WorldWideScience

Sample records for plant design equipment

  1. Nuclear power plant equipment design and construction rules

    International Nuclear Information System (INIS)

    Boiron, P.

    1983-03-01

    Presentation of the AFCEN (French association for nuclear power plant equipment design and construction rules) working, of its edition activity and of somes of its edited documents such as RCC-C (design and construction rules for PWR power plant fuel assemblies) and RCC-E (design and construction rules for nuclear facility electrical equipments) [fr

  2. Liquid Metal Fast Breeder Reactor plant maintenance and equipment design

    International Nuclear Information System (INIS)

    Swannack, D.L.

    1982-01-01

    This paper provides a summary of maintenance equipment considerations and actual plant handling experiences from operation of a sodium-cooled reactor, the Fast Flux Test Facility (FFTF). Equipment areas relating to design, repair techniques, in-cell handling, logistics and facility services are discussed. Plant design must make provisions for handling and replacement of components within containment or allow for transport to an ex-containment area for repair. The modular cask assemblies and transporter systems developed for FFTF can service major plant components as well as smaller units. The plant and equipment designs for the Clinch River Breeder Reactor (CRBR) plant have been patterned after successful FFTF equipment

  3. Design of equipment management information system for nuclear power plant

    International Nuclear Information System (INIS)

    Wang Chengyuan

    1996-01-01

    The author describes the ideas and practical method for need analysis, system function dividing, code design, program design and network disposition of equipment purchase management system of nuclear power plant during building, from the view of engineering investment control, schedule control and quality control

  4. Guideline for design and construction radiation monitoring equipments for Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Miyabe, Kenjiro; Ninomiya, Kazushige; Jin, Kazumi; Morifuji, Masayuki; Nemoto, Kazuhiko; Sato, Akira; Kawai, Keiichi

    1999-12-01

    Various kind of radiation monitoring equipment are used in radiation controlled area at each facility of Tokai reprocessing plant. These equipments have been designed and constructed based on the users requirements, and permitted by governmental regulation office. And, design has been carried out in consideration of the adoption of the new technology and our operational experience. Then, it has been used effectively for the radiation control of the facilities. This report summarizes the technical requirements that should be taken into consideration in the design and installation of radiation monitoring equipments. These requirements are fundamentally applicable when the equipments of the new facilities will be designed or the present instruments will be replaced. (author)

  5. Seismic design of equipment and piping systems for nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Minematsu, Akiyoshi

    1997-01-01

    The philosophy of seismic design for nuclear power plant facilities in Japan is based on 'Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981' (referred to as 'Examination Guide' hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in 'Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association'. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  6. Seismic design of equipment and piping systems for nuclear power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Minematsu, Akiyoshi [Tokyo Electric Power Co., Inc. (Japan)

    1997-03-01

    The philosophy of seismic design for nuclear power plant facilities in Japan is based on `Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981` (referred to as `Examination Guide` hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in `Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association`. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  7. Research program for seismic qualification of nuclear plant electrical and mechanical equipment. Task 4. Use of fragility in seismic design of nuclear plant equipment. Volume 4

    International Nuclear Information System (INIS)

    Kana, D.D.; Pomerening, D.J.

    1984-08-01

    The Research Program for Seismic Qualification of Nuclear Plant Electrical and Mechanical Equipment has spanned a period of three years and resulted in seven technical summary reports, each of which have covered in detail the findings of different tasks and subtasks, and have been combined into five NUREG/CR volumes. Volume 4 presents study of the use of fragility concepts in the design of nuclear plant equipment and compares the results of state-of-the-art proof testing with fragility testing

  8. Plant-wide integrated equipment monitoring and analysis system

    International Nuclear Information System (INIS)

    Morimoto, C.N.; Hunter, T.A.; Chiang, S.C.

    2004-01-01

    A nuclear power plant equipment monitoring system monitors plant equipment and reports deteriorating equipment conditions. The more advanced equipment monitoring systems can also provide information for understanding the symptoms and diagnosing the root cause of a problem. Maximizing the equipment availability and minimizing or eliminating consequential damages are the ultimate goals of equipment monitoring systems. GE Integrated Equipment Monitoring System (GEIEMS) is designed as an integrated intelligent monitoring and analysis system for plant-wide application for BWR plants. This approach reduces system maintenance efforts and equipment monitoring costs and provides information for integrated planning. This paper describes GEIEMS and how the current system is being upgraded to meet General Electric's vision for plant-wide decision support. (author)

  9. Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program

    International Nuclear Information System (INIS)

    McGuire, L.L.

    1991-01-01

    The Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program serves two purposes. The first is to track temperature trends during normal plant operation in areas where suspected deviations from established environmental profiles exist. This includes the use of Resistance Temperature Detectors, Recorders, and Temperature Dots for evaluation of equipment qualified life for comparison with tested parameters and the established Environmental Design Profile. It also may be used to determine the location and duration of steam leaks for effect on equipment qualified life. The second purpose of this program is to aid HVAC design engineers in determining the source of heat outside anticipated design parameters. Resistance Temperature Detectors, Recorders, and Temperature Dots are also used for this application but the results may include design changes to eliminate the excess heat or provide qualified equipment (cable) to withstand the elevated temperature, splitting of environmental zones to capture accurate temperature parameters, or continued environmental monitoring for evaluation of equipment located in hot spots

  10. Design of experimental equipment at CRNL

    International Nuclear Information System (INIS)

    Godden, B.

    1976-01-01

    The Plant Design Division provides a design service to the research and development effort at CRNL. Severe constraints, both environmentally and spatially, are placed on the design of special equipment. Several examples are given. Finally, the use of automated drafting systems is described. (author)

  11. Reduction of Equipment Access Time through Cyber Plant Navigation

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jang Soo; Goo, Ja Sung; Kim, Yong Yi [Korea Hydro and Nuclera Power Co., Daejeon (Korea, Republic of)

    2012-05-15

    Safe and effective on-the-job training at a nuclear power plant has been gaining its importance in South Korea and in the UAE. As a solution to this, a cyber plant has been developed based on 3D model design data. It allows its users to access equipment and components in a virtual reality without risks or danger of potential radiation exposure and also increases their familiarity with NPP structures. Equipped with navigation functions similar to those of the applications installed in automobiles and smart phones, this application displays the shortest route to reach the target equipment and predicts estimated access time and radiation exposure dose. This application has contributed to the reduction of equipment access time, and therefore has facilitated early response to abnormal conditions, reduced radiation exposure dose, and maximized the effects of OJT at nuclear power plants. This paper will look at the realization of the cyber plant, the operations of the cyber plant, and how cyber plant applications can be applied further

  12. Reduction of Equipment Access Time through Cyber Plant Navigation

    International Nuclear Information System (INIS)

    Suh, Jang Soo; Goo, Ja Sung; Kim, Yong Yi

    2012-01-01

    Safe and effective on-the-job training at a nuclear power plant has been gaining its importance in South Korea and in the UAE. As a solution to this, a cyber plant has been developed based on 3D model design data. It allows its users to access equipment and components in a virtual reality without risks or danger of potential radiation exposure and also increases their familiarity with NPP structures. Equipped with navigation functions similar to those of the applications installed in automobiles and smart phones, this application displays the shortest route to reach the target equipment and predicts estimated access time and radiation exposure dose. This application has contributed to the reduction of equipment access time, and therefore has facilitated early response to abnormal conditions, reduced radiation exposure dose, and maximized the effects of OJT at nuclear power plants. This paper will look at the realization of the cyber plant, the operations of the cyber plant, and how cyber plant applications can be applied further

  13. Seismic qualification method of equipment for nuclear power plant

    International Nuclear Information System (INIS)

    Kim, J.S.; Choi, T.H.; Sulaimana, R.A.

    1995-01-01

    Safety related equipment installed in Korean Nuclear Power Plants are required to perform a safety function during and after a seismic event. To accomplish this safety function, they must be seismically qualified in accordance with the intent and requirements of the USNRC Reg. Guide 1.100 Rev. 02 and IEEE Std. 344-1987. This paper defines and summarizes acceptable criteria and procedures, based on the Korean experience, for seismic qualification of purchased equipment to be installed in a nuclear power plant. As such the paper is intended to be a concise reference by equipment designers, architectural engineering company and plant owners in uniform implementation of commitments to nuclear regulatory agencies such as the USNRC or Korea Institute of Nuclear Safety (KINS) relating to adequacy of seismic Category 1 equipment. Thus, the paper provides the methodologies which can be used for qualifying equipment for safely related service in Nuclear Power Plants in a cost effective manner

  14. On fundamental concept of anti-earthquake design of equipment and pipings

    International Nuclear Information System (INIS)

    Shibata, H.; Kato, M.

    1979-01-01

    This paper deals with a new concept of anti-earthquake design of equipment and pipings in nuclear power plants. Usual anti-earthquake design of such items starts from the design basis ground motions, via floor responses and ends at the stress analysis of each structural element. However, the same type of equipment are used for plants under various site conditions. The ordinarily used method obliges the repetition of such design procedure on each plant. This new design method has been developed to avoid such time-consuming repetitions. (orig.)

  15. Qualification of electric equipments for nuclear power plants

    International Nuclear Information System (INIS)

    Chauvin, G.; Raimondo, E.

    1983-03-01

    Description of the testing equipment, testing methods and standards of the resistance to seisms of electrical equipments (switches, pump motors, electrovalves, ...) for electronuclear power plants in France. Presentation of the French design and construction rules for electrical devices in the domestic and export nuclear market (resistance to thermodynamical and chemical stresses, to seisms, etc...) [fr

  16. Increasing efficiency and optimizing thermoelectric power plant equipment. Povyshenie effektivnosti i optimizatsiia teploenergeticheskikh ustanovok

    Energy Technology Data Exchange (ETDEWEB)

    Andriushchenko, A.I.

    1981-01-01

    The problems of increasing the efficiency and optimizing the operational conditions of a thermoelectric power plant and providing efficient operational conditions of the primary and auxillary equipment at a thermoelectric power plant are examined. Methodologies and designs for optimizing the primary parameters of the power-generating equipment based on economic factors are given. A number of recommendations for designing equipment based on the research results are given.

  17. Development of fragility descriptions of equipment for seismic risk assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Hardy, G.S.; Campbell, R.D.

    1983-01-01

    Probabilistic risk assessment (PRA) of a nuclear power plant for postulated hazard requires the development of fragility relationships for the plants' safety related equipment. The objective of this paper is to present some general results and conclusions concerning the development of these seismic fragility levels. Participation in fragility-related research and experience gained from the completion of several PRA studies of a variety of nuclear power plants have provided much insight as to the most vulnerable equipment and the most efficient use of resources for development of fragilities. Plants studied had seismic design bases ranging from very simple equivalent static analysis for some of the earlier plants to state-of-the-art complex multimode dyanamic analyses for plants currently under construction. Increased sophistication and rigor in seismic qualification of equipment has resulted for the most part in increased seismic resistance. The majority of equipment has been found, however, to possess more than adequate resistance to seismic loading regardless of the degree of sophistication utilized in design as long as seismic loading was included in the design process. This paper presents conclusions of the authors as to which items of equipment typically require an individual ''plant-specific'' fragility analysis and which can be treated in a generic fashion. In addition, general conclusions on the relative seismic capacity levels and most frequent failure modes are summarized for generic equipment groups

  18. Operation monitor for plant equipment

    International Nuclear Information System (INIS)

    Kondo, Tetsufumi; Kanemoto, Shigeru.

    1991-01-01

    In a nuclear power plant, states of each of equipment in the plant are monitored accurately even under such a operation condition that the power is changed. That is, the fundamental idea is based on a model comparison method. A deviation between an output signal upon normal plant state obtained in a forecasting model device and that of the objective equipment in the plant are compared with a predetermined value. The result of the comparison is inputted to an alarm device to alarm the abnormality of the states of the equipment to an operator. The device of the present invention thus constituted can monitor the abnormality of the operation of equipment accurately even under such a condition that a power level fluctuates. As a result, it can remarkably contribute to mitigate operator's monitoring operation under the condition such as during load following operation. (I.S.)

  19. Vitrification process equipment design for the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Chapman, C.C.; Drosjack, W.P.

    1988-10-01

    The vitrification process and equipment design is nearing completion for the West Valley Project. This report provides the basis and current status for the design of the major vessels and equipment within the West Valley Vitrification Plant. A review of the function and key design features of the equipment is also provided. The major subsystems described include the feed preparation and delivery systems, the melter, the canister handling systems, and the process off-gas system. 11 refs., 33 figs., 4 tabs

  20. System Definition and Analysis: Power Plant Design and Layout

    International Nuclear Information System (INIS)

    1996-01-01

    This is the Topical report for Task 6.0, Phase 2 of the Advanced Turbine Systems (ATS) Program. The report describes work by Westinghouse and the subcontractor, Gilbert/Commonwealth, in the fulfillment of completing Task 6.0. A conceptual design for critical and noncritical components of the gas fired combustion turbine system was completed. The conceptual design included specifications for the flange to flange gas turbine, power plant components, and balance of plant equipment. The ATS engine used in the conceptual design is an advanced 300 MW class combustion turbine incorporating many design features and technologies required to achieve ATS Program goals. Design features of power plant equipment and balance of plant equipment are described. Performance parameters for these components are explained. A site arrangement and electrical single line diagrams were drafted for the conceptual plant. ATS advanced features include design refinements in the compressor, inlet casing and scroll, combustion system, airfoil cooling, secondary flow systems, rotor and exhaust diffuser. These improved features, integrated with prudent selection of power plant and balance of plant equipment, have provided the conceptual design of a system that meets or exceeds ATS program emissions, performance, reliability-availability-maintainability, and cost goals

  1. The establish and application of equipment reliability database in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zheng Wei; Li He

    2006-03-01

    Take the case of Daya Bay Nuclear Power Plant, the collecting and handling of equipment reliability data, the calculation method of reliability parameters and the establish and application of reliability databases, etc. are discussed. The data source involved the design information of the equipment, the operation information, the maintenance information and periodically test record, etc. Equipment reliability database built on a base of the operation experience. It provided the valid tool for thoroughly and objectively recording the operation history and the present condition of various equipment of the plant; supervising the appearance of the equipment, especially the safety-related equipment, provided the very practical worth information for enhancing the safety and availability management of the equipment and insuring the safety and economic operation of the plant; and provided the essential data for the research and applications in safety management, reliability analysis, probabilistic safety assessment, reliability centered maintenance and economic management in nuclear power plant. (authors)

  2. MOPABA-H2 - Computer code for calculation of hydrogen generation and distribution in the equipment of power plants with WWER type reactors in design modes of operation

    International Nuclear Information System (INIS)

    Arkhipov, O.P.; Kharitonov, Yu.V.; Shumskiy, A.M.; Kabakchi, S.A.

    2002-01-01

    With the aim of ensuring the hydrogen explosive-proof situation in the reactor plant, a complex of scientific-and-research work was carried out including the following: revealing the mechanisms of generation and release of hydrogen in the primary equipment components under design operation modes of the reactor plant with WWER; development of calculation procedure and computer code MOPABA-H2 enabling to determine the hydrogen content in RP equipment components under design operation modes. In the process of procedure development it was found out that the calculation of hydrogen content in the plant equipment requires development of the following main mathematical models: radiochemical processes in the primary coolant which has impurities and added special reagents; absorption of the core ionizing radiation by the coolant; steam-zirconium reaction (during design-basis accident of LOCA type); coolant mass transfer over the reactor plant equipment including transition of the phase boundary by the components of the coolant. (author)

  3. Equipment and physical plant changes in response to the Fukushima event

    International Nuclear Information System (INIS)

    Newman, G.

    2013-01-01

    The Fukushima event led the international nuclear industry and regulatory bodies to challenge the ability of existing nuclear power plants to prevent and mitigate the effects of a severe external event leading to a total loss of AC power and resultant loss of cooling. Canadian Nuclear Industry's immediate response was to provide a high level of assurance that the existing plant is in a high state of readiness to deal with design basis and beyond design basis events, verify the capability of the existing plant to deal with beyond design basis events (equipment, procedures, staff qualification, external support agreements, etc), verify capability to mitigate station black out events, verify capability to cope with internal and external floods and address vulnerabilities to seismically induced damage to mitigation equipment.

  4. Advanced plant design recommendations from Cook Nuclear Plant experience

    International Nuclear Information System (INIS)

    Zimmerman, W.L.

    1993-01-01

    A project in the American Electric Power Service Corporation to review operating and maintenance experience at Cook Nuclear Plant to identify recommendations for advanced nuclear plant design is described. Recommendations so gathered in the areas of plant fluid systems, instrument and control, testing and surveillance provisions, plant layout of equipment, provisions to enhance effective maintenance, ventilation systems, radiological protection, and construction, are presented accordingly. An example for a design review checklist for effective plant operations and maintenance is suggested

  5. Remote-automated inspection and maintenance of nuclear power plant equipment

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Masayoshi; Nakano, Yoshiyuki

    1984-12-01

    Employing remote-control inspection and maintenance equipment in nuclear power plants increases the plant availability by decreasing the annual shutdown time (outage), as well as radiation exposure and man-power. This paper presents an outline of the latest designs for an automatic refueling machine, a control rod drive handling machine, a fuel preparation machine, and a main steam line plug, which were supplied to the Fukushima Dai-Ni No. 2 Plant of the Tokyo Electric Power Co., Inc. (Fukushima 2-2). Also, the up-to-date developments of other new automatic machines, such as a CRD disassembly and cleaning system, spent fuel channel box volume reduction equipment, and robotics for nuclear plant use are presented.

  6. The design of in-cell equipment for nuclear fuel reprocessing plant with special reference to the decanners for Pond 5, Sellafield

    International Nuclear Information System (INIS)

    Evans, D.A.

    1987-01-01

    The in-cave equipment has to meet many demanding criteria, which require not only sound and creative design thinking, but a range of design management techniques to ensure the success of the plant. This paper discusses these in some detail in relation to the decanners for Pond 5. (author)

  7. A proposal of nuclear fusion power plant equipped with SMES

    International Nuclear Information System (INIS)

    Natsukawa, Tatsuya; Makamura, Hirokazu; Molinas, Marta; Nomura, Shinichi; Tsuji-Iio, Shunji; Shimada, Ryuichi

    2000-01-01

    When we intend to operate the nuclear fusion power plant (NFPP) under the economically efficient conditions as an independent power plant, it is desirable that the generated electric power should be sent to network according to the power demand. With such strategy being expanded, some energy storage system is available. In this paper, NFPP equipped with the superconducting magnetic energy storage system (SMES) as electric power storage device is proposed. The advantages of NFPP equipped with SMES are discussed and a case study of 500 MW NFPP equipped with 6 GWh SMES is done with estimating its operational value. For SMES coil, the concept of Force Balanced Coil (FBC) is applied and 6 GWh class FBC is briefly designed

  8. Unresolved Safety Issue A-46 - seismic qualification of equipment in operating plants

    International Nuclear Information System (INIS)

    Anderson, N.

    1985-01-01

    Seismic Qualification of Equipment in Operating Plants was designated as an Unresolved Safety Issue (USI) in December, 1980. The USI A-46 program was developed in early 1981 to investigate the adequacy of mechanical and electrical equipment in operating plants to withstand a safe shutdown earthquake. The approach taken was to develop viable, cost effective alternatives to current seismic qualification licensing requirements which could be applied to operating nuclear power plants. The tasks investigated include: (1) identification of seismic sensitive systems and equipment; (2) assessment of adequacy of existing seismic qualification methods; (3) development and assessment of in-situ test procedures to assist in qualification of equipment; (4) seismic qualification of equipment using seismic experience data; and (5) development of methods to generate generic floor response spectra. Progress to date and plans for completion of resolution are reported

  9. Assessment of electrical equipment aging for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The electrical and instrumentation equipments, especially whose parts are made of polymer material, are gradually degraded by thermal and radiation environment in the normal operation, and the degradation is thought to progress rapidly when they are exposed to the environment of the design basis event (DBE). The integrity of the equipments is evaluated by the environmental qualification (EQ) test simulating the environment of the normal operation and the DBE. The project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) indicated the importance of applying simultaneous thermal and radiation aging for simulating the aging in normal operation. The project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008 to apply the outcome of ACA to the other electrical and instrumentation equipment and to establish an advanced EQ test method that can appropriately simulate the environment in actual plants. In FY2012, aging characteristics of thermal aging and simultaneous aging were obtained for the epoxy resin of electrical penetrations and the O-ring of connectors. Physical property measurement was carried out for epoxy resin of electrical penetration subject to the type testing in FY2010. (author)

  10. Assessment of electrical equipment aging for nuclear power plant

    International Nuclear Information System (INIS)

    2013-01-01

    The electrical and instrumentation equipments, especially whose parts are made of polymer material, are gradually degraded by thermal and radiation environment in the normal operation, and the degradation is thought to progress rapidly when they are exposed to the environment of the design basis event (DBE). The integrity of the equipments is evaluated by the environmental qualification (EQ) test simulating the environment of the normal operation and the DBE. The project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) indicated the importance of applying simultaneous thermal and radiation aging for simulating the aging in normal operation. The project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008 to apply the outcome of ACA to the other electrical and instrumentation equipment and to establish an advanced EQ test method that can appropriately simulate the environment in actual plants. In FY2012, aging characteristics of thermal aging and simultaneous aging were obtained for the epoxy resin of electrical penetrations and the O-ring of connectors. Physical property measurement was carried out for epoxy resin of electrical penetration subject to the type testing in FY2010. (author)

  11. 3. General principles of assessing seismic resistance of technological equipment of nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    The evaluation of the seismic resistance of technological equipment is performed by computation, experimental trial, possibly by combining both methods. Existing and prepared standards in the field of seismic resistance of nuclear power plants are mentioned. Accelerograms and response spectra of design-basis earhtquake and maximum credible earthquake serve as the basic data for evaluating seismic resistance. The nuclear power plant in Mochovce will be the first Czechoslovak nuclear power plant with so-called partially seismic design. The problem of dynamic interaction of technological equipment and nuclear power plant systems with a bearing structure is discussed. (E.F.)

  12. WIPP conceptual design report. Addendum J. Support equipment in the high level waste facility of the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rieb, M.J.; Foley, R.S.

    1977-04-01

    The Aerojet Manufacturing Company (AMCO) received a contract in November 1976 to provide consulting services in assisting Holmes and Narver, Incorporated with the conceptual designs, cost estimates, and schedules of equipment used to handle waste casks, to decontaminate waste canisters and to overpack damaged or highly contaminated waste canisters for the Waste Isolation Pilot Plant (WIPP). Also, the layout of the hot cell in which canister handling, overpack and decontamination takes place was to be reviewed along with the time and motion study of the cell operations. This report has been prepared to present the results of the efforts and contains all technical and planning data developed during the program. The contents of this report are presented in three sections: (1) comments on the existing design criteria, equipment conceptual designs, hot cell design and time and motion studies of projected hot cell activities; (2) design descriptions of the equipment concepts and justification for varying from the existing concept (if a variation occurred). Drawings of each concept are provided in Appendix A. These design descriptions and drawings were used as the basis for the cost estimates; and (3) schedule projections and cost estimates for the equipment described in Section 2. Detail cost estimate backup data is provided in Appendix B

  13. The gravitational plant physiology facility-Description of equipment developed for biological research in spacelab

    Science.gov (United States)

    Heathcote, D. G.; Chapman, D. K.; Brown, A. H.; Lewis, R. F.

    1994-01-01

    In January 1992, the NASA Suttle mission STS 42 carried a facility designed to perform experiments on plant gravi- and photo-tropic responses. This equipment, the Gravitational Plant Physiology Facility (GPPF) was made up of a number of interconnected units mounted within a Spacelab double rack. The details of these units and the plant growth containers designed for use in GPPF are described. The equipment functioned well during the mission and returned a substantial body of time-lapse video data on plant responses to tropistic stimuli under conditions of orbital microgravity. GPPF is maintained by NASA Ames Research Center, and is flight qualifiable for future spacelab missions.

  14. A guide to qualification of electrical equipment for nuclear power plants. Final report, November 1983

    International Nuclear Information System (INIS)

    Marion, A.; Lamken, D.; Harrall, T.; Kasturi, S.; Holzman, P.; Carfagno, S.; Thompson, D.; Boyer, B.; Hanneman, H.; Rule, W.

    1983-09-01

    Equipment qualification demonstrates that nuclear power plant equipment can perform its safety function - that despite age or the adverse conditions of a design basis accident the equipment can work as needed. This report is a guide to the overall process of electrical equipment qualification. It should interest those who design such equipment, those who buy it, or test it, and even those who install and maintain it. (author)

  15. Plant equipment integrity monitoring and diagnosing method and device therefor, plant equipment maintenance and inspection time determining method and device therefor, as well as nuclear power plant

    International Nuclear Information System (INIS)

    Kato, Takahiko; Ando, Masashi; Osumi, Katsumi; Horiuchi, Tetsuo; Asakura, Yamato; Akamine, Kazuhiko.

    1995-01-01

    The present invention can accurately forecast a time for occurrence of troubles of plant equipments in contact with recycling water, to conduct its maintenance and inspection before occurrence of the troubles. Namely, change of water quality in plant equipments caused by corrosion of recycling water occurred in constitutional parts of the plant equipments is measured. The time upon occurrence of the troubles of the plant equipments to corrosion of the recycling water is forecast based on the measured value. A time till the occurrence of the change of water quality after starting the use of the plant equipments is calculated based on the measured value. The calculated time is compared with a correlation between the time of occurrence of the troubles after starting the use of the plant equipments and the time of occurrence of change of the water quality, to forecast the time of occurrence of the troubles. Preferably, electroconductivity and pH of recycling water in the inside or at the exit of the plant equipments are measured as an object for the measurement of change of water quality. (I.S.)

  16. Design considerations, tooling and equipment for remote in-service inspection of radioactive piping and pressure vessel systems

    International Nuclear Information System (INIS)

    Schmoker, D.S.; Swannack, D.L.

    1983-01-01

    In-Service Inspection programs are performed to monitor and verify the integrity of a nuclear power plant's primary pressure boundaries. Early detection of abnormal structural or material degradation could preclude serious damage to plant systems. This paper summarizes results obtained in use of remotely-operated nondestructive testing (NDT) equipment for inspection of reactor system components. Experience obtained in operating the Fast Flux Test Facility (FFTF) has provided a basis for field verification of remote NDT equipment designs and has suggested development improvements. Remote Viewing and data gathering systems used include periscopes, borescopes, fiberscopes, hybrid borescopes/fiberscopes, and closed circuit television. A summary of design consideration for inspection equipment and power plant design is presented to achieve improved equipment operation and reduction of plant maintenance downtime

  17. Design and construction rules for electrical equipments of nuclear islands. 3. ed.

    International Nuclear Information System (INIS)

    1993-01-01

    The French design and construction for electrical equipments of nuclear islands (RCC-E) deals with equipments of which the failure may have consequences on the safety of persons or appreciable effects on the availability of the power plant. This book presents the rules concerning (1) qualification procedure, (2) the design of functional units, (3) the installation (environmental conditions, protection rules), (4) the constituent elements of equipments, (5) the control and testing methods

  18. Design considerations, tooling, and equipment for remote in-service inspection of radioactive piping and pressure-vessel systems

    International Nuclear Information System (INIS)

    Swannack, D.L.; Schmoker, D.S.

    1983-01-01

    This paper summarizes results obtained in use of remotely-operated nondestructive testing (NDT) equipment for inspection of reactor-system components. Experience obtained in operating the Fast Flux Test Facility (FFTF) has provided a basis for field verification of remote NDT equipment designs and has suggested development improvements. Remote Viewing and data gathering systems used include periscopes, borescopes, fiberscopes, hybrid borescopes/fiberscopes, and closed circuit television. A summary of design consideration for inspection equipment and power plant design is presented to achieve improved equipment operation and reduction of plant maintenance downtime

  19. 48 CFR 945.407 - Non-Government use of plant equipment.

    Science.gov (United States)

    2010-10-01

    ... plant equipment. 945.407 Section 945.407 Federal Acquisition Regulations System DEPARTMENT OF ENERGY...-Government use of plant equipment. The type of plant equipment and dollar threshold for non-Government use of DOE plant equipment will be determined by the Head of the Contracting Activity which awarded the...

  20. Improving the hygienic design of closed equipment

    DEFF Research Database (Denmark)

    Friis, Alan; Jensen, Bo Boye Busk

    2005-01-01

    Maintenance of proper hygiene in closed process equipment is in many ways a complex task. The interaction between the physical design and the nature of fluid flow is of main concern. During cleaning the main performance of the flow is to bring cleaning agents in the right doses to all parts of th...... computational fluid dynamics models to be able to predict the cleaning efficiency in especially complex parts of process plants has excellent potentials for desktop improvements and computer pre-validation of the hygienic performance of process plants....

  1. Design and Implementation of Equipment for Enhanced Safeguards of a Plutonium Storage in a Reprocessing Plant

    International Nuclear Information System (INIS)

    Richir, P.; Dechamp, L.; Buchet, P.; Dransart, P.; Dzbikowicz, Z.; Peerani, P.; ); Pierssens, L.; Persson, L.; Ancius, D.; Synetos, S.; ); Edmonds, N.; Homer, A.; Benn, K.-A.; Polkey, A.

    2015-01-01

    The Nuclear Security unit (NUSEC) of the Institute for Transuranium Elements (ITU, JRC) was entrusted by DG ENER to design and implement equipment in order to achieve enhanced safeguards of a plutonium dioxide storage located on the MAGNOX reprocessing plant in Sellafield (UK). Enhanced safeguards must lead to a win-win situation for all parties involved. In this case the DG ENER inspectorate will save inspection time, manpower and future financial resources and the operator will have the right to access its storage without the need for inspector presence. To reach this goal, while at the same time taking into account current budget constraints, NUSEC developed applications that use equipment commonly used in the safety and security fields but so far have not been used in safeguards. For instance, two laser scanners are used to detect entry/exit events into and out of the store and to provide the necessary information to an algorithm in order to categorize objects/people passing the scanners, e.g., a Fork Lift Truck, a trolley used to bring in PuO 2 containers, a system used for the dispatch of cans, people, etc. An RFID reader is used to identify equipment duly authorized to access the store. All PuO 2 containers arriving from the production line must be weighed, identified and measured using gamma and neutron detectors before they can be transferred to the store. For this purpose an Unattended Combined Measurement System (UCMS) was designed and manufactured by the JRC in order to do all verification activities using a single instrument. This paper describes the design features of the equipment and its implementation with the support of the Sellafield Ltd. in the framework of the MAGNOX store project. (author)

  2. Performance test of nutrient control equipment for hydroponic plants

    Science.gov (United States)

    Rahman, Nurhaidar; Kuala, S. I.; Tribowo, R. I.; Anggara, C. E. W.; Susanti, N. D.

    2017-11-01

    Automatic control equipment has been made for the nutrient content in irrigation water for hydroponic plants. Automatic control equipment with CCT53200E conductivity controller to nutrient content in irrigation water for hydroponic plants, can be used to control the amount of TDS of nutrient solution in the range of TDS numbers that can be set according to the range of TDS requirements for the growth of hydroponically cultivated crops. This equipment can minimize the work time of hydroponic crop cultivators. The equipment measurement range is set between 1260 ppm up to 1610 ppm for spinach plants. Caisim plants were included in this experiment along with spinach plants with a spinach plants TDS range. The average of TDS device is 1450 ppm, while manual (conventional) is 1610 ppm. Nutrient solution in TDS controller has pH 5,5 and temperature 29,2 °C, while manual is pH 5,6 and temperature 31,3 °C. Manually treatment to hydroponic plant crop, yields in an average of 39.6 grams/plant, greater than the yield of spinach plants with TDS control equipment, which is in an average of 24.6 grams / plant. The yield of caisim plants by manual treatment is in an average of 32.3 grams/crop, less than caisim crop yields with TDS control equipment, which is in an average of 49.4 grams/plant.

  3. PROMSYS, Plant Equipment Maintenance and Inspection Scheduling

    International Nuclear Information System (INIS)

    Morgan, D.L.; Srite, B.E.

    1986-01-01

    1 - Description of problem or function: PROMSYS is a computer system designed to automate the scheduling of routine maintenance and inspection of plant equipment. This 'programmed maintenance' provides the detailed planning and accomplishment of lubrication, inspection, and similar repetitive maintenance activities which can be scheduled at specified predetermined intervals throughout the year. The equipment items included are the typical pumps, blowers, motors, compressors, automotive equipment, refrigeration units, filtering systems, machine shop equipment, cranes, elevators, motor-generator sets, and electrical switchgear found throughout industry, as well as cell ventilation, shielding, containment, and material handling equipment unique to nuclear research and development facilities. Four related programs are used to produce sorted schedule lists, delinquent work lists, and optional master lists. Five additional programs are used to create and maintain records of all scheduled and unscheduled maintenance history. 2 - Method of solution: Service specifications and frequency are established and stored. The computer program reviews schedules weekly and prints, on schedule cards, instructions for service that is due the following week. The basic output from the computer program comes in two forms: programmed-maintenance schedule cards and programmed-maintenance data sheets. The data sheets can be issued in numerical building, route, and location number sequence as equipment lists, grouped for work assigned to a particular foreman as the foreman's equipment list, or grouped by work charged to a particular work order as the work-order list. Data sheets grouped by equipment classification are called the equipment classification list

  4. Localization of equipment for digital plant protection system

    Energy Technology Data Exchange (ETDEWEB)

    Koo, I. S.; Park, H. Y.; Lee, C. K. and others

    2000-10-01

    The objective of this project lies on the development of design requirements, establishment of structure and manufacture procedures, development of the software verification and validation(V and V) techniques of the digital plant protection system. The functional requirements based on the analog protection system and digital design requirements are introduced, the processor and system bus for safety grade equipment are selected and the interface requirements and the design specification have been developed in order to manufacture the quick prototype of the digital plant protection system. The selection guidelines of parts, software development and coding and testing for digital plant protection system have been performed through manufacturing the quick prototype based on the developed design specification. For the software verification and validation, the software review plan and techniques of verification and validation have been researched. The digital validation system is developed in order to verify the quick prototype. The digital design requirements are reviewed by the software safety plan and V and V plans. The formal methods for verifying the safety-grade software are researched, then the methodology of formal analysis and testing have been developed.

  5. Localization of equipment for digital plant protection system

    International Nuclear Information System (INIS)

    Koo, I. S.; Park, H. Y.; Lee, C. K. and others

    2000-10-01

    The objective of this project lies on the development of design requirements, establishment of structure and manufacture procedures, development of the software verification and validation(V and V) techniques of the digital plant protection system. The functional requirements based on the analog protection system and digital design requirements are introduced, the processor and system bus for safety grade equipment are selected and the interface requirements and the design specification have been developed in order to manufacture the quick prototype of the digital plant protection system. The selection guidelines of parts, software development and coding and testing for digital plant protection system have been performed through manufacturing the quick prototype based on the developed design specification. For the software verification and validation, the software review plan and techniques of verification and validation have been researched. The digital validation system is developed in order to verify the quick prototype. The digital design requirements are reviewed by the software safety plan and V and V plans. The formal methods for verifying the safety-grade software are researched, then the methodology of formal analysis and testing have been developed

  6. Planning of maintenance of electrical equipment in nuclear plants/laboratories [Paper No.: VB-3

    International Nuclear Information System (INIS)

    Narasinga Rao, S.N.; Bhattacharyya, A.K.

    1981-01-01

    Satisfactory operating performance of electrical systems ensures continuous availability of power to the various plants and machinery in nuclear plant and laboratories. For effective optimal functioning of the electrical equipment and to reduce their down time, scheduled planning of maintenance to the equipment is essential. Maintenance of power plant, nuclear or fossil, and industrial plant and research laboratories demands essential ingredients such as right type of trained and motivated technical personnel, adoption of standard procedures for maintenance, adequate safety and protection for equipment, safety procedures adopted in the installation to prevent hazards to the workers, provision of adequate stores and inventories, facilities for quick repairs and testing of equipment and effective planning of procedures for their maintenance. While breakdown maintenance allows equipment to operate before it is repaired or replaced, preventive maintenance makes use of scheduled inspection and periodical equipment overhaul and has little value for predicting future continuous performances of equipment. The engineered maintenance is most advantageous and offers maximum operating time to reduce down time of the equipment while adding predictive testing technique to aid in determining the frequency of overhaul of equipment. The important checks to be conducted and preventive maintenance programme to be scheduled are discussed in this paper. The safety and reliable functioning of the electrical equipment depend on proper optimal design, selection of equipment, their installation, subsequent maintenance and strict compliance with safety regulations. (author)

  7. Technical design considerations in the provision of a commercial MOX plant

    International Nuclear Information System (INIS)

    Elliott, M.F.

    1997-01-01

    The Sellafield MOX Plant (SMP) has a design production target of 120 t/year Heavy Metal of mixed uranium dioxide and plutonium dioxided (MOX) fuel. It will have the capability to produce fuel with fissile enrichments up to 10%. The feed materials are those arising from reprocessing operations on the Sellafield site, although the plant also has the capability to receive and process plutonium from overseas reprocessing plants. The ability to produce 10% enriched fuels, together with the requirement to use high burn-up feed has posed a number of design challenges to prevent excessive powder temperatures within the plant. As no stimulants are available to represent the heat generating nature of plutonium powders, it is difficult to prove equipment design by experiment. Extensive use has therefore been made of finite element analysis techniques. The requirement to process material of low burn-up (i.e. high fissile enrichment) has also impacted on equipment design in order to ensure that criticality limits are not exceeded. This has been achieved where possible by 'safe by geometry' design and, where appropriate, by high integrity protection systems. SMP has been designed with a high plant availability but at minimum cost. The requirement to minimize cost has meant that high availability must be obtained with the minimum of equipment. This had led to major challenges for equipment designers in terms of both the reliability and also the maintainability of equipment. Extensive use has been made of theoretical modelling techniques which have given confidence that plant throughput can be achieved. (author). 1 fig

  8. Optimization on replacement period of plant equipment

    International Nuclear Information System (INIS)

    Kasai, Masao; Asano, Hiromi

    2002-01-01

    Optimization of the replacement period of plant equipment is one of the main items to rationalize the activities on plant maintenance. There are several models to replace the equipment and the formulations for optimizing the replacement period are different among these models. In this study, we calculated the optimum replacement periods for some equipment parts based on the replacement models and found that the optimum solutions are not so largely differ from the replacement models as far as the replacement period is not so large. So we will be able to use the most usable model especially in the early phase of rationalization on plant maintenance, since there are large uncertainties in data for optimization. (author)

  9. 1E Qualification of Electrical Equipment - Requirement for Safety Nuclear Power Plants

    International Nuclear Information System (INIS)

    Geambasu, C.; Segarceanu, D.; Albu, J.

    2002-01-01

    The paper presents the qualification methods of the safety related equipment according to the safety class 1E. There are presented the qualification principles, procedure and documents, emphasis being laid on the qualification approach by type tests. This approach assumes the equipment test under both normal and accident conditions (design basis events) simulating the operational conditions and covers the largest part of electrical equipment from a nuclear power plant.The safety related equipment is to be qualified is subjected to a sequential test that will be detailed in the paper. (author)

  10. Program outline of seismic fragility capacity tests on nuclear power plant equipment

    International Nuclear Information System (INIS)

    Lijima, T.; Abe, H.; Fujita, T.

    2004-01-01

    A seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risk of nuclear plant that is designed with definitive seismic design condition. Seismic fragility capacity data are necessary for seismic PSA, but we don't have sufficient data of active components of nuclear plants in Japan. This paper describes a plan of seismic fragility capacity tests on nuclear power plant equipment. The purpose of those tests is to obtain seismic fragility capacity of important equipment from a safety design point of view. And the equipment for the fragility capacity tests were selected considering effect on core damage frequency (CDF) that was evaluated by our preliminary seismic PSA. Consequently horizontal shaft pump, electric cabinets, Control Rod Drive system (CRD system) of BWR and PWR plant and vertical shaft pump were selected. The seismic fragility capacity tests are conducted from phase-1 to phase-3, and horizontal shaft pump and electric cabinets are tested on phase-1. The fragility capacity test consists of two types of tests. One is actual equipment test and another is element test. On actual equipment test, a real size model is tested with high-level seismic motion, and critical acceleration and failure mode are investigated. Regarding fragility test phase-1, we selected typical type horizontal shaft pump and electric cabinets for the actual equipment test. Those were Reactor Building Closed Cooling Water (RCW) Pump and eight kinds of electric cabinets such as relay cabinet, motor control center. On the test phase-1, maximum input acceleration for the actual equipment test is intended to be 6-G-force. Since the shaking table of TADOTSU facility did not have capability for high acceleration, we made vibration amplifying system. In this system, amplifying device is mounted on original shaking table and it moves in synchronization with original table. The element test is conducted with many samples and critical acceleration, median and

  11. DU-AGG pilot plant design study

    International Nuclear Information System (INIS)

    Lessing, P.A.; Gillman, H.

    1996-07-01

    The Idaho National Engineering Laboratory (INEL) is developing new methods to produce high-density aggregate (artificial rock) primarily consisting of depleted uranium oxide. The objective is to develop a low-cost method whereby uranium oxide powder (UO[sub 2], U[sub 3]O[sub ]8, or UO[sub 3]) can be processed to produce high-density aggregate pieces (DU-AGG) having physical properties suitable for disposal in low-level radioactive disposal facilities or for use as a component of high-density concrete used as shielding for radioactive materials. A commercial company, G-M Systems, conducted a design study for a manufacturing pilot plant to process DU-AGG. The results of that study are included and summarized in this report. Also explained are design considerations, equipment capacities, the equipment list, system operation, layout of equipment in the plant, cost estimates, and the proposed plan and schedule

  12. New design system for nuclear power plant

    International Nuclear Information System (INIS)

    Kakuta, Masataka; Yoshinaga, Toshiaki; Yoshida, Ikuzo; Tokumasu, Shinji.

    1980-01-01

    As for the machine and equipment layout and the piping design for nuclear power plants, the multilateral coordination and study on such factors as functions, installation, radiation exposure and maintenance are required, and the high reliability is demanded. On the other hand, the quantity of things handled is enormous, therefore it is difficult to satisfy completely the above described requirements and to make plant planning which is completely free from the mutual interference of machines, equipments and pipings by the ordinary design with drawings only. Thereupon, the following new device was adopted to the design method for the purposes of improving the quality and shortening the construction period. Namely at the time of designing new plants, the rationalization of plant planning method was attempted by introducing color composite drawings and the technique of model engineering, at the same time, the newly developed design system for pipings was applied with a computer, thus the large accomplishment was able to be obtained regarding the improvement of reliability and others by making the check-up of the propriety. The design procedures of layout and piping, the layout design and general coordination in nuclear power stations with models and color composite drawings and the design system are explained. (Kako, I.)

  13. 48 CFR 445.407 - Non-Government use of plant equipment.

    Science.gov (United States)

    2010-10-01

    ... plant equipment. 445.407 Section 445.407 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE CONTRACT MANAGEMENT GOVERNMENT PROPERTY Contractor Use and Rental of Government Property 445.407 Non-Government use of plant equipment. Requests for non-Government use of plant equipment as...

  14. Impact of power uprate on environmental qualification of equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Raheja, R.D.; Mohiuddin, A.; Alsammarae, A.

    1996-01-01

    Many nuclear power facilities are finding it economically beneficial to increase reactor output, from operating plants, by resorting to power uprates. A power uprate implies that a utility can increase the reactor output, or the megawatts generated, by increasing steam pressure without adding or changing any plant systems. This is perhaps one of the least expensive options for increasing the generating capacity of a power plant. However, a nuclear plant requires a comprehensive review of the plant systems, structures and components to assure their capability to withstand the resulting increased normal and accident plant conditions. A power uprate will typically result in a plant operating at higher than the originally designed environmental conditions. Safety related equipment in nuclear plants is presently qualified to the UFSAR Chapter 15 accident events and the resulting temperatures, pressures, radiation levels etc. These values will increase when the reactor is producing a higher MWe output. Components that are sensitive to the environment must be re-evaluated and assessed to determine their acceptability and operability under the revised environmental conditions. Most safety-related mechanical and electrical equipment will require an assessment from an environmental qualification standpoint. Utilities must perform this task in a systematic, auditable and cost effective manner to optimize their resources and minimize plant costs associated with modifications, replacements or equipment testing. This paper discusses various approaches and provides recommendations to achieve equipment qualification while satisfying the plant's objective of a power uprate

  15. Inelastic design of nuclear reactor structures and its implications on design of critical equipment

    International Nuclear Information System (INIS)

    Newmark, N.M.

    1977-01-01

    In considering the response of a nuclear reactor structure to seismic motions, one must take account of the implications of various levels of damage, short of impairment of safety, and definitely short of collapse, of the structure. Some structural elements of nuclear power plants must perforce remain elastic or nearly elastic in order to perform their allocated safety function. However, in many instances, a purely linear elastic analysis may be unreasonably conservative when one considers that even up to the near yield point range, there are nonlinearities of sufficient amount to reduce required design levels considerably. Moreover, limited yielding of a structure may reduce the response of equipment located in the structure below those levels of response that would be excited were the structure to remain elastic. Energy absorption in the inelastic range is most conveniently treated by use of the so-called 'ductility factor' introduced by the author for design of structures and equipment to resist explosion and blast forces. In general, for small excursions into the inelastic range, especially when the latter can be approximated by an elasto-plastic resistance curve, the design response spectrum is decreased by a simply determined factor that is related to the ductility factor. Many important parts of equipment of a nuclear power plant facility are attached to the principal parts of the structure and respond in a manner determined by the structural response as well as by the general ground motion to which the structure is subjected. This matter involves some difficulty in analysis, but appropriate calculational techniques and design methods are available. A suitable design simplification is one in which the response of the attachment is related to the modal responses of the structure. This equipment response is affected by the relative mass of the attachment and the structure

  16. 40 CFR 792.61 - Equipment design.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Equipment design. 792.61 Section 792.61...) GOOD LABORATORY PRACTICE STANDARDS Equipment § 792.61 Equipment design. Equipment used in the... of appropriate design and adequate capacity to function according to the protocol and shall be...

  17. 40 CFR 160.61 - Equipment design.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Equipment design. 160.61 Section 160... LABORATORY PRACTICE STANDARDS Equipment § 160.61 Equipment design. Equipment used in the generation... appropriate design and adequate capacity to function according to the protocol and shall be suitably located...

  18. 21 CFR 58.61 - Equipment design.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Equipment design. 58.61 Section 58.61 Food and... PRACTICE FOR NONCLINICAL LABORATORY STUDIES Equipment § 58.61 Equipment design. Equipment used in the... of appropriate design and adequate capacity to function according to the protocol and shall be...

  19. Emplacement and retrieval equipment design considerations for a repository in salt

    International Nuclear Information System (INIS)

    Nair, B.R.; Bahorich, R.J.

    1987-01-01

    The current design concept for the disposal of nuclear high level waste packages in a repository in salt is based on the emplacement of individual packages in vertical boreholes in the underground mine floor. A key requirement is that the waste packages be capable of being retrieved during the last 26 years of the 76-year repository operating period. The unique design considerations relating to the retrieval of waste packages emplaced in bedded salt are presented in this paper. The information is based on the experience developed during the design of vertical emplacement and retrieval equipment in support of the Sandia Defense High Level Waste experiments at the Waste Isolation Pilot Plant. Also included are the impact of retrievability on the design of the equipment, the special salt cutting technology that was developed for this application, and a description of the equipment

  20. Process plant equipment operation, control, and reliability

    CERN Document Server

    Holloway, Michael D; Onyewuenyi, Oliver A

    2012-01-01

    "Process Plant Equipment Book is another great publication from Wiley as a reference book for final year students as well as those who will work or are working in chemical production plants and refinery…" -Associate Prof. Dr. Ramli Mat, Deputy Dean (Academic), Faculty of Chemical Engineering, Universiti Teknologi Malaysia "…give[s] readers access to both fundamental information on process plant equipment and to practical ideas, best practices and experiences of highly successful engineers from around the world… The book is illustrated throughout with numerous black & white p

  1. Design, manufacture and installation of measuring and control equipments for the advanced thermal prototype reactor 'Fugen'

    International Nuclear Information System (INIS)

    Hirota, Shigeo; Kawabata, Yoshinori

    1979-01-01

    The advanced thermal prototype reactor ''Fugen'' attained the criticality on March 20, 1978, and 100% output operation on November 13, 1978. On March 20, 1979, it passed the final inspection, and since then, it has continued the smooth operation up to now. The measuring and control equipments are provided for grasping the operational conditions of the plant and operating it safely and efficiently. At the time of designing, manufacturing and installing the measuring and control equipments for Fugen, it was required to clarify the requirements of the plant design, to secure the sufficient functions, and to improve the operational process, maintainability and the reliability and accuracy of the equipments. Many design guidelines and criteria were decided in order to coordinate the conditions among five manufacturers and give the unified state as one plant. The outline of the instrumentations for neutrons, radiation monitoring and process data, the control systems for reactivity, reactor output, pressure and water supply, the safety protection system, and the process computer are described. Finally, the installations and tests of the measuring and control equipments are explained. The aseismatic capability of the equipments was confirmed. (Kako, I.)

  2. Design quality assurance for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-07-01

    This Standard contains the requirements for the quality assurance program applicable to the design phase of a nuclear plant, and is applicable to the design of safety-related equipment, systems, and structures, as identified by the owner. 1 fig.

  3. Design quality assurance for nuclear power plants

    International Nuclear Information System (INIS)

    1986-07-01

    This Standard contains the requirements for the quality assurance program applicable to the design phase of a nuclear plant, and is applicable to the design of safety-related equipment, systems, and structures, as identified by the owner. 1 fig

  4. New technologies for lower-cost design and construction of new nuclear power plants. Annex 20

    International Nuclear Information System (INIS)

    Ritterbusch, S.E.; Bryan, R.E.; Harmon, D.L.

    2002-01-01

    Electric Power Research Institute studies indicate that in order to be competitive with gas-fired electric power plant capital costs, new nuclear plant capital cost in the USA must be decreased by at least 35% to 40% relative to costs of some Advanced Light Water Reactors designed in the early 1990s. To address this need, the U. S. Department of Energy is sponsoring three separate projects under its Nuclear Energy Research Initiative. These projects are the Risk-Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants, the Smart Equipment Nuclear Power Plant Program, and the Design, Procure, Construct, Install and Test Program. The goal of the Design-Construction program is reduction of the complete nuclear plant design-procure-construct-install-test cycle schedule and cost. A 3D plant model was combined with a construction schedule to produce a 4D visualization of plant construction, which was then used to analyze plant construction methods. Insights include the need for concurrent engineering, a plant-wide central database, and use of the World-Wide WEB. The goal of Smart Equipment program is to design, develop, and evaluate the methods for implementing smart equipment and predictive maintenance technology. 'Smart' equipment means components and systems that are instrumented and monitored to detect incipient failures in order to improve their reliability. The resulting smart equipment methods will be combined with a more risk-informed regulatory approach to allow plant designers to (1) simplify designs without compromising overall reliability and safety and (2) maintain more reliable plants at lower cost. Initial results show that rotating equipment such as charging pumps would benefit most from smart instrumentation and that the technique of Bayesian Belief Networks would be most appropriate for providing input to a health monitoring system. (author)

  5. Application of Equipment Monitoring Technology in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kang, H. T.; Lee, J. K.; Lee, K. D.; Jo, S. H.

    2012-01-01

    The major goal of nuclear power industries during the past 10 years is to increase reliability and utility capacity factor. As the capacitor factor, however, crept upward. it became harder to attain next percentage of improvement. Therefore other innovative technologies are required. By the technologies applied to the fossil power plants, equipment health monitoring was performed on equipment to maintain it in operable condition and contributed on improving their reliability a lot. But the equipment monitoring may be limited to the observation of current system states in nuclear power plant. Monitoring of current system states is being augmented with prediction of future operating states and predictive diagnosis of future failure states. Such predictive diagnosis is motivated by the need for nuclear power plants to optimize equipment performance and reduce costs and unscheduled downtime. This paper reviews the application of techniques that focus on improving reliability in nuclear power plant by monitoring and predicting equipment health and suggests how possible to support on-line monitoring

  6. Plutonium finishing plant safety systems and equipment list

    International Nuclear Information System (INIS)

    Bergquist, G.G.

    1995-01-01

    The Safety Equipment List (SEL) supports Analysis Report (FSAR), WHC-SD-CP-SAR-021 and the Plutonium Finishing Plant Operational Safety Requirements (OSRs), WHC-SD-CP-OSR-010. The SEL is a breakdown and classification of all Safety Class 1, 2, and 3 equipment, components, or system at the Plutonium Finishing Plant complex

  7. Studies for aseismatic design of atomic power equipment

    International Nuclear Information System (INIS)

    Uchiyama, Yuichi; Takayanagi, Masaaki; Moriyama, Takeo; Mizuno, Sadao

    1976-01-01

    The social requirements for the safety of nuclear power stations are very severe, and especially in Japan where earthquakes occur frequently, the safety against earthquakes is regarded as an important matter. The numerous machinery and equipments composing nuclear power plants have largely different roles in the safety, accordingly it is important to maintain effectively the safety as a whole. The design is carried out by classifying buildings, machinery and equipments, pipings and electric appliances according to the importance, and so that the aseismatic property corresponding to the importance is given to each. In most cases, the aseismatic design is carried out with computing codes, but it is necessary to forward the design by proving the propriety of analysis models and calculated results. Efforts are exerted in Hitachi Ltd. to improve the accuracy of the aseismatic analysis by carrying out basic experiment, the demonstration test in actual plants and the study on analytical method as many as possible. The measurement of the vibration of actual pipings in order to confirm the supporting conditions, the comparison of multi-input analysis and SRSS method for piping analysis, and the vibration tests of a model containment vessel and a fuel assembly were carried out, and the results are reported in this paper. It is important to improve the accuracy of earthquake response analysis further. (Kako, I.)

