WorldWideScience

Sample records for plant cysteine proteinases

  1. The cysteine proteinases of the pineapple plant.

    Science.gov (United States)

    Rowan, A D; Buttle, D J; Barrett, A J

    1990-03-15

    The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelain, fruit bromelain and ananain were shown to be immunologically distinct. Enzymic characterization revealed differences in both substrate-specificities and inhibition profiles. A study of the cysteine proteinase derived from the related bromeliad Bromelia pinguin (pinguinain) indicated that in many respects it was similar to fruit bromelain, although it was found to be immunologically distinct.

  2. Cysteine proteinases and cystatins

    Directory of Open Access Journals (Sweden)

    Adeliana S. Oliveira

    2003-01-01

    Full Text Available This review describeds the definition, localization, functions and examples of cysteine proteinases and their protein inhibitors in vertebrate, non-vertebrate animals and plants. These inhibitors are related with defense mechanisms of plant against pests. It also describes the factors involved in the specific cysteine proteinase-cystatin interaction and high degree of affinity and large specificity in this interaction which are not only represented by the compatibility between amino acid residues of the active site involved in catalysis, but also of all amino acid residues that participante in the enzyme-inhibitor interaction.Nesta revisão foram descritas definições, localizações, funções e exemplos de proteinases cisteínicas e suas proteinas inibidoras em animais vertebrados e invertebrados e plantas. Tratamos principalmente com aqueles inibidores que são relatados com o mecanismo de defesa da planta contra pestes. Em adição, comentamos sobre recentes trabalhos que contribuíram para uma melhor compreenção dos fatores envolvidos na interação específica proteinase cisteínica-cistatina. Por outro lado, chamamos atenção para o alto grau de afinidade e grande especificidade na interação que não são apenas representadas pela compatibilidade entre os residuos de aminoácidos do sítio ativo envolvidos na catalise, mas também de todos os resíduos de aminoácidos que participam da interação enzima-inibidor.

  3. The anthelmintic efficacy of plant-derived cysteine proteinases against the rodent gastrointestinal nematode, Heligmosomoides polygyrus, in vivo

    OpenAIRE

    Stepek, Gillian; Lowe, Ann; Buttle, David J.; Duce, I.R.; Behnke, Jerzy M.

    2007-01-01

    Gastrointestinal (GI) nematodes are important disease-causing organisms, controlled primarily through treatment with synthetic drugs, but the efficacy of these drugs has declined due to widespread resistance, and hence new drugs, with different modes of action, are required. Some medicinal plants, used traditionally for the treatment of worm infections, contain cysteine proteinases known to damage worms irreversibly in vitro. Here we (i) confirm that papaya latex has marked efficacy in vivo a...

  4. The relative anthelmintic efficacy of plant-derived cysteine proteinases on intestinal nematodes.

    Science.gov (United States)

    Luoga, W; Mansur, F; Buttle, D J; Duce, I R; Garnett, M C; Lowe, A; Behnke, J M

    2015-03-01

    We examined the in vitro and in vivo efficacy of plant cysteine proteinases (CPs) derived from pineapple (Ananas comosus) and kiwi fruit (Actinidia deliciosa), and compared their efficacy as anthelmintics to the known effects of CPs from the latex of papaya (Carica papaya) against the rodent intestinal nematode, Heligmosomoides bakeri. Both fruit bromelain and stem bromelain had significant in vitro detrimental effects on H. bakeri but in comparison, actinidain from kiwi fruit had very little effect. However, in vivo trials indicated far less efficacy of stem bromelain and fruit bromelain than that expected from the in vitro experiments (24.5% and 22.4% reduction in worm burdens, respectively) against H. bakeri. Scanning electron microscopy revealed signs of cuticular damage on worms incubated in fruit bromelain, stem bromelain and actinidain, but this was far less extensive than on those incubated in papaya latex supernatant. We conclude that, on the basis of presently available data, CPs derived from pineapples and kiwi fruits are not suitable for development as novel anthelmintics for intestinal nematode infections. PMID:24176056

  5. Developing a rapid throughput screen for detection of nematicidal activity of plant cysteine proteinases: the role of Caenorhabditis elegans cystatins.

    Science.gov (United States)

    Phiri, A M; De Pomerai, D; Buttle, D J; Behnke, J M B

    2014-02-01

    Plant cysteine proteinases (CPs) from papaya (Carica papaya) are capable of killing parasitic nematode worms in vitro and have been shown to possess anthelmintic effects in vivo. The acute damage reported in gastrointestinal parasites has not been found in free-living nematodes such as Caenorhabditis elegans nor among the free-living stages of parasitic nematodes. This apparent difference in susceptibility might be the result of active production of cysteine proteinase inhibitors (such as cystatins) by the free-living stages or species. To test this possibility, a supernatant extract of refined papaya latex (PLS) with known active enzyme content was used. The effect on wild-type (Bristol N2) and cystatin null mutant (cpi-1(-/-) and cpi-2(-/-)) C. elegans was concentration-, temperature- and time-dependent. Cysteine proteinases digested the worm cuticle leading to release of internal structures and consequent death. Both cystatin null mutant strains were highly susceptible to PLS attack irrespective of the temperature and concentration of exposure, whereas wild-type N2 worms were generally resistant but far more susceptible to attack at low temperatures. PLS was able to induce elevated cpi-1 and cpi-2 cystatin expression. We conclude that wild-type C. elegans deploy cystatins CPI-1 and CPI-2 to resist CP attack. The results suggest that the cpi-1 or cpi-2 null mutants (or a double mutant combination of the two) could provide a cheap and effective rapid throughput C. elegans-based assay for screening plant CP extracts for anthelmintic activity.

  6. Molecular basis of Colorado potato beetle adaptation to potato plant defence at the level of digestive cysteine proteinases

    NARCIS (Netherlands)

    Gruden, K.; Kuipers, A.G.J.; Guncar, G.; Slapar, N.; Strukelj, B.; Jongsma, M.A.

    2004-01-01

    Potato synthesises high levels of proteinase inhibitors in response to insect attack. This can adversely affect protein digestion in the insects, leading to reduced growth, delayed development and lowered fecundity. Colorado potato beetle overcomes this defence mechanism by changing the composition

  7. Use of a cysteine proteinase from Carica candamarcensis as a protective agent during DNA extraction

    Directory of Open Access Journals (Sweden)

    M.S. Genelhu

    1998-09-01

    Full Text Available We describe the use of a plant cysteine proteinase isolated from latex of Carica candamarcensis as a protective agent during isolation of bacterial DNA following growth in culture of these cells. Between 100 to 720 units of proteinase (1 µg = 6 units afforded good DNA protection when incubated with various kinds of microorganisms. Agarose gel electrophoresis showed that the resulting DNA was similar in size to DNA preparations obtained by treatment with proteinase K. The viability of the resulting material was checked by PCR amplification using species-specific primers. After standing at room temperature (25oC for 35 days, the enzyme lost 10% of its initial activity. The enzyme stability and good yield of DNA suggest the use of this proteinase as an alternative to proteinase K.

  8. Use of a cysteine proteinase from Carica candamarcensis as a protective agent during DNA extraction.

    Science.gov (United States)

    Genelhu, M S; Zanini, M S; Veloso, I F; Carneiro, A M; Lopes, M T; Salas, C E

    1998-09-01

    We describe the use of a plant cysteine proteinase isolated from latex of Carica candamarcensis as a protective agent during isolation of bacterial DNA following growth in culture of these cells. Between 100 to 720 units of proteinase (1 microgram = 6 units) afforded good DNA protection when incubated with various kinds of microorganisms. Agarose gel electrophoresis showed that the resulting DNA was similar in size to DNA preparations obtained by treatment with proteinase K. The viability of the resulting material was checked by PCR amplification using species-specific primers. After standing at room temperature (25 degrees C) for 35 days, the enzyme lost 10% of its initial activity. The enzyme stability and good yield of DNA suggest the use of this proteinase as an alternative to proteinase K.

