementary analyzes to determine the deacetylation degree. In addiction molar mass was estimated by viscosity measuring. Scanning electron microscopy was utilized for antimicrobial activity observation. Results showed that both chitosans markedly inhibited fungal growth, which was effected by incubation time and chitosan concentration. Scanning electron microscopy observations revealed that chitosan induced changes in surface morphology. The present study show that chitosan is capable of inhibit the growth and cause serious damage to the cell structure of the B. cinerea, as well as have the ability to form an impervious layer around the cell. Therefore, chitosan could be considered as a potential alternative for synthetic fungicides.Industrial relevance. Ultrastructural analysis showed that chitosan is capable of causing serious damage to the cell structure of the B. cinerea, as well as have the ability to form an impervious layer around the cell. Chitosan could inhibit the growth of B. cinerea in vitro and consequently may be considered as a potential alternative in replacement of synthetic fungicides.Keywords. biopolymer; chitosan; antifungal activity; fungal morphology; electron microscopy

  10. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.

    Science.gov (United States)

    Tak, Hamid Iqbal; Ahmad, Faheem; Babalola, Olubukola Oluranti

    2013-01-01

    In this review, we briefly describe the biological application of PGPR for purposes of phytoremediating heavy metals. We address the agronomic practices that can be used to maximize the remediation potential of plants. Plant roots have limited ability ability mental from soil, mainly because metals have low solubility in the soil solution. The phytoavailability of metal is closely tired to the soil properties and the metabolites that are released by PGPR (e.g., siderophores, organ acids, and plant growth regulators). The role played by PGPR may be accomplished by their direct effect on plant growth dynamics, or indirectly by acidification, chelation, precipitation, or immobilization of heavy metals in the rhizosphere. From performing this review we have formed the following conclusions: The most critical factor is determining how efficient phytoremediation of metal-contaminated soil will be is the rate of uptake of the metal by plants. In turn, this depends on the rate of bioavailability. We know from our review that beneficial bacteria exist tha can alter metal bioavailability of plants. Using these beneficial bacteria improves the performance of phytoremediation of the metal-contaminated sites. Contaminated sites are often nutrient poor. Such soil can be nutrient enriched by applying metal-tolerant microbes that provide key needed plant nutrients. Applying metal-tolerant microbes therefore may be vital in enhancing the detoxification of heavy-metal-contaminated soils (Glick 2003). Plant stress generated by metal-contaminated soils can be countered by enhancing plant defense responses. Responses can be enhanced by alleviating the stress-mediated impact on plants by enzymatic hydrolysis of ACC, which is intermediate in the biosynthetic pathway of ethylene. These plant-microbe partnerships can act as decontaminators by improving phytoremediation. Soil microorganisms play a central role in maintaining soil structure, fertility and in remediating contaminated soils

  11. Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth.

    Science.gov (United States)

    Singh, Akanksha; Gupta, Rupali; Pandey, Rakesh

    2016-01-01

    The effect of rutin, a bioflavonoid on the growth and biofilm formation of Bacillus subtilis strain CIM was investigated. In addition to swimming, swarming, and twitching potentials of B. subtilis CIM (BS), one picomolar (1 pM) of rutin was also observed to boost the biofilm forming ability of the bacterium. Bio-priming of rice seeds with BS and rutin not only augmented root and shoot lengths but also the photosynthetic pigments like chlorophyll and carotenoid. Similarly, high accumulation of phenolic and flavonoid contents was observed in the leaves. Fluorescent microscopic images revealed that BS plus rutin enhanced callose deposition in the leaves. It was also established that the least formation of reactive oxygen species in BS plus rutin treated rice plants was due to higher free radicals scavenging activity and total antioxidant potential. The results highlight chemo attractant nature of BS towards rutin, which by enhancing biofilm formation and root colonization indirectly strengthened the plants' defensive state.

  12. Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth.

    Directory of Open Access Journals (Sweden)

    Akanksha Singh

    Full Text Available The effect of rutin, a bioflavonoid on the growth and biofilm formation of Bacillus subtilis strain CIM was investigated. In addition to swimming, swarming, and twitching potentials of B. subtilis CIM (BS, one picomolar (1 pM of rutin was also observed to boost the biofilm forming ability of the bacterium. Bio-priming of rice seeds with BS and rutin not only augmented root and shoot lengths but also the photosynthetic pigments like chlorophyll and carotenoid. Similarly, high accumulation of phenolic and flavonoid contents was observed in the leaves. Fluorescent microscopic images revealed that BS plus rutin enhanced callose deposition in the leaves. It was also established that the least formation of reactive oxygen species in BS plus rutin treated rice plants was due to higher free radicals scavenging activity and total antioxidant potential. The results highlight chemo attractant nature of BS towards rutin, which by enhancing biofilm formation and root colonization indirectly strengthened the plants' defensive state.

  13. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L.

    Directory of Open Access Journals (Sweden)

    Neyser De La Torre-Ruiz

    Full Text Available ABSTRACT The effect of plant growth-promoting bacteria inoculation on plant growth and the sugar content in Agave americana was assessed. The bacterial strains ACO-34A, ACO-40, and ACO-140, isolated from the A. americana rhizosphere, were selected for this study to evaluate their phenotypic and genotypic characteristics. The three bacterial strains were evaluated via plant inoculation assays, and Azospirillum brasilense Cd served as a control strain. Phylogenetic analysis based on the 16S rRNA gene showed that strains ACO-34A, ACO-40 and ACO-140 were Rhizobium daejeonense, Acinetobacter calcoaceticus and Pseudomonas mosselii, respectively. All of the strains were able to synthesize indole-3-acetic acid (IAA, solubilize phosphate, and had nitrogenase activity. Inoculation using the plant growth-promoting bacteria strains had a significant effect (p < 0.05 on plant growth and the sugar content of A. americana, showing that these native plant growth-promoting bacteria are a practical, simple, and efficient alternative to promote the growth of agave plants with proper biological characteristics for agroindustrial and biotechnological use and to increase the sugar content in this agave species.

  14. Regeneration of Dioscorea floribunda plants from cryopreserved encapsulated shoot tips: effect of plant growth regulators.

    Science.gov (United States)

    Mandal, B B; Ahuja-Ghosh, Sangeeta

    2007-01-01

    The encapsulation-dehydration protocol for the cryopreservation of in vitro shoot tips of Dioscorea floribunda was optimized. Maximum survival of 87% was obtained when overnight pretreatment with 0.3 M sucrose was followed by encapsulation, preculture in 0.75 M sucrose for 4 d, dehydration in a laminar air flow for 5.5 h, quenching in liquid nitrogen and thawing at 40 degrees C. During recovery growth, 29% shoot formation was obtained when cryopreserved shoot tips were initially cultured for 25 d on a medium with 1.5 mg per liter (-1) BAP, 0.2 mg per liter(-1) NAA and 0.2 mg per liter(-1) GA3 followed by culturing for 15 d on a medium with reduced BAP (1 mg per liter(-1)) but increased NAA (0.5 mg per liter(-1)) and GA3 (0.3 mg per liter(-1)). Finally, transfer on to a medium with further reduced doses of BAP (0.05 mg per liter(-1)) and NAA (0.15 mg per liter(-1)) but without GA3 stimulated production of fully grown plantlets. All plants regenerated without callus formation. Modification of post-thaw culture media with plant growth regulators was essential for regrowth of shoot tips to plantlets.

  15. Different Growth Promoting Effects of Endophytic Bacteria on Invasive and Native Clonal Plants

    Science.gov (United States)

    Dai, Zhi-Cong; Fu, Wei; Wan, Ling-Yun; Cai, Hong-Hong; Wang, Ning; Qi, Shan-Shan; Du, Dao-Lin

    2016-01-01

    The role of the interactions between endophytes and alien plants has been unclear yet in plant invasion. We used a completely germ-free culture system to quantify the plant growth-promoting (PGP) effects of endophytic bacteria Bacillus sp. on aseptic seedlings of Wedelia trilobata and of its native clonal congener W. chinensis. The endophytic bacteria did not affect the growth of W. chinensis, but they significantly promoted the growth of W. trilobata. With the PGP effects of endophytic bacteria, relative change ratios of the clonal traits and the ramets’ growth traits of W. trilobata were significantly greater than those of W. chinensis. Our results indicate that the growth-promoting effects of endophytes may differ between invasive and native clonal plants, and the endophytes of invasive plant may be host-specific to facilitate plant invasion. PMID:27252722

  16. Different Growth Promoting Effects of Endophytic Bacteria on Invasive and Native Clonal Plants.

    Science.gov (United States)

    Dai, Zhi-Cong; Fu, Wei; Wan, Ling-Yun; Cai, Hong-Hong; Wang, Ning; Qi, Shan-Shan; Du, Dao-Lin

    2016-01-01

    The role of the interactions between endophytes and alien plants has been unclear yet in plant invasion. We used a completely germ-free culture system to quantify the plant growth-promoting (PGP) effects of endophytic bacteria Bacillus sp. on aseptic seedlings of Wedelia trilobata and of its native clonal congener W. chinensis. The endophytic bacteria did not affect the growth of W. chinensis, but they significantly promoted the growth of W. trilobata. With the PGP effects of endophytic bacteria, relative change ratios of the clonal traits and the ramets' growth traits of W. trilobata were significantly greater than those of W. chinensis. Our results indicate that the growth-promoting effects of endophytes may differ between invasive and native clonal plants, and the endophytes of invasive plant may be host-specific to facilitate plant invasion.

  17. Different growth promoting effects of endophytic bacteria on invasive and native clonal plants

    Directory of Open Access Journals (Sweden)

    Zhi-Cong eDai

    2016-05-01

    Full Text Available The role of the interactions between endophytes and alien plants has been unclear yet in plant invasion. We used a completely germ-free culture system to quantify the plant growth-promoting (PGP effects of endophytic bacteria Bacillus sp. on aseptic seedlings of W. trilobata and of its native clonal congener W. chinensis. The endophytic bacteria did not affect the growth of W. chinensis, but they significantly promoted the growth of W. trilobata. With the PGP effects of endophytic bacteria, relative change ratios of the clonal traits and the ramets' growth traits of W. trilobata were significantly greater than those of W. chinensis. Our results indicate that the growth-promoting effects of endophytes may differ between invasive and native clonal plants, and the endophytes of invasive plant may be host-specific to facilitate plant invasion.

  18. Effect of plant growth regulators on indices of growth analysis for sweet passion fruit seedlings (Passiflora alata Curtis

    Directory of Open Access Journals (Sweden)

    Carmen Sílvia Fernandes Boaro

    2008-09-01

    Full Text Available The objective of this work was to investigate the effects of GA3 + IBA + cinetina on the growth of Passiflora alata Curtis plants through growth analysis. The experiment was carried out by completely randomized block design, with six treatments and four replications. The plant growth regulators, gibberellin (GA3, auxin (IBA and cytokinin (kinetin, were applied to leaves at concentrations of 0 (control, 25, 50, 75, 100, 125mL.L-1. The applications were performed at 48, 55, 52, 69, and 76 days after the emergence of the plants and the growths were evaluated five times at 7-day intervals. The first evaluations were accomplished 55 days after plant emergence. The leaf area ratio (RAF, specific leaf area (AFE, liquid assimilation rate (TCA, and relative growth rate (TCR were analyzed. The following data were also analyzed for P. alata Curtis plants: leaf area, leaf lamina dry mass and total leaves dry mass. The growth analysis, which employed the ANACRES computer program, indicated that the growth regulators increased plant productivity.

  19. Effects of High Ammonium Concentration on Growth and Nutrient Uptake of Lettuce Plants with Solution Culture

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A nutrition solution experiment was conducted over two months to investigate the response of vegetable crops to high concentrations of ammonium, using lettuce (Lactuca sativa L. cv. Angustana Irish) as a test crop. Ammonium concentrations were designed in 5 levels, ranging from 12 mmol N L-1 to 22 mmol N L-1 and local tap water was used as water source. At the first culture stage (0-9 days), lettuce plants maintained normal growth while the lettuce roots were increasingly impaired. During the subsequent three stages the root structure was greatly damaged, and roots became brown or black through continuous supply of high concentration of ammonium. However, there was no obvious reduction of the aboveground biomass of the plants in the high ammonium treatments compared to those supplied with nitrate alone. In contrast to results obtained in another experiment from us with distilled water, the detrimental effect of high ammonium concentration on lettuce growth was greatly alleviated. Based on the results, it was postulated that the small amount of nitrate and the higher amount of bicarbonate existed in the tap water might mitigate the adverse effects of high ammonium N. The higher bicarbonate content in water and soil has usually been regarded as a major constraint factor limiting plant growth in calcareous soil areas. However, the reaction of bicarbonate to ammonium might produce positively interactive effect on reduction of both damages. The lettuce plants grown in ammonium solutions took up less P, K, Fe, Mn and Cu and more Ca than those grown in the nitrate nutrient solution. In conclusion, the results indicated that the N form imposed an obvious influence on absorption of cations and anions. Supplying ammonium-N stimulated transport of Ca, Mg and Mn to shoots of lettuce.

  20. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress.

    Science.gov (United States)

    Gamalero, Elisa; Lingua, Guido; Berta, Graziella; Glick, Bernard R

    2009-05-01

    Heavy metal pollution is a major worldwide environmental concern that has recently motivated researchers to develop a variety of novel approaches towards its cleanup. As an alternative to traditional physical and chemical methods of environmental cleanup, scientists have developed phytoremediation approaches that include the use of plants to remove or render harmless a range of compounds. Both plant growth promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) can be used to facilitate the process of phytoremediation and the growth of plants in metal-contaminated soils. This review focuses on the recent literature dealing with the effects of plant growth-promoting bacteria and AM fungi on the response of plants to heavy metal stress and points the way to strategies that may facilitate the practical realization of this technology.

  1. Bioactivity effect of two macrophyte extracts on growth performance of two bloom-forming cyanophytes

    Directory of Open Access Journals (Sweden)

    M.G. Ghobrial

    2015-01-01

    Full Text Available Allelopathy is a biological phenomenon by which an organism produces one or more biochemicals that influence the growth, survival, and reproduction of other organisms. These biochemicals are known as allelochemicals and can have beneficial (positive allelopathy or detrimental (negative allelopathy effects on the target organisms. The current research aims at using selected brackish water adapted submerged aquatic macrophytes allelopathy to combat bloom-forming cyanophytes, in laboratory bioassay experiments. Dry matters of macrophytes were extracted in solvents and the initial cyanophytes inoculum, derived from unialgal culture media, was used. Therefore, aqueous extracts with 50% and 100% acetone and ethanol solvents of two freshwater macrophytes; Potamogeton pectinatus and Ceratophyllum demersum were used to test their growth performance exhibited on two bloom-forming cyanophytes, Microcystis aeruginosa and Oscillatoria tenuis. The results revealed insignificant difference between the overall total average growth performance at treatment with 50% and 100% Ceratophyllum acetone extracts expressed by optical density (OD as well as chlorophyll a (chl a. Results showed, also, stimulation of M. aeruginosa growth. The highest growth increase in 100 μl/100 ml treatment with 50% acetone extract had a percentage rate (R of 94.66. On the contrary, treatment with ethanol extract recorded the highest inhibitory effect, thus in 1.5 μl/100 ml treatment with 50% Ceratophyllum ethanol extract R recorded −87.54, sustaining LC50 value of 1.12 μl/100 ml. The highest stimulating effect in 105 μl/100 ml treatment with 50% Ceratophyllum acetone extracts against O. tenuis was; R, 169.4. The highest inhibition in 1500 μl/100 ml treatment with 50% Ceratophyllum ethanol extracts against O. tenuis was; R −74.32, with LC50 0.830 μl/100 ml. While, the highest inhibition by 50% and 100% Potamogeton acetone or ethanol extracts against M. aeruginosa was

  2. Effect of seaweed extracts on growth and yield of rice plants

    Directory of Open Access Journals (Sweden)

    ALUH NIKMATULLAH

    2010-07-01

    Full Text Available Sunarpi, Jupri A, Kurnianingsih R, Julisaniah NI, Nikmatullah A 2010. Effect of seaweed extracts on growth and yield of rice plants. Nusantara Bioscience 2: 73-77. Application of liquid seaweed fertilizers on some plant specieshas been reported to decrease application doses of nitrogen, phosphorus and potassium on some crop plants, as well as stimulating growth and production of many plants. It has been reported that there are at least 59 species of seaweeds found in coastal zone of West Nusa Tenggara Province, 15 of those species weres able to stimulate germination, growth and production of some horticultural and legume plants. The aim of this research is to investigate the effect of seaweed extracts obtained from ten species on growth and production of rice plants. To achive the goal, seaweed (100 g per species wasextracted with 100 mL of water, to obtain the concentration of 100%. Seaweed extract (15% was sprayed into the rice plants during vegetative and generative stages. Subsequently, the growth and yield parameters of rice plants were measured. The results shown that extracts of Sargassum sp.1, Sargassum sp.2, Sargassum polycistum, Hydroclathrus sp., Turbinaria ornata, and Turbinaria murayana, were able to induce growth of rice plants. However, only the Hydroclathrus sp. extract could enhance both growth and production of rice plants.