  8. Design of a uranium recovery pilot plant

    International Nuclear Information System (INIS)

    1984-01-01

    The engineering design of a pilot plant of uranium recover, is presented. The diagrams and specifications of the equipments such as pipelines, pumps, values tanks, filters, engines, etc... as well as metallic structure and architetonic design is also presented. (author)

  9. Prototype equipment status monitor for plant operational configuration management

    International Nuclear Information System (INIS)

    DeVerno, M.; Trask, D.; Groom, S.

    1998-01-01

    CANDU plants, such as the Point Lepreau GS, have tens of thousands of operable devices. The status of each operable device must be immediately available to plan and execute future changes to the plant. Historically, changes to the plant's operational configuration have been controlled using manual and administrative methods where the status of each operable device is maintained on operational flowsheets located in the work control area of the main control room. The operational flowsheets are used to plan and develop Operating Orders (OOs) or Order-to-Operate (OTOs) and the control centre work processes are used to manage their execution. After performing each OO procedure, the operational flowsheets are updated to reflect the new plant configuration. This process can be very time consuming, and due to the manual processes, can lead to the potential for time lags and errors in the recording of the current plant configuration. Through a cooperative research and development program, Canadian CANDU utilities and Atomic Energy of Canada Limited, the design organization, have applied modern information technologies to develop a prototype Equipment Status Monitor (ESM) to address processes and information flow for efficient operational configuration management. The ESM integrates electronic operational flowsheets, equipment databases, engineering and work management systems, and computerized procedures to assess, plan, execute, track, and record changes to the plant's operational configuration. This directly leads to improved change control, more timely and accurate plant status information, fewer errors, and better decision making regarding future changes. These improvements to managing the plant's operational configuration are essential to increasing plant safety, achieving a high plant availability, and maintaining high capability and capacity factors. (author)

  10. Field vibration test of principal equipment of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Shiraki, Kazuhiro; Fujita, Katsuhisa; Kajimura, Motohiko; Ikegami, Yasuhiko; Hanzawa, Katsumi; Sakai, Yoshiyuki; Kokubo, Eiji; Igarashi, Shigeru

    1984-09-01

    Japan is one of the most earthquake-stricken countries in the world, and demands for aseismic design have become severer recently. In a nuclear power plant in particular, consisting of a reactor vessel and other facilities dealing with a radioactive substance in some form or other, it is essential from the standpoint of safety to eliminate any possibility of radioactive hazards for the local public, and the employees at the plant as well, if these facilities are struck by an earthquake. This paper is related to the reactor vessel, reactor primary cooling equipment and piping system and important general piping as examples of important facilities of a nuclear power plant, and discusses vibration tests of an actual plant in the field from the standpoint of enhancing the aseismic safety of the Mitsubishi PWR nuclear power plant. Especially concerning vibration test technology, the effects in the evaluation of aseismic safety and its limits are studied to prove how it contributes to the enhancement of the reliability of aseismic design of nuclear power plants.

  11. Challenges associated with the design of underground grinding plant at McArthur River project

    International Nuclear Information System (INIS)

    Jamrozek, J.S.

    2000-01-01

    McArthur River is an unique high grade uranium underground mine. Ore grinding and thickening are part of the underground operation. The grinding circuit is designed to operate in conditions different from conventional plant environments. Design of the grinding plant was a collective effort of a multi-disciplinary engineering team closely cooperating with project operating personnel. The equipment had to be selected to reflect widely varying ore properties. A user-friendly plant layout provides access to equipment inspections, services, and the delivery of necessary components. The size of the grinding chamber was limited in order to keep the rock stress levels within allowable values. All underground equipment brought to the construction site was restricted in size and weight. Plant construction faced limited storage space underground, tight erection sequencing, and schedule. Plant ventilation is a critical design feature. It efficiently removes radioactive dust from work areas, eliminates stagnant air pockets, and separates clean air from contaminated air areas. Radiation shielding on the equipment is designed to correspond with operational and maintenance functions. Plant operation is remotely controlled and requires little attendance. Video cameras are used on critical equipment and in controlled access areas. An extensive program of preventive and predictive maintenance allows highly reliable plant operation. (author)

  12. Electrical and control equipment in nuclear power plants. Problems when replacing aging equipment

    International Nuclear Information System (INIS)

    Nordling, Anna; Haakansson, Goeran

    2012-01-01

    Interoperability between different technical systems is more complicated when old and new technology meet, such as between analog and digital technology. New electrical and I and C equipment is selected with consideration to simplify and improve the compatibility and interoperability. The original construction of nuclear power plants with electricity and I and C equipment had more natural interfaces. Generally experienced guidance, to the management of interoperability and interfaces, feels insufficient. Skills transfer programs are identified as a major need, as more and more important personnel are retiring and important information is lost with them. Lack of appropriate skills directly affects the ability to produce accurate and complete requirements specification. Failure modes of newer electrical and I and C equipment are perceived as more complex than the older equipment. When choosing equipment, attempts are made to minimize unnecessary features, to reduce the number of potential failure modes. There is a lack of consistent understanding of the meaning of robustness in electrical technology and I and C technology, in the nuclear plant engineering departments. The overall picture is that the robustness has worsened since the facilities were built. The Swedish nuclear power plants have an internal organizational structure with separated client and support organization. This splits the nuclear organization into two distinct parts which threaten to separate the two entities focus. Engineering departments at the Swedish nuclear power plants express a need for increased expertise in the client organization (blocks). Competence requested is for example, system knowledge to facilitate and enhance the quality of the initial analysis performed in the blocks. Suppliers receive more recently larger turnkey projects, both to minimize costs but also to minimize the interfaces and co-function problems. This, however, heightens demands for knowledge transfer between

  13. Priorities in the design of chemical shops at coke plants

    Energy Technology Data Exchange (ETDEWEB)

    V.I. Rudyka; Y.E. Zingerman; V.V. Grabko; L.A. Kazak [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Recent trends in the design of chemical equipment at coke plants are described, through the lens of experience at Giprokoks. The main priorities were to improve the removal of impurities from coke oven gas; to improve equipment design on the basis of new materials; to reduce reagent consumption; to reduce the materials and energy consumed in the construction of new equipment; and to minimize impacts on the environment and worker health. Some technological equipment is briefly characterized.

  14. Survey and analysis on environmental and electromagnetic effect on instrumentation and control equipment of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Koo; Lee, Dong Young; Cha, Kyung Ho

    2001-03-01

    As the instrumentation and control (I and C) equipment suppliers tend to provide digital components rather than conventional analog type components for instrumentation and control systems of nuclear power plants(NPPs), it is unavoidable to adopt digital equipment for safety I and C systems as well as non-safety systems. However, the full introduction of digital equipment for I and C systems of nuclear power plants raises several concerns which have not been considered in conventional analog I and C equipment. The two major examples of the issues of digital systems are environmental/electromagnetic compatibility (EMC) and software reliability. This report presents the survey and research results on environmental and electromagnetic effect on I and C equipment of nuclear power plants to give a guideline for aging management and design process. Electromagnetic site surveys were conducted to be used as a part of technical basis to demonstrate that I and C systems are compatible with the ambient electromagnetic noise in Korean nuclear power plants.

  15. A case study in the use of cancelled plant equipment in nuclear plant modifications

    International Nuclear Information System (INIS)

    Anders, D.A.

    1986-01-01

    The nuclear industry has suffered several blows in the recent past in the form of generating plant cancellations. Upon cancellation, the utility must find a way of minimizing its loss on investment already incurred - consisting of purchased property, partially completed plant, and unused equipment. In many cases, the utility has no practical choice but to dispose of its unused equipment at extremely low prices. While this certainly represents an unfortunate situation for the seller, it does present a significant opportunity for other utilities to procure equipment to use in modifications to their own plants. This paper presents a case study in the use of such cancelled plant equipment in modifications at two nuclear generating facilities. In particular, modifications to replace the refueling platforms at each of the two units at Philadelphia Electric Company's (PECo) Peach Bottom Atomic Power Station and Installation of additional Standby Liquid Control equipment at Limerick Generating Station will be examined. The purpose of the paper is to show the applicability of this information to other utilities

  16. Improvement of Productivity in TIG Welding Plant by Equipment Design in Orbit

    Science.gov (United States)

    Gnanavel, C.; Saravanan, R.; Chandrasekaran, M.; Jayakanth, J. J.

    2017-03-01

    Measurements and improvements are very indispensable task at all levels of management. Here some samples are, at operator level: Measuring operating parameters to ensure OEE (Overall Equipment Effectiveness) and measuring Q components performance to ensure quality, at supervisory level: measuring operator’s performance to ensure labour utility at managerial level: production and productivity measurements and at top level capital and capacity utilization. An often accepted statement is “Improvement is impossible without measurement”. Measurements often referred as observation. The case study was conducted at Government Boiler factory in India. The scientific approach followed for indentifying non value added activities. Personalised new equipment designed and installed to achieve productivity improvement of 85% for a day. The new equipment can serve 360o around its axis hence it simplified loading and unloading procedures as well as reduce their times and ensured effective space and time.

  17. Improved servicing equipment for steam generators

    International Nuclear Information System (INIS)

    Hedtke, James C.

    1998-01-01

    To help keep personnel exposure as low as reasonably achievable and reduce critical path outage time, most nuclear plants of PWR design in the USA are now using improved equipment to service their steam generators (SGs) during outages. Because of the success of this equipment in the USA, two Belgian plants and one English plant have purchased this equipment, and other nuclear plants in Europe are also considering procurement. The improved SG servicing equipment discussed in this paper discusses consists of nozzle dams, segmented multi-stud tensioner, primary manway cover handling tool set, shield door and fastener cleaner. This equipment is specifically designed for the individual plant application and can also be specified for replacement SG projects. All of the equipment can be used without modification of the existing SGs. (author)

  18. Equipment design guidance document for flammable gas waste storage tank new equipment

    International Nuclear Information System (INIS)

    Smet, D.B.

    1996-01-01

    This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas

  19. Equipment specifications for an electrochemical fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hemphill, Kevin P.

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  20. Regulatory analysis for resolution of Unresolved Safety Issue A-46, seismic qualification of equipment in operating plants

    International Nuclear Information System (INIS)

    Chang, T.Y.; Anderson, N.R.

    1987-02-01

    The margin of safety provided in existing nuclear power plant equipment to resist seismically induced loads and perform required safety functions may vary considerably, because of significant changes in design criteria and methods for the seismic qualification of equipment over the years. Therefore, the seismic qualification of equipment in operating plants must be reassessed to determine whether requalification is necessary. The objective of technical studies performed under Task Action Plan A-46 was to establish an explicit set of guidelines and acceptance criteria to judge the adequacy of equipment under seismic loading at all operating plants, in lieu of requiring these plants to meet the criteria that are applied to new plants. This report presents the regulatory analysis for Unresolved Safety Issue (USI) A-46. It includes: Statement of the Problem; the Objective of USI A-46; a Summary of A-46 Tasks; a Proposed Implementation Procedure; a Value-Impact Analysis; Application of the Backfit Rule; 10 CFR 50.109; Implementation; and Operating Plants To Be Reviewed to USI A-46 Requirements

  1. Virtual environments for nuclear power plant design

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W.

    1996-01-01

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP)

  2. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [570 MWe plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The design, arrangement, thermodynamics, and economics of a 592 MW(e) (nominal gross) electric power generating plant equipped with a Babcock and Wilcox Company (B and W) atmospheric fluidized bed (AFB) boiler are described. Information is included on capital and operating costs, process systems, electrical systems, control and instrumentation, and environmental systems. This document represents a portion of an overall report describing the conceptual designs of two atmospheric fluidized bed boilers and balance of plants for the generation of electric power and the analysis and comparison of these conceptual designs to a conventional pulverized coal-fired electric power generation plant equipped with a wet limestone flue gas desulfurization system.

  3. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [570 MWe plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The design, arrangement, thermodynamics, and economics of a 578 MW(e) (nominal gross) electric power generating plant equipped with a Foster Wheeler Energy Corporation (FWEC) atmospheric fluidized bed (AFB) boiler are described. Information is included on capital and operating costs, process systems, electrical systems, control and instrumentation, and environmental systems. This document represents a portion of an overall report describing the conceptual designs of two atmospheric fluidized bed boilers and balance of plants for the generation of electric power and the analysis and comparison of these conceptual designs to a conventional pulverized coal-fired electric power generation plant equipped with a wet limestone flue gas desulfurization system.

  4. Cost determination of the electro-mechanical equipment of a small hydro-power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ogayar, B.; Vidal, P.G. [Grupo de Investigacion IDEA, Escuela Politecnica Superior, University of Jaen, Campus de Las Lagunillas, s/n. 23071-Jaen (Spain)

    2009-01-15

    One of the most important elements on the recovery of a small hydro-power plant is the electro-mechanical equipment (turbine-alternator), since the cost of the equipment means a high percentage of the total budget of the plant. The present paper intends to develop a series of equations which determine its cost from basic parameters such as power and net head. These calculations are focused at a level of previous study, so it will be necessary to carry out the engineering project and request a budget to companies specialized on the construction of electro-mechanical equipment to know its cost more accurately. Although there is a great diversity in the typology of turbines and alternators, data from manufacturers which cover all the considered range have been used. The above equations have been developed for the most common of turbines: Pelton, Francis, Kaplan and semiKaplan for a power range below 2 MW. The obtained equations have been validated with data from real installations which have been subject to analysis by engineering companies working on the assembly and design of small plants. (author)

  5. Implementation of the project of equipment reliability in the nuclear power plant of Laguna Verde

    International Nuclear Information System (INIS)

    Rios O, J. E.; Martinez L, A. G.

    2008-01-01

    A equipment is reliable if it fulfills the function for which was designed and when it is required. To implement a project of reliability in a nuclear power plant this associate to a process of continuous analysis of the operation, of the conditions and faults of the equipment. The analysis of the operation of a system, of the equipment of the same faults and the parts that integrate to equipment take to identify the potential causes of faults. The predictive analysis on components and equipment allow to rectify and to establish guides to optimize the maintenance and to guarantee the reliability and function of the same ones. The reliability in the equipment is without place to doubts a wide project that embraces from the more small component of the equipment going by the proof of the parts of reserve, the operation conditions until the operative techniques of analysis. Without place of doubt for a nuclear power plant the taking of decisions based on the reliability of their systems and equipment will be the appropriate for to assure the operation and reliability of the same one. In this work would appear the project of reliability its processes, criteria, indicators action of improvement and the interaction of the different disciplines from the Nuclear Power Plant of Laguna Verde like a fundamental point for it put in operation. (Author)

  6. Overview of Mobile Equipment Used in Case of Beyond Design Basis Accident at NPP Krsko

    International Nuclear Information System (INIS)

    Lukacevic, H.; Kopinc, D.; Ivanjko, M.

    2016-01-01

    Terrorist attack in USA in the September 11, 2001 and accident at the Fukushima - Daiichi Nuclear Power Station in the March 11, 2011 highlight the importance of mitigating strategies in responding to Beyond Design Basis Accident (BDBA), while ensuring cooling of reactor core, containment and spent fuel pool. Nuclear Power Plant Krsko (NEK) has acquired additional mobile equipment and made necessary modifications on existing systems for the connection of this equipment (fast couplers). Usage of mobile equipment is not only limited to design basis accident (DBA), but, also to prevent and mitigate the consequences in case of BDBA, when other plant systems are not available. NEK also decided to take steps for upgrade of safety measures and prepared Safety Upgrade Program (SUP), which is consistent with the nuclear industry response to the Fukushima accident and is implementing main projects and modifications related to SUP. NEK mobile equipment is not required to operate under normal reactor plant operation except for periodic surveillance testing and is incorporated into the normal training process. Equipment is dislocated from the reactor building and most of the equipment is located in the new building, able to withstand extreme natural events, including earthquakes and tornadoes. The usage of all mobile equipment is prescribed as an additional option in NEK operating procedures in following cases and enables following options: filling various tanks, filling the steam generators, filling the containment, additional compressed air source, spent fuel pool refilling and spraying, alternative power supply. This document provides an overview of NEK mobile equipment, which consists of various mobile fire protection pumps, air compressors, protective equipment, fire trucks, diesel generators. Sufficient fuel supply for the equipment is provided on site for a minimum three days of operation. (author).

  7. 47 CFR 32.6510 - Other property, plant and equipment expenses.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Other property, plant and equipment expenses. 32.6510 Section 32.6510 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... Accounts § 32.6510 Other property, plant and equipment expenses. Class B telephone companies shall use this...

  8. The process control and management on equipment qualification of nuclear power plant

    International Nuclear Information System (INIS)

    Liu Dong; Wang Hongyin; Zhang Yong

    2013-01-01

    The equipment qualification (EQ) to the safety class equipment is an important safety measure for the nuclear power plants (NPP), and also reflects the nuclear safety culture. Along with the continuous constructions of NPP in China, it has become an important issue for NPP engineering company and equipment suppliers how to effectively establish standard EQ process control and management, and provide sufficient technical arrangements to maintain this EQ management system. This paper summarizes three process of EQ including Design Input, EQ Establishment and EQ Maintenance, proposes the measures and key points for EQ process control and management in phase of NPP construction, and introduces the documents management during the whole process of EQ. (authors)

  9. Plant design and beam utilization

    International Nuclear Information System (INIS)

    Svendsen, E.B.

    1983-01-01

    Plant design and beam utilization are two things closely tied together: without a proper plant design, one can never get good beam utilization. When a company decides to build an irradiation facility, there are some major decisions to be made right in the beginning. These decisions can be most important for the long-term success or failure of the irradiation facility, because the company normally will have to live with these decisions during the whole life-time of the irradiation equipment. To start with the decision has to be made whether to select a cobalt-60 irradiation plant or an accelerator irradiation plant. This decision can only be reached after a careful study of the products and the 'weight' and the material of the products the company wants to irradiate. As an old accelerator-man, I tend to personally favor accelerators, although I am very impressed by the newer cobalt-60 pallet irradiation plants from A.E.C.L. I believe that they have a great future in the emerging field of food irradiation. As I have primarily been involved with accelerators during the last 14 years, this paper is only dealing with different design approaches and utilizations of accelerator-plants. (author)

  10. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    Bradshaw, F.W.

    1996-01-01

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  11. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  12. New designs of medium power WWER reactor plants

    International Nuclear Information System (INIS)

    Ryzhov, S.B.; Mokhov, V.A.; Nikitenko, M.P.; Chetverikov, A.E.; Veselov, D.O.; Shchekin, I.G.; Petrov, V.V.

    2010-01-01

    The task of constructing NPPs as the objects of regional power industry is included into the Federal Target Program on nuclear power technologies of new generation for the period till 2020. Such NPPs are considered as perspective sources of energy for solution of the problems concerning provision of electric energy, household and industrial heat to the regions with limited capabilities of the power grid. OKB 'GIDROPRESS' present the conceptual study of RP design for the Unit of 600 MW (el.) power, taking into account their long-term experience in the field of development and operation of WWER reactor plants. Practical implementation of WWER-600 and WWER-300 RP designs seems to be feasible: practice in manufacturing the main equipment is available; cooperation of design, scientific organizations and manufacturers of equipment; is established; basic design solutions for equipment are of reference character

  13. Plant equipment services with laser metrology

    International Nuclear Information System (INIS)

    Hayes, J.H.; Kreitman, P.J.

    1995-01-01

    A new industrial metrology process is now being applied to support PWR Nuclear Plant Steam Generator Replacement Projects. The method uses laser tracking interferometry to perform as built surveys of existing and replacement plant equipment. This method provides precision data with a minimum of setup when compared to alternative methods available. In addition there is no post processing required to ascertain validity. The data is obtained quickly, processed in real time and displayed during the survey in the desired coordinate system. These capabilities make this method of industrial measure ideal for various data acquisition needs throughout the power industry, from internal/external equipment templating to area mapping. Laser tracking interferometry is an improvement on the present use of optical instruments and surveying technique. In order to describe the laser tracking interferometry measurement process, previous methods of templating and surveying are first reviewed

  14. Advanced Neutron Sources: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW th , heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS

  15. Design by analysis of composite pressure equipment

    International Nuclear Information System (INIS)

    Durand, S.; Mallard, H.

    2004-01-01

    Design by analysis has been particularly pointed out by the european pressure equipment directive. Advanced mechanical analysis like finite element method are used instead of classical design by formulas or graphs. Structural behaviour can be understood by the designer. Design by analysis of metallic pressure equipments is widely used. Material behaviour or limits analysis is based on sophisticated approach (elasto-plastic analysis,..). Design by analysis of composite pressure equipments is not systematically used for industrial products. The difficulty comes from the number of information to handle. The laws of mechanics are the same for composite materials than for steel. The authors want to show that in design by analysis, the composite material approach is only more complete than the metallic approach. Mechanics is more general but not more complicated. A multi-material approach is a natural evolution of design by analysis of composite equipments. The presentation is illustrated by several industrial cases - composite vessel: analogy with metallic calculations; - composite pipes and fittings; - welding and bounding of thermoplastic equipments. (authors)

  16. Seismic qualification of equipment in operating nuclear power plants: Unresolved Safety Issue A-46

    International Nuclear Information System (INIS)

    Chang, T.Y.

    1987-02-01

    The margin of safety provided in existing nuclear power plant equipment to resist seismically induced loads and perform their intended safety functions may vary considerably, because of significant changes in design criteria and methods for the seismic qualification of equipment over the years. Therefore, the seismic qualification of equipment in operating plants must be reassessed to determine whether requalification is necessary. The objective of technical studies performed under the Task Action Plan A-46 was to establish an explicit set of guidelines and acceptance criteria to judge the adequacy of equipment under seismic loading at all operating plants, in lieu of requiring qualification to the current criteria that are applied to new plants. This report summarizes the work accomplished on USI A-46. In addition, the collection and review of seismic experience data and existing seismic test data are presented. Staff assessment of work accomplished under USI A-46 leads to the conclusion that the use of seismic experience data provides the most reasonable alternative to current qualification criteria. Consideration of seismic qualification by use of experience data was a specific task in USI A-46. Several other A-46 tasks serve to support the use of an experienced data base. The principal technical finding of USI A-46 is that seismic experience data, supplemented by existing seismic test data, applied in accordance with the guidelines developed, can be used to verify the seismic adequacy of mechanical and electrical equipment in operating nuclear plants. Explicit seismic qualification should be required only if seismic experience data or existing test data on similar components cannot be shown to apply

  17. IAS 16 Property, Plant and Equipment - A Closer Look

    OpenAIRE

    Muthupandian, K S

    2009-01-01

    The International Accounting Standards Committee issued the the International Accounting Standard 16 Property, Plant and Equipment. The objective of IAS 16 is to prescribe the accounting treatment for Property, Plant and Equipment (PPE) so that users of the financial statements can discern information about an entity's investment in its PPE and the changes in such investment. The principal issues in accounting for PPE are the recognition of the assets, the determination of their carrying amou...

  18. Chemical process and plant design bibliography 1959-1989

    International Nuclear Information System (INIS)

    Ray, M.S.

    1991-01-01

    This book is concerned specifically with chemical process in formation and plant equipment design data. It is a source for chemical engineers, students and academics involved in process and design evaluation. Over 500 chemical categories are included, from Acetaldehyde to zirconium Dioxide, with cross-referencing within the book to appropriate associated chemicals

  19. Plant designer's view of the operator's role in nuclear plant safety

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Cross, M.T.; Porter, N.J.

    1981-01-01

    The nuclear plant operator's role supports the design assumptions and equipment with four functional tasks. He must set up th plant for predictable response to disturbances, operate the plant so as to minimize the likelihood and severity of event initiators, assist in accomplishing the safety functions, and feed back operating experiences to reinforce or redefine the safety analyses' assumptions. The latter role enhances the operator effectiveness in the former three roles. The Safety Level Concept offers a different perspective that enables the operator to view his roles in nuclear plant safety. This paper outlines the operator's role in nuclear safety and classifies his tasks using the Safety Level Concept

  20. On the technical superiority of domestic power plant equipment and its development

    International Nuclear Information System (INIS)

    Zhao Zhiyi

    1993-01-01

    Under the Presumption of affirmed superiority of domestic power plant equipment, some existing deficiencies are pointed out. The scientific and technical development of domestic power equipment can be impelled through catching up with advanced technologies. The necessity of optimal matching of plant equipment from the engineering point of view is emphasized by the authors in association with a prospective outlook of key power equipment and development suggestions

  1. Response of equipment in nuclear power plants to airplane crash

    International Nuclear Information System (INIS)

    Schalk, M.; Woelfel, H.

    1976-01-01

    Nuclear power plants in Germany are to be designed against airplane crash. Two problems arise: first, the local problem of penetration as well as local destruction of the building and secondly the airplane induced vibrations of the whole building which cause loadings for secondary systems (equipment). This paper deals especially with the second problem. Floor response spectra due to airplane crash are presented for two different power plant buildings. The influence of various parameters (time history of excitation, direction and location of impact, mathematical model, soil, damping, etc.) are discussed. A comparison with the results of earthquake loading is given. Suggestions are made for developing suitable floor design spectra and using them to analyse multidegree-of-freedom systems. However, the paper gives only a partial answer to the questions arising because of some important restrictions which had to be made. Studies concerning these restrictions are still being conducted and will be presented in a separate paper. (Auth.)

  2. Manual on quality assurance for installation and commissioning of instrumentation, control and electrical equipment in nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The present Manual on Quality Assurance (QA) for Installation and Commissioning of Instrumentation, Control and Electrical (ICE) Equipment of Nuclear Power Plants contains supporting material and illustrative examples for implementing basic requirements of the quality assurance programme in procurement, receiving, installation and commissioning of this equipment. The Manual on Quality Assurance for Installation and Commissioning of ICE Equipment is designed to supplement and be consistent with the Guidebook as well as with the IAEA Code and Safety Guides on Quality Assurance. It is intended for the use of managerial staff and QA personnel of nuclear power plant owners or the organizations respectively responsible for the legal, technical, administrative and financial aspects of a nuclear power plant. The information provided in the Manual will also be useful to the inspection staff of the regulatory organization in the planning and performance of regulatory inspections at nuclear power plants

  3. 48 CFR 945.505-11 - Records of transportation and installation costs of plant equipment.

    Science.gov (United States)

    2010-10-01

    ... and installation costs of plant equipment. 945.505-11 Section 945.505-11 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACT MANAGEMENT GOVERNMENT PROPERTY Management of Government... plant equipment. The requirements of FAR 45.505-11 apply to plant equipment having a unit cost of $1,000...

  4. Fiscal 1981 Sunshine Project research report. Development of hydrothermal power plant. Development of binary cycle power plant. Conceptual plant design; 1981 nendo nessui riyo hatsuden plant no kaihatsu / binary cycle hatsuden plant no kaihatsu seika hokokusho . Plant gainen sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Conceptual design was made on a 10MW class binary cycle power plant for a demonstration plant superior in reliability and profitability, under most realistic current geothermal field conditions. In the design, study was made on heat balance, main pipe system, equipment allocation, and electric system for a plant system configuration, and study was also made on preheater, evaporator, condenser, turbine and others for plant component equipment. Further study was made on optimization of mist cooling condenser, instrumentation, control, utility, and environmental measures. The following basic data were obtained through the conceptual design: plant inlet hot water temperature: 130 degrees C, plant outlet hot water temperature: 70 degrees C, hot water flow rate: 1,415t/h, working fluid: R-114, R-114 pressure in evaporator: 11.98kg/cm{sup 2} abs, R-114 evaporation temperature: 91.1 degrees C, R-114 condensation temperature: 31.0 degrees C, R- 114 flow rate: 2,265t/h, site area: 106.5m x 102.4m, building area: 48.7m x 16.8m, and building height: 13.0m. (NEDO)

  5. An AI-based layout design system for nuclear power plants

    International Nuclear Information System (INIS)

    Fujita, Kikuo; Akagi, Shinsuke; Nakatogawa, Tetsundo; Tanaka, Kazuo; Takeuchi, Makoto.

    1991-01-01

    An AI-based layout design system for nuclear power plants has been developed. The design of the layout of nuclear power plants is a time-consuming task requiring expertise, in which a lot of machinery and equipment must be arranged in a plant building considering various kinds of design constraints, i.e. spatial, functional, economical etc. Computer aided layout design systems have been widely expected and the application of AI technology is expected as a promising approach for the synthesis phase of this task. In this paper, we present an approach to the layout design of nuclear power plants based on a constraint-directed search; one of the AI techniques. In addition, we show how it was implemented with an object-oriented programming technique and give an example of its application. (author)

  6. Over facility design description for the CPDF [Centrifuge Plant Demonstration Facility]: SDD-1 [System Design Description

    International Nuclear Information System (INIS)

    1987-04-01

    The Centrifuge Plant Demonstration Facility (CPDF) is an essential part of the continuing development of first-production-plant centrifuge technology that will integrate centrifuge machines into a process and enrichment plant design. The CPDF will provide facilities for testing and continued development of a unit cascade in direct support of the commercial Gas Centrifuge Enrichment Plant (GCEP). The basic cascade-oriented equipment, feed, withdrawal, drive system, process piping, utility piping, and other auxiliary and support equipment will be tested in an operating configuration that represents, to the extent possible, GCEP arrangement and operating conditions. The objective will be to demonstrate procedures for production cascade installation, start-up, operation, and maintenance, and to provide proof of overall cascade and associated system design, construction, and operating and maintenance concepts. To the maximum possible extent, all equipment for the CPDF will be procured from commercial sources. Centrifuges will be procured from industry using government-supplied specifications and drawings. The existing Component Preparation Laboratory (CPL) located near the CPDF site will be used for centrifuge component receiving, inspection, assembly, and qualification testing of pre-production test machines. Later in the test program, samples of production machines planned for use in the GCEP will be tested in the CPDF

  7. Monitoring equipment environment during nuclear plant operation at Salem and Hope Creek generating stations

    International Nuclear Information System (INIS)

    Blum, A.; Smith, R.J.

    1991-01-01

    Monitoring of environmental parameters has become a significant issue for operating nuclear power plants. While the long-term benefits of plant life extension programs are being pursued with comprehensive environmental monitoring programs, the potential effect of local hot spots at various plant locations needs to be evaluated for its effect on equipment degradation and shortening of equipment qualified life. A significant benefit can be experienced from temperature monitoring when a margin exists between the design versus actual operating temperature. This margin can be translated into longer equipment qualified life and significant reduction in maintenance activities. At PSE and G, the immediate need for monitoring environmental parameters is being accomplished via the use of a Logic Beach Bitlogger. The Bitlogger is a portable data loggings system consisting of a system base, input modules and a communication software package. Thermocouples are installed on selected electrical equipment and cables are run from the thermocouples to the input module of the Bitlogger. Temperature readings are taken at selected intervals, stored in memory, and downloaded periodically to a PC software program, i.e., Lotus. The data is formatted into tabular or graphical documents. Because of their versatility, Bitloggers are being used differently at the authors Nuclear facility. At the Salem Station (2 Units-4 loop Westinghouse PWR), a battery powered, fully portable, calibrated Bitlogger is located in an accessible area inside Containment where it monitors the temperature of various electrical equipment within the Pressurizer Enclosure. It is planned that close monitoring of the local hot spot temperatures in this area will allow them to adjust and reconcile the environmental qualification of the equipment

  8. Design criteria for the new waste calcining facility at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Anderson, F.H.; Bingham, G.E.; Buckham, J.A.; Dickey, B.R.; Slansky, C.M.; Wheeler, B.R.

    1976-01-01

    The New Waste Calcining Facility (NWCF) at the Idaho Chemical Processing Plant (ICPP) is being built to replace the existing fluidized-bed, high-level waste calcining facility (WCF). Performance of the WCF is reviewed, equipment failures in WCF operation are examined, and pilot-plant studies on calciner improvements are given in relation to NWCF design. Design features of the NWCF are given with emphasis on process and equipment improvements. A major feature of the NWCF is the use of remote maintenance facilities for equipment with high maintenance requirements, thereby reducing personnel exposures during maintenance and reducing downtime resulting from plant decontamination. The NWCF will have a design net processing rate of 11.36 m 3 of high-level waste per day, and will incorporate in-bed combustion of kerosene for heating the fluidized bed calciner. The off-gas cleaning system will be similar to that for the WCF

  9. Control room design and human engineering in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1982-01-01

    The concept for modern plant control rooms is primary influenced by: The automation of protection, binary control and closed loop control functions; organization employing functional areas; computer based information processing; human engineered design. Automation reduces the human work load. Employment of functional areas permits optimization of operational sequences. Computer based information processing makes it possible to output information in accordance with operating requirements. Design based on human engineering principles assures the quality of the interaction between the operator and the equipment. The degree to which these conceptional features play a role in design of power plant control rooms depends on the unit rating, the mode of operation and on the requirements respecting safety and availability of the plant. (orig.)

  10. Design of a chemical batch plant : a study of dedicated parallel lines with intermediate storage and the plant performance

    OpenAIRE

    Verbiest, Floor; Cornelissens, Trijntje; Springael, Johan

    2016-01-01

    Abstract: Production plants worldwide face huge challenges in satisfying high service levels and outperforming competition. These challenges require appropriate strategic decisions on plant design and production strategies. In this paper, we focus on multiproduct chemical batch plants, which are typically equipped with multiple production lines and intermediate storage tanks. First we extend the existing MI(N) LP design models with the concept of parallel production lines, and optimise the as...

  11. Quality of care and investment in property, plant, and equipment in hospitals.

    OpenAIRE

    Levitt, S W

    1994-01-01

    OBJECTIVE. This study explores the relationship between quality of care and investment in property, plant, and equipment (PPE) in hospitals. DATA SOURCES. Hospitals' investment in PPE was derived from audited financial statements for the fiscal years 1984-1989. Peer Review Organization (PRO) Generic Quality Screen (GQS) reviews and confirmed failures between April 1989 and September 1990 were obtained from the Massachusetts PRO. STUDY DESIGN. Weighted least squares regression models used PRO ...

  12. On anti-earthquake design procedure of equipment and pipings in near future

    International Nuclear Information System (INIS)

    Shibata, H.

    1981-01-01

    The requirement of anti-earthquake design of nuclear power plants is getting severe year by year. The author will try to discuss how to control its severity and how to find a proper design procedure for licensing of new plants under such severe requirements. On the other hand we suffered from the enormous volumes of documents. To decrease such volumes, the format of documents should be standardized as well as the design procedure standardization. Starting from this point, we need the research and development on the following subjects: i) Standardization of design procedure. ii) Standardization of document. iii) Establishment of standard review procedure using computer. iv) Standardization of earthquake-resistant designed equipment. v) Standardization of anti-earthquake design procedure of piping systems. vi) Introducing margin evaluation procedure to design procedure. vii) Introducing proving test procedure of active component to design procedure. viii) Establishment of evaluation of human reliability in design, fabrication, inspection procedures. ix) Establishment of the proper relation of seismic trigger level and post-earthquake design procedures. (orig./HP)

  13. Control room design and human engineering in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1981-01-01

    Automation reduces the human work load. Employment of functional areas permits optimization of operational sequences. Computer based information processing makes it possible to output information in accordance with operating requirements. Design based on human engineering principles assures the quality of the interaction between the operator and the equipment. The degree to which these conceptional features play a role in design of power plant control rooms depends on the unit rating, the mode of operation and on the requirements respecting safety and availability of the plant. (orig./RW)

  14. Design assurance programme for modifications at the Ringhals Nuclear Power Plant

    International Nuclear Information System (INIS)

    Persson, K.

    1985-01-01

    The Engineering Department within the site organization is responsible for modifications and improvements of plant design. Internal and external specialists are also involved in the design activities. Modifications follow the procedures laid down in the Design Assurance Programme (DAP), according to the overall directions given in 10CFR50 APP B and the more detailed recommendations in American Nuclear Standard 3.2, and the United States Nuclear Regulatory Commission's Regulatory Guides 1.33 and 1.64. The site Quality Assurance Department has adapted these directions to Swedish conditions. All plant modifications are ordered from customers within the site organization. The design work is performed according to the following steps: priority of problems or requirements; overall analysis of problems or requirements; basic design (preliminary and final); detailed design (electrical, mechanical, civil); purchase of equipment; installation in plant; testing of installed equipment. The project engineer is responsible for modifications from the initiation of analysis until testing and documentation are finalized. For each step, procedures and checklists are available. Internal and external specialists as well as the Swedish Nuclear Inspectorate are involved when appropriate. Design engineers and QC/QE engineers are also involved. Special groups within the site organization handle purchase and installation. Testing the installed equipment is performed in co-operation with the operation staff. Deviations from DAP must be reported by all personnel, and corrective actions must be taken. Internal audits have to be done once a year for the entire DAP and the audit, with its findings and the corrective actions taken, must be reported to the QA group. (author)

  15. Recommendations for managing equipment aging in nuclear power plants

    International Nuclear Information System (INIS)

    Gunther, W.E.; Subudhi, M.; Aggarwal, S.K.

    1992-01-01

    Research conducted under the auspices of the US NRC's Nuclear Plant Aging Research (NPAR) Program has resulted in a large database of component and system operating, maintenance, and testing information. This database has been used to determine the susceptibility to aging of selected components, and the potential for equipment aging to impact plant safety and availability. it has also identified methods for detecting and mitigating component and system aging. This paper describes the research recommendations on electrical components which could be applied to maintenance, testing, and inspection activities to detect and mitigate the effects of aging prior to equipment failures

  16. Conceptual designs of pressurized fluidized bed and pulverized coal fired power plants

    International Nuclear Information System (INIS)

    Doss, H.S.; Bezella, W.A.; Hamm, J.R.; Pietruszkiewicz, J.

    1984-01-01

    This paper presents the major technical and economic characteristics of steam and air-cooled pressurized fluidized bed (PFB) power plant concepts, along with the characteristics of a pulverized coal fired power plant equipped with an adipic acid enhanced wet-limestone flue gas desulfurization system. Conceptual designs for the three plants were prepared to satisfy a set of common groundrules developed for the study. Grassroots plants, located on a generic plant site were assumed. The designs incorporate technologies projected to be commercial in the 1990 time frame. Power outputs, heat rates, and costs are presented

  17. Remote maintenance lessons learned on prototypical reprocessing equipment

    International Nuclear Information System (INIS)

    Kring, C.T.; Schrock, S.L.

    1990-01-01

    A major objective of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory is to develop and demonstrate the technology required to reprocess spent nuclear fuel. The Fuel Recycle Division, over the past 16 years, has undertaken this objective by designing and testing prototypical hardware representing essentially every major equipment item currently included in most fuel reprocessing plant conceptual designs. These designs are based on total remote maintenance to increase plant availability and reduce radiation exposure to plant operators. The designs include modular equipment to facilitate maintainability and the remote manipulation necessary to accomplish maintenance tasks. Prototypic equipment has been installed and tested in a cold mock-up of a reprocessing hot cell, called the remote operations and maintenance demonstration facility. The applied maintenance concept utilizes the dexterity and mobility of bridge-mounted, force-reflecting servomanipulators. Prototypic processing equipment includes a remote disassembly system, a remote shear system, a rotary dissolver, a remote automated sampler system, removable equipment racks to support chemical process equipment items, and the advanced servomanipulators. Each of these systems and a brief description of functions are discussed

  18. Enhanced design, operation and maintenance practices for a longer plant service life

    International Nuclear Information System (INIS)

    Raimondo, E.; Courcoux, A.

    2004-01-01

    Plant service life problems have been under detailed investigation in France and the experience acquired by our company over the past 25 years in the design, construction and maintenance of Pressurized Water Reactors has contributed to develop skills, equipment and capabilities available for efficient plant aging management and component service life extension. The service life of a nuclear power plant is deeply dependant of the provisions made during the design stage, directly linked to good operating conditions and adequate maintenance practices. This paper presents the importance of these three steps (design, operation and maintenance) for plant service life concern. (author)

  19. An approach to nuclear plant design and modification support for Russian-designed plants in Eastern Europe

    International Nuclear Information System (INIS)

    Ioannidi, J.; Akins, M.J.

    2002-01-01

    projects and providing plant personnel the continuity of assistance necessary to gain sufficient experience in these areas. It further helps assure that the plant's expectations for modifications are met. The Project Management Consultant would establish a modification planning and scheduling protocol for use by plant management on all tasks. The Consultant would focus on development of the modification package process from the problem definition phase through detailed design to the new as-built documentation phase. Additionally, the Consultant would work with the plant staff to develop those managerial programs required to support the modification package process. At project completion, plant management would have these new processes in place and the experience of working with these processes on all plant equipment changes performed during the period, enabling them to work effectively within traditional Western-style contracting schemes.(author)

  20. Control of hydrogen sulfide emission from geothermal power plants. Volume III. Final report: demonstration plant equipment descriptions, test plan, and operating instructions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, F.C.; Harvey, W.W.; Warren, R.B.

    1977-01-01

    The elements of the final, detailed design of the demonstration plant for the copper sulfate process for the removal of hydrogen sulfide from geothermal steam are summarized. Descriptions are given of all items of equipment in sufficient detail that they can serve as purchase specifications. The process and mechanical design criteria which were used to develop the specifications, and the process descriptions and material and energy balance bases to which the design criteria were applied are included. (MHR)

  1. Failure diagnosis aiding device for plant equipment

    International Nuclear Information System (INIS)

    Uhara, Yoshihiko.

    1990-01-01

    The present invention intends to improve the efficiency of trouble shooting for equipments of industrial plants such as nuclear power plants. The device of the present invention comprises an intelligence base and an inference mechanism base. The intelligence base comprises a rule base, an information storing section having a part frame and a working frame and a user's frame. The parts frame contains the failure rate on every parts and data on related operations. The working frame contains the importance and frequency of working. The user's frame contains parameters showing the extent of user's skills. The rule base, the parts frame and the working frame can be selected in accordance with the extent of the user's skill in the inference mechanism. With such a constitution, failures can be checked with the intelligence base in accordance with the knowledges for the failures of the equipments and the extent of user's skill by way of the inference mechanism. (I.S.)

  2. 48 CFR 245.608-71 - Screening industrial plant equipment.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Screening industrial plant..., and Disposal of Contractor Inventory 245.608-71 Screening industrial plant equipment. (a) Reporting...) After 90th day. If DoD requirement is identified, and item is available, ship item against the...

  3. Seismic verification of nuclear plant equipment anchorage

    International Nuclear Information System (INIS)

    Lepiece, M.; Van Vyve, J.

    1991-01-01

    More than 60% of the electrical power of Belgium is generated by seven PWR nuclear power plants. For three of them, the electro-mechanical equipment had to be reassessed after ten years of operation, because the seismic requirements were upgraded from 0.1 g to 0.17 g free field ground acceleration. The seismic requalification of the active equipment was a critical problem as the classical methods were too conservative. The approach based on the use of the past experience on the seismic behavior of nonnuclear equipment, chosen and developed by the SQUG, had to be transposed to the Belgian N.P.P. The decision of the accept-ability of equipment relies heavily on the aseismatic capacity of anchorage. The Electrical Power Research Institute (EPRI) developed the procedure and guideline for the demonstration of the aseismatic adequacy of equipment anchorage in a cost-effective and consistent manner, to support the decision by Seismic Review Team. The field inspection procedure to identify the type of fasteners and detect their possible defects and the verification procedure developed to calculate the aseismatic capacity of equipment anchorage on the strength of fasteners, the aseismatic capacity of anchorage and the comparison of the capacity with the demand are reported. (K.I.)

  4. Revision of nuclear power plants safety systems' routine testing assigned periodicity during the design extension period

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Kozlov, Yi.L.; Chulkyin, O.O.

    2017-01-01

    When nuclear power plants safety systems thermal equipment operation extending, a necessary requirement shall rely on revising the scheduled equipment tests frequency to optimize those tests schedule taking into account the equipment remained lifespan. On the one hand, there exists a need for tests frequency increase to detect ''hidden'' failures, and on the another, frequent tests cause a premature wear of the equipment. Proposed is an original method for optimizing the frequency of NPPs safety systems thermal engineering equipment testing. Essential in the proposed method is the optimization criterion chosen: index of security system failure probability non-exceedance during the beyond-design operating period as referred to the failure probability expected considering the equipment residual resource during the design operating period. The developed method implementation when applied to NPPs safety systems operated beyond the design service life at nuclear power plants with WWER-1000 series reactors, allowed to establish that the optimal tests frequency makes half the designed one when the equipment service life is extended by five years and three times less that the designed frequency when subject lifespan extended by 10 years.

  5. Study on a quantitative evaluation method of equipment maintenance level and plant safety level for giant complex plant system

    International Nuclear Information System (INIS)

    Aoki, Takayuki

    2010-01-01

    In this study, a quantitative method on maintenance level which is determined by the two factors, maintenance plan and field work implementation ability by maintenance crew is discussed. And also a quantitative evaluation method on safety level for giant complex plant system is discussed. As a result of consideration, the following results were obtained. (1) It was considered that equipment condition after maintenance work was determined by the two factors, maintenance plan and field work implementation ability possessed by maintenance crew. The equipment condition determined by the two factors was named as 'equipment maintenance level' and its quantitative evaluation method was clarified. (2) It was considered that CDF in a nuclear power plant, evaluated by using a failure rate counting the above maintenance level was quite different from CDF evaluated by using existing failure rates including a safety margin. Then, the former CDF was named as 'plant safety level' of plant system and its quantitative evaluation method was clarified. (3) Enhancing equipment maintenance level means an improvement of maintenance quality. That results in the enhancement of plant safety level. Therefore, plant safety level should be always watched as a plant performance indicator. (author)

  6. The seismic assessment of wheeled vehicle type equipment (e.g. emergency power supply vehicle) against severe accident for nuclear power plant in Japan

    International Nuclear Information System (INIS)

    Ikeda, Takuya; Mitsuzawa, Daisuke; Yamaguchi, Yoshikazu; Hasebe, Motohiko; Imamura, Ryutaro; Tomitani, Yuji; Ueyama, Ippei; Kawamoto, Takahiro

    2017-01-01

    After the events at the Fukushima Dai-ichi Nuclear Power Plant, the equipment to mitigate the effects of severe accidents has been installed in the domestic nuclear power plants. From the viewpoint of convenience for installation, etc., a number of industry standard-based wheeled vehicle type equipment has been placed. On the other hand, the new regulations require the equipment for severe accidents to withstand the Design Basis Earthquake. Therefore, the seismic qualification is essential item for wheeled vehicle type equipment according to the regulatory requirement. At that time, compared to the traditional safety-related equipment, there was not enough knowledge of seismic evaluation for vehicle type equipment. This paper reports the overview of wheeled vehicle type equipment and the seismic qualification by test. (author)

  7. The application of GIS equipment in nuclear power plant

    International Nuclear Information System (INIS)

    Ji Lin; Huang Pengbo; Chang Xin'ai

    2012-01-01

    In this paper, the advantage and disadvantage of gas insulated switchgear (GIS) in environmental adaptability, operation safety and economic benefit are analyzed. Issues concerning the manufacture, transportation, on-site installation, operation, maintenance and extension of GIS equipment are discussed. Comparing those characteristics with air insulated switchgear (AIS), GIS is characterized by better aseismic ability, less occupied area and installation process, lower fault rate, longer maintenance period, easier for extension and higher economic benefit, SF6 gas insures the operation safety and reliability of GIS equipment, modular transport and re-assembling improves the installation flexibility. Therefore, GIS equipment may be the first choice for the primary equipment of nuclear power plant. (authors)

  8. Equipment and special tool design for remote maintenance

    International Nuclear Information System (INIS)

    Northey, L.M.; Thomson, J.D.

    1985-01-01

    Maintenance tasks performed in locations with hostile environments and/or limited space accesses often require equipment that is operated remotely. This paper discusses considerations that should be addressed in the design of remote maintenance equipment. Some of the topics include proper material selection, interface identifications, operational feedback devices and cost limitations. These considerations add ''human engineering'' to the equipment design to assure protection of the tool and the operating personnel. Examples of remote maintenance and inspection systems that were developed by the Westinghouse Hanford Company and that utilize many of these design considerations are included

  9. DC systems design and research of Hainan Changjiang nuclear power plant

    International Nuclear Information System (INIS)

    Jiang Qingshui; Wang Yuhan

    2014-01-01

    Hainan Changjiang nuclear power plant is different from the referent power plant, the DC and 220 V AC uninterrupted systems of the nuclear island have been changed since the control system use DCS. It has different design on DC systems, power supply, selectivity of breakers, capacity of equipments and layout. We optimize the design of DC systems at the basement of Fuqing and Fangjiashan project. These are good experiments for the three generation nuclear power project about DC systems design of ACP1000. (authors)

  10. Design requirements, criteria and methods for seismic qualification of CANDU power plants

    International Nuclear Information System (INIS)

    Singh, N.; Duff, C.G.

    1979-10-01

    This report describes the requirements and criteria for the seismic design and qualification of systems and equipment in CANDU nuclear power plants. Acceptable methods and techniques for seismic qualification of CANDU nuclear power plants to mitigate the effects or the consequences of earthquakes are also described. (auth)

  11. ITER L 7 duct remote handling equipment design report

    International Nuclear Information System (INIS)

    Millard, J.

    1996-09-01

    The operation, design and interfaces of the 'Duct Vehicle' and it's associated remote handling equipment are briefly described in this document. This equipment is being designed by Spar Aerospace Ltd. for the Divertor Test Platform as part of ITER Research and Development Project L-7. Canadian Fusion Fuels Technology Project funds this work as part of the Canadian Contribution to ITER. This document describes the equipment design status at the September 1996 design review. 23 figs

  12. Electrical systems design applications on Japanese PWR plants in light of the Fukushima Daiichi Accident

    International Nuclear Information System (INIS)

    Nomoto, Tsutomu

    2015-01-01

    After the Fukushima Daiichi nuclear power plant (1F-NPP) accident (i.e. Station Blackout), several design enhancements have been incorporated or are under considering to Mitsubishi PWR plants' design of not only operational plants' design but also new plants' design. Especially, there are several important enhancements in the area of the electrical system design. In this presentation, design enhancements related to following electrical systems/equipment are introduced; - Offsite Power System; - Emergency Power Source; - Safety-related Battery; - Alternative AC Power Supply Systems. In addition, relevant design requirements/conditions which are or will be considered in Mitsubishi PWR plants are introduced. (authors)

  13. Research on U.S. nuclear power plant major equipment aging

    International Nuclear Information System (INIS)

    Nakos, J.T.; Rosinski, S.T.

    1994-01-01

    The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), in cooperation with nuclear power plant utilities and the Nuclear Energy Institute, have prepared equipment aging evaluations of nuclear power plant equipment for life extension considerations. Specifically, these evaluations focused on equipment considered important for plant license renewal (U.S. Code of Federal Regulations 10CFR54). open-quotes Industry Reportsclose quotes (IRs), jointly funded by DOE and EPRI, evaluated the aging of major systems, structures, and components (e.g., reactor pressure vessels, Class I structures, PWR and BWR containments, etc.) and contain a mixture of technical and licensing information. open-quotes Aging Management Guidelinesclose quotes (AMGs), funded by DOE, evaluate aging for commodity types of equipment (e.g., pumps, electrical switchgear, heat exchangers, etc.) and concentrate on technical issues only. AMGs are intended for systems engineers and plant maintenance staff. A significant number of technical issues were resolved during IR interactions with the U.S. Nuclear Regulatory Commission (NRC). However, certain technical issues have not been resolved and are considered open-quotes openclose quotes. Examples include certain issues related to fatigue, neutron irradiation embrittlement, intergranular stress corrosion cracking (IGSCC) and electrical cable equipment qualification. Direct NRC interaction did not take place during preparation of individual AMGs due to their purely technical nature. The eventual use of AMGs in a future license renewal application will likely require NRC interaction at that time. With a few noted exceptions, the AMG process indicated that current aging management practices of U.S. utilities were effective in preventing age-related degradation. This paper briefly describes the IR and AMG processes and summarizes the unresolved technical issues identified through preparation of the documents

  14. Design of 100 MW LNG Floating Barge Power Plant

    Directory of Open Access Journals (Sweden)

    I Made Ariana

    2017-06-01

    Full Text Available Floating bargepower plant able to supply amount of electricity to undeveloped island in Indonesia. In this research, the generator will be use in the power plant is dual-fuel engine. The process was determine the engine and every equipment along with its configuration then arrange the equipment. The result, MAN18V51/60DF selected along with its system configuration and its general arrangement. The final design enable 7.06 days of operation with daily average load (64.76 MW or 4.57 days with continues 100 MW load. In the end, the mobile power plant can be built on Damen B32SPo9832 Barge and comply with the regulation floating bargepower plant able to supply amount of electricity to undeveloped island in Indonesia. In this research, the generator will be use in the power plant is dual-fuel engine. The process was determine the engine and every equipment along with its configuration then arrange the equipment. The result, MAN18V51/60DF selected along with its system configuration and its general arrangement. The final design enable 7.06 days of operation with daily average load (64.76 MW or 4.57 days with continues 100 MW load. In the end, the mobile power plant can be built on Damen B32SPo9832 Barge and comply with the regulation Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  15. Guidelines for Electromagnetic Interference Testing of Power Plant Equipment: Revision 3 to TR-102323

    International Nuclear Information System (INIS)

    Cunningham, J.; Shank, J.