  9. Ethylene-regulated expression of a carnation cysteine proteinase during flower petal senescence.

    Science.gov (United States)

    Jones, M L; Larsen, P B; Woodson, W R

    1995-06-01

    The senescence of carnation (Dianthus caryophyllus L.) flower petals is regulated by the phytohormone ethylene and is associated with considerable catabolic activity including the loss of protein. In this paper we present the molecular cloning of a cysteine proteinase and show that its expression is regulated by ethylene and associated with petal senescence. A 1600 bp cDNA was amplified by polymerase chain reaction using a 5'-specific primer and 3'-nonspecific primer designed to amplify a 1-aminocyclopropane-1-carboxylate synthase cDNA from reverse-transcribed stylar RNA. The nucleotide sequence of the cloned product (pDCCP1) was found to share significant homology to several cysteine proteinases rather than ACC synthase. A single open reading frame of 428 amino acids was shown to share significant homology with other plant cysteine proteinases including greater than 70% identity with a cysteine proteinase from Arabidopsis thaliana. Amino acids in the active site of cysteine proteinases were conserved in the pDCCP1 peptide. RNA gel blot analysis revealed that the expression of pDCCP1 increased substantially with the onset of ethylene production and senescence of petals. Increased pDCCP1 expression was also associated with ethylene production in other senescing floral organs including ovaries and styles. The pDCCP1 transcript accumulated in petals treated with exogenous ethylene within 3 h and treatment of flowers with 2,5-norbornadiene, an inhibitor of ethylene action, prevented the increase in pDCCP1 expression in petals. The temporal and spatial patterns of pDCCP1 expression suggests a role for cysteine proteinase in the loss of protein during floral senescence.

  10. Identification, classification and expression pattern analysis of sugarcane cysteine proteinases

    Directory of Open Access Journals (Sweden)

    Gustavo Coelho Correa

    2001-12-01

    Full Text Available Cysteine proteases are peptidyl hydrolyses dependent on a cysteine residue at the active center. The physical and chemical properties of cysteine proteases have been extensively characterized, but their precise biological functions have not yet been completely understood, although it is known that they are involved in a number of events such as protein turnover, cancer, germination, programmed cell death and senescence. Protein sequences from different cysteine proteinases, classified as members of the E.C.3.4.22 sub-sub-class, were used to perform a T-BLAST-n search on the Brazilian Sugarcane Expressed Sequence Tags project (SUCEST data bank. Sequence homology was found with 76 cluster sequences that corresponded to possible cysteine proteinases. The alignments of these SUCEST clusters with the sequence of cysteine proteinases of known origins provided important information about the classification and possible function of these sugarcane enzymes. Inferences about the expression pattern of each gene were made by direct correlation with the SUCEST cDNA libraries from which each cluster was derived. Since no previous reports of sugarcane cysteine proteinases genes exists, this study represents a first step in the study of new biochemical, physiological and biotechnological aspects of sugarcane cysteine proteases.Proteinases cisteínicas são peptidil-hidrolases dependentes de um resíduo de cisteína em seu sítio ativo. As propriedades físico-químicas destas proteinases têm sido amplamente caracterizadas, entretanto suas funções biológicas ainda não foram completamente elucidadas. Elas estão envolvidas em um grande número de eventos, tais como: processamento e degradação protéica, câncer, germinação, morte celular programada e processos de senescência. Diferentes proteinases cisteínicas, classificadas pelo Comitê de Nomenclatura da União Internacional de Bioquímica e Biologia Molecular (IUBMB como pertencentes à sub

  11. The nematicidal effect of cysteine proteinases on the root knot nematode Meloidogne incognita

    OpenAIRE

    Gorny, Samuel Victor

    2013-01-01

    Despite current control measures, plant parasitic nematodes are estimated to be responsible for > $100 billion of damage to worldwide crop production per annum. Current nematicides are highly toxic, and due to health and environmental safety concerns, many are being withdrawn from the market under directive 914/414/EEC. Alternative control strategies are urgently required. The cysteine proteinases papain, actinidain and recombinant endoproteinase B isoform 2 (R.EP-B2) have been demonstrate...

  12. Primary structure of a cysteine proteinase inhibitor from the fruit of avocado (Persea americana Mill).

    Science.gov (United States)

    Kimura, M; Ikeda, T; Fukumoto, D; Yamasaki, N; Yonekura, M

    1995-12-01

    The complete amino acid sequence of a proteinaceous cysteine proteinase inhibitor from the fruit of avocado (avocado cystatin) is presented. The protein consists of 100 amino acid residues and has a molecular mass of 11,300 Da. Comparison of this sequence with sequences of plant cysteine proteinase inhibitors (phytocystatins), including oryzacystatins I and II from rice seeds, cowpea cystatin, and corn cystatin, showed that the avocado cystatin molecule has 60% and 54% residues identical with the two forms of the rice seed proteins, oryzacystatins I and II, respectively, and 64% and 63% with the cowpea and corn proteins, respectively. The totally conserved sequence, Gln-Val-Val-Ala-Gly, among several of the animal cystatins as well as phytocystatins, is at positions 47-51 in the avocado cystatin molecule.

  13. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress.

    Science.gov (United States)

    Sun, Xiaoli; Yang, Shanshan; Sun, Mingzhe; Wang, Sunting; Ding, Xiaodong; Zhu, Dan; Ji, Wei; Cai, Hua; Zhao, Chaoyue; Wang, Xuedong; Zhu, Yanming

    2014-05-01

    It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein-protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.

  14. Coffee cysteine proteinases and related inhibitors with high expression during grain maturation and germination

    Directory of Open Access Journals (Sweden)

    Lepelley Maud

    2012-03-01

    Full Text Available Abstract Background Cysteine proteinases perform multiple functions in seeds, including participation in remodelling polypeptides and recycling amino acids during maturation and germination. Currently, few details exist concerning these genes and proteins in coffee. Furthermore, there is limited information on the cysteine proteinase inhibitors which influence the activities of these proteinases. Results Two cysteine proteinase (CP and four cysteine proteinase inhibitor (CPI gene sequences have been identified in coffee with significant expression during the maturation and germination of coffee grain. Detailed expression analysis of the cysteine proteinase genes CcCP1 and CcCP4 in Robusta using quantitative RT-PCR showed that these transcripts accumulate primarily during grain maturation and germination/post germination. The corresponding proteins were expressed in E. coli and purified, but only one, CcCP4, which has a KDDL/KDEL C-terminal sequence, was found to be active after a short acid treatment. QRT-PCR expression analysis of the four cysteine proteinase inhibitor genes in Robusta showed that CcCPI-1 is primarily expressed in developing and germinating grain and CcCPI-4 is very highly expressed during the late post germination period, as well as in mature, but not immature leaves. Transcripts corresponding to CcCPI-2 and CcCPI-3 were detected in most tissues examined at relatively similar, but generally low levels. Conclusions Several cysteine proteinase and cysteine proteinase inhibitor genes with strong, relatively specific expression during coffee grain maturation and germination are presented. The temporal expression of the CcCP1 gene suggests it is involved in modifying proteins during late grain maturation and germination. The expression pattern of CcCP4, and its close identity with KDEL containing CP proteins, implies this proteinase may play a role in protein and/or cell remodelling during late grain germination, and that it is

  15. The death enzyme CP14 is a unique papain-like cysteine proteinase with a pronounced S2 subsite selectivity.

    Science.gov (United States)

    Paireder, Melanie; Mehofer, Ulrich; Tholen, Stefan; Porodko, Andreas; Schähs, Philipp; Maresch, Daniel; Biniossek, Martin L; van der Hoorn, Renier A L; Lenarcic, Brigita; Novinec, Marko; Schilling, Oliver; Mach, Lukas

    2016-08-01

    The cysteine protease CP14 has been identified as a central component of a molecular module regulating programmed cell death in plant embryos. CP14 belongs to a distinct subfamily of papain-like cysteine proteinases of which no representative has been characterized thoroughly to date. However, it has been proposed that CP14 is a cathepsin H-like protease. We have now produced recombinant Nicotiana benthamiana CP14 (NbCP14) lacking the C-terminal granulin domain. As typical for papain-like cysteine proteinases, NbCP14 undergoes rapid autocatalytic activation when incubated at low pH. The mature protease is capable of hydrolysing several synthetic endopeptidase substrates, but cathepsin H-like aminopeptidase activity could not be detected. NbCP14 displays a strong preference for aliphatic over aromatic amino acids in the specificity-determining P2 position. This subsite selectivity was also observed upon digestion of proteome-derived peptide libraries. Notably, the specificity profile of NbCP14 differs from that of aleurain-like protease, the N. benthamiana orthologue of cathepsin H. We conclude that CP14 is a papain-like cysteine proteinase with unusual enzymatic properties which may prove of central importance for the execution of programmed cell death during plant development. PMID:27246477

  16. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis.