  3. Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2

    Science.gov (United States)

    Tahir, Hafiz A. S.; Gu, Qin; Wu, Huijun; Raza, Waseem; Hanif, Alwina; Wu, Liming; Colman, Massawe V.; Gao, Xuewen

    2017-01-01

    Bacterial volatiles play a significant role in promoting plant growth by regulating the synthesis or metabolism of phytohormones. In vitro and growth chamber experiments were conducted to investigate the effect of volatile organic compounds (VOCs) produced by the plant growth promoting rhizobacterium Bacillus subtilis strain SYST2 on hormone regulation and growth promotion in tomato plants. We observed a significant increase in plant biomass under both experimental conditions; we observed an increase in photosynthesis and in the endogenous contents of gibberellin, auxin, and cytokinin, while a decrease in ethylene levels was noted. VOCs emitted by SYST2 were identified through gas chromatography-mass spectrometry analysis. Of 11 VOCs tested in glass jars containing plants in test tubes, only two, albuterol and 1,3-propanediole, were found to promote plant growth. Furthermore, tomato plants showed differential expression of genes involved in auxin (SlIAA1. SlIAA3), gibberellin (GA20ox-1), cytokinin (SlCKX1), expansin (Exp2, Exp9. Exp 18), and ethylene (ACO1) biosynthesis or metabolism in roots and leaves in response to B. subtilis SYST2 VOCs. Our findings suggest that SYST2-derived VOCs promote plant growth by triggering growth hormone activity, and provide new insights into the mechanism of plant growth promotion by bacterial VOCs. PMID:28223976

  4. ESM Calculations for Hydroponic Plant and Fungi Growth Chambers, Biosolids Dewatering Plant System, and Tilapia Growth System--EAC Presentation 2004

    OpenAIRE

    Aydogan, Selen; Blau, Gary; Pekny, Joseph; Reklaitis, Gintaras

    2004-01-01

    In this work, preliminary Equivalent System Mass (ESM) estimations of the Hydroponic Plant and Fungi Growth Chambers, Biosolids Dewatering Plant and Tilapia Growth Systems are presented. ESM may be used to evaluate a system or technology based on its mass, volume, power, cooling and manpower requirements. This ESM analysis focuses on a hypothetical device, instead of the anticipated technology that is system flight proven in mission operations. We have examined the Evolved Mars Base mission, ...

  5. Diversity of nodular bacteria of Scorpiurus muricatus in western Algeria and their impact on plant growth.

    Science.gov (United States)

    Bouchiba, Zoulikha; Boukhatem, Zineb Faiza; Ighilhariz, Zohra; Derkaoui, Nouria; Kerdouh, Benaissa; Abdelmoumen, Hanaa; Abbas, Younes; Missbah El Idrissi, Mustapha; Bekki, Abdelkader

    2017-02-24

    A total of 51 bacterial strains were isolated from root nodules of Scorpiurus muricatus sampled from six regions of western Algeria. Strains diversity was assessed by rep-PCR amplification fingerprinting which had allowed grouping the isolates into 28 different clusters. Partial Nucleotide sequencing of 16SrRNA gene and BLAST analysis revealed that root nodules of Scorpiurus muricatus were colonized by different species close to Rhizobium vignae, Rhizobium radiobacter, Rhizobium leguminosarum, Phyllobacterium ifriquiensis, Phyllobacterium endophyticum, Starkeya sp. and Pseudomonas sp. However none of these strains was able to form nodule on its host plant even nod C was present in a single strain (SMT8a). The inoculation test showed a great improvement in inoculated plants growth compared to non-inoculated control. A significant amount of Indole Acetic Acid was produced by some strains but only two strains could solubilize phosphate. In this report we described for the first time, the diversity of bacteria isolated from root nodules of S. muricatus growing in different regions in west of Algeria and demonstrated their potential use in plant growth promotion.

  6. Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-07-01

    The biosurfactant-producing Pseudomonas aeruginosa A11, with plant-growth-promoting (PGP) and multi-metal-resistant (MMR) features was isolated from the rhizosphere of a wild plant Parthenium hysterophorus. The strain A11 was able to utilize glycerol as a carbon source and produce 4,436.9 mg/L of biosurfactant after 120 h of incubation. The biosurfactants was characterized as rhamnolipids (RLs) by thin layer chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and liquid chromatography-mass spectrometry analysis. Eight different RLs congeners were detected with RhaRhaC₁₀C₁₀ being most abundant. The purified rhamnolipid, dirhamnolipid, and monorhamnolipid reduced the surface tension of water to 29, 36, and 42 mN/m with critical micelle concentration of 83, 125, and 150 mg/L, respectively. The strain A11 demonstrated resistance against all the metals detected in rhizosphere except Hg and Ni. The strain A11 also possessed plant-growth-promoting features like siderophores, hydrogen cyanide, catalase, ammonia production, and phosphate solubilization. The dirhamnolipids formed crystals upon incubation at 4 °C, thus making separation of dirhamnolipids easy. Biosurfactant-producing ability along with MMR and PGP traits of the strain A11 makes it a potential candidate for application in the bacterial assisted enhancement of phytoremediation of heavy-metal-contaminated sites.

  7. Vegetative growth of higher plants on a three-dimensional clinostat.

    Science.gov (United States)

    Hoson, T; Kamisaka, S; Miyamoto, K; Ueda, J; Yamashita, M; Masuda, Y

    1993-12-01

    Seedlings of rice, maize, cress, pea, and azuki bean were grown on a three-dimensional clinostat and changes in their vegetative growth processes were analyzed. A balanced relationship among the length or the weight of each organ was observed in these species even on the clinostat. Growth of pea second internodes is supported by the transport of sugars from the cotyledons, which was not influenced by the clinostat rotation. Thus, growth correlation and the translocation of sugars normally occurred even under simulated microgravity conditions. In contrast, morphogenesis was clearly changed by the clinostat rotation. The axiality along the gravity vector disappeared and so seedlings formed themselves into a sphere-like shape on the clinostat. The dorsiventrality was indistinct in growth of maize coleoptiles on the surface of the earth, but the clinostat rotation induced a clear dorsinventral bending. These changes in morphogenesis may influence the long-term growth phenomena and modify the life cycle of higher plants under a microgravity environment.

  8. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    OpenAIRE

    Martínez-Rodríguez,Julia del C.; Marcela De la Mora-Amutio; Luis A. Plascencia-Correa; Esmeralda Audelo-Regalado; Guardado, Francisco R.; Elías Hernández-Sánchez; Peña-Ramírez, Yuri J.; Adelfo Escalante; Miguel J. Beltrán-García; Tetsuya Ogura

    2015-01-01

    Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria in...

  9. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.

    Science.gov (United States)

    Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

    2013-04-24

    Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants.

  10. Plant growth promoting bacteria from cow dung based biodynamic preparations.

    Science.gov (United States)

    Radha, T K; Rao, D L N

    2014-12-01

    Indigenous formulations based on cow dung fermentation are commonly used in organic farming. Three biodynamic preparations viz., Panchagavya (PG), BD500 and 'Cow pat pit' (CPP) showed high counts of lactobacilli (10(9) ml(-1)) and yeasts (10(4) ml(-1)). Actinomycetes were present only in CPP (10(4) ml(-1)) and absent in the other two. Seven bacterial isolates from these ferments were identified by a polyphasic approach: Bacillus safensis (PG1), Bacillus cereus (PG2, PG4 PG5), Bacillus subtilis (BD2) Lysinibacillus xylanilyticus (BD3) and Bacillus licheniformis (CPP1). This is the first report of L. xylanilyticus and B. licheniformis in biodynamic preparations. Only three carbon sources-dextrose, sucrose and trehalose out of 21 tested were utilized by all the bacteria. None could utilize arabinose, dulcitol, galactose, inositol, inulin, melibiose, raffinose, rhamnose and sorbitol. All the strains produced indole acetic acid (1.8-3.7 μg ml(-1) culture filtrate) and ammonia. None could fix nitrogen; but all except B. safensis and B. licheniformis could solubilize phosphorous from insoluble tri-calcium phosphate. All the strains except L. xylaniliticus exhibited antagonism to the plant pathogen Rhizoctonia bataticola whereas none could inhibit Sclerotium rolfsi. In green house experiment in soil microcosms, bacterial inoculation significantly promoted growth of maize; plant dry weight increased by ~21 % due to inoculation with B. cereus (PG2). Results provide a basis for understanding the beneficial effects of biodynamic preparations and industrial deployment of the strains.

  11. Genome analysis of Bacillus amyloliquefaciens Subsp. plantarum UCMB5113: a rhizobacterium that improves plant growth and stress management.

    Science.gov (United States)

    Niazi, Adnan; Manzoor, Shahid; Asari, Shashidar; Bejai, Sarosh; Meijer, Johan; Bongcam-Rudloff, Erik

    2014-01-01

    The Bacillus amyloliquefaciens subsp. plantarum strain UCMB5113 is a Gram-positive rhizobacterium that can colonize plant roots and stimulate plant growth and defense based on unknown mechanisms. This reinforcement of plants may provide protection to various forms of biotic and abiotic stress. To determine the genetic traits involved in the mechanism of plant-bacteria association, the genome sequence of UCMB5113 was obtained by assembling paired-end Illumina reads. The assembled chromosome of 3,889,532 bp was predicted to encode 3,656 proteins. Genes that potentially contribute to plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis and siderophore production were identified. Moreover, annotation identified putative genes responsible for non-ribosomal synthesis of secondary metabolites and genes supporting environment fitness of UCMB5113 including drug and metal resistance. A large number of genes encoding a diverse set of secretory proteins, enzymes of primary and secondary metabolism and carbohydrate active enzymes were found which reflect a high capacity to degrade various rhizosphere macromolecules. Additionally, many predicted membrane transporters provides the bacterium with efficient uptake capabilities of several nutrients. Although, UCMB5113 has the possibility to produce antibiotics and biosurfactants, the protective effect of plants to pathogens seems to be indirect and due to priming of plant induced systemic resistance. The availability of the genome enables identification of genes and their function underpinning beneficial interactions of UCMB5113 with plants.

  12. Tracer methods for investigating biosynthetic pathways and the metabolism of bioactive substances in plants. [Herbicides; Plant growth regulators

    Energy Technology Data Exchange (ETDEWEB)

    Schuette, H.R. (Akademie der Wissenschaften der DDR, Halle/Saale. Inst. fuer Biochemie der Pflanzen)

    1984-03-01

    Proceeding from the general terms of investigating the courses of reactions in plants by means of tracer methods, problems and possibilities of the methods are discussed on the basis of examples referring in particular to double labelling techniques and to the determination of the distribution of radioactivity in the resulting products. Examples of herbicides and plant growth regulators are used for describing metabolism studies.

  13. Effects of plant growth-promoting bacteria isolated from copper tailings on plants in sterilized and non-sterilized tailings.

    Science.gov (United States)

    Liu, Weiqiu; Yang, Chao; Shi, Si; Shu, Wensheng

    2014-02-01

    Ten strains of Cu-tolerant bacteria with potential plant growth-promoting ability were isolated by selecting strains with the ability to use 1-aminocyclopropane-1-carboxylate as a sole nitrogen source (designated ACC-B) or fix nitrogen (designated FLN-B) originating from the rhizosphere of plants growing on copper tailings. All 10 strains proved to have intrinsic ability to produce indole acetic acid and siderophores, and most of them could mobilize insoluble phosphate. In addition, a greenhouse study showed that ACC-B, FLN-B and a mixture of both had similar, potent ability to stimulate growth of Pennisetum purpureum, Medicago sativa and Oenothera erythrosepala plants grown on sterilized tailings. For instance, above-ground biomass of P. purpureum was 278-357% greater after 60d growth on sterilized tailings in their presence. They could also significantly promote the growth of the plants grown on non-sterilized tailings, though the growth-promoting effects were much weaker. So, strategies for using of the plant growth-promoting bacteria in the practice of phytoremediation deserve further studies to get higher growth-promoting efficiency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Enhancing the growth and yield of Ramie (Boehmeria nivea L.) by ramie biomass waste in liquid form and gibberellic acid

    Science.gov (United States)

    Suherman, C.; Nuraini, A.; Wulandari, A. P.; Kadapi, M.

    2017-05-01

    Ramie (Boehmeria nivea L.) is one of the most important sources of natural fibre, a sustainable biomass. The growth and yield of ramie are affected by mineral nutrients. In the present study, we usedfertilizers from waste of ramie biomass in liquid form (liquid organic fertilizer, LOF) and the other treatment is by gibberellic acid (GA3). This study was to obtain the effect of treatments on enhance the growth and yield of ramie. Hence, we measure the character that related to the important parameter for biomass product of ramie. Such plant height, stem diameter, dry plant weight, and ramie fresh stem weight of ramie clone Pujon 13. This research was conducted from January 2016 to March 2016 at Research Field Ciparanje, Faculty of Agriculture, Padjadjaran University, Jatinangor, Sumedang, West Java with an altitude of about ± 750 m above sea level. The type of Soil in this area is Inceptisolsoil order and thetype of rainfall according to Schmidt and Fergusson Classification is C type. The experiment used Randomized Block Design (RBD) which consisted of eight treatments (GA and LOF) and four replications. The concentration of GA from 0, 50, 100 and 150 ppm and for concentration of LOF is 40 mlL-1. We suggested the treatment of GA 150 ppm with 40 mlL-1 LOF was the best treatment on enhancing plant height and stem fresh weight of ramie clone Pujon 13.

  15. How Does Your Garden Grow? Early Conceptualization of Seeds and Their Place in the Plant Growth Cycle.

    Science.gov (United States)

    Hickling, Anne K.; Gelman, Susan A.

    1995-01-01

    Examined young children's understanding of seed origins and growth preconditions and the stages of plant growth. Found that, by 4.5 years, children realized that natural causal mechanisms underlie plant growth and appreciated the relationship of seeds to plants. Results suggest that preschoolers hold theory-like understandings of plants similar to…

  16. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.

    Science.gov (United States)

    Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram

    2015-07-22

    The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0-5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.

  17. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.

    Science.gov (United States)

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  18. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling

    Directory of Open Access Journals (Sweden)

    Vasileios eBitas

    2015-11-01

    Full Text Available Volatile organic compounds (VOCs have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  19. Plant growth responses of apple and pear trees to doses of glyphosate

    Science.gov (United States)

    Glyphosate is commonly used for intra-row weed management in perennial plantations, where unintended crop exposure to this herbicide can cause growth reduction. The objective of this research was to analyze the initial plant growth behavior of young apple and pear plants exposed to glyphosate. Glyph...

  20. Draft Genome Sequence of Ochrobactrum intermedium Strain SA148, a Plant Growth-Promoting Desert Rhizobacterium

    KAUST Repository

    Lafi, Feras Fawzi

    2017-03-03

    Ochrobactrum intermedium strain SA148 is a plant growth-promoting bacterium isolated from sandy soil in the Jizan area of Saudi Arabia. Here, we report the 4.9-Mb draft genome sequence of this strain, highlighting different pathways characteristic of plant growth promotion activity and environmental adaptation of SA148.

  1. INTERSPECIFIC VARIATION IN THE GROWTH-RESPONSE OF PLANTS TO AN ELEVATED AMBIENT CO2 CONCENTRATION

    NARCIS (Netherlands)

    POORTER, H

    1993-01-01

    The effect of a doubling in the atmospheric CO2 concentration on the growth of vegetative whole plants was investigated. In a compilation of literature sources, the growth stimulation of 156 plant species was found to be on average 37%. This enhancement is small compared to what could be expected on

  2. Boron Plays an Important Role in the Regulation of Plant Cell Growth

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Boron is an essential nutrition for higher plants.However, the primary function of boron remains a matter of discussion.Boron may function by forming complexes with compounds having cis-hydroxyl groups(diols), e.g., pectic materials in cell walls, glycoproteins or glycolipids in membranes and o-diphenols.The well-defined functions of boron are its involvement in maintaining cell wall structure and both the structural and the functional integrity of plasma membrane.Lack of boron causes an increase in the leakage of ions and compounds which reflects the impairment of plasma membrane.Boron is functionally important in forming a pectic network in cell wall which is responsible for the extensibility of cell wall and consequently regulates cell growth.

  3. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.

  4. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    Science.gov (United States)

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2].

  5. Survival of two introduced plant growth promoting micro-organisms in green roof soil in southern Finland

    OpenAIRE

    Xie, Long

    2014-01-01

    Glomus intraradices and Bacillus amyloliquefaciens are two commercially used plant growth promoting micro-organisms. They associate with plant roots to facilitate host plants to absorb nutrients, induce resistance against pathogens and pests, and regulate growth through phytohormones. Growth conditions for plants on green roofs are often unfavorable. In order to test whether growth and development of green roof plants could be enhanced via improving the microbial interface, G. intraradices an...

  6. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    2016-01-01

    Abstract Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant-available water capacity (AWC) and plant growth in diverse soil types still needs to be explored. A pot experiment......, the reduced water regime significantly affected plant growth and water consumption, whereas the effect was less pronounced in the coarse sand. Irrespective of the soil type, both GBs increased AWC by 17–42%, with the highest absolute effect in the coarse sand. The addition of SGB to coarse sand led...

  7. Diel changes in nitrogen and carbon resource status and use for growth in young plants of tomato (Solanum lycopersicum).

    Science.gov (United States)

    Huanosto Magaña, Ruth; Adamowicz, Stéphane; Pagès, Loïc

    2009-05-01

    Modellers often define growth as the development of plant structures from endogenous resources, thus making a distinction between structural (W(S)) and total (W) dry biomass, the latter being the sum of W(S) and the weight of storage compounds. In this study, short-term C and N reserves were characterized experimentally (forms, organ distribution, time changes) in relation to light and nutrition signals, and organ structural growth in response to reserve levels was evaluated. Tomato plants (Solanum lycopersicum) were grown hydroponically in a growth room with a 12-h photoperiod and an adequate supply of NO(3)(-) (3 mol m(-3)). Three experiments were carried out 18 d after sowing: [NO(3)(-)] was either maintained at 3 mol m(-3), changed to 0.02 mol m(-3) or to 0 mol m(-3). Plants were sampled periodically throughout the light/dark cycles over 24-48 h. Organ W(S) was calculated from W together with the amount of different compounds that act as C and N resources, i.e. non-structural carbohydrates and carboxylates, nitrate and free amino acids. With adequate nutrition, carbohydrates accumulated in leaves during light periods, when photosynthesis exceeded growth needs, but decreased at night when these sugars are the main source of C for growth. At the end of the night, carbohydrates were still high enough to fuel full-rate growth, as W(S) increased at a near constant rate throughout the light/dark cycle. When nitrate levels were restricted, C reserves increased, but [NO(3)(-)] decreased progressively in stems, which contain most of the plant N reserves, and rapidly in leaves and roots. This resulted in a rapid restriction of structural growth. Periodic darkness did not restrict growth because sufficient carbohydrate reserves accumulated during the light period. Structural growth, however, was very responsive to NO(3)(-) nutrition, because N reserves were mostly located in stems, which have limited nitrate reduction capacity.