    2004-01-01

    To continue meeting safety and reliability requirements while controlling costs, operators of nuclear power plants must be able to replace and upgrade equipment in a cost-effective manner. One issue that has been problematic for new plant equipment and especially for digital instrumentation and control (I and C) systems in recent years is electromagnetic compatibility (EMC). The EMC issue usually involves testing to show that critical equipment will not be adversely affected by electromagnetic interference (EMI) in the plant environment. This guide will help nuclear plant engineers address EMC issues and qualification testing in a consistent, comprehensive manner

  16. Guidelines for Electromagnetic Interference Testing of Power Plant Equipment: Revision 3 to TR-102323

    Energy Technology Data Exchange (ETDEWEB)

    J. Cunningham and J. Shank

    2004-11-01

    To continue meeting safety and reliability requirements while controlling costs, operators of nuclear power plants must be able to replace and upgrade equipment in a cost-effective manner. One issue that has been problematic for new plant equipment and especially for digital instrumentation and control (I&C) systems in recent years is electromagnetic compatibility (EMC). The EMC issue usually involves testing to show that critical equipment will not be adversely affected by electromagnetic interference (EMI) in the plant environment. This guide will help nuclear plant engineers address EMC issues and qualification testing in a consistent, comprehensive manner.

  17. 48 CFR 1845.407 - Non-Government use of plant equipment. (NASA supplements paragraph (a)).

    Science.gov (United States)

    2010-10-01

    ... Use and Rental of Government Property 1845.407 Non-Government use of plant equipment. (NASA supplements paragraph (a)). For NASA, the coverage in FAR 45.407, applies to all equipment, not just plant... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Non-Government use of plant...

  18. Technical guidelines for aseismic design of nuclear power plants

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.

    1994-06-01

    This document is a translation, in its entirety, of the Japan Electric Association (JEA) publication entitled open-quotes Technical Guidelines for Aseismic Design of Nuclear Power Plants - JEAG 4601-1987.close quotes This guideline describes in detail the aseismic design techniques used in Japan for nuclear power plants. It contains chapters dealing with: (a)the selection of earthquake ground motions for a site, (b) the investigation of foundation and bedrock conditions, (c) the evaluation of ground stability and the effects of ground movement on buried piping and structures, (d) the analysis and design of structures, and (e) the analysis and design of equipment and distribution systems (piping, electrical raceways, instrumentation, tubing and HVAC duct). The guideline also includes appendices which summarize data, information and references related to aseismic design technology

  19. Simplified nuclear plant design for tomorrow's energy needs

    International Nuclear Information System (INIS)

    Slember, R.

    1989-09-01

    Commercial nuclear powered plants play an important role in the strategic energy plans of many countries throughout the world. Many energy planners agree that nuclear plants will have to supply an increasing amount of electrical energy in the 1990s and beyond. Just as other major industries are continually taking steps to update and improve existing products, the United States' nuclear industry has embarked on a program to simplify plant systems, shorten construction time and improve economics for new plant models. One of the models being developed by Westinghouse Electric Corporation and Burns and Roe Company is the Advanced Passive 600 MWe design which incorporates safety features that passively protect the reactor during assumed abnormal operating events. These passive safety systems utilize natural circulation/cooling for mitigating abnormal events and simplify plant design and operation. This type of system eliminates the need for costly active safety grade components, results in a reduction of ancillary equipment and assists in shortening construction time. The use of passive safety systems also permits design simplification of the auxiliary systems effectively reducing operating and maintenance requirements. Collectively, the AP600 design features result in a safe plant that addresses and alleviates the critical industry issues that developed in the 1980s. Further, the design addresses utility and regulatory requirements for safety, reliability, maintainability, operations and economics. Program results to date give confidence that the objectives of the Advanced Passive 600 design are achievable through overall plant simplification. The report will include timely results from the work being performed on the salient technical features of the design, plant construction and operation. Other required institutional changes, such as the prerequisite for a design which is complete and licensed prior to start of construction, will also be presented

  20. Zirconium-made equipment for the new La Hague reprocessing plants

    International Nuclear Information System (INIS)

    Decours, J.; Demay, R.; Bernard, C.; Mouroux, J.P.; Simonnet, J.

    1991-01-01

    The use of zirconium was developed to solve some problems of severe corrosion in boiling nitric medium, and to guarantee the service life of the equipment concerned. The paper presents the experience gained since the early 1970s, when the first units made of zirconium were used in French reprocessing plants. For the new La Hague UP3 and UP2 800 plants, it was decided to extend the use of zirconium to make large-scale equipment and, to do so, a major R and D program was implemented, of which the main results are presented

  1. Seismic effects on technological equipment and systems of nuclear power plants

    International Nuclear Information System (INIS)

    Masopust, R.; Pecinka, L.; Podrouzek, J.

    1983-01-01

    A survey is given of problems related to the construction of nuclear power plants with regard to seismic resistance. Sei--smic resistance of technological equipment is evaluated by experimental trials, calculation or the combination of both. Existing and future standards are given for the given field. The Czechoslovak situation is discussed as related to the construction of the Mochovce nuclear power plant. Procedures for testing seismic resistance, types of tests and methods of simulating seismic excitation are described. Antiseismic measures together with structural elements for limiting the seismic effects on technological equipment and nuclear power plant systems are summed up on the basis of foreign experience. (E.F.)

  2. Verification of the thermal design of electronic equipment

    Energy Technology Data Exchange (ETDEWEB)

    Hienonen, R.; Karjalainen, M.; Lankinen, R. [VTT Automation, Espoo (Finland). ProTechno

    1997-12-31

    The project `Verification of the thermal design of electronic equipment` studied the methodology to be followed in the verification of thermal design of electronic equipment. This project forms part of the `Cool Electronics` research programme funded by TEKES, the Finnish Technology Development Centre. This project was carried out jointly by VTT Automation, Lappeenranta University of Technology, Nokia Research Center and ABB Industry Oy VSD-Technology. The thermal design of electronic equipment has a significant impact on the cost, reliability, tolerance to different environments, selection of components and materials, and ergonomics of the product. This report describes the method for verification of thermal design. It assesses the goals set for thermal design, environmental requirements, technical implementation of the design, thermal simulation and modelling, and design qualification testing and the measurements needed. The verification method covers all packaging levels of electronic equipment from the system level to the electronic component level. The method described in this report can be used as part of the quality system of a corporation. The report includes information about the measurement and test methods needed in the verification process. Some measurement methods for the temperature, flow and pressure of air are described. (orig.) Published in Finnish VTT Julkaisuja 824. 22 refs.

  3. Considering plant life management influences on new plant design

    International Nuclear Information System (INIS)

    Dam, R.F.; Choy, E.; Soulard, M.; Nickerson, J.H.; Hopwood, J.

    2003-01-01

    After operating successfully for more than half their design life, owners of CANDU reactors are now engaging in Plant Life Management (PLiM) activities to ensure not only life attainment, but also life extension. For several years, Atomic Energy of Canada Ltd. (AECL) has been working with domestic and offshore CANDU utilities on a comprehensive and integrated CANDU PLiM program that will see existing CANDU plants successfully and reliably operate through their design life and beyond. To support the PLiM program development, a significant level of infrastructure has been, and continues to be, developed at AECL. This includes the development of databases that document relevant knowledge and background to allow for a more accessible and complete understanding of degradation issues and the strategies needed to deal with these issues. As the level of integration with various project, services and R and D activities in AECL increases, this infrastructure is growing to encompass a wider range of design, operations and maintenance details to support comprehensive and quantitative assessment of CANDU stations. With the maturation of the PLiM program, these processes were adapted for application to newer plants. In particular, a fully integrated program was developed that interrelates the design basis, operations, safety, and reliability and maintenance strategies, as applied to meet plant design goals. This has led to the development of the maintenance-based design concept. The various PLiM technologies, developed and applied in the above programs with operating stations, are being modified and tailored to assist with the new plant design processes to assure that ACR- Advanced CANDU Reactor meets its targets for operation, maintenance, and lifetime performance. Currently, the ACR, developed by Atomic Energy of Canada Ltd. (AECL), is being designed with features to increase capacity factors, to reduce the risk of major equipment failures, to improve access to key components

  4. Generation of equipment response spectrum considering equipment-structure interaction

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Yoo, Kwang Hoon

    2005-01-01

    Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plant are usually generated without considering dynamic interaction between main structure and subsystem. Since the dynamic structural response generally has the narrow-banded shapes, the resulting floor response spectra developed for various locations in the structure usually have high spectral peak amplitudes in the narrow frequency bands corresponding to the natural frequencies of the structural system. The application of such spectra for design of subsystems often leads to excessive design conservatisms, especially when the equipment frequency and structure are at resonance condition. Thus, in order to provide a rational and realistic design input for dynamic analysis and design of equipment, dynamic equipment-structure interaction (ESI) should be considered in developing equipment response spectrum which is particularly important for equipment at the resonance condition. Many analytical methods have been proposed in the past for developing equipment response spectra considering ESI. However, most of these methods have not been adapted to the practical applications because of either the complexities or the lack of rigorousness of the methods. At one hand, mass ratio among the equipment and structure was used as an important parameter to obtain equipment response spectra. Similarly, Tseng has also proposed the analytical method for developing equipment response spectra using mass ratio in the frequency domain. This method is analytically rigorous and can be easily validated. It is based on the dynamic substructuring method as applied to the dynamic soil-structure interaction (SSI) analysis, and can relatively easily be implemented for practical applications without to change the current dynamic analysis and design practice for subsystems. The equipment response spectra derived in this study are also based on Tseng's proposed method

  5. Materials selection for process equipment in the Hanford waste vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, M R; Jensen, G A

    1991-07-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

  6. Technical diagnostics - equipment monitoring for increasing safety and availability of nuclear power plants

    International Nuclear Information System (INIS)

    Sturm, A.; Foerster, R.

    1977-01-01

    Utilization of technical diagnostics in equipment monitoring of nuclear power plants for ensuring nuclear safety, economic availability, and for decision making on necessary maintenance is reviewed. Technical diagnostics is subdivided into inspection and early detection of malfunctions. Moreover, combination of technical diagnostics and equipment monitoring, integration of technical diagnostics into maintenance strategy, and problems of introducing early detection of malfunctions into maintenance management of nuclear power plants are also discussed. In addition, a compilation of measuring techniques used in technical diagnostics has been made. The international state of the art of equipment monitoring in PWR nuclear power plants is illustrated by description of the sound and vibration measuring techniques. (author)

  7. Anchorage of equipment - requirements and verification methods with emphasis on equipment of existing and constructed VVER-type nuclear power plants

    International Nuclear Information System (INIS)

    Masopust, R.

    1999-01-01

    Criteria and verification methods which are recommended for use in the capacity evaluation of anchorage of safety-related equipment at WWER-type nuclear power plants are presented. Developed in compliance with the relevant basic standards documents specifically for anchorage of WWER-type equipment components, the criteria and methods cover different types of anchor bolts and other anchorage elements which are typical of existing, constructed, or reconstructed WWER-type nuclear power plants

  8. A Study on Estimating the Next Failure Time of Compressor Equipment in an Offshore Plant

    Directory of Open Access Journals (Sweden)

    SangJe Cho

    2016-01-01

    Full Text Available The offshore plant equipment usually has a long life cycle. During its O&M (Operation and Maintenance phase, since the accidental occurrence of offshore plant equipment causes catastrophic damage, it is necessary to make more efforts for managing critical offshore equipment. Nowadays, due to the emerging ICTs (Information Communication Technologies, it is possible to send health monitoring information to administrator of an offshore plant, which leads to much concern on CBM (Condition-Based Maintenance. This study introduces three approaches for predicting the next failure time of offshore plant equipment (gas compressor with case studies, which are based on finite state continuous time Markov model, linear regression method, and their hybrid model.

  9. General Atomic HTGR fuel reprocessing pilot plant: results of initial sequential equipment operation

    International Nuclear Information System (INIS)

    1978-09-01

    In September 1977, the processing of 20 large high-temperature gas-cooled reactor (LHTGR) fuel elements was completed sequentially through the head-end cold pilot plant equipment. This report gives a brief description of the equipment and summarizes the results of the sequential operation of the pilot plant. 32 figures, 15 tables

  10. Equipment Obsolescence Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Redmond, J.

    2014-07-01

    Nuclear Power Plant (NPP) Operators are challenged with securing reliable supply channels for safety related equipment due to equipment obsolescence. Many Original Equipment Manufacturers (OEMs) have terminated production of spare parts and product life-cycle support. The average component life cycles are much shorter than the NPP design life, which means that replacement components and parts for the original NPP systems are not available for the complete design life of the NPPs. The lack or scarcity of replacement parts adversely affects plant reliability and ultimately the profitability of the affected NPPs. This problem is further compounded when NPPs pursue license renewal and approval for plant-life extension. A reliable and predictable supply of replacement co components is necessary for NPPs to remain economically competitive and meet regulatory requirements and guidelines. Electrical and I and C components, in particular, have short product life cycles and obsolescence issues must be managed pro actively and not reactively in order to mitigate the risk to the NPP to ensure reliable and economic NPP operation. (Author)

  11. Long-term preventive maintenance of instrumentation control equipment for PWR plants

    International Nuclear Information System (INIS)

    Sugitani, S.; Nanba, M.

    2006-01-01

    Since the PWR plants in Japan have been operated more than 30 years, main instrumentation control equipment of analog systems has been renewed to digital control systems. Renewal works had to be done in short period within periodical inspection term and for several facilities. The Mitsubishi LTD group had been provided with these market needs by its digital control system (MELTAC-NplusR 3) applicable to main instrumentation control equipment for primary and secondary systems and had already finished the renewal for practical plants. (T. Tanaka)

  12. Seismic fragility levels of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1987-01-01

    Seismic fragility levels of safety-related electrical and mechanical equipment used in nuclear power plants are discussed. The fragility level is defined as the vibration level corresponding to initiation of equipment malfunctions. The test response spectrum is used as a measure of this vibration level. The fragility phenomenon of an equipment is represented by a number of response spectra corresponding to various failure modes. Analysis methods are described for determination of the fragility level by use of existing test data. Useful conversion factors are tabulated to transform test response spectra from one damping value to another. Results are presented for switch-gears and motor control centers. The capacity levels of these equipment assemblies are observed to be limited by malfunctioning of contactors, motor starters, relays and/or switches. The applicability of the fragility levels, determined in terms of test response spectra, to Seismic Margin Studies and Probabilistic Risk Assessments is discussed and specific recommendations are provided

  13. Design and fabrication of stainless steel components for long life of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Natarajan, R.; Ramkumar, P.; Sundararaman, V.; Kamachi Mudali, U.; Baldev Raj; Shanmugam, K.

    2010-01-01

    Reprocessing of spent nuclear fuels based on the PUREX process is the proven process with many commercial plants operating satisfactorily worldwide. The process medium being nitric acid, austenitic stainless steel is the material of construction as it is the best commercially available material for meeting the conditions in the reprocessing plants. Because of the high radiation fields, contact maintenance of equipment and systems of these plants are very time consuming and costly unlike other chemical process plants. Though the plants constructed in the early years required extensive shut downs for replacement of equipment and systems within the first fifteen years of operation itself, development in the field of stainless steel metallurgy and fabrication techniques have made it possible to design the present day plants for an operating life period of forty years. A review of the operational experience of the PUREX process based aqueous reprocessing plants has been made in this paper and reveals that life limiting failures of equipment and systems are mainly due to corrosion while a few are due to stresses. Presently there are no standards for design specification of materials and fabrication of reprocessing plants like the nuclear power plants, where well laid down ASTM and ASME codes and standards are available which are based on the large scale operational feedbacks on pressure vessels for conventional and nuclear industries. (author)

  14. Quality assurance of analytical, scientific, and design computer programs for nuclear power plants

    International Nuclear Information System (INIS)

    1994-06-01

    This Standard applies to the design and development, modification, documentation, execution, and configuration management of computer programs used to perform analytical, scientific, and design computations during the design and analysis of safety-related nuclear power plant equipment, systems, structures, and components as identified by the owner. 2 figs

  15. Quality assurance of analytical, scientific, and design computer programs for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    This Standard applies to the design and development, modification, documentation, execution, and configuration management of computer programs used to perform analytical, scientific, and design computations during the design and analysis of safety-related nuclear power plant equipment, systems, structures, and components as identified by the owner. 2 figs.

  16. Electrical equipment design library

    International Nuclear Information System (INIS)

    1994-01-01

    This book guides the design supervision, construction order for electrical equipment. The contents of this library are let's use electricity like this, leading-in-pole and casual power, electric pole install below 300KVA, electric pole install below 301∼1000KVA, electric pole install exceed 1000KVA, rooftop install exceed 1000KVA, CUBICLE type, 154KV services. It adds an appendix.

  17. Quality control of repair of equipment for coal preparation plants. Upravlenie kachestvom remonta oborudovaniya ugleobogatitel'nykh fabrik

    Energy Technology Data Exchange (ETDEWEB)

    Okonishnikov, A I; Neskoromnykh, V M; Surzhenko, V S; Sirichenko, R P; Pavlyuchenko, S G; Lesikov, A V

    1984-01-01

    The Ukrniiugleobogashchenie, Kalininsk and Sukhodol'sk coal preparation plants have developed the SUKRO system for control of repair quality of coal preparation equipment in the USSR. The system is based on a system of standards used in coal preparation plants. The following systems of standards used by the SUKRO system are analyzed: organization standards (order of repair in a coal preparation plant, repair planning, spare part systems, methods for determining equipment wear, analysis of equipment failures), standards for maintenance and repair (methods for equipment maintenance, service life of each equipment component or system, structure of preventive repair or repair, organizational models of repair operations, lubrication systems), standards for assessment of labor quality during repair operations. Use of the SUKRO system in the Sukhodol'sk coal preparation plant is evaluated. The SUKRO forms a system of standards for repair and maintenance of equipment considering operation conditions in coal preparation plants, requirements for equipment reliability and service life. (4 refs.)

  18. Progress report of the critical equipment monitoring system

    International Nuclear Information System (INIS)

    Pantis, M.J.

    1984-01-01

    The Philadelphia Electric Company has contracted with Energy Data Systems to develop a Critical Equipment Monitoring System for its Peach Bottom Nuclear Plant. This computerized system is designed to acquire and maintain accurate and timely status information on plant equipment. It will provide auditable record of plant and equipment transactions. Positive equipment identification and location will be provided. Errors in complex logical checking will be minimized. This system should reduce operator loading and improve operator communicatin with the plant personnel. Phase I of this system was installed at Peach Bottom Nuclear Station May 1982. It provides the necessary hardware and software to do check-off lists on critical plant systems. This paper describes some of the start-up and operational problems encountered

  19. A Proactive Aging/Asset Management Model to Optimize Equipment Maintenance Resources Over Plant Lifetime

    International Nuclear Information System (INIS)

    Meyer, Theodore A.; Perdue, Robert K.; Woodcock, Joel; Elder, G. Gary

    2002-01-01

    Experience has shown that proactive aging/asset management can best be defined as an ongoing process. Station goals directly supported by such a process include reducing Unplanned Capability Loss Factor and gaining the optimum value from maintenance and aging management budgets. An effective aging/asset management process must meet evolving and sometimes conflicting requirements for efficient and reliable nuclear power plant operation. The process should identify most likely contributors before they fail, and develop cost-effective contingencies. Current trends indicate the need for focused tools that give quantitative input to decision-making. Opposing goals, such as increasing availability while optimizing aging management budgets, must be balanced. Recognizing the importance of experience in reducing the uncertainty inherent in predicting equipment degradation rates, nuclear industry demographics suggest the need to capture existing expert knowledge in a usable form. The Proactive Aging/Asset Management Process has been developed to address these needs. The proactive approach is a process supported by tools. The process identifies goals and develops criteria - including safety, costs, and power production - that are used to prioritize systems and equipment across the plant. The process then draws upon tools to most effectively meet the plant's goals. The Proactive Aging/Asset Management Model TM is one software-enabled tool designed for mathematical optimization. Results assist a plant in developing a plant-wide plan of aging management activities. This paper describes the proactive aging/asset management process and provides an overview of the methodology that has been incorporated in a model to perform a plant-wide optimization of aging management activities. (authors)

  20. Decommissioning and equipment replacement of nuclear power plants under uncertainty

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Naito, Yuta; Kimura, Hiroshi; Madarame, Haruki

    2007-01-01

    This study examines the optimal timing for the decommissioning and equipment replacement of nuclear power plants. We consider that the firm has two options of decommissioning and equipment replacement, and determines to exercise these options under electricity price uncertainty. This problem is formulated as two optimal stopping problems. The solution of this model provides the value of the nuclear power plant and the threshold values for decommissioning and replacement. The dependence of decommissioning and replacement strategies on uncertainty and each cost is shown. In order to investigate the probability of events for decommissioning and replacement, Monte Carlo calculations are performed. We also show the probability distribution and the conditional expected time for each event. (author)

  1. Seismic qualification of equipment in operating nuclear power plants. Unresolved safety issue A-46, draft report for comment

    International Nuclear Information System (INIS)

    Chang, T.Y.

    1985-08-01

    The margin of safety provided in existing nuclear power plant equipment to resist seismically induced loads and perform their intended safety functions may vary considerably, because of significant changes in design criteria and methods for the seismic qualification of equipment over the years. Therefore, the seismic qualification of equipment in operating plants should be reassessed to determine whether requalification is necessary. The objective of technical studies performed under the Task Action Plan A-46 was to establish an explicit set of guidelines and acceptance criteria to judge the adequacy of equipment under seismic loading at all operating plants, in lieu of requiring qualification to the current criteria that are applied to new plants. This report summarizes the work accomplished on USI A-46 by the Nuclear Regulatory Commission staff and its contractors, Idaho National Engineering Laboratory, Southwest Research Institute, Brookhaven National Laboratory, and Lawrence Livermore National Laboratory. In addition, the collection and review of seismic experience data by the Seismic Qualification Utility Group and the review and recommendations of a group of seismic consultants, the Senior Seismic Review Advisory Panel, are presented. Staff assessment of work accomplished under USI A-46 leads to the conclusion that the use of seismic experience data provides the most reasonable alternative to current qualification criteria. Consideration of seismic qualification by use of experience data was a specific task in USI A-46. Several other A-46 tasks serve to support the use of an experience data base

  2. Computer aided design of piping for a radiochemical plant

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, P G; Chandrasekhar, A; Chandrasekar, A V [Reprocessing Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Raju, R P; Mahudeeswaran, K V; Kumar, S V [Reprocessing Group, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    In a radiochemical plant such as reprocessing plants, process equipment, storage tanks, liquid transfer systems and the associated pipe lines etc. are housed in series of concrete cells. Availability of limited cell space/volume, provision of various modes of liquid transfers with associated redundancies and instrumentation lines with standby alternatives increase the overall piping density. Designing such high density piping layout without interference is quite complex and needs lot of human efforts. This paper briefly describes development of computer codes for the entire scheme of design, drafting and fabrication of piping for nuclear fuel reprocessing plant. The general organisation of various programs, their functions, the complete sequence of the scheme and the flow of data are presented. High degree of reliability of each routine, considerable error checking facilities, marking legends on the drawings, provision for scaling in drafting and accuracy to the extent of one mm in layout design are some of the important features of this scheme. (author). 1 fig.

  3. Rehabilitation of heat exchange equipment a key to power plant life extension and performance improvement

    Energy Technology Data Exchange (ETDEWEB)

    Taveau, F.; Huiban, A.M. [Alstom Power Heat Exchange, 78 - Velizy Villacoublay (France)

    2001-07-01

    With the current evolutions of the energy market and the life extension of the power plants, all the equipment initially supplied need one day or another partial or total rehabilitation. For heat exchange equipment, this includes the condensers, feed water heaters and various heat exchangers. Modernization is in particular necessary when in-service monitoring and periodic inspections show significant deteriorations of the tubes and cooling water leakages leading to forced outages or when tube and tube plate materials are no longer suited to cooling water characteristics or to updated specifications of the secondary system. Feedwater heaters and heat exchangers damaged by erosion/corrosion, vibrations, etc. can be re-designed, manufactured and replaced easily. The operation is more complex on condensers and requires technical surveys, study of alternative solutions and has a more direct impact on the global output of the power plant. That is why our conference will focus on the condenser refurbishment. (author)

  4. Rehabilitation of heat exchange equipment a key to power plant life extension and performance improvement

    International Nuclear Information System (INIS)

    Taveau, F.; Huiban, A.M.

    2001-01-01

    With the current evolutions of the energy market and the life extension of the power plants, all the equipment initially supplied need one day or another partial or total rehabilitation. For heat exchange equipment, this includes the condensers, feed water heaters and various heat exchangers. Modernization is in particular necessary when in-service monitoring and periodic inspections show significant deteriorations of the tubes and cooling water leakages leading to forced outages or when tube and tube plate materials are no longer suited to cooling water characteristics or to updated specifications of the secondary system. Feedwater heaters and heat exchangers damaged by erosion/corrosion, vibrations, etc. can be re-designed, manufactured and replaced easily. The operation is more complex on condensers and requires technical surveys, study of alternative solutions and has a more direct impact on the global output of the power plant. That is why our conference will focus on the condenser refurbishment. (author)

  5. Structural design of nuclear reactor machinery and equipment

    International Nuclear Information System (INIS)

    Hara, Hideki

    1992-01-01

    Since the machinery, equipment and piping which compose nuclear power station facilities are diverse, when those are designed, consideration is given sufficiently to the objective of use and the importance of the object machinery and equipment so that those can maintain the soundness over the design life. In this report, on the contents and the design standard in the design techniques for nuclear reactor machinery and equipment, the way of thinking is shown, taking an example of reactor pressure vessel which is stipulated as the vessel kind 1 in the 'Technical standard of structures and others regarding nuclear facilities for electric power generation', Notice No. 501 of the Ministry of International Trade and Industry. The reactor pressure vessel of 1350 MWe improved type BWR (ABWR) is used under the condition of 87.9 kg/cm 2 and 302 degC, and the inside diameter is about 7.2 m, the inside height is about 21 m, and the wall thickness is about 170 mm. The design standard for reactor pressure vessels and its way of thinking, breakdown prevention design and the design techniques for reactor pressure vessels are described. (K.I.)

  6. Confirmation of the seismic resistance of nuclear power plant equipment after assembly

    International Nuclear Information System (INIS)

    Kaznovsky, P. S.; Kaznovsky, A. P.; Saakov, E. S.; Ryasnyj, S. I.

    2013-01-01

    It is shown that the natural frequencies and damping decrements of nuclear power plant equipment can only be determined experimentally and directly at the power generation units (reactors) of nuclear power plants under real disassembly conditions for the equipment, piping network, thermal insulation, etc. A computational experimental method is described in which the natural frequencies and damping decrements are determined in the field and the seismic resistance is reevaluated using these values. This method is the basis of the standards document “Methods for confirming the dynamic characteristics of systems and components of the generating units of nuclear power plants which are important for safety” prepared and introduced in 2012.

  7. Investigating factors that influence level and dynamics of capital productivity in plants manufacturing equipment for mines

    Energy Technology Data Exchange (ETDEWEB)

    Karenov, R.S. (Karagandinskii Politekhnicheskii Institut (USSR))

    1990-10-01

    Analyzes productivity of capital in plants manufacturing equipment for underground coal mining in the USSR. Effects of the following factors are evaluated: working time, investment, mechanization of manufacturing processes, power of motors used to drive the manufacturing equipment, duration of a manufacturing cycle, cooperation degree, equipment service life. Effects of insufficient specialization of manufacturing plants and the manufacturing of mining equipment by repair shops of individual mines which should rather specialize in equipment repair and maintenance are evaluated. Analysis shows that specialization of the manufacturing plants could increase productivity of capital by 1.5-2.0 times, reduce labor consumption by 3-5 times and consumption of materials by 1.5-1.7 times. 4 refs.

  8. Research, Calculation for Designing the Technological Equipment Line of Cementation with 3,000 Tonnes of Solid Waste/Year Capacity for ZOC Plan

    International Nuclear Information System (INIS)

    Tran Van Hoa; Ngo Van Tuyen; Nguyen Ba Tien; Le Ba Thuan; Phung Quoc Khanh; Mai Duc Lanh; Vuong Huu Anh; Luu Cao Nguyen; Duong Dinh Tho; Phung Vu Phong; Nguyen An Thai; Pham Quang Minh

    2013-01-01

    Technological process and equipment line for cementation with 3,000 tons of solid wastes/year capacity for ZOC plant was studied according to the quantity, the composition and the property of solid wastes from ZOC plant. The influence of several parameters with cementation process such as cement mixing ratio, size, moisture and NaCl content in residue, which affected to mechanical and chemical strength of waste block after cementation was evaluated. The calculation and designing for cementation equipment line were thus conducted and total investment cost of construction and installation as well as operation of this equipment line was also estimated. Radiation safety and environmental protection for waste treatment facility was calculated and the design on radiation safety and environmental protection for equipment line was proposed. Technological process and design document of this production line seemed to be reasonable because it is consistent with properties of wastes as well as it has been commonly used in the world to stabilize solid residues in nuclear industry. The advantages of this propose were simple structure of the devices, locally made, easy operation, locally available and inexpensive materials resulting in low cost of investment and operation. (author)

  9. Study for process and equipment design of wet gelation stages in vibropacking process

    International Nuclear Information System (INIS)

    Tanimoto, Ryoji; Kikuchi, Toshiaki; Tanaka, Hirokazu; Amino, Masaki; Yanai, Minoru

    2004-02-01

    Process and layout design of external wet gelation stages in vibropacking process was examined for the feasibility study of commercialized FBR cycle system. In this study, following process stages for the oxide core fuel production line were covered, that is, solidification, washing, drying, calcination, reduction, sintering stages including interim storage of sintering particles and reagent recovery stage. The main results obtained by this study are as follows: (1) Based on the process examination results conducted previously, process-flow, mass-balance and number of production line/equipment were clarified. The process is covered from the receive tank of feed solution to the interim storage equipment. Reagent recovery process-flow, mass-balance were also clarified. And preliminary design of the main equipment was reexamined. (2) Normal operation procedure and the procedure after process failure were summarized along with a remote automated operation procedure. Operation sequence of each production line was mapped out by using a time-chart. (3) Design outline of reagent recovery equipments, installed to recover waste liquid from the wet gelation stages in the view of environmental impact were examined. Effective techniques such as collection of solvent, residue waste treatment method were examined its applicability and selected. Schematic block diagram was presented. (4) Analytical items and analyzing apparatus were extracted taking into account of quality control and process management. Analytical sample taking position and frequency of sampling were also examined. (5) A schematic layout drawing of main manufacturing process and reagent recovery process was presented taking into account of material handling. (6) A feature of the operating rate at each process stage was examined by analyzing failure rate reliability of each component. applying the reliability-centred method. (RCM), the operating rate was evaluated and annual maintenance period was estimated using

  10. Method for keeping equipment and pipeline of nuclear power plant

    International Nuclear Information System (INIS)

    Okubo, Osamu.

    1990-01-01

    The present invention intends to suppress corrosion of equipments and pipelines in condensate, feedwater and feedwater heater drain systems during operation of a nuclear power plant. That is, condensate, feedwater and drain remained in equipments and pipelines just after the stopping of operation are passed through pipelines comprising only conduits, or they are introduced to a condensator passing through the pipelines and condensate pipes. Further, the remaining droplets on the inner surfaces are evaporated by the remaining heat of the equipments and the pipelines themselves. Then, the equipments and pipelines are isolated from other regions and kept. In view of the above, since condensate, feedwater and water feeder drains are introduced directly to the condensator passing through the conduits in which other equipments such as tanks and pumps are not present and are isolated and kept, corrosion of the equipments and the pipelines is suppressed and radioactive contamination is suppressed from prevailing by way of cruds. (I.S.)

  11. (According to TAS 16, Measurement After Recognition on Property, Plant andEquipment and Accounting İmplementation)

    OpenAIRE

    Örten, Remzi; Bayırlı, Rıdvan

    2007-01-01

    The objective of TAS 16 is to prescribe the accounting treatment for property, plant and equipment so that users of the financial statements can determine information about an entity’s investment in its property, plant and equipment and the changes in such investment. Property, plant and equipment have major importance within the total assets of companies and thus they are very significant in the determination of financial analysis. According to this standard, there are two methods cencerning...

  12. Development of remote automatic equipment for BWR power plants

    International Nuclear Information System (INIS)

    Sasaki, Masayoshi

    1984-01-01

    The development of remote control, automatic equipment for nuclear power stations has been promoted to raise the rate of operation of plants by shortening regular inspection period, to improve the safety and reliability of inspection and maintenance works by mechanization, to reduce the radiation exposure dose of workers and to reduce the manpower required for works. The taking-off of control rod drives from reactors and fixing again have been mechanized, but the disassembling, cleaning, inspection and assembling of control rod drives are manually carried out. Therefore, Hitachi Ltd. has exerted effort to develop the automatic equipment for this purpose. The target of development, investigation, the construction and function of the equipment, the performance and the effect of adopting it are reported. The equipment for the volume reduction of spent fuel channel boxes and spent control rods is developed since these are major high level radioactive solid wastes, and their apparent volume is large. Also the target of development, investigated things, the construction and function of the equipment, the performance and the effect of adopting it are reported. (Kako, I.)

  13. Design and safety data of commercial nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Izumi, Fumio; Harayama, Yasuo; Nakazima, Tetuo

    1979-02-01

    Following the previous JAERI-M 6732(1976) and JAERI-M 7261(1977), the 1978 edition as of the December is presented, which contains the data of design parameters, performance, components and equipments in nuclear power plants of Japan. Data are given in tables by computer processing. (author)

  14. Maintainability design criteria for packaging of spacecraft replaceable electronic equipment.

    Science.gov (United States)

    Kappler, J. R.; Folsom, A. B.

    1972-01-01

    Maintainability must be designed into long-duration spacecraft and equipment to provide the required high probability of mission success with the least cost and weight. The ability to perform repairs quickly and easily in a space environment can be achieved by imposing specific maintainability design criteria on spacecraft equipment design and installation. A study was funded to investigate and define design criteria for electronic equipment that would permit rapid removal and replacement in a space environment. The results of the study are discussed together with subsequent simulated zero-g demonstration tests of a mockup with new concepts for packaging.

  15. A new method of knowledge processing for equipment diagnosis of nuclear power plants

    International Nuclear Information System (INIS)

    Fujii, M.; Fukumoto, A.; Tai, I.; Morioka, T.

    1987-01-01

    In this work, the authors complete the development of a new knowledge processing method and representation for equipment diagnosis of nuclear power plants and evaluate its functions by applying to the maintenance and diagnosis support system of the reactor instrumentation. This knowledge processing method system is based on the Cause Generation and Checking concept and has sufficient performance not only in the diagnosis function but also in the man-machine interfacing function. The maintenance and diagnosis support system based on this method leads to the possibility for users to diagnose various phenomena occurred in an objective equipment to the considerable extent by consulting with the system, even if they don't have enough knowledge. With this system, it becomes easy for operators or plant engineers to take immediate actions to counteract against the abnormality. The maintainability of the equipments is improved and MTTR (Mean Time To Repair) is expected to be shorter. This new knowledge processing method is proved to be suited for fault diagnosis of the equipments of nuclear power plants

  16. High-temperature gas-cooled reactor steam-cycle/cogeneration lead plant. Plant Protection and Instrumentation System design description

    International Nuclear Information System (INIS)

    1983-01-01

    The Plant Protection and Instrumentation System provides plant safety system sense and command features, actuation of plant safety system execute features, preventive features which maintain safety system integrity, and safety-related instrumentation which monitors the plant and its safety systems. The primary function of the Plant Protection and Instrumentation system is to sense plant process variables to detect abnormal plant conditions and to provide input to actuation devices directly controlling equipment required to mitigate the consequences of design basis events to protect the public health and safety. The secondary functions of the Plant Protection and Instrumentation System are to provide plant preventive features, sybsystems that monitor plant safety systems status, subsystems that monitor the plant under normal operating and accident conditions, safety-related controls which allow control of reactor shutdown and cooling from a remote shutdown area

  17. The System 80+ Standard Plant design control document. Volume 15

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains all five parts of section 12 (Radiation Protection) of the ADM Design and Analysis. Topics covered are: ALARA exposures; radiation sources; radiation protection; dose assessment; and health physics program. All six parts and appendices A and B for section 13 (Conduct of Operations) of the ADM Design and Analysis are also contained in this volume. Topics covered are: organizational structure; training program; emergency planning; review and audit; plant procedures; industrial security; sabotage protection (App 13A); and vital equipment list (App 13B)

  18. Electric equipment for Koto Refuse Incineration Plant; Tokyoto Koto seiso kojo muke denki setsubi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-10

    Meidensha Corporation, intending to enter into refuse disposal business, delivered electric equipment to a Koto Refuse Incineration Plant, Koto Ward, Tokyo, and the facilities came into operation in October, 1998. The plant is the largest in Japan in terms of refuse processing capacity (1800t/day), and efforts are exerted to harmonize the plant with the surroundings, which involve pollution measures and a building that images a cruising yacht. The power receiving facility consists of a 66kV nominal two-circuit gas insulated switch and gas insulated transformer arranged in a space saving design. Heat from refuse incineration is fed to a steam turbine generator (yielding 50MW, the largest in Japan, with the surplus offered for sale after 15MW fed to loads in the site) and to neighboring facilities. For the suppression of fluctuations in voltage at the power receiving point, reactive power is subjected to control which is done by controlling the generator magnetic field system. An 11kV distribution system is provided to match the steam turbine generator voltage, and the voltage is stepped down to 6.6kV with the intermediary of a 23MVA gas insulated transformer. The power is fed to high voltage motors such as the one used for the induced draft fan, electric equipment in the buildings, power facilities in the plant, etc. A power monitoring board is provided in the central control room for general supervision over the power related facilities. (NEDO)

  19. A Perspective on Equipment Design for Fusion Remote Handling

    International Nuclear Information System (INIS)

    Mills, S.; Haist, B.; Hamilton, D.

    2006-01-01

    For 8 years, JET remote operations have become more capable and confident. Many tasks have been successfully completed, even those never intended to be remote maintenance activities. The general approach to the provision of remote handling equipment at JET has been the preferred use of commercially-off-the-shelf equipment. In the areas of electrical, electronic, software and control this approach has been generally achievable. However, in the area of mechanical equipment it has been more difficult. In particular the RH tooling has been almost entirely bespoke as its requirements are highly sensitive to the design of the JET component being handled and there are many design variations. Hence, JET has required the design and manufacture of over 700 types of bespoke RH equipment. This paper will discuss the experience of introducing and developing remote handling mechanical equipment for JET. The paper will cover the relationship between the remote handling equipment and the JET component design and the potential for improving the design function. A major lesson from the introduction of remote handling to JET has been demonstration of the very close interdependency of the design of JET components with design of remote handling tooling. The JET remote handling manual was originally introduced as the vehicle to ensure remote handling compatibility by the introduction of standards. Experience has shown that in general the remote handling manual approach has been insufficient. Future fusion machines will be much more complex than JET and will demand even greater remote handling compatibility. This paper will discuss possible methods for improving this process. Equipment operating in a high radiation environment must be dependable It may spend part of its time in areas that would be extremely difficult to recover from in the case of failure. The equipment may also have a high duty cycle to minimise shutdown times and probably cannot be manually inspected on a frequent

  20. Production equipment development needs for a 700 metric ton/year light water reactor mixed oxide fuel manufacturing plant

    International Nuclear Information System (INIS)

    Blahnik, D.E.

    1977-09-01

    A literature search and survey of fuel suppliers was conducted to determine how much development of production equipment is needed for a 700 metric tons/y LWR mixed-oxide (UO 2 --PuO 2 ) fuel fabrication plant. Results indicate that moderate to major production equipment development is needed in the powder and pellet processing areas. The equipment in the rod and assembly processing areas need only minor development effort. Required equipment development for a 700 MT/y plant is not anticipated to delay startup of the plant. The development, whether major or minor, can be done well within the time frame for licensing and construction of the plant as long as conventional production equipment is used

  1. 47 CFR 36.352 - Other property plant and equipment expenses-Account 6510 (Class B telephone companies); Accounts...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Other property plant and equipment expenses... Plant Expenses-Other § 36.352 Other property plant and equipment expenses—Account 6510 (Class B... JURISDICTIONAL SEPARATIONS PROCEDURES; STANDARD PROCEDURES FOR SEPARATING TELECOMMUNICATIONS PROPERTY COSTS...

  2. On the basic research of design analysis and testing based on the failure rate for pipings and equipment under earthquake conditions

    International Nuclear Information System (INIS)

    Shibata, H.

    1980-01-01

    This paper deals with the evaluation method of the failure rate of pipings and equipment of nuclear power plants under destructive earthquakes and a new design concept in this stand point of view. These researches are supported by various studies related to this subject, which have been done by the author since 1966. In this paper, the history of the development, the summaries of these studies and their significances to the practice will be described briefly. The surveys on damages of industrial facilities caused by recent destructive earthquakes are the basical study for this subject. And the continuous response observation of model structures of a plant complex to natural earthquakes is another important basic study to know the stochastic nature and significance of response analysis for the anti-earthquake design of nuclear power plants. By having the exact knowledges on these subjects, the author has been developing the evaluation procedure of the failure rate of pipings and equipment under destructive earthquake conditions, a new design method 'counter-input design' and others. Now his effort is going towards establishing their practical procedure after finishing the basic researches. (orig.)

  3. Development of Information Datasheets of Nuclear Power Plant (NPP) Equipment using cfiXLM schema

    International Nuclear Information System (INIS)

    Lee, Jaiho; Song, Eunhye

    2014-01-01

    In 2009, EPRI (Electrical Power Research Institute) published a new NPP information handover guide to provide NPP owners and operators with data handover templates in consistent format for effective delivery of information during all stages of the handover process. Another difficult concern for NPP data information management is to exchange the data information among many organizations such as NPP owners, operators, engineering companies, suppliers, and vendors. As a matter of fact, the improperly formatted handover of information sometimes occurs due to the discrepancy of data format (e. g., data description language type). This improper delivery can make negative effects on NPP integrity and safety. Thus, the lack of proper exchange for different data information systems of organizations should be resolved by using an international standard data format. The standard data format can reduce the cost and time for data exchange in each phase for design, procurement, delivery, installation, operation and maintenance of equipment. The AEX(automating equipment information exchange) pilot implementation project team under EPRI advanced nuclear technology (ANT) program has been conducted a research for the use of XML equipment schemas for electronic data exchange(EDE). They applied XML equipment schema for the design, selection, quotation, purchase and mock install of a safety injection centrifugal pump using EDE standard HI(hydraulic institute) 50.7. For data exchange, FIATECH, an industry consortium, has equally developed library of templates and reference data for ISO-15926, which is an international standard capable of reducing data-error and delivery time for exchanging data among different organizations. KHNP as an only owner/operator company has not experienced much difficulty in data interoperability with other organizations, but continued its unremitting exertions to develop a robust system capable of managing data information generated in all the stages of NPP

  4. Development of Information Datasheets of Nuclear Power Plant (NPP) Equipment using cfiXLM schema

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaiho; Song, Eunhye [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In 2009, EPRI (Electrical Power Research Institute) published a new NPP information handover guide to provide NPP owners and operators with data handover templates in consistent format for effective delivery of information during all stages of the handover process. Another difficult concern for NPP data information management is to exchange the data information among many organizations such as NPP owners, operators, engineering companies, suppliers, and vendors. As a matter of fact, the improperly formatted handover of information sometimes occurs due to the discrepancy of data format (e. g., data description language type). This improper delivery can make negative effects on NPP integrity and safety. Thus, the lack of proper exchange for different data information systems of organizations should be resolved by using an international standard data format. The standard data format can reduce the cost and time for data exchange in each phase for design, procurement, delivery, installation, operation and maintenance of equipment. The AEX(automating equipment information exchange) pilot implementation project team under EPRI advanced nuclear technology (ANT) program has been conducted a research for the use of XML equipment schemas for electronic data exchange(EDE). They applied XML equipment schema for the design, selection, quotation, purchase and mock install of a safety injection centrifugal pump using EDE standard HI(hydraulic institute) 50.7. For data exchange, FIATECH, an industry consortium, has equally developed library of templates and reference data for ISO-15926, which is an international standard capable of reducing data-error and delivery time for exchanging data among different organizations. KHNP as an only owner/operator company has not experienced much difficulty in data interoperability with other organizations, but continued its unremitting exertions to develop a robust system capable of managing data information generated in all the stages of NPP

  5. Review of Design Data for Safety Assessment of Tokai Reprocessing Plant. Control of hydrogen gas produced by radiolysis of reprocessing solutions at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Omori, E.; Surugaya, N.; Takaya, A.; Nakamura, H.; Maki, A.; Yamanouchi, T.

    1999-10-01

    Radioactive materials in aqueous solution at a nuclear fuel reprocessing plant causes radiolytic generation of several gases including hydrogen. Hydrogen accumulating in equipment can be an explosion hazard. In such plants, though the consideration in the design has been fundamentally made in order to remove the ignition source from the equipment, the hydrogen concentration in the equipment should not exceed the explosion threshold. It is, therefore, desired to keep the hydrogen concentration lower than the explosion threshold by dilution with the air introduced into equipment, from the viewpoint which previously prevents the explosion. This report describes the calculation of hydrogen generation, evaluation of hydrogen concentration under abnormal operation and consideration of possible improvement at Tokai Reprocessing Plant. The amount of hydrogen generation was calculated for each equipment from available data on radiolysis induced by radioactive materials. Taking into consideration for abnormal condition that is single failure of air supply and loss of power supply, the investigation was made on the method for controlling so that the hydrogen concentration may not exceed the explosion threshold. Possible means which can control the concentration of hydrogen gas under the explosion threshold have been also investigated. As the result, it was found that hydrogen concentration of most equipment was kept under the explosion threshold. It was also shown that improvement of the facility was necessary on the equipment in which the concentration of the hydrogen may exceed the explosion threshold. Proposals based on the above results are also given in this report. The above content has been described in 'Examination of the hydrogen produced by the radiolysis' which is a part of 'Reviews of Design Data for Safety Assessment of Tokai Reprocessing Plant' (JNC TN8410 99-002) published in February 1999. This report incorporates the detail evaluation so that operation

  6. Kozloduy Nuclear Power Plant (Unit 1 and 2). Proposed modifications to increase the seismic capability of equipment and main structures

    International Nuclear Information System (INIS)

    Ordonez Villalobos, A.; Monette, P.R.

    1993-01-01

    Within the framework of the European Community's PHARE Programme of improvement to facilities, their operating systems, equipment and buildings of the Kozloduy NPP in Bulgaria, plant safety during seismic events is considered to be an issue of overriding importance, especially in view of the earthquakes the region suffered during the last decade. Westinghouse Energy Systems International (WESI) and Empresarios Agrupados (EA) have initiated an intensive programme for physical upgrading of equipment with a view to augmenting its seismic capability and, at the same time, to studying design modifications in the diesel-generator buildings, pump house and main building structures (turbines, electrical building). The implementation of these modifications requires an in situ inspection of the real conditions of the various elements, analyses, conceptual design and detail engineering, all of which has to be done in short periods of time using resources available at the plant. This activity is performed by the companies mentioned above, with the collaboration of two engineering companies, Energoproekt of Bulgaria and INITEC of Spain. This paper describes the activities developed and the treatment given to the various aspects of improvement of the seismic capability of equipment and structures. (author)

  7. Upgrading of seismic design of nuclear power plant building

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hiroshi [Tokyo Univ. (Japan). Faculty of Engineering; Kitada, Yoshio

    1997-03-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan`s effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  8. Upgrading of seismic design of nuclear power plant building

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Kitada, Yoshio.

    1997-01-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan's effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  9. Design concepts to enhance nuclear power plant protection

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.; Varnado, G.B.

    1980-01-01

    Using a modern design for a nuclear power plant as a point of departure, this study examines the enhancement of protection which may be achieved by changes to the design. These changes include concepts such as complete physical separation of redundant trains of safety equipment, hardened enclosures for water storage tanks, and hardened shutdown heat removal systems. The degree of enhancement (value) is examined in terms such as the potential reduction in the number of vital areas and the increase in probability of adversary sequence interruption. The impacts considered include constraints imposed upon operations and maintenance personnel and increased capital and operating costs. The study concludes that structural design changes alone do not provide significant increases in protection

  10. Urgent reconstruction and re-equipping of coking plants

    Energy Technology Data Exchange (ETDEWEB)

    Kvitkin, I.A.; Martynenko, V.M.; Rozenfel' d, M.S.; Svyatogorov, A.A.; Shvartsman, I.G.

    1986-03-01

    This paper discusses the various options involved: complete or partial reconstruction of existing buildings and equipment or new construction with new equipment and new underground and surface communications. It explains that reconstruction work is divided into three phases: initial phase (clearance, dismantling, closing down coking batteries); basic phase (fitting heat-resistant materials, prestart-up assembly work); final phase (drying out, heating up, adjustments, start-up). A structured scheme for a typical initial phase is described and a method of calculating the durations of the various phases is discussed. Conclusion is that there is an urgent requirement for a document to be produced for the control of reconstruction work; it should contain standard durations and could serve as a standard for coking plant reconstruction work.

  11. Designing for nuclear power plant maintainability and operability

    International Nuclear Information System (INIS)

    Pedersen, T.J.

    1998-01-01

    Experience has shown that maintenance and operability aspects must be addressed in the design work. ABB Atom has since long an ambition of achieving optimised, overall plant designs, and efficient feedback of growing operating experience has stepwise eliminated shortcomings, and yielded better and better plant operating performances. The records of the plants of the latest design versions are very good; four units in Sweden have operated at an energy availability of 90.1%, and the two Olkiluoto units in Finland at a load factor of 92.7%, over the last decade. The occupational radiation exposures have also been at a low level. The possibilities for implementing 'lessons learned' in existing plants are obviously limited by practical constraints. In Finland and Sweden, significant modernisations are still underway, however, involving replacement of mechanical equipment, and upgrading and backfitting of I and C systems on a large scale, in most of the plants. The BWR 90 design focuses on meeting requirements from utilities as well as new regulatory requirements, with a particular emphasis on the consequences of severe accidents; there shall be no large releases to the environment. Other design improvements involve: all-digital I and C systems and enhanced human factors engineering to improve work environment for operators, optimisation of buildings and containment to decrease construction time and costs, and selection of materials as well as maintenance of operating procedures to reduce radiation exposures even further. The BWR 90 design was offered to Finland in the early 1990s, but development work continues. It has been selected by a number of European utilities for assessing its conformance with the European Utility Requirements (EUR), aiming at a specific EUR Volume 3 for the BWR 90. Some characteristics of the ABB BWRs, with emphasis on features of importance for achieving improved economy and enhanced safety, are described below. (author)

  12. Overview of nuclear power plant equipment qualification issues and practices

    International Nuclear Information System (INIS)

    Torr, K.G.

    1989-01-01

    This report presents a view of and commentary on the current status of equipment qualification (EQ) in nuclear industries of the major western nations. The introductory chapters discuss the concepts of EQ, the elements of EQ process and highlight some of the key issues in EQ. A brief review of industry practices and some of the prevalent industrial standards is presented, followed by an overview of current regulatory positions in the USA, France, Germany and Sweden. A summary and commentary on the latest research findings on issues relating to accident simulation, to aging simulation and some special topics related to EQ, has been contributed by Franklin Research Centre of Philadelphia. The last part of the report deals with equipment qualification in Canada and gives recommendations on EQ for new plants as well as currently operational CANDU nuclear power plants

  13. Military Traffic Management Command Financial Reporting of Property, Plant, and Equipment

    National Research Council Canada - National Science Library

    1998-01-01

    The overall audit objective was to determine whether the property, plant, and equipment accounts in the FY 1996 Defense Business Operations Fund consolidated financial statements were presented fairly...

  14. Upgrading instrumentation and control in nuclear power plants. Design criteria

    International Nuclear Information System (INIS)

    Rodriguez Rodriguez, M.C.; Alvarez Menendez, A.

    1997-01-01

    The use of programmed digital technology in Protection, Control, Monitoring and Information Systems in new generation nuclear power plants, or the use of this technology to replace or upgrade existing systems based on wired analog instrumentation and electromechanical relays, has led to new international standards which establish new design requirements or adapt existing requirements to this technology. Additionally, both regulatory organisations and the industry are discussing the reliability of this technology, regarding common mode failures that may occur in redundant protection channels, due to the use of equipment and software with the same characteristics. The first part of this paper addresses the most important aspects of new international standards regarding classification criteria for I and C systems, equipment and functions, depending on their importance to safety and the design criteria applicable to each category. Special attention is drawn to requirements concerning software quality assurance and the design of new control rooms. The paper then goes on to discuss the different technical solutions being implemented, using equipment and software diversification, in order to prevent the possibility of common mode failures affecting the protection function. (Author)

  15. Equipment qualification testing - a practical approach

    International Nuclear Information System (INIS)

    Davies, G.A.; McDougall, R.I.; Poirier, M.P.