    Science.gov (United States)

    Hernández, Hilda M; Marcet, Ricardo; Sarracent, Jorge

    2014-01-01

    Human trichomonosis, infection with Trichomonas vaginalis, is the most common non-viral sexually transmitted disease in the world. The host-parasite interaction and pathophysiological processes of trichomonosis remain incompletely understood. This review focuses on the advancements reached in the area of the pathogenesis of T. vaginalis, especially in the role of the cysteine proteinases. It highlights various approaches made in this field and lists a group of trichomonad cysteine proteinases involved in diverse processes such as invasion of the mucous layer, cytoadherence, cytotoxicity, cytoskeleton disruption of red blood cells, hemolysis, and evasion of the host immune response. A better understanding of the biological roles of cysteine proteinases in the pathogenesis of this parasite could be used in the identification of new chemotherapeutic targets. An additional advantage could be the development of a vaccine in order to reduce transmission of T. vaginalis.

  17. Recombinant Cysteine Proteinase from Leishmania (Leishmania) chagasi Implicated in Human and Dog T-Cell Responses

    OpenAIRE

    da Costa Pinheiro, Paulo Henrique; de Souza Dias, Suzana; EULÁLIO, Kelsen Dantas; Mendonça, Ivete L.; Katz, Simone; Barbiéri, Clara Lúcia

    2005-01-01

    High in vitro lymphoproliferative responses were induced in humans and dogs by a recombinant Leishmania (Leishmania) chagasi cysteine proteinase, with secretion of IFN-γ in asymptomatic subjects or of IFN-γ, interleukin 4 (IL-4), and IL-10 in oligosymptomatic subjects. In contrast, responses of symptomatic patients and dogs were lower, with production of IL-4 and IL-10.

  18. The possible involvement of D-amino acids or their metabolites in Arabidopsis cysteine proteinase/cystatin N-dependent proteolytic pathway.

    Science.gov (United States)

    Gholizadeh, A

    2015-01-01

    Cysteine proteinases and their inhibitors 'cystatins' play essential roles in plant growth and development. They are involved in various signaling pathways and in the response to wide ranges of biotic and abiotic environmental stresses. To investigate their possible influence from D-amino acids or their metabolism in vivo, Arabidopsis seedlings were allowed to grow under four physicochemically different D-amino acids including D-aspartate, D-serine, D-alanine and D-phenylalanine containing media. The reverse transcription polymerase chain reaction (R T-PCR) analysis of cysteine proteinase and cystatin gene expressions showed that the addition of D-amino acid to the plant growth media considerably induce the expression of proteinase transcript while decrease the expression level of inhibitor gene in the leaf and root tissues of the test plant in overall. Based on the obtained results the potential impact of D-amino acids or their metabolism on the activity of cysteine proteinase/cystatin-dependent proteolytic apparatus as well as their possible cooperation were predicted and discussed in the plant system.

  19. Functional properties of a cysteine proteinase from pineapple fruit with improved resistance to fungal pathogens in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Wei; Zhang, Lu; Guo, Ning; Zhang, Xiumei; Zhang, Chen; Sun, Guangming; Xie, Jianghui

    2014-01-01

    In plant cells, many cysteine proteinases (CPs) are synthesized as precursors in the endoplasmic reticulum, and then are subject to post-translational modifications to form the active mature proteinases. They participate in various cellular and physiological functions. Here, AcCP2, a CP from pineapple fruit (Ananas comosus L.) belonging to the C1A subfamily is analyzed based on the molecular modeling and homology alignment. Transcripts of AcCP2 can be detected in the different parts of fruits (particularly outer sarcocarps), and gradually increased during fruit development until maturity. To analyze the substrate specificity of AcCP2, the recombinant protein was overexpressed and purified from Pichia pastoris. The precursor of purified AcCP2 can be processed to a 25 kDa active form after acid treatment (pH 4.3). Its optimum proteolytic activity to Bz-Phe-Val-Arg-NH-Mec is at neutral pH. In addition, the overexpression of AcCP2 gene in Arabidopsis thaliana can improve the resistance to fungal pathogen of Botrytis cinerea. These data indicate that AcCP2 is a multifunctional proteinase, and its expression could cause fruit developmental characteristics of pineapple and resistance responses in transgenic Arabidopsis plants.

  20. Functional Properties of a Cysteine Proteinase from Pineapple Fruit with Improved Resistance to Fungal Pathogens in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-02-01

    Full Text Available In plant cells, many cysteine proteinases (CPs are synthesized as precursors in the endoplasmic reticulum, and then are subject to post-translational modifications to form the active mature proteinases. They participate in various cellular and physiological functions. Here, AcCP2, a CP from pineapple fruit (Ananas comosus L. belonging to the C1A subfamily is analyzed based on the molecular modeling and homology alignment. Transcripts of AcCP2 can be detected in the different parts of fruits (particularly outer sarcocarps, and gradually increased during fruit development until maturity. To analyze the substrate specificity of AcCP2, the recombinant protein was overexpressed and purified from Pichia pastoris. The precursor of purified AcCP2 can be processed to a 25 kDa active form after acid treatment (pH 4.3. Its optimum proteolytic activity to Bz-Phe-Val-Arg-NH-Mec is at neutral pH. In addition, the overexpression of AcCP2 gene in Arabidopsis thaliana can improve the resistance to fungal pathogen of Botrytis cinerea. These data indicate that AcCP2 is a multifunctional proteinase, and its expression could cause fruit developmental characteristics of pineapple and resistance responses in transgenic Arabidopsis plants.

  1. A chestnut seed cystatin differentially effective against cysteine proteinases from closely related pests.

    Science.gov (United States)

    Pernas, M; Sánchez-Monge, R; Gómez, L; Salcedo, G

    1998-12-01

    Cystatin CsC, a cysteine proteinase inhibitor from chestnut (Castanea sativa) seeds, has been purified and characterized. Its full-length cDNA clone was isolated from an immature chestnut cotyledon library. The inhibitor was expressed in Escherichia coli and purified from bacterial extracts. Identity of both seed and recombinant cystatin was confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis, two-dimensional electrophoresis and N-terminal sequencing. CsC has a molecular mass of 11,275 Da and pI of 6.9. Its amino acid sequence includes all three motifs that are thought to be essential for inhibitory activity, and shows significant identity to other phytocystatins, especially that of cowpea (70%). Recombinant CsC inhibited papain (Ki 29 nM), ficin (Ki 65 nM), chymopapain (Ki 366 nM), and cathepsin B (Ki 473 nM). By contrast with most cystatins, it was also effective towards trypsin (Ki 3489 nM). CsC is active against digestive proteinases from the insect Tribolium castaneum and the mite Dermatophagoides farinae, two important agricultural pests. Its effects on the cysteine proteinase activity of two closely related mite species revealed the high specificity of the chestnut cystatin.

  2. Three low molecular weight cysteine proteinase inhibitors of human seminal fluid: purification and enzyme kinetic properties.