  8. Plant protoplast fusion and growth of intergeneric hybrid cells.

    Science.gov (United States)

    Kao, K N; Constabel, F; Michayluk, M R; Gamborg, O L

    1974-01-01

    Interspecific and intergeneric fusions of plant protoplasts were induced by polyethylene glycol (PEG) 1540 or 4000. The frequency of heterokaryocyte formation (or rate of fusion) was much higher when PEG was eluted with a high pH-high Ca(2+) solution or a salt solution than when it was eluted with a protoplast culture medium. The frequency of heterokaryocyte formation was also affected by the types of enzymes used for wall degradation, duration of enzyme incubation and molality of the PEG solutions.The maximum frequency of heterokaryocyte formation was 23% for V. hajastana Grossh.-soybean (Glycine max L.) and barley (Hordeum vulgare L.)-soybean, 35% for pea (Pisum sativum L.)-soybean, 20% for pea-V. hajastana, 14% for corn (Zea mays L.)-soybean and 10% for V. villosa Roth-V. hajastana.40% of the barley-soybean, corn-soybean and pea-soybean heterokaryocytes divided at least once. Some divided many times and formed clusters of up to 100 cells in 2 weeks. The heterokaryocytes of soybean-V. hajastana, V. villosa-V. hajastana also divided. Of the PEG-treated protoplasts of N. langsdorffii and N. glauca 13.5% developed into tumor-like calli. The morphology of these calli was very much like that of the tumors produced on amphidiploid plants of N. langsdorffii x glauca.Nuclear staining indicated that heterokaryocytes of V. hajastana-soybean, pea-soybean, corn-soybean and barley-soybean could undergo mitosis. Nuclear divisions in a heterokaryocyte were usually synchronized or almost synchronized. Nuclear fusion and true hybrid formation usually occurred during the first mitotic division after protoplast fusion. A hybrid of barley-soybean in third cell division was observed. The frequency of heterokaryocytes which underwent nuclear fusion has not been determined. Multipole formation and chimeral cell colonies were also observed.

  9. Modulation of plant growth and metabolism in cadmium-enriched environments.

    Science.gov (United States)

    Qadir, Shaista; Jamshieed, Sumiya; Rasool, Saiema; Ashraf, Muhammad; Akram, Nudrat Aisha; Ahmad, Parvaiz

    2014-01-01

    Cadmium (Cd) is a water soluble metal pollutant that is not essential to plant growth.It has attracted attention from soil scientists and plant nutritionists in recent years because of its toxicity and mobility in the soil-plant continuum. Even low levels of Cd (0.1-1 J.!M) cause adverse effects on plant growth and metabolism. Cadmium is known to trigger the synthesis of reactive oxygen species, hinder utilization, uptake and transport of essential nutrients and water, and modify photosynthetic machinery,thereby resulting in plant tissue death. Although the effects of Cd are dose- as well as plant species-dependent, some plants show Cd tolerance through a wide range of cellular responses. Such tolerance results from synthesis of osmolytes,generation of enzymatic and non-enzymatic antioxidants and metal-detoxifying peptides, changes in gene expression, and metal ion homeostasis and compartmentalization of ligand-metal complexes. Cd toxicity in plants produces effects on chlorophyllbio synthesis, reduces photosynthesis, and upsets plant water relations and hormonal and/or nutritional balances. All of these effects on plants and on plant metabolism ultimately reduce growth and productivity.In this review, we describe the extent to which Cd affects underlying metabolic processes in plants and how such altered processes affect plant growth. We review the sources of Cd contamination, its uptake, transportation and bioavailability and accumulation in plants, and its antagonistic and synergistic effects with other metals and compounds. We further address the effects of Cd on plant genetics and metabolism,and how plants respond to mitigate the adverse effects of Cd exposure, as well as strategies(e.g., plant breeding) that can reduce the impact of Cd contamination on plants.

  10. The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress.

    Science.gov (United States)

    Singh, Rajnish Prakash; Jha, Prameela; Jha, Prabhat Nath

    2015-07-20

    Plant-growth-promoting bacteria (PGPB) with 1-aminocyclopropane-1-carboxylatedeaminase (ACCD) activity can protect plants from the deleterious effects of abioticstressors. An ACCD bacterial strain, SBP-8, identified as Klebsiella sp., also having other plant-growth-promoting activities, was isolated from Sorghum bicolor growing in the desertregion of Rajasthan, India. ACCD activity of SBP-8 was characterized at biochemical, physiological, and molecular levels. The presence of AcdS, a structural gene for ACCD, was confirmed by the polymerase chain reaction. Strain SBP-8 showed optimum growth and ACCD activity at increased salt (NaCl) concentrations of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. Inoculation of wheat plants with SBP-8 when grow in the presence of salt (150-200 mM) and temperature (30-40 °C) stressors resulted inamelioration of stress conditions by increasing plant biomass and chlorophyll content, and are duction in plant growth inhibition (10-100%) occurred due to salt and temperature stressors. Moreover, strain SBP-8 also caused Na(+) exclusion (65%) and increased uptake of K(+) (84.21%) in the host plant. This property can protect plants from adverse effects of Na(+) on plant growth and physiology. Thus, SBP-8 improves growth of the host plant and protects from salt stressors through more than one mechanism including an effect of ACCD activity and on K(+)/Na(+) ratio in plants. The colonization efficiency of strain SBP-8 was confirmedby CFU (colony-forming unit) count, microscopy, and ERIC-PCR based DNA-finger-printing approach. Therefore, and the use of efficient colonizing plant-growth-promoting bacteria may provideinsights into possible biotechnological approaches to decrease the impact of salinity and other stressors.

  11. A native plant growth promoting bacterium, Bacillus megaterium B55, rescues growth performance of an ethylene insensitive plant genotype in nature

    Directory of Open Access Journals (Sweden)

    Dorothea Gertrud Meldau

    2012-06-01

    Full Text Available Many plants have intimate relationships with soil microbes that through a variety of mechanisms improve the plant’s growth and fitness. Bacillus megaterium is a natural endophyte isolated from Nicotiana attenuata plant roots growing in native soils. A particular isolate (B55, was found to have dramatic plant growth promoting (PGP effects on wild type (WT and transgenic plants impaired in ethylene (ET perception (35S-etr1, the genotype from which this bacteria was first isolated. B55 not only improves N. attenuata growth under in vitro, glasshouse and field conditions, but it also rescues many of the deleterious phenotypes associated with ET insensitivity. Most notably, B55 dramatically increases the growth and survival of 35S-etr1 plants under field conditions. To our knowledge, this is the first demonstration of a PGP effect in a native plant-microbe association under natural conditions. Our study demonstrates that this facultative mutualistic plant-microbe interaction should be viewed as part of the plant’s extended phenotype. Possible modalities of recruitment and mechanisms of PGP are discussed.

  12. Influence of Nitrogen Sources and Plant Growth-Promoting Rhizobacteria Inoculation on Growth, Crude Fiber and Nutrient Uptake in Squash (Cucurbita moschata Duchesne ex Poir. Plants

    Directory of Open Access Journals (Sweden)

    Alice I. TCHIAZE

    2016-06-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR, B have immense potential application in sustainable agriculture as ecofriendly biofertilizers and biopesticides. In this study, the effects of three nitrogen (N sources (NO3-, NH4+ and NO3NH4 and PGPR on growth, crude fiber and nutrient uptake were investigated in squash plants. Some growth parameters [root dry weight (RDW, shoot dry weight (SDW, total plant dry weight (PDW, number of leaves (NL, shoot length (SL, stem diameter (SD and number of ramifications (NR], crude fiber (cellulose content and nutrient uptake (N, P, K, Ca, Mg, Na, Fe, Cu, Mn and Zn were determined. Application of NO3-,NH4+ or NO3NH4 singly or in combination with PGPR inoculation led to a significant increase in RDW, SDW, PDW, NL, SL, SD and NR. Na, Cu and Zn contents, on the contrary, decreased in inoculated treated plants while no significant differences were recorded in cellulose contents (CE of leaves except in plants fed with NO3-. The leaf CE content ranged from 12.58 to 13.67%. The plants supplied with NO3+B, NH4+B and NO3NH4+B showed significantly higher plant biomass and accumulation of N, P, K and Mn concentrations in leaves compared to all other treatments. These results suggest that specific combinations of PGPR with NO3-, NH4+ or NO3NH4 fertilizers can be considered as efficient alternative biofertilizers to improve significantly the squash growth and nutrient uptake.

  13. Preparation for the Proof of Concept Flight of the Veggie Plant Growth Chamber

    Science.gov (United States)

    Massa, Gioia; Morrow, Robert; Hummerick, Mary; Newsham, Gerard; Wheeler, Raymond

    2012-01-01

    Veggie is a small plant growth chamber designed and built by ORBITEC that will fly to the International Space Station on SpaceX-3, scheduled for the summer of 2013. Ultimately Veggie will be used for research, education and outreach, and crew recreation. We want to demonstrate the functionality of this hardware by testing a scenario that could allow the crew to grow and consume fresh vegetables. Veggie will be collapsed and transported flat in a cargo transfer bag, and deployed on orbit, where it will be installed in an EXPRESS rack. The chamber consists of three subsystems: an LED light cap, a transparent bellows, and a root mat reservoir assembly. The bellows and flexible support arms allow the distance between plants and light cap to be adjusted for different ages and types of plants. Researchers at Kennedy Space Center and ORBITEC have been working to develop the plant growth interfaces for the proof of concept flight. We have developed a rooting pillow, consisting of a small bag containing media, time release fertilizer, seeds, and a wicking surface to conduct water from the root mat reservoir. Prototype pillows have been tested and results have influenced the design of flight pillows, which will be modified for microgravity from flight-approved materials. Several studies have been conducted selecting species and comparing media types in analog systems. Water content seems to be the most important factor differentiating media types in these small growth volumes (100 mL). Media type also influenced microbial levels on plants. Since produce sanitizing agents are not currently approved for growing food crops on orbit, plants and media types having very low microbial levels are being selected. Lettuce, mizuna, and other salad greens typically have microbial counts less than 10(exp 4) colony forming units and thus are good candidates for spaceflight. As we approach flight verification testing, we will finalize species, media selection, harvesting, and microbial

  14. A meta-analysis of plant physiological and growth responses to temperature and elevated CO(2).

    Science.gov (United States)

    Wang, Dan; Heckathorn, Scott A; Wang, Xianzhong; Philpott, Stacy M

    2012-05-01

    Atmospheric carbon dioxide (CO(2)) and global mean temperature are expected to be significantly higher by the end of the 21st century. Elevated CO(2) (eCO(2)) and higher temperature each affect plant physiology and growth, but their interactive effects have not been reviewed statistically with respect to higher chronic mean temperatures and abrupt heat stress. In this meta-analysis, we examined the effect of CO(2) on the physiology and growth of plants subjected to different temperature treatments. The CO(2) treatments were categorized into ambient (560 ppm) levels, while temperature treatments were categorized into ambient temperature (AT), elevated temperature (ET; AT + 1.4-6°C), or heat stress (HS; AT + >8°C). Plant species were grouped according to photosynthetic pathways (C(3), C(4)), functional types (legumes, non-legumes), growth forms (herbaceous, woody), and economic purposes (crop, non-crop). eCO(2) enhanced net photosynthesis at AT, ET, and HS in C(3) species (especially at the HS level), but in C(4) species, it had no effect at AT, a positive effect at ET, and a negative effect at HS. The positive effect of eCO(2) on net photosynthesis was greater for legumes than for non-legumes at HS, for non-crops than crops at ET, and for woody than herbaceous species at ET and HS. Total (W (T)) and above- (W (AG)) and below-ground (W (BG)) biomass were increased by eCO(2) for most species groups at all temperatures, except for C(4) species and W (BG) of legumes at HS. Hence, eCO(2) × heat effects on growth were often not explained by effects on net photosynthesis. Overall, the results show that eCO(2) effects on plant physiology and growth vary under different temperature regimes, among functional groups and photosynthetic pathways, and among response variables. These findings have important implications for biomass accumulation and ecosystem functioning in the future when the CO(2) level is higher and climate extremes, such as heat waves, become more frequent.

  15. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Science.gov (United States)

    Tian, Di; Li, Peng; Fang, Wenjing; Xu, Jun; Luo, Yongkai; Yan, Zhengbing; Zhu, Biao; Wang, Jingjing; Xu, Xiaoniu; Fang, Jingyun

    2017-07-01

    Reactive nitrogen (N) increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m × 20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings), and ground-cover plants (ferns) according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height) of 5-10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha-1 yr-1) and N100 fertilized plots (100 kg N ha-1 yr-1), while the growth of median and large trees with a DBH of > 10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical forest, and that the limitation of other nutrients in the forest

  16. Plant defences limit herbivore population growth by changing predator-prey interactions.

    Science.gov (United States)

    Kersch-Becker, Mônica F; Kessler, André; Thaler, Jennifer S

    2017-09-13

    Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators. © 2017 The Author(s).

  17. Plant growth regulation in seed crops of perennial ryegrass (Lolium perenne L)

    DEFF Research Database (Denmark)

    Boelt, Birte; Lemaire, Charles; Abel, Simon;

    2016-01-01

    Seed yield components were recorded in plants of perennial ryegrass cv. Calibra a medium late, forage type (4n) in a two factorial block design with Nitrogen (N) and plant growth regulator (PGR) application in 2014 and 2015 at Aarhus University (AU), Flakkebjerg. For each plant, reproductive...

  18. Evaluation of Irrigation Methods for Highbush Blueberry. I. Growth and Water Requirements of Young Plants

    Science.gov (United States)

    A study was conducted in a new field of northern highbush blueberry (Vaccinium corymbosum L. 'Elliott') to determine the effects of different irrigation methods on growth and water requirements of uncropped plants during the first 2 years after planting. The plants were grown on mulched, raised beds...

  19. The influence of Plant Growth Promoting Rhizobacteria (PGPR on the reduction of abiotic stresses in crops

    Directory of Open Access Journals (Sweden)

    Omid Alizadeh

    2011-12-01

    Full Text Available Plants are always subjected to biotic and abiotic stresses in the environment which haveinfluences on the growth and development of the plants. Beneficial free-living soil bacteria are usuallyreferred as Plant-Growth Promoting Rhizobacteria or PGPR. Different plant growth-promotingRhizosphere bacteria, including associative bacteria such as: Azospirillum, Bacillus, Pseudomonas andEnterobacter group have been used for their beneficial influences on plants. Typically, PGPRs areassociated with plants root and augment plant productivity and immunity; however, recent worksshowed that PGPRs not have just induced the systemic tolerance to abiotic stress such as salt anddrought, but also they have increased the nutrient uptake from soils, and as a result the hazardousaccumulation of nitrates and phosphates in the agricultural soils can be reduced by usage of them.

  20. Draft Genome Sequence of Plant Growth-Promoting Rhizobacterium Pantoea sp. Strain AS-PWVM4

    OpenAIRE

    Khatri, Indu; Kaur, Sukhvir; Devi, Usha; Kumar, Navinder; Sharma,Deepak; Subramanian, Srikrishna; Saini, Adesh K.

    2013-01-01

    Nonpathogenic Pantoea spp. have been shown to confer biofertilizer and biocontrol activities, indicating their potential for increasing crop yield. Herein, we provide the high-quality genome sequence of Pantoea sp. strain AS-PWVM4, a Gram-negative motile plant growth-promoting rhizobacterium isolated from a pomegranate plant. The 4.9-Mb genome contains genes related to plant growth promotion and the synthesis of siderophores.

  1. Draft Genome Sequence of Plant Growth-Promoting Rhizobacterium Pantoea sp. Strain AS-PWVM4.

    Science.gov (United States)

    Khatri, Indu; Kaur, Sukhvir; Devi, Usha; Kumar, Navinder; Sharma, Deepak; Subramanian, Srikrishna; Saini, Adesh K

    2013-12-05

    Nonpathogenic Pantoea spp. have been shown to confer biofertilizer and biocontrol activities, indicating their potential for increasing crop yield. Herein, we provide the high-quality genome sequence of Pantoea sp. strain AS-PWVM4, a Gram-negative motile plant growth-promoting rhizobacterium isolated from a pomegranate plant. The 4.9-Mb genome contains genes related to plant growth promotion and the synthesis of siderophores.

  2. Role of plant growth regulators as chemical signals in plant-microbe interactions: a double edged sword.

    Science.gov (United States)

    Spence, Carla; Bais, Harsh

    2015-10-01

    Growth regulators act not only as chemicals that modulate plant growth but they also act as signal molecules under various biotic and abiotic stresses. Of all growth regulators, abscisic acid (ABA) is long known for its role in modulating plants response against both biotic and abiotic stress. Although the genetic information for ABA biosynthesis in plants is well documented, the knowledge about ABA biosynthesis in other organisms is still in its infancy. It is known that various microbes including bacteria produce and secrete ABA, but the overall functional significance of why ABA is synthesized by microbes is not known. Here we discuss the functional involvement of ABA biosynthesis by a pathogenic fungus. Furthermore, we propose that ABA biosynthesis in plant pathogenic fungi could be targeted for novel fungicidal discovery.

  3. The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15.

    Science.gov (United States)

    Pham, Van T K; Rediers, Hans; Ghequire, Maarten G K; Nguyen, Hiep H; De Mot, René; Vanderleyden, Jos; Spaepen, Stijn

    2017-04-01

    The use of plant growth-promoting rhizobacteria as a sustainable alternative for chemical nitrogen fertilizers has been explored for many economically important crops. For one such strain isolated from rice rhizosphere and endosphere, nitrogen-fixing Pseudomonas stutzeri A15, unequivocal evidence of the plant growth-promoting effect and the potential contribution of biological nitrogen fixation (BNF) is still lacking. In this study, we investigated the effect of P. stutzeri A15 inoculation on the growth of rice seedlings in greenhouse conditions. P. stutzeri A15 induced significant growth promotion compared to uninoculated rice seedlings. Furthermore, inoculation with strain A15 performed significantly better than chemical nitrogen fertilization, clearly pointing to the potential of this bacterium as biofertilizer. To assess the contribution of BNF to the plant growth-promoting effect, rice seedlings were also inoculated with a nitrogen fixation-deficient mutant. Our results suggest that BNF (at best) only partially contributes to the stimulation of plant growth.