    1996-01-01

    When nuclear safety equipment is credited with a Required Safety Function it must properly perform that function to facilitate safe control and/or shutdown of the plant during a design basis accident. When such equipment is required to be environmentally (EQ) and/or seismically qualified (SQ) for safety related use in CANDU nuclear power plants, the preferred method of qualification is by type testing. The qualification testing process requires that the test specimen equipment be subjected to the aging stressors associated with the normal service conditions that it would experience during it's required qualified (or service) life. Following the aging process, the test specimen is in a condition representative of that in which it would be at the end of its service life in the plant. The test specimen is then subjected to a simulated accident during which it must satisfy performance requirements thereby demonstrating that it can perform its required safety function. The performance requirements specified for the qualification testing must be designed to ensure that satisfactory performance of the safety function is demonstrated during the qualification program. This paper provides descriptions of practical methods used in the deriving and satisfying of relevant performance requirements during the qualification testing of safety related equipment. (author)

  16. Some design and operating aspects of the Ranger uranium mine treatment plant

    International Nuclear Information System (INIS)

    Baily, P.A.

    1984-01-01

    Environmental considerations were key factors in the design of the Ranger Uranium Mines treatment plant. The mine is located adjacent to the Kakadu National Park and has an average rainfall of 1.6m per annum. No contaminated water or liquid effluents are to be released from the project area and thus water management is a key design and operating fact. Particulate and gas emission criteria influenced design as did occupational hygiene factors (dust, radon, housekeeping, maintenance access). Equipment selection and engineering standards were conservative and resulted in the plant attaining design performance in less than three months from the date of commissioning. A number of mechanical and operational problems were experienced. However, none of these problems have had a significant effect on production

  17. Damages of industrial equipments in the 1995 Hyougoken-Nanbu Earthquake

    International Nuclear Information System (INIS)

    Iwatsubo, Takuzo

    1997-01-01

    Hanshin-Awaji area has a population of approximately 3 million and many industries, including heavy industry, harbor facilities and international trading companies. The 1995 Hyougoken-Nanbu Earthquake occurred just in this area which is 25kmx2km oblong containing Kobe city. About 5,500 people were killed and 250,000 people lost their houses. Japan society of mechanical engineers organized the investigative committee of earthquake disaster of industrial equipments after the earthquake in order to investigate the disaster damages of industrial equipments and to give data for a design manual for mechanical equipments against earthquake excitation. This is an investigation report of the disaster damages of industrial machine equipments. Damages to machine equipment of industries in the high intensity region of the earthquake are illustrated. The mechanisms of the damages and measures against earthquake and safety of nuclear power plant design are discussed. Then it is known that the design of nuclear power plant is different from the general industrial facilities and the damage which was suffered in the general industrial facilities does not occur in the nuclear power plant. (J.P.N.)

  18. Damages of industrial equipments in the 1995 Hyougoken-Nanbu Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Iwatsubo, Takuzo [Kobe Univ. (Japan). Faculty of Engineering

    1997-03-01

    Hanshin-Awaji area has a population of approximately 3 million and many industries, including heavy industry, harbor facilities and international trading companies. The 1995 Hyougoken-Nanbu Earthquake occurred just in this area which is 25kmx2km oblong containing Kobe city. About 5,500 people were killed and 250,000 people lost their houses. Japan society of mechanical engineers organized the investigative committee of earthquake disaster of industrial equipments after the earthquake in order to investigate the disaster damages of industrial equipments and to give data for a design manual for mechanical equipments against earthquake excitation. This is an investigation report of the disaster damages of industrial machine equipments. Damages to machine equipment of industries in the high intensity region of the earthquake are illustrated. The mechanisms of the damages and measures against earthquake and safety of nuclear power plant design are discussed. Then it is known that the design of nuclear power plant is different from the general industrial facilities and the damage which was suffered in the general industrial facilities does not occur in the nuclear power plant. (J.P.N.)

  19. Design guide for heat transfer equipment in water-cooled nuclear reactor systems

    International Nuclear Information System (INIS)

    1975-07-01

    Information pertaining to design methods, material selection, fabrication, quality assurance, and performance tests for heat transfer equipment in water-cooled nuclear reactor systems is given in this design guide. This information is intended to assist those concerned with the design, specification, and evaluation of heat transfer equipment for nuclear service and the systems in which this equipment is required. (U.S.)

  20. Design of EPON far-end equipment based on FTTH

    Science.gov (United States)

    Feng, Xiancheng; Yun, Xiang

    2008-12-01

    Now, most favors fiber access is mainly the EPON fiber access system. Inheriting from the low cost of Ethernet, usability and bandwidth of optical network, EPON technology is one of the best technologies in fiber access and is adopted by the carriers all over the world widely. According to the scheme analysis to FTTH fan-end equipment, hardware design of ONU is proposed in this paper. The FTTH far-end equipment software design deference modulation design concept, it divides the software designment into 5 function modules: the module of low-layer driver, the module of system management, the module of master/slave communication, and the module of main/Standby switch and the module of command line. The software flow of the host computer is also analyzed. Finally, test is made for Ethernet service performance of FTTH far-end equipment, E1 service performance and the optical path protection switching, and so on. The results of test indicates that all the items are accordance with technical request of far-end ONU equipment and possess good quality and fully reach the requirement of telecommunication level equipment. The far-end equipment of FTTH divides into several parts based on the function: the control module, the exchange module, the UNI interface module, the ONU module, the EPON interface module, the network management debugging module, the voice processing module, the circuit simulation module, the CATV module. In the downstream direction, under the protect condition, we design 2 optical modules. The system can set one group optical module working and another group optical module closure when it is initialized. When the optical fiber line is cut off, the LOS warning comes out. It will cause MUX to replace another group optical module, simultaneously will reset module 3701/3711 and will make it again test the distance, and will give the plug board MPC850 report through the GPIO port. During normal mode, the downstream optical signal is transformed into the

  1. Multi-criteria evaluation and priority analysis for localization equipment in a thermal power plant using the AHP (analytic hierarchy process)

    International Nuclear Information System (INIS)

    Yagmur, Levent

    2016-01-01

    Ensuring the safety of its energy supply is one of the main issues for newly industrialized/developing countries when utilizing domestic sources for electricity generation. Turkey depends heavily on imported gas to generate electricity, and the ratio of natural gas power generation to total electricity production is nearly 50%. Coal-fired thermal power plants using domestic resources are considered a good option to decrease the large amount of imported natural gas, and to supply a secure energy demand. However, electricity generation from coal-fired power plants using local lignite reserves is not adequate to maintain a secure energy mix and provide sustainable development, as Turkey does not have indigenous energy sector technology. Therefore, technology transfer and its localization are crucial for newly industrialized/developing countries such as Turkey. The aim of this study is to use the analytic hierarchy process to determine a priority analysis in relation to localization equipment for a thermal power plant. Parameters involved, such as readiness of both infrastructure and human resources, manpower as skilled labor, market potential for equipment developed by transferred technology, and competition in global/internal market, are related to localization in thermal power plant technologies, and are considered in relation to the country's technological capability, design ability, possession of materials/equipment, and ability to erect a plant. Results of analysis show that the boiler is the most important piece of equipment in this respect, and that heaters and fans are ranked after the boiler with respect to local conditions. - Highlights: • Localization of foreign technology was determined for developing countries. • An evaluation and priority analysis were performed for parts of a thermal power plant. • Analytic hierarchy process was applied for the hierarchical ordering of parts when transferring technology.

  2. Study on designing a complete pilot plant for processing sandstone ores in Palua-Parong area

    International Nuclear Information System (INIS)

    Le Quang Thai; Tran Van Son; Tran The Dinh; Trinh Nguyen Quynh; Vu Khac Tuan

    2015-01-01

    Design work is the first step of the construction and operation of pilot plant. Thus, the project Study on designing a complete pilot plant for processing sandstone ores in Palua - Parong area was conducted to design a pilot plant for testing entire technological process to obtain yellowcake. Based on a literature review of uranium ore processing technology in the world, information of ore and previous research results of uranium ore in PaLua - PaRong area at the Institute for Technology of Radioactive and Rare Elements, a suitable technological flowsheet for processing this ore has been selected. The size, location of the pilot plant and planed experiments has been selected during the implementation of this project, in which basic parameters, designed system of equipment, buildings, ect. were also calculated. (author)

  3. A preliminary design of mechanical device on industrial digital radiography equipment design

    International Nuclear Information System (INIS)

    Nur Khasan; Samuel Praptoyo

    2015-01-01

    A preliminary design of mechanical device on industrial digital radiography equipment has been done. this design is intended as a basis for the manufacture of complete facilities for the realization a prototype on industrial digital radiography equipment. the design and construction were carried out by paying attention to the general configuration of the basic design in which its mechanical design has several components with specific dimensions and heavy mass. this design consist of a main frame holder, flat panel detector support and hydraulic hand stacker for mounting the x-ray machine. this mechanical device design will then be fabricated to facilitate and assist work of digital radiographic retrieval. computer application programs sketch-up is used to draw this design and the analysis stress of autodesk inventor to analysis the strength construction design. the results of this design are the configuration drawing, sketch drawings of construction and the safety factor of construction design with a minimum value of 2.39 as well as a maximum value of 15 when to be simulated by the load 500 Kg which is 4 times of total workload. (author)

  4. Electromagnetic compatibility for the control and command equipments in nuclear power plants

    International Nuclear Information System (INIS)

    Buisson, J.

    1985-06-01

    Different kinds of electrical interference produce some disturbance on electronic sub-assemblies used to assume the control and the command of nuclear reactors. Following interferences are described: power supply lines perturbations, potential difference between grounding connections, electromagnetic fields. A method is described for testing the EMC of different equipments. The advantages of this method are: no destructive method, usable for testing equipment ''in situ'' in operating conditions on nuclear power plant, usable for testing equipment before operating conditions (acceptance test), level of the testing signals similar to the electrical interference level induced by the electromagnetic environment in normal operating conditions, no particular equipment and installation for test are required [fr

  5. Hydroelectric plants: economical and ecological consequences of equipment and exploitation variants

    International Nuclear Information System (INIS)

    Maire, P.; Bansard, J.F.; Do, T.

    1995-01-01

    The increasing number of renewal demands for hydroelectric plants authorizations has raised the question of the pertinency and efficiency of the equipments used. Choices are rarely clearly justified by the petitioners. After reminding the reasons and consequences of a given choice and equipment, the necessary steps of an authorization demand are illustrated by a concrete case. It shows that some equipment-management combinations can lead to a more satisfying economical and ecological balance-sheet than those generally proposed. The popularization of computer use allows the examining services to dispose of clear and pedagogical elements to select the regular choices. (J.S.). 10 refs., 11 figs., 2 tabs

  6. Property, Plant and Equipment disclosure requirements and firm characteristics: the Portuguese Accounting Standardization System

    OpenAIRE

    Botelho, Rafaela; Azevedo, Graça; Costa, Alberto J.; Oliveira, Jonas

    2015-01-01

    In the new Portuguese accounting frame of reference (Portuguese Accounting Standardization System – Sistema de Normalização Contabilística), the issues related to Property, Plant and Equipment assets are dealt with in the Accounting and Financial Reporting Standard (Norma Contabilística de Relato Financeiro – NCRF) 7 (Property, Plant & Equipment). The present study intends to assess the degree of compliance with the disclosure requirements of this accounting standard by Portuguese unlisted co...

  7. Candu Energy's Aging and Obsolescence Program and its Application to Operating Facilities and New Plant Design

    International Nuclear Information System (INIS)

    Dam, R.; Gold, R.; McCrea, L.

    2012-01-01

    While plant aging is inevitable, predictable and 'graceful 'aging' behavior can be achieved through the implementation of a comprehensive and integrated Plant Life Management (PLiM) program. Despite organizations like the IAEA and INPO placing more emphasis on equipment reliability, there is still a lack of completely integrated programs in the industry as evidenced by: - Piece-meal, often crisis-driven, implementation comprising many different, partial solutions; - Duplication of effort often seen when different groups work in 'silos'. A strategy which fits with existing plant processes and programs, and which coordinates a broad range of equipment reliability activities is key to achieving the desired results. An example of such a program is the Aging and Obsolescence Program (AOP). AOP follows application of INPO AP-913 guidance for equipment reliability. The program is augmented to include single point vulnerability identification, unified approach to short and long lived components, risk management, spare parts management, and the identification and resolution of obsolescence issues. The systematic nature of the program provides the needed foundation to old and new stations alike. For existing operating stations some of the key uses include outage interval extension, reduced forced outages, and/or outage time reduction, any of which can translate into improving plant performance, competitiveness, and significant dollars saved. Program elements applied to new plant design are commensurate with the industry direction to 'design for reliability', and has allowed Candu Energy to learn and to improve upon what it can offer to operating stations. This paper intends to describe the basic elements of Candu Energy's Aging and Obsolescence Program and will share some of the experience having applied it to existing operating stations, consider applications to support expanding regulatory requirements, and describe the integration into the design of new plants, promoting

  8. Design, construction and testing of replacement nuclear coolant pump stators to meet today's equipment reliability expectations

    International Nuclear Information System (INIS)

    Fostier, L.; Howell, D.

    2005-01-01

    The reliability expectations of equipment and components in today's nuclear power plant are much greater than three or more decades ago when nuclear plants were first constructed due to economic impact of a failure. Very few components in a pressurized water reactor plant can have as much impact of the plants capacity factor as a catastrophic failure of a reactor coolant pump winding. This paper describes the maintenance approach taken by one North American utility in attempt to preclude such failures. The paper will discuss the challenges of the reactor coolant pump application and the enhancements made in the winding design and construction by the supplier to address failure mechanisms so as to better meet present reliability expectations in accordance with dedicated specifications. The paper will also present the in-process and final testing requirements and limits imposed in an attempt to ensure quality of the machine windings, along with selected test results from the stators that have been designed and constructed to these specifications to date. (author)

  9. Development of computer-aided design and production system for nuclear power plant

    International Nuclear Information System (INIS)

    Ishii, Masanori

    1983-01-01

    The technically required matters related to the design and production of nuclear power stations tended to increase from the viewpoint of the safety and reliability, and it is indispensable to cope with such technically required matters skillfully for the rationalization of the design and production and for the construction of highly reliable plants. Ishikawajima Harima Heavy Industries Co., Ltd., has developed the computer-aided design data information and engineering system which performs dialogue type design and drawing, and as the result, the design-production consistent system is developed to do stress analysis, production design, production management and the output of data for numerically controlled machine tools consistently. In this paper, mainly the consistent system in the field of plant design centering around piping and also the computer system for the design of vessels and others are outlined. The features of the design works for nuclear power plants, the rationalization of the design and production management of piping and vessels, and the application of the CAD system to other general equipment and improvement works are reported. This system is the powerful means to meet the requirement of heightening quality and reducing cost. (Kako, I.)

  10. Gas Reactor International Cooperative program. Pebble bed reactor plant: screening evaluation. Volume 3. Appendix A. Equipment list

    International Nuclear Information System (INIS)

    1979-11-01

    This report consists of three volumes which describe the design concepts and screening evaluation for a 3000 MW(t) Pebble Bed Reactor Multiplex Plant (PBR-MX). The Multiplex plant produces both electricity and transportable chemical energy via the thermochemical pipeline (TCP). The evaluation was limited to a direct cycle plant which has the steam generators and steam reformers in the primary circuit. Volume 1 reports the overall plant and reactor system and was prepared by the General Electric Company. Core scoping studies were performed which evaluated the effects of annular and cylindrical core configurations, radial blanket zones, burnup, and ball heavy metal loadings. The reactor system, including the PCRV, was investigated for both the annular and cylindrical core configurations. Volume 3 is an Appendix containing the equipment list for the plant and was also prepared by United Engineers and Constructors, Inc. It tabulates the major components of the plant and describes each in terms of quantity, type, orientation, etc., to provide a basis for cost estimation

  11. The point of view of thermal equipment users; Le point de vue des gestionnaires d`equipements thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Barroyer, P. [Compagnie Generale de Chauffe, 59 - Saint Andre Lez Lille (France)

    1997-12-31

    The influence of new pollution regulations in France on the operation of thermal equipment for central heating systems or industrial heat process systems, is examined. The main French regulations concerning air pollution control and energy rational consumption are reviewed, and their effects on the design, equipment, operation and costs of heat plants are discussed: impacts of the decree on upgrading and disposal of fossil fuel ashes, the decree on special protection zone (large cities), the clean air law, the compulsory declaration for classified combustion plants and limit air pollution emission levels

  12. Seismic proving tests on the reliability for large components and equipment of nuclear power plants

    International Nuclear Information System (INIS)

    Ohno, Tokue; Tanaka, Nagatoshi

    1988-01-01

    Since Japan has destructive earthquakes frequently, the structural reliability for large components and equipment of nuclear power plants are rigorously required. They are designed using sophisticated seismic analyses and have not yet encountered a destructive earthquake. When nuclear power plants are planned, it is very important that the general public understand the structural reliability during and after an earthquake. Seismic Proving Tests have been planned by Ministry of International Trade and Industry (Miti) to comply with public requirement in Japan. A large-scale high-performance vibration table was constructed at Tasted Engineering Laboratory of Nuclear Power Engineering Test Center (NU PEC), in order to prove the structural reliability by vibrating the test model (of full scale or close to the actual size) in the condition of a destructive earthquake. As for the test models, the following four items were selected out of large components and equipment important to the safety: Reactor Containment Vessel; Primary Coolant Loop or Primary Loop Recirculation System; Reactor Pressure Vessel; and Reactor Core Internals. Here is described a brief of the vibration table, the test method and the results of the tests on PWR Reactor Containment Vessel and BWR Primary Loop Recirculation System (author)

  13. Military Traffic Management Command Financial Reporting of Property, Plant, and Equipment

    National Research Council Canada - National Science Library

    1998-01-01

    .... We also assessed management controls as they applied to the overall audit objective. The MTMC attempted to improve its reporting of property, plant, and equipment values for the FY 1996 Defense Business Operations Fund financial statements...

  14. Electrical and control equipment in nuclear power plants. Problems when replacing aging equipment; El och kontrollutrustning i kaernkraftverk - Problematik vid utbyte av aaldrad utrustning

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Anna; Haakansson, Goeran

    2012-11-01

    Interoperability between different technical systems is more complicated when old and new technology meet, such as between analog and digital technology. New electrical and I and C equipment is selected with consideration to simplify and improve the compatibility and interoperability. The original construction of nuclear power plants with electricity and I and C equipment had more natural interfaces. Generally experienced guidance, to the management of interoperability and interfaces, feels insufficient. Skills transfer programs are identified as a major need, as more and more important personnel are retiring and important information is lost with them. Lack of appropriate skills directly affects the ability to produce accurate and complete requirements specification. Failure modes of newer electrical and I and C equipment are perceived as more complex than the older equipment. When choosing equipment, attempts are made to minimize unnecessary features, to reduce the number of potential failure modes. There is a lack of consistent understanding of the meaning of robustness in electrical technology and I and C technology, in the nuclear plant engineering departments. The overall picture is that the robustness has worsened since the facilities were built. The Swedish nuclear power plants have an internal organizational structure with separated client and support organization. This splits the nuclear organization into two distinct parts which threaten to separate the two entities focus. Engineering departments at the Swedish nuclear power plants express a need for increased expertise in the client organization (blocks). Competence requested is for example, system knowledge to facilitate and enhance the quality of the initial analysis performed in the blocks. Suppliers receive more recently larger turnkey projects, both to minimize costs but also to minimize the interfaces and co-function problems. This, however, heightens demands for knowledge transfer between

  15. Potentially damaging failure modes of high- and medium-voltage electrical equipment

    International Nuclear Information System (INIS)

    Hoy, H.C.

    1984-01-01

    The high- and medium-voltage electrical equipment failures of both nuclear and nonnuclear electric utilities have been reviewed for possible disruptive failure modes that would be of special concern in a nuclear power plant. The resulting emphasis was on the electrical faults of transformers, switchgear (circuit breakers), lightning (surge) arrestors, high-voltage cabling and buswork, control boards, and other electrical equipment that, through failure, can be the initiating event that may expand the original fault to nearby or associated equipment. Many failures of such equipment were found and documented, although the failure rate of electrical equipment in utilities is historically quite low. Nuclear plants record too few failures to be statistically valid, but failures that have been recorded show that good design usually restricts the failure to a single piece of equipment. Conclusions and recommendations pertaining to the design, maintenance, and operation of the affected electrical equipment are presented

  16. TAPS-1 and 2 upgradation: a new lease of life to the vintage plant of 1960 design

    International Nuclear Information System (INIS)

    Singh, K.P.; Sharma, B.L.; Bhattacharjee, S.; Ramamurty, U.; Mittal, Subhash

    2006-01-01

    Improvements and modifications in Nuclear Power Plants design and safety is a continuous process to maintain the highest safety standards and for the survival of the nuclear industry in the today's competitive world. Old plants modifications are aimed at to reduce the risk posed by equipment degradation and outdated systems. Due to these considerations plant up gradation becomes inevitable to preclude the possibility of severe accidents. Tarapur Atomic Power Station 1 and 2 (TAPS 1 and 2) is a twin Boiling Water Reactor (BWR) nuclear power station, with each unit operating at 160 MWe. Both the units were commissioned in the year 1969 and have completed about 36 years of commercial operation. The systems and equipment layout of this plant is based upon the BWR design criteria's prevailing at that time. As the plant had operated for more than three decades, it was felt prudent to assess the condition of plant structures, systems and components and apply the new design criteria's of the latest design nuclear plants to determine the need for system modifications and life extension of the plant. The detailed review of the plant included the Probabilistic Safety Analysis (PSA) studies, aging degradations of structures, systems and components, operating experiences, seismic studies and design review based upon the General Design Criteria's, codes and guides. The reviews were carried out by expert groups and completed in about three years. The proposed modifications were mainly about the change in equipment layout and unit wise segregation of electrical and mechanical systems and replacement of the 3 x 50 % capacity emergency diesel generators with 3 x 100 % capacity diesel generators apart from aging related inspections/replacements and seismic up grades. The shared systems such as control rod drive hydraulic system, reactor shut down cooling system, de-linking of fuel pool cooling system from reactor shut down cooling system and power supply to the neutron monitoring

  17. Initial acceptance test experience with FFTF plant equipment

    International Nuclear Information System (INIS)

    Brown, R.K.; Coleman, K.A.; Mahaffey, M.K.; McCargar, C.G.; Young, M.W.

    1978-09-01

    The purpose of this paper is to examine the initial acceptance test experience of certain pieces of auxiliary equipment of the Fast Flux Test Facility (FFTF). The scope focuses on the DHX blowers and drive train, inert gas blowers, H and V containment isolation valves, and the Surveillance and In-service Inspection (SISI) transporter and trolley. For each type of equipment, the discussion includes a summary of the design and system function, installation history, preoperational acceptance testing procedures and results, and unusual events and resolutions

  18. Margins related to equipment design

    International Nuclear Information System (INIS)

    Devos, J.

    1994-01-01

    Safety margins related to design of reactor equipment are defined according to safety regulations. Advanced best estimate methods are proposed including some examples which were computed and compared to experimental results. Best estimate methods require greater computation effort and more material data but give better variable accuracy and need careful experimental validation. Simplified methods compared to the previous are less sensitive to material data, sometimes are more accurate but very long to elaborate

  19. Different types of superconductors: their effect on equipment design

    International Nuclear Information System (INIS)

    Ansart, A.; Manuel, P.; Fevrier, A.

    1989-01-01

    Development of superconductors for AC current and of higher critical temperature superconducting materials enlarged the field of research in cryoelectrotechnic. The paper discusses the materials characteristics in relation with the functional needs in the equipments. Are reviewed the main points governing conductor design for a given application, the characteristics and manufacturing technics for different superconducting materials. It is shown how lighter, smaller equipments can be designed as well as new ones for functions not covered with present apparatus. 17 refs [fr

  20. Considerations for Applying Design Extension Conditions to Domestic Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ryu, Yongho

    2013-01-01

    The concept is designed to include more serious accidents than the existing design basis accidents considering additional failures. Design extension conditions can be derived based on engineering judgments, deterministic analysis or probabilistic analysis of the nuclear power plants. They are used to secure practical response capabilities to prevent or mitigate accidents. They may also require the deployment of additional safety equipment for existing nuclear power plants currently in operation. Though the general requirements of design extension conditions are described under the IAEA standards, no specific guidelines have been presented as required for their actual application to the nuclear power plant design. Furthermore, there is great variation between countries in implementing the requirements of design extension conditions. Therefore, for the actual application, considerable effort should be made among relevant organizations to establish detailed requirements of the design extension conditions. Such activities could constitute a part of the efforts of the nuclear community to meet the general public's expectations concerning the safety of nuclear power plants. The introduction of design extension conditions is expected to be a means of systematically enhancing the safety of nuclear power plants. Yet, there exists great differences in terms of the scope of analysis and the acceptance criteria, as no uniform practices have yet been established in applying the specific requirements for design extension conditions. A careful review is required in terms of the technical basis for setting the requirements, including those pertaining to the scope of analysis and the acceptance criteria. The introduction of these new requirements to Korean nuclear power plants may cause unexpected problems. Therefore, it is desirable for the regulatory agency to systematically assess the impact of design extension conditions and to discuss the arising issues with the stake holder

  1. Development of support system for maintenance and administration of reprocessing plant equipment

    International Nuclear Information System (INIS)

    Iwasaki, Syogo; Taniguchi, Takayuki; Shiraishi, Yoshihiko; Isaka, Kazuo

    1998-01-01

    Each year, maintenance work is carried out for about 10,000 pieces of equipment, including mechanical devices, electric equipment and instruments, at the Tokai Reprocessing Plant. Ninety percent of such maintenance work is preventive maintenance. In order to manage the information about the maintenance work, a computer support system was developed between 1985 and 1992. Twenty-seven thousand pieces of equipment and 180,000 maintenance histories have already been registered in the system. The system has been used for planning inspections and replacement of equipment as well as checking their maintenance histories. Actual usage of the system has shown that some auxiliary functions need to be added. The system will therefore be improved and extended. (author)

  2. Accounting Issues: An Essay Series Part IV--Property, Plant, & Equipment

    Science.gov (United States)

    Laux, Judy

    2007-01-01

    This fourth article in a series of theoretical essays intended to supplement the introductory financial accounting course is dedicated to the topic of property, plant, and equipment (PP&E), including both the accounting treatment and its related conceptual connections. The paper also addresses the measurement dilemmas, scandalous accounting…

  3. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Science.gov (United States)

    2010-01-01

    ..., Plants and Equipment Under NRC's Export Licensing Authority N Appendix N to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. N Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment...

  4. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  5. Development of Design Information Template for Nuclear Power Plants for Electromagnetic Pulse (EMP) Effect Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minyi; Ryu, Hosan; Ye, Songhae; Lee, Euijong [KNHP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    An electromagnetic pulse (EMP) is a transient electromagnetic shock wave that has powerful electric and magnetic fields that can destroy electronic equipment. It is generally well-known that EMPs can cause the malfunction and disorder of electronic equipment and serious damages to electric power systems and communication networks. Research is being carried out to protect nuclear power plants (NPPs) from EMP threats. Penetration routes of EMPs can be roughly categorized into two groups, radioactivity and conductivity. The radioactive effect refers to an impact transmitted to the ground from high-altitude electromagnetic pulses (HEMP). Such an impact may affect target equipment through the point of entry (POE) of the concrete structure of an NPP. The conductive effect refers to induced voltage or current coupled to the NPPs cable structure. The induced voltage and current affect the target equipment via connected cables. All these factors must be considered when taking into account EMP effect analysis for NPPs. To examine all factors, it is necessary to fully understand the schemes of NPPs. This paper presents a four type design information template that can be used to analyze the EMP effect in operating nuclear power plants. In order to analyze of the effects of EMPs on operating NPPs, we must consider both the conductive and radioactive effects on the target (system, equipment, structure). For these reasons, not only the equipment information, but also the information about the structure and the external penetration will be required. We are developing a design information template for robust nuclear design information acquisition. We expect to develop a block diagram on the basis of the template.

  6. Development of Design Information Template for Nuclear Power Plants for Electromagnetic Pulse (EMP) Effect Analysis

    International Nuclear Information System (INIS)

    Kim, Minyi; Ryu, Hosan; Ye, Songhae; Lee, Euijong

    2016-01-01

    An electromagnetic pulse (EMP) is a transient electromagnetic shock wave that has powerful electric and magnetic fields that can destroy electronic equipment. It is generally well-known that EMPs can cause the malfunction and disorder of electronic equipment and serious damages to electric power systems and communication networks. Research is being carried out to protect nuclear power plants (NPPs) from EMP threats. Penetration routes of EMPs can be roughly categorized into two groups, radioactivity and conductivity. The radioactive effect refers to an impact transmitted to the ground from high-altitude electromagnetic pulses (HEMP). Such an impact may affect target equipment through the point of entry (POE) of the concrete structure of an NPP. The conductive effect refers to induced voltage or current coupled to the NPPs cable structure. The induced voltage and current affect the target equipment via connected cables. All these factors must be considered when taking into account EMP effect analysis for NPPs. To examine all factors, it is necessary to fully understand the schemes of NPPs. This paper presents a four type design information template that can be used to analyze the EMP effect in operating nuclear power plants. In order to analyze of the effects of EMPs on operating NPPs, we must consider both the conductive and radioactive effects on the target (system, equipment, structure). For these reasons, not only the equipment information, but also the information about the structure and the external penetration will be required. We are developing a design information template for robust nuclear design information acquisition. We expect to develop a block diagram on the basis of the template

  7. Domestic manufacturing and reliability improvement of reactor water recirculation equipment

    International Nuclear Information System (INIS)

    Kobayashi, Hidekazu; Oi, Masao; Shida, Toichi; Yokomori, Takashi

    1982-01-01

    The reactor coolant recirculation system is one of the important systems to control the reactor output in BWR nuclear power plants. Its components require high reliability and maintainability as well as controllability. For many Japanese nuclear power plants, recirculation pumps, fluid couplings and others have been imported so far. Hitachi Ltd. has established a domestic manufacturing organization through the development and test of these equipment. The fundamental design conditions for these equipment are the improvement of the rate of utilization of plant facility, the capability to follow load, and output power stability. In this paper, the specifications, the investigation of moment of inertia and the design features of recirculation pumps, driving motors and variable frequency power supply systems are described. The paper also reports on the combination test implemented to evaluate the recirculation system. The combination test includes the test using water rheostat for the power source facility and the loading test for a recirculation pump. The application of those system equipment to an actual plant was analyzed and evaluated on a basis of the test data obtained. The result showed that the equipment can achieve the rate of change of reactor power of 30%/min. Those equipment have been employed for No. 2 reactor plant of the Fukushima No. 2 Nuclear Power Station, the Tokyo Electric Power Co., Inc. (Wakatsuki, Y.)

  8. The design of in-cell crane handling systems for nuclear plants

    International Nuclear Information System (INIS)

    Hansford, S.M.; Scott, R.

    1992-01-01

    The reprocessing and waste management facilities at (BNFL's) British Nuclear Fuels Limited's Sellafield site make extensive use of crane handling systems. These range from conventional mechanical handling operations as used generally in industry to high integrity applications through to remote robotic handling operations in radiation environments. This paper describes the design methodologies developed for the design of crane systems for remote handling operations - in-cell crane systems. In most applications the in-cell crane systems are an integral part of the plant process equipment and reliable and safe operations are a key design parameter. Outlined are the techniques developed to achieve high levels of crane system availability for operations in hazardous radiation environments. These techniques are now well established and proven through many years of successful plant operation. A recent application of in-cell crane handling systems design for process duty application is described. The benefits of a systematic design approach and a functionally-based engineering organization are also highlighted. (author)

  9. Examples for cost reduction in the design of a WWER-1000 nuclear power plant

    International Nuclear Information System (INIS)

    Kukkola, T.

    1991-01-01

    In a design project during recent years, a version for Finnish conditions has been and is being developed based on the Soviet WWER-1000 PWR plant with four horizontal steam generators. The plant will have a double containment. The inner containment will be a dry full pressure prestressed concrete containment with liner and the secondary containment will be made of ordinary concrete. Four train safety approach is adopted. It is supposed that the plant is to be designed according to the present Finnish safety requirements, e.g. severe reactor accidents are considered. When striving at an economic plant no compromises are made as far as safety is concerned. This paper describes possible cost reduction by redesigning the main technical equipment. (author). 1 ref

  10. Engineering electrodynamics electric machine, transformer, and power equipment design

    CERN Document Server

    Turowski, Janusz

    2013-01-01

    Due to a huge concentration of electromagnetic fields and eddy currents, large power equipment and systems are prone to crushing forces, overheating, and overloading. Luckily, power failures due to disturbances like these can be predicted and/or prevented.Based on the success of internationally acclaimed computer programs, such as the authors' own RNM-3D, Engineering Electrodynamics: Electric Machine, Transformer, and Power Equipment Design explains how to implement industry-proven modeling and design techniques to solve complex electromagnetic phenomena. Considering recent progress in magneti

  11. Design and safety data of commercial nuclear power plants in Japan, 1977 edition

    International Nuclear Information System (INIS)

    Izumi, Fumio; Harayama, Yasuo

    1977-09-01

    Following on previous JAERI-M 5959(1975) and JAERI-M 6732(1976), which contained the data for design parameters, performance, components and equipments of Japanese nuclear power plants, the 1977 updated edition is compiled as of June 1977. The data are arranged and tabulated by computer processing. (auth.)

  12. Optimal selection of major equipment in dual purpose plants

    International Nuclear Information System (INIS)

    Gabbrielli, E.

    1981-01-01

    Simulation of different operational conditions with the aid of a computer program is one of the best ways of assisting decision-makers in the selection of the most economic mix of equipment for a dual purpose plant. Using this approach this paper deals with the economic comparison of plants consisting of MSF desalinators and combustion gas or back pressure steam turbines coupled to low capacity electric power generators. The comparison is performed on the basis of the data made available by the OPTDIS computer program and the results are given in terms of yearly cost of production as the sum of capital, manpower, maintenance, fuel and chemical costs. (orig.)

  13. Evolution of design concepts for remotely maintainable equipment racks

    International Nuclear Information System (INIS)

    Peishel, F.L.; Mouring, R.W.; Schrock, S.L.

    1986-01-01

    Equipment racks have been used to support process equipment in radioactive facilities for many years. Improvements in the design of these racks have evolved relatively slowly primarily as a result of limitations in the capabilities of maintenance equipment; that is, tasks could only be approached from above using bridge cranes with viewing primarily through periscopes. In recent years, however, technological advances have been made by the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) in bridge-mounted servomanipulators with onboard auxiliary hoists and television viewing systems. These advances permit full cell coverage by the manipulator arms which, in turn, allow maintenance tasks to be approached horizontally as well as from above. Maintainable equipment items can be stacked vertically on a rack because total overhead access is less important and maintenance tasks that would not have been attempted in the past can now be performed. These advances permit greater flexibility in the design and cell layout of the racks and lead to concepts that could significantly increase the availability of a facility. The evolution of rack design and a description of the alternative concepts based on present maintenance systems capabilities are presented in this paper. 13 refs., 11 figs

  14. Optimization on replacement and inspection period of plant equipment

    International Nuclear Information System (INIS)

    Takase, Kentaro; Kasai, Masao

    2004-01-01

    Rationalization of the plant maintenance is one of the main topics being investigated in Japanese nuclear power industries. Optimization of the inspection and replacement period of equipments is effective for the maintenance cost reduction. The more realistic model of the replacement policy is proposed in this study. It is based on the classical replacement policy model and its cost is estimated. Then, to consider the inspection for the maintenance, the formulation that includes the risk concept is discussed. Based on it, two variations of the combination of the inspection and the replacement are discussed and the costs are estimated. In this study the effect of the degradation of the equipment is important. The optimized maintenance policy depends on the existence of significant degradation. (author)

  15. Design of chemical plant

    International Nuclear Information System (INIS)

    Lee, Dong Il; Kim, Seung Jae; Yang, Jae Ho; Ryu, Hwa Won

    1993-01-01

    This book describes design of chemical plant, which includes chemical engineer and plan for chemical plant, development of chemical process, cost engineering pattern, design and process development, general plant construction plan, project engineering, foundation for economy on assets and depreciation, estimation for cost on capital investment and manufacturing cost, design with computers optimal design and method like fluid mechanics design chemical device and estimation for cost, such as dispatch of material and device writing on design report and appendixes.

  16. Development and design of plants for high-pressure extraction of natural products

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, R; Tschiersch, R [Thyssen Industrie A.G., Witten (Germany, F.R.)

    1979-06-01

    Criteria underlying the design of plant for recovery of carrier material or extract are reviewed, particularly in relation to the extraction of natural products with supercritical CO/sub 2/. The parameters to be determined in the planning of a large-scale plant are outlined and as an example of a typical process, the extraction of spices is discussed in detail. The plant components and equipment are presented together with their particular process and construction characteristics. Finally, the thermodynamic aspects are analyzed and methods of optimizing a large-scale plant and of reducing the power consumption are outlined. Particular attention is paid to the question of optimization with regard to the most economic method of operation of such a plant to be applied in the future.

  17. The method of executing the vibration tendency management of the intermittent driving equipment in the nuclear plant

    International Nuclear Information System (INIS)

    Yonekawa, Yutaka; Fukunaga, Tatsuya

    2008-01-01

    The main rotary machine is often an intermittent driving machine in the nuclear plant. On the other hand, it was a problem for the vibration method to detect the vibration when rotating, and very to achieve the vibration tendency management for the equipment that did not rotate though it positively worked on the introduction of the equipment diagnosis technology by the vibration method of the rotation equipment in the nuclear plant. This time, because the tendency management system of the intermittent driving equipment is developed, and the tendency management was achieved, it introduces the outline and an actual case. (author)

  18. Advancements in the design of safety-related systems and components of the MARS nuclear plant

    International Nuclear Information System (INIS)

    Caira, M.; Caruso, G.; Naviglio, A.; Sorabella, L.; Farello, C.E.

    1992-01-01

    In the paper, the advancements in the design of safety-related systems and components of the MARS nuclear plant, equipped with a 600 MW th PWR, are described. These advancements are due to the special safety features of this plant, which relies completely on inherent and passive safety. In particular, the new steps of the design of the innovative, completely passive, and with an unlimited autonomy Emergency core Cooling System are described, together with the characteristics of the last version of the steam generator, developed in a new design involving disconnecting components, for a fast erection and an easy maintenance. (author)

  19. Manual on Safety Aspects of the Design and Equipment of Hot Laboratories

    International Nuclear Information System (INIS)

    1969-01-01

    With the development of atomic energy application and research, hot laboratories are now being constructed in a number of countries. The present publication describes and discusses experience in several countries in designing equipment for these laboratories. The safe handling of highly radioactive substances is the main purpose of hot laboratory design and equipment. The manual aims at helping those persons, particularly in the developing countries, who plan to design and construct a new hot laboratory or modify an existing one. It does not deal in great detail with the engineering design of protective and handling equipment; these matters can be found in the comprehensive list of references. The manual itself covers only basic ideas and different approaches in the design of laboratory building, hot cells, shielded and glove boxes, fume cupboards, and handling and viewing equipment. Systems for transferring materials and main services are also discussed.

  20. Report on assessment of electrical equipment aging for nuclear power plant (AEA), FY2011

    International Nuclear Information System (INIS)

    Minakawa, T.

    2012-11-01

    Electrical components with safety function used in nuclear power plants, such as cables, medium voltage motors, low voltage motors, electrical penetration of reactor containment vessel, motor operated valve, pressure transmitter, temperature detector, etc, are required to be operational under the environment of design basis event (DBE) to shut down a reactor safely and to prevent radioactive materials from being leaked to outside. Polymer materials used as parts of these equipments are gradually degraded by thermal and radiation environment in the normal operation. In addition, the degradation is thought to progress rapidly when they are exposed to the DBE environment and a decrease in performance of the equipment may be caused. From these reason, electrical components with safety function are tested for long-term integrity in accordance with IEEE standard. However, conventional method of accelerated aging which assumes thermal and radiation aging during normal operation is said to have uncertainty in simulating the degradation given in actual operating environment. To address this issue, the project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) was carried out and 'Guide for Cable Environmental Qualification Test for Nuclear Power Plant' was developed. The need for developing an aging evaluation method for other electrical and I and C components was pointed out in the 'Strategy maps 2007', prepared by the cooperation among government, industry and academia. Under the circumstance, the project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008. In this study, parts of electrical and I and C component with safety function used in nuclear power plant whose aging needs to be considered are employed as specimens, and their aging characteristics under the thermal environment and the combined radiation and thermal environment are obtained (herein after referred to as 'critical part test

  1. P.D.M.S. a cad software for the design of new power plants

    International Nuclear Information System (INIS)

    Le Lous, Y.

    1982-01-01

    P.D.M.S. (''Plant Design Management System'') is a computer based management system designed to assist the engineer, with no previous computer knowledge, to solve the problems associated with plant and piping design. The essential feature of P.D.M.S. is that it provides the user with the ability to create a 3D model of his complete plant, by making use of a graphic terminal connected to a computer. The system gives the engineer the powerful advantage over existing techniques that any part of the plant information, which may be required for a specific function, may be retrieved and presented to him in the form most suited to his requirements (i.e. lists of items or fully annotated drawings). P.D.M.S. incorporates advanced facilities to enable engineers to analyse the information for design accuracy and consistency. The project manager can ensure that no errors in the total design due to integration of disciplines within the project, or due to the amalgamation of the work of many designers, who possibly operate in different design centres. P.D.M.S., implemented on an IBM machine of the computer center of Clamart, is being used by the equipment Direction of EDF for the design of new power plants [fr

  2. Influence of different outdoor design conditions on design cooling load and design capacities of air conditioning equipments

    International Nuclear Information System (INIS)

    Aktacir, Mehmet Azmi; Bueyuekalaca, Orhan; Bulut, Huesamettin; Yilmaz, Tuncay

    2008-01-01

    Outdoor design conditions are important parameters for energy efficiency of buildings. The result of incorrect selection of outdoor design conditions can be dramatic in view of comfort and energy consumption. In this study, the influence of different outdoor design conditions on air conditioning systems is investigated. For this purpose, cooling loads and capacities of air conditioning equipments for a sample building located in Adana, Turkey are calculated using different outdoor design conditions recommended by ASHRAE, the current design data used in Turkey and the daily maximum dry and wet bulb temperatures of July 21st, which is generally accepted as the design day. The cooling coil capacities obtained from the different outdoor design conditions considered in this study are compared with each other. The cost analysis of air conditioning systems is also performed. It is seen that the selection of outdoor design conditions is a very critical step in calculation of the building cooling loads and design capacities of air conditioning equipments

  3. 46 CFR 130.220 - Design of equipment for cooking and heating.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Design of equipment for cooking and heating. 130.220... Design of equipment for cooking and heating. (a) Doors on each cooking appliance must be provided with heavy-duty hinges and locking-devices to prevent accidental opening in heavy weather. (b) Each cooking...

  4. Application of ultrasonic inspection data in strength calculations for nuclear power plant equipment

    International Nuclear Information System (INIS)

    Ovchinnikov, A.V.; Rivkin, E.Yu.; Vasilchenko, G.S.; Zvezdin, Yu.I.

    1991-01-01

    Several kinds of test specimens were produced with three types of defects of defined sizes and positions in the particular localities of weld joints. Such specimens have been used for defect parameter characterization by ultrasonic testing. The principles for schematization of such defects and the formulae for the stress intensity factor calculations for elliptical and semielliptical cracks have been worked out. Methods for defining the sizes of defect which are acceptable have been designed for use for use on operational nuclear power plant equipment and take account of the mutual effects of the force, thermal and residual stresses. The method can be used in the brittle, transitional and tough material state. (author)

  5. Ageing of polymers in electrical equipment used in nuclear power plants

    International Nuclear Information System (INIS)

    Clavreul, R.

    1999-01-01

    Ageing of polymers in electrical equipment used in nuclear power plants has been studied in (Electricite de France) EDF for several years. The objective of such studies is to predict the polymers lifetime in normal and accidental conditions. The prediction of polymers behaviour in normal conditions requires accelerated tests in order to get rapidly experimental results. Experimental conditions must carefully be chosen and representative of real ageing. Accelerated ageing is usually done by applying higher temperature, (dose) or dose rate. When such experiments are done, the effects of temperature, (dose) or dose rate are first determined. In a second step, experimental results are extrapolated to real conditions. To predict lifetime of polymers, the following recommendations have to be checked: in order to assume that accelerated tests are representative of normal ageing, the observed mechanisms in experiments must be the same as those in real conditions. For accidental conditions, the same tests as those described in standards can be applied to polymers. The simulation of any accident occurring just after the installation of electrical equipment in nuclear power plants is easy to manage: only the accidental test can be carried out on the electrical equipment. To determine whether polymers in electrical equipment would have a good behaviour or not when an accident would occur after a period of several years or decades in normal conditions in a nuclear power plant, the accidental test must be done on aged materials; their physical, mechanical and electrical characteristics must be relevant to aged polymers in normal conditions. In order to detect any evolution of properties during ageing, the electrical, mechanical or chemical tests have to be proceeded on polymers samples. The characterisation tests which are applied on non-aged and aged samples depend on the nature of the polymers, their application in electrical equipment and their environment. The IEC 544

  6. Hot cell design in the vitrification plant China

    International Nuclear Information System (INIS)

    Jiang Yubo; Wang Guangkai; Zhang Wei; Liang Runan; Dou Yuan

    2015-01-01

    In the area of reprocessing and radioactive waste management, gloveboxes and cells are a kind of non-standard equipments providing an isolated room to operate radioactive material inside, while the operator outside with essential biological shield and protection. The hot cell is a typical one, which could handle high radioactive material with various operating means and tight enclosure. The dissertation is based on Vitrification Plant China, a cooperation project between China and Germany. For the sino-western difference in design philosophy, it was presented how to draft an acceptable design proposal of applicable huge hot cells by analysing the design requirements, such as radioprotection, observation, illumination, remote handling, transportation, maintenance and decontamination. The construction feasibility of hot cells was also approved. Thanks to 3D software Autodesk Inventor, digital hot cell was built to integrate all the interfaces inside, which validated the design by checking the mechanical interference. (author)

  7. Developing Predictive Maintenance Expertise to Improve Plant Equipment Reliability

    International Nuclear Information System (INIS)

    Wurzbach, Richard N.

    2002-01-01

    On-line equipment condition monitoring is a critical component of the world-class production and safety histories of many successful nuclear plant operators. From addressing availability and operability concerns of nuclear safety-related equipment to increasing profitability through support system reliability and reduced maintenance costs, Predictive Maintenance programs have increasingly become a vital contribution to the maintenance and operation decisions of nuclear facilities. In recent years, significant advancements have been made in the quality and portability of many of the instruments being used, and software improvements have been made as well. However, the single most influential component of the success of these programs is the impact of a trained and experienced team of personnel putting this technology to work. Changes in the nature of the power generation industry brought on by competition, mergers, and acquisitions, has taken the historically stable personnel environment of power generation and created a very dynamic situation. As a result, many facilities have seen a significant turnover in personnel in key positions, including predictive maintenance personnel. It has become the challenge for many nuclear operators to maintain the consistent contribution of quality data and information from predictive maintenance that has become important in the overall equipment decision process. These challenges can be met through the implementation of quality training to predictive maintenance personnel and regular updating and re-certification of key technology holders. The use of data management tools and services aid in the sharing of information across sites within an operating company, and with experts who can contribute value-added data management and analysis. The overall effectiveness of predictive maintenance programs can be improved through the incorporation of newly developed comprehensive technology training courses. These courses address the use of

  8. Equipment designs for the spent LWR fuel dry storage demonstration

    International Nuclear Information System (INIS)

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations

  9. Dry Ice Blast Decontamination to in-service equipment in Japanese PWR plant

    International Nuclear Information System (INIS)

    2016-01-01

    MHI had developed several mechanical decontamination methods. Mechanical decontamination is beneficial when it is applied to equipment whose surface is narrow. Especially in terms of secondary waste reduction, MHI started the study of application of Dry Ice Blast Decontamination to actual PWR plant. This paper provides an introduction to Dry Ice Blast Decontamination principle, its system and actual application result to PWR plant. (J.P.N.)

  10. Reliability analysis of mining equipment: A case study of a crushing plant at Jajarm Bauxite Mine in Iran

    International Nuclear Information System (INIS)

    Barabady, Javad; Kumar, Uday

    2008-01-01

    The performance of mining machines depends on the reliability of the equipment used, the operating environment, the maintenance efficiency, the operation process, the technical expertise of the miners, etc. As the size and complexity of mining equipments continue to increase, the implications of equipment failure become ever more critical. Therefore, reliability analysis is required to identify the bottlenecks in the system and to find the components or subsystems with low reliability for a given designed performance. It is important to select a suitable method for data collection as well as for reliability analysis. This paper presents a case study describing reliability and availability analysis of the crushing plant number 3 at Jajarm Bauxite Mine in Iran. In this study, the crushing plant number 3 is divided into six subsystems. The parameters of some probability distributions, such as Weibull, Exponential, and Lognormal distributions have been estimated by using ReliaSoft's Weibull++6 software. The results of the analysis show that the conveyer subsystem and secondary screen subsystem are critical from a reliability point of view, and the secondary crusher subsystem and conveyer subsystem are critical from an availability point of view. The study also shows that the reliability analysis is very useful for deciding maintenance intervals

  11. Reliable design of electronic equipment an engineering guide

    CERN Document Server

    Natarajan, Dhanasekharan

    2014-01-01

    This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support

  12. A Method of Numerical Control Equipment Appearance Design Based on Product Identity

    Science.gov (United States)

    Zhu, Zhijuan; Zhou, Qi; Li, Bin; Visser, Steve

    Research on numerical control (NC) equipment has been more and more abundant; however, there are few existing studies in the field of appearance design for NC equipments. This paper provided a method to generate new appearance design of NC equipments based on product identity (PI). For the purpose of providing guidelines to generate new concept of NC equipment design, this paper, therefore, took the DMG Company (a Germen NC equipment company) as a case, examined the total products of this company from two aspects: Product Image and Product Family. Task 1 was an evaluate task about the Product Image by using the semantic differential (SD) evaluation method; Task 2 was a study task about Product Family to find out features of the products and classify these features. During the Task 2, several features have been found out and summarized, and these features were classified into 3 different levels according to their frequency and importance. In the end, two appearance design samples have been generated based on the analysis above to prove the application of the research.

  13. Advanced Neutron Source: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS

  14. Experience in the manufacture of nuclear equipment in India

    International Nuclear Information System (INIS)

    Challappa, S.; Murthy, G.S.K.; Mehta, S.K.; Kakodkar, A.; Natarajan, A.

    1977-01-01

    Department of Atomic Energy with its programme for achieving self-sufficiency was involved in engineering, manufacture, inspection, performance testing and quality surveillance of major precision and critical equipment such as reactor vessels, shields, fuelling machines, coolant channel components etc. etc. high pressure equipment for Heavy Water Plants, specialized components for Fuel Complex, major equipment for Cyclotron Project and various research projects. These had to be manufactured at various shops in the country depending upon the availability of machines. The relative importance of various important parameters associated with the manufacture of this equipment were assessed in a separate R and D programme. This has helped in re-designing in some areas to suit the manufacture under Indian conditions. Assessment of any marginal variations that take place during manufacture was also possible because of the availability of data of this kind. Critical components and equipment are tested for their performance under simulated conditions before shipments. B.A.R.C. has contributed immensely in achieving the self-sufficiency and also for designs for future plants

  15. Development of a standard equipment management model for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hee Seung; Ju, Tae Young; Kim, Jung Wun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Most utilities that have achieved high performance have introduced a management model to improve performance and operate plants safely. The Nuclear Energy Institute has developed and updated its Standard Nuclear Performance Model (SNPM) in order to provide a summary of nuclear processes, cost definitions, and key business performance measures for business performance comparison and benchmarking. Over the past decade, Korea Hydro and Nuclear Power Co. (KHNP) has introduced and implemented many engineering processes such as Equipment Reliability (ER), Maintenance Rule (MR), Single Point Vulnerability (SPV), Corrective Action Program (CAP), and Self Assessment (SA) to improve plant performance and to sustain high performance. Some processes, however, are not well interfaced with other processes, because they were developed separately and were focused on the process itself. KHNP is developing a Standard Equipment Management Model (SEMM) to integrate these engineering processes and to improve the interrelation among the processes. In this paper, a draft model and attributes of the SEMM are discussed.