    Science.gov (United States)

    Yadav, Vikash Kumar; Chhikara, Nirmal; Gill, Kamaldeep; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2013-08-01

    The cystatins form a superfamily of structurally related proteins with highly conserved structural folds. They are all potent, reversible, competitive inhibitors of cysteine proteinases (CPs). Proteins from this group present differences in proteinase inhibition despite their high level of structural similarities. In this study, three cysteine proteinase inhibitors (CPIs) of low molecular weight were isolated from human seminal fluid (HSF) by affinity chromatography on carboxymethyl (CM)-papain-Sepharose column, purified using various chromatographic procedures and checked for purity on sodium-dodecyl PAGE (SDS-PAGE). Matrix-assisted laser desorption-ionization-time-of flight-mass spectrometry (MALDI-TOF-MS) identified these proteins as cystatin 9, cystatin SN, and SAP-1 (an N-terminal truncated form of cystatin S). All three CPIs suppressed the activity of papain potentially and showed remarkable heat stability. Interestingly SAP-1 also inhibits the activity of trypsin, chymotrypsin, pepsin, and PSA (prostate specific antigen) and acts as a cross-class protease inhibitor in in vitro studies. Using Surface Plasmon Resonance, we have also observed that SAP-1 shows a significant binding with all these proteases. These studies suggest that SAP-1 is a cross-class inhibitor that may regulate activity of various classes of proteases within the reproductive systems. To our knowledge, this is the first report about purification of CPIs from HSF; the identification of such proteins could provide better insights into the physiological processes and offer intimation for further research. PMID:23619703

  3. Protective role of purified cysteine proteinases against Fasciola gigantica infection in experimental animals.

    Science.gov (United States)

    El-Ahwany, Eman; Rabia, Ibrahim; Nagy, Faten; Zoheiry, Mona; Diab, Tarek; Zada, Suher

    2012-03-01

    Fascioliasis is one of the public health problems in the world. Cysteine proteinases (CP) released by Fasciola gigantica play a key role in parasite feeding, migration through host tissues, and in immune evasion. There has been some evidence from several parasite systems that proteinases might have potential as protective antigens against parasitic infections. Cysteine proteinases were purified and tested in vaccine trials of sheep infected with the liver fluke. Multiple doses (2 mg of CP in Freund's adjuvant followed by 3 booster doses 1 mg each at 4 week intervals) were injected intramuscularly into sheep 1 week prior to infect orally with 300 F. gigantica metacercariae. All the sheep were humanely slaughtered 12 weeks after the first immunization. Changes in the worm burden, ova count, and humoral and cellular responses were evaluated. Significant reduction was observed in the worm burden (56.9%), bile egg count (70.7%), and fecel egg count (75.2%). Immunization with CP was also found to be associated with increases of total IgG, IgG(1), and IgG(2) (P<0.05). Data showed that the serum cytokine levels of pro-inflammatory cytokines, IL-12, IFN-γ, and TNF-α, revealed significant decreases (P<0.05). However, the anti-inflammatory cytokine levels, IL-10, TGF-β, and IL-6, showed significant increases (P<0.05). In conclusion, it has been found that CP released by F. gigantica are highly important candidates for a vaccine antigen because of their role in the fluke biology and host-parasite relationships. PMID:22451733

  4. Influence of immunoprotection on genetic variability of cysteine proteinases from Haemonchus contortus adult worms.

    Science.gov (United States)

    Martín, S; Molina, J M; Hernández, Y I; Ferrer, O; Muñoz, Ma C; López, A; Ortega, L; Ruiz, A

    2015-11-01

    The limitations associated with the use of anthelmintic drugs in the control of gastrotintestinal nematodosis, such as the emergence of anthelmintic resistance, have stimulated the study of the immunological control of many parasites. In the case of Haemonchus contortus, several vaccination trials using native and recombinant antigens have been conducted. A group of antigens with demonstrated immunoprotective value are cathepsin B - like proteolytic enzymes of the cysteine proteinase type. These enzymes, which have been observed in both excretory-secretory products and somatic extracts of H. contortus, may vary among different geographic isolates and on strains isolated from different hosts, or even from the same host, as has been demonstrated in some comparative studies of genetic variability. In the present study, we evaluated the genetic variability of the worms that fully developed their endogenous cycle in immunised sheep and goat in order to identify the alleles of most immunoprotective value. To address these objectives, groups of sheep and goats were immunised with PBS soluble fractions enriched for cysteine proteinases from adult worms of H. contortus from either a strain of H. contortus isolated from goats of Gran Canaria Island (SP) or a strain isolated from sheep of North America (NA). The results confirmed the immunoprophylactic value of this type of enzyme against haemonchosis in both sheep and goats in association with increased levels of specific IgG. The genetic analysis demonstrated that the immunisation had a genetic selection on proteinase-encoding genes. In all the immunised animals, allelic frequencies were statistically different from those observed in non-immunised control animals in the four analysed genes. The reduction in the allelic frequencies suggests that parasites expressing these proteases are selectively targeted by the vaccine, and hence they should be considered in any subunit vaccine approach to control haemonchosis in small

  5. Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers?

    Science.gov (United States)

    Sugawara, Hiroaki; Shibuya, Kenichi; Yoshioka, Toshihito; Hashiba, Teruyoshi; Satoh, Shigeru

    2002-03-01

    Senescence of carnation petals is accompanied by autocatalytic ethylene production and wilting of the petals; the former is caused by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes and the latter is related to the expression of a cysteine proteinase (CPase) gene. CPase is probably responsible for the degradation of proteins, leading to the decomposition of cell components and resultant cell death during the senescence of petals. The carnation plant also has a gene for the CPase inhibitor (DC-CPIn) that is expressed abundantly in petals at the full opening stage of flowers. In the present study, DC-CPIn cDNA was cloned and expressed in E. coli. The recombinant DC-CPIn protein completely inhibited the activities of a proteinase (CPase) extracted from carnation petals and papain. Northern blot analysis showed that the mRNA for CPase (DC-CP1) accumulated in large amounts, whereas that for DC-CPIn disappeared, corresponding to the onset of petal wilting in flowers undergoing natural senescence and exogenous ethylene-induced senescence. Based on these findings, a role of DC-CPIn in the regulation of petal wilting is suggested; DC-CPIn acts as a suppressor of petal wilting, which probably functions to fine-tune petal wilting in contrast to coarse tuning, the up-regulation of CPase activity by gene expression.

  6. Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity.

    Science.gov (United States)

    Arroyo, Rossana; Cárdenas-Guerra, Rosa Elena; Figueroa-Angulo, Elisa Elvira; Puente-Rivera, Jonathan; Zamudio-Prieto, Olga; Ortega-López, Jaime

    2015-01-01

    We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes.

  7. Rhabdovirus-induced apoptosis in a fish cell line is inhibited by a human endogenous acid cysteine proteinase inhibitor.

    Science.gov (United States)

    Björklund, H V; Johansson, T R; Rinne, A

    1997-07-01

    To determine the mechanisms of cell death in rhabdovirus-infected cells, we studied the infection of the epithelial papilloma of carp cell line with spring viremia of carp virus. Studies using electron microscopy, confocal microscopy, and agarose gel electrophoresis revealed changes in cell morphology and DNA fragmentation indicative of apoptosis. The virus-induced apoptosis was inhibited in cells treated with a human endogenous acid cysteine proteinase inhibitor. PMID:9188644

  8. Rhabdovirus-induced apoptosis in a fish cell line is inhibited by a human endogenous acid cysteine proteinase inhibitor.

    OpenAIRE

    Björklund, H V; Johansson, T R; Rinne, A

    1997-01-01

    To determine the mechanisms of cell death in rhabdovirus-infected cells, we studied the infection of the epithelial papilloma of carp cell line with spring viremia of carp virus. Studies using electron microscopy, confocal microscopy, and agarose gel electrophoresis revealed changes in cell morphology and DNA fragmentation indicative of apoptosis. The virus-induced apoptosis was inhibited in cells treated with a human endogenous acid cysteine proteinase inhibitor.

  9. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3.

    Directory of Open Access Journals (Sweden)

    Michal Potempa

    2009-02-01

    Full Text Available Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the alpha-chain of C3 -- the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.

  10. Isolation of a putative receptor for KDEL-tailed cysteine proteinase (SH-EP) from cotyledons of Vigna mungo seedlings.