  4. How do plants enlarge? A balancing act. Workship on plant growth: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, J.S.

    1996-12-31

    There are signals that coordinate the development of various plant parts and thus the rates of enlargement of various plant parts and these were explored during the workshop. The participants tried to systematize their knowledge and identify over-arching concepts that need more investigation. It was generally agreed that the cell wall cannot be viewed as a passive plastic material. Synthesis and deposition take place and cause changes in the molecular architecture of the wall. Questions arise from the fact that the wall is not a constant or uniform structure but undergoes highly organized changes during enlargement while bearing a considerable load. Recent advances in signaling, biochemical analysis and ultrastructure visualization are beginning to relate to the molecular load-bearing and enzymatic activities in the wall. The participants agreed that there probably is enough information to begin developing a comprehensive model that would balance wall effects with the limitation of growth by transport, especially for water, and this could help clarify events occurring at different time scales and places. Beyond that, there seems to be a need to resolve problems of solute transport and wall behavior that are poorly understood in growing regions, leaving many promising areas for future experiments. Understanding each balancing act seems to be just the beginning.

  5. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana

    NARCIS (Netherlands)

    Melzer, S.; Lens, F.; Gennen, J.; Vanneste, S.; Rohde, A.; Beeckman, T.

    2008-01-01

    Plants have evolved annual and perennial life forms as alternative strategies to adapt reproduction and survival to environmental constraints. In isolated situations, such as islands, woody perennials have evolved repeatedly from annual ancestors1. Although the molecular basis of the rapid evolution

  6. Beneficial effect of the rhizosphere microbial community for plant growth and health

    Directory of Open Access Journals (Sweden)

    Nihorimbere, V.

    2011-01-01

    Full Text Available Plant rhizosphere is the soil nearest to the plant root system where roots release large quantity of metabolites from living root hairs or fibrous root systems. These metabolites act as chemical signals for motile bacteria to move to the root surface but also represent the main nutrient sources available to support growth and persistence in the rhizosphere. Some of the microbes that inhabit this area are bacteria that are able to colonize very efficiently the roots or the rhizosphere soil of crop plants. These bacteria are referred to as plant growth promoting rhizobacteria (PGPR. They fulfil important functions for plant growth and health by various manners. Direct plant growth promotion may result either from improved nutrient acquisition and/or from hormonal stimulation. Diverse mechanisms are involved in the suppression of plant pathogens, which is often indirectly connected with plant growth. This paper describes the different mechanisms commonly used by most PGPR in their natural habitats to influence plant-growth and health.

  7. Methods for growth regulation of greenhouse produced ornamental pot- and bedding plants – a current review

    Directory of Open Access Journals (Sweden)

    Bergstrand Karl-Johan I.

    2017-06-01

    Full Text Available Chemical plant growth regulators (PGRs are used in the production of ornamental potted and bedding plants. Growth control is needed for maximizing production per unit area, reducing transportation costs and to obtain a desired visual quality. However, the use of PGRs is associated with toxicity risks to humans and the environment. In many countries the availability of PGRs is restricted as few substances are registered for use. A number of alternative methods have been suggested. The methods include genetic methods (breeding and crop cultivation practices such as fertigation, temperature and light management. A lot of research into “alternative” growth regulation was performed during the 1980-1990s, revealing several possible ways of using different climatic factors to optimize plant growth with respect to plant height. In recent years, the interest in climatic growth regulation has been resurrected, not least due to the coming phase-out of the plant growth regulator chlormequat chloride (CCC. Today, authorities in many countries are aiming towards reducing the use of agrochemicals. At the same time, there is a strong demand from consumers for products produced without chemicals. This article provides a broad overview of available methods for non-chemical growth control. It is concluded that a combination of plant breeding and management of temperature, fertigation and light management has the potential of replacing chemical growth regulators in the commercial production of ornamental pot- and bedding plants.

  8. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    Science.gov (United States)

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  9. Morphological Transformation of Plant Cells in vitro and Its Effect on Plant Growth

    Institute of Scientific and Technical Information of China (English)

    GUO Zhigang; ZENG Zhaolin; LIU Ruizhi; DENG Ying

    2005-01-01

    Enhancement of cell growth in suspension cultures is urgently needed in plant cell culture engineering. This study investigates the relationship between morphological transformation and cell growth in callus and suspension cultures of saffron cells belonging to the cell line C96 induced from Crocus sativus L. In the suspension culture, an unbalanced osmotic pressure between the intracell and extracell regions induced a large morphological transformation which affected normal division of the saffron cells. An increase in osmotic pressure caused by the addition of sucrose inhibits the vacuolation and shrinkage of cytoplasm in the cells. As the sucrose concentration increases, the total amount of accumulated biomass also increases. Besides the sucrose concentration, increased ionic strength and inoculation ratio also help restrain to a large extent the vacuolation and shrinkage of the cytoplasm in the suspended cells, which results in increased biomass. The conditions for optimal biomass are: Murashige and Skoog's (MS) medium with 40 g/L sucrose and 60% (v/v) inoculation ratio.

  10. Effects of Ambient Humidity on Plant Growth Enhancement by Atmospheric Air Plasma Irradiation to Plant Seeds

    Science.gov (United States)

    Sarinont, Thapanut; Amano, Takaaki; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Humidity is an important factor for plasma-bio applications because composition of species generated by atmospheric pressure plasmas significantly depends on the humidity. Here we have examined effects of humidity on the growth enhancement to study the mechanism. Experiments were carried out with a scalable DBD device. 10 seeds of Raphanus sativus L. were set for x = 5 mm and y = 3 mm below the electrodes. The humidity Hair was 10 - 90 %Rh. The ratio of length of plants with plasma irradiation to that of control increases from 1.2 for Hair = 10 %Rh to 2.5 for Hair = 50 %Rh. The ratio is 2.5 for Hair = 50-90 %Rh. This humidity dependence is similar to the humidity dependence of O2+-H2O,H3O*, NO2--H2Oand NO3--H2Odensities, whereas it is different from that of other species such as O3, NO, and so on. The similarity gives information on key species for the growth enhancement.

  11. Ethylene Production and Petiole Growth in Rumex Plants Induced by Soil Waterlogging

    Science.gov (United States)

    Voesenek, Laurentius A. C. J.; Harren, Frans J. M.; Bögemann, Gerald M.; Blom, Cornelius W. P. M.; Reuss, Jörg

    1990-01-01

    Petiole growth of Rumex acetosa L., Rumex crispus L., and Rumex palustris Sm. in response to soil waterlogging was studied in relation to production of the gaseous plant hormone ethylene. Ethylene production was monitored in a flow-through system and a recently developed laser driven photoacoustic detection system, which allowed ethylene measurements as low as 6 picoliters per liter. R. acetosa showed a two-fold increase in ethylene production correlated with a slight enhancement of the growth of the petiole that developed during the waterlogging treatment. Both R. crispus and R. palustris showed a strong petiole elongation of existing as well as newly formed petioles, which was correlated with a 20-fold increase in ethylene production after approximately 7 days. Increased rates of ethylene production in R. palustris were related to a strong increase in 1-aminocyclopropane-1-carboxylic acid (ACC) concentration and a slight, but detectable, increase in ethylene forming enzyme activity. In R. acetosa on the other hand, only a very small increase in ACC concentration was observed. Changes in ethylene production in Rumex are strongly correlated with variation in ACC content and ethylene forming enzyme activity. The interaction between ethylene production/internal concentration and ethylene sensitivity of the three Rumex species is discussed in relation to their field location in a flooding gradient and their differential resistance toward waterlogging and submergence. PMID:16667798

  12. Plants' use of different nitrogen forms in response to crude oil contamination

    Energy Technology Data Exchange (ETDEWEB)

    Nie Ming [Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433 (China); Centre for Watershed Ecology, Institute of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031 (China); Lu Meng; Yang Qiang; Zhang Xiaodong [Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433 (China); Xiao Ming [College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234 (China); Jiang Lifen; Yang Ji; Fang Changming [Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433 (China); Chen Jiakuan [Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433 (China); Centre for Watershed Ecology, Institute of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031 (China); Li Bo, E-mail: bool@fudan.edu.c [Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433 (China); Centre for Watershed Ecology, Institute of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031 (China)

    2011-01-15

    In this study, we investigated Phragmites australis' use of different forms of nitrogen (N) and associated soil N transformations in response to petroleum contamination. {sup 15}N tracer studies indicated that the total amount of inorganic and organic N assimilated by P. australis was low in petroleum-contaminated soil, while the rates of inorganic and organic N uptake on a per-unit-biomass basis were higher in petroleum-contaminated soil than those in un-contaminated soil. The percentage of organic N in total plant-assimilated N increased with petroleum concentration. In addition, high gross N immobilization and nitrification rates relative to gross N mineralization rate might reduce inorganic-N availability to the plants. Therefore, the enhanced rate of N uptake and increased importance of organic N in plant N assimilation might be of great significance to plants growing in petroleum-contaminated soils. Our results suggest that plants might regulate N capture under petroleum contamination. - Plant strategies of utilizing nitrogen in crude oil-contaminated soils.

  13. Properties of bacterial endophytes and their proposed role in plant growth.

    Science.gov (United States)

    Hardoim, Pablo R; van Overbeek, Leo S; Elsas, Jan Dirk van

    2008-10-01

    Bacterial endophytes live inside plants for at least part of their life cycle. Studies of the interaction of endophytes with their host plants and their function within their hosts are important to address the ecological relevance of endophytes. The modulation of ethylene levels in plants by bacterially produced 1-aminocyclopropane-1-carboxylate deaminase is a key trait that enables interference with the physiology of the host plant. Endophytes with this capacity might profit from association with the plant, because colonization is enhanced. In turn, host plants benefit by stress reduction and increased root growth. This mechanism leads to the concept of 'competent' endophytes, defined as endophytes that are equipped with genes important for maintenance of plant-endophyte associations. The ecological role of these endophytes and their relevance for plant growth are discussed here.

  14. Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in pakistan.

    Science.gov (United States)

    Mehnaz, Samina; Baig, Deeba Noreen; Lazarovits, George

    2010-12-01

    Bacteria were isolated from roots of sugarcane varieties grown in the fields of Punjab. They were identified by using API20E/NE bacterial identification kits and from sequences of 16S rRNA and amplicons of the cpn60 gene. The majority of bacteria were found to belong to the genera of Enterobacter, Pseudomonas, and Klebsiella, but members of genera Azospirillum, Rhizobium, Rahnella, Delftia, Caulobacter, Pannonibacter, Xanthomonas, and Stenotrophomonas were also found. The community, however, was dominated by members of the Pseudomonadaceae and Enterobacteriaceae, as representatives of these genera were found in samples from every variety and location examined. All isolates were tested for the presence of five enzymes and seven factors known to be associated with plant growth promotion. Ten isolates showed lipase activity and eight were positive for protease activity. Cellulase, chitinase, and pectinase were not detected in any strain. Nine strains showed nitrogen fixing ability (acetylene reduction assay) and 26 were capable of solubilizing phosphate. In the presence of 100 mg/l tryptophan, all strains except one produced indole acetic acid in the growth medium. All isolates were positive for ACC deaminase activity. Six strains produced homoserine lactones and three produced HCN and hexamate type siderophores. One isolate was capable of inhibiting the growth of 24 pathogenic fungal strains of Colletotrichum, Fusarium, Pythium, and Rhizoctonia spp. In tests of their abilities to grow under a range of temperature, pH, and NaCl concentrations, all isolates grew well on plates with 3% NaCl and most of them grew well at 4 to 41degrees C and at pH 11.

  15. RESEARCH REGARDING THE POTENTIAL ACTIVITY OF SOME HETEROCYCLIC COMPOUNDS ON PLANTS GROWTH AND DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    OANA-IRINA PATRICIU

    2017-06-01

    Full Text Available It is well known that growth and morphogenesis of plant tissue cultures can be improved by small amounts of some organic compounds. Heterocyclic compounds such as chromanones and thiazoles derivatives, valuable because of their potential biological activities, have also been reported as pesticides, herbicides and plant-growth regulators. In the present study, different concentrations of chromanones and thiazoles derivatives were employed to evaluate their effects on plantlets growth of Ocimum basilicum L. and Echinacea purpurea L. The studied compounds were proved to be growth inhibitors at high concentrations. A growth stimulation effect was registered at low concentration.

  16. Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.).

    Science.gov (United States)

    Fan, Kai; Fan, Dongmei; Ding, Zhaotang; Su, Yanhua; Wang, Xiaochang

    2015-12-01

    The nitrogen source affects the growth of tea plants and regulates the accumulation of catechins in the leaves. In this report, we assessed the influences of NH4(+) and NO3(-) on plant growth, catechins accumulation and associated gene expression. Compared with the preferential nitrogen source NH4(+), when NO3(-) was supplied as the sole nitrogen source, tea plants showed similar symptoms with the nitrogen-free treatments and showed lower nitrogen, free amino acid accumulation, chlorophyll content and biomass gain, indicating NO3(-) was not efficiently used by these plants. However, the total shoot catechins content was significantly higher for NO3(-) treatments than that for NH4(+) treatment or combined NH4(+)+NO3(-) treatment, suggesting that, in addition to its influence on plant growth, the nitrogen form regulated the accumulation of catechins in tea. The expression of catechins biosynthesis-related genes was associated with the regulation of catechins accumulation and composition changes mediated by nitrogen form. PAL, CHS, CHI, and DFR genes exhibited higher expression levels in plants supplied with NO3(-), in which the transcript level of DFR in the shoots was significantly correlated with the catechins content. In the end, we identified a new function for the Cs-miR156, which was drastically induced through NH4(+). Moreover, a potential mechanism of the Cs-miR156 pathway in regulating catechins biosynthesis in tea plants has been suggested, with particular respect to nitrogen forms. Cs-miR156 might repress the expression of the target gene SPL to regulate the DFR gene, which plays a vital role in catechins biosynthesis.

  17. Evaluation of pyritic mine tailings as a plant growth substrate.

    Science.gov (United States)

    Roseby, Stuart J; Kopittke, Peter M; Mulligan, David R; Menzies, Neal W

    2017-10-01

    At the Kidston gold mine, Australia, the direct establishment of vegetation on tailings was considered as an alternative to the use of a waste rock cover. The tailings acid/base account was used to predict plant growth limitation by acidity, and thus methods capable of identifying tailings that would acidify to pH 4.5 or lower were sought. Total S was found to be poorly correlated with acid-generating sulfide, and total C was poorly correlated with acid-neutralizing carbonate, precluding the use of readily determined total S and C as predictors of net acid generation. Therefore, the selected approach used assessment of sulfide content as a predictor of acid generation, and carbonate content as a measure of the acid-neutralizing capacity available at pH 5 and above. Using this approach, the majority of tailings (67%) were found to be non-acid generating. However, areas of potentially acid-generating tailings were randomly distributed across the dam, and could only be located by intensive sampling. The limitations imposed by the large sample numbers, and costly analysis of sulfide and carbonate, make it impractical to identify and ameliorate acid-generating areas prior to vegetation establishment. However, as only a small proportion of the tailings will acidify, a strategy of re-treating acid areas following oxidation is suggested. The findings of the present study will assist in the selection of appropriate methods for the prediction of net acid generation, particularly where more conservative measurements are required to allow vegetation to be established directly in tailings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Growth behavior of anodic porous alumina formed in malic acid solution

    Science.gov (United States)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  19. Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation

    Science.gov (United States)

    The acquisition of plant sterols, mediated via elicitins, is required for growth and sporulation of Phytophthora spp. In this paper, we looked at the interaction between elicitins, sterols, and tannins. When ground leaf tissue was added to growth media, P. ramorum growth and sporulation was greates...

  20. Effects of Eichhornia crassipes Growth on Aquatic Plants in Dianchi Lake

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the effects of Eichhornia crassipes as an invasive plant on aquatic plants in Dianchi Lake. [Method] Based on the determination of chlorophyll content of phytoplankton and submerged plant (Potamogeton pectinatus) in Dianchi Lake in different months, the effects of E. crassipes on aquatic plants in Dianchi Lake were studied, and the allelopathy effect of root culture solution of E. crassipes on Microcystis aquaticum was discussed. [Result] The growth of E. crassipes in Dianch...

  1. Crop management in greenhouses: adapting the growth conditions to the plant needs or adapting the plant to the growth conditions?

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Pascale, De S.

    2009-01-01

    Strategies for improving greenhouse crop production should target both developing advanced technological systems and designing improved plants. Based on greenhouse experiments, crop models and biotechnological tools, this paper will discuss the physiology of plant-greenhouse interactions. It is disc

  2. Responses of plant growth rate to nitrogen supply: a comparison of relative addition and N interruption treatments.

    Science.gov (United States)

    Walker, R L; Burns, I G; Moorby, J

    2001-02-01

    This paper investigates the effects of uptake of nitrate and the availability of internal N reserves on growth rate in times of restricted supply, and examines the extent to which the response is mediated by the different pools of N (nitrate N, organic N and total N) in the plant. Hydroponic experiments were carried out with young lettuce plants (Lactuca sativa L.) to compare responses to either an interruption in external N supply or the imposition of different relative N addition rate (RAR) treatments. The resulting relationships between whole plant relative growth rate (RGR) and N concentration varied between linear and curvilinear (or possibly bi-linear) forms depending on the treatment conditions. The relationship was curvilinear when the external N supply was interrupted, but linear when N was supplied by either RAR methods or as a supra-optimal external N supply. These differences resulted from the ability of the plant to use external sources of N more readily than their internal N reserves. These results show that when sub-optimal sources of external N were available, RGR was maintained at a rate which was dependent on the rate of nitrate uptake by the roots. Newly acquired N was channelled directly to the sites of highest demand, where it was assimilated rapidly. As a result, nitrate only tended to accumulate in plant tissues when its supply was essentially adequate. By comparison, plants forced to rely solely on their internal reserves were never able to mobilize and redistribute N between tissues quickly enough to prevent reductions in growth rate as their tissue N reserves declined. Evidence is presented to show that the rate of remobilization of N depends on the size and type of the N pools within the plant, and that changes in their rates of remobilization and/or transfer between pools are the main factors influencing the form of the relationship between RGR and N concentration.