  16. Development of a standard equipment management model for nuclear power plants

    International Nuclear Information System (INIS)

    Chang, Hee Seung; Ju, Tae Young; Kim, Jung Wun

    2012-01-01

    Most utilities that have achieved high performance have introduced a management model to improve performance and operate plants safely. The Nuclear Energy Institute has developed and updated its Standard Nuclear Performance Model (SNPM) in order to provide a summary of nuclear processes, cost definitions, and key business performance measures for business performance comparison and benchmarking. Over the past decade, Korea Hydro and Nuclear Power Co. (KHNP) has introduced and implemented many engineering processes such as Equipment Reliability (ER), Maintenance Rule (MR), Single Point Vulnerability (SPV), Corrective Action Program (CAP), and Self Assessment (SA) to improve plant performance and to sustain high performance. Some processes, however, are not well interfaced with other processes, because they were developed separately and were focused on the process itself. KHNP is developing a Standard Equipment Management Model (SEMM) to integrate these engineering processes and to improve the interrelation among the processes. In this paper, a draft model and attributes of the SEMM are discussed

  17. Design and construction of the Portable Industrial X-Ray Equipment

    International Nuclear Information System (INIS)

    Nguyen Phuc; Nguyen Van Si; Le Tien Quan; Trinh Anh Tuan; Nguyen Manh Hung; Trinh Dinh Tuong

    2011-01-01

    The main purposes of the project are the supporting to design and construction of the Portable Industrial X-Ray Equipment; with the accuracy ±2% of Output High Voltage 200 kV and Tube current 5 mA. The Equipment is composed of control unit, X-ray generator, and power cable, connection cable. X-ray generator is assembling construction X-ray tube, H.V transformer together with gas insulation (SF6) are sealed up in aluminum bucked cabinet, fan and heat-sink are mounted in the end of X-ray generator as cooling, SF6 is a gas electrical performance to H.V. Alarm lamp is used to warn, flashing, show generating X-ray. Control unit is box construction. Four printed circuit boards (PCB) and electronic device are mounted in it. All operating buttons switches and displays are equipped on the panel. We have completed to design and construct the Portable Industrial X-Ray Equipment; and have tested the electronic parameters of all test points and the main parameters of equipment (the accuracy ±2% of Output High Voltage 200 kV and Tube current 5 mA). We also have successful used the Portable Industrial X-Ray Equipment to evaluate the welds in industry. (author)

  18. Equipment reliability improvement process; implementation in Almaraz NPP and Trillo NPP

    International Nuclear Information System (INIS)

    Risquez Bailon, Aranzazu; Gutierrez Fernandez, Eduardo

    2010-01-01

    The Equipment Reliability Improvement Process (INPO AP-913) is a non-regulatory process developed by the US Nuclear Industry for improving Plants Availability. This Process integrates and coordinates a broad range of equipment reliability activities into one process, performed by the Plant in a non-centralized way. The integration and coordination of these activities will allow plant personnel to evaluate the trends of important station equipment, develop and implement long-term equipment health plans, monitor equipment performance and condition, and make adjustments to preventive maintenance tasks and frequencies based on equipment operating experience, if necessary, arbitrating operational and design improvements, to reach a Failure-free Operation. This paper describes the methodology of Equipment Reliability Improvement Process, being focused on main aspects of the implementation process, relating to the scope and establishment of an Equipment Reliability Monitoring Plan, which should include and complement the existing mechanisms and organizations in the Plant to monitor the condition and performance of the equipments, with the common aim of achieving an operation free of failures. The paper will describe the tools that Iberdrola Ingenieria has developed to support the implementation and monitoring of the Equipment Reliability Improvement Process, as well as the results and lessons learned from its implementation in Almaraz NPP and Trillo NPP. (authors)

  19. Equipment Reliability Program in NPP Krsko

    International Nuclear Information System (INIS)

    Skaler, F.; Djetelic, N.

    2006-01-01

    Operation that is safe, reliable, effective and acceptable to public is the common message in a mission statement of commercial nuclear power plants (NPPs). To fulfill these goals, nuclear industry, among other areas, has to focus on: 1 Human Performance (HU) and 2 Equipment Reliability (EQ). The performance objective of HU is as follows: The behaviors of all personnel result in safe and reliable station operation. While unwanted human behaviors in operations mostly result directly in the event, the behavior flaws either in the area of maintenance or engineering usually cause decreased equipment reliability. Unsatisfied Human performance leads even the best designed power plants into significant operating events, which can be found as well-known examples in nuclear industry. Equipment reliability is today recognized as the key to success. While the human performance at most NPPs has been improving since the start of WANO / INPO / IAEA evaluations, the open energy market has forced the nuclear plants to reduce production costs and operate more reliably and effectively. The balance between these two (opposite) goals has made equipment reliability even more important for safe, reliable and efficient production. Insisting on on-line operation by ignoring some principles of safety could nowadays in a well-developed safety culture and human performance environment exceed the cost of electricity losses. In last decade the leading USA nuclear companies put a lot of effort to improve equipment reliability primarily based on INPO Equipment Reliability Program AP-913 at their NPP stations. The Equipment Reliability Program is the key program not only for safe and reliable operation, but also for the Life Cycle Management and Aging Management on the way to the nuclear power plant life extension. The purpose of Equipment Reliability process is to identify, organize, integrate and coordinate equipment reliability activities (preventive and predictive maintenance, maintenance

  20. Seismic design margin evaluation of systems and equipment required for safe shutdown of North Anna, Units 1 and 2, following an SSE (safe-shutdown earthquake) event. Technical report

    International Nuclear Information System (INIS)

    Desai, K.D.

    1981-06-01

    The Advisory Committee on Reactor Safeguards recommended that the NRC staff review in detail the capability and available seismic design margin of fluid systems and equipment used in North Anna, Units 1 and 2 to achieve safe shutdown following a site-design safe-shutdown earthquake (SSE). The staff conducted a series of plant visits and meetings with the licensee to view and discuss the seismic design methodology used for systems, equipment and their supports. The report is a description and evaluation of the seismic design criteria, design conservatisms and seismic design margin for North Anna, Units 1 and 2

  1. A completely new design and regulatory process - A risk-based approach for new nuclear power plants. Annex 17

    International Nuclear Information System (INIS)

    Ritterbusch, S.E.

    2002-01-01

    In the de-regulated electric power market place that is developing in the USA, competition from alternative electric power sources has provided significant downward pressure on the costs of new construction projects. Studies by the Electric Power Research Institute have shown that, in the USA, the capital cost of new nuclear plants must be decreased by at least 35% to 40% relative to the cost of Advanced Light Water Reactors designed in the early 1990s in order to be competitive with capital costs of gas-fired electric power plants. The underlying reasons for the high capital costs estimated for some nuclear plants are (1) long construction times, (2) the high level of 'defense-in-depth' or safety margin, included throughout the design and licensing process, and (3) the use of out-dated design methods and information. Probabilistic Safety Assessments are being used to develop a more accurate assessment of real plant risk and to provide relief if it can be demonstrated that plant equipment is not providing a significant contribution to plant safety. Westinghouse addressed some of these cost drivers in the development of the AP-600 passive plant design. However, because of relatively inexpensive natural gas plant alternative, we need to reduce the costs even further. Therefore, the AP-600 design is now being up-rated to a 1000 MWe design, AP-1000. The development of AP1000 is described in another paper being presented at this meeting. Westinghouse is also managing a project, sponsored by the US Department of Energy, which is aimed at developing an all-new 'risk-based' approach to design and regulation. Methodologies being developed use risk-based information to the extent practical and 'defense-in-depth' only when necessary to address uncertainties in models and equipment performance. Early results, summarized in this paper, include (1) the initial framework for a new design and regulatory process and (2) a sample design analysis which shows that the Emergency Core

  2. Nuclear power plants. Electrical equipment of the safety system. Qualification

    International Nuclear Information System (INIS)

    2001-01-01

    This International Standard applies to electrical parts of safety systems employed at nuclear power plants, including components and equipment of any interface whose failure could affect unfavourably properties of the safety system. The standard also applies to non-electrical safety-related interfaces. Furthermore, the standard describes the generic process of qualification certification procedures and methods of qualification testing and related documentation. (P.A.)

  3. Development and recent trend of design of BWR nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kani, J [Tokyo Shibaura Electric Co. Ltd., Kawasaki, Kanagawa (Japan)

    1977-11-01

    Many improvements have been carried out in BWR nuclear power plants from BWR-1, represented by Dresden No. 1 plant, to the present BWR-6 as the capacity has increased. In Japan, the plants up to BWR-5 have been constructed. In addition, further fine design improvements are being performed in the complete domestic manufacturing of BRWs based on the operational experiences to date. A variety of investigations on the standardization of nuclear power facilities have been progressing under the leadership of Japanese Ministry of International Trade and Industry since 1975. In this standardization, it is intended to forward the plant design taking eight concrete items into consideration, mainly aiming at carrying cut unerringly the maintenance and inspection, reduction of exposure of employees to radiation, and improvements of the rate of operation of plants and equipment reliability. The containment vessel has been developed in three forms, from Mark 1 through 3, adopting the pressure control system consistently since BWR-2. Mark 1 and 2 were constructed in Japan. However, these designs sacrificed the workability and increased radiation exposure during maintenance as a result of placing emphasis on the safety facilities, therefore Toshiba Electric has investigated the advanced Mark 1 type. Its features are the design for improving the work efficiency in a containment vessel, reducing the radiation exposure of workers, shortening plant construction period, and considering the aseismatic capability. In addition, the following themes are being planned as future standardization: (1) electrically driven control rod driving system, (2) improved design of reactor core, and (3) internal pump system as compared with external re-circulation.

  4. System design description for master equipment list, phase I

    International Nuclear Information System (INIS)

    Sandoval, J.D.

    1997-01-01

    This System Design Description (SDD) is for the Master Equipment List Phase I (MEL). It has been prepared following the WI-IC-CM-3-10, ''Software Practices,'' (Ref. 6). This SDD describes the internal design for implementation of the MEL Phase I

  5. Low activation diagnostic equipment design studies

    International Nuclear Information System (INIS)

    Hopkins, G.R.; Cheng, E.T.; Fisher, R.K.

    1985-01-01

    The low activation fusion concept has been applied to the diagnostic equipment in a fusion reactor. The components where fabrication from low activation materials is feasible have been identified. Other systems where higher activation elements are required can have their activation reduced by design approaches which include shielding and operation only in low flux regions of the reactor. Some components will not operate in a high flux so activation is not a major concern. This low activation diagnostic equipment study completes a series of low activation studies where all the components in a fusion power reactor have now been evaluated. It is concluded that a completely low activation fusion reactor is feasible with all components meeting the functional requirements. This provides an environmentally benign energy source with a high confidence level in meeting safety criteria in operation, maintenance and waste disposal

  6. Implementation of the project of equipment reliability in the nuclear power plant of Laguna Verde; Implementacion del proyecto de confiabilidad de equipo en la Central Nucleoelectrica Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Rios O, J. E.; Martinez L, A. G. [CFE, Central Laguna Verde, Subgerencia General de Operacion, Veracruz (Mexico)]. e-mail: jrios@cfe.gob.mx

    2008-07-01

    A equipment is reliable if it fulfills the function for which was designed and when it is required. To implement a project of reliability in a nuclear power plant this associate to a process of continuous analysis of the operation, of the conditions and faults of the equipment. The analysis of the operation of a system, of the equipment of the same faults and the parts that integrate to equipment take to identify the potential causes of faults. The predictive analysis on components and equipment allow to rectify and to establish guides to optimize the maintenance and to guarantee the reliability and function of the same ones. The reliability in the equipment is without place to doubts a wide project that embraces from the more small component of the equipment going by the proof of the parts of reserve, the operation conditions until the operative techniques of analysis. Without place of doubt for a nuclear power plant the taking of decisions based on the reliability of their systems and equipment will be the appropriate for to assure the operation and reliability of the same one. In this work would appear the project of reliability its processes, criteria, indicators action of improvement and the interaction of the different disciplines from the Nuclear Power Plant of Laguna Verde like a fundamental point for it put in operation. (Author)

  7. IFR fuel cycle process equipment design environment and objectives

    International Nuclear Information System (INIS)

    Rigg, R.H.

    1993-01-01

    Argonne National laboratory (ANL) is refurbishing the hot cell facility originally constructed with the EBR-II reactor. When refurbishment is complete, the facility win demonstrate the complete fuel cycle for current generation high burnup metallic fuel elements. These are sodium bonded, stainless steel clad fuel pins of U-Zr or U-Pu-Zr composition typical of the fuel type proposed for a future Integral Fast Reactor (IFR) design. To the extent possible, the process equipment is being built at full commercial scale, and the facility is being modified to incorporate current DOE facility design requirements and modem remote maintenance principles. The current regulatory and safety environment has affected the design of the fuel fabrication equipment, most of which will be described in greater detail in subsequent papers in this session

  8. Overview of seismic resistant design of Indian Nuclear Power Plants

    International Nuclear Information System (INIS)

    Sharma, G.K.; Hawaldar, R.V.K.P.; Vinod Kumar

    2007-01-01

    Safe operation of a Nuclear Power Plant (NPP) is of utmost importance. NPPs consist of various Structure, System and Equipment (SS and E) that are designed to resist the forces generated due to a natural phenomenon like earthquake. An earthquake causes severe oscillatory ground motion of short duration. Seismic resistant design of SS and E calls for evaluation of effect of severe ground shaking for assuring the structural integrity and operability during and after the occurrence of earthquake event. Overall exercise is a multi-disciplinary approach. First of standardized 220 MWe design reactor is Narora Atomic Power Station. Seismic design was carried out as per state of art then, for the first time. The twelve 220 MWe reactors and two 540 MWe reactors designed since 1975 have been seismically qualified for the earthquake loads expected in the region. Seismic design of 700 MWe reactor is under advanced stage of finalization. Seismic re-evaluation of six numbers of old plants has been completed as per latest state of art. Over the years, expertise have been developed at Nuclear Power Corporation of India Limited, Bhabha Atomic Research Centre, prominent educational institutes, research laboratories and engineering consultants in the country in the area of seismic design, analysis and shake table testing. (author)

  9. Technical basis for environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Wood, R.T.; Hassan, M.; Tanaka, T.J.

    1998-01-01

    This document presents the results of studies sponsored by the Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. The studies were conducted by Oak Ridge National Laboratory (ORNL), Sandia National Laboratories (SNL), and Brookhaven National Laboratory (BNL). The studies address the following: (1) adequacy of the present test methods for qualification of digital I and C systems; (2) preferred (i.e., Regulatory Guide-endorsed) standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging for equipment to be located in a benign environment; and (5) determination of an appropriate approach for addressing the impact of smoke in digital equipment qualification programs. Significant findings from the studies form the technical basis for a recommended approach to the environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

  10. Technical basis for environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, K.; Wood, R.T. [Oak Ridge National Lab., TN (United States); Hassan, M. [Brookhaven National Lab., Upton, NY (United States); Tanaka, T.J. [Sandia National Labs., Albuquerque, NM (United States)

    1998-01-01

    This document presents the results of studies sponsored by the Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. The studies were conducted by Oak Ridge National Laboratory (ORNL), Sandia National Laboratories (SNL), and Brookhaven National Laboratory (BNL). The studies address the following: (1) adequacy of the present test methods for qualification of digital I and C systems; (2) preferred (i.e., Regulatory Guide-endorsed) standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging for equipment to be located in a benign environment; and (5) determination of an appropriate approach for addressing the impact of smoke in digital equipment qualification programs. Significant findings from the studies form the technical basis for a recommended approach to the environmental qualification of microprocessor-based safety-related equipment in nuclear power plants.

  11. Guideline on dependability management for the power industry: detailed description of international power plant equipment dependability indicators

    International Nuclear Information System (INIS)

    Procaccia, H.; Silberberg, S.

    1997-01-01

    Dependability Management involves the management of reliability, availability maintainability and maintenance support, and in the power industry is necessary to ensure that plant meets the Reliability, Availability and Maintainability (RAM) targets set by the Utilities. In 1993, a joint Standard on Dependability Programme Management - Part 1: Dependability Programme Management), ISO 9000-': 1993 (Quality Management and Quality Assurance Standards - Part 4: Guide to Dependability Programme Management). UNIPEDE established a group of experts (Nulethermaint) to produce guidelines on its implementation specifically for use in the power industry. The present document comprises Part 2 OF THE UNIPEDE plant performance indicators and can be applied to both nuclear and fossil plant. There are five different equipment dependability indicators, all relating to equipment maintenance activities and the impact that these activities have on the loss of both system function and unit capability. Per year, each of the indicators can be applied separately to both preventive maintenance and corrective maintenance, giving rise to as many as ten indicator values for each item of equipment. Used in this way, the indicators provide a comprehensive picture of the maintenance strategy employed for key pieces of equipment, and its effectiveness. They are, therefore, a valuable managerial tool for improving maintenance activities at the unit level within a utility. This document provides guidance on the division of both nuclear and fossil power plant into their component parts and in each case the types of equipment having the most dominant effect on dependability are identified. These are the items which merit the greatest attention with regard to the equipment dependability indicators. (authors)

  12. Increasing reliability of nuclear energy equipment and at nuclear power plants

    International Nuclear Information System (INIS)

    Ochrana, L.

    1997-01-01

    The Institute of Nuclear Energy at the Technical University in Brno cooperates with nuclear power plants in increasing their reliability. The teaching programme is briefly described. The scientific research programme of the Department of Heat and Nuclear Power Energy Equipment in the field of reliability is based on a complex systematic concept securing a high level of reliability. In 1996 the Department prepared a study dealing with the evaluation of the maintenance system in a nuclear power plant. The proposed techniques make it possible to evaluate the reliability and maintenance characteristics of any individual component in a nuclear power plant, and to monitor, record and evaluate data at any given time intervals. (M.D.)

  13. IEEE standard for design qualification of safety systems equipment used in nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This standard is written to serve as a general standard for qualification of all types of safety systems equipment, mechanical and instrumentation as well as electrical. It also establishes principles and procedures to be followed in preparing specific safety systems equipment standards. Guidance for qualifying specific safety systems equipment may be found in various specific equipment qualification standards that are now available or are being prepared. It is required that safety systems equipment in nuclear power generating stations meet or exceed its performance requirements throughout its installed life. This is accomplished by a disciplined program of design qualification and quality assurance of design, production, installation, maintenance and surveillance. This standard is for the design qualification section of the program only. Design qualification is intended to demonstrate the capability of the equipment design to perform its safety function(s) over the expected range of normal, abnormal, design basis event, post design basis event, and in-service test conditions. Inherent to design qualification is the requirement for demonstration, within limitations afforded by established technical state-of-the-art, that in-service aging throughout the qualified life established for the equipment will not degrade safety systems equipment from its original design condition to the point where it cannot perform its required safety function(s), upon demand. The above requirement reflects the primary role of design qualification to provide reasonable assurance that design- and age-related common failure modes will not occur during performance of safety function(s) under postulated service conditions

  14. Tests of qualification of national components of nuclear power plants under design basis accident

    International Nuclear Information System (INIS)

    Mesquita, A.Z.

    1990-01-01

    With the purpose of qualifying national components of nuclear power plants, whose working must be maintained during and after an accident, the Thermohydraulic Division of CDTN have done tests to check the equipment stability, under Design Basis Accident conditions. Until this moment, the following components were tested: electrical junction boxes (connectors); coating systems for wall, inside cover and steel containment; hydraulics components of personnel and equipment airlock. This work describes the test instalation, the tests performed and its results. The components tested, in a general way, fulfil the specified requirements. (author) [pt

  15. Biosafety Procedure for Safe Handling of Genetically Modified Plant Materials in Bio Design Facility

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Shuhaimi Shamsudin; Mohamed Najli Mohamed Yasin; Affrida Abu Hassan; Mohd Zaid Hassan; Rusli Ibrahim

    2015-01-01

    Bio Design Facility is the specifically designed glass house for propagation, screening and analysis of high quality plant varieties developed through biotechnology or a combination of nuclear technology and biotechnology. High quality plant varieties especially genetically modified plants (GMO) require a special glass house facility for propagation and screening to isolate them from cross-pollinating with wild type varieties in surrounding ecosystem, and for carrying out evaluation of possible risks of the plants to human, animal and environment before they are proven safe for field trials or commercial release. This facility which was developed under the Ninth Malaysia Plan is classified as the Plant Containment Level 2 and is compliance with the bio safety regulations and guidance for the safe release of GMO according to Malaysian Bio safety Act 2007. Bio Design Facility is fully operational since 2010 and in 2012, it has also been certified as the glass house for post-entry quarantine by The Department of Agriculture. This paper summarizes the bio safety procedure for a safe, controlled and contained growing and evaluation of GMO in Bio Design Facility. This procedure covers the physical (containment and equipment's) and operational (including responsibility, code of practice, growing, decontamination and disposal of plant materials, emergency and contingency plan) aspects of the facility. (author)

  16. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Boardman; B. H. O& #39; Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing

  17. Design of hoisting device used in nuclear power plants. KTA safety engineering code. Draft amendment, as of 6/98

    International Nuclear Information System (INIS)

    1998-06-01

    The draft amendment specifies, according to the hazards involved, (a) the general provisions, (b) additional provisions supplementing the general provisions, (c) more stringent provisions relating to aggravated risks, applicable to lifting gear, and (d) additional requirements for elevators in reactor containments and refuelling equipment, to be taken into account in the design of hoisting device used in nuclear power plants. The term hoisting device in this context covers elevators, cranes, winches, trolleys, load carrying equipment, and LWR refuelling machines as are used in nuclear power plants. (orig./CB) [de

  18. Motives for property, plant and equipment revaluation according to positive accounting theory

    OpenAIRE

    Katarzyna Bareja; Magdalena Giedroyć

    2016-01-01

    The paper identifies motives for property, plant and equipment (PPE) revaluations according to the three main hypotheses proposed by Watts and Zimmerman. Attempt to lower debt-equity ratio is the main motive for PPE revaluation. The method of inductive inference was applied.

  19. The use of ultrasound for decontamination of tools and equipment in nuclear power plant Krshko

    International Nuclear Information System (INIS)

    Erman, R.

    1987-01-01

    This paper describes the main principles of the ultrasonic generator functioning and the use of ultrasound for decontamination of tools and equipment in nuclear power plant Krshko. The paper gives the operating procedure and presents decontamination results of tools and equipment fabricated from various materials. (author) 3 refs.; 1 tab

  20. Preliminary design report for prototypical spent nuclear fuel rod consolidation equipment

    International Nuclear Information System (INIS)

    Judson, B.F.; Maillet, J.; O'Neill, G.L.; Tsitsichvili, J.; Tucoulat, D.

    1986-12-01

    The purpose of the Prototypical Consolidation Demonstration Project (PCDP) is to develop and demonstrate the equipment system that will be used to consolidate the bulk of the spent nuclear fuel generated in the United States prior to its placement in a geological repository. The equipment must thus be capable of operating on a routine production basis over a long period of time with stringent requirements for safety, reliability, productivity and cost-effectiveness. Four phases are planned for the PCDP. Phase 1 is the Preliminary Design of generic consolidation equipment that could be installed at a Monitored Retrievable Storage (MRS) facility or in the Receiving ampersand Handling Facility at a geologic repository site. Phase 2 will be the Final Design and preparation of procurement packages for the equipment in a configuration capable of being installed and tested in a special enclosure within the TAN Hot Shop at DOE's Idaho National Engineering Laboratory. In Phase 3 the equipment will be fabricated and then tested with mock fuel elements in a contractor's facility. Finally, in Phase 4 the equipment will be moved to the TAN facility for demonstration operation with irradiated spent fuel elements. 55 figs., 15 tabs

  1. UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction

    Science.gov (United States)

    Delistoian, Dmitri; Chirchor, Mihael

    2017-12-01

    UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.

  2. Motives for property, plant and equipment revaluation according to positive accounting theory

    Directory of Open Access Journals (Sweden)

    Katarzyna Bareja

    2016-07-01

    Full Text Available The paper identifies motives for property, plant and equipment (PPE revaluations according to the three main hypotheses proposed by Watts and Zimmerman. Attempt to lower debt-equity ratio is the main motive for PPE revaluation. The method of inductive inference was applied.

  3. Comparison of the incidence of Listeria on equipment versus environmental sites within dairy processing plants.

    Science.gov (United States)

    Pritchard, T J; Flanders, K J; Donnelly, C W

    1995-08-01

    This study was undertaken to compare the incidence of Listeria contamination of processing equipment with that of the general dairy processing environment. A total of 378 sponge samples obtained from 21 dairy plants were analyzed for Listeria using three different enrichment media. Use of extended microbiological analysis allowed us to identify 26 Listeria positive sites which would have not been identified had a single test format been employed. Eighty (80) of 378 sites (21.2%) were identified as Listeria positive. Listeria innocua was isolated from 59 of the 80 (73.8%) positive samples, L. monocytogenes was identified in 35 (43.8%) of the positive samples, and L. seeligeri was isolated from 5 (6.3%) of the Listeria positive samples. Positive equipment samples were obtained from 6 of the 21 (28.6%) plants and 19 of the 21 (90.5%) plants had positive environmental sites. Seventeen of the 215 (7.9%) samples from equipment were positive for Listeria species. Eleven of these sites, including 3 holding tanks, 2 table tops, 3 conveyor/chain systems, a pasta filata wheel, a pint milk filler and a brine pre-filter machine, were positive for L. monocytogenes. Nineteen of the 21 (90.5%) plants had positive environmental sites. Sixty-three of the 163 (41.1%) samples from environmental sites were Listeria positive and 24 were positive for L. monocytogenes. Two-tailed student t-test analysis of the mean frequencies indicated that the level of contamination was significantly higher (p plant, and that greater emphasis needs to be placed on the cleaning and sanitizing of the plant environment.

  4. Developments in power plant cooling systems

    International Nuclear Information System (INIS)

    Agarwal, N.K.

    1993-01-01

    A number of cooling systems are used in the power plants. The condenser cooling water system is one of the most important cooling systems in the plant. The system comprises a number of equipment. Plants using sea water for cooling are designed for the very high corrosion effects due to sea water. Developments are taking place in the design, materials of construction as well as protection philosophies for the various equipment. Power optimisation of the cycle needs to be done in order to design an economical system. Environmental (Protection) Act places certain limitations on the effluents from the plant. An attempt has been made in this paper to outline the developing trends in the various equipment in the condenser cooling water systems used at the inland as well as coastal locations. (author). 5 refs., 6 refs

  5. Conceptual design of a telecommunications equipment container for humanitarian logistics

    Directory of Open Access Journals (Sweden)

    Stella Parisi

    2017-05-01

    Full Text Available Preparedness addresses the strategy in disaster management that allows the implementation of successful operational response immediately after a disaster. With speed as the main driver, product design for humanitarian aid purposes is a key factor of success in situations of high uncertainty and urgency. Within this context, a telecommunications container (TC has been designed that belongs to a group of containers that serve the purpose of immediate response to global disasters. The TC includes all the necessary equipment to establish a telecommunication centre in the destroyed area within the first 72 hours of humanitarian operations. The design focuses on defining the topology of the various parts of equipment by taking into consideration factors of serviceability, functionality, human-product interaction, universal design language, energy consumption, sustainability and the interrelationship with the other containers. The concept parametric design has been implemented with SolidWorks® CAD system.

  6. Designing a power supply for Nim-bin formatted equipment

    International Nuclear Information System (INIS)

    Banuelos G, L. E.; Hernandez D, V. M.; Vega C, H. R.

    2016-09-01

    From an old Nuclear Chicago power supply that was practically in the trash, was able to recover the 19 inches casing, rear connectors and the housing where the circuits were. From here all mechanical parts were cleaned and the electronic design was started to replace the original voltage and current functions of this equipment. The cards for the ±6, ±12 and ±24 voltages were designed, simulated and tested with circuitry that does not rely on specialized components or that is sold only by the equipment manufacturer. In the handling of the current by each voltage to operate, was possible to tie with the specifications of the manufacturers like Ortec or Canberra where a model of power supply gives a power of 160 Watts. Basic tests were performed to show that the behavior is very similar to commercial equipment; such as the full load regulation index and the noise level in the supply voltages. So our Nim-bin voltage source is viable for use in our institution laboratories. (Author)

  7. Tolerance-based Structural Design of Tubular-Structure Loading Equipments

    Directory of Open Access Journals (Sweden)

    Jiping Lu

    2011-05-01

    is worked out under different ball screws, trapezoidal screw threads, worm and worm gears. To meet the requirement of tolerance in tubular-structure assembly, mechanisms for all motions are defined. The design of loading equipment is tested and assessed by experiments, and the result shows the design is highly qualified for its assembly.

  8. Nuclear power plant C and I design verification by simulation

    International Nuclear Information System (INIS)

    Storm, Joachim; Yu, Kim; Lee, D.Y

    2003-01-01

    An important part of the Advanced Boiling Water Reactor (ABWR) in the Taiwan NPP Lungmen Units no.1 and no.2 is the Full Scope Simulator (FSS). The simulator was to be built according to design data and therefore, apart from the training aspect, a major part of the development is to apply a simulation based test bed for the verification, validation and improvement of plant design in the control and instrumentation (C and I) areas of unit control room equipment, operator Man Machine Interface (MMI), process computer functions and plant procedures. Furthermore the Full Scope Simulator will be used after that to allow proper training of the plant operators two years before Unit no.1 fuel load. The article describes scope, methods and results of the advanced verification and validation process and highlights the advantages of test bed simulation for real power plant design and implementation. Subsequent application of advanced simulation software tools like instrumentation and control translators, graphical model builders, process models, graphical on-line test tools and screen based or projected soft panels, allowed a team to fulfil the task of C and I verification in time before the implementation of the Distributed Control and Information System (DCIS) started. An additional area of activity was the Human Factors Engineering (HFE) for the operator MMI. Due to the fact that the ABWR design incorporates a display-based operation with most of the plant components, a dedicated verification and validation process is required by NUREG-0711. In order to support this activity an engineering test system had been installed for all the necessary HFE investigations. All detected improvements had been properly documented and used to update the plant design documentation by a defined process. The Full Scope Simulator (FSS) with hard panels and stimulated digital control and information system are in the final acceptance test process with the end customer, Taiwan Power Company

  9. 9 CFR 590.502 - Equipment and utensils; PCB-containing equipment.

    Science.gov (United States)

    2010-01-01

    ... Sanitary Standards and accepted practices currently in effect for such equipment. (c) New or replacement equipment or machinery (including any replacement parts) brought onto the premises of any official plant... equipment and machinery, and any replacement parts for such equipment and machinery. Totally enclosed...

  10. Aseismatic design of electrical equipments and instruments for nuclear power stations

    International Nuclear Information System (INIS)

    Suzuki, Yasuharu; Nishizawa, Kazuo; Miyazaki, Yoshio; Miura, Takumi

    1977-01-01

    The aseismatic design of electrical instruments is carried out according to IEEE Standard 344-1971 in the USA. In Japan also, the method of aseismatic design of electrical instruments has been investigated by the representatives of electric power companies and electric machine makers since 1972. In Hitachi Ltd., the statical method of confirming aseismatic property was established on the basis of the rigid design for electrical instruments. It is convenient to examine the aseismatic property of electrical equipments by classifying them into control and switch boards, electrical appliances, equipments and circuits. It is possible to use the static method treating earthquake force as static load by avoiding resonance with the electrical equipments which have the higher natural frequency than that of buildings. The purposes of the vibration test are to prove the validity of the theoretical analysis, to clarify the vibration characteristics, and to confirm the maintenance of functions and the strength of the equipments. The vibration tests of control boards, the switch boards of enclosed type, motor control centers, the racks for instrumentation, storage batteries and electrical appliances are explained. Moreover, the vibration analysis with a computer according to finite element method is described. (Kako, I.)

  11. Central receiver solar thermal power system, Phase 1. CDRL item 2. Pilot plant preliminary design report. Volume VI. Electrical power generation and master control subsystems and balance of plant

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The requirements, performance, and subsystem configuration for both the Commercial and Pilot Plant electrical power generation subsystems (EPGS) and balance of plants are presented. The EPGS for both the Commercial Plant and Pilot Plant make use of conventional, proven equipment consistent with good power plant design practices in order to minimize risk and maximize reliability. The basic EPGS cycle selected is a regenerative cycle that uses a single automatic admission, condensing, tandem-compound double-flow turbine. Specifications, performance data, drawings, and schematics are included. (WHK)

  12. Designing electronic equipment on the basis of standard mechanical structures using internet re­sour­ces

    Directory of Open Access Journals (Sweden)

    Karlangach A. P.

    2016-12-01

    Full Text Available The author proposes a method to design electronic equipment based on functional-node design method that involves the use of 2D- and 3D- models mechanical structures for electronic equipment as a way to reduce development time and errors when creating design documentation for electronic equipment. At present, most areas of science and technology are computerized, more problems in designing electronic equipment are dealt with using computer-aided design (CAD and Computer-aided manufacturing (CAM to reduce the time required for development and manufacturing of electronic equipment. Development of design documentation also requires a more effective approach, because the less the time for development of the design documentation is, the faster the developed device will go into production. The aim of the study is to develop a method of designing electronic equipment using 2D and 3D models of standard mechanical structures for electronic equipment using Internet resources. Based on the presented methods is an example of designing a device from standard bearing structures. Compared with traditional technology, the method of designing electronic equipment using standard parts has the following advantages: - reduces time and improves quality of development through the use of existing design documentation; - accelerates the implementation and introducing into production processes; - increases unification of design solutions.

  13. Design of a lunar oxygen production plant

    Science.gov (United States)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  14. Data base EQDB - data base of the qualified equipment's for NPP

    International Nuclear Information System (INIS)

    Rovny, K.

    2009-01-01

    In the contribution, there is presented the project of the data base for qualified equipment's for nuclear power plants. The data base is operated by the 'Certification body which certified the products - the chosen equipment's for nuclear power plants', reg. No. P-028, at VUJE, Inc. Trnava. Data base will serve to the designers, the operators of the nuclear power plants and the workers from Nuclear regulatory authority of the Slovak Republic as a source of information about the state of concrete type equipment's qualification. In the first part of the contribution, there is information about the legislation and technical requirements for equipment's qualification, the way of demonstration and importance of the qualification for the operator. In the next part, there is presented the own structure of data base and the works with own data base regarding the examples of concrete equipment's. The data base will be accessible after the free registration on address WWW.EQDB.sk from 1.5.2009

  15. Investigation of potential fire-related damage to safety-related equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Wanless, J.

    1985-11-01

    Based on a review of vendor information, fire damage reports, equipment qualification and hydrogen burn test results, and material properties, thirty-three types of equipment found in nuclear power plants were ranked in terms of their potential sensitivity to fire environments. The ranking considered both the functional requirements and damage proneness of each component. A further review of the seven top-ranked components was performed, considering the relative prevalence and potential safety significance of each. From this, relays and hand switches dominate as first choices for fire damage testing with logic equipment, power supplies, transmitters, and motor control centers as future candidates

  16. Rules and procedures for the design and operation of hazardous research equipment

    International Nuclear Information System (INIS)

    1978-12-01

    The manual has been prepared for use by research personnel involved in experiments at the Lawrence Berkeley Laboratory. It contains rules and procedures for the design, test, installation, and operation of hazardous research equipment. Sect. I contains such information as responsibility of experimenters for safety, descriptions of the various Laboratory safety organizations, and enumeration of various services available to experimenters at the Laboratory. Sect. II describes specific rules for the setup and operation of experimental equipment at the Laboratory. Sect. III gives detailed design criteria and procedures for equipment frequently encountered in the high energy physics laboratory

  17. Application and issues of online maintenance for equipment of nuclear power plants

    International Nuclear Information System (INIS)

    Higasa, Hisakazu

    2011-01-01

    The maintenance systems for long-term safety and repair costs reduction of equipment of nuclear power plants are stated. Planned maintenance contained the breakdown maintenance (BM) and the preventive maintenance, which consists of the time based maintenance (MBM) and the condition based maintenance (CBM). Explained are the characteristics of equipments, maintenance methods, maintenance solutions and the self-evaluation maintenance power, damage mechanism and solutions, and monitoring tools and application. Stated are the maintenance system and application of monitoring technology, periodical maintenance, application of diagnosis, vibration monitoring techniques, decision of vibration monitoring, and application of monitoring techniques for improvement of maintenance. Illustrated are realization of planned maintenance by reorganization of maintenance, a trend of maintenance of equipments, table of classified maintenance systems, change of maintenance program, maintenance data and investigation of damage mechanism, examples of self-evaluation maintenance power, examples of analysis of damage of parts of equipments, evaluation of rotating machines by vibration method, examples of results of diagnosis of bearing of rotating machines, online maintenance system of Asahi Kasei Engineering Corporation, degradation pattern of pomp, estimation of lifetime by total vibration and vibration on acceleration, and improvement of equipments. (S.Y.)

  18. Technology and testing for the extension of plant life

    International Nuclear Information System (INIS)

    Blumer, U.R.; Edelmann, X.

    1988-01-01

    This paper describes selected portions of a recommended program for the application of equipment-manufacturing-related technology and testing for the extension of life for operating nuclear power plants. It is appropriate to mention that the Swiss nuclear plants, their staffs, and the supporting Swiss nuclear industry are rightfully proud of their record of performance. Plant staffs have been intimately involved in system and equipment design and engineering from the very beginnings of their plants. Maintenance of the plant systems and equipment is referred to as engineering rather than maintenance, because it is viewed as a technical effort and an extension of the original plant and equipment design and construction effort. Care, competence, cleanliness, and attention to detail have been bywords for the Swiss plants. Success has been demonstrated through enviable availability performance. With operation and availability capability already demonstrated, the Swiss are now turning their attention to the extension of plant life. This summary describes some aspects of this work, which is fundamentally based on the application of technology and testing skills developed for equipment manufacture and the original installation of this equipment in the plants, but has been enhanced by research and development (R and D) and an ongoing effort to serve utilities in their maintenance activities

  19. Selection of construction materials for equipment in an experimental reprocessing plant

    International Nuclear Information System (INIS)

    Mizrahi, R.; Cragnolino, G.A.

    1994-01-01

    A review is made of the most significant corrosion problems that may be present in different stages of the process in a spent fuel reprocessing plant. The influence of different variables is analyzed: concentration of nitric acid and other oxidizing species, temperature, etc., in corrosion of materials of most frequent use in pipings and equipment. The materials are austenitic stainless steels and refractory metals, especially zirconium and its alloys. Both general and localized corrosion phenomena are analyzed for these materials. Selection criteria for the use of adequate material in different components of the plant are also discussed. (author). 32 refs., 20 figs., 3 tabs

  20. Testing of FFTF fuel handling equipment

    International Nuclear Information System (INIS)

    Coleman, D.W.; Grazzini, E.D.; Hill, L.F.

    1977-07-01

    The Fast Flux Test Facility has several manual/computer controlled fuel handling machines which are exposed to severe environments during plant operation but still must operate reliably when called upon for reactor refueling. The test programs for two such machines--the Closed Loop Ex-Vessel Machine and the In-Vessel Handling Machine--are described. The discussion centers on those areas where design corrections or equipment repairs substantiated the benefits of a test program prior to plant operation

  1. Equipment design for reliability testing of protection system

    International Nuclear Information System (INIS)

    Situmorang, Johnny; Tjahjono, H.; Santosa, A. Z.; Tjahjani, S.DT.; Ismu, P.H; Haryanto, D.; Mulyanto, D.; Kusmono, S

    1999-01-01

    The equipment for reliability testing of cable of protection system has been designed as a a furnace with the electric heater have a 4 kW power, and need time 10 minute to reach the designed maximum temperature 3000C. The dimension of furnace is 800 mm diameter and 2000 mm length is isolated use rockwool isolator and coated by aluminium. For the designed maximum temperature the surface temperature is 78 0c. Assemble of specimens is arranged horizontally in the furnace. The failure criteria will be defined based on the behaviour of the load circuit in each line of cable specimens

  2. Recommendations to the NRC on human engineering guidelines for nuclear power plant maintainability

    Energy Technology Data Exchange (ETDEWEB)

    Badalamente, R.V.; Fecht, B.A.; Blahnik, D.E.; Eklund, J.D.; Hartley, C.S.

    1986-03-01

    This document contains human engineering guidelines which can enhance the maintainability of nuclear power plants. The guidelines have been derived from general human engineering design principles, criteria, and data. The guidelines may be applied to existing plants as well as to plants under construction. They apply to nuclear power plant systems, equipment and facilities, as well as to maintenance tools and equipment. The guidelines are grouped into seven categories: accessibility and workspace, physical environment, loads and forces, maintenance facilities, maintenance tools and equipment, operating equipment design, and information needs. Each chapter of the document details specific maintainability problems encountered at nuclear power plants, the safety impact of these problems, and the specific maintainability design guidelines whose application can serve to avoid these problems in new or existing plants.

  3. Recommendations to the NRC on human engineering guidelines for nuclear power plant maintainability

    International Nuclear Information System (INIS)

    Badalamente, R.V.; Fecht, B.A.; Blahnik, D.E.; Eklund, J.D.; Hartley, C.S.

    1986-03-01

    This document contains human engineering guidelines which can enhance the maintainability of nuclear power plants. The guidelines have been derived from general human engineering design principles, criteria, and data. The guidelines may be applied to existing plants as well as to plants under construction. They apply to nuclear power plant systems, equipment and facilities, as well as to maintenance tools and equipment. The guidelines are grouped into seven categories: accessibility and workspace, physical environment, loads and forces, maintenance facilities, maintenance tools and equipment, operating equipment design, and information needs. Each chapter of the document details specific maintainability problems encountered at nuclear power plants, the safety impact of these problems, and the specific maintainability design guidelines whose application can serve to avoid these problems in new or existing plants

  4. OVERVIEW OF A NEW METHOD FOR DESIGNING HIGH EFFICIENCY SMALL HYDRO POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Milun Babić

    2010-01-01

    Full Text Available Significant number of research projects in the area of renewable energy sources (especially for small hydro power plants has been made within the Department for Energy and Process Engineering and Regional Euro Energy Efficiency Center at Faculty of Mechanical Engineering (University of Kragujevac, Serbia since early eighties. The results are various; numerous domestic and international recognition and technical performance tell about the success of the research. Research projects have been following the technical and technological development of research equipment and economy growth. This has led to the development of software for designing turbines of SHP plants. In order to notify the public about possibilities of our software, in this paper is briefly described a mathematical model and procedures for calculating and designing of SHPP for known conditions. As an argument for assessing the validity and potential of our research results is shown constructed SHP plant "Bosnia 1", 2 x 100 kW power.

  5. Decommissioning of Division of Military Application equipment at Hanford. Summary report

    International Nuclear Information System (INIS)

    Raile, M.N.

    1977-06-01

    This report describes the successful decommissioning of plutonium-contaminated equipment used for weapon component fabrication and inspection at the Hanford Plant. Special materials, techniques, and equipment were employed during the course of the decommissioning program. Most significant was the development and design of large, double-wall fiberglassed plywood boxes for long-term (20-years, minimum) retrievable storage of the contaminated equipment in underground transuranic waste trenches

  6. Equipment nonconformance and degradation: Promptly determining operability and establishing corrective action plans

    International Nuclear Information System (INIS)

    Hoxie, C.L.; Cotton, K.R.; Emch, R.L. Jr.

    1992-01-01

    Nine principles for dealing with degraded and nonconforming equipment are presented and some examples are discussed. The distinction between equipment operability (i.e., capability to perform the safety function) and equipment qualification (conformance to all aspects of the current licensing basis, including codes and standards, design criteria, and commitments) is discussed. The concept of finding reasonable assurance of safety for continued plant operation for equipment not covered by technical specifications is also presented. Degraded or nonconforming equipment must be evaluated for its safety impact and for operability. In all cases, degraded or nonconforming conditions must ultimately be resolved, either through prompt corrective action or through some process of showing that the changed state of the plant is acceptable for continued operation, based on 10 CFR 50.59

  7. OLP embedment design method research for AP1000 nuclear plant

    International Nuclear Information System (INIS)

    Li Cheng; Li Shaoping; Liu Jianwei

    2013-01-01

    Background: One of the most advanced nuclear power technology, the first AP1000 reactor is under construction in China. Modularization is one of the main characteristics for AP1000 nuclear plant building. Module wall with steel face plate is used instead of reinforced concrete structure wall. A number of OLP embedments need to be installed into the module wall to connect other structures such as pipes, equipment, operation platforms and any other component attached to the module wall. Therefore, the design of embedment is very important in AP1000 structural design. Purpose: A finite element analysis method and tool for embedment design is needed for convenience. Methods: This paper applies the self-developed GTStrudl command template and VBA macro program for embedment capacity calculation and evaluation based on Microsoft Excel to the embedment design. Results: A Microsoft Excel template for embedment design is developed. Conclusions: The analysis method and template brings reasonable results and may provide some help and use for reference for the engineering practice. (authors)

  8. Human factors review of nuclear power plant control room design. Summary report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Gonzalez, W.R.; Parsons, S.O.

    1976-11-01

    Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. The human factors aspects of five representative nuclear power plant control rooms were evaluated using such methods as a checklist-guided observation system, structured interviews with operators and trainers, direct observations of operator behavior, task analyses and procedure evaluation, and historical error analyses. The human factors aspects of design practices are illustrated, and many improvements in current practices are suggested. The study recommends that a detailed set of applicable human factors standards be developed to stimulate a uniform and systematic concern for human factors in design considerations

  9. Prediction of Maintenance Period of Equipment Through Risk Assessment of Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Gee Wook; Kim, Bum Shin; Choi, Woo Song; Park, Myung Soo [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Risk-based inspection (RBI) is a well-known method that is used to optimize inspection activities based on risk analysis in order to identify the high-risk components of major facilities such as power plants. RBI, when implemented and maintained properly, improves plant reliability and safety while reducing unplanned outages and repair costs. Risk is given by the product of the probability of failure (Pof) and the consequence of failure (COF). A semi-quantitative method is generally used for risk assessment. Semi-quantitative risk assessment complements the low accuracy of qualitative risk assessment and the high expense and long calculation time of quantitative risk assessment. The first step of RB I is to identify important failure modes and causes in the equipment. Once these are defined, the Pof and COF can be assessed for each failure. During Pof and COF assessment, an effective inspection method and range can be easily found. In this paper, the calculation of the Pof is improved for accurate risk assessment. A modified semi-quantitative risk assessment was carried out for boiler facilities of thermal power plants, and the next maintenance schedules for the equipment were decided.

  10. Prediction of Maintenance Period of Equipment Through Risk Assessment of Thermal Power Plants

    International Nuclear Information System (INIS)

    Song, Gee Wook; Kim, Bum Shin; Choi, Woo Song; Park, Myung Soo

    2013-01-01

    Risk-based inspection (RBI) is a well-known method that is used to optimize inspection activities based on risk analysis in order to identify the high-risk components of major facilities such as power plants. RBI, when implemented and maintained properly, improves plant reliability and safety while reducing unplanned outages and repair costs. Risk is given by the product of the probability of failure (Pof) and the consequence of failure (COF). A semi-quantitative method is generally used for risk assessment. Semi-quantitative risk assessment complements the low accuracy of qualitative risk assessment and the high expense and long calculation time of quantitative risk assessment. The first step of RB I is to identify important failure modes and causes in the equipment. Once these are defined, the Pof and COF can be assessed for each failure. During Pof and COF assessment, an effective inspection method and range can be easily found. In this paper, the calculation of the Pof is improved for accurate risk assessment. A modified semi-quantitative risk assessment was carried out for boiler facilities of thermal power plants, and the next maintenance schedules for the equipment were decided

  11. How to Design and Equip a Mentalization-Based Play Therapy Room.

    Science.gov (United States)

    Rüth, Ulrich; Holch, Astrid

    2018-01-01

    Designing and equipping a play therapy room as a differentiated tool in a psychodynamic approach to child psychotherapy is seldom discussed. This article sketches out the equipment and furnishing of a play therapy room to be used for mentalization-based psychodynamic psychotherapy and gives examples of the use of such a room in practice.

  12. In situ measurement of dynamic characteristics of atomic power plant equipment

    International Nuclear Information System (INIS)

    Arya, A.S.; Gupta, S.P.; Shrivastava, S.K.

    1977-01-01

    For the realistic assessment of stiffness and damping, full scale free vibration tests have been carried out on various pieces of equipment located in plant buildings both during the construction stage and after they are erected. Initial displacement or initial velocity was used to excite the free vibrations. Initial displacement was imparted by means of steel rope pulled with chain pulley block. The sudden release was achieved by means of a clutch system. Acceleration transducer with amplifier and ink writting oscillograph was used for recording the vibrations. Frequency and damping was evaluated from the acceleration records. Observed values for some equipment are given. For some equipment, it has been possible to obtain the values with and without pipe connections. The frequency of L.P. Heater in longitudinal and transverse directions without pipe connection were 17.86 and 10.04 Hz but with pipe connections the values increased to 26.74 and 17.85 Hz. Similarly there has been increase in the damping values too. Thus both the frequency and damping increases substantially with the addition of pipe connections. Moreover, their values are quite different in the two principal directions, pointing out to the importance of in situ measurements on prototype equipment

  13. 10 CFR Appendix H to Part 110 - Illustrative List of Electromagnetic Enrichment Plant Equipment and Components Under NRC Export...

    Science.gov (United States)

    2010-01-01

    ... Equipment and Components Under NRC Export Licensing Authority H Appendix H to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. H Appendix H to Part 110—Illustrative List of Electromagnetic Enrichment Plant Equipment and Components Under...

  14. Predicting the residual life of plant equipment - Why worry

    International Nuclear Information System (INIS)

    Jaske, C.E.

    1985-01-01

    Predicting the residual life of plant equipment that has been in service for 20 to 30 years or more is a major concern of many industries. This paper reviews the reasons for increased concern for residual-life assessment and the general procedures used in performing such assessments. Some examples and case histories illustrating procedures for assessing remaining service life are discussed. Areas where developments are needed to improve the technology for remaining-life estimation are pointed out. Then, some of the critical issues involved in residual-life assessment are identified. Finally, the future role of residual-life prediction is addressed

  15. Design review report for modifications to RMCS safety class equipment

    International Nuclear Information System (INIS)

    Corbett, J.E.

    1997-01-01

    This report documents the completion of the formal design review for modifications to the Rotary Mode Core Sampling (RMCS) safety class equipment. These modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to approve the Engineering Change Notices affecting safety class equipment used in the RMCS system. The conclusion reached by the review committee was that these changes are acceptable

  16. Design review report for modifications to RMCS safety class equipment

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, J.E.

    1997-05-30

    This report documents the completion of the formal design review for modifications to the Rotary Mode Core Sampling (RMCS) safety class equipment. These modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to approve the Engineering Change Notices affecting safety class equipment used in the RMCS system. The conclusion reached by the review committee was that these changes are acceptable.

  17. Design of mobile receiving and treatment equipment for radioactive liquid waste

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun; Lu Jingbin

    2012-01-01

    The advantage and disadvantage of radioactive liquid waste treatment technology are analyzed in this paper. The experimental disposal equipment for radioactive liquid waste with complicated sources is designed by combining the far infrared calcification technology with evaporation technology. It has advantages of low energy consuming and high decontamination efficiency. The frothy and dirt appear rarely in this equipment. (authors)

  18. Application of plant Technology Knowledge Infrastructure to plant engineering and maintenance

    International Nuclear Information System (INIS)

    Kawanaka, Tsutomu; Tamaki, Yuji; Ota, Yoshimi; Yoshinaga, Toshiaki

    2006-01-01

    Management and maintenance tools are now greatly available for contributing reduction of maintenance cost and time. These tools surely give us much benefit, but are only for maintaining reliabilities of the equipment. Reliability of the plant depends on the design and actual operating conditions. Accordingly, the matter to do first is to consider facilities in the range of the plant life cycle. This brings the result that 'process property' and 'functional property' are required besides 'equipment property' which has been used for the evaluation index. Because these properties are formed at the designing stage, the beginning of the life cycle, and by applying the equipment function to them, maintenance cost can be reduced without risk increasing. To execute this subject, it is strongly required to accumulate information and data, to build up the Technology Knowledge Infrastructure. This paper reports the system and the way of applying the method to the actual plants. (author)

  19. Seismic and environmental qualification of class IE equipment manufactured in Spain

    International Nuclear Information System (INIS)

    Gerini, P.; Lumbreras, A.; Naredo, F.

    1978-01-01

    Nuclear power plant instrumentation and control design is affected by several factors such as various plant operating conditions, transient response capability, safety requirements and changes in IEEE standards. Recent upgraded IEEE standards that call for Qualification of all Safety related I anc C equipment, namely IEEE 323 (Qualifying Class IE Electric Equipment for nuclear power generating stations) and its daughter Standard IEEE 344 (Recommended Practices for Seismic Qualification of Class IE Equipment for nuclear power generating stations) have been endorsed by the United States Nuclear Regulatory Commission through the issuance of corresponding Regulatory Guides. The author describes the Qualification requirements applicable to the Class IE I and C Components made in Spain for the different vintages of plants, and the programs implemented or plans established by Westinghouse to fulfill those requirements. (author)

  20. CAL--ERDA users manual. [Building Design Language; LOADS, SYSTEMS, PLANT, ECONOMICS, REPORT, EXECUTIVE, CAL-ERDA

    Energy Technology Data Exchange (ETDEWEB)

    Graven, R. M.; Hirsch, P. R.

    1977-10-30

    A new set of computer programs capable of rapid and detailed analysis of energy consumption in buildings is described. The Building Design Language (BDL) has been written to allow simplified manipulation of the many variables used to describe a building and its operation. Programs presented in this manual include: (1) a Building Design Language program to analyze the input instructions, execute computer system control commands, perform data assignments and data retrieval, and control the operation of the LOADS, SYSTEMS, PLANT, ECONOMICS, and REPORT programs; (2) a LOADS analysis program which calculates peak (design) loads and hourly space loads due to ambient weather conditions and the internal occupancy, lighting, and equipment within the building, as well as variations in the size, location, orientation, construction, walls, roofs, floors, fenestrations, attachments (awnings, balconies), and shape of a building; (3) a HEATING, Ventilating, and Air-Conditioning (HVAC) SYSTEMS program capable of modeling the operation of HVAC components, including fans, coils, economizers, and humidifiers; (4) a PLANT equipment program which models the operation of boilers, chillers, electrical-generation equipment (e.g., diesel engines or turbines), heat-storage apparatus (e.g., chilled or heated water) and solar heating and/or cooling systems; (5) an ECONOMICS analysis program which calculates life-cycle costs; (6) a REPORT program which produces tables of user-selected variables and arranges them according to user-selected formats; and (7) an EXECUTIVE processor to create computer-system control commands. Libraries of weather data, typical schedule data, and data on the properties of walls, roofs, and floors are available.

  1. Human-centered design of the human-system interfaces of medical equipment: thyroid uptake system

    International Nuclear Information System (INIS)

    Monteiro, Jonathan K.R.; Farias, Marcos S.; Santos, Isaac J.A. Luquetti; Monteiro, Beany G.