    Science.gov (United States)

    Tsuru-Furuno, A; Okamoto, T; Minamikawa, T

    2001-10-01

    SH-EP is the major papain-type proteinase expressed in cotyledons of germinated Vigna mungo seeds. The proteinase possesses a KDEL sequence at the C-terminus although the mature form of SH-EP is localized in vacuoles. It has also been shown that the proform of SH-EP is accumulated at the edge or middle region of the endoplasmic reticulum, and the accumulated proSH-EP is directly transported to vacuoles via the KDEL-tailed cysteine proteinase-accumulating vesicle, KV. In this study, to address the transport machinery of proSH-EP through KV, putative receptor for proSH-EP was isolated from membrane proteins of cotyledons of V. mungo seedlings using a proSH-EP-immobilized column. The deduced amino acid sequence from cDNA to the protein revealed that the putative receptor for proSH-EP is a member of vacuolar sorting receptor, VSR, that is known to be localized in the Golgi-complex and/or clathrin coated vesicle. We carried out subcellular fractionation of cotyledon cells and subsequently conducted SDS-PAGE/immunoblotting and immunocytochemistry with anti-V. mungo VSR (VmVSR) or SH-EP antibody. The results showed that VmVSR is co-localized in the fraction of the gradient in which KV existed.

  11. Molecular karyotype and chromosomal localization of genes encoding ß-tubulin, cysteine proteinase, hsp 70 and actin in Trypanosoma rangeli

    Directory of Open Access Journals (Sweden)

    CB Toaldo

    2001-01-01

    Full Text Available The molecular karyotype of nine Trypanosoma rangeli strains was analyzed by contour-clamped homogeneous electric field electrophoresis, followed by the chromosomal localization of ß-tubulin, cysteine proteinase, 70 kDa heat shock protein (hsp 70 and actin genes. The T. rangeli strains were isolated from either insects or mammals from El Salvador, Honduras, Venezuela, Colombia, Panama and southern Brazil. Also, T. cruzi CL-Brener clone was included for comparison. Despite the great similarity observed among strains from Brazil, the molecular karyotype of all T. rangeli strains analyzed revealed extensive chromosome polymorphism. In addition, it was possible to distinguish T. rangeli from T. cruzi by the chromosomal DNA electrophoresis pattern. The localization of ß-tubulin genes revealed differences among T. rangeli strains and confirmed the similarity between the isolates from Brazil. Hybridization assays using probes directed to the cysteine proteinase, hsp 70 and actin genes discriminated T. rangeli from T. cruzi, proving that these genes are useful molecular markers for the differential diagnosis between these two species. Numerical analysis based on the molecular karyotype data revealed a high degree of polymorphism among T. rangeli strains isolated from southern Brazil and strains isolated from Central and the northern South America. The T. cruzi reference strain was not clustered with any T. rangeli strain.

  12. Characterisation of cysteine proteinases responsible for digestive proteolysis in guts of larval Western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris

    NARCIS (Netherlands)

    Bown, D.P.; Wilkinson, H.S.; Jongsma, M.A.; Gatehouse, J.A.

    2004-01-01

    Cysteine proteinases are the major class of enzymes responsible for digestive proteolysis in western corn rootworm (Diabrotica virgifera), a serious pest of maize. A larval gut extract hydrolysed typical cathepsin substrates, such as Z-phe-arg-AMC and Z-arg-arg-AMC, and hydrolysis was inhibited by Z

  13. Molecular interactions between an insect predator and its herbivore prey on transgenic potato expressing a cysteine proteinase inhibitor from rice.

    Science.gov (United States)

    Bouchard, Edith; Michaud, Dominique; Cloutier, Conrad

    2003-09-01

    Transgenic plants expressing resistance to herbivorous insects may represent a safe and sustainable pest control alternative if they do not interfere with the natural enemies of target pests. Here we examined interactions between oryzacystatin I (OCI), a proteinase inhibitor from rice genetically engineered into potato (Solanum tuberosum cv. Kennebec, line K52) to increase resistance to insect herbivory, and the insect predator Perillus bioculatus. This stinkbug is a relatively specialized predator of caterpillars and leaf-beetle larvae, and may also include plant sap in its predominantly carnivorous diet. One of its preferred prey is Colorado potato beetle (Leptinotarsa decemlineata), a major target of insect resistance development for potato field crops. Gelatin/sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that a major fraction of proteinase (gelatinase) activity in P. bioculatus extracts is OCI-sensitive. Among five gelatinolytic bands detected, the slowest-moving one (proteinase I) was inhibited strongly by purified OCI expressed in Escherichia coli or by OCI-transgenic potato extracts, while three other proteinases were partly sensitive to these treatments. There was also evidence of slight inhibition of proteinase I by untransformed potato foliage, suggesting the presence of a natural inhibitor related to OCI at low level in potato foliage. Interestingly, only about 50% of the maximum potential activity of proteinase I was recovered in extracts of P. bioculatus feeding on L. decemlineata larval prey on a diet of OCI-potato foliage, indicating that the predator was sensitive to OCI in the midgut of its prey. However, P. bioculatus on OCI-prey survived, grew and developed normally, indicating ability to compensate prey-mediated exposure to the OCI inhibitor. Confinement of P. bioculatus to potato foliage provided no evidence that potato plant-derived nutrition is a viable alternative to predation, restriction to potato foliage

  14. A novel Entamoeba histolytica cysteine proteinase, EhCP4, is key for invasive amebiasis and a therapeutic target.

    Science.gov (United States)

    He, Chen; Nora, George P; Schneider, Eric L; Kerr, Iain D; Hansell, Elizabeth; Hirata, Ken; Gonzalez, David; Sajid, Mohammed; Boyd, Sarah E; Hruz, Petr; Cobo, Eduardo R; Le, Christine; Liu, Wei-Ting; Eckmann, Lars; Dorrestein, Pieter C; Houpt, Eric R; Brinen, Linda S; Craik, Charles S; Roush, William R; McKerrow, James; Reed, Sharon L

    2010-06-11

    Entamoeba histolytica cysteine proteinases (EhCPs) play a key role in disrupting the colonic epithelial barrier and the innate host immune response during invasion of E. histolytica, the protozoan cause of human amebiasis. EhCPs are encoded by 50 genes, of which ehcp4 (ehcp-a4) is the most up-regulated during invasion and colonization in a mouse cecal model of amebiasis. Up-regulation of ehcp4 in vivo correlated with our finding that co-culture of E. histolytica trophozoites with mucin-producing T84 cells increased ehcp4 expression up to 6-fold. We have expressed recombinant EhCP4, which was autocatalytically activated at acidic pH but had highest proteolytic activity at neutral pH. In contrast to the other amebic cysteine proteinases characterized so far, which have a preference for arginine in the P2 position, EhCP4 displayed a unique preference for valine and isoleucine at P2. This preference was confirmed by homology modeling, which revealed a shallow, hydrophobic S2 pocket. Endogenous EhCP4 localized to cytoplasmic vesicles, the nuclear region, and perinuclear endoplasmic reticulum (ER). Following co-culture with colonic cells, EhCP4 appeared in acidic vesicles and was released extracellularly. A specific vinyl sulfone inhibitor, WRR605, synthesized based on the substrate specificity of EhCP4, inhibited the recombinant enzyme in vitro and significantly reduced parasite burden and inflammation in the mouse cecal model. The unique expression pattern, localization, and biochemical properties of EhCP4 could be exploited as a potential target for drug design.

  15. Modulation of the catalytic activity of cruzipain, the major cysteine proteinase from Trypanosoma cruzi, by temperature and pH.