  3. Film coating of seeds with Bacillus cereus RS87 spores for early plant growth enhancement.

    Science.gov (United States)

    Jetiyanon, Kanchalee; Wittaya-Areekul, Sakchai; Plianbangchang, Pinyupa

    2008-10-01

    The plant growth-promoting rhizobacterium Bacillus cereus RS87 was previously reported to promote plant growth in various crops in both greenhouse and field trials. To apply as a plant growth promoting agent with practical use, it is essential to ease the burden of routine preparation of a fresh suspension of strain RS87 in laboratory. The objectives of this study were to investigate the feasibility of film-coating seeds with B. cereus RS87 spores for early plant growth enhancement and to reveal the indoleacetic acid (IAA) production released from strain RS87. The experiment consisted of the following 5 treatments: nontreated seeds, water-soaked seeds, film-coated seeds, seeds soaked with vegetative cells of strain RS87, and film-coated seeds with strain RS87 spores. Three experiments were conducted separately to assess seed emergence, root length, and plant height. Results showed that both vegetative cells and spores of strain RS87 significantly promoted (P seed emergence, root length and plant height over the control treatments. The strain RS87 also produced IAA. In conclusion, the film coating of seeds with spores of B. cereus RS87 demonstrated early plant growth enhancement as well as seeds using their vegetative cells. IAA released from strain RS87 would be one of the mechanisms for plant growth enhancement.

  4. Compensatory growth of the bloom-forming dinoflagellate Prorocentrum donghaiense induced by nitrogen stress

    Directory of Open Access Journals (Sweden)

    Honghui Zhu

    2013-02-01

    Full Text Available Although the phenomenon of compensatory growth has been documented in someanimals and higher plants, little information is available on its manifestation in marinemicroalgae. We have conducted the first study on the compensatory growth of the red tide causative dinoflagellate Prorocentrumdonghaiense after its recovery from different nitrogen concentrations.The results showed that NaNO3 concentrations of 0 and 7.5 mg l-1 significantly reduced thegrowth of P. donghaiense, as compared to 37.5 and 75 mg l-1. When the microalgal cells were returned to 75 mg l-1, they exhibited subsequent compensatory growth. The most significant compensatory growth was found in those cells previously experiencing 0 mg dm3, followed by 7.5 mg dm3, indicating thatcompensatory growth depended on the extent of nitrogen stress they had been subjected to. Our results suggest thatcompensatory growth can be induced in the marine microalga P. donghaiense after its recovery from nitrogen fluctuation, and that this should be taken into consideration in the prevalence of P. donghaiense blooms in coastal waters.

  5. Growth and Contaminant Removal Effect of Several Plants in Constructed Wetlands

    Institute of Scientific and Technical Information of China (English)

    Xiu-Yun Cheng; Ming-Qiu Liang; Wen-Yin Chen; Xu-Cheng Liu; Zhang-He Chen

    2009-01-01

    The aim of the present study is to probe the relation between plant growth and its decontamination effect in constructed wetlands.Four species were studied in the small-scale mono-cuitured constructed wetlands, which were fed with domestic wastewater. Plant growth indexes were correlated with contaminant removal performance of the constructed wetlands. Wetlands planted with Cyperus flabelliformis Rottb. showed the highest growth indexes such as shoot growth, biomass, root activity, root biomass increment, and the highest contaminant removal rates, whereas wetlands planted with Vetiveria zizanioides L. Nash had the lowest growth indexes and the lowest removal rates. Above-ground biomass and total biomass were significantly correlated with ammonia nitrogen removal, and below-ground biomass with soluble reactive phosphorus removal. Photosynthetic rate had higher correlation with nitrogen removal in these species. Root activity and root biomass increment was more correlated with 5 d biochemical oxygen demand removal.Chemical oxygen demand removal had lower correlations with plant growth indexes. All four species had higher removal rates in summer and autumn. The results suggest that the effect of plant growth on contaminant removal in constructed wetlands were different specifically in plants and contaminants.

  6. Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators.

    Science.gov (United States)

    Kurepin, Leonid V; Zaman, Mohammad; Pharis, Richard P

    2014-07-01

    There is increasing interest in the use of naturally occurring 'biostimulators' for enhancing the growth of agricultural and horticultural crops. Bacteria, fungi and protozoa, as well as marine algae-based seaweed extracts, can produce or contain biostimulators. The activity of biostimulators to promote plant growth is often attributed to their ability to directly or indirectly provide mineral nutrients (mostly N, but also P, S and other macro- and micro-nutrients) to plants. Alternatively, biostimulators are postulated to increase the plant's ability to assimilate these mineral nutrients, often in return for photo-assimilates (as occurs with certain bacteria and fungi associations). Although optimal growth of plants depends on the availability of adequate mineral nutritients, that growth (and also development, including reproduction) is also regulated by plant hormones (phytohormones), including gibberellins, auxins and cytokinins. This review describes and discusses the evidence that the presence or application of biostimulators also increases plant growth directly via phytohormone action and also influences the plant's ability to control its own hormone biosynthesis and homeostasis. Finally, it discusses the need for a better understanding of the role(s) that are played by the naturally occurring biostimulators associated with the plant in the crop field. It is suggested that better understanding will allow for optimal crop yield returns, since disruptions of phytohormone homeostasis in plant organs and tissues can yield either beneficial or sub-optimal outcomes.

  7. Endophytic bacteria isolated from orchid and their potential to promote plant growth.

    Science.gov (United States)

    Faria, Deise Cristina; Dias, Armando Cavalcante Franco; Melo, Itamar Soares; de Carvalho Costa, Francisco Eduardo

    2013-02-01

    Twelve endophytic bacteria were isolated from the meristem of in vitro Cymbidium eburneum orchid, and screened according to indole yield quantified by colorimetric assay, in vitro phosphate solubilization, and potential for plant growth promotion under greenhouse conditions. Eight strains with positive results were classified into the genus Paenibacillus by FAME profile, and evaluated for their ability to increase survival and promote the growth of in vitro germinated Cattleya loddigesii seedlings during the acclimatization process. The obtained results showed that all strains produced detectable indole levels and did not exhibit potential for solubilizing inorganic phosphate. Particularly, an increase of the total biomass and number of leaves was observed. Two strains of Paenibacillus macerans promoted plant growth under greenhouse conditions. None of the treatments had a deleterious effect on growth of inoculated plants. These results suggest that these bacterial effects could be potentially useful to promote plant growth during seedling acclimatization in orchid species other than the species of origin.

  8. Growth Promotion of Glycyrrhiza glabra L. by Salt-Tolerant Plant Growth Promotion Rhizobacteria under Saline Conditions

    Directory of Open Access Journals (Sweden)

    Jabborova D

    2016-04-01

    Full Text Available Salinity stress is one of the most serious factors limiting the productivity of agriculture. Plant growth promotion rhizobacteria (PGPR which produce phytohormones is one of the options to mitigate salt stress in plants and improve their growth and improvement under saline conditions. We study the effect of salt-tolerant P.putidaNUU8strain on plant growth of Glycyrrhizaglabra L. under saline soils. The treatment inoculation of P. putidaNUU8strainstatistically significantly increased roots and shoots length plant–1 over the control under a pot experiment. The results showed that inoculation of Glycyrrhizaglabra with of salt-tolerant P.putidaNUU8can enhance salt tolerance and plant growth under soil saline conditions. In our previous study we reported that the salinity did not inhibit the IAA production by strain. Strain P. putidaNUU8appeared to produce IAA in media contained NaCl up to 9 % and it was able to growth at high salt condition.Salt-stressed Glycyrrhizaglabra inoculated with the P. putidaNUU8sharply increased than uninoculated plants. Inoculation of P. putidaNUU8 strain significantly improved the root length 56% and shoots lenth 49% of Glycyrrhizaglabracompared with uninoculated control.

  9. How Do Sugars Regulate Plant Growth and Development? New Insight into the Role of Trehalose-6-Phosphate

    Institute of Scientific and Technical Information of China (English)

    Liam E.O'Hara; Matthew J.Paul; Astrid Wingler

    2013-01-01

    Plant growth and development are tightly controlled in response to environmental conditions that influence the availability of photosynthetic carbon in the form of sucrose.Trehalose-6-phosphate (T6P),the precursor of trehalose in the biosynthetic pathway,is an important signaling metabolite that is involved in the regulation of plant growth and development in response to carbon availability.In addition to the plant's own pathway for trehalose synthesis,formation of T6P or trehalose by pathogens can result in the reprogramming of plant metabolism and development.Developmental processes that are regulated by T6P range from embryo development to leaf senescence.Some of these processes are regulated in interaction with phytohormones,such as auxin.A key interacting factor of T6P signaling in response to the environment is the protein kinase sucrose non-fermenting related kinase-1 (SnRK1),whose catalytic activity is inhibited by T6P.SnRK1 is most likely involved in the adjustment of metabolism and growth in response to starvation.The transcription factor bZIP11 has recently been identified as a new player in the T6P/SnRK1 regulatory pathway.By inhibiting SnRK1,T6P promotes biosynthetic reactions.This regulation has important consequences for crop production,for example,in the developing wheat grain and during the growth of potato tubers.

  10. Bone forming capacity of cell- and growth factor-based constructs at different ectopic implantation sites.

    NARCIS (Netherlands)

    Ma, K.; Yang, F.; Both, Sanne Karijn; Prins, H.J.; Helder, M.N.; Pan, J.; Cui, F.Z.; Jansen, J.A.; van den Beucken, J.J.

    2015-01-01

    The aim of this study was to compare the effect of implantation site (i.e., subcutaneous, SQ vs. intramuscular, IM) on bone forming capacity of cell-based and growth factor-based scaffolds in athymic nude rats after an implantation period of 8 weeks. Cell-based scaffolds consisted of porous

  11. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.

    Science.gov (United States)

    Dodd, Antony N; Salathia, Neeraj; Hall, Anthony; Kévei, Eva; Tóth, Réka; Nagy, Ferenc; Hibberd, Julian M; Millar, Andrew J; Webb, Alex A R

    2005-07-22

    Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.

  12. Review: Wind impacts on plant growth, mechanics and damage.

    Science.gov (United States)

    Gardiner, Barry; Berry, Peter; Moulia, Bruno

    2016-04-01

    Land plants have adapted to survive under a range of wind climates and this involve changes in chemical composition, physical structure and morphology at all scales from the cell to the whole plant. Under strong winds plants can re-orientate themselves, reconfigure their canopies, or shed needles, leaves and branches in order to reduce the drag. If the wind is too strong the plants oscillate until the roots or stem fail. The mechanisms of root and stem failure are very similar in different plants although the exact details of the failure may be different. Cereals and other herbaceous crops can often recover after wind damage and even woody plants can partially recovery if there is sufficient access to water and nutrients. Wind damage can have major economic impacts on crops, forests and urban trees. This can be reduced by management that is sensitive to the local site and climatic conditions and accounts for the ability of plants to acclimate to their local wind climate. Wind is also a major disturbance in many plant ecosystems and can play a crucial role in plant regeneration and the change of successional stage.

  13. Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR.

    Science.gov (United States)

    Tank, Neelam; Saraf, Meenu

    2009-04-01

    Phytoremediation i.e. the use of plants to adsorb, accumulate or detoxify contaminants is an emerging area of interest. A viable technology needs optimum biomass production in metal contaminated soil. Five strains of microbes were selected after testing their potential as plant growth promoters, on the basis of their phosphate solubilization ability, IAA, siderophore and HCN production and biocontrol potentials. They were examined for growth in synthetic medium supplemented with nickel and their MIC (2 mM) was determined. These isolates were also able to grow and produce siderophores in presence of heavy metals like Ni, Zn and Cd. A positive response of bacterial inoculants was observed in chickpea plants towards toxic effect of nickel present in soil at different concentration (0, 1 and 2 mM). Bacterial inoculants enhanced fresh and dry weight of plants even at 2 mM nickel concentration. Pot experiments indicated that presence of nickel at upto 1 mM enhanced plant growth compared to uninoculated nickel free plants. The accumulation of nickel/plant was just 50% in Pseudomonas inoculated plants as compared to uninoculated plants with 2 mM nickel concentration along with increased biomass. The results suggest the use of these PGPR to enhance plant growth in nickel-spiked land and remediate nickel from contaminated sites. ((c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  14. Microbial Inoculation Improves Growth of Oil Palm Plants (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Om, Azlin Che; Ghazali, Amir Hamzah Ahmad; Keng, Chan Lai; Ishak, Zamzuri

    2009-12-01

    Introduction of diazotrophic rhizobacteria to oil palm tissues during the in vitro micropropagation process establishes an early associative interaction between the plant cells and bacteria. In the association, the diazotrophs provide the host plants with phytohormones and fixed nitrogen. This study was conducted to observe growth of bacterised tissue cultured oil palm plants under ex vitro conditions after 280 days of growth. Root dry weight, shoot dry weight, root volume, bacterial colonisation, leaf protein and chlorophyll content of the host plants were observed. The results revealed that the inocula successfully colonised roots of the host plants. Plants inoculated with Acetobacter diazotrophicus (R12) had more root dry weight and volume than plants inoculated with Azospirillum brasilense (Sp7). Leaf protein and chlorophyll content were higher in the bacterised plants compared to Control 2 plants (inoculated with killed Sp7). These results suggest that the diazotrophs successfully improved the growth of the host plant (oil palm) and minimised the amount of N fertiliser necessary for growth.

  15. Effects of elevated CO2 , nitrogen form and concentration on growth and photosynthesis of a fast- and slow-growing grass.

    Science.gov (United States)

    Bowler, J M; Press, M C

    1996-03-01

    Growth and photosynthesis of Agrostis capillaris L. and Nardus stricta L. were measured for plants grown under ambient and elevated concentrations of CO2 (340 and 550 μl CO2 l(-1) respectively) and a range of nitrogen concentrations (0.01, 0.1, 1 and 5 mg N l(-1) ) supplied as either ammonium sulphate or sodium nitrate. After 42 d of growth for A. capillaris and 49 d of growth for N. stricta, the higher nitrogen concentrations resulted in stimulation of growth. The form of nitrogen did not affect the total dry weight attained by A. capillaris. However, ammonium-grown N. stricta attained a greater total dry weight than did nitrate-grown plants. Nitrogen form influenced leaf area ratio, which was greater in nitrate-grown A. capillaris and in ammonium-grown N. stricta. At the two lowest nitrogen concentrations there was no effect of elevated CO2 on total dry weight in either species, whilst at the two highest nitrogen concentrations positive growth responses to elevated C02 were observed. Photosynthetic capacity and carboxylation efficiency were lower in plants grown in elevated CO2 at the two lowest nitrogen concentrations, and were associated with greater leaf soluble carbohydrate content and lower foliar nitrogen concentrations. By contrast, the CO2 treatment did not affect these parameters at the two highest nitrogen concentrations employed.

  16. PLANT GROWTH-PROMOTING MICROBIAL INOCULANT FOR Schizolobium parahyba pv. parahyba

    Directory of Open Access Journals (Sweden)

    Priscila Jane Romano de Oliveira Gonçalves

    2015-08-01

    Full Text Available ABSTRACTSchizolobium parahyba pv. amazonicum (Huber ex Ducke Barneby (paricá occurs naturally in the Amazon and is significant commercial importance due to its rapid growth and excellent performance on cropping systems. The aim of this paper was to evaluate a microbial inoculants such as arbuscular mycorrhiza fungi (AMF and Rhizobium sp. that promote plant growth. The inocula was 10 g of root colonized and spores of Glomus clarum and/or 1 mL of cell suspension (107 CFU/mL of Rhizobium sp. and/or 100 g of chemical fertilizer NPK 20-05-20 per planting hole. The experimental design was complete randomized blocks with five replications and eight treatments (n = 800. Plant height, stem diameter and plant survival were measured. The results were tested for normality and homogeneity of variances and analyzed by ANOVA and Tukey test (p < 0.05. Rhizobium sp and AM fungi showed no effect on plant growth. Environmental factors probably influenced the effectiveness of symbiosis of both microorganisms and plant growth. The chemical fertilizer increased S. parahyba growth. During the first 120 days plants suffered with drought and frost, and at 180 days plants inoculated with microorganism plus chemical fertilizer showed higher survival when compared with control. The results showed that the microbial inoculants used showed an important role on plant survival after high stress conditions, but not in plant growth. Also was concluded that the planting time should be between November to December to avoid the presence of young plants during winter time that is dry and cold.

  17. Multi-trophic consequences of plant genetic variation in sex and growth.

    Science.gov (United States)

    Abdala-Roberts, Luis; Pratt, Jessica D; Pratt, Riley; Schreck, Tadj K; Hanna, Victoria; Mooney, Kailen A

    2016-03-01

    There is growing evidence for the influence of plant intraspecific variation on associated multi-trophic communities, but the traits driving such effects are largely unknown. We conducted a field experiment with selected genetic lines of the dioecious shrub Baceharis salicifolia to investigate the effects of plant growth rate (two-fold variation) and gender (males vs. females of the same growth rate) on above- and belowground insect and fungal associates. We documented variation in associate density to test for effects occurring through plant-based habitat quality (controlling for effects of plant size) as well as variation in associate abundance to test for effects occurring through both habitat quality and abundance (including effects of plant size). Whereas the dietary specialist aphid Uroleucon macaolai was unaffected by plant sex and growth rate, the generalist aphid Aphis gossypii and its tending ants (Linepithema humile) had higher abundances and densities on male (vs. female) plants, suggesting males provide greater habitat quality. In contrast, Aphis and ant abundance and density were unaffected by plant growth rate, while Aphis parasitoids were unaffected by either plant sex or growth rate. Arbuscular mycorrhizal fungi had higher abundance and density (both marginally significant) on females (vs. males), suggesting females provide greater habitat quality, but lower abundances (marginally significant) and higher densities on slow- (vs. fast-) growing genotypes, suggesting slow-growing genotypes provided lower resource abundance but greater habitat quality. Overall, plant sex and growth rate effects on associates acted independently (i.e., no interactive effects), and these effects were of a greater magnitude than those coming from other axes of plant genetic variation. These findings thus demonstrate that plant genetic effects on associated communities may be driven by a small number of trait-specific mechanisms.