    2013-01-01

    Technology plays an important role in modern medical centers, making healthcare increasingly complex, relying on complex technical equipment. This technical complexity is particularly noticeable in the nuclear medicine. Poorly design human-system interfaces can increase the risks for human error. The human-centered approach emphasizes the development of the equipment with a deep understanding of the users activities, current work practices, needs and abilities of the users. An important concept of human-centered design is that the ease-of-use of the equipment can be ensured only if users are actively incorporated in all phases of the life cycle of design process. Representative groups of users are exposed to the equipment at various stages in development, in a variety of testing, evaluation and interviewing situations. The users feedback obtained is then used to refine the design, with the result serving as input to the next interaction of design process. The limits of the approach are that the users cannot address any particular future needs without prior experience or knowledge about the equipment operation. The aim of this paper is to present a methodological framework that contributes to the design of the human-system interfaces, through an approach related to the users and their activities. A case study is described in which the methodological framework is being applied in development of new human-system interfaces of the thyroid uptake system. (author)

  2. ESBWR-an economical passive plant design

    International Nuclear Information System (INIS)

    Arnold, H.; Stoop, P.M.; Gonzales, A.; Rao, A.

    1996-01-01

    The ESBWR is a plant design that builds on the GKN Dodewaard natural-circulation reactor and the simplified boiling water reactor (SBWR) design. The major objective of the ESBWR program, which has been in place for the past 3 yr, is to develop a plant design with proven technology that improves the overall plant economics. It utilizes the experience and basic simplicity of the Dodewaard plant and 670-MW(electric) SBWR design features. The design is being developed by an international team of utilities, designers, and researchers. It is being designed to meet the utility and regulatory requirements of Europe. It also addresses the key economic challenges for future nuclear power stations

  3. On the evolution of the regulatory guidance for seismic qualification of electric and active mechanical equipment for nuclear power plants

    International Nuclear Information System (INIS)

    Ng, Ching Hang; Chen, Pei-Ying

    2009-01-01

    All electric and active mechanical equipment important to safety for nuclear power plants must be seismically qualified by testing, analysis, or combined analysis and testing. The general requirements for seismic qualification of electric and active mechanical equipment in nuclear power plants are delineated in Appendix S, 'Earthquake Engineering Criteria for Nuclear Power Plants,' to Title 10, Part 50, 'Domestic Licensing of Production and Utilization Facilities,' of the Code of Federal Regulations (10 CFR Part 50), item 52.47(20) of 10 CFR 52.47, 'Contents of Applications; Technical Information,' and Appendix A, 'Seismic and Geologic Siting Criteria for Nuclear Power Plants,' to 10 CFR Part 100, 'Reactor Site Criteria.' The United States Nuclear Regulatory Commission (NRC) issued Revision 2 of Regulatory Guide (RG) 1.100, 'Seismic Qualification of Electric and Mechanical for Nuclear Power Plants' in 1988, which endorsed, with restrictions, exceptions, and clarifications, Institute of Electrical and Electronics Engineers (IEEE) Standard 344-1987 'IEEE Recommended Practice for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations,' for use in seismic qualification of both electric and mechanical equipment. In 2008, the staff at the NRC drafted Revision 3 of RG 1.100 to endorse, with restrictions, exceptions, and clarifications, the IEEE Std 344-2004 and the American Society of Mechanical Engineers (ASME) QME-1-2007 'Qualification of Active Mechanical Equipment Used in Nuclear Power Plants.' IEEE Std 344-2004 was an update of Std 344-1987 and ASME QME-1-2007 was an update of QME-1-2002. The major changes in IEEE Std 344-2004 and ASME QME-1-2007 include the update and expansion of criteria and procedures describing the use of experience data as a method for seismic qualification of Class 1E electric equipment (including I and C components) as well as active mechanical equipment. In this paper, the staff will compare the draft Revision 3 to

  4. Strategy and implementation of resources control of key equipments in nuclear power plant

    International Nuclear Information System (INIS)

    Zha Qing

    2014-01-01

    The strategic resources of the construction of nuclear power plant, which include the main equipment of nuclear island, heavy forgings, the bottleneck equipment and strategic materials, is one of the key issues in the construction of nuclear power projects. The control of these strategic resources has become the focus of competition in industry and the major nuclear power groups are willing to fight for this huge advantages. The resource control strategies of key equipment of nuclear power projects are analyzed in this paper. This paper put forward specific measures and methods for the strategic resources control. By the application to a plurality of nuclear power engineering construction projects, these specific measures and methods achieved good results and will be with important guidance and reference for the construction of future nuclear power projects in China. (author)

  5. Research and design of distributed intelligence fault diagnosis system in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Yongkuo; Xie Chunli; Cheng Shouyu; Xia Hong

    2011-01-01

    In order to further reduce the misoperation after the faults occurring of nuclear power plant, according to the function distribution of nuclear power equipment and the distributed control features of digital instrument control system, a nuclear power plant distributed condition monitoring and fault diagnosis system was researched and designed. Based on decomposition-integrated diagnostic thinking, a fuzzy neural network and RBF neural network was presented to do the distributed local diagnosis and multi-source information fusion technology for the global integrated diagnosis. Simulation results show that the developed distributed status monitoring and fault diagnosis system can diagnose more typical accidents of PWR to provide effective diagnosis and operation information. (authors)

  6. Equipment Specific Optimum Blast-Design Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Rahul Upadhyay

    2015-08-01

    Full Text Available Design of blasting parameters plays an important role in the optimization of mining cost as well as cost of subsequent processing of ore. Drilling and handling costs are the major mining cost. This work presents an indirect optimization model for mining cost through optimization of blasting parameters for a particular set of drilling and loading equipment.

  7. Designing equipment for use in gamma radiation environments

    International Nuclear Information System (INIS)

    Vandergriff, K.U.

    1990-05-01

    High levels of gamma radiation are known to cause degradation in a variety of materials and components. When designing systems to operate in a high radiation environment, special precautions and procedures should be followed. This report (1) outlines steps that should be followed in designing equipment and (2) explains the general effects of radiation on various engineering materials and components. Much information exists in the literature on radiation effects upon materials. However, very little information is available to give the designer a step-by-step process for designing systems that will be subject to high levels of gamma radiation, such as those found in a nuclear fuel reprocessing facility. In this report, many radiation effect references are relied upon to aid in the design of components and systems. 11 refs., 4 tabs

  8. Stiffness Parameter Design of Suspension Element of Under-Chassis-Equipment for A Rail Vehicle

    Science.gov (United States)

    Ma, Menglin; Wang, Chengqiang; Deng, Hai

    2017-06-01

    According to the frequency configuration requirements of the vibration of railway under-chassis-equipment, the three- dimension stiffness of the suspension elements of under-chassis-equipment is designed based on the static principle and dynamics principle. The design results of the concrete engineering case show that, compared with the design method based on the static principle, the three- dimension stiffness of the suspension elements designed by the dynamic principle design method is more uniform. The frequency and decoupling degree analysis show that the calculation frequency of under-chassis-equipment under the two design methods is basically the same as the predetermined frequency. Compared with the design method based on the static principle, the design method based on the dynamic principle is adopted. The decoupling degree can be kept high, and the coupling vibration of the corresponding vibration mode can be reduced effectively, which can effectively reduce the fatigue damage of the key parts of the hanging element.

  9. Cycle chemistry monitoring system as means of improving the reliability of the equipment at the power plants

    Science.gov (United States)

    Yegoshina, O. V.; Voronov, V. N.; Yarovoy, V. O.; Bolshakova, N. A.

    2017-11-01

    There are many problems in domestic energy at the present that require urgent solutions in the near future. One of these problems - the aging of the main and auxiliary equipment. Wear of equipment is the cause of decrease reliability and efficiency of power plants. Reliability of the equipment are associated with the introduction of cycle chemistry monitoring system. The most damageable equipment’s are boilers (52.2 %), turbines (12.6 %) and heating systems (12.3 %) according to the review of failure rate on the power plants. The most part of the damageability of the boiler is heated surfaces (73.2 %). According to the Russian technical requirements, the monitoring systems are responsible to reduce damageability the boiler heating surfaces and to increase the reliability of the equipment. All power units capacity of over 50 MW are equipped with cycle chemistry monitoring systems in order to maintain water chemistry within operating limits. The main idea of cycle chemistry monitoring systems is to improve water chemistry at power plants. According to the guidelines, cycle chemistry monitoring systems of a single unit depends on its type (drum or once-through boiler) and consists of: 20…50 parameters of on-line chemical analyzers; 20…30 «grab» sample analyses (daily) and about 15…20 on-line monitored operating parameters. The operator of modern power plant uses with many data at different points of steam/water cycle. Operators do not can estimate quality of the cycle chemistry due to the large volume of daily and every shift information and dispersion of data, lack of systematization. In this paper, an algorithm for calculating the quality index developed for improving control the water chemistry of the condensate, feed water and prevent scaling and corrosion in the steam/water cycle.

  10. Equipment Maintenance management support system based on statistical analysis of maintenance history data

    International Nuclear Information System (INIS)

    Shimizu, S.; Ando, Y.; Morioka, T.

    1990-01-01

    Plant maintenance is recently becoming important with the increase in the number of nuclear power stations and in plant operating time. Various kinds of requirements for plant maintenance, such as countermeasures for equipment degradation and saving maintenance costs while keeping up plant reliability and productivity, are proposed. For this purpose, plant maintenance programs should be improved based on equipment reliability estimated by field data. In order to meet these requirements, it is planned to develop an equipment maintenance management support system for nuclear power plants based on statistical analysis of equipment maintenance history data. The large difference between this proposed new method and current similar methods is to evaluate not only failure data but maintenance data, which includes normal termination data and some degree of degradation or functional disorder data for equipment and parts. So, it is possible to utilize these field data for improving maintenance schedules and to evaluate actual equipment and parts reliability under the current maintenance schedule. In the present paper, the authors show the objectives of this system, an outline of this system and its functions, and the basic technique for collecting and managing of maintenance history data on statistical analysis. It is shown, from the results of feasibility tests using simulation data of maintenance history, that this system has the ability to provide useful information for maintenance and the design enhancement

  11. Improved control rod drive handling equipment for BWRs [boiling-water reactors]: Final report

    International Nuclear Information System (INIS)

    Turner, A.P.L.; Gorman, J.A.

    1987-08-01

    Improved equipment for removing and replacing control rod drives (CRDs) in BWR plants has been designed, built and tested. Control rod drives must be removed from the reactor periodically for servicing. Removal and replacement of CRDs using equipment originally supplied with the plant has long been recognized as one of the more difficult and highest radiation exposure maintenance operations that must be performed at BWR plants. The improved equipment was used for the first time at Quad Cities, Unit 2, during a Fall 1986 outage. The trial of the equipment was highly successful, and it was shown that the new equipment significantly improves CRD handling operations. The new equipment significantly simplifies the sequence of operations required to lower a CRD from its housing, upend it to a horizontal orientation, and transport it out of the reactor containment. All operations of the new equipment are performed from the undervessel equipment handling platform, thus, eliminating the requirement for a person to work on the lower level of the undervessel gallery which is often highly contaminated. Typically, one less person is required to operate the equipment than were used with the older equipment. The new equipment incorporates a number of redundant and fail safe features that improve operations and reduce the chances for accidents

  12. The design and qualification of radiation tolerant equipment for the nuclear power industry

    International Nuclear Information System (INIS)

    Sharp, R.; Pater, L.

    1995-01-01

    The nuclear power industry has many demands for equipment tolerant to the damaging effects of radiation. The wide variety of applications, including components handling, tooling, monitoring and communications, means that a systematic evaluation of the effects of radiation on materials and components used for equipment in radioactive facilities is often required. This paper describes the various effects of radiation on equipment, and discusses how to manage them when using and designing equipment. (Author)

  13. Production capacity of equipment for medium and large hydroelectric power plant in China

    Energy Technology Data Exchange (ETDEWEB)

    Huang Shenyang [Ministry of Electric Power, Beijing (China). Bureau of Electric Power Machinery

    1995-07-01

    This document presents an overview on the production capacity of equipment for medium and large hydroelectric power plant in China. The document approaches general aspects, production capability and testing facilities related to Francis, Kaplan, tubular and impulse hydroelectric generating sets, and the introduction of main manufacturers as well.

  14. Plant aging and design bases documentation

    International Nuclear Information System (INIS)

    Kelly, J.

    1985-01-01

    As interest in plant aging and lifetime extension continues to grow, the need to identify and capture the original design bases for the plant becomes more urgent. Decisions on lifetime extension and availability must be based on a rational understanding of design input, assumptions, and objectives. As operating plant time accumulates, the history of the early design begins to fade. The longer the utility waits, the harder it will be to re-establish the original design bases. Therefore, the time to develop this foundation is now. This paper demonstrates the impact that collecting and maintaining the original design bases of the plant can have on a utility's lifetime extension program. This impact becomes apparent when considering the technical, regulatory and financial aspects of lifetime extension. It is not good enough to know that the design information is buried somewhere in the corporate archives, and that given enough time, it could be retrieved. To be useful to the lifetime extension program, plant design information must be concise, readily available (i.e., retrievable), and easy to use. These objectives can only be met through a systematic program for collecting and presenting plant design documentation. To get the maximum benefit from a lifetime extension program, usable design bases documentation should be available as early in the plant life as possible. It will help identify areas that require monitoring today so that data is available to make rational decisions in the future

  15. Feedback of operation and maintenance experience into evolutionary plant design (HWRs)

    International Nuclear Information System (INIS)

    Hedges, K.R.; Sanatkumar, A.; Kwon, Oh-Cheol

    1999-01-01

    The process of feeding back operation and maintenance information into the CANDU plant design process has been in constant evolution since the beginning of the CANDU program. The commissioning and operation experience from the first commercial reactors at Pickering A and Bruce A was used extensively in the design of the first generation CANDU 6 Plants. These units have been in operation for 15 years, producing electricity at an average lifetime capacity factor of about 85%. In further advancing the CANDU 6 and 9 design, greater emphasis is placed on enhancements that can reduce operational costs and further improve plant performance by reducing the planned outage time. The plant design has been improved to facilitate maintenance scheduling, equipment isolation, maintenance and post maintenance testing. Individual tasks have been analyzed as well as the interaction between tasks during outages to reduce the down time required and simplify the execution of the work. This results in shorter outages, reduced radioactive dose and reduced costs. The Utilities have continued to play an important role in CANDU 6 Evolution. Specifically; the Korea Utility KEPCO has one of the original four CANDU 6 Plants and three of the most modem. Their feedback to the designers has been very helpful. One of the most important feedback processes is through the CANDU Owners Group, which provides information exchange between members. In India eight PHWRs of 220 MWe capacity are in operation. Four reactors, also of 220 MWe capacity are in advanced stages of construction. Site construction work of two units of 500 MWe PHWRs at Tarapur will be taken up shortly. Over the years, during construction and operation of these power stations, a large amount of experience has been accumulated. Operation and maintenance experience is shared with operating stations by intensive participation of design engineers in Station Operation Review meetings, trouble shooting and root cause analysis of problems

  16. Environmental qualification program for new designs

    International Nuclear Information System (INIS)

    Doerffer, K.

    2007-01-01

    Qualification of nuclear power plant equipment and components important to safety (ITS) is an integral part of the design process. The qualification methodology differs based on the severity of service conditions (operational and ambient), to which the ITS equipment is exposed. In Canada, the licensing requirements for environmental qualification for new designs are governed by the Canadian Standard Association (CSA) standard, N290.13-2005 titled 'Environmental Qualification of Equipment for CANDU Nuclear Power Plants' and the pre-consultation draft, 'Requirements for Design of Nuclear Power Plants'(DRD), issued for trial use by the Canadian Nuclear Safety Commission (CNSC) in March 2005. This paper will describe AECL's current Environmental Qualification program developed to comply with the above licensing requirements as applied to new designs. The focus will be given to qualification of ITS systems structures and components (SSC) to harsh conditions occurring due to the Design Basis Accidents (DBA). (author)

  17. Design/Operations review of core sampling trucks and associated equipment

    International Nuclear Information System (INIS)

    Shrivastava, H.P.

    1996-01-01

    A systematic review of the design and operations of the core sampling trucks was commissioned by Characterization Equipment Engineering of the Westinghouse Hanford Company in October 1995. The review team reviewed the design documents, specifications, operating procedure, training manuals and safety analysis reports. The review process, findings and corrective actions are summarized in this supporting document

  18. Optimization of power take-off equipment for an oscillating water column wave energy plant

    Energy Technology Data Exchange (ETDEWEB)

    Gato, L.M.C.; Falcao, Antonio de F.O. [Dept. de Engenharia Mecanica do IST, Lisboa (Portugal); Paulo Alexandre Justino [INETI/DER, Lisboa (Portugal)

    2005-07-01

    The paper reports the optimization study of the electro-mechanical power take-off equipment for the OWC plant whose structure is a caisson forming the head of the new Douro breakwater. The stochastic approach is employed to model the wave-to-wire energy conversion. The optimization includes rotational speed (for each sea state), turbine geometry and size, and generator rated power. The procedure is implemented into a fully integrated computer code, that yields numerical results for the multi-variable optimization process and for the electrical power output (annual average and for different sea states) with modest computing time (much less than if a time-domain model were used instead). Although focused into a particular real case, the paper is intended to outline a design method that can be applied to a wider class of wave energy converters.

  19. Application of the system engineering approach for reactor plants design

    International Nuclear Information System (INIS)

    Sitskiy, S. B.

    2010-01-01

    The main activities planned for to be implemented are: developing a data model of the reactor plant plus integration with the information model of the plant (3D model + P & ID); reengineering of processes, developing of electronic documents; description of the equipment for information management of the reactor plant lifecycle – according ISO15926

  20. Operational planning optimization of steam power plants considering equipment failure in petrochemical complex

    International Nuclear Information System (INIS)

    Luo, Xianglong; Zhang, Bingjian; Chen, Ying; Mo, Songping

    2013-01-01

    Highlights: ► We develop a systematic programming methodology to address equipment failure. ► We classify different operation conditions into real periods and virtual periods. ► The formulated MILP models guarantee cost reduction and enough operation safety. ► The consideration of reserving operation redundancy is effective. - Abstract: One or more interconnected steam power plants (SPPs) are constructed in a petrochemical complex to supply utility energy to the process. To avoid large economic penalties or process shutdowns, these SPPs should be flexible and reliable enough to meet the process energy requirement under varying conditions. Unexpected utility equipment failure is inevitable and difficult to be predicted. Most of the conventional methods are based on the assumption that SPPs do not experience any kind of equipment failure. Unfortunately, a process shutdown cannot be avoided when equipment fails unexpectedly. In this paper, a systematic methodology is presented to minimize the total cost under normal conditions while reserving enough flexibility and safety for unexpected equipment failure conditions. The proposed method transforms the different conditions into real periods to indicate normal scenarios and virtual periods to indicate unexpected equipment failure scenarios. The optimization strategy incorporating various operation redundancy scheduling, the transition constraints from equipment failure conditions to normal conditions, and the boiler load increase behavior modeling are presented to save cost and guarantee operation safety. A detailed industrial case study shows that the proposed systematic methodology is effective and practical in coping with equipment failure conditions with only few additional cost penalties

  1. Reactor plant for Belene NPP completion

    International Nuclear Information System (INIS)

    Dragunov, Yu. G.; Ryzhov, S. B.; Ermakov, D. N.; Repin, A. I.

    2004-01-01

    Construction of 'Belene' NPP was started at the end of 80-ties using project U-87 with V-320 reactor plant, general designer of this plant is OKB 'Gidropress'. At the beginning of 90-ties, on completing the considerable number of deliveries and performance of civil engineering work at the site the NPP construction was suspended. Nowadays, considering the state of affairs at the site and the work performed by Bulgarian Party on preservation of the equipment delivered, the most perspective is supposed to be implementation of the following versions in completing 'Belene' NPP: for completion of Unit 1 - reactor plant VVER-1000 on the basis of V-320 reactor with the maximum use of the delivered equipment (V-320M) having the extended service life and safety improvement; for Unit 2 - advanced reactor plant VVER-1000. For the upgraded reactor plant V-230M the basic solutions and characteristics are presented, as well as the calculated justification of strength and safety analyses, design of the reactor core and fuel cycle, instrumentation and control systems, application of the 'leak-before break' in the project and implementation of safety measures. For the modernised reactor plant V-392M the main characteristics and basic changes are presented, concerning reactor pressure vessel, steam generator, reactor coolant pump set. Design of NPP with the modernized reactor plant V-320M meets the up-to-date requirements and can be licensed for completion and operation. In the design of NPP with the advanced reactor plant the basic solutions and the equipment are used that are similar to those used in standard reactor plant V-320 and new one with VVER-1000 under construction and completion in Russia, and abroad. Compliance of reactor design with the up-to-date international requirements, considering the extended service life of the main equipment, shows its rather high potential for implementation during completion of 'Belene' NPP

  2. Potentially damaging failure modes of high- and medium-voltage electrical equipment

    International Nuclear Information System (INIS)

    Hoy, H.C.

    1983-07-01

    The electrical equipment failures of both nuclear and nonnuclear public utilities were reviewed. Those failures that could pose an additional problem to surrounding and connected equipment were defined. The literature was searched; utilities, repair shops, and large electrical equipment users were contacted for failure information. The data were reviewed in detail, and failure modes were determined. Sample cascade failures are discussed. The failure rate of electrical equipment in utilities is historically quite low. Nuclear plants record too few failures to be statistically valid, but failures that have been recorded show that good design usually restricts the failure to a single piece of equipment

  3. Evaluation of Design Models of Process Equipment for Use in PRIDE: Remote Operability and Maintainability

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Kim, Sung Hyun; Yu, Seung Nam; Lee, Jong Kwang; Park, Byung Suk; Han, Jong Hui; Cho, Il Je; Lee, Han Soo

    2012-01-01

    Process equipment for pyroprocessing are being developed at KAERI (Korea Atomic Energy Research Institute). Those equipment should be operated and maintained in a fully remote manner in the argon gas filled cell of PRIDE (PyRoprocess Integrated inactive DEmonstration facility) at KAERI because direct human access to the in-cell is not possible during an operation due to the high toxicity of the argon gas. To make such process equipment remotely operable and maintainable, their design developments have been tested and evaluated in a simulator before they are constructed. A simulator as a means of evaluating the remote operability and maintainability of the design models of process equipment for pyroprocessing is described, and results of the design models tested and evaluated in a simulator are presented

  4. Industrial applications for remote operation in a processing plant

    International Nuclear Information System (INIS)

    Hermier, J.; Le Guennec, R.

    1984-01-01

    In the first part of this article, J. Hermier covers the use of remote handling equipment in the UP2-400 plant at La Hague near Cherbourg, in which for the most part master/slave mechanism remote handling units are used with a number of these employed in daily processing operations. As regards this subject, it is useful to remember that, at the time of the designing of this plant (UP2-400), this was the only equipment available on the market with remote-controlled remote handling equipment. In the second part, before speaking about the development of remote operation equipment in the plants now under construction and attempting to project what might be the remote operation role in future plants, R. Le Guennec reviews the problems faced by engineering in designing industrial-sized processing plants and, consequently, the motivations of engineering when faced with a choice between several possible solutions [fr

  5. Design guides for radioactive-material-handling facilities and equipment

    International Nuclear Information System (INIS)

    Doman, D.R.; Barker, R.E.

    1980-01-01

    Fourteen key areas relating to facilities and equipment for handling radioactive materials involved in examination, reprocessing, fusion fuel handling and remote maintenance have been defined and writing groups established to prepare design guides for each areas. The guides will give guidance applicable to design, construction, operation, maintenance and safety, together with examples and checklists. Each guide will be reviewed by an independent review group. The guides are expected to be compiled and published as a single document

  6. Reconciliation of equipment flexibility effects on piping system dynamic response

    International Nuclear Information System (INIS)

    Geraets, L.H.

    1987-01-01

    Piping systems are connected to equipment; if the equipment cannot be considered as ''rigid'' relative to excitation frequencies, nozzle response spectra techniques, or equipment modeling techniques are used. If the equipment is considered rigid, a fixed anchor is assumed. However, occasionally after (seismic) dynamic analysis has been completed, tests or detailed equipment dynamic analyses demonstrate that the assumption of ''infinite stiff'' is questionable. This paper reviews several classes of equipment (pumps, vessels, reservoirs, heat exchangers), and the associated (piping stresses, support loads, equipment nozzle allowables). Significant divergences between design and ''as built'' results are shown (for heat exchangers in particular). The paper discusses the reconciliation process performed for a belgian PWR plant through the use of less conservative seismic damping data (Code Case N-411)

  7. REQUIREMENTS FOR DESIGN, EQUIPMENT AND OPERATION MODE OF TAXI VEHICLES

    Directory of Open Access Journals (Sweden)

    Norayr Oganesovich Bludyan

    2015-09-01

    Full Text Available The analysis of international experience in application of requirements for the taxi vehicles design and equipment. The approaches to improvement of cabbing have been defined by determination of requirements for taxi vehicles.

  8. Database structure and file layout of Nuclear Power Plant Database. Database for design information on Light Water Reactors in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Nobuo; Izumi, Fumio.

    1995-12-01

    The Nuclear Power Plant Database (PPD) has been developed at the Japan Atomic Energy Research Institute (JAERI) to provide plant design information on domestic Light Water Reactors (LWRs) to be used for nuclear safety research and so forth. This database can run on the main frame computer in the JAERI Tokai Establishment. The PPD contains the information on the plant design concepts, the numbers, capacities, materials, structures and types of equipment and components, etc, based on the safety analysis reports of the domestic LWRs. This report describes the details of the PPD focusing on the database structure and layout of data files so that the users can utilize it efficiently. (author)

  9. RCC-E: Design and construction rules for electrical equipment of PWR nuclear islands

    International Nuclear Information System (INIS)

    2016-01-01

    RCC-E describes the rules for designing, building and installing electrical and I and C systems and equipment for pressurized water reactors. The code was drafted in partnership with industry, engineering firms, manufacturers, building control firms and operators, and represents a collection of best practices in accordance with IAEA requirements and IEC standards. The code's scope covers: architecture and the associated systems, materials engineering and the qualification procedure for normal and accidental environmental conditions, facility engineering and management of common cause failures (electrical and I and C) and electromagnetic interference, testing and inspecting electrical characteristics, quality assurance requirements supplementing ISO 9001 and activity monitoring. Use: RCC-E has been used to build the following power plants: France's last 12 nuclear units (1,300 MWe (8) and 1,450 MWe (4)), 2 M310 reactors in Korea (2), 44 M310 (4), CPR-1000 (28), CPR-600 (6), HPR-1000 (4) and EPR (2) reactors in service or undergoing construction in China, 1 EPR reactor in France. RCC-E is used for maintenance operations in French power plants (58 units) and Chinese M310 and CPR-1000 power plants. RCC-E has been chosen for the construction of the EPR plants in Hinkley Point, UK. Contents of the 2016 edition of the RCC-E code: Volume 1 - General requirements and quality assurance; Volume 2 - Specification of requirements; Volume 3 - I and C systems; Volume 4 - Electrical systems; Volume 5 - Materials engineering; Volume 6 - Installation of electrical and I and C systems; Volume 7 - Inspection and test methods

  10. Supporting industrial equipment development through a set of design-for-maintenance guidelines

    NARCIS (Netherlands)

    Mulder, W.; Basten, Robertus Johannes Ida; Jauregui Becker, Juan Manuel; Blok, Jeroen; Hoekstra, Sipke; Kokkeler, Frans; Marjanovic, Dorian; Storga, Mario; Pavkovic, Neven; Bojcetic, Nenad

    2014-01-01

    This paper presents a leaflet with design-for-maintenance guidelines. It aims at supporting developers of industrial equipment in their design-for-maintenance practices. The use of this leaflet should lead to increased attention for design-for-maintenance aspects and to improve idea generation. The

  11. Design and simulation of a plant control system for a GCFR demonstration plant

    International Nuclear Information System (INIS)

    Estrine, E.A.; Greiner, H.G.

    1980-02-01

    A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations

  12. Maintenance planning for nuclear power plants

    International Nuclear Information System (INIS)

    Mattu, R.K.; Cooper, S.E.; Lauderdale, J.R.

    2004-01-01

    Maintenance planning for nuclear power plants is similar to that in other industrial plants but it is heavily influenced by regulatory rules, with consequent costs of compliance. Steps by the nuclear industry and the Nuclear Regulatory Commission to address that problem include development of guidelines for maintenance of risk-critical equipment, using PRA-based techniques to select a set of equipment that requires maintenance and reliability-centered maintenance (RCM) approaches for determining what maintenance is required. The result of the process is a program designed to ensure effective maintenance of the equipment most critical to plant safety. (author)

  13. Design and implementation of equipment for monitoring the salinity in the subsoil

    Directory of Open Access Journals (Sweden)

    Mariano Norzagaray Campos

    2012-09-01

    Full Text Available Geochemical exploration equipments to explore the contaminants and structures geological in the subsoil come from abroad are expensive and sometimes parts for replacement are not available in the market. So it is necessary design apparatus that meet cover these needs. To the monitoring of variations in salinity there is semi-automatic equipment, but it always has difficult to manage. However, is not equipment for the indirect study of salinity in the subsoil. In this work was design equipment for measurement the apparent resistivity in the subsoil, at same time allow know the salinity, as well as the detection of any pollutant in groundwater. For make it, was selected a design of earthing systems, with electronic hardware which were jointed for apply to subsoil a direct current (DC through an array dipole-dipole and vertical electric sounding, with brass and stainless steel electrodes. In the earthing systems the electrodes were collocated in the equidistant line between the detectors of potential and current. A geometric factor (K, that depend on theelectrodes distance and direct current (I injected in the electrodes A and B, was used for measure the potential difference between the electrodes M and N; after was calculate the resistivity point to point for obtain a subsoil tomography geoelectrical. The equipment was calibrated with minimum error (rms < 2% whit respect to curves obtained in similar commercial equipment. On this situation, in this work was modernized and automated an equipment to determine thesalinity of the subsoil. The instrument was tasted in the micro basin Texcoco, State of Mexico, to define the environment geometry formed by alluvial or lake sediments from igneous rocks (andesites, rhyolites and tuffs vitreous or “tepetates” which by its mineralogical composition allowed to the lateral resistivity be associate with free components trace from the aquifer: Cd, Cu, Cr, Co, Ni, Pb or Zn and others. This method constitutes

  14. Thermal power plant design and operation

    CERN Document Server

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  15. Quality of care and investment in property, plant, and equipment in hospitals.

    Science.gov (United States)

    Levitt, S W

    1994-01-01

    OBJECTIVE. This study explores the relationship between quality of care and investment in property, plant, and equipment (PPE) in hospitals. DATA SOURCES. Hospitals' investment in PPE was derived from audited financial statements for the fiscal years 1984-1989. Peer Review Organization (PRO) Generic Quality Screen (GQS) reviews and confirmed failures between April 1989 and September 1990 were obtained from the Massachusetts PRO. STUDY DESIGN. Weighted least squares regression models used PRO GQS confirmed failure rates as the dependent variable, and investment in PPE as the key explanatory variable. DATA EXTRACTION. Investment in PPE was standardized, summed by the hospital over the six years, and divided by the hospital's average number of beds in that period. The number of PRO reviewed cases with one or more GQS confirmed failures was divided by the total number of cases reviewed to create confirmed failure rates. PRINCIPAL FINDINGS. Investment in PPE in Massachusetts hospitals is correlated with GQS confirmed failure rates. CONCLUSIONS. A financial variable, investment in PPE, predicts certain dimensions of quality of care in hospitals. PMID:8113054

  16. Research program for seismic qualification of nuclear plant electrical and mechanical equipment. Task 3. Recommendations for improvement of equipment qualification methodology and criteria. Volume 3

    International Nuclear Information System (INIS)

    Kana, D.D.; Pomerening, D.J.

    1984-08-01

    The Research Program for Seismic Qualification of Nuclear Plant Electrical and Mechanical Equipment has spanned a period of three years and resulted in seven technical summary reports, each of which covered in detail the findings of different tasks and subtasks, and have been combined into five NUREG/CR volumes. Volume 3 presents recommendations for improvement of equipment qualification methodology and procedural clarification/modification. The fifth category identifies issues where adequate information does not exist to allow a recommendation to be made

  17. Lifetime of Mechanical Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Leland, K.

    1999-07-01

    The gas plant at Kaarstoe was built as part of the Statpipe gas transport system and went on stream in 1985. In 1993 another line was routed from the Sleipner field to carry condensate, and the plant was extended accordingly. Today heavy additional supply- and export lines are under construction, and the plant is extended more than ever. The main role of the factory is to separate the raw gas into commercial products and to pump or ship it to the markets. The site covers a large number of well-known mechanical equipment. This presentation deals with piping, mechanical and structural disciplines. The lifetime of mechanical equipment is often difficult to predict as it depends on many factors, and the subject is complex. Mechanical equipment has been kept in-house, which provides detailed knowledge of the stages from a new to a 14 years old plant. The production regularity has always been very high, as required. The standard of the equipment is well kept, support systems are efficient, and human improvisation is extremely valuable.

  18. Research cooperation project on environmentally friendly technology for highly efficient mineral resources extraction and treatment. Detail design for pilot plant (Mechanical fabrication)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper prepared plans of the mechanical equipment in the detailed design of a pilot plant in the joint research project on the environmental protection technology for highly efficient mineral resource extraction and treatment. (NEDO)

  19. Design scheme of automatic feeding equipment of domestic uranium chemical concentrate

    International Nuclear Information System (INIS)

    Hu Jinming; Wang Chao; Peng Jinhui; Zhang Libo

    2014-01-01

    In order to solve problems by artificial feeding mode with low work efficiency, large intensity manual labor and environmental pollution in domestic uranium concentrate purification process, the design scheme of automatic feeding device was set up, including work flow sheet, composition of automatic equipment and operation. By application of automatic feeding equipment, the feeding speed can be greatly increased, labor force can be reduced, and harm to workman health can be decreased. (authors)

  20. Application of new control technology during the maintenance of equipment in the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Ojeda R, M. A.

    2008-01-01

    In the nuclear power plant of Laguna Verde, in normal operation and recharges are carried out activities of preventive maintenance and corrective to different equipment, due to the one displacement of radioactive materials from the vessel of the reactor until the one system of vapor, different radiation levels are generated (from low until very high) in the circuits of vapor and water, the particles can be incrusted on those interior surfaces of the pipes and equipment, creating this way a potential risk of contamination and exhibition during the maintenance of equipment. To help to optimize the dose to the personnel the use of new technology the has been implemented which besides contributing an absolute control of the work, it offers bigger comfort to the one worker during the development of their work, also contributing a supervision more effective of the same one. Using the captured and processed information of the work developed you can use for the personnel's capacitation and feedback of the work for the continuous improvement of the same one. During a reduction of programmed power and normal operation are carried out maintenance correctives and specific works to preserve the readiness and ability of the equipment and with this to maintain the security of the nuclear power plant. The development of the theme it is showing the advances and commitments of personnel to take to excellence to the nuclear power plant of Laguna Verde showing to the obtained results of the dose and benefits of 2 works carried out in the nuclear power plant where tools ALARA were applied as well as the use of the new technology (Video Equipment of Tele dosimetry and Audio 'VETA') in works carried out in the building of purification level 10.15, change and cuts of filter of the prefilters of system G16, as well as,the retirement and transfer for its decay of High Integrity Container (HIC) of the building of purification level -0.55 to the Temporary Warehouse in Site. Works of high

  1. Development of floor design response spectra for seismic design of floor-supported equipment or components, Revision 1, February 1978

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This guide presents an acceptable method for developing two horizontal and one vertical floor design response spectra at various floor or other equipment-support locations from the time-history motions resulting from the dynamic analysis of the supporting structure. These floor design response spectra are used in the dynamic analysis of systems or equipment supported at various locations of the supporting structure. Consulation has been provided by the Advisory Committee on Reactor Safeguards

  2. Reality testing a plant design 'virtually' anywhere

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The development of a new world-wide-web compatible information system known as HyperPlant will allow users to navigate real-time three-dimensional plant design and contraction software. It is anticipated that corporate Intranets will be created to facilitate computer-aided design of industrial plants such as piping routes, process schematics, fabrication drawings, and allow use of PDMS (the Plant Design Management System). HyperPlant can also assist in plant commissioning and operation as well as for planning operation and maintenance procedures. (UK)

  3. Conceptual design of the alcohol waste treatment equipment

    International Nuclear Information System (INIS)

    Fujisawa, Morio; Nitta, Kazuhiko; Morita, Yasuhiro; Nakada, Eiju

    2001-01-01

    This report describes the result of Conceptual Design of the Alcohol Waste Treatment Equipment. The experimental fast Reactor, JOYO, saves the radioactive alcohol waste at storage tank. As this alcohol waste is not able to treat with existing equipment, it is stored about 5 m 3 . And the amount of this is increasing every year. So it is necessary to treat the alcohol waste by chemical resolution for example. On account of this, the investigative test about filtration and dialyzer, and conceptual design about catalyst oxidation process, which is composed from head end process to resolution, are done. The results of investigation show as follows. 1. Investigative Test about filtration and dialyzer. (1) The electric conduction is suitable for the judgement of alkyl sodium hydrolysis Alkyl sodium hydrolysis is completed below 39% alcohol concentration. (2) The microfiltration is likely to separate the solid in alcohol waste. (3) From laboratory test, the electrodialyzer is effective for sodium separation in alcohol waste. And sodium remove rate, 96-99%, is confirmed. 2. Conceptual Design. The candidate process is as follows. (1) The head end process is electrodialyzer, and chemical resolution process is catalyst oxidation. (2) The head end process is not installed, and chemical resolution process is catalyst oxidation. (3) The head end process is electrodialyzer, and alcohol extracted by pervaporation. In this Conceptual Design, as far these process, the components, treatment ability, properties of waste, chemical mass balance, safety for fire and explosion, and the plot plan are investigated. As a result, remodeling the existing facility into catalyst oxidation process is effective to treat the alcohol waste, and treatment ability is about 1.25 l/h. (author)

  4. Current fusion power plant design concepts

    International Nuclear Information System (INIS)

    Gore, B.F.; Murphy, E.S.

    1976-09-01

    Nine current U.S. designs for fusion power plants are described in this document. Summary tabulations include a tenth concept, for which the design document was unavailable during preparation of the descriptions. The information contained in the descriptions was used to define an envelope of fusion power plant characteristics which formed the basis for definition of reference first commercial fusion power plant design. A brief prose summary of primary plant features introduces each of the descriptions contained in the body of this document. In addition, summary tables are presented. These tables summarize in side-by-side fashion, plant parameters, processes, combinations of materials used, requirements for construction materials, requirements for replacement materials during operation, and production of wastes

  5. Specific issues for seismic performance of power plant equipment

    Energy Technology Data Exchange (ETDEWEB)

    Nawrotzki, Peter [GERB Vibration Control Systems, Berlin (Germany)

    2010-01-15

    Power plant machinery can be dynamically decoupled from the substructure by the effective use of helical steel springs and viscous dampers. Turbine foundations, coal mills, boiler feed pumps and other machine foundations benefit from this type of elastic support systems to mitigate the transmission of operational vibration. The application of these devices may also be used to protect against earthquakes and other catastrophic events, i.e. airplane crash, of particular importance in nuclear facilities. This article illustrates basic principles of elastic support systems and applications on power plant equipment and buildings in medium and high seismic areas. Spring damper combinations with special stiffness properties are used to reduce seismic acceleration levels of turbine components and other safety or non-safety related structures. For turbine buildings, the integration of the turbine sub-structure into the machine building can further reduce stress levels in all structural members. The application of this seismic protection strategy for a spent fuel storage tank in a high seismic area is also discussed. Safety in nuclear facilities is of particular importance and recent seismic events and the resulting damage in these facilities again brings up the discussion. One of the latest events is the 2007 Chuetsu earthquake in Japan. The resulting damage in the Kashiwazaki Kariwa Nuclear Power Plant can be found in several reports, e.g. in Yamashita. (orig.)

  6. Joint excitation and reactive power control in thermal power plant

    Directory of Open Access Journals (Sweden)

    Dragosavac Jasna

    2013-01-01

    Full Text Available The coordinated voltage and reactive power controller, designed for the thermal power plant, is presented in the paper. A brief explanation of the need for such device is given and justification for commissioning of such equipment is outlined. After short description of the theoretical background of the proposed control design, the achieved features of the commissioned equipment are fully given. Achieved performances are illustrated by recorded reactive power and bus voltage responses after commissioning of the described equipment into the largest thermal power plant in Serbia. As it can be seen in presented records, all design targets are met.

  7. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    International Nuclear Information System (INIS)

    Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A.

    1995-01-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R ampersand D plan for ABC are described on the bases of the ''strawman'' or ''point-of-departure'' plant layout that resulted from this study

  8. The design and equipments of hospital pharmacies in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Sabzghabaee

    2010-01-01

    Full Text Available Background: Nowadays pharmaceutical care departments located in hospitals are amongst the important pillars of the healthcare system. The aim of this study was to evaluate designing features and equipments of hospital drugstores affiliated with Isfahan University of Medical Sciences. Methods: In this cross-sectional study a self-defined and validated questionnaire was used which included all the necessary and standard needed spaces and equipments of an ideal hospital pharmacy. The questionnaire was filled in by one of the researchers in all twelve hospital drugstores located in the teaching and non-teaching hospitals affiliated with Isfahan University of Medical Sciences. Data analysis was done using SPSS (version 14. Results: Results showed that 56% of drugstore space allocations were unsuitable. Used pharmaceutical equipments in 75% of surveyed hospitals were not according to the standards. Almost all of these pharmacies had rather an enough space for storage, but cold storages were not designed in 58% of them. In 66% of perused hospitals, pharmaceutical services disposal level was admissible. The structural engineering parameters like size and dimensions, available spaces, availability of structural planes, existence of air conditioning systems and brightness controllers, adequate stores for drugs and safe places for narcotics were observed in 55% of pharmacies. Conclusions: There are apparent out of standard space allocations and shortages of needed equipments for offering drug services in studied drugstores that may probably lead to a waste of time and money. These issues may reduce the efficiency and safety of pharmaceutical services and drug administration in hospitals.

  9. Experience of safety and performance improvement for fuel handling equipment

    International Nuclear Information System (INIS)

    Gyoon Chang, Sang; Hee Lee, Dae

    2014-01-01

    The purpose of this study is to provide experience of safety and performance improvement of fuel handling equipment for nuclear power plants in Korea. The fuel handling equipment, which is used as an important part of critical processes during the refueling outage, has been improved to enhance safety and to optimize fuel handling procedures. Results of data measured during the fuel reloading are incorporated into design changes. The safety and performance improvement for fuel handling equipment could be achieved by simply modifying the components and improving the interlock system. The experience provided in this study can be useful lessons for further improvement of the fuel handling equipment. (authors)

  10. Probabilistic approach to rationalization of plants maintenance

    International Nuclear Information System (INIS)

    Kasai, Masao; Notoya, Junichi; Uchimoto, Tetsuya; Miya, Kenzo

    2001-01-01

    Since there are a lot of equipments in large plants, their safety and reliability cannot be kept as high level as designed without maintenance activities. Then preventive maintenance is intensively executed in some large plants. However, it will be inefficient to perform the preventive maintenance blindly. To make maintenance activities effective, it is essential to identify the critical equipments influencing plant safety and/or reliability and carry out the maintenance by focusing attentions on these equipments. It needs quantitative analyses to identify the critical equipments based on the data of failure rates. However, complete data set of failure rates cannot necessarily be available for some plants such as nuclear power plants. In this study, we carry out the reliability analysis for generic LNG plant and calculate various quantitative risk importance measures for each equipment. We propose rather qualitative representations for some quantitative measures, considering the situation without complete data set and conclude that it is possible to rationalize maintenance procedure by using these rather qualitative measures, though the level of rationalization is of course limited. (author)

  11. Safeguards by Design at the Encapsulation Plant in Finland

    International Nuclear Information System (INIS)

    Ingegneri, M.; Baird, K.; Park, W.-S.; Coyne, J.M.; Enkhjin, L.; Chew, L.S.; Plenteda, R.; Sprinkle, J.; Yudin, Y.; Ciuculescu, C.; Koutsoyannopoulos, C.; Murtezi, M.; Schwalbach, P.; Vaccaro, S.; Pekkarinen, J.; Thomas, M.; Zein, A.; Honkamaa, T.; Hamalainen, M.; Martikka, E.; Moring, M.; Okko, O.

    2015-01-01

    Finland has launched a spent fuel disposition project to encapsulate all of its spent fuel assemblies and confine the disposal canisters in a deep geological repository. The construction of the underground premises started several years ago with the drilling, blasting and reinforcement of tunnels and shafts to ensure the safe deep underground construction and disposal techniques in the repository, while the design of the encapsulation plant (EP) enters the licencing phase preliminary to its construction. The spent fuel assemblies, which have been safeguarded for decades at the nuclear power plants, are going to be transported to the EP, loaded into copper canisters and stored in underground tunnels where they become inaccessible after backfilling. Safeguards measures are needed to ensure that final spent fuel verification is performed before its encapsulation and that no nuclear material is diverted during the process. This is an opportunity for the inspectorates to have the infrastructure necessary for the safeguards equipment incorporated in the design of the encapsulation plant before licencing for construction occurs. The peculiarity of this project is that it is going to run for more than a century. Therefore, significant changes are to be expected in the technical capabilities available for implementing safeguards (e.g., verification techniques and instruments), as well as in the process itself, e.g., redesign for the encapsulation of future fuel types. For these reasons a high degree of flexibility is required in order to be able to shift to different solutions at a later stage while minimizing the interference with the licencing process and facility operations. This paper describes the process leading to the definition of the technical requirements by IAEA and Euratom to be incorporated in the facility's design. (author)

  12. Classification of methods and equipment recovery secondary waters

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2017-01-01

    Full Text Available The issues of purification of secondary waters of industrial production have an important place and are relevant in the environmental activities of all food and chemical industries. For cleaning the transporter-washing water of beet-sugar production the key role is played by the equipment of treatment plants. A wide variety of wastewater treatment equipment is classified according to various methods. Typical structures used are sedimentation tanks, hydrocyclones, separators, centrifuges. In turn, they have a different degree of purification, productivity through the incoming suspension and purified secondary water. This is equipment is divided into designs, depending on the range of particles to be removed. A general classification of methods for cleaning the transporter-washing water, as well as the corresponding equipment, is made. Based on the analysis of processes and instrumentation, the main methods of wastewater treatment are identified: mechanical, physicochemical, combined, biological and disinfection. To increase the degree of purification and reduce technical and economic costs, a combined method is widely used. The main task of the site for cleaning the transporter-washing waters of sugar beet production is to provide the enterprise with water in the required quantity and quality, with economical use of water resources, taking into account the absence of pollution of surface and groundwater by industrial wastewater. In the sugar industry is currently new types of washing equipment of foreign production are widely used, which require high quality and a large amount of purified transporter-washing water for normal operation. The proposed classification makes it possible to carry out a comparative technical and economic analysis when choosing the methods and equipment for recuperation of secondary waters. The main equipment secondary water recovery used at the beet-sugar plant is considered. The most common beet processing plant is a

  13. US GCFR demonstration plant design

    International Nuclear Information System (INIS)

    Hunt, P.S.; Snyder, H.J.

    1980-05-01

    A general description of the US GCFR demonstration plant conceptual design is given to provide a context for more detailed papers to follow. The parameters selected for use in the design are presented and the basis for parameter selection is discussed. Nuclear steam supply system (NSSS) and balance of plant (BOP) component arrangements and systems are briefly discussed

  14. 核电厂核岛设备设计管理策划研究%Research on the Planning of Nuclear Island Equipment Design Management of Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    张国平

    2015-01-01

    本文对核电厂核岛设备设计管理策划的重要性进行了阐述,提出了设备设计策划过程中应遵循的一般原则以及策划的主要内容,为编制核电厂核岛设备设计策划文件提供借鉴和参考。%This paper presents the importance of the planning of nuclear island equipment design management, and puts forward the general principles in the planning process of the equipment design management and the main content of the planning. This paper provides the reference for writing the nuclear island equipment design management planning documents.

  15. Recent developments in methodology for dynamic qualification of nuclear plant equipment

    International Nuclear Information System (INIS)

    Kana, D.D.; Pomerening, D.J.

    1984-01-01

    Dynamic qualification of nuclear plant electrical and mechanical equipment is performed basically under guidelines given in IEEE Standards 323 and 344, and a variety of NRC regulatory guides. Over the last fifteen years qualification methodology prescribed by these documents has changed significantly as interpretations, equipment capability, and imagination of the qualification engineers have progressed. This progress has been sparked by concurrent NRC and industry sponsored research programs that have identified anomalies and developed new methodologies for resolving them. Revisions of the standards have only resulted after a lengthy debate of all such new information and subsequent judgment of its validity. The purpose of this paper is to review a variety of procedural improvements and developments in qualification methodology that are under current consideration as revisions to the standards. Many of the improvements and developments have resulted from recent research programs. All are very likely to appear in one type of standard or another in the near future

  16. Injury survey of a non-traditional 'soft-edged' trampoline designed to lower equipment hazards.

    Science.gov (United States)

    Eager, David B; Scarrott, Carl; Nixon, Jim; Alexander, Keith

    2013-01-01

    In Australia trampolines contribute one quarter of all childhood play equipment injuries. The objective of this study was to gather and evaluate injury data from a non-traditional, 'soft-edged', consumer trampoline, where the design aimed to minimise injuries from the equipment and from falling off. The manufacturer of the non-traditional trampoline provided the University of Technology Sydney with their Australian customer database. The study involved surveys in Queensland and New South Wales, between May 2007 and March 2010. Initially injury data was gathered by a phone interview pilot study, then in the full study, through an email survey. The 3817 respondents were the carers of child users of the 'soft-edge' trampolines. Responses were compared with Australian and US emergency department data. In both countries the proportion of injuries caused by the equipment and falling off was compared with the proportion caused by the jumpers to themselves or each other. The comparisons showed a significantly lower proportion resulted from falling-off or hitting the equipment for this design when compared to traditional trampolines, both in Australia and the US. This research concludes that equipment-induced and falling-off injuries, the more severe injuries on traditional trampolines, can be significantly reduced with appropriate trampoline design.

  17. Design of plant safety model in plant enterprise engineering environment

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-01-01

    Plant enterprise engineering environment (PEEE) is an approach aiming to manage the plant through its lifecycle. In such environment, safety is considered as the common objective for all activities throughout the plant lifecycle. One approach to achieve plant safety is to embed safety aspects within each function and activity within such environment. One ideal way to enable safety aspects within each automated function is through modeling. This paper proposes a theoretical approach to design plant safety model as integrated with the plant lifecycle model within such environment. Object-oriented modeling approach is used to construct the plant safety model using OO CASE tool on the basis of unified modeling language (UML). Multiple views are defined for plant objects to express static, dynamic, and functional semantics of these objects. Process safety aspects are mapped to each model element and inherited from design to operation stage, as it is naturally embedded within plant's objects. By developing and realizing the plant safety model, safer plant operation can be achieved and plant safety can be assured

  18. Construction technique for a chemical plant (I)

    International Nuclear Information System (INIS)

    1978-08-01

    This book mentions the order of plant construction, building plant and related regulations, basic engineering design data, provide of equipment, plan and management on building plant, quality control, the budget and contract for building plant, public works for building chemical plant like road construction, basic plan and building for a chemical plant, introduction and principle on foundation improvement method, including pile foundation and design for footing, construction and installation for a chemical plant and a rotary machine for a chemical plant.

  19. System 80+ integrated design of a complete plant

    International Nuclear Information System (INIS)

    Turk, R.S.; Stamm, S.L.; Fox, W.A.

    1992-01-01

    In 1985, ABB-Combustion Engineering Nuclear Power (ABB-CENP) and elements of Duke Power Company [now Duke Engineering ampersand Services (DE ampersand S)] joined forces under the aegis of the Electric Power Research Institute (EPRI) Advanced Light Water Reactor (ALWR) Program to develop, with the sponsoring utilities, the design requirements for the next generation of nuclear power plants. With support from the US Department of Energy, ABB-CENP and DE ampersand S again teamed up the following year to initiate a project to design and license the System 80+ standard plant design, an advanced pressurized water reactor that meets these utility requirements. A distinguishing feature of the System 80+ standard design is that it is an essentially complete plant, predesigned and prelicensed to ensure rapid and economical construction. This is in stark contrast to typical prior conduct, where the reactor vendor offered only the nuclear steam supply system and the plant was built on a design-as-you-go basis with constant pressure to release individual elements of the plant design for construction or procurement as soon as possible. Now, however, the design process can be integrated over the total plant, ensuring that the goals set for ALWRs can be met. This integrated design process is manifested in several ways: (1) broad-based participation during the design process by involving designers, analysts, suppliers, constructors, and operators; (2) use of probabilistic risk assessment (PRA) as a design tool to aid in evaluating design features on a total-plant basis; (3) application of human factors engineering methods to a total plant distributed control system to improve the human-machine interface in the design; and (4) use of computer-aided design to enhance assessment of interactions and impacts of all aspects of the total plant. Each of these aspects of integrated plant design is discussed in this paper

  20. HTGR fuel reprocessing pilot plant: results of the sequential equipment operation

    International Nuclear Information System (INIS)

    Strand, J.B.; Fields, D.E.; Kergis, C.A.