    Science.gov (United States)

    Salvati, L; Mattu, M; Polticelli, F; Tiberi, F; Gradoni, L; Venturini, G; Bolognesi, M; Ascenzi, P

    2001-06-01

    Cysteine proteinases are relevant to several aspects of the parasite life cycle and of parasite-host relationships. Here, a quantitative investigation of the effect of temperature and pH on the total substrate inhibition of cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi, is reported. Values of the apparent catalytic and inhibition parameters Km, Vmax, Vmax/Km, and K(i) for the cruzipain-catalysed hydrolysis of N-alpha-benzyloxycarbonyl-L-phenylalanyl-L-arginine-(7-amino-4-methylcoumarin) (Z-Phe-Arg-AMC) and azocasein were determined between 10.0 degrees C and 40.0 degrees C and between pH 4.5 and 8.5. Values of Km were independent of temperature and pH, whereas values of Vmax, Vmax/Km, and K(i) were temperature-dependent and pH-dependent. Over the whole pH range explored, values of logVmax, log(Vmax/Km), and logK(i) increased linearly with respect to T(-1). Values of Vmax and Vmax/Km were affected by the acid-base equilibrium of one temperature-independent ionizing group (i.e. pK(unl)' = pK(lig)' = 5.7 +/- 0.1, at 25.0 degrees C). Moreover, values of K(i) were affected by the alkaline pK shift of one ionizing group of active cruzipain (from pK(unl)" = 5.7 +/- 0.1 to pK(lig)" = 6.1 +/- 0.1, at 25.0 degrees C) upon Z-Phe-Arg-AMC binding. Values of logK(unl)', logK(lig)', and logK(lig)" were temperature-independent. Conversely, values of logK(unl)" were linearly dependent on T(-1). As a whole, total substrate inhibition of cruzipain decreased with increasing temperature and pH. These data suggest that both synthetic and protein substrates can bind to the unique active centre of cruzipain either productively or following a binding mode which results in enzyme inhibition. However, allosteric effect(s) cannot be excluded.

  16. Antitumor Effects In Vitro and In Vivo and Mechanisms of Protection against Melanoma B16F10-Nex2 Cells By Fastuosain, a Cysteine Proteinase from Bromelia fastuosa

    OpenAIRE

    Guimarães-Ferreira, Carla A; Rodrigues, Elaine G; Renato A Mortara; Hamilton Cabral; Fabiana A. Serrano; Ricardo Ribeiro-dos-Santos; Travassos, Luiz R.

    2007-01-01

    In the present work, the antitumor effect of fastuosain, a cysteine proteinase from Bromelia fastuosa, was investigated. In the intravenous model of lung colonization in C57BI/6 mice, fastuosain and bromelain injected intraperitoneally were protective, very few nodules of B16F10-Nex2 melanoma cells were detected. Tumor cells treated with fastuosain showed reduced expression of CD44 and decreased invasion through Matrigel, lost their cytoplasmic extensions and substrate adherence, became round...

  17. Bmcystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus

    International Nuclear Information System (INIS)

    The bovine tick Rhipicephalus (Boophilus) microplus is a blood-sucking animal, which is responsible for Babesia spp and Anaplasma marginale transmission for cattle. From a B. microplus fat body cDNA library, 465 selected clones were sequenced randomly and resulted in 60 Contigs. An open reading frame (ORF) contains 98 amino acids named Bmcystatin, due to 70% amino acid identity to a classical type 1 cystatin from Ixodes scapularis tick (GenBank Accession No. DQ066227). The Bmcystatin amino acid sequence analysis showed two cysteine residues, theoretical pI of 5.92 and Mr of 11kDa. Bmcystatin gene was cloned in pET 26b vector and the protein expressed using bacteria Escherichia coli BL21 SI. Recombinant Bmcystatin (rBmcystatin) purified by affinity chromatography on Ni-NTA-agarose column and ionic exchange chromatography on HiTrap Q column presented molecular mass of 11kDa, by SDS-PAGE and the N-terminal amino acid sequenced revealed unprocessed N-terminal containing part of pelB signal sequence. Purified rBmcystatin showed to be a C1 cysteine peptidase inhibitor with Ki value of 0.1 and 0.6nM for human cathepsin L and VTDCE (vitellin degrading cysteine endopeptidase), respectively. The rBmcystatin expression analyzed by semi-quantitative RT-PCR confirmed the amplification of a specific DNA sequence (294bp) in the fat body and ovary cDNA preparation. On the other hand, a protein band was detected in the fat body, ovary, and the salivary gland extracts using anti-Bmcystatin antibody by Western blot. The present results suggest a possible role of Bmcystatin in the ovary, even though the gene was cloned from the fat body, which could be another site of this protein synthesis

  18. Cysteine proteinase type III is protective against Leishmania infantum infection in BALB/c mice and highly antigenic in visceral leishmaniasis individuals.

    Science.gov (United States)

    Khoshgoo, Naghmeh; Zahedifard, Farnaz; Azizi, Hiva; Taslimi, Yasaman; Alonso, Maribel Jiménez; Rafati, Sima

    2008-10-29

    Visceral leishmaniasis is the most acute form of leishmaniasis and vaccination is the best approach to control it. One of the major groups of virulence factors in Leishmania belongs to cysteine proteinase family. In this study, for the first time, the protective potential of Leishmania infantum cysteine proteinase type III (CPC) by using a prime-boost strategy is evaluated in BALB/c mice. The experiment was carried out in three groups of mice. Vaccinated group was primed with pcDNA-cpc and boosted with rCPC-DHFR in combination with CpG motif and Montanide 720 as adjuvant. Control groups received pcDNA and rDHFR or PBS. The ratio of IgG2a/IgG1, nitric oxide concentration and IFN-gamma induction in vaccinated group is significantly higher than controls. Furthermore, the parasite load of vaccinated group is significantly lower than controls. In addition, sera reactivity of visceral leishmaniasis individuals was examined and showed considerable reactivities toward rCPC in comparison with cutaneous leishmaniasis. The achieved result is highly encouraging the use of cysteine proteinases types I, II and III as vaccine candidate against visceral leishmaniasis.

  19. Putrescine-dependent re-localization of TvCP39, a cysteine proteinase involved in Trichomonas vaginalis cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Bertha Isabel Carvajal-Gamez

    Full Text Available Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB (an inhibitor of putrescine biosynthesis, diminished the amount and proteolytic activity of TvCP39 as compared with untreated parasites. Inhibition of putrescine biosynthesis also reduced ∼ 80% the tvcp39 mRNA levels according to RT-PCR and qRT-PCR assays. Additionally, actinomycin D-treatment showed that the tvcp39 mRNA half-life decreased in the absence of putrescine. However, this reduction was restored by exogenous putrescine addition, suggesting that putrescine is necessary for tvcp39 mRNA stability. TvCP39 was localized in the cytoplasm but, in DAB treated parasites transferred into exogenous putrescine culture media, TvCP39 was re-localized to the nucleus and nuclear periphery of trichomonads. Interestingly, the amount and proteolytic activity of TvCP39 was recovered as well as the tvcp39 mRNA levels were restored when putrescine exogenous was added to the DAB-treated parasites. In conclusion, our data show that putrescine regulate the TvCP39 expression, protein amount, proteolytic activity, and cellular localization.

  20. Putrescine-dependent re-localization of TvCP39, a cysteine proteinase involved in Trichomonas vaginalis cytotoxicity.

    Science.gov (United States)

    Carvajal-Gamez, Bertha Isabel; Quintas-Granados, Laura Itzel; Arroyo, Rossana; Vázquez-Carrillo, Laura Isabel; Ramón-Luing, Lucero De los Angeles; Carrillo-Tapia, Eduardo; Alvarez-Sánchez, María Elizbeth

    2014-01-01

    Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP) involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB) (an inhibitor of putrescine biosynthesis), diminished the amount and proteolytic activity of TvCP39 as compared with untreated parasites. Inhibition of putrescine biosynthesis also reduced ∼ 80% the tvcp39 mRNA levels according to RT-PCR and qRT-PCR assays. Additionally, actinomycin D-treatment showed that the tvcp39 mRNA half-life decreased in the absence of putrescine. However, this reduction was restored by exogenous putrescine addition, suggesting that putrescine is necessary for tvcp39 mRNA stability. TvCP39 was localized in the cytoplasm but, in DAB treated parasites transferred into exogenous putrescine culture media, TvCP39 was re-localized to the nucleus and nuclear periphery of trichomonads. Interestingly, the amount and proteolytic activity of TvCP39 was recovered as well as the tvcp39 mRNA levels were restored when putrescine exogenous was added to the DAB-treated parasites. In conclusion, our data show that putrescine regulate the TvCP39 expression, protein amount, proteolytic activity, and cellular localization.