  18. Contribution of non-exchangeable potassium forms and its accumulation in corn plants

    Directory of Open Access Journals (Sweden)

    Montesquieu da S. Vieira

    2016-01-01

    Full Text Available ABSTRACT The state of Paraíba, Brazil, has soils from well- to poorly-developed, in which potassium (K is found in different levels, forms and, consequently, with varying availability to plants. The objective of this study was to evaluate the contribution of non-exchangeable K forms to corn plants in 12 soils from Paraíba state, along four successive cycles. The experimental design was completely randomized block with three replicates and the 24 treatments consisted of the combination between two K levels (0 and 100 mg dm-3 and 12 soils. Before and after each cycle, subsamples of 0.2 dm3 were collected in each pot for the determination of non-exchangeable K (Kne, exchangeable K (Ke and soluble K (Ks. For each cycle, dry matter production, dry matter K content and plant K content (absorbed K were determined. In the studied soils, the amounts of absorbed K after successive cycles were higher than the amounts of exchangeable K released, which shows the contribution of non-exchangeable K forms to corn nutrition.

  19. How do mineral fertilization and plant growth regulators affect yield and morphology of naked oat?

    Directory of Open Access Journals (Sweden)

    Robert Witkowicz

    2010-09-01

    Full Text Available Oat (Avena sativa var. nuda is of an increasing interest in many parts of the world. This is why plant breeders have developed forms that are morphologically different from the current ones, such as naked, dwarf or with an increased 1000-grain-weight. In three experiments conducted at two sites, the influence of phosphorus (P and potassium (K fertilizers, spray application of urea and spray application of plant growth regulators (PGRs Promalin (gibberellins + cytokinin and Moddus (cimectacarps on the yield and morphological traits of different oat forms were studied. At a better site, only genotype statistically influenced oat grain yield. At a poorer site, apart from genotype there were statistically significant responses to P and K fertilizers and to the application of Moddus (especially in the experiment with a dwarf cultivar. The internode and panicle length were modified mostly by cimectacarps, which shortened specific internodes, but not the panicle. The PGR Promalin had no significant effect on oat stem morphology.

  20. Effect of plant growth regulators on leaf anatomy of the has mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Janosević, D; Uzelac, B; Budimir, S

    2008-12-01

    In this study, the effect of plant growth regulators on leaf morphogenesis of the recessive T-DNA insertion mutant of Arabidopsis thaliana was analyzed. The morpho-anatomical analysis revealed that leaves of the has mutant are small and narrow, with lobed blades and disrupted tissue organization. When has plants were grown on the medium supplied with plant growth regulators: benzylaminopurine (BAP) or ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), the leaf anatomy was partially restored to the wild type, although plants still exhibited morphological abnormalities.

  1. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance

    OpenAIRE

    Cheng Zhou; Zhongyou Ma; Lin Zhu; Xin Xiao; Yue Xie; Jian Zhu; Jianfei Wang

    2016-01-01

    Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these ...

  2. [Effect of different plant growth regulators on yield and quality of Angelica dahurica var. formosana development].

    Science.gov (United States)

    Hou, Kai; Chen, Jun-Wen; Zhai, Juan-Yuan; Shen, Hao; Chen, Li; Wu, Wei

    2013-07-01

    To investigate the effect of plant growth regulators on the growth and quality of Angelica dahurica var. formosana. Five plant growth regulators: chlormequat chloride (CCC), Mepiquat chloride (PIX), Gibberellic acid (GA3), Paclobutrazol (PP333) and Maleic Hydrazide (MH) were sprayed in rosette stage, the effects of these plant growth regulators (PGRs) on the growth, yield and quality of A. dahurica var. formosanaw were observed. The biological traits were first measured and then imperatorin and isoimperatorin contents in roots were determined by HPLC. Low concentration GA3 increased the yield while not influenced the premature bolting rate and the coumarin content. Spraying of GA3 (30 mg x L(-1)) could guarantee the growth and development of A. dahurica var. formosana to have a higher yield and maintain the active ingredients content in the root as well.

  3. The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea.

    Science.gov (United States)

    Liu, Yong-Bo; Darmency, Henry; Stewart, C Neal; Wei, Wei; Tang, Zhi-Xi; Ma, Ke-Ping

    2015-06-01

    This study aims to investigate the relative plant growth and reproduction of insect-resistant and susceptible plants following the introgression of an insect-resistance Bt-transgene from Brassica napus, oilseed rape, to wild Brassica juncea. The second backcrossed generation (BC2) from a single backcross family was grown in pure and mixed stands of Bt-transgenic and non-transgenic siblings under two insect treatments. Various proportions of Bt-transgenic plants were employed in mixed stands to study the interaction between resistant and susceptible plants. In the pure stands, Bt-transgenic BC2 plants performed better than non-transgenic plants with or without insect treatments. In mixed stands, Bt-transgenic BC2 plants produced fewer seeds than their non-Bt counterparts at low proportions of Bt-transgenic BC2 plants in the absence of insects. Reproductive allocation of non-transgenic plants marginally increased with increasing proportions of Bt-transgenic plants under herbivore pressure, which resulted in increased total biomass and seed production per stand. The results showed that the growth of non-transgenic plants was protected by Bt-transgenic plants under herbivore pressure. The Bt-transgene might not be advantageous in mixed stands of backcrossed hybrids; thus transgene introgression would not be facilitated when herbivorous insects are not present. However, a relatively large initial population of Bt-transgenic plants might result in transgene persistence when target herbivores are present.

  4. Plant growth simulation for landscape scale hydrologic modeling

    Science.gov (United States)

    Landscape scale hydrologic models can be improved by incorporating realistic, process-oriented plant models for simulating crops, grasses, and woody species. The objective of this project was to present some approaches for plant modeling applicable to hydrologic models like SWAT that can affect the...

  5. Effect Of Cowpea Planting Density On Growth, Yield And ...

    African Journals Online (AJOL)

    ... per hectare was intercropped with cowpea at four planting densities (20,000; 40,000; ... Cowpea LAI was similar in the 2 seasons with the highest planting density ... and population density in 2005/2006, but not in 2004/2005 cropping season. ... AJOL jobs · More about AJOL · AJOL's Partners · Contact AJOL · Terms and ...

  6. Growth and morphogenesis of sun and shade plants

    NARCIS (Netherlands)

    Corre, W.J.

    1984-01-01

    A number of species of sun and shade plants in the vegetative phase were grown in different light intensities, different light qualities (r/fr ratio) and different combinations of light intensity and nutrient supply. Sun and shade species were also grown at various plant densities and in interspecif

  7. Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Lazcano, C.; Arnold, J.; Tato, A.; Zaller, J. G.; Dominguez, J.

    2009-07-01

    Abstract Post transplant success after nursery stage is strongly influenced by plant morphology. Cultural practices strongly shape plant morphology, and substrate choice is one of the most determining factors. Peat is the most often used amendment in commercial potting substrates, involving the exploitation of non-renewable resources and the degradation of highly valuable peatland ecosystems and therefore alternative substrates are required. Here the feasibility of replacing peat by compost or vermicompost for the production of tomato plants in nurseries was investigated through the study of the effect of increasing proportions of these substrates (0%, 10%, 20%, 50%, 75% and 100%) in target plant growth and morphological features, indicators of adequate post-transplant growth and yield. Compost and vermicompost showed to be adequate substrates for tomato plant growth. Total replacement of peat by vermicompost was possible while doses of compost higher than 50% caused plant mortality. Low doses of compost (10 and 20%) and high doses of vermicompost produced significant increases in aerial and root biomass of the tomato plants. In addition these treatments improved significantly plant morphology (higher number of leaves and leaf area, and increased root volume and branching). The use of compost and vermicompost constitute an attractive alternative to the use of peat in plant nurseries due to the environmental benefits involved but also due to the observed improvement in plant quality. Additional key words: peat moss, plant nursery, soil-less substrate, Solanum lycopersicum L. (Author) 37 refs.

  8. Influence of plant population and nitrogen-fertilizer at various levels on growth and growth efficiency of maize.

    Science.gov (United States)

    Tajul, M I; Alam, M M; Hossain, S M M; Naher, K; Rafii, M Y; Latif, M A

    2013-01-01

    Field experiments were conducted to evaluate plant population and N-fertilizer effects on yield and yield components of maize (Zea mays L.). Three levels of plant populations (53000, 66000, and 800,000 plants ha⁻¹ corresponding to spacings of 75 × 25, 60 × 25, and 50 × 25 cm) and 4 doses of N (100, 140, 180, and 220 kg ha⁻¹) were the treatment variables. Results revealed that plant growth, light interception (LI), yield attributes, and grain yield varied significantly due to the variations in population density and N-rates. Crop growth rate (CGR) was the highest with the population of 80,000 ha⁻¹ receiving 220 kg N ha⁻¹, while relative growth rate (RGR) showed an opposite trend of CGR. Light absorption was maximum when most of densely populated plant received the highest amount of N (220 kg N ha⁻¹). Response of soil-plant-analysis development (SPAD) value as well as N-content to N-rates was found significant. Plant height was the maximum at the lowest plant density with the highest amount of N. Plants that received 180 kg N ha⁻¹ with 80,000 plants ha⁻¹ had larger foliage, greater SPAD value, and higher amount of grains cob⁻¹ that contributed to the maximum yield (5.03 t ha⁻¹) and the maximum harvest index (HI) compared to the plants in other treatments.

  9. Influence of Plant Population and Nitrogen-Fertilizer at Various Levels on Growth and Growth Efficiency of Maize

    Directory of Open Access Journals (Sweden)

    M. I. Tajul

    2013-01-01

    Full Text Available Field experiments were conducted to evaluate plant population and N-fertilizer effects on yield and yield components of maize (Zea mays L.. Three levels of plant populations (53000, 66000, and 800000 plants ha−1 corresponding to spacings of 75 × 25, 60 × 25, and 50 × 25 cm and 4 doses of N (100, 140, 180, and 220 kg ha−1 were the treatment variables. Results revealed that plant growth, light interception (LI, yield attributes, and grain yield varied significantly due to the variations in population density and N-rates. Crop growth rate (CGR was the highest with the population of 80,000 ha−1 receiving 220 kg N ha−1, while relative growth rate (RGR showed an opposite trend of CGR. Light absorption was maximum when most of densely populated plant received the highest amount of N (220 kg N ha−1. Response of soil-plant-analysis development (SPAD value as well as N-content to N-rates was found significant. Plant height was the maximum at the lowest plant density with the highest amount of N. Plants that received 180 kg N ha−1 with 80,000 plants ha−1 had larger foliage, greater SPAD value, and higher amount of grains cob−1 that contributed to the maximum yield (5.03 t ha−1 and the maximum harvest index (HI compared to the plants in other treatments.

  10. CHARACTERIZATION AND MODELING OF THE FORMS OF MERCURY FROM COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Dennis L. Laudal

    2001-08-01

    The 1990 Clean Air Act Amendments (CAAAs) required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the Mercury Study Report to Congress (1) and the Utility Air Toxics Report to Congress (1). The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam-electric generating units. Given the current state of the art, these reports did not state that mercury controls on coal-fired electric power stations would be required. However, they did indicate that EPA views mercury as a potential threat to human health. In fact, in December 2000, the EPA issued an intent to regulate for mercury from coal-fired boilers. However, it is clear that additional research needs to be done in order to develop economical and effective mercury control strategies. To accomplish this objective, it is necessary to understand mercury behavior in coal-fired power plants. The markedly different chemical and physical properties of the different mercury forms generated during coal combustion appear to impact the effectiveness of various mercury control strategies. The original Characterization and Modeling of the Forms of Mercury from Coal-Fired Power Plants project had two tasks. The first was to collect enough data such that mercury speciation could be predicted based on relatively simple inputs such as coal analyses and plant configuration. The second was to field-validate the Ontario Hydro mercury speciation method (at the time, it had only been validated at the pilot-scale level). However, after sampling at two power plants (the Ontario Hydro method was validated at one of them), the EPA issued

  11. Selective growth promotion of bloom-forming raphidophyte Heterosigma akashiwo by a marine bacterial strain.

    Science.gov (United States)

    Higashi, Aiko; Fujitani, Yoshiko; Nakayama, Natsuko; Tani, Akio; Ueki, Shoko

    2016-12-01

    Algal bloom is typically caused by aberrant propagation of a single species, resulting in its predomination in the local population. While environmental factors including temperature and eutrophication are linked to bloom, the precise mechanism of its formation process is still obscure. Here, we isolated a bacterial strain that promotes growth of Heterosigma akashiwo, a Raphidophyceae that causes harmful algal blooms. Based on 16S rRNA gene sequence, the strain was identified as Altererythrobacter ishigakiensis, a member of the class Alphaproteobacteria. When added to culture, this strain facilitated growth of H. akashiwo and increased its cell culture yield significantly. Importantly, this strain did not affect the growth of other raphidophytes, Chattonella ovate and C. antiqua, indicating that it promotes growth of H. akashiwo in a species-specific manner. We also found that, in co-culture, H. akashiwo suppressed the growth of C. ovate. When A. ishigakiensis was added to the mixed culture, H. akashiwo growth was facilitated while C. ovate propagation was markedly suppressed, indicating that the presence of the bacterium enhances the dominance of H. akashiwo over C. ovate. This is the first example of selective growth promotion of H. akashiwo by a marine bacterium, and may exemplify importance of symbiotic bacterium on algal bloom forming process in general.

  12. Biological effects of native and exotic plant residues on plant growth, microbial biomass and N availability under controlled conditions

    OpenAIRE

    Diallo, Mariama-Dalanda; Duponnois, Robin; Guisse, A.; Sall, Saïdou; Chotte, Jean-Luc; Thioulouse, J.

    2006-01-01

    The leaf litter of six tropical tree species (Acacia holosericea, Acacia tortilis, Azadirachta indica, Casuarina equisetifolia, Cordyla pinnata and Faidherbia albida) frequently used in agroforestry plantations in Sahelian and Soudano-Sahelian areas were tested for their influence on soil nitrogen content, microbial biomass and plant growth under controlled greenhouse conditions. Half of the soil was planted with onion (Allium cepa L.) seedlings and the other half was not. Two herbaceous spec...

  13. Biostereometrics, And Problems In Ontogenetic And Phylogenetic Studies Of Growth And Form

    Science.gov (United States)

    Oyen, Ordean J.; R ice, Robert W.; Walker, Alan C.

    1980-07-01

    In spite of a long and rich history of investigation, numerous questions remain to be resolved about human form and form change. Techniques from analytical geometry, anthropometry, biostatistics, comparative, developmental and functional anatomy, osteology, paleontology and scanning electron microscopy are but a few of the methods which have been used to advance our understanding of human anatomy. Biostereometrics, however, with its capacity to generate mathematically precise three-dimensional descriptions of body structures has not been broadly applied in comparative studies of human form and morphogenesis. This paper briefly identifies and reviews some of the more persistent problems associated with the description, quantification, and analysis of biological form; it offers suggestions how biostereometric procedures may be combined with other methods to generate more complete, mathematically accurate and biologically sound characterizations of human form, growth and development.

  14. Isolation and selection of plant growth-promoting bacteria associated with sugarcane

    Directory of Open Access Journals (Sweden)

    Ariana Alves Rodrigues

    2016-06-01

    Full Text Available Microorganisms play a vital role in maintaining soil fertility and plant health. They can act as biofertilizers and increase the resistance to biotic and abiotic stress. This study aimed at isolating and characterizing plant growth-promoting bacteria associated with sugarcane, as well as assessing their ability to promote plant growth. Endophytic bacteria from leaf, stem, root and rhizosphere were isolated from the RB 867515 commercial sugarcane variety and screened for indole acetic acid (IAA production, ability to solubilize phosphate, fix nitrogen and produce hydrogen cyanide (HCN, ammonia and the enzymes pectinase, cellulase and chitinase. A total of 136 bacteria were isolated, with 83 of them presenting some plant growth mechanism: 47 % phosphate solubilizers, 26 % nitrogen fixers and 57 % producing IAA, 0.7 % HCN and chitinase, 45 % ammonia, 30 % cellulose and 8 % pectinase. The seven best isolates were tested for their ability to promote plant growth in maize. The isolates tested for plant growth promotion belong to the Enterobacteriaceae family and the Klebsiella, Enterobacter and Pantoea genera. Five isolates promoted plant growth in greenhouse experiments, showing potential as biofertilizers.