    1979-05-01

    The second sequential operation of the HTGR fuel reprocessing cold-dry head-end pilot plant equipment has been successfully completed. Twenty standard LHGTR fuel elements were crushed to a size suitable for combustion in a fluid bed burner. The graphite was combusted leaving a product of fissile and fertile fuel particles. These particles were separated in a pneumatic classifier. The fissile particles were fractured and reburned in a fluid bed to remove the inner carbon coatings. The remaining products are ready for dissolution and solvent extraction fuel recovery

  1. Seismic fragilities for nuclear power plant risk studies

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Ravindra, M.K.

    1983-01-01

    Seismic fragilities of critical structures and equipment are developed as families of conditional failure frequency curves plotted against peak ground acceleration. The procedure is based on available data combined with judicious extrapolation of design information on plant structures and equipment. Representative values of fragility parameters for typical modern nuclear power plants are provided. Based on the fragility evaluation for about a dozen nuclear power plants, it is proposed that unnecessary conservatism existing in current seismic design practice could be removed by properly accounting for inelastic energy absorption capabilities of structures. The paper discusses the key contributors to seismic risk and the significance of possible correlation between component failures and potential design and construction errors

  2. Design and Manufacturing of Composite Tower Structure for Wind Turbine Equipment

    Science.gov (United States)

    Park, Hyunbum

    2018-02-01

    This study proposes the composite tower design process for large wind turbine equipment. In this work, structural design of tower and analysis using finite element method was performed. After structural design, prototype blade manufacturing and test was performed. The used material is a glass fiber and epoxy resin composite. And also, sand was used in the middle part. The optimized structural design and analysis was performed. The parameter for optimized structural design is weight reduction and safety of structure. Finally, structure of tower will be confirmed by structural test.

  3. System design and equipment reliability for wide web working at Hem Heath Colliery

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L

    1982-02-01

    This paper outlines the challenge to mining engineers on system design and reliability of equipment and how Hem Heath Colliery in the UK, is meeting this challenge, by describing current systems of work and equipment on the faces, summarising experience gained with succeeding faces, the results achieved, and posing considerations for the future.

  4. Spare-parts and perpetuity of equipment in French PWR plants

    International Nuclear Information System (INIS)

    Briolat, R.

    1993-01-01

    Supply of plants with new or repaired parts in strict quality conditions aids maintaining safety in operation and energy availability. Taking into account their expected life-time, a process of perpetuity in partnership with suppliers is necessary to ensure operation for the medium and long term. At EDF, the method involves a classification of mechanical and electrical spare parts in two levels of quality, responding to safety and availability imperatives and current available industrial practices. A diagram is presented to define optimal strategy for each equipment component, which gives choice between spare part storage, longevity agreement with the supplier, or a technology transfer agreement. 1 tab

  5. FPGA Design Methodologies Applicable to Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kwong, Yongil; Jeong, Choongheui

    2013-01-01

    In order to solve the above problem, NPPs in some countries such as the US, Canada and Japan have already applied FPGA-based equipment which has advantages as follows: It is easier to verify the performance because it needs only HDL code to configure logic circuits without other software, compared to microprocessor-based equipment, It is much cheaper than ASIC in a small quantity, Its logic circuits are re configurable, It has enough resources like logic blocks and memory blocks to implement I and C functions, Multiple functions can be implemented in a FPGA chip, It is stronger with respect to carboy security than microprocessor-based equipment because its configuration cannot be changed by external access, It is simple to replace it with new one when it is obsolete, Its power consumption is lower. However, FPGA-based equipment does not have only the merits. There are some issues on its application to NPPs. First of all, the experiences in applying it to NPPs are much less than to other industries, and international standards or guidelines are also very few. And there is the small number of FPGA platforms for I and C systems. Finally, the specific guidelines on FPGA design are required because the design has both hardware and software characteristics. In order to handle the above issues, KINS(Korea Institute of Nuclear Safety) built a test platform last year and have developed regulatory guidelines for FPGA-application in NPPs. I and C systems of NPPs have been increasingly using FPGA-based equipment as an alternative of microprocessor-based equipment which is not simple to be evaluated for safety due to its complexity. This paper explained the FPGA design flow and design guidelines. Those methodologies can be used as the guidelines on FPGA verification for safety of I and C systems

  6. International Economic Association on organization of co-operative production and development of equipment and providing technical assistance in construction of nuclear power plants - ''INTERATOMENERGO''

    International Nuclear Information System (INIS)

    Mal'tsev, N.D.

    1979-01-01

    History is stated of foundation of the International Economic Association ''Interatomenergo''. Structure is given of the Association and the list of main problems to be solved by it. Project is given of the programm of co-operation in the field of scientific and technical works as well as of design and projecting works in creation of new types of equipment for nuclear power plants, in particular, creation of serial power units with improved WWER-1000 reactor. Directions are stated of activity of the Association in the field of providing assistance in construction and exploitation of nuclear power plants as well as in training of operational personnel [ru

  7. Selecting an oxygen plant for a copper smelter modernization

    Science.gov (United States)

    Larson, Kenneth H.; Hutchison, Robert L.

    1994-10-01

    The selection of an oxygen plant for the Cyprus Miami smelter modernization project began with a good definition of the use requirements and the smelter process variables that can affect oxygen demand. To achieve a reliable supply of oxygen with a reasonable amount of capital, critical equipment items were reviewed and reliability was added through the use of installed spares, purchase of insurance spare parts or the installation of equipment design for 50 percent of the production design such that the plant could operate with one unit while the other unit is being maintained. The operating range of the plant was selected to cover variability in smelter oxygen demand, and it was recognized that the broader operating range sacrificed about two to three percent in plant power consumption. Careful consideration of the plant "design point" was important to both the capital and operating costs of the plant, and a design point was specified that allowed a broad range of operation for maximum flexibility.

  8. Design of free-space optical transmission system in computer tomography equipment

    Science.gov (United States)

    Liu, Min; Fu, Weiwei; Zhang, Tao

    2018-04-01

    Traditional computer tomography (CT) based on capacitive coupling cannot satisfy the high data rate transmission requirement. We design and experimentally demonstrate a free-space optical transmission system for CT equipment at a data rate of 10 Gb / s. Two interchangeable sections of 12 pieces of fiber with equal length is fabricated and tested by our designed laser phase distance measurement system. By locating the 12 collimators in the edge of the circle wheel evenly, the optical propagation characteristics for the 12 wired and wireless paths are similar, which can satisfy the requirement of high-speed CT transmission system. After bit error rate (BER) measurement in several conditions, the BER performances are below the value of 10 - 11, which has the potential in the future application scenario of CT equipment.

  9. NATO ARI on Ergonomic Data for Equipment Design

    CERN Document Server

    1984-01-01

    For many years ergonomists and human engineering specialists have made significant contributions to the solution of problems faced in the area of human labour and to the introduction of their research results and field experience into the process of equipment design. However, the rapid increase in complexity of equipment in use as well as in development demonstrates the necessity of broaden­ ing the point of view continuously. The workshop held in Munich from March 22nd to March 26th, 1982, was an excellent opportunity for the participants to discuss their respective interests and their interpretation of needs for future research. The workshop was sponsored by the Human Factors Special Programme Panel of the Scientific Affairs Division of NATO. This sponsorship, together with the helpful assistance rendered by Drs. Bayraktar, Kroemer, and Sanders, is gratefully acknowledged. This volume contains the papers presented during the workshop. All these papers are directly related to the general aim: the ex­ chang...

  10. Research on plant of metal fuel fabrication using casting process

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Mori, Yukihide

    2003-12-01

    This document presents the plant concept of metal fuel fabrication system (38tHM/y) using casting process in electrolytic recycle, which based on recent studies of its equipment design and quality control system. And we estimate the cost of its construction and operation, including costs of maintenance, consumed hardware and management of waste. The content of this work is as follows. (1) Designing of fuel fabrication equipment: We make material flow diagrams of the fuel fabrication plant and rough designs of the injection casting furnace, demolder and inspection equipment. (2) Designing of resolution system of liquid waste, which comes from analytical process facility. Increased analytical items, we rearrange analytical process facility, estimate its chemicals and amount of waste. (3) Arrangement of equipments: We made a arrangement diagram of the metal fuel fabrication equipments in cells. (4) Estimation of cost data: We estimated cost to construct the facility and to operate it. (author)

  11. Evaluation formulas of manpower needs for dismantling of equipments in uranium refining and conversion plant

    International Nuclear Information System (INIS)

    Izumo, Sari; Usui, Hideo; Kubota, Shintaro; Tachibana, Mitsuo; Kawagoshi, Hiroshi; Tokuyasu, Takashi; Takahashi, Nobuo; Morimoto, Yasuyuki; Tanaka, Yoshio; Sugitsue, Noritake

    2014-07-01

    Japan Atomic Energy Agency has developed PROject management data evaluation code for DIsmantling Activities (PRODIA) to make an efficient decommissioning for nuclear facilities. PRODIA is a source code which provides estimated value such as manpower needs, costs, etc., for dismantling by evaluation formulas according to the type of nuclear facility. Evaluation formulas of manpower needs for dismantling of equipments about reprocessed uranium conversion in Uranium Refining and Conversion Plant (URCP) have been developed in this report. In the result, evaluation formulas of manpower needs for dismantling of equipment were derived based on the classifications of equipment's functions or work items. These evaluation formulas are widely applicable to the estimation of the manpower needs for dismantling the other nuclear facilities, in particular uranium handling facilities. It was confirmed that some of these evaluation formulas with the same applicable condition could be unified to some inclusive evaluation formulas. It turned out that all steel equipment contaminated by uranium could be evaluated by one evaluation formula. (author)

  12. Developing ''SMART'' equipment and systems through collaborative NERI research and development

    International Nuclear Information System (INIS)

    Harmon, Daryl L.; Chapman, Leon D.; Golay, Michael W.; Maynard, Kenneth P.; SpencerR, Joseph W.

    2000-01-01

    The United States Department of Energy initiated the Nuclear Energy Research Initiative (NERI) to conduct research and development with the objectives of: (1) overcoming the principal technical obstacles to expanded nuclear energy use, (2) advancing the state of nuclear technology to maintain its competitive position in domestic and world markets, and (3) improving the performance, efficiency, reliability, and economics of nuclear energy. Fiscal Year 1999 program funding is $19 Million, with increased finding expected for subsequent years, emphasizing international cooperation. Among the programs selected for funding is the ''Smart Equipment and Systems to Improve Reliability and Safety in Future Nuclear Power Plant Operations''. This program is a 30 month collaborative effort bringing together the technical capabilities of ABB C-E Nuclear Power, Inc. (ABB CENP), Sandia National Laboratories, Duke Engineering and Services (DE and S), Massachusetts Institute of Technology (MIT) and Pennsylvania State University (PSU). The program's goal is to design, develop and evaluate an integrated set of smart equipment and predictive maintenance tools and methodologies that will significantly reduce nuclear plant construction, operation and maintenance costs. To accomplish this goal the Smart Equipment program will: (1) Identify and prioritize nuclear plant equipment that would most likely benefit from adding smart features; (2) Develop a methodology for systematically monitoring the health of individual pieces of equipment implemented with smart features (i.e. smart equipment); (3) Develop a methodology to provide plant operators with real-time information through smart equipment Man-Machine Interfaces (MMI) to support their decision making; (4) Demonstrate the methodology on a targeted component and/or system; (5) Expand the concept to system and plant levels that allow communication and integration of data among smart equipment. This paper will discuss (1) detailed subtask

  13. Concept and design of a fully computerized control room for future nuclear power plant

    International Nuclear Information System (INIS)

    Hinz, W.; Kollmannsberger, J.

    1991-01-01

    The development of digital process control equipment and of safety engineering equipment together with the CRT - based information visualization systems is advanced to a state allowing process control of nuclear power plant to be done by these equipments. The systems have been tested in the control room of the fossil-fuel Staudinger reactor station, unit 5, and the computer-assisted PRISCA process information system has been tested in the Konvoi-type nuclear reactor series. These tests serve as a basis for further process control system development by Siemens KWU, to be used in their future nuclear power plants. The advantages of digital process control and CRT-based information display are intended to be used for further optimization of the man-machine interface in nuclear power plant. One important aspect is to give the control room personnel complete insight into the operational processes of the entire plant, and to establish for detail recognition for process monitoring a very close mental link between operators and the system processes. In addition, the control room operator has to be given appropriate means and tools for process monitoring and control, fulfilling the requirements of guaranteeing the plant's availability and safety. These requirements put very high demands on the process monitoring and control equipment. (orig.) [de

  14. Risk exposures for human ornithosis in a poultry processing plant modified by use of personal protective equipment: an analytical outbreak study.

    Science.gov (United States)

    Williams, C J; Sillis, M; Fearne, V; Pezzoli, L; Beasley, G; Bracebridge, S; Reacher, M; Nair, P

    2013-09-01

    Ornithosis outbreaks in poultry processing plants are well-described, but evidence for preventive measures is currently lacking. This study describes a case-control study into an outbreak of ornithosis at a poultry processing plant in the East of England, identified following three employees being admitted to hospital. Workers at the affected plant were recruited via their employer, with exposures assessed using a self-completed questionnaire. Cases were ascertained using serological methods or direct antigen detection in sputum. 63/225 (28%) staff participated, with 10% of participants showing evidence of recent infection. Exposure to the killing/defeathering and automated evisceration areas, and contact with viscera or blood were the main risk factors for infection. Personal protective equipment (goggles and FFP3 masks) reduced the effect of exposure to risk areas and to self-contamination with potentially infectious material. Our study provides some evidence of effectiveness for respiratory protective equipment in poultry processing plants where there is a known and current risk of ornithosis. Further studies are required to confirm this tentative finding, but in the meantime respiratory protective equipment is recommended as a precautionary measure in plants where outbreaks of ornithosis occur.

  15. FY 1980 Report on results of Sunshine Project. Research and development of coal liquefaction techniques (Development of direct hydrogenation type liquefaction plant and 2.4 T/D test plant); 1980 nendo sekitan ekika gijutsu no kenkyu kaihatsu, chokusetsu suiten ekika plant no kaihatsu seika hokokusho. 2.4T/nichi jikken plant no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This program is aimed at construction and operation of a 2.4 T/D test plant for eventual commercialization of the direct hydrogenation type liquefaction process. The FY 1980 program includes designs of the test plant, procurement and manufacture of some equipment, and works for construction of the bases, buildings and scaffolds. The construction site for the 2.4 T/D plant was changed in July 1980 from Mitsui Engineering and Shipbuilding's Chiba works to NKK's Keihin Steelworks, which was accompanied by some changes in the basic and detailed designs. The detailed designs were reviewed for construction of the test plant, to reflect the results of the individual elementary researches. The works for the FY 1980 program also include preparations for obtaining approvals of plant construction, based on the revised designs, from the related government offices, and equipment procurement. This paper presents the major drawings for the plant construction, including those for PID designs, overall plant layouts, piping systems, buildings, scaffolds, and pipe racks. The loading data are also included. (NEDO)

  16. Design and implementation of an advanced protection system for the Shin-Kori 3 and 4 nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Yonghak; Choi, Woongseock; Kwon, Jongsoo; Wilkosz, Stephen J.; Ridolfo, Charles F.; Yanosy, Paul L.

    2008-01-01

    The Nuclear Power Industry is currently embracing modern digital technology for upgrades to existing Instrumentation and Control (I and C) infrastructures as well as for incorporation into the next generation of new plants which will be coming 'on-line' during the next decade. This technology is being fully exploited for the next generation of advanced plant protection systems which will be initially deployed on the Shin-Kori 3 and 4 Nuclear Power Plant in the Republic of Korea. The system design for this plant protection system is being performed by the Korea Power Engineering Company (KOPEC) and builds upon the past generation of digital safety systems which were initially implemented at Ulchin 5 and 6. The advanced protection system is an evolution of this existing design and includes a number of improved operating attributes including: · Integration of Reactor Protection, Engineered Safety Features Actuation, and Qualified Indication and Alarm functions which were previously implemented by separate systems in the past. · Use of a 'soft control' interface which provides convenient accessibility to the safety systems from 'operator workstations' · Implementation of a Large Display Panel (LDP) which provides a consistent and constant representation of the overall plant state and of the plant safety status. The equipment for the advanced plant protection system is being provided by Westinghouse Electric Company (WEC) and utilizes the Westinghouse 'Common Q' Standardized qualified platform (where 'Q' denotes 'qualified'). The 'Common Q' platform is comprised of commercially dedicated Programmable Logic Controllers (PLC's), color-graphic Flat Panel Displays (FPD's) with integral touch screens, and high speed data communication links. It is a mature product that is in wide use for a number of safety-related applications. Among its key attributes are: · High overall system availability, which is achieved via use of a multiple channel configuration that is tolerant

  17. Absolute air filtering equipment in the nuclear industrie. Design - Safety - Experience

    International Nuclear Information System (INIS)

    Lucas, J.C.

    1977-01-01

    The problems encountered in the design of absolute filters (HEPA FILTERS) are presented: glass-fibre filter papers; standards and characteristics: efficiency, fire-resistance, humidity-resistance, radiation-resistance, etc; various types of paper folding: deep folds and small folds, dihedrally mounted; filtering elements; designs; characteristics and quality control; The design of filtration equipment is also analysed: mounting in metal or concrete casings. French and American designs (Regulatory Guide 1-52); and gas-tight casings allowing contaminated filters to be renewed without breaking the gas-tight seal

  18. ESBWR-An economical passive plant design

    International Nuclear Information System (INIS)

    Gonzalez Lopez, A.; Rao, A.

    1996-01-01

    This paper provides an overview of the design features of the European Simplified Boiling Water Reactor (ESBWR) design. The ESBWR is a plant design that builds on the Simplified Boiling Water Reactor (SBWR) design described in Reference 1 and 2. The major objective of the ESBWR programme is to develop a plant design that utilizes the basic simplicity of the SBWR design features to improve overall economics as discussed in Reference 3. The design is being developed by an international team of utilities, designers and researchers, with the objective of applying it to the utility and regulatory requirements of Europe. (Author)

  19. Response of equipment in nuclear power plants to airplane crash

    International Nuclear Information System (INIS)

    Schalk, M.; Woelfel, H.

    1975-01-01

    The question has been posed concerning the effect of airplane crash on the safety of the equipment (pipes, vessels, etc.) mounted on the floors and walls inside the outer structure. This equipment is set into vibration by the crash-induced shaking of the outer building; the resulting stresses may be quite appreciable. The following questions arise: a) how large are these stresses. Can they, for example, be larger than the stresses produced by earthquake loading. b) What are the significant response parameters. c) Which methods of analysis and design criteria are reasonable. To what extent is it possible to apply the techniques which have become generally accepted for earthquake loading. The paper presents a preliminary answer to these questions pending further work in this area. (orig./HP) [de

  20. Design and Evaluation of a Secure Virtual Power Plant.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Tillay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    For three years, Sandia National Laboratories, Georgia Institute of Technology, and University of Illinois at Urbana-Champaign investigated a smart grid vision in which renewable-centric Virtual Power Plants (VPPs) provided ancillary services with interoperable distributed energy resources (DER). This team researched, designed, built, and evaluated real-time VPP designs incorporating DER forecasting, stochastic optimization, controls, and cyber security to construct a system capable of delivering reliable ancillary services, which have been traditionally provided by large power plants or other dedicated equipment. VPPs have become possible through an evolving landscape of state and national interconnection standards, which now require DER to include grid-support functionality and communications capabilities. This makes it possible for third party aggregators to provide a range of critical grid services such as voltage regulation, frequency regulation, and contingency reserves to grid operators. This paradigm (a) enables renewable energy, demand response, and energy storage to participate in grid operations and provide grid services, (b) improves grid reliability by providing additional operating reserves for utilities, independent system operators (ISOs), and regional transmission organization (RTOs), and (c) removes renewable energy high-penetration barriers by providing services with photovoltaics and wind resources that traditionally were the jobs of thermal generators. Therefore, it is believed VPP deployment will have far-reaching positive consequences for grid operations and may provide a robust pathway to high penetrations of renewables on US power systems. In this report, we design VPPs to provide a range of grid-support services and demonstrate one VPP which simultaneously provides bulk-system energy and ancillary reserves.

  1. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    International Nuclear Information System (INIS)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C.

    1995-01-01

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation

  2. Challenges and Prospects of Equipment Health Monitoring with Wireless Sensor Network in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Chen, Dongyi; Jiang, Jin; Bari, Ataul; Wang, Quan; Hashemian, Hash-M.

    2014-01-01

    A wireless sensor network (WSN) system can offer tremendous benefits to equipment condition monitoring in newly-constructed and/or refurbished nuclear power plants (NPPs). However, it has not been widely accepted so far because of the following requirements by the NPP operators ectromagnetic (EM) emissions from the wireless transceivers must not interfere with the functionalities of the sensitive safety and protection systems in the plant, WSN must perform reliably in the presence of high levels of EM interference from devices such as relays and motor driven pumps, and ionizing radiation sources, dependable WSN performance in harsh industrial environments that are cluttered with cable trays, piping, valves, pumps, motors, and concrete and steel structures, and trict compliance with nuclear regulatory guidelines on EM emissions by the wireless devices. This paper will review the key issues associated with the deployment of WSN for equipment condition monitoring in NPPs. Some promising WSN technologies that can be used in NPP applications are also discussed

  3. Automation and mechanization of in-service inspection of selected equipment in FRG's nuclear power plants

    International Nuclear Information System (INIS)

    Metke, E.

    1988-01-01

    The procedures and equipment are described for the automation and mechanization of in-service inspection in nuclear power plants in the FRG, used by the KWU company. Checks of the pressure vessel are done by visual means using a colour tv camera, the method of eddy currents and the ultrasonic method. An analysis is made of the time schedule of ultrasonic inspections, and the central column manipulator is described which allows to check all internal regions of the pressure vessel. Attention is also devoted to other devices, e.g., those for prestressing shanks, cleaning shanks, cleaning thread apertures, etc. A combined probe using the ultrasonic method and the eddy current method serves the inspection of heat exchange tubes in the steam generator. For inspecting the primary circuit the KWU company uses devices for checking and working the inner surface of pipes. Briefly described are examples of using KWU equipment in nuclear power plants in CMEA countries. (Z.M.). 11 figs., 6 refs

  4. Challenges and Prospects of Equipment Health Monitoring with Wireless Sensor Network in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongyi [University of Electronic Science and Technology of China, Chengdu (China); Jiang, Jin; Bari, Ataul; Wang, Quan [University of Western Ontario, Ontario (Canada); Hashemian, Hash-M. [AMS Technology Center Knoxville (United States)

    2014-08-15

    A wireless sensor network (WSN) system can offer tremendous benefits to equipment condition monitoring in newly-constructed and/or refurbished nuclear power plants (NPPs). However, it has not been widely accepted so far because of the following requirements by the NPP operators ectromagnetic (EM) emissions from the wireless transceivers must not interfere with the functionalities of the sensitive safety and protection systems in the plant, WSN must perform reliably in the presence of high levels of EM interference from devices such as relays and motor driven pumps, and ionizing radiation sources, dependable WSN performance in harsh industrial environments that are cluttered with cable trays, piping, valves, pumps, motors, and concrete and steel structures, and trict compliance with nuclear regulatory guidelines on EM emissions by the wireless devices. This paper will review the key issues associated with the deployment of WSN for equipment condition monitoring in NPPs. Some promising WSN technologies that can be used in NPP applications are also discussed.

  5. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C. [Oak Ridge National Lab., TN (United States). Technical Programs and Services; Brock, W.R.; Denton, D.R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  6. Philosophy for seismic design of nuclear power plants

    International Nuclear Information System (INIS)

    Teramae, Tetsuo

    1981-01-01

    In Japan, earthquakes occur frequently, therefore the basic philosophy in the aseismatic design of nuclear facilities is to design so as not to cause the accident which gives to the public in the surroundings and the employes radiation injuries in the case of large earthquakes. The ''Guideline for the aseismatic design techniques for nuclear power stations'' was drawn up in 1970 as the result of studies by related government offices and organizations. The guideline for determining the earthquakes used for design was published later, and the allowable stress for equipments and pipings has been adopted in accordance with ASME Code, Section 3. The buildings and structures, equipments and pipings in nuclear facilities are classified into three classes according to their importance in aseismatic design. The power of design earthquakes is determined corresponding to the degree of importance. The determination of the standard earthquake waves is explained. The proprieth of aseismatic design is evaluated on the basis of the basic concept of the combination of loads and the allowable limit. The static analysis in accordance with the Building Standards Act is applied to the B and C classes, while the dynamic analysis is required for the A class. The aseismatic analysis of buildings and structures, equipments and pipings is outlined. Many problems to be solved still remain though the concept of aseismatic design has been clarified. (Kako, I.)

  7. Preliminary design report: Prototypical Spent Fuel Consolidation Equipment Demonstration Project: Phase 1

    International Nuclear Information System (INIS)

    Blissell, W.H.; Ciez, A.P.; Mitchell, J.L.; Winkler, C.J.

    1986-12-01

    This document describes the Westinghouse Preliminary Design for the Prototypical Consolidation Demonstration Project per Department of Energy (DOE) Contract No. DE-AC07-86ID12649 and under direction of the DOE Idaho Operations Office. The preliminary design is the first step to providing the Department of Energy with a fully qualified, licensable, cost-effective spent fuel rod consolidation system. The design was developed using proven technologies and equipment to create an innovative approach to previous rod consolidation concepts. These innovations will better enable the Westinghouse system to: consolidate fuel rods in a precise, fully-controlled, accountable manner; package all rods from two PWR fuel assemblies or from four BWR fuel assemblies in one 8.5 inch square consolidated rods canister; meet all functional requirements; operate with all fuel types common to the US commercial nuclear industry with minimal tooling changeouts; and meet consolidation production process rates, while maintaining operator and public health and safety. This Preliminary Design Report provides both detailed descriptions of the equipment required to perform the rod consolidation process and the supporting analyses to validate the design

  8. Designing efficient logging systems for northern hardwoods using equipment production capabilities and costs.

    Science.gov (United States)

    R.B. Gardner

    1966-01-01

    Describes a typical logging system used in the Lake and Northeastern States, discusses each step in the operation, and presents a simple method for designing and efficient logging system for such an operation. Points out that a system should always be built around the key piece of equipment, which is usually the skidder. Specific equipment types and their production...

  9. NSS design and plant construction interfaces

    International Nuclear Information System (INIS)

    Stewart, J.J.; Cobb, W.A.

    1976-01-01

    Interface management between NSS design, balance-of-plant design, and plant construction may have a significant effect on schedule stretchout and total plant costs. The paper discusses the importance of the NSS supplier's interface management role, the favorable and unfavorable influencing factors, and examples of interface areas in which experience has demonstrated that problems may arise. Where appropriate, actions are defined to avoid the problems or mitigate the consequences

  10. Design for a Remote Monitoring Equipment of Krypton-85

    Institute of Scientific and Technical Information of China (English)

    LUXue-sheng; LIUGuo-rong; YEFeng; JINHui-min; TANGPei-jia

    2003-01-01

    A prototype equipment for monitoring Krypton-85 in situ is designed and set up. A series of relevant software is also developed for remote control, data acquirement and data analysis. Weight of the system is about 300 kg, which is composed of NaI(T1) detector, digi DART, Marillin measurement container and lead shield. The whole system is placed on a homemade go-cart.

  11. Thermal insulation system design and fabrication specification (nuclear) for the Clinch River Breeder Reactor plant

    International Nuclear Information System (INIS)

    1978-01-01

    This specification defines the design, analysis, fabrication, testing, shipping, and quality requirements of the Insulation System for the Clinch River Breeder Reactor Plant (CRBRP), near Oak Ridge, Tennessee. The Insulation System includes all supports, convection barriers, jacketing, insulation, penetrations, fasteners, or other insulation support material or devices required to insulate the piping and equipment cryogenic and other special applications excluded. Site storage, handling and installation of the Insulation System are under the cognizance of the Purchaser

  12. The basic discussion on nuclear power safety improvement based on nuclear equipment design

    International Nuclear Information System (INIS)

    Zhao Feiyun; Yao Yangui; Yu Hao; He Yinbiao; Gao Lei; Yao Weida

    2013-01-01

    The safety of strengthening nuclear power design was described based on nuclear equipment design after Fukushima nuclear accident. From these aspects, such as advanced standard system, advanced design method, suitable test means, consideration of beyond design basis event, and nuclear safety culture construction, the importance of nuclear safety improvement was emphatically presented. The enlightenment was given to nuclear power designer. (authors)

  13. Report on further development of the Winfrith Modular Containment System and associated equipment

    International Nuclear Information System (INIS)

    Sanders, M.J.; Pengelly, M.G.A.

    1987-12-01

    The Winfrith modular containment system was developed to enable redundant plutonium processing plant to be safely decommissioned. As a result of operational experience the need for a lifting aid to facilitate the decommissioning of tall plant, a 2-stage mobile ventilation system and an improved shower entry tunnel was identified. Improved plant and equipment has been designed, constructed and tested and the results are presented here. (author)

  14. Issues and measures in the design process from the perspective of risk management of construction projects. study of power plant construction projects accident cases

    International Nuclear Information System (INIS)

    Iwahara, Hirohiko; Shiraki, Wataru; Inomo, Hitoshi; Hasegawa, Syuichi

    2015-01-01

    Construction of power plants, foundation work, consisting of a wide variety of construction work, such as plant equipment work. And, civil engineering, technician electrical such as different engineering field, is a comprehensive construction project that works for the design conditions of the structure. However, if the cooperation design conditions is not sufficient, as a construction project, the optimal structures may not be said to have been built. As a result, total cost or increased, including the initial cost of the end construction projects, it is be a cause of the accident. Previous studies, plant equipment construction, is related to safety management and risk of foundation work such as individual construction were many. In this paper, as an example the power plant construction, and performs the following discussion from the point of view of risk management of large-scale construction projects that these individual construction work together with each other. The importance of design conditions cooperation, (1) 'Challenges and countermeasures of ordering method of construction projects', to verify from the (2) 'actually happened substation foundation displacement accident'. And on whether or not the construction project order institutions can be involved in the design from the site preparation stage, we study (3) for 'construction work scope and risk control the construction project ordering institutions to implement' the risk to the natural disaster (earthquake). From these, we describe the challenges and measures in the construction project of the design process. (author)

  15. St. Louis demonstration final report: refuse processing plant equipment, facilities, and environmental evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Fiscus, D.E.; Gorman, P.G.; Schrag, M.P.; Shannon, L.J.

    1977-09-01

    The results are presented of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and the power plants. Data on plant material flows and operating parameters, plant operating costs, characteristics of plant material flows, and emissions from various processing operations were obtained during a testing program encompassing 53 calendar weeks. Refuse derived fuel (RDF) is the major product (80.6% by weight) of the refuse processing plant, the other being ferrous metal scrap, a marketable by-product. Average operating costs for the entire evaluation period were $8.26/Mg ($7.49/ton). The average overall processing rate for the period was 168 Mg/8-h day (185.5 tons/8-h day) at 31.0 Mg/h (34.2 tons/h). Future plants using an air classification system of the type used at the St. Louis demonstration plant will need an emissions control device for particulates from the large de-entrainment cyclone. Also in the air exhaust from the cyclone were total counts of bacteria and viruses several times higher than those of suburban ambient air. No water effluent or noise exposure problems were encountered, although landfill leachate mixed with ground water could result in contamination, given low dilution rates.

  16. Survey of injury sources for a trampoline with equipment hazards designed out.

    Science.gov (United States)

    Eager, David; Scarrott, Carl; Nixon, Jim; Alexander, Keith

    2012-07-01

    In Australia, trampolines contribute approximately one-quarter of all childhood play-equipment injuries. The purpose of this study was to gather and evaluate injury data from a nontraditional, 'soft-edged', consumer trampoline in which the equipment injury sources have been designed out. A survey was undertaken in Queensland and New South Wales. The manufacturer of the nontraditional trampoline provided the University of Technology, Sydney, with their Australian customer database. Injury data were gathered in a pilot study by phone interview, then in a full study through an email survey. Results from 3817 respondents were compared with earlier Australian and US data from traditional trampolines gathered from emergency departments.   A significantly lower proportion of the injuries caused by falling off or striking the equipment was found for this new design when compared with traditional trampolines both in Australia and in the USA. The age of children being injured on trampolines in Australia was found to be markedly lower than in North America. This research indicates that with appropriate design the more severe injuries on traditional trampolines can be significantly reduced. © 2012 The Authors. Journal of Paediatrics and Child Health © 2012 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  17. Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.; Brill, B.A.; Carl, D.E.

    1997-06-01

    The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented

  18. Investigation of small scale sphere-pac fuel fabrication plant with external gelation process

    International Nuclear Information System (INIS)

    Maekawa, Kazuhiko; Yoshimura, Tadahiro; Kikuchi, Toshiaki; Hoshino, Yasushi; Munekata, Hideki; Shimizu, Makoto

    2005-02-01

    In feasibility studies on commercialized FBR cycle system, comprehensive system investigation and properties evaluation for candidate FBR cycle systems have been implemented through view point of safety, economics, environmental burden reduction, non-proliferation resistivity, etc. As part of these studies, an investigation of small scale sphere-pac fuel fabrication plant with external gelation process was conducted. Until last fiscal year, equipment layout in cells and overall layout design of the 200t-HM/y scale fuel fabrication plant were conducted as well as schematical design studies on main equipments in gelation and reagent recovery processes of the plant. System property data concerning economics and environmental burden reduction of fuel fabrication plant was also acquired. In this fiscal year, the processes from vibropacking to fuel assemblies storage were added to the investigation range, and a conceptual design of whole fuel fabrication plant was studied as well as deepening the design study on main equipments. The conceptual design study was mainly conducted for small 50t-HM/y scale plant and a revising investigation was done for 200t-HM/y scale plant. Taking the planed comparative evaluation with pellet fuel fabrication system into account, design of equipments which should be equivalent with pellet system, especially in post-vibropacking processes, were standardized in each system. Based on these design studies, system properties data concerning economics and environmental burden reduction of the plant was also acquired. In comparison with existing design, the cell height was lowered on condition that plug type pneumatic system was adopted and fuel fabrication building was downsized by applying rationalized layout design of pellet system to post-vibropacking processes. Reduction of reagent usage at gelation process and rationalization of sintering and O/M controlling processes etc., are foremost tasks. (author)

  19. Optimal design of emission control systems for a fossil power plants

    International Nuclear Information System (INIS)

    Sfez, D.; Muginstein, A.; Naeh, Y.

    1998-01-01

    The detrimental environmental effects of pulverized coal power stations are enforcing the installation of additional emission control equipment. Utilization of this equipment significantly increases the installation and operation costs of the power station, which raises the cost of the electricity generated by this power station. Focusing on the flue gas cleaning equipment can substantially reduce the electricity-generating rate. Improving the equipment design is the only available way to reduce the flue gas cleaning costs, without affecting the power station flexibility and availability. An optimal design is defined as the one achieving the least expensive cleaning system (capital and operating costs) while maintaining the original power station operation flexibility (coal variety and partial load performances). Two main changes in the conventional design need to be carried out in order to reach the above-mentioned optimized design. The first modification is to integrate the ESP and FGD at the design criteria stage while considering the influence of each piece of equipment on the other. The second stage is to set one common best efficiency design point to the ESP and the FGD together. Achieving this one common best efficiency point requires some equipment addition and modifications to the conventional ESP and FGD systems. The technology involved in this modification is available and is well proven in operation. Using this technology with the optimal design concept will lead to a significant reduction of the flue gas cleaning costs and will reduce, by this, the electricity production costs

  20. Benefits of Digital Equipment Generic Qualification Activities

    International Nuclear Information System (INIS)

    Thomas, James E.; Steiman, Samuel C.

    2002-01-01

    As a result of nuclear power plant instrumentation and control obsolescence issues, there have been numerous activities during recent years relating to the qualification of digital equipment. Some of these activities have been 'generic' in nature in that the qualification was not limited to plant specific applications, but was intended to cover a broad base of potential applications of the digital equipment. These generic qualifications have been funded by equipment manufacturers and by utility groups and organizations. The generic activities sponsored by the Electric Power Research Institute (EPRI) have been pilot projects for an overall generic qualification approach. The primary benefit resulting from the generic qualification work to date is that a number of digital platforms and digital devices are now available for use in various nuclear safety-related applications. Many of the tests and evaluations necessary to support plant specific applications have been completed. The amount of data and documentation that each utility must develop on a case by case basis has been significantly reduced. There are also a number of additional benefits resulting from these industry efforts. The challenges and difficulties in qualifying digital equipment for safety-related applications are now more clearly understood. EPRI has published a lessons learned document (EPRI Report 1001452, Generic Qualification of Commercial Grade Digital Devices: Lessons Learned from Initial Pilots, which covers several different qualification areas, including device selection, project planning, vendor surveys and design reviews, and electromagnetic compatibility (EMC) qualification. Application of the experience and lessons learned from the EPRI pilot activities should help reduce the effort and cost required for future qualification work. Most generic qualification activities for commercial equipment have been conducted using the approach of EPRI TR-106439, Guideline on Evaluation and Acceptance

  1. Underwater fuel handling equipment maintenance. Verification of design assumptions, specific problems and tools, case study

    International Nuclear Information System (INIS)

    Kurek, J.B.

    1995-01-01

    The majority of CANDU Fuel Transfer System equipment at Pickering is located under fourteen feet of water, as dictated by the containment and shielding requirements. Such arrangement, however, creates specific problems with equipment maintenance. Each single piece of equipment serves two generating units, which means in case of defect- double losses on production, or two units shut down simultaneously for planned maintenance. The requirement for underwater maintenance was not anticipated at the design stage, which multiples the level of difficulty, and creates requirement for developing special tools for each work. Removal of the damaged fuel from the receiving bays and decontamination of submerged equipment is also part of the problem. The purpose of this presentation is to share our experience with the designers, operators, maintenance mechanics and technical personnel of the other CANDU generating stations

  2. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  3. Development of automated equipment for reduction of personnel radiation exposure in nuclear power plants

    International Nuclear Information System (INIS)

    Ogushi, Akira; Fujii, Masaaki; Mizuno, Katsuhiro.

    1976-01-01

    Described are a mobile remote inspection system and an automatic analyzer for radioactive nuclides in reactor coolant now being developed as a means of reducing personnel radiation exposure in nuclear power plants. In the mobile remote inspection system ''TELEPAT'', a self-propelled vehicle equipped with a thermometer, accelerometer, microphone, ionization chamber, etc. is remote operated from the main control room to inspect the equipment in the reactor building. The automatic analyzer for radioactive nuclides in reactor coolant automates the series of operations ranging from sampling of reactor coolant to measurement of radioactivity and analyses of measured data, with a view to saving labor in radioactivity analysis work while reducing exposure of personnel to radiation. (auth.)

  4. Study on compact design of remote handling equipment for ITER blanket maintenance

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi

    2006-03-01

    In the ITER, the neutrons created by D-T reactions activate structural materials, and thereby, the circumstance in the vacuum vessel is under intense gamma radiation field. Thus, the in-vessel components such as blanket are handled and replaced by remote handling equipment. The objective of this report is to study the compactness of the remote handling equipment (a vehicle/manipulator) for the ITER blanket maintenance. In order to avoid the interferences between the blanket and the equipment during blanket replacement in the restricted vacuum vessel, a compact design of the equipment is required. Therefore, the compact design is performed, including kinematic analyses aiming at the reduction of the sizes of the vehicle equipped with a manipulator handling the blanket and the rail for the vehicle traveling in the vacuum vessel. Major results are as follows: 1. The compact vehicle/manipulator is designed concentration on the reduction of the rail size and simplification of the guide roller mechanism as well as the reduction of the gear diameter for vehicle rotation around the rail. Height of the rail is reduced from 500 mm to 400 mm by a parameter survey for weight, stiffness and stress of the rail. The roller mechanism is divided into two simple functional mechanisms composed of rollers and a pad, that is, the rollers support relatively light loads during rail deployment and vehicle traveling while a pad supports heavy loads during blanket replacement. Regarding the rotation mechanism, the double helical gear is adopted, because it has higher contact ratio than the normal spur gear and consequently can transfer higher force. The smaller double helical gear, 996 mm in diameter, can achieve 26% higher output torque, 123.5 kN·m, than that of the original spur gear of 1,460 mm in diameter, 98 kN·m. As a result, the manipulator becomes about 30% lighter, 8 tons, than the original weight, 11.2 tons. 2. Based on the compact design of the vehicle/manipulator, the

  5. Vibration aging of diesel-engine mounted electrical equipment

    International Nuclear Information System (INIS)

    Lee, B.J.; Morton, W.C.

    1994-01-01

    The Emergency Diesel Generator (EDG) in a Nuclear Power Plant is considered to be a component which is essential to safe plant operation. Failures of auxiliary equipment directly mounted on the EDG creates costly repairs, and compromises the engine's availability and reliability. Although IEEE-323 requires addressing of safety-related components due to mechanically induced vibration, very few guidelines exist in the nuclear industry to show how this may be accounted for. Most engine vendors rely on the empirical experience data as the basis of their evaluation for vibration. Upgrade of engine controls, addition of monitoring devices and other engine modifications require design and installation of new equipment to be mounted directly on the engine. This necessitates the evaluation for engine-induced vibration which is considered to be one of the most severe design parameters. This paper discusses the engine vibration characteristics, and the acquisition of extensive field vibration data on the diesel engine under operating conditions. The data is then used to develop life cycle vibration qualification test profiles that can be applied with confidence in a laboratory environment to qualify engine-mounted equipment. The intent is to validate a product's ability to survive under worst case, extended service on-engine conditions. This paper describes the procedures and approaches used to achieve those goals, and provides developed profile examples and test results

  6. Information management systems improve advanced plant design

    International Nuclear Information System (INIS)

    Turk, R.S.; Serafin, S.A.; Leckley, J.B.

    1994-01-01

    Computer-aided engineering tools are proving invaluable in both the design and operation of nuclear power plants. ABB Combustion Engineering's Advanced Light Water Reactor (ALWR) features a computerized Information Management System (IMS) as an integral part of the design. The System 80+IMS represents the most powerful information management tool for Nuclear Power Plants commercially available today. Developed by Duke Power Company specifically for use by nuclear power plant owner operators, the IMS consists of appropriate hardware and software to manage and control information flow for all plant related work or tasks in a systematic, consistent, coordinated and informative manner. A significant feature of this IMS is that it is primarily based on plant data. The principal design tool, PASCE (Plant Application and Systems from Combustion Engineering), is comprised of intelligent databases that describe the design and from which accurate plant drawings are created. Additionally the IMS includes, at its hub, a relational database management system and an associated document management system. The data-based approach and applications associated with the IMS were developed, and have proven highly effective, for plant modifications, configuration management, and operations and maintenance applications at Duke Power Company's operating nuclear plants. This paper presents its major features and benefits. 4 refs

  7. Remote handling equipment design for the HEDL fuel supply program

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1984-09-01

    A process line is currently being developed for fabrication of high exposure mixed uranium-plutonium core assemblies. This paper describes the design philosophy, process flow, equipment, and the handling and radiation shielding techniques used for inspection of Fast Flux Test Facility (FFTF) fuel pins and assembly of Driver Fuel Assemblies (DFAs) 6 figures

  8. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  9. Design and fabrication of equipment and devices for a Radiotherapy department

    International Nuclear Information System (INIS)

    Picon, C.L.; Zaharia B, M.

    1998-01-01

    The objective of this work is to present the possibility to design and construct utilizing local technology, a series of equipment and devices necessaries for a routine in a Radiotherapy Department with typical budget in the Latin-American hospitals. (Author)

  10. Balance of plant improvements for future reactor projects

    International Nuclear Information System (INIS)

    Hollingshaus, H.

    1987-01-01

    Many studies have shown that improvements in portions of the plant other than the reactor systems can yield large cost savings during the design, construction, and operation of future reactor power plants. This portion is defined as the Balance of Plant which includes virtually everything except the equipment furnished by the Nuclear Steam Supply System manufacturer. It normally includes the erection of the entire plant including the NSSS. Cost of BOP equipment, engineering and construction work is therefore most of the cost of the plant. Improvements in the BOP have been identified that will substantially reduce nuclear plant cost and construction time while at the same time increasing availability and operability and improving safety. Improvements achieved through standardizatoin, simplification, three-dimensional (3D) computer-aided design, modular construction, innovative construction techniques, and applications for Artificial Intelligence Systems are described. (author)

  11. Reliability data of fire protection equipment and features in German nuclear power plants

    International Nuclear Information System (INIS)

    Roewekamp, M.; Riekert, T.; Sehrbrock, W.

    1997-01-01

    In order to perform probabilistic fire safety analyses, a comprehensive data base is needed including physical characteristics of fire compartments and their inventory, fire occurrence frequencies, technical reliability data for all fire-related equipment, human actions and human error probabilities, etc. In order to provide updated and realistic reliability data, the operational behaviour of different fire protection features in two German nuclear power plants was analysed in the framework of the study presented here. The analyses are based on the examination of reported results of the regular inspection and maintenance programs for nuclear power plants. Besides a plant specific assessment of the reliability data a generic assessment for an application as input data for fault tree analyses in the framework of probabilistic risk studies for other German plants was carried out. The analyses of failures and unavailabilities gave the impression that most of them are single failures without relevance for the plant safety. The data gained from NPPs were compared to reliability data of the German insurance companies for the same protection features installed in non-nuclear installations and to older nuclear specific reliability data. This comparison showed up a higher reliability. (orig.) [de

  12. Reactor building design of nuclear power plant ATUCHA II, Argentina

    International Nuclear Information System (INIS)

    Rufino, R.E.; Hermann, E.R.; Richter, E.

    1984-01-01

    It is presented the civil engineering project carried out by the joint venture Hochtief - Techint-Bignoli (HTB) for the reactor building at the Atucha II power plant (PHWR of 745 MWe) in Buenos Aires. All the other civil projects at Atucha II are also being carried out by HTB. This building has the same general characteristics of the PWR plants developed by KWU in Germany, known for the spherical steel containment 56m in diameter. Nevertheless, it differs from those principally in the equipment lay-out and the remarkable foundation depth. From the basic engineering provided by ENACE, the joint venture has had to face the challenge of designing a tridimensional structure of large size. This has necessitated using simplified models which had to be superimposed, since the use of only one spatial mode would be highly inadequate, lacking the flexibility necessary to absorb the numerous modifications that this type of project undergoes during construction. In addition, this procedure has eliminated resorting to numerous and costly computer processings. (Author) [pt

  13. Developing ''smar'' equipment and systems through collaborative NERI research and development

    International Nuclear Information System (INIS)

    Harmon, Daryl L.; Chapman, Leon D.; Golay, Michael W.; Maynard, Kenneth P.; Spencer, Joseph W.

    2000-01-01

    The United States Department of Energy initiated the Nuclear Energy Research Initiative (NERI) to conduct research and development with the objectives of : (1) overcoming the principal technical obstacles to expanded nuclear energy use, (2) advancing the state of nuclear technology to maintain its competitive position in domestic and world markets, and (3) improving the performance, efficiency, reliability, and economics of nuclear energy. Fiscal Year 1999 program funding is $19 Million, with increased funding expected for subsequent years, emphasizing international cooperation. Among the programs selected for funding is the S mart Equipment and Systems to Improve Reliability and Safety in Future Nuclear Power Plant Operations . This program is a 30 month collaborative effort bringing together the technical capabilities of ABB C-E Nuclear Power, Inc. (ABBCENP), Sandia National Laboratories, Duke Engineering and Services (DEandS), Massachusetts Institute of Technology (MIT) and Pennsylvania State University (PSU). The program's goal is to design, develop and evaluate an integrated set of ''smart'' equipment and predicitve maintenance tools and methodologies that will significantly reduce nuclear plant construction, operation and maintenance costs. To accomplish this goal the ''smart'' quipment program will: 1. Identify the prioritize nulcear plant equipment that would most likely benefit from adding smart features, 2. Developa methodology for systematically monitoring the health of individual pieces of equipment implemented with smart features (i. e. ''smart'' equipment), 3. Developa methodology to provide plant operators with real-time information through ''smart'' equipment Man-Machine Interfaces (MMI) to support their decision making, 4. Demonstrate the methodology on a targeted component and/or system, 5. Expand the concept to system and plant levels that allow communication and integration of data among smart equipment. This paper will discuss (1) detailed

  14. Preparation of plant and system design description documents

    International Nuclear Information System (INIS)

    1989-01-01

    This standard prescribes the purpose, scope, organization, and content of plant design requirements (PDR) documents and system design descriptions (SDDs), to provide a unified approach to their preparation and use by a project as the principal means to establish the plant design requirements and to establish, describe, and control the individual system designs from conception and throughout the lifetime of the plant. The Electric Power Research Institute's Advanced Light Water Reactor (LWR) Requirements Document should be considered for LWR plants

  15. An integrated translation of design data of a nuclear power plant from a specification-driven plant design system to neutral model data

    International Nuclear Information System (INIS)

    Mun, Duhwan; Yang, Jeongsam

    2010-01-01

    How to efficiently integrate and manage lifecycle data of a nuclear power plant has gradually become an important object of study. Because plants usually have a very long period of operation and maintenance, the plant design data need to be presented in a computer-interpretable form and to be independent of any commercial systems. The conversion of plant design data from various design systems into neutral model data is therefore an important technology for the effective operation and maintenance of plants. In this study, a neutral model for the efficient integration of plant design data is chosen from among the currently available options and extended in order to cover the information model requirements of nuclear power plants in Korea. After the mapping of the neutral model and the data model of a specification-driven plant design system, a plant data translator is also implemented in accordance with the schema mapping results.

  16. An integrated translation of design data of a nuclear power plant from a specification-driven plant design system to neutral model data

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Duhwan, E-mail: dhmun@moeri.re.k [Marine Safety and Pollution Response Research Department, Maritime and Ocean Engineering Research Institute, KORDI, 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Yang, Jeongsam, E-mail: jyang@ajou.ac.k [Division of Industrial and Information Systems Engineering, Ajou University, San 5, Wonchun-dong, Yeongtong-gu, Suwon 443-749 (Korea, Republic of)

    2010-03-15

    How to efficiently integrate and manage lifecycle data of a nuclear power plant has gradually become an important object of study. Because plants usually have a very long period of operation and maintenance, the plant design data need to be presented in a computer-interpretable form and to be independent of any commercial systems. The conversion of plant design data from various design systems into neutral model data is therefore an important technology for the effective operation and maintenance of plants. In this study, a neutral model for the efficient integration of plant design data is chosen from among the currently available options and extended in order to cover the information model requirements of nuclear power plants in Korea. After the mapping of the neutral model and the data model of a specification-driven plant design system, a plant data translator is also implemented in accordance with the schema mapping results.

  17. FutureGen 2.0 Oxy-Coal Combustion Carbon Capture Plant Pre-FEED Design and Cost

    Energy Technology Data Exchange (ETDEWEB)

    Flanigan, Tom; Pybus, Craig; Roy, Sonya; Lockwood, Frederick; McDonald, Denny; Maclnnis, Jim

    2011-09-30

    This report summarizes the results of the Pre-Front End Engineering Design (pre-FEED) phase of a proposed advanced oxy-combustion power generation plant to repower the existing 200 MWe Unit 4 at Ameren Energy Resources’ (AER) Meredosia Power Plant. AER has formed an alliance with Air Liquide Process and Construction, Inc. (ALPC) and Babcock & Wilcox Power Generation Group (B&W PGG) for the design, construction, and testing of the facility, and has contracted with URS Corporation (URS) for preliminary design and Owner’s engineering services. The Project employs oxy-combustion technology – combustion of coal with nearly pure oxygen and recycled flue gas (instead of air) – to capture approximately 90% of the flue gas CO2 for transport and sequestration by another Project. Plant capacity and configuration has been developed based on the B&W PGG-ALPC cool recycle process firing high-sulfur bituminous coal fuel, assuming baseload plant operation to maximize existing steam turbine capability, with limited consideration for plant redundancy and performance optimization in order to keep plant costs as low as practical. Activities and preliminary results from the pre-FEED phase addressed in this report include the following: Overall plant thermal performance; Equipment sizing and system configuration; Plant operation and control philosophy; Plant emissions and effluents; CO2 production and recovery characteristics; Project cost estimate and economic evaluation; Integrated project engineering and construction schedule; Project risk and opportunity assessment; Development of Project permitting strategy and requirements During the Phase 2 of the Project, additional design details will be developed and the Phase 1 work products updated to support actual construction and operation of the facility in Phase 3. Additional information will be provided early in Phase 2 to support Ameren-Environmental in finalizing the appropriate permitting strategies and permit

  18. Conference on Manned Systems Design : New Methods and Equipment

    CERN Document Server

    Kraiss, K-F

    1981-01-01

    This volume contains the proceedings of a conference held in Freiburg, West Germany, September 22-25, 1980, entitled "Manned Systems Design, New Methods and Equipment". The conference was sponsored by the Special Programme Panel on Human Factors of the Scientific Affairs Division of NATO, and supported by Panel VIII, AC/243, on "Human and Biomedical Sciences". Their sponsorship and support are gratefully acknowledged. The contributions in the book are grouped according to the main themes of the conference with special emphasis on analytical approaches, measurement of performance, and simulator design and evaluat ion. The design of manned systems covers many and highly diversified areas. Therefore, a conference under the general title of "Manned Systems Design" is rather ambitious in itself. However, scientists and engineers engaged in the design of manned systems very often are confronted with problems that can be solved only by having several disciplines working together. So it was felt that knowledge about ...