  1. The iron-induced cysteine proteinase TvCP4 plays a key role in Trichomonas vaginalis haemolysis.

    Science.gov (United States)

    Cárdenas-Guerra, Rosa Elena; Arroyo, Rossana; Rosa de Andrade, Ivone; Benchimol, Marlene; Ortega-López, Jaime

    2013-11-01

    Trichomonas vaginalis has multiple proteinases, mainly of the cysteine type (CPs), including a 34 kDa precursor cathepsin L-like CP dubbed TvCP4. TvCP4 is an iron-up-regulated CP. The goal of this work was to identify the role of TvCP4 in the virulence of T. vaginalis. We cloned, expressed, and purified the recombinant mature enzyme region of TvCP4 (TvCP4r) to produce a rabbit polyclonal antibody (α-TvCP4r). This antibody reacted with a ∼24 kDa protein band in total protein extracts that could correspond to the mature enzyme. By two-dimensional western blot assays TvCP4 corresponded to three protein spots of ∼24 kDa with pI values of ∼6.7, 6.9, and 7.0 and two spots of ∼22 and ∼21 kDa with a pI of 6.9, as confirmed by mass spectrometry. As expected, a higher amount of TvCP4 was detected in cytoplasmic vesicles, lysosomes, and on the surface of iron-rich parasites when compared with normal and iron-depleted parasites. The α-TvCP4r antibody protected human erythrocytes from trichomonal lysis. Additionally, TvCP4 is expressed during infection and is part of the released products detected in vaginal fluids of patients with trichomonosis. Thus, data show that TvCP4 is an iron-induced CP that participates in T. vaginalis haemolysis.

  2. The TvLEGU-1, a Legumain-Like Cysteine Proteinase, Plays a Key Role in Trichomonas vaginalis Cytoadherence

    Directory of Open Access Journals (Sweden)

    Francisco Javier Rendón-Gandarilla

    2013-01-01

    Full Text Available The goal of this paper was to characterize a Trichomonas vaginalis cysteine proteinase (CP legumain-1 (TvLEGU-1 and determine its potential role as a virulence factor during T. vaginalis infection. A 30-kDa band, which migrates in three protein spots (pI~6.3, ~6.5, and ~6.7 with a different type and level of phosphorylation, was identified as TvLEGU-1 by one- and two-dimensional Western blot (WB assays, using a protease-rich trichomonad extract and polyclonal antibodies produced against the recombinant TvLEGU-1 (anti-TvLEGU-1r. Its identification was confirmed by mass spectrometry. Immunofluorescence, cell binding, and WB assays showed that TvLEGU-1 is upregulated by iron at the protein level, localized on the trichomonad surface and in lysosomes and Golgi complex, bound to the surface of HeLa cells, and was found in vaginal secretions. Additionally, the IgG and Fab fractions of the anti-TvLEGU-1r antibody inhibited trichomonal cytoadherence up to 45%. Moreover, the Aza-Peptidyl Michael Acceptor that inhibited legumain proteolytic activity in live parasites also reduced levels of trichomonal cytoadherence up to 80%. In conclusion, our data show that the proteolytic activity of TvLEGU-1 is necessary for trichomonal adherence. Thus, TvLEGU-1 is a novel virulence factor upregulated by iron. This is the first report that a legumain-like CP plays a role in a pathogen cytoadherence.

  3. Immunodiagnosis of Fasciola hepatica infection (fascioliasis) in a human population in the Bolivian Altiplano using purified cathepsin L cysteine proteinase.

    Science.gov (United States)

    O'Neill, S M; Parkinson, M; Strauss, W; Angles, R; Dalton, J P

    1998-04-01

    Cathepsin L1 (CL1), an immunogenic cysteine proteinase secreted by juvenile and adult Fasciola hepatica, was assessed for its potential as a diagnostic agent for the serologic detection of human fascioliasis. Using ELISAs, we compared the ability of liver fluke homogenates (LFH), excretory/secretory (ES) products, and CL1 to discriminate between seropositive (infected) and seronegative (noninfected) individuals within a population of 95 patients from the Bolivian Altiplano. A high prevalence of human fascioliasis has been reported in this region. The division between the seropositive and seronegative individuals was poorly defined when LFH was used as the antigen. A greater discrimination between these populations was achieved with both ES and CL1. A K-means cluster analysis using the combined ES and CL1 ELISA data identified a cluster of seropositive individuals. Cathepsin L1 detected a subset (20) of these seropositive individuals while ES detected all 26; however, ES detected nine additional individuals that were in the seronegative cluster. The ratio of the mean absorbance readings between seropositive and seronegative individuals was markedly improved by using conjugated second antibodies to IgG4, the predominant isotype elicited by infection. In these IgG4-ELISAs, CL1 again identified fewer individuals as seropositive than did ES, but improved the discrimination between the seropositive and seronegative individuals and thus provided a more conclusive diagnosis. Sera obtained from patients infected with schistosomiasis mansoni, cysticercosis, hydatidosis, and Chagas' disease were negative in these assays, which demonstrated the specificity of the IgG4-ELISA for detecting fascioliasis. Twenty of the 95 patients (21%) were seropositive for fascioliasis by the CL1 IgG4-ELISA, confirming the earlier reports of the high prevalence of disease in this region. A standardized diagnostic test for human fascioliasis, based on an ELISA that detects IgG4 responses to CL1

  4. Entamoeba histolytica cysteine proteinase 5 binds integrin on colonic cells and stimulates NFkappaB-mediated pro-inflammatory responses.

    Science.gov (United States)

    Hou, Yongzhong; Mortimer, Leanne; Chadee, Kris

    2010-11-12

    Integrins are important mammalian receptors involved in normal cellular functions and the pathogenesis of inflammation and disease. Entamoeba histolytica is a protozoan parasite that colonizes the gut, and in 10% of infected individuals, causes amebic colitis and liver abscess resulting in 10(5) deaths/year. E. histolytica-induced host inflammatory responses are critical in the pathogenesis of the disease, yet the host and parasite factors involved in disease are poorly defined. Here we show that pro-mature cysteine proteinase 5 (PCP5), a major virulent factor that is abundantly secreted and/or present on the surface of ameba, binds via its RGD motif to α(V)β(3) integrin on Caco-2 colonic cells and stimulates NFκB-mediated pro-inflammatory responses. PCP5 RGD binding to α(V)β(3) integrin triggered integrin-linked kinase(ILK)-mediated phosphorylation of Akt-473 that bound and induced the ubiquitination of NF-κB essential modulator (NEMO). As NEMO is required for activation of the IKKα-IKKβ complex and NFκB signaling, these events markedly up-regulated pro-inflammatory mediator expressions in vitro in Caco-2 cells and in vivo in colonic loop studies in wild-type and Muc2(-/-) mice lacking an intact protective mucus barrier. These results have revealed that EhPCP5 RGD motif is a ligand for α(V)β(3) integrin-mediated adhesion on colonic cells and represents a novel mechanism that E. histolytica trophozoites use to trigger an inflammatory response in the pathogenesis of intestinal amebiasis.

  5. "Purification and evaluation of somatic, excretory-secretory and Cysteine proteinase antigens of Fasciola Hepatica using IgG-ELISA in diagnosing Fascioliasis "

    Directory of Open Access Journals (Sweden)

    "Rokni MB

    2001-08-01

    Full Text Available Fasciolosis, or liver fluke disease, caused by parasites of the genus Fasciola is emerging as an important disease in man and animals, in the world and Iran, particularly in nortern parts. The economical losses in domestic animals are considerable. In the recent decade there were two major outbreaks of human fasciolosis in the Caspian region, northern part of Iran with 7000-10000 infected cases. Sicne it is impossible to diagnose fasciolosis in acute phase using coprological methods and even in chronic phases its sensitivity is low, evaluating and establishing a reliable and cost-effetive test is indispensable and notewortly.In the present survey, we produced and examined the sensitivity and specificity of liver fluke homogenate (LFH , excretory-secetory (ES and cysteine proteinase (CP antigens of F. hepatica using IgG-ELISA test. A 25-27 kilo Dalton coomassie blue-stained band was observed and using of specific inhibitors indicated that this antigen belongs to the class of cysteine proteinase. The sensitivity of LFH, ES and CP antigen in IgG-ELISa was 100% for each, while their specificity was 97.8%, 98.8% and 98.8% respectively. There was a significant difference in mean OD values between cases of proven fasciolosis and other true negative cases, including healthy control individuals and patients with other parasitic diseases.This present report is the first to demonstrate the purification and evaluation of F. hepatica cysteine proteinase antigen by IgG-ELISA test for the diagnosis of fasciolosis in Iran. In conclusion, the IgG-ELISa using ES and CP show high sensitivity and specificity and would be a valuable tool to diagnose human fasciolosis in Iran, particularly in endemic areas.