  15. Plant defense, herbivory, and the growth of Cordia alliodora trees and their symbiotic Azteca ant colonies.

    Science.gov (United States)

    Pringle, Elizabeth G; Dirzo, Rodolfo; Gordon, Deborah M

    2012-11-01

    The effects of herbivory on plant fitness are integrated over a plant's lifetime, mediated by ontogenetic changes in plant defense, tolerance, and herbivore pressure. In symbiotic ant-plant mutualisms, plants provide nesting space and food for ants, and ants defend plants against herbivores. The benefit to the plant of sustaining the growth of symbiotic ant colonies depends on whether defense by the growing ant colony outpaces the plant's growth in defendable area and associated herbivore pressure. These relationships were investigated in the symbiotic mutualism between Cordia alliodora trees and Azteca pittieri ants in a Mexican tropical dry forest. As ant colonies grew, worker production remained constant relative to ant-colony size. As trees grew, leaf production increased relative to tree size. Moreover, larger trees hosted lower densities of ants, suggesting that ant-colony growth did not keep pace with tree growth. On leaves with ants experimentally excluded, herbivory per unit leaf area increased exponentially with tree size, indicating that larger trees experienced higher herbivore pressure per leaf area than smaller trees. Even with ant defense, herbivory increased with tree size. Therefore, although larger trees had larger ant colonies, ant density was lower in larger trees, and the ant colonies did not provide sufficient defense to compensate for the higher herbivore pressure in larger trees. These results suggest that in this system the tree can decrease herbivory by promoting ant-colony growth, i.e., sustaining space and food investment in ants, as long as the tree continues to grow.

  16. Host plant invests in growth rather than chemical defense when attacked by a specialist herbivore.

    Science.gov (United States)

    Arab, Alberto; Trigo, José Roberto

    2011-05-01

    Plant defensive compounds may be a cost rather than a benefit when plants are attacked by specialist insects that may overcome chemical barriers by strategies such as sequestering plant compounds. Plants may respond to specialist herbivores by compensatory growth rather than chemical defense. To explore the use of defensive chemistry vs. compensatory growth we studied Brugmansia suaveolens (Solanaceae) and the specialist larvae of the ithomiine butterfly Placidina euryanassa, which sequester defensive tropane alkaloids (TAs) from this host plant. We investigated whether the concentration of TAs in B. suaveolens was changed by P. euryanassa damage, and whether plants invest in growth, when damaged by the specialist. Larvae feeding during 24 hr significantly decreased TAs in damaged plants, but they returned to control levels after 15 days without damage. Damaged and undamaged plants did not differ significantly in leaf area after 15 days, indicating compensatory growth. Our results suggest that B. suaveolens responds to herbivory by the specialist P. euryanassa by investing in growth rather than chemical defense.

  17. Exopolysaccharide-Producing Plant Growth-Promoting Rhizobacteria Under Salinity Condition

    Institute of Scientific and Technical Information of China (English)

    S. K. UPADHYAY; J. S. SINGH; D. P. SINGH

    2011-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (PGPR) can play an important role in alleviating soil salinity stress during plant growth and bacterial exopolysaccharide (EPS) can also help to mitigate salinity stress by reducing the content of Na+ available for plant uptake. In this study, native bacterial strains of wheat rhizosphere in soils of Varanasi, India, were screened to identify the EPS-producing salt-tolerant rhizobacteria with plant growth-promoting traits. The various rhizobacteria strains were isolated and identified using 16S rDNA sequencing. The plant growth-promoting effect of inoculation of seedlings with these bacterial strains was evaluated under soil salinity conditions in a pot experiment. Eleven bacterial strains which initially showed tolerance up to 80 g L-1 NaCl also exhibited an EPS-producing potential. The results suggested that the isolated bacterial strains demonstrated some of the plant growth-promoting traits such as phosphate solubilizing ability and production of auxin, proline, reducing sugars, and total soluble sugars, Furthermore, the inoculated wheat plants had an increased biomass compared to the un-inoculated plants.

  18. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105.

    Science.gov (United States)

    Xie, Shan-Shan; Wu, Hui-Jun; Zang, Hao-Yu; Wu, Li-Ming; Zhu, Qing-Qing; Gao, Xue-Wen

    2014-07-01

    The interaction between plants and plant-growth-promoting rhizobacteria (PGPR) is a complex, reciprocal process. On the one hand, plant compounds such as carbohydrates and amino acids serve as energy sources for PGPR. On the other hand, PGPR promote plant growth by synthesizing plant hormones and increasing mineral availability in the soil. Here, we evaluated the growth-promoting activity of Bacillus subtilis OKB105 and identified genes associated with this activity. The genes yecA (encoding a putative amino acid/polyamine permease) and speB (encoding agmatinase) are involved in the secretion or synthesis of polyamine in B. subtilis OKB105. Disruption of either gene abolished the growth-promoting activity of the bacterium, which was restored when polyamine synthesis was complemented. Moreover, high-performance liquid chromatography analysis of culture filtrates of OKB105 and its derivatives demonstrated that spermidine, a common polyamine, is the pivotal plant-growth-promoting compound. In addition, real-time polymerase chain reaction analysis revealed that treatment with B. subtilis OKB105 induced expansin gene (Nt-EXPA1 and Nt-EXPA2) expression and inhibited the expression of the ethylene biosynthesis gene ACO1. Furthermore, enzyme-linked immunosorbent assay analysis showed that the ethylene content in plant root cells decreased in response to spermidine produced by OKB105. Therefore, during plant interactions, OKB105 may produce and secrete spermidine, which induces expansin production and lowers ethylene levels.

  19. Inference of allelopathy is complicated by effects of activated carbon on plant growth.

    Science.gov (United States)

    Lau, Jennifer A; Puliafico, Kenneth P; Kopshever, Joseph A; Steltzer, Heidi; Jarvis, Edward P; Schwarzländer, Mark; Strauss, Sharon Y; Hufbauer, Ruth A

    2008-01-01

    Allelopathy can play an important role in structuring plant communities, but allelopathic effects are often difficult to detect because many methods used to test for allelopathy can be confounded by experimental artifacts. The use of activated carbon, a technique for neutralizing allelopathic compounds, is now employed in tests for allelopathy; however, this technique also could produce large experimental artifacts. In three independent experiments, it was shown that adding activated carbon to potting media affected nutrient availability and plant growth. For most species tested, activated carbon increased plant biomass, even in the absence of the potentially allelopathic agent. The increased growth corresponded to increased plant nitrogen content, likely resulting from greater nitrogen availability. Activated carbon also affected nitrogen and other nutrient concentrations in soil media in the absence of plants. The observed effects of activated carbon on plant growth can confound its use to test for allelopathy. The detection of allelopathy relies on the difference between plant growth in medium with carbon and that in medium without carbon in the presence of the potentially allelopathic competitor; however, this difference may be biased if activated carbon alters soil nutrient availability and plant growth even in the absence of the focal allelopathic agent.

  20. Temperate heath plant response to dry conditions depends on growth strategy and less on physiology

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Kongstad, J.; Schmidt, I. K.

    2012-01-01

    The evidence that is currently available demonstrates that future changes in precipitation patterns will affect plant carbon uptake. However, the outcome in terms of success, productivity and fecundity depends upon individual species and different responses of various growth forms. Examination...... of these differences in response in dry versus rewetting conditions can be used to highlight the limitations coherent in different strategies adopted by, for example, evergreen shrubs and grasses. We investigated the leaf-level photosynthetic performance, leaf C, N and d13C along with vegetation cover and biomass...... rewetting increased leaf nitrogen and photosynthesis in the grass much more than for the dwarf shrub. These different strategies may have a considerable impact on carbon uptake and on the ability of a species to compete, as future climatic changes are likely to extend the summer drought period together...

  1. Influence of water relations and growth rate on plant element uptake and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2006-02-15

    Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution.

  2. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth.

    Science.gov (United States)

    Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F

    2015-10-01

    The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.

  3. Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain?

    Science.gov (United States)

    Li, Huiying; Smith, F Andrew; Dickson, Sandy; Holloway, Robert E; Smith, Sally E

    2008-01-01

    * This study investigated effects of plant density and arbuscular mycorrhizal (AM) colonization on growth and phosphorus (P) nutrition of a cultivar of wheat (Triticum aestivum) that often shows early AM-induced growth depressions. * Two experiments were conducted. Expt 1 had three plant densities and one soil P concentration. Expt 2 had two plant densities and two P concentrations. Plants were grown in calcareous P-fixing soil, inoculated with Glomus intraradices or Gigaspora margarita, or noninoculated (nonmycorrhizal (NM)). Glomus intraradices colonized well and caused a growth depression only in Expt 1. Gigaspora margarita caused large growth depressions in both experiments even though it colonized poorly. * The results showed that growth depressions were mitigated by changes in relative competition for soil P by NM and AM plants, and probably by decreasing carbon costs of the fungi. * The different effects of the two fungi appear to be attributable to differences in the balance between P uptake by the fungal pathway and direct uptake via the roots. These differences may be important in other AM symbioses that result in growth depressions. The results show that mycorrhizal growth responses of plants grown singly may not apply at the population or community level.

  4. TCP Transcription Factors at the Interface between Environmental Challenges and the Plant's Growth Responses.

    Science.gov (United States)

    Danisman, Selahattin

    2016-01-01

    Plants are sessile and as such their reactions to environmental challenges differ from those of mobile organisms. Many adaptions involve growth responses and hence, growth regulation is one of the most crucial biological processes for plant survival and fitness. The plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP) transcription factor family is involved in plant development from cradle to grave, i.e., from seed germination throughout vegetative development until the formation of flowers and fruits. TCP transcription factors have an evolutionary conserved role as regulators in a variety of plant species, including orchids, tomatoes, peas, poplar, cotton, rice and the model plant Arabidopsis. Early TCP research focused on the regulatory functions of TCPs in the development of diverse organs via the cell cycle. Later research uncovered that TCP transcription factors are not static developmental regulators but crucial growth regulators that translate diverse endogenous and environmental signals into growth responses best fitted to ensure plant fitness and health. I will recapitulate the research on TCPs in this review focusing on two topics: the discovery of TCPs and the elucidation of their evolutionarily conserved roles across the plant kingdom, and the variety of signals, both endogenous (circadian clock, plant hormones) and environmental (pathogens, light, nutrients), TCPs respond to in the course of their developmental roles.

  5. Growth and Corrosion Characteristics of Plasma Electrolytic Oxidation Ceramic Films Formed on AZ31 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    王丽; 陈砺; 严宗诚; 王红林; 彭家志

    2009-01-01

    The growth characteristics of oxide ceramic films formed on AZ31 magnesium alloy with plasma electrolytic oxidation(PEO)technique in alkaline silicate solution Were investigated.The composition,slructure and morphology of the coatings were detected by energy dispersive X-ray spectroscope and scanning electron microscope.The amount of dissolved magnesium in the electrolytes during PEO process was measured by atomic absorption spectrometry.The results indicated that the growth process of PEO films had three stages when applied with constant voltage mode.In the first stage,the growth rate of PEO films was low,and concentrations of elements O.Mg and Si varied slightly.Atter sparking occurred(the second stage).the PEO films showed higher growth rate due to the high transfer rate of ionS and electrons,and the existoncc of plasma reactions.When the growth rate tended to maintain stable with time,the third stage happened.PEO films exhibited different uniform and pitting.corrosion characteristiCS in difierent reaction stages.The films formed at 300 V for 30 min performed best corrosion resistance and the phase of ceramic films was mainly composed of MgSiO3 and forsterite Mg2SiO4.

  6. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense.

    Science.gov (United States)

    Nakata, Paul A

    2015-01-01

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants.

  7. Aquatic Plant Control Research Program. Effects of Water Chemistry on Aquatic Plants. Growth and Photosynthesis of Myriophyllum spicatum L.

    Science.gov (United States)

    1986-05-01

    A D-A±69 98 AQUATIC PLANT CONTROL RESEARCH PRGRAM EFFECTS OF N*TER 1 I CHEMISTRY ON AQUA .(U) ARMY ENGINEER NATERNAYS I EXPERIMENT STATION VICKSBURG...photosynthesis should be clearly resolved. Objective and Scope 6. The objective of this report is to evaluate the effects of major cation and inorganic...carbon levels on the growth and photosynthesis of M. spicaturn. A secondary objective is to evaluate the relationship between growth and

  8. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition.

    Science.gov (United States)

    Ravnskov, S; Larsen, J

    2016-09-01

    Functional compatibility in cucumber mycorrhizas in terms of plant and fungal growth, and foliar nutrient composition from all possible combinations of six cucumber varieties and three species of arbuscular mycorrhizal (AM) fungi was evaluated. Measurements of foliar nutrient composition included N, P, K, Mg, Ca, Na, Fe, Zn, Mn and Cu. Growth of AM fungi was measured in terms of root colonisation, as examined with microscopy and the AM fungus biomarker fatty acid 16:1ω5 from both phospholipids and neutral lipids. Different responses of plant growth and foliar nutrient profiles were observed for the different AM symbioses examined. The AM fungus Claroideoglomus claroideum caused growth depression in association with four out of six cucumber varieties; Rhizophagus irregularis caused growth promotion in one of six cucumber varieties; whereas Funneliformis mosseae had no effect on the growth performance of any of the cucumber varieties examined. All three AM fungi markedly altered host plant shoot nutrient composition, with the strongest contrast observed between cucumber-R. irregularis symbioses and non-mycorrhizal cucumber plants, independent of cucumber variety. On the other hand, AM fungal growth in roots differed between the three AM fungi, but was unaffected by host genotype. Strong build-up of storage lipids was observed for R. irregularis, which was more moderate in the two other AM fungi. In conclusion, strong differential responses of cucumber varieties to inoculation with different AM fungi in terms of growth and shoot nutrient composition revealed high functional diversity in AM symbioses in cucumber plants.

  9. Pattern of growth and 14C-assimilates distributions in relation to photosynthesis in radish plants treated with growth substances

    Directory of Open Access Journals (Sweden)

    Z. Starck

    2015-01-01

    Full Text Available In a series of radish plants, with very thin hypocotyl and with a normal storage organ, the rates of photosynthesis, photorespiration and dark respiration did not differ. Therefore, the conclusion may be advanced, that translocation to the swollen hypocotyl is not determinated by the photosynthetic productivity, but rather the by storage capacity. To check it this is connected with an unbalanced hormonal content, plants were treated with lanoline paste, with IAA, GA3, zeatin and all three in mixture or with injections of GA3-water solution into the swollen hypocotyl. In young radish plants, with high rate of growth of aerial parts, treatment with the above mentioned substances stimulated 14CO2-assimilation and increased retention of assimilates in 14C-donors, probably owing to retardation of their senescence. It increased the competition for photosynthates between shoot and storage organ. In older plants, in the stage of accumulation of nutrients in the swollen hypocotyl, IAA +GA3+zeatin did not affect 14CO2-assimilation, but in plants treated with growth regulators separately, assimilation decreased; IAA and GA3 stimulated transport and accumulation of labelled substances in the swollen hypocotyl. On the basis of experimental data the conclusion may be advanced that responsiveness of the particular organs and processes to growth regulators depends on the stage of plant development. Phytohormone did not changed quantitatively the pattern of 14C-assimilates distribution. They stimulated processes with preference for particular stages of development.

  10. nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response.

    Science.gov (United States)

    Veereshlingam, Harita; Haynes, Janine G; Penmetsa, R Varma; Cook, Douglas R; Sherrier, D Janine; Dickstein, Rebecca

    2004-11-01

    To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses

  11. Integral Parameters for Characterizing Water, Energy, and Aeration Properties of Soilless Plant Growth Media

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Lopez, Jose Choc Chen; Møldrup, Per

    2013-01-01

    systems are regaining increased worldwide attention. The optimal control of water availability and aeration is an essential prerequisite to successfully operate plant growth systems with soilless substrates such as aggregated foamed glass, perlite, rockwool, coconut coir, or mixtures thereof. While...

  12. Growth responses of NaCl stressed rice (Oryza sativa L.) plants ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... Effect of salinity (NaCl) in the presence of proline was assessed .... factors, with salinity being considered as a major constraint. (Ashraf, 2004 ... conditions) to increase the plant growth rate than saline ..... Photosynthetic.

  13. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves.

    Science.gov (United States)

    Khan, Abdur Rahim; Ullah, Ihsan; Waqas, Muhammad; Shahzad, Raheem; Hong, Sung-Jun; Park, Gun-Seok; Jung, Byung Kwon; Lee, In-Jung; Shin, Jae-Ho

    2015-09-01

    Fungal endophytes have been characterized as producers of phytohormones and potent promoters of plant growth. In this study, two fungal endophytes, Fusarium tricinctum RSF-4L and Alternaria alternata RSF-6L, were isolated from the leaves of Solanum nigrum. Culture filtrates (CFs) from each isolate were initially screened for indole compounds, and assayed for their ability to promote the growth of Dongjin rice plants. Nearly all plant growth attributes examined (i.e., chlorophyll content, root-shoot length, and biomass production) were significantly enhanced upon treatment with fungal CFs. Subsequently, gas chromatography/mass spectrometry analyses were utilized to confirm the presence of phytohormones in the CF of each fungal endophytic isolate. These analyses revealed that RSF-4L and RSF-6L produced 54 and 30 µg/mL indole acetic acid, respectively, within their respective cultures. These findings suggest that the endophytes isolated in this study synthesize bioactive compounds that could play important roles in promoting plant growth.

  14. Effect of plant growth regulators and activated charcoal on in vitro ...

    African Journals Online (AJOL)

    Administrator

    2011-07-15

    Jul 15, 2011 ... Key words: Activated charcoal, oil palm, plant growth regulators, zygotic embryo. ... all the essential mineral ions, carbon source, vitamins and other organic supplements .... (2010), where MS medium fortified with a low level of ...

  15. Indirect Contributions of AM Fungi and Soil Aggregation to Plant Growth and Protection

    Science.gov (United States)

    Soil ecological and biological engineering are processes by which soil organisms modify their physiochemical environment resulting indirectly to enhancements in plant growth. The formation and stabilization of soil aggregates is an example biologically-mediated engineering. For soil organisms, wate...

  16. Modeling gravity effects on water retention and gas transport characteristics in plant growth substrates

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Jones, Scott B.; Tuller, Markus

    2014-01-01

    Growing plants to facilitate life in outer space, for example on the International Space Station (ISS) or at planned deep-space human outposts on the Moon or Mars, has received much attention with regard to NASA’s advanced life support system research. With the objective of in situ resource...... utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions...... permeability characteristics of six plant growth substrates for potential applications in space, including two terrestrial analogs for lunar and Martian soils and four particulate substrates widely used in reduced gravity experiments. To simulate reduced gravity water characteristics, the predictions...