  19. Computer aided process control equipment at the Karlsruhe reprocessing pilot plant, WAK

    International Nuclear Information System (INIS)

    Winter, R.; Finsterwalder, L.; Gutzeit, G.; Reif, J.; Stollenwerk, A.H.; Weinbrecht, E.; Weishaupt, M.

    1991-01-01

    A computer aided process control system has been installed at the Karlsruhe Spent Fuel Reprocessing Plant, WAK. All necessary process control data of the first extraction cycle is collected via a data collection system and is displayed in suitable ways on a screen for the operator in charge of the unit. To aid verification of displayed data, various measurements are associated to each other using balance type process modeling. Thus, deviation of flowsheet conditions and malfunctioning of measuring equipment are easily detected. (orig.) [de

  20. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  1. AP1000 Design for Security

    International Nuclear Information System (INIS)

    Long, L.B.; Cummins, W.E.; Winters, J.W.

    2006-01-01

    Nuclear power plants are protected from potential security threats through a combination of robust structures around the primary system and other vital equipment, security systems and equipment, and defensive strategy. The overall objective for nuclear power plant security is to protect public health and safety by ensuring that attacks or sabotage do not challenge the ability to safely shutdown the plant or protect from radiological releases. In addition, plants have systems, features and operational strategies to cope with external conditions, such as loss of offsite power, which could be created as part of an attack. Westinghouse considered potential security threats during design of the AP1000 PWR. The differences in plant configuration, safety system design, and safe shutdown equipment between existing plants and AP1000 affect potential vulnerabilities. This paper provides an evaluation of AP1000 with respect to vulnerabilities to security threats. The AP1000 design differs from the design of operating PWRs in the US in the configuration and the functional requirements for safety systems. These differences are intentional departures from conventional PWR designs which simplify plant design and enhance overall safety. The differences between the AP1000 PWR and conventional PWRs can impact vulnerabilities to security threats. The NRC addressed security concerns as part of their reviews for AP1000 Design Certification, and did not identify any security issues of concern. However, much of the detailed security design information for the AP1000 was deferred to the combined Construction and Operating License (COL) phase as many of the security issues are site-specific. Therefore, NRC review of security issues related to the AP1000 is not necessarily complete. Further, since the AP1000 plant design differs from existing PWRs, it is not obvious that the analyses and assessments prepared for existing plants also apply to the AP1000. We conclude that, overall, the AP1000

  2. Report on further development of the Winfrith Modular Containment System and associated equipment

    International Nuclear Information System (INIS)

    Sanders, M.J.; Pengelly, M.G.A.

    1988-03-01

    As a result of operational experience gained with the Winfrith Modular Containment, the need for a lifting aid to facilitate the decommissioning of tall plant, a 2-stage mobile ventilation system and an improved shower entry tunnel was identified. Improved plant and equipment has been designed, constructed and tested and the results are presented here. (author)

  3. Regulatory requirements for desalination plant coupled with nuclear reactor plant

    International Nuclear Information System (INIS)

    Yune, Young Gill; Kim, Woong Sik; Jo, Jong Chull; Kim, Hho Jung; Song, Jae Myung

    2005-01-01

    A small-to-medium sized reactor has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating since early 1990s in Korea. Now, the construction of its scaled-down research reactor, equipped with a seawater desalination plant, is planned to demonstrate the safety and performance of the design of the multi-purpose reactor. And the licensing application of the research reactor is expected in the near future. Therefore, a development of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant is necessary for the preparation of the forthcoming licensing review of the research reactor. In this paper, the following contents are presented: the design of the desalination plant, domestic and foreign regulatory requirements relevant to desalination plants, and a draft of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant

  4. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  5. An approach to human-centered design of nuclear medical equipment: the system of caption of the thyroid

    International Nuclear Information System (INIS)

    Santos, Isaac J.A. Luquetti; Silva, Carlos Borges da; Santana, Marcos; Carvalho, Paulo Victor R.; Oliveira, Mauro Vitor de; Mol, Antonio Carlos Mol; Grecco, Claudio Henrique; Augusto, Silas Cordeiro

    2005-01-01

    Technology plays an important role in modern medical centers, making health care increasingly complex, relying on complex technical equipment. This technical complexity is particularly noticeable in the nuclear medicine and can increase the risks for human error. Human error has many causes such as performance shaping factors, organizational factors and user interface design. Poorly design human system interfaces of nuclear medical equipment can increase the risks for human error. If all nuclear medical equipment had been designed with good user interfaces, incidents and accidents could be reduced as well as he time required to learn how to use the equipment. Although some manufacturers of nuclear medical equipment have already integrate human factors principles in their products, there is still a need to steer the development of nuclear medical technology toward more human-centered approach. The aim of this paper is to propose a methodology that contributes to the design, development and evaluation of nuclear medical equipment and human system interface, towards a human-centered approach. This methodology includes the ergonomic approach, based on the operator activity analysis, together with human factors standards and guidelines, questionnaires and user based testing. We describe a case study in which this methodology is being applied in evaluation of the thyroid uptake system, getting essential information and data, that ill be used in development of a new system. (author)

  6. The Design and Research of the Operation Status Detector for Marine Engine Room Power Plant Based on Noise

    Directory of Open Access Journals (Sweden)

    Li Hang

    2016-01-01

    Full Text Available Designed in this paper, based on the noise of ship engine room power plant running status of detector, is mainly used in the operation of the power plant of acoustic shell size to determine when the machine running state, this device is composed of signal disposal and alarm display adjustment part of two parts. Detector that can show the size of the voice, if exceed the set limit alarm value, the detector can sound an alarm, to remind staff equipment fails, it shall timely inspection maintenance, improve the safety of the operation of the ship.

  7. Development of brown coal liquefaction. Design, construction and operation of a 50 t/d pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    1985-08-01

    As for the development of 50t/d pilot plant for the development of liquefaction plant of Victorian brown coal in Australia, outline of the results of the researches in 1984 is reported from the following 4 viewpoints; 1: design of process apparatuses, 2: manufacture of apparatuses, 3: field work of the construction, 4: preparation for operation of the plant. On the first item, the outline of ordering designed equipment from Japanese and Australian companies is described. On the second item the acceptance of purchasing goods from Japan and Australia and promotion of the inspection and quality assurance system. On the third item, contents of the continuous construction of the first stage are described. On the fourth item, the establishment and review of rules and regulations, training and education for operators, enviromental assessment, contents of safety and maintenance work and commissioning work by the promoting department for preparation of operation are described. Moreover support works of wide range for the promotion and adoption by necessary personnel, labour unions, the state of labour and activities for local discricts are described.

  8. Remote-automation of nuclear power plant equipment inspection and maintenance

    International Nuclear Information System (INIS)

    Sasaki, Masayoshi; Kawamura, Hironobu; Nakano, Yoshiyuki; Izumi, Shigeru.

    1984-01-01

    The remotely operated automation of the checkup and maintenance of nuclear power generation facilities has largely contributed to the rise of capacity ratio of plants due to the shortening of regular inspection period and to the reduction of radiation exposure dose during working, the labor saving in working and so on. In this paper, the new technologies adopted in an automatic fuel exchanger, a remotely operated automatic CRD exchanger, a new type channel handling machine, pressure-withstanding main steam line plugs and so on for No.2 plant in the Fukushima No.2 Nuclear Power Station, Tokyo Electric Power Co., Inc., are reported. Besides, the state of development of new remotely operated automatic machines for nuclear power use, such as CRD disassembling and cleaning device, volume reduction equipment for spent fuel channel boxes and control rods, multi-functional robots for use under high radiation and so on is described. Also the trend of development of latest robot technology which will be put in practical use in near future is outlined, such as a running manipulator for checkup and inspection, a variable form crawler vehicle and a five-leg movable manipulator. (Kako, I.)

  9. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  10. Design of channel experiment equipment for measuring coolant velocity of innovative research reactor

    International Nuclear Information System (INIS)

    Muhammad Subekti; Endiah Puji Hastuti; Dedi Heriyanto

    2014-01-01

    The design of innovative high flux research reactor (RRI) requires high power so that the capability core cooling requires to be improved by designing the faster core coolant velocity near to the critical velocity limit. Hence, the critical coolant velocity as the one of the important parameter of the reactor safety shall be measured by special equipment to the velocity limit that may induce fuel element degradation. The research aims is to calculate theoretically the critical coolant velocity and to design the special experiment equipment namely EXNal for measuring the critical coolant velocity in fuel element subchannel of the RRI. EXNal design considers the critical velocity calculation result of 20.52 m/s to determine the variation of flow rate of 4.5-29.2 m 3 /h, in which the experiment could simulate the 1-4X standard coolant velocity of RSG-GAS as well as destructive test of RRI's fuel plate. (author)

  11. Active seismic response control systems for nuclear power plant equipment facilities

    International Nuclear Information System (INIS)

    Kobori, Takuji; Kanayama, Hiroo; Kamagata, Shuichi

    1989-01-01

    To sustain severe earthquake ground motion, a new type of anti-seismic structure is proposed, called a Dynamic Intelligent Building (DIB) system, which is positioned as an active seismic response controlled the structure. The structural concept starts from a new recognition of earthquake ground motion, and the structural natural frequency is actively adjusted to avoid resonant vibration, and similarly the external counter-force cancels the resonant force which comes from the dynamic structural motion energy. These concepts are verified using an analytical simulator program. The advanced application of the DIB system, is the Active Supporting system and the Active Stabilizer system for nuclear power plant equipment facilities. (orig.)

  12. Synergistic behaviour of nuclear radiation, temperature-humidity extremes and LOCA situation on safety and safety-related equipment in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Kulkarni, R.D.; Bora, J.S.; Prakash, Ravi; Agarwal, Vivek; Sundersingh, V.P.

    2002-01-01

    Full text: The general philosophy for the instrumentation in nuclear power plants is based on the use of equipment/instruments which are capable of continuous satisfactory operation over a long period of time with minimum attention. Long term reliability under varying service conditions is of prime importance. The reliability of nuclear power plant depends on the reliability of safety and safety-related electronic instruments/ equipment used for performing the crucial tasks. The electrical and electronic systems/ circuits/ components of the equipment used in reactor safety systems (e.g. reactor protection system, emergency core cooling system, etc.) and reactor safety-related systems (e.g. reactor containment isolation and cooling system, reactor shutdown system, etc.) are responsible for safe and reliable operation of a nuclear power plant. The performance of reactor safety and safety-related equipment/instruments viz. pressure and differential pressure transmitter, amplifier for ion chamber, etc. has been evaluated under synergistic atmosphere including LOCA to find out the critical link in the circuits and subsequent modifications are suggested. The mathematical representation of the generated database has been done to estimate the life span of the instruments and accordingly the guidelines has been prepared for the operational staff to avoid the forced outage of the plant. All the details are included and mathematical models are presented to predict the future performances

  13. The research for the design verification of nuclear power plant based on VR dynamic plant

    International Nuclear Information System (INIS)

    Wang Yong; Yu Xiao

    2015-01-01

    This paper studies a new method of design verification through the VR plant, in order to perform verification and validation the design of plant conform to the requirements of accident emergency. The VR dynamic plant is established by 3D design model and digital maps that composed of GIS system and indoor maps, and driven by the analyze data of design analyzer. The VR plant could present the operation conditions and accident conditions of power plant. This paper simulates the execution of accident procedures, the development of accidents, the evacuation planning of people and so on, based on VR dynamic plant, and ensure that the plant design will not cause bad effect. Besides design verification, simulated result also can be used for optimization of the accident emergency plan, the training of accident plan and emergency accident treatment. (author)

  14. An introduction to the design, commissioning and operation of nuclear air cleaning systems for Qinshan Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Xinliang Chen; Jiangang Qu; Minqi Shi [Shanghai Nuclear Engineering Research and Design Institute (China)] [and others

    1995-02-01

    This paper introduces the design evolution, system schemes and design and construction of main nuclear air cleaning components such as HEPA filter, charcoal adsorber and concrete housing etc. for Qinshan 300MW PWR Nuclear Power Plant (QNPP), the first indigenously designed and constructed nuclear power plant in China. The field test results and in-service test results, since the air cleaning systems were put into operation 18 months ago, are presented and evaluated. These results demonstrate that the design and construction of the air cleaning systems and equipment manufacturing for QNPP are successful and the American codes and standards invoked in design, construction and testing of nuclear air cleaning systems for QNPP are applicable in China. The paper explains that the leakage rate of concrete air cleaning housings can also be assured if sealing measures are taken properly and embedded parts are designed carefully in the penetration areas of the housing and that the uniformity of the airflow distribution upstream the HEPA filters can be achieved generally no matter how inlet and outlet ducts of air cleaning unit are arranged.

  15. CAL--ERDA program manual. [Building Design Language; LOADS, SYSTEMS, PLANT, ECONOMICS, REPORT, EXECUTIVE, CAL-ERDA

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, B. D.; Diamond, S. C.; Bennett, G. A.; Tucker, E. F.; Roschke, M. A.

    1977-10-01

    A set of computer programs, called Cal-ERDA, is described that is capable of rapid and detailed analysis of energy consumption in buildings. A new user-oriented input language, named the Building Design Language (BDL), has been written to allow simplified manipulation of the many variables used to describe a building and its operation. This manual provides the user with information necessary to understand in detail the Cal-ERDA set of computer programs. The new computer programs described include: an EXECUTIVE Processor to create computer system control commands; a BDL Processor to analyze input instructions, execute computer system control commands, perform assignments and data retrieval, and control the operation of the LOADS, SYSTEMS, PLANT, ECONOMICS, and REPORT programs; a LOADS analysis program that calculates peak (design) zone and hourly loads and the effect of the ambient weather conditions, the internal occupancy, lighting, and equipment within the building, as well as variations in the size, location, orientation, construction, walls, roofs, floors, fenestrations, attachments (awnings, balconies), and shape of a building; a Heating, Ventilating, and Air-Conditioning (HVAC) SYSTEMS analysis program capable of modeling the operation of HVAC components including fans, coils, economizers, humidifiers, etc.; 16 standard configurations and operated according to various temperature and humidity control schedules. A plant equipment program models the operation of boilers, chillers, electrical generation equipment (diesel or turbines), heat storage apparatus (chilled or heated water), and solar heating and/or cooling systems. An ECONOMIC analysis program calculates life-cycle costs. A REPORT program produces tables of user-selected variables and arranges them according to user-specified formats. A set of WEATHER ANALYSIS programs manipulates, summarizes and plots weather data. Libraries of weather data, schedule data, and building data were prepared.

  16. Statistical analysis of the behaviour of the mechanical equipment of EDFs power plants - evaluation of the availability and safety of thermal and nuclear units

    International Nuclear Information System (INIS)

    Procaccia, H.; Brillon, A.; Cravero, M.; Lucenet, G.

    1975-01-01

    The investigation and research directorate of EDF has undertaken a statistical analysis of the behaviour of large mechanical equipment at conventional power stations during the ten years following the operating reports of these stations. It has thus been possible to determine the intrinsic reliability, the failure rate, the mean repair time, and the mean good operating time of feed water reheating points, power turbines, pumps and boilers of the various EDF plants (125 and 250 MW) leading to a consideration of the feasibility of an extrapolation to present and future plants. Based on these elementary investigation two methods of calculation have been developed. One is used to assess the overall availability of a thermal or nuclear power station based on the knowledge of the failure rates of the equipment, each piece of equipment being associated with an idea of its technical importance in the functioning of the equipment. A numerical application is given for 125 and 250 MW conventional plants. The purpose of the other method is to estimate the operational safety of the safety equipment of nuclear power stations, based on the development of tree diagrams for faults in basic equipment. A numerical example is given for the cooling systems for Phenix and for one of the Super Phenix versions. (author)

  17. Application of Pressure Equipment Standard at nuclear power plants; Aplicacion del Reglamento de Equipos a Presion a las centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Mostaza, J. M.

    2011-07-01

    Regarding with the paper presented on 9{sup t}h June 2011 referred to the Industrial Security standard in Nuclear Plants, it was about the application of Pressure Equipment standard to mentioned Nuclear Plants, this article is an extract of the paper going to be exposed. (Author)

  18. Safety design of Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ouyang Yu; Zhang Lian; Du Shenghua; Zhao Jiayu

    1984-01-01

    Safety issues have been greatly emphasized through the design of the Qinshan Nuclear Power Plant. Reasonable safety margine has been taken into account in the plant design parameters, the design incorporated various safeguard systems, such as engineering safety feature systems, safety protection systems and the features to resist natural catastrophes, e. g. earthquake, hurricanes, tide and so on. Preliminary safety analysis and environmental effect assessment have been done and anti-accident provisions and emergency policy were carefully considered. Qinshan Nuclear Power Plant safety related systems are designed in accordance with the common international standards established in the late 70's, as well as the existing engineering standard of China

  19. Configuration management after design basis reconstitution

    International Nuclear Information System (INIS)

    Purcell, J.J.; Livingston, B.R.

    1991-01-01

    Over the last few years, Fort Calhoun station (FCS) has implemented a number of programs to enhance plant operability and readiness. The design basis document (DBD) reconstitution project was the cornerstone of this effort. Vendor manual upgrade, operating procedures upgrade, plant equipment data-base verification, equipment labeling, and warehousing improvements were also implemented as part of this improvement program. With the completion of these programs, plant documentation was current to the baselines established by each program, and a configuration management program (CMP) was established to maintain this level of accuracy throughout the remaining life of FCS. Change control throughout the organization has been reviewed and upgraded to ensure that all changes are evaluated for impact to the design bases

  20. Integrated CAE system for nuclear power plants. Development of piping design check system

    International Nuclear Information System (INIS)

    Narikawa, Noboru; Sato, Teruaki

    1994-01-01

    Toshiba Corporation has developed and operated the integrated CAE system for nuclear power plants, the core of which is the engineering data base to manage accurately and efficiently enormous amount of data on machinery, equipment and piping. As the first step of putting knowledge base system to practical use, piping design check system has been developed. By automatically checking up piping design, this system aims at the prevention of overlooking mistakes, efficient design works and the overall quality improvement of design. This system is based on the thought that it supports designers, and final decision is made by designers. This system is composed of the integrated data base, a two-dimensional CAD system and three-dimensional CAD system. The piping design check system is one of the application systems of the integrated CAE system. Object-oriented programming is the base of the piping design check system, and design knowledge and CAD data are necessary. As to the method of realizing the check system, the flow of piping design, the checkup functions, the checkup of interference and attribute base, and the integration of the system are explained. (K.I)

  1. Thermal analysis, optimization and design of a Martian oxygen production plant

    Science.gov (United States)

    Iyer, Venkatesh A.; Sridhar, K. R.

    1991-01-01

    The objective is to optimally design the thermal components of a system that uses carbon dioxide (CO2) from the Martian atmosphere to produce oxygen (O2) for spacecraft propulsion and/or life-support. Carbon dioxide is thermally decomposed into carbon monoxide (CO) and O2 followed by the electrochemical separation of O2. The design of the overall system and its various individual components depends on, among other things, the fraction of the stoichiometric yield of O2 that can be realized in the system and the temperature of operation of the electrochemical separation membrane. The analysis indicates that a substantial reduction could be obtained in the mass and power requirements of the system if the unreacted CO2 were to be recycled. The concepts of an optimum temperature of the zirconia cell and impracticality of plant operation at low cell efficiencies are also discussed. The design of the thermal equipment is such that the mass and power requirements of the individual components and of the overall system are optimized.

  2. Study concerning the power plant control and safety equipment by integrated distributed systems

    International Nuclear Information System (INIS)

    Optea, I.; Oprea, M.; Stanescu, P.

    1995-01-01

    The paper deals with the trends existing in the field of nuclear control and safety equipment and systems, proposing a high-efficiency integrated system. In order to enhance the safety of the plant and reliability of the structure system and components, we present a concept based on the latest computer technology with an open, distributed system, connected by a local area network with high redundancy. A modern conception for the control and safety system is to integrate all the information related to the reactor protection, active engineered safeguard and auxiliary systems parameters, offering a fast flow of information between all the agencies concerned so that situations can be quickly assessed. The integrated distributed control is based on a high performance operating system for realtime applications, flexible enough for transparent networking and modular for demanding configurations. The general design considerations for nuclear reactors instrumentation reliability and testing methods for real-time functions under dynamic regime are presented. Taking into account the fast progress in information technology, we consider the replacement of the old instrumentation of Cernavoda-1 NPP by a modern integrated system as an economical and efficient solution for the next units. (Author) 20 Refs

  3. Chemical decontamination solutions: Effects on PWR equipment

    International Nuclear Information System (INIS)

    Pezze, C.M.; Colvin, E.R.; Aspden, R.G.

    1992-01-01

    A critical objective for the nuclear industry is the reduction of personnel exposure to radiation. Reductions have been achieved through industry's radiation management programs including training and radiation awareness concepts. Increased plant maintenance and higher radiation fields at many sites continue to raise concerns. To alleviate the radiation exposure problem, the sources of radiation which contribute to personnel exposure must be removed from the plant. A feasible was of significantly reducing these sources from a Pressurized Water Reactor (PWR) is to chemically decontaminate the entire reactor coolant system (RCS). A program was conducted to determine the technical acceptability of using certain dilute chemical solvent processes for full RCS chemical decontamination. The two processes evaluated were CAN-DEREM and LOMI. The purpose of the program was to define and complete a systematic evaluation of the major issues that need to be addressed for the successful decontamination of the entire RCS and affected portions of the auxiliary systems of a four-loop PWR system. A test program was designed to evaluate the corrosion effects of the two decontamination processes under expected plant conditions. Materials and sample configurations dictated by generic PWR components were evaluated. The testing also included many standard corrosion coupons. The test data were then used to assess the impact of chemical decontamination on the physical condition and operability of the components, equipment and mechanical systems that make up the RCS. An overview of the test program, sample configurations, data and engineering evaluations is presented. The data demonstrate that through detailed engineering evaluations of corrosion data and equipment function, the impact of full RCS chemical decontamination on plant equipment is established

  4. Generation and utilization of knowledge concerning state change propagation using plant design information

    International Nuclear Information System (INIS)

    Nishizawa, Yasuo; Nagaoka, Yukio; Sato, Takao; Matsuki, Tsutomu.

    1992-01-01

    A method of knowledge generation and utilization using design information is described. This method is used to generate rules concerned with propagation of state change in a plant due to equipment manipulation or anomaly. The rules describe macroscopic behavior of plant subsystems consisting of many devices, and are used for high speed information processing in expert systems for plant diagnosis, maintenance, etc. Knowledge generation is comprised of two steps. In the first step, the changes of state values are propagated according to connectivity between devices and the input-output relationships of the devices. In the second step, the input change, output change of plant subsystems, and other information are edited according to the results of state change propagation, and rules for state change propagation are generated. By using these rules, the simulation of state change propagation can be accelerated about 10 times compared with the case of device level propagation. The method of knowledge generation has been applied to the inference system in a maintenance work scheduling system and a new-type expert system was realized. It grows by generating rules for problem solving and by expanding its knowledge base by itself. (author)

  5. Quality assurance in the design of nuclear power plants

    International Nuclear Information System (INIS)

    1981-01-01

    This Safety Guide provides the requirements and recommendations related to the establishment and implementation of quality assurance for design of items for a nuclear power plant. The requirements of this Guide shall be applied to the extent necessary during all constituent activities of the nuclear power plant project, such as design, manufacture, construction, commissioning and operations. Its requirements and recommendations shall be implemented, as appropriate, by the responsible organization or by its designated representatives: by plant designers, architect-engineers or manufacturers, when involved in performing design activities related to items to be manufactured; by site constructors, when involved in field engineering activities; by plant operators and other organizations, when involved in design activities related to plant modifications or to selection of spare or replacement parts; and by design consultants and other technical organizations, when performing any engineering activity that affects the work of other design organizations during various stages of nuclear power plant projects

  6. Aging management guidelines for commercial nuclear power plant equipment

    International Nuclear Information System (INIS)

    Nakos, J.T.; Gazdzinski, R.F.; Toman, G.J.

    1994-01-01

    The US Department of Energy, in cooperation with the Electric Power Research Institute and nuclear power plant utilities, has prepared ''Aging Management Guidelines'' (AMGs) for commodity types of equipment (e.g., pumps, electrical switchgear) important to license renewal. For the most part, this is also consistent with the Maintenance Rule, 10 CFR 50.65 (1991). AMGs concentrate on technical, (not licensing) issues and are directed toward systems engineers and plant maintenance staff. AMGs include a detailed summary of operating history, stressors, aging mechanisms, and various types of maintenance practices that can be combined to create effective programs that manage aging. All aging mechanisms were addressed; no attempt was made to limit the evaluation to aging mechanisms ''unique to license renewal,'' as defined in the License Renewal Rule, 10 CFR 54 (1991). The first AMG on Electrical Switchgear was published in July 1993. Six (6) additional AMGs will be published by the first quarter of calendar year 1994. It is anticipated that two more AMGs will be started in 1994. The seven ongoing AMG topics are as follows: (1) battery chargers, inverters and uninterruptible power supplies; (2) batteries, stationary; (3) heat exchangers; (4) motor control centers; (5) pumps; (6) switchgear, electric; (7) transformers, power and distribution. In Section 7, industry feedback regarding AMGs is discussed. Overall, the response has been very positive

  7. Human Systems Interface Design Methods Using Ecological Interface Design Principles

    International Nuclear Information System (INIS)

    Hong, Seung Kweon; Park, Jung Chul; Kim, Sun Su; Sim, Kwang Pyo; Yuk, Seung Yul; Choi, Jae Hyeon; Yoon, Seung Hyun

    2009-12-01

    The results of this study categorized into two parts. The first part is the guidelines for EID designs. The procedure to observe for EID design is composed of 6 steps; 1) to define a target system, 2) to make an abstraction hierarchy model, 3) to check the link structure among each components included in the layers of abstraction hierarchy model, 4) to transform information requirements to variables, 5) to make the graphs related to each variables, 6) to check the graphs by visual display design principles and heuristic rules. The second part is an EID design alternative for nuclear power plant. The EID for high level function represents the energy balance and energy flow in each loop of nuclear power plant. The EID for middle level function represents the performance indicators of each equipment involved in the all processes of changing from coolants to steam. The EID for low level function represents the values measured in each equipment such as temperature, pressure, water level and so on

  8. The design and development of Project Warrior equipment

    International Nuclear Information System (INIS)

    Thompson, V.R.; Jerram, K.

    1987-01-01

    The project Warrior standing for welding and repair robot in Oldbury reactors is the culmination of more than 7 years of conceptual thinking, research, development design and manufacture. The tile encompasses the whole project which includes a work performing manipulator, serving manipulator, the manipulators control system and consoles, a welding head and rangefinder with its associated control system and consoles and a large amount of auxiliary equipment. The system at the forefront of today's technology has been manufactured to carry out remote welding in nuclear reactors, on plate with an oxide covering of up to 200 microns

  9. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author).

  10. Development of automatic ultrasonic testing equipment for reactor pressure vessel

    International Nuclear Information System (INIS)

    Jang, Kee Ok; Park, Dae Yung; Park, Moon Hoh; Koo, Kil Mo; Park, Kwang Heui; Kang, Sang Sin; Bang, Heui Song; Noh, Heui Choong; Kong, Woon Sik

    1994-08-01

    The selected weld areas of reactor pressure vessel and adjacent piping are examined by remote mechanized ultrasonic testing(MUT) equipment. Since the MUT equipment was purchased from Southwest Research Institute (SwRI) in April 1985, we have performed 15 inservice inspections and 5 preservice inspections. However, the reliability of examination was recently decreased rapidly as the problems which results from the old age of equipment and the frequent movement to plant site to site have occurred frequently. Therefore, the 3-axis control system hardware in occurring many problems among the equipments of mechanized ultrasonic testing (MUT) was designed and developed to cover the examination areas of nozzle-shell weld as specified in ASME Code Section XI and to improve the examination reliability. The new 3-axis control system hardware with the performance of this project was developed to be compatible with the old one and it was used as dual system or spare parts of the old system. Furthermore, the established technologies are expected to be applied to the similar control systems in nuclear power plant. 17 figs, 2 pix, 2 tabs, 10 refs. (Author)

  11. Seismic design for Monju FBR power plant

    International Nuclear Information System (INIS)

    1982-01-01

    This technical report introduces the basic concept on the aseismatic design of the FBR ''Monju'' power station, of which the construction in Tsuruga is planned by the Power Reactor and Nuclear Fuel Development Corp. The safety design of Monju has been performed according to ''The concept of evaluating the safety of fast breeder reactors'', and the thought concerning the aseismatic design also is written in it. According to it, ''The guide for the examination of aseismatic design regarding power reactor facilities'' should be referred to, and the classification according to the importance in aseismatic design must be made, taking the features in the design of liquid metal-cooled FBRs fully in consideration. In the aseismatic design of Monju performed according to these basic concept, the following two points were examined. In the aseismatic design of the equipment and piping, the difference of construction from LWRs such as low pressure, thin walled and high temperature construction is taken in consideration. The classification according to the aseismatic importance of the system and equipment is made on the basis of the features in the design of Monju. The classification according to aseismatic importance, the method of calculating earthquake power, the combination of loads and the allowable limit, and the aseismatic construction of the main facilities are reported. (Kako, I.)

  12. Process pump operating problems and equipment failures, F-Canyon Reprocessing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    Durant, W.S.; Starks, J.B.; Galloway, W.D.

    1987-02-01

    A compilation of operating problems and equipment failures associated with the process pumps in the Savannah River Plant F-Canyon Fuel Reprocessing Facility is presented. These data have been collected over the 30-year operation of the facility. An analysis of the failure rates of the pumps is also presented. A brief description of the pumps and the data bank from which the information was sorted is also included

  13. Use of complex electronic equipment within radiative areas of PWR power plants: feability study

    International Nuclear Information System (INIS)

    Fremont, P.; Carquet, M.

    1988-01-01

    EDF has undertaken a study in order to evaluate the technical and economical feasibility of using complex electronic equipment within radiative areas of PWR power plants. This study lies on tests of VLSI components (Random Access Memories) under gamma rays irradiations, which aims are to evaluate the radiation dose that they can withstand and to develop a selection method. 125 rad/h and 16 rad/h tests results are given [fr

  14. Design verification for large reprocessing plants (Proposed procedures)

    International Nuclear Information System (INIS)

    Rolandi, G.

    1988-07-01

    In the 1990s, four large commercial reprocessing plants will progressively come into operation: If an effective and efficient safeguards system is to be applied to these large and complex plants, several important factors have to be considered. One of these factors, addressed in the present report, concerns plant design verification. Design verification provides an overall assurance on plant measurement data. To this end design verification, although limited to the safeguards aspects of the plant, must be a systematic activity, which starts during the design phase, continues during the construction phase and is particularly performed during the various steps of the plant's commissioning phase. The detailed procedures for design information verification on commercial reprocessing plants must be defined within the frame of the general provisions set forth in INFCIRC/153 for any type of safeguards related activities and specifically for design verification. The present report is intended as a preliminary contribution on a purely technical level, and focusses on the problems within the Agency. For the purpose of the present study the most complex case was assumed: i.e. a safeguards system based on conventional materials accountancy, accompanied both by special input and output verification and by some form of near-real-time accountancy involving in-process inventory taking, based on authenticated operator's measurement data. C/S measures are also foreseen, where necessary to supplement the accountancy data. A complete ''design verification'' strategy comprehends: informing the Agency of any changes in the plant system which are defined as ''safeguards relevant''; ''reverifying by the Agency upon receiving notice from the Operator on any changes, on ''design information''. 13 refs

  15. On-line testing of nuclear plant temperature and pressure instrumentation and other critical plant equipment. IAEA regional workshop. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    Under European regional TC project RER/4/011, IAEA and VUJE Training centre organized a workshop on On-line Testing of Nuclear Power Plant Temperature and Pressure Instrumentation and Other Critical Plant Equipment in Trnava, Slovak Republic, from 25 to 29 May 1998. The objective of the workshop was to review the state-of-the-art in NPP instrumentation, cover typical instrumentation problems and solutions, describe technical and regulatory requirements for verifying the performance of nuclear power plant instrumentation, describe new methods developed and applied in NPPs for on-line verification and performance of instrumentation and present new techniques using existing instrumentation to identify the on-set problems in the plant electrical, mechanical and thermal hydraulic systems. Particular emphasis was placed on temperature measurements by Resistance Temperature Detectors (RTDs) and thermocouples and pressure measurements using motion-balanced and forced-balanced pressure transmitters. This proceedings includes papers presented by the invited speakers and the participants each with an abstract as wells as a summary of the Round-Table discussions Refs, figs, tabs

  16. On-line testing of nuclear plant temperature and pressure instrumentation and other critical plant equipment. IAEA regional workshop. Working material

    International Nuclear Information System (INIS)

    1998-01-01

    Under European regional TC project RER/4/011, IAEA and VUJE Training centre organized a workshop on On-line Testing of Nuclear Power Plant Temperature and Pressure Instrumentation and Other Critical Plant Equipment in Trnava, Slovak Republic, from 25 to 29 May 1998. The objective of the workshop was to review the state-of-the-art in NPP instrumentation, cover typical instrumentation problems and solutions, describe technical and regulatory requirements for verifying the performance of nuclear power plant instrumentation, describe new methods developed and applied in NPPs for on-line verification and performance of instrumentation and present new techniques using existing instrumentation to identify the on-set problems in the plant electrical, mechanical and thermal hydraulic systems. Particular emphasis was placed on temperature measurements by Resistance Temperature Detectors (RTDs) and thermocouples and pressure measurements using motion-balanced and forced-balanced pressure transmitters. This proceedings includes papers presented by the invited speakers and the participants each with an abstract as wells as a summary of the Round-Table discussions

  17. Digital I and C for nuclear power plant

    International Nuclear Information System (INIS)

    Gemst, P. van

    1993-01-01

    A summary is given of the past experience (process I and C, digital controllers, Power Range Monitoring system) and future plans (integrated plant I and C, control room) of ABB Atom for programmable I and C at nuclear power plants. ABB Atom has designed and supplied an appreciable quantity of software based equipment for nuclear power plants. These have been supplied for both new plants as well as for backfitting. The well proven ABB Master system has been used for the supply of I and C equipment for these projects and will continue to be used in the future. (Z.S.) 1 fig

  18. NFC based Equipment Qualification Management (NEQM) system preventing counterfeit and fraudulent item

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.K., E-mail: ckchang@kings.ac.kr [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of); Lee, K.J., E-mail: klee@khu.ac.kr [Kyung Hee Univ., Seoul (Korea, Republic of)

    2014-07-01

    Qualification of equipment essential to safety in nuclear power plants (NPPs) ensures its capability to perform designated safety functions on demand under postulated service conditions. However, a number of incidents identified by the NRC since 1980s catalysed the US nuclear industry to adopt standard precautions to guard against counterfeit items. The purpose of this paper is to suggest the NFC (Near Field Communication) based equipment qualification management system preventing counterfeit and fraudulent items. The NEQM (NFC based Equipment Qualification Management) system work with the support of legacy systems such as PMS (Procurement Management System) and FMS (Facility management System). (author)

  19. NFC based Equipment Qualification Management (NEQM) system preventing counterfeit and fraudulent item

    International Nuclear Information System (INIS)

    Chang, C.K.; Lee, K.J.

    2014-01-01

    Qualification of equipment essential to safety in nuclear power plants (NPPs) ensures its capability to perform designated safety functions on demand under postulated service conditions. However, a number of incidents identified by the NRC since 1980s catalysed the US nuclear industry to adopt standard precautions to guard against counterfeit items. The purpose of this paper is to suggest the NFC (Near Field Communication) based equipment qualification management system preventing counterfeit and fraudulent items. The NEQM (NFC based Equipment Qualification Management) system work with the support of legacy systems such as PMS (Procurement Management System) and FMS (Facility management System). (author)

  20. Identification of critical equipment and determination of operational limits in helium refrigerators under pulsed heat load

    Science.gov (United States)

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2014-01-01

    Large-scale helium refrigerators are subjected to pulsed heat load from tokamaks. As these plants are designed for constant heat loads, operation under such varying load may lead to instability in plants thereby tripping the operation of different equipment. To understand the behavior of the plant subjected to pulsed heat load, an existing plant of 120 W at 4.2 K and another large-scale plant of 18 kW at 4.2 K have been analyzed using a commercial process simulator Aspen Hysys®. A similar heat load characteristic has been applied in both quasi steady state and dynamic analysis to determine critical stages and equipment of these plants from operational point of view. It has been found that the coldest part of both the cycles consisting JT-stage and its preceding reverse Brayton stage are the most affected stages of the cycles. Further analysis of the above stages and constituting equipment revealed limits of operation with respect to variation of return stream flow rate resulted from such heat load variations. The observations on the outcome of the analysis can be used for devising techniques for steady operation of the plants subjected to pulsed heat load.

  1. Constructing a User Interface for Cellular Phones Using Equipment and its Relations

    Directory of Open Access Journals (Sweden)

    Misayo Kitamura

    2003-04-01

    Full Text Available In a domain of SCADA (Supervisory Control And Data Acquisition systems, it is necessary to obtain information about plants such as water plants in remote places using a cellular phone in order to ascertain plant status in case of emergency.T o utilize the small screen of a cellular phone and to eliminate the engineering cost of creating de.nition data to show plant status, a method of constructing user interface using equipment in the plant and its relations is proposed. In this method, some equipment is selected from all supervised equipment using the relations between the equipment, and then the content to be displayed is generated dynamically using the selected equipment. The equipment in plants is organized as a graph structure, which involves the equipment and the relations between the equipment.T he relations adopted in this method are both the physical connections between the equipment and the conceptual relationships.The result of the selection depends on the relations and their parameter values called the context dependent weight, which changes dynamically by viewpoints.

  2. Life Cycle Management for Equipments in Nuclear Plants Based on Reliability

    International Nuclear Information System (INIS)

    Wang Dalin; Sun Jinlong

    2012-01-01

    Majority of equipments in nuclear power stations are not un-repairable, but repaired after failures or maintained periodically and then returned to running. Along with aging or fatigue causes, duration between failures may be variable such as larger or shorter. Equipments failure occurrences are consistent with non-homogeneous Poisson process (NHPP), in which their failure rates are variable. We chose Weibull process to simplify the actual circumstances to obtain the optimal life cycle management plans approximately. In application we need to estimate parameters of Weibull process with existing data. Before that, trend test is necessary. Total time test (TTT) is an alternative. Trend test can determine whether the failure rate changes along operating time and whether the devices operated under imperfect or minimal repair. Parameters of Weibull process λ, β can be estimated by maximum likelihood estimation method. LCM model is designed to found an optimizing model for those aging equipments under minimal repair or imperfect maintenance with maximum economic or availability as objective function. The purpose is to establish the optimal replacement strategies. Periodical replacement is the most regular choice and so LCM model aims to calculate the optimal replacement periodical duration.

  3. Broader utilization of programmable automation equipment in French nuclear power plants: Reflections on the choices made by Electricite de France and French designers

    International Nuclear Information System (INIS)

    Baudry, Y.; Varaldi, G.

    1983-01-01

    More than 1000 microprocessors and more than 10,000 data memories in each of the twenty or so 1300 MW units in the French nuclear programme: that was the decision taken by Electricite de France (EDF) in conjunction with the designers in 1974, with the intention of introducing programmable automata on a wide scale in French nuclear power plants. This programme was carried out with the assistance of advanced research services such as the universities, the Commissariat a l'energie atomique (CEA), EDF's design and research service and the designers, most of whom were already EDF suppliers for the 900 MW range. Having used computers for linking sequences (themselves carried out with electromagnetic technology) for its latest natural-uranium gas-cooled graphite-moderated power plants, EDF decided to call a temporary halt, in the case of its 900 MW light-water range, to the use of digital techniques for the control and automation of power plants although it continued to employ such techniques widely in data processing. Thus, the widespread introduction of programmable automata, which was decided upon in 1974/75 at a time when no equivalent existed at the international level, led EDF and French designers to undertake a major development effort in order to meet the requirements - particularly safety and reliability requirements - for such automata to be incorporated into the nuclear field. How does this choice fit in with the logical evolution of the digitalization of French nuclear power plants. What problems has it caused for EDF and French industry. How have these problems been tackled. How have they been overcome. These are the questions dealt with in this paper. (author)

  4. MHI - Westinghouse joint FBR tank plant design

    International Nuclear Information System (INIS)

    Arnold, W.H.; Vijuk, R.M.; Aoki, I.; Messhil, T.

    1988-01-01

    Mitsubishi Heavy Industries and Westinghouse Advanced Energy Systems Division have combined their experience and capabilities to design a tank type fast breeder reactor plant. This tank type reactor has been refined and improved during the last three years to better compete in cost, safety, and operation with alternative power plants. This Mitsubishi/Westinghouse joint design offers economic advantages due to the use of steel structures, modular construction, nitrogen cells for the intermediate loops, reactor cavity air cooling and the use of the guard vessel as the containment vessel. Inherent characteristics in the reactor design provide protection to the public and the plant investment

  5. Plant control system upgrades in the context of industry trends towards plant life-extension

    International Nuclear Information System (INIS)

    De Grosbois, J.; Basso, R.; Hepburn, A.; Kumar, V.

    2002-01-01

    Domestic CANDU nuclear plants were brought online between 1972 and 1986. Over the next decade, most of these stations will be nearing the end of their designed operating life. Effort has traditionally been placed on ensuring that the existing installed plant control system equipment could operate reliably until the end of this design life. Until recently, little attention has been given to plant control system upgrades or replacements to meet the expected requirement for 30+ years of additional plant operation following potential plant refurbishments. Industry developments are changing this thinking. The combination of expected increases in electricity demand (and prices), and the many recent successful turnaround stories of U.S. nuclear power plants has resulted in new interest in plant life improvement and plant life extension programs. Plant control system upgrade decisions are now being driven by the need to replace or upgrade these systems to support plant life extension. This article is the first of several that investigate aspects of plant control system upgrades or replacement, specifically in the context of the CANDU station digital control computers (DCCs). It sets the context for the discussion in the subsequent articles by providing a brief review of industry trends favouring plant refurbishment, by outlining the basic issues of aging and obsolescence of control system equipment, by establishing the need for upgrades and replacements, and by introducing some of the basic challenges to be addressed by the industry as it moves forward. (author)

  6. Development of nuclear equipment qualification technology

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heon O; Kim, Wu Hyun; Kim, Jin Wuk; Kim, Jeong Hyun; Lee, Jeong Kyu; Kim, Yong Han; Jeong, Hang Keun [Korea Institute of Machinery and Materials, Taejon (Korea)

    1999-03-01

    In order to enhance testing and evaluation technologies, which is one of the main works of the Chanwon branch of KIMM(Korea Institute of Machinery and Materials), in addition to the present work scope of the testing and evaluation in the industrial facilities such as petroleum and chemical, plants, the qualification technologies of the equipments important to safety used in the key industrial facilities such as nuclear power plants should be localized: Equipments for testing and evaluation is to be set up and the related technologies must be developed. In the first year of this study, of vibration aging qualification technologies of equipments important to safety used in nuclear power plants have been performed. (author). 27 refs., 81 figs., 17 tabs.

  7. Nuclear challenges and progress in designing stellarator power plants

    International Nuclear Information System (INIS)

    El-Guebaly, L.

    2007-01-01

    , such as recycling (within the nuclear industry) and clearance (or unconditional release to the commercial market). The ARIES-CS bioshield, cryostat, and individual magnet constituents qualify for clearance, representing ∼80% of the total waste volume. We developed a recycling approach for the non-clearable, in-vessel components using a combination of conventional and advanced remote handling equipment that can handle high doses of 3000 Sv/h or more. Several additional nuclear-related tasks received considerable attention during the ARIES-CS design process. These include the radial build definition, the well-optimized in-vessel components that satisfy the top-level requirements, the carefully selected nuclear and engineering parameters to produce an economic optimum, and the overarching safety constraints to deliver a safe and reliable power plant. This paper provides a brief historical overview of the progress in designing stellarator power plants and a perspective to the successful integration of the nuclear activity into the final ARIES-CS design

  8. Regulatory Activities on Civil Nuclear Safety Equipment in China

    International Nuclear Information System (INIS)

    Gaoshang, Lu; Choi, Kwang Sik

    2011-01-01

    It is stipulated in IAEA Fundamental Safety Principles (SF1) that the fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. The fundamental safety objective applies for all facilities and activities and for all stages over the lifetime of a facility or radiation source, including planning, sitting, design, manufacturing, construction, commissioning and operation, as well as decommissioning and closure. So, according to the requirement, the related activities such as design, manufacturing, installation and non-destructive test that conducted on civil nuclear equipment should be well controlled by the vendors, the owner of the nuclear power plants and the regulatory body. To insure the quality of those equipment, Chinese government had taken a series of measures to regulate the related activities on them

  9. Improvement of nuclear power plant monitor and control equipment. Computer application backfitting

    International Nuclear Information System (INIS)

    Hayakawa, H.; Kawamura, A.; Suto, O.; Kinoshita, Y.; Toda, Y.

    1985-01-01

    This paper describes the application of advanced computer technology to existing Japanese Boiling Water Reactor (BWR) nuclear power plants for backfitting. First we review the background of the backfitting and the objectives of backfitting. A feature of backfitting such as restrictions and constraints imposed by the existing equipment are discussed and how to overcome these restrictions by introduction of new technology such as highly efficient data transmission using multiplexing, and compact space saving computer systems are described. Role of the computer system in reliable NPS are described with a wide spectrum of TOSHIBA backfitting computer system application experiences. (author)

  10. Design-Only Conceptual Design Report: Plutonium Immobilization Plant

    International Nuclear Information System (INIS)

    DiSabatino, A.; Loftus, D.

    1999-01-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant

  11. Shielding design for better plant availability

    International Nuclear Information System (INIS)

    Biro, G.G.

    1975-01-01

    Design methods are described for providing a shield system for nuclear power plants that will facilitate maintenance and inspection, increase overall plant availability, and ensure that man-rem exposures are as low as practicable

  12. Design of a compact low-power human-computer interaction equipment for hand motion

    Science.gov (United States)

    Wu, Xianwei; Jin, Wenguang

    2017-01-01

    Human-Computer Interaction (HCI) raises demand of convenience, endurance, responsiveness and naturalness. This paper describes a design of a compact wearable low-power HCI equipment applied to gesture recognition. System combines multi-mode sense signals: the vision sense signal and the motion sense signal, and the equipment is equipped with the depth camera and the motion sensor. The dimension (40 mm × 30 mm) and structure is compact and portable after tight integration. System is built on a module layered framework, which contributes to real-time collection (60 fps), process and transmission via synchronous confusion with asynchronous concurrent collection and wireless Blue 4.0 transmission. To minimize equipment's energy consumption, system makes use of low-power components, managing peripheral state dynamically, switching into idle mode intelligently, pulse-width modulation (PWM) of the NIR LEDs of the depth camera and algorithm optimization by the motion sensor. To test this equipment's function and performance, a gesture recognition algorithm is applied to system. As the result presents, general energy consumption could be as low as 0.5 W.

  13. Study on the Management for the Nuclear Power Plant Maintenance and Equipment Reliability

    International Nuclear Information System (INIS)

    Yoon, Kyeongseop; Lee, Sangheon; Kim, Myungjin; Lee, Unjang

    2015-01-01

    In our country, many studies on the regulatory policy of the plant maintenance have ever been performed since 1998, but the relevant regulatory requirements were not established yet. These background mentioned above request us to study on the regulation policy and maintenance plan to improve the safety, reliability and efficiency of NPP. To solve these problems, in this study, we deduct the management methodology for the improvement of NPP maintenance and equipment reliability that is essential to secure the safety and efficiency of the commercial NPP. For analysis the maintenance and equipment reliability management methodology in overseas NPP. We studied maintenance and equipment reliability of USA, Canada and Europe(France, England, German). We also studied status and application condition of Korean NPP maintenance management technical development. We deducted an effective maintenance methodology that is needed to Korean NPP, as a result of comparison on the technical trend of the maintenance management between overseas and Korean, such like following. - Regulation form ·Specific provision of regulation requirement and application of form that is clarifying application standard - Maintenance management methodology, Maintenance management program. This results of study could be applied for regulation policy, law and guideline establishment of NPP maintenance, operation, supervision and a system establishment for maintenance management, education data about maintenance for NPP employees

  14. Typical design/qualification acceptance criteria for newly installed pipelines and equipment components of VVER-type NPPs

    International Nuclear Information System (INIS)

    Masopust, R.

    2003-01-01

    This paper describes in general the typical design/qualification acceptance criteria and seismic acceptance criteria in particular that are applicable for important to safety newly installed pipelines and equipment components of VVER-type already existing NPPs, specifically during the design verification phase of this newly installed equipment. These criteria are currently used for VVER 440-213 and VVER 1000 NPPs in Czech Republic and in Slovakia. The similar criteria are also used in Hungary. (author)

  15. ROP design for Enhanced CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Scherbakova, D; Kastanya, D.; Ovanes, M. [Candu Energy Inc., Mississauga, Ontario (Canada)

    2011-07-01

    The Enhanced CANDU 6 (EC6) nuclear power plant is a mid-sized pressurized heavy water reactor design, based on the highly successful CANDU 6 (C6) family of power plants, upgraded to meet today's Canadian and international safety requirements and to satisfy Generation III expectations. The EC6 reactor is equipped with two independent Regional Overpower Protection (ROP) systems to prevent overpowers in the reactor fuel. The ROP system design, retaining the traditional C6 methodology, is determined to cover the End-of-Life (EOL) reactor core condition since the reactor operating/thermal margin gradually decreases as plant equipment ages. Several design changes have been incorporated into the reference C6 plant to mitigate the ageing effect on the ROP trip margin. This paper outlines the basis for the EC6 ROP physics design and presents the ROP related improvements made in the EC6 design to ensure that full power operation is not limited by the ROP throughout the entire life of the reactor. (author)

  16. ITER plant systems

    International Nuclear Information System (INIS)

    Kolbasov, B.; Barnes, C.; Blevins, J.

    1991-01-01

    As part of a series of documents published by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this publication describes the conceptual design of the ITER plant systems, in particular (i) the heat transport system, (ii) the electrical distribution system, (iii) the requirements for radioactive equipment handling, the hot cell, and waste management, (iv) the supply system for fluids and operational chemicals, (v) the qualitative analyses of failure scenarios and methods of burn stability control and emergency shutdown control, (vi) analyses of tokamak building functions and design requirements, (vii) a plant layout, and (viii) site requirements. Refs, figs and tabs

  17. Study on design method for seismically isolated FBR plants

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Ohtori, Yasuki; Ishida, Katsuhiko; Sawada, Yoshihiro; Shiojiri; Hiroo; Mazda, Taiji

    1998-01-01

    CRIEPI conducted 'Demonstration test on FBR seismic isolation system' from 1987 to 1996 under contract with Ministry of International Trade and Industry, Japan. In the demonstration test, base isolation technologies are prepared and demonstrated to apply to FBR and the design guidelines are proposed. In this report overall contents of the design guidelines entitled Design guidelines for seismically base isolated FBR plants' are included. The design guidelines, as a rule, are limited to apply to FBR plants where entire reactor building is isolated in the horizontal direction using laminated rubber bearings as isolators. The design guidelines and its concepts, however, will be useful for the development of similar guidelines for other isolation systems using different type of isolation methods and other nuclear facilities. The design guidelines consist of three parts and appendices. The first part is 'Policy for Safety Design of Base Isolated FBR Plants' specifying the principles and the requirements in the planning and the design for the safety of base isolated FBR plants. The second part is Policy for Seismic Design of Base Isolated FBR' describing the principles and the requirements in the seismic design and the evaluation of safety for base isolated FBR plants. The third part is 'Design Methods for Seismic Isolated FBR Plants' detailing the methods, procedures and parameters to be used in the design and the evaluation of safety fro base isolated FBR plants. In appendices examples of design procedures for base isolated reactor building and laminated rubber bearings as well as various test data on laminated rubber bearings, etc. are shown. (author)

  18. Modern power station practice mechanical boilers, fuel-, and ash-handling plant

    CERN Document Server

    Sherry, A; Cruddace, AE

    2014-01-01

    Modern Power Station Practice, Second Edition, Volume 2: Mechanical (Boilers, Fuel-, and Ash-Handling Plant) focuses on the design, manufacture and operation of boiler units and fuel-and ash-handling plants.This book is organized into five main topics-furnace and combustion equipment, steam and water circuits, ancillary plant and fittings, dust extraction and draught plant, and fuel-and ash-handling plant.In these topics, this text specifically discusses the influence of nature of coal on choice of firing equipment; oil-burner arrangements, ignition and control; disposition of the heating surf

  19. System 80+{trademark} Standard Design: CESSAR design certification. Volume 3: Amendment I

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report - Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These documents describe the Combustion Engineering, Inc. System 80+{sup TM} Standard Design. This report, Volume 3, in conjunction with Volume 2, provides the design of structures, components, equipment and systems.

  20. Repository Planning, Design, and Engineering: Part II-Equipment and Costing.

    Science.gov (United States)

    Baird, Phillip M; Gunter, Elaine W

    2016-08-01

    Part II of this article discusses and provides guidance on the equipment and systems necessary to operate a repository. The various types of storage equipment and monitoring and support systems are presented in detail. While the material focuses on the large repository, the requirements for a small-scale startup are also presented. Cost estimates and a cost model for establishing a repository are presented. The cost model presents an expected range of acquisition costs for the large capital items in developing a repository. A range of 5,000-7,000 ft(2) constructed has been assumed, with 50 frozen storage units, to reflect a successful operation with growth potential. No design or engineering costs, permit or regulatory costs, or smaller items such as the computers, software, furniture, phones, and barcode readers required for operations have been included.