  17. Integrated LED/Imaging Illumination Panels Demonstrated within a Small Plant Growth Chamber Project

    Data.gov (United States)

    National Aeronautics and Space Administration — LED light sources are ideal for plant growth systems. However, commercially available multi-color LED illumination panels are designed and manufactured to produce a...

  18. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes.

    Science.gov (United States)

    Habib, Sheikh Hasna; Kausar, Hossain; Saud, Halimi Mohd

    2016-01-01

    Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.

  19. Evaluation of absorption of radionuclides via roots of plants at different growth stages

    Energy Technology Data Exchange (ETDEWEB)

    Ambe, Shizuko [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1999-03-01

    For the environmental risk assessment of radionuclides and toxic elements which were released by nuclear power plants and factories, the absorption of trace elements by plants has been studied by a multitracer technique. The selective absorption coefficient, which is a parameter of an uptake model of radionuclides by plants, was determined for various radionuclides. The selective absorption coefficients of some elements varied greatly in experimental runs. Therefore, the selective absorption coefficients of radionuclides by komatsuna at different growth stages were determined. Moreover, the soil-to-plant transfer of radionuclides in komatsuna at different growth stages was studied. Extraction of the radionuclides from the soil was carried out in order to study the correlation between the transfer factor and the aging effect of the radionuclides in soil. The effect of soil acidity on the absorption of radionuclides in soybean and tomato was studied using the plants at different growth stages. (author)

  20. Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO₂.

    Science.gov (United States)

    Nie, Ming; Bell, Colin; Wallenstein, Matthew D; Pendall, Elise

    2015-03-18

    Increased plant productivity and decreased microbial respiratory C loss can potentially mitigate increasing atmospheric CO₂, but we currently lack effective means to achieve these goals. Soil microbes may play critical roles in mediating plant productivity and soil C/N dynamics under future climate scenarios of elevated CO₂ (eCO₂) through optimizing functioning of the root-soil interface. By using a labeling technique with (13)C and (15)N, we examined the effects of plant growth-promoting Pseudomonas fluorescens on C and N cycling in the rhizosphere of a common grass species under eCO₂. These microbial inoculants were shown to increase plant productivity. Although strong competition for N between the plant and soil microbes was observed, the plant can increase its capacity to store more biomass C per unit of N under P. fluorescens addition. Unlike eCO₂ effects, P. fluorescens inoculants did not change mass-specific microbial respiration and accelerate soil decomposition related to N cycling, suggesting these microbial inoculants mitigated positive feedbacks of soil microbial decomposition to eCO₂. The potential to mitigate climate change by optimizing soil microbial functioning by plant growth-promoting Pseudomonas fluorescens is a prospect for ecosystem management.

  1. Influence of nutrient composition and plant growth regulators on callus induction and plant regeneration in glutinous rice (Oryza sativa L.).

    Science.gov (United States)

    Duangsee, K; Bunnag, S

    2014-01-01

    The potential for callus induction and regeneration depends on nutrient composition and plant growth regulators. The aim of the present study was to investigate the effect of nutrient composition and plant growth regulators on callus induction and plant regeneration in the glutinous rice cultivar Khunvang. The effect of 2,4-D concentrations (1, 2, 3, 4 and 5 mg L(-1)) on callus induction and growth were investigated. The results revealed that the highest percentage of callus induction (97%) was observed in MS medium supplemented with 5 mg L(-1) 2,4-D under 16 h Photoperiod. The effects of casein hydrolysate concentrations of casein hydrolysate (0, 300, 500, 700 and 900 mg L(-1)) and proline (0, 300, 500, 700 and 900 mg L(-1)) on callus induction and growth of Khunvang were also observed. The results indicated that the increasing casein hydrolysate and proline concentrations did not show a significant effect on callus growth. However, proline concentration of 900 mg L(-1) yielded 85.67% of callus growth.

  2. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas

    Directory of Open Access Journals (Sweden)

    Vyas Pratibha

    2009-08-01

    Full Text Available Abstract Background Phosphorus deficiency is a major constraint to crop production due to rapid binding of the applied phosphorus into fixed forms not available to the plants. Microbial solubilization of inorganic phosphates has been attributed mainly to the production of organic acids. Phosphate-solubilizing microorganisms enhance plant growth under conditions of poor phosphorus availability by solubilizing insoluble phosphates in the soil. This paper describes the production of organic acids during inorganic phosphate solubilization and influence on plant growth as a function of phosphate solubilization by fluorescent Pseudomonas. Results Nineteen phosphate-solubilizing fluorescent Pseudomonas strains of P. fluorescens, P. poae, P. trivialis, and Pseudomonas spp. produced gluconic acid, oxalic acid, 2-ketogluconic acid, lactic acid, succinic acid, formic acid, citric acid and malic acid in the culture filtrates during the solubilization of tricalcium phosphate, Mussoorie rock phosphate, Udaipur rock phosphate and North Carolina rock phosphate. The strains differed quantitatively and qualitatively in the production of organic acids during solubilization of phosphate substrates. Cluster analysis based on organic acid profiling revealed inter-species and intra-species variation in organic acids produced by Pseudomonas strains. The phosphate-solubilizing bacterial treatments P. trivialis BIHB 745, P. trivialis BIHB 747, Pseudomonas sp. BIHB 756 and P. poae BIHB 808 resulted in significantly higher or statistically at par growth and total N, P and K content over single super phosphate treatment in maize. These treatments also significantly affected pH, organic matter, and N, P, and K content of the soil. Conclusion The results implied that organic acid production by Pseudomonas strains is independent of their genetic relatedness and each strain has its own ability of producing organic acids during the solubilization of inorganic phosphates

  3. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression

    Directory of Open Access Journals (Sweden)

    Shaikhul eIslam

    2016-02-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR are the rhizosphere bacteria that may be utilized to augment plant growth and suppress plant diseases. The objectives of this study were to identify and characterize PGPR indigenous to cucumber rhizosphere in Bangladesh, and to evaluate their ability to suppress Phytophthora crown rot in cucumber. A total of sixty six isolates were isolated, out of which ten (PPB1, PPB2, PPB3, PPB4, PPB5, PPB8, PPB9, PPB10, PPB11 and PPB12 were selected based on their in vitro plant growth promoting attributes and antagonism of phytopathogens. Phylogenetic analysis of 16S rRNA sequences identified these isolates as new strains of Pseudomonas stutzeri, Bacillus subtilis, Stenotrophomonas maltophilia and B. amyloliquefaciens. The selected isolates produced high levels (26.78 to 51.28 μg mL−1 of indole-3-acetic acid, while significant acetylene reduction activities (1.79 to 4.9 µmole C2H4 mg-1 protein h-1 were observed in eight isolates. Cucumber plants grown from seeds that were treated with these PGPR strains displayed significantly higher levels of germination, seedling vigor, growth, and N content in root and shoot tissue compared to non-treated control plants. All selected isolates were able to successfully colonize the cucumber roots. Moreover, treating cucumber seeds with these isolates significantly suppressed Phytophthora crown rot caused by Phytophthora capsici, and characteristic morphological alterations in Ph. capsici hyphae that grew towards PGPR colonies were observed. Since these PGPR inoculants exhibited multiple traits beneficial to the host plants, they may be applied in the development of new, safe, and effective seed treatments as an alternative to chemical fungicides.

  4. Combined inoculation of Pseudomonas fluorescens and Trichoderma harzianum for enhancing plant growth of vanilla (Vanilla planifolia).

    Science.gov (United States)

    Sandheep, A R; Asok, A K; Jisha, M S

    2013-06-15

    This study was conducted to evaluate the plant growth promoting efficiency of combined inoculation of rhizobacteria on Vanilla plants. Based on the in vitro performance of indigenous Trichoderma spp. and Pseudomonas spp., four effective antagonists were selected and screened under greenhouse experiment for their growth enhancement potential. The maximum percentage of growth enhancement were observed in the combination of Trichoderma harzianum with Pseudomonas fluorescens treatment followed by Pseudomonas fluorescens, Trichoderma harzianum, Pseudomonas putida and Trichoderma virens, respectively in decreasing order. Combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens registered the maximum length of vine (82.88 cm), highest number of leaves (26.67/plant), recorded the highest fresh weight of shoots (61.54 g plant(-1)), fresh weight of roots (4.46 g plant(-1)) and dry weight of shoot (4.56 g plant(-1)) where as the highest dry weight of roots (2.0806 g plant(-1)) were achieved with treatments of Pseudomonas fluorescens. Among the inoculated strains, combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens recorded the maximum nitrogen uptake (61.28 mg plant(-1)) followed by the combined inoculation of Trichoderma harzianum (std) and Pseudomonas fluorescens (std) (55.03 mg plant(-1)) and the highest phosphorus uptake (38.80 mg plant(-1)) was recorded in dual inoculation of Trichoderma harzianum and Pseudomonas fluorescens.

  5. Does ozone exposure alter growth and carbon allocation of mycorrhizal plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, L.C.; Gamon, J.A. (California State Univ., Los Angeles, CA (United States)); Andersen, C.P. (Environmental Protection Agency, Corvallis, OR (United States))

    1994-06-01

    Ozone is known to adversely affect plant growth. However, it is less clear how ozone affects belowground processes. This study tests the hypothesis that ozone alters growth and carbon allocation of vesicular arbuscular mycorrhizal (VAM) plants. Two ecotypes of Elymus glaucus (blue wild rye) were exposed to mycorrhizal inoculation and episodic ozone exposures simulating atmospheric conditions in the Los Angeles Basin. Preliminary results show that effects of ozone on growth were subtle. In both ecotypes, growth of aboveground biomass was not affected by ozone while root growth was decreased. In most treatments, mycorrhizal inoculation decreased growth of leaves and stems, but had no significant effect on root growth. Three-way ANOVA tests indicated interactive effects between ecotype, mycorrhiza and ozone. Further experimental work is needed to reveal the biological processes governing these responses.

  6. Compatibility of selected plant-based shortening as lard substitute: microstructure, polymorphic forms and textural properties

    Directory of Open Access Journals (Sweden)

    N. A.M. Yanty

    2017-03-01

    Full Text Available A study was carried out to determine the compatibility of three plant-based shortening mixtures to lard shortening (LD in terms of microstructure, polymorphic forms, and textural properties. The shortenings of binary, ternary, and quaternary fat mixtures were prepared according to a standard procedure by blending mee fat (MF with palm stearin (PS in a 99:1 (w/w ratio; avocado fat (Avo with PS and cocoa butter (CB in a 84:7:9 (w/w ratio; palm oil (PO with PS, soybean oil (SBO and CB in a 38:5:52:5 (w/w ratio, respectively. The triacylglycerol composition, polymorphic forms, crystal morphology, and textural properties of the shortening were evaluated. This study found that all three plant-based shortenings and LD shortening were similar with respect to their consistency, hardness and compression and adhesiveness values. However, all plant-based shortening was found to be dissimilar to LD shortening with respect to microstructure.

  7. Influence of plant growth regulators on indirect shoot organogenesis ...

    African Journals Online (AJOL)

    admin

    2013-10-17

    Oct 17, 2013 ... subalpine and alpine areas of Indian Himalayan Region at 3500-4000 m elevations, ... cytokinins and auxins) are often added to culture media ..... and cytokinin in the regulation of metabolism and development. Trend Plant ...

  8. Plant growth promoting rhizobacteria: Beneficial effects for healthy ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... These mechanisms were grouped into three clusters according to the PGPR effects on plant physiology. ... of antibiotics, lytic enzymes, hydrogen cyanide and volatile compounds. In view of ...

  9. Influence of plant growth regulators on axillary shoot multiplication ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... Key words: Chlorosis, conservation, endangered plants, in vitro propagation, nodal explants, ... The medium consisted of MS basal salts and vitamins supple- ..... Maximum rooting was obtained on MMS medium fortified.

  10. Bromeliad-living spiders improve host plant nutrition and growth.

    Science.gov (United States)

    Romero, Gustavo Q; Mazzafera, Paulo; Vasconcellos-Neto, Joao; Trivelin, Paulo C O

    2006-04-01

    Although bromeliads are believed to obtain nutrients from debris deposited by animals in their rosettes, there is little evidence to support this assumption. Using stable isotope methods, we found that the Neotropical jumping spider Psecas chapoda (Salticidae), which lives strictly associated with the terrestrial bromeliad Bromelia balansae, contributed 18% of the total nitrogen of its host plant in a greenhouse experiment. In a one-year field experiment, plants with spiders produced leaves 15% longer than plants from which the spiders were excluded. This is the first study to show nutrient provisioning in a spider-plant system. Because several animal species live strictly associated with bromeliad rosettes, this type of facultative mutualism involving the Bromeliaceae may be more common than previously thought.

  11. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms.

    Directory of Open Access Journals (Sweden)

    Kristina A Stinson

    2006-05-01

    Full Text Available The impact of exotic species on native organisms is widely acknowledged, but poorly understood. Very few studies have empirically investigated how invading plants may alter delicate ecological interactions among resident species in the invaded range. We present novel evidence that antifungal phytochemistry of the invasive plant, Alliaria petiolata, a European invader of North American forests, suppresses native plant growth by disrupting mutualistic associations between native canopy tree seedlings and belowground arbuscular mycorrhizal fungi. Our results elucidate an indirect mechanism by which invasive plants can impact native flora, and may help explain how this plant successfully invades relatively undisturbed forest habitat.

  12. Effects of Red Light Night Break Treatment on Growth and Flowering of Tomato Plants

    OpenAIRE

    Kai eCao; Lirong eCui; Lin eYe; Xiaoting eZhou; Encai eBao; Hailiang eZhao; Zhirong eZou

    2016-01-01

    Compact and healthy young plants increase crop production and improve vegetable quality. Adverse climatic conditions and shading can cause young plants to become elongated and spindly. We investigated the effects of night break (NB) treatments on tomato plants using red light (RL) with an intensity of 20 µmol•m2•s-1. Tomato plants were subjected to NB treatments with different frequencies ranging from every 1, 2, 3, and 4 h, and plant growth, flowering, and yield were monitored. The results s...

  13. Onion seed vigor in relation to plant growth and yield

    OpenAIRE

    Rodo Angélica B.; Marcos-Filho Julio

    2003-01-01

    Research has emphasized the relationship of laboratory germination and vigor to seedling emergence and stand establishment, but information relating seed vigor to plant performance is less available. The reliable procedures to evaluate onion (Allium cepa L.) seed vigor and decided the differences between seed physiological potential influence plant performance in field conditions were identified in two experimental years. Six seed lots of Petroline cultivar were evaluated for germination and ...

  14. Physical Constraints to Aquatic Plant Growth in New Zealand Lakes

    OpenAIRE

    Hawes, Ian; Riis, T.; Sutherland, D.; Flanagan, M.

    2003-01-01

    The nature of aquatic plant communities often defines benthic habitat within oligotrophic and mesotrophic lakes and lake management increasingly recognizes the importance of maintaining plant diversity in order to sustain biological diversity and capacity within lakes. We have developed simple statistical relationships between key physical and vegetation variables that define the habitat requirements, or “habitat-templates”, of key vegetation types to facilitate managemen...

  15. A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization

    DEFF Research Database (Denmark)

    Schiøtt, Morten; Romanowsky, Shawn M; Bækgaard, Lone

    2004-01-01

    Ca(2+) signals are thought to play important roles in plant growth and development, including key aspects of pollen tube growth and fertilization. The dynamics of a Ca(2+) signal are largely controlled by influx (through channels) and efflux (through pumps and antiporters). The Arabidopsis genome...... and a high frequency of aborted fertilization, resulting in a >80% reduction in seed set. These findings identify a plasma membrane Ca(2+) transporter as a key regulator of pollen development and fertilization in flowering plants....

  16. Effect of Pesticides on Growth or Rhizobia and Their Host Plants During Symbiosis

    Institute of Scientific and Technical Information of China (English)

    B.Madhavi; C.S.ANAND; 等

    1993-01-01

    Effect of various pesticides(insecticides,fungicides and herbicides)has been studied on growth and efficiency of symbiotic properties of 3 fast growing Rhizobuium sp.under green house conditions.The results reveales adverse effects on plant growth and nitrogen fixing capactity as measured by dry weight and totoal nitrogen content of plants infected with pesticide treated Rhizobium.Of the pesticides terbicides were found to be more effective on the above parameters than the insecticides and fungicides.

  17. Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence

    OpenAIRE

    Barret, Matthieu; Morrissey, John P.; O’Gara, Fergal

    2011-01-01

    In soil, some specific bacterial populations, called plant growth-promoting rhizobacteria are able to promote plant growth and/or reduce the incidence of soil-borne diseases. Rhizosphere competence is an important prerequisite for the efficacy of these biocontrol strains. Therefore, over decades, multiple approaches have been combined to understand the molecular basis of bacterial traits involved in rhizosphere competence. This review addresses the bacterial genes expressed during bacterial–p...

  18. Complete genome of Planococcus rifietoensis M8(T), a halotolerant and potentially plant growth promoting bacterium.

    Science.gov (United States)

    See-Too, Wah-Seng; Convey, Peter; Pearce, David A; Lim, Yan Lue; Ee, Robson; Yin, Wai-Fong; Chan, Kok-Gan

    2016-03-10

    Planococcus rifietoensis M8(T) (=DSM 15069(T)=ATCC BAA-790(T)) is a halotolerant bacterium with potential plant growth promoting properties isolated from an algal mat collected from a sulfurous spring in Campania (Italy). This paper presents the first complete genome of P. rifietoensis M8(T). Genes coding for various potentially plant growth promoting properties were identified within its genome. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants.

    Science.gov (United States)

    De Souza, A; Garcí, D; Sueiro, L; Gilart, F; Porras, E; Licea, L

    2006-05-01

    The effects of pre-sowing magnetic treatments on growth and yield of tomato (cv Campbell-28) were investigated under field conditions. Tomato seeds were exposed to full-wave rectified sinusoidal non-uniform magnetic fields (MFs) induced by an electromagnet at 100 mT (rms) for 10