  6. Cysteine homeostasis plays an essential role in plant immunity.

    Science.gov (United States)

    Álvarez, Consolación; Bermúdez, M Ángeles; Romero, Luis C; Gotor, Cecilia; García, Irene

    2012-01-01

    Cysteine is the metabolic precursor of essential biomolecules such as vitamins, cofactors, antioxidants and many defense compounds. The last step of cysteine metabolism is catalysed by O-acetylserine(thiol)lyase (OASTL), which incorporates reduced sulfur into O-acetylserine to produce cysteine. In Arabidopsis thaliana, the main OASTL isoform OAS-A1 and the cytosolic desulfhydrase DES1, which degrades cysteine, contribute to the cytosolic cysteine homeostasis. • Meta-analysis of the transcriptomes of knockout plants for OAS-A1 and for DES1 show a high correlation with the biotic stress series in both cases. • The study of the response of knockout mutants to plant pathogens shows that des1 mutants behave as constitutive systemic acquired resistance mutants, with high resistance to biotrophic and necrotrophic pathogens, salicylic acid accumulation and WRKY54 and PR1 induction, while oas-a1 knockout mutants are more sensitive to biotrophic and necrotrophic pathogens. However, oas-a1 knockout mutants lack the hypersensitive response associated with the effector-triggered immunity elicited by Pseudomonas syringae pv. tomato DC3000 avrRpm1. • Our results highlight the role of cysteine as a crucial metabolite in the plant immune response.

  7. A group-specific inhibitor of lysosomal cysteine proteinases selectively inhibits both proteolytic degradation and presentation of the antigen dinitrophenyl-poly-L-lysine by guinea pig accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    A limited intralysosomal proteolytic degradation is probably a key event in the accessory cell processing of large protein antigens before their presentation to T cells. With the aid of highly specific inhibitors of proteinases, we have examined the role of proteolysis in the presentation of anti...... inhibitor. Another inhibitor, pepstatin A, which selectively blocks aspartic proteinases, did not block the presentation of dinitrophenyl-poly-L-lysine. The results identify cysteine proteinases, probably lysosomal, as one of the groups of enzymes involved in antigen processing....

  8. An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features

    NARCIS (Netherlands)

    Have, ten A.; Dekkers, E.; Kay, J.; Phylip, L.H.; Kan, van J.A.L.

    2004-01-01

    Botrytis cinerea, an important fungal plant pathogen, secretes aspartic proteinase (AP) activity in axenic cultures. No cysteine, serine or metalloproteinase activity could be detected. Proteinase activity was higher in culture medium containing BSA or wheat germ extract, as compared to minimal medi

  9. Global proteome changes in larvae of Callosobruchus maculatus Coleoptera:Chrysomelidae:Bruchinae) following ingestion of a cysteine proteinase inhibitor

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Silva, Carlos P; Alexandre, Daniel;

    2012-01-01

    proteomic changes induced in the intestinal tract of larval C. maculatus challenged by the ingestion of cystatin, a cysteine peptidase inhibitor, was investigated by a nanoLC-MS/MS approach. The ingestion of cystatin caused a delay in the development of the larvae, but the mortality was not high, indicating....... Ingestion of cystatin led to significant changes in the proteome of both the midgut epithelia and midgut contents. We have observed that proteins related to plant cell wall degradation, particularly the key glycoside hydrolases of the families GH5 (endo-β-1,4-mannanase) and GH 28 (polygalacturonase) were...... overexpressed. Conversely, α-amylases were downexpressed, indicating that an increase in hemicelluloses digestion helps the larvae to cope with the challenge of cystatin ingestion. Furthermore, a number of proteins associated with transcription/translation and antistress reactions were among the cystatin...

  10. Silencing of cystatin M in metastatic oral cancer cell line MDA-686Ln by siRNA increases cysteine proteinases and legumain activities, cell proliferation and in vitro invasion.

    NARCIS (Netherlands)

    Vigneswaran, N.; Wu, J.; Nagaraj, N.; James, R.; Zeeuwen, P.L.J.M.; Zacharias, W.

    2006-01-01

    Cystatins are inhibitors of lysosomal cysteine proteinases. Cystatin M demonstrates more diverse tissue distribution, target specificity and biological function than other cystatins from the same family. We utilized small interference RNAs (siRNA) to silence cystatin M gene expression in a metastati

  11. Increased expression of the major cysteine proteinases by stable episomal transfection underlines the important role of EhCP5 for the pathogenicity of Entamoeba histolytica.

    Science.gov (United States)

    Tillack, Manuela; Nowak, Nicolas; Lotter, Hannelore; Bracha, Rivka; Mirelman, David; Tannich, Egbert; Bruchhaus, Iris

    2006-09-01

    The protozoan Entamoeba histolytica causes intestinal inflammation and liver abscess. Cysteine proteinases (CPs) have been proposed as important virulence factors for amoebiasis. To test the role of the various CPs for amoeba induced pathology, the three major enzymes of the parasite, namely EhCP1, EhCP2 and EhCP5 accounting for about 90% of total proteinase activity, were overexpressed by stable episomal transfection. Total CP activity of recombinant amoebae increased by three- to six-fold depending on the gene transfected. Interestingly, overexpression of the genes for EhCP1 or EhCP2 increased the activity of the corresponding enzyme only, whereas overexpression of the gene for EhCP5 increased the activity of all three enzymes, which is consistent with enzyme-converting activity of EhCP5. Cytopathic activity, measured by in vitro monolayer disruption, was dramatically increased in ehcp5-transfectants (five-fold) but showed only a modest increase in ehcp1- or ehcp2-transfectants (1.5-2-fold). In addition, overexpression of ehcp5 but not of ehcp1 or ehcp2 significantly increased amoebic liver abscess formation in laboratory animals. Moreover, transfection and overexpression of ehcp5 was able to compensate the reduction of in vivo pathogenicity in parasites, which have been silenced for the gene encoding the pore-forming protein amoebapore A. In summary, these results further support the important role of EhCP5 in E. histolytica pathogenicity.

  12. Involvement of gibberellins in expression of a cysteine proteinase (SH-EP) in cotyledons of Vigna mungo seedlings.

    Science.gov (United States)

    Taneyama, M; Okamoto, T; Yamane, H; Minamikawa, T

    2001-11-01

    The expression of a papain-type proteinase, designated SH-EP, in cotyledons of Vigna mungo seedlings has been shown to require some factors in the embryonic axes. Gibberellin A1 (GA(1)) and GA(20) were identified by GC-MS in embryonic axes of V. mungo seedlings. The level of accumulation of SH-EP in cotyledons of V. mungo seedlings was greatly reduced by treatment of the seeds with uniconazole-P, an inhibitor for GA biosynthesis. The reduced level of accumulation of SH-EP in cotyledons by uniconazole-P was recovered by exogenous application of GA(1) and GA(20) to the seedlings.

  13. In situ localization of proteinase inhibitor mRNA in rice plant challenged by brown planthopper

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Proteinase inhibitor (PI) mRNA was localized by in situ hybridization in tissue sections of root, stem and leaf of the resistant rice (B5) plant fed by brown planthopper nymphs. In the rice material without BPH feeding, PI gene was expressed in the root, stem and leaf, while the abundance of PI mRNA was low. In the rice material fed by BPH, PI gene was expressed substantially in the parenchyma of rice stem and leaf, but weakly in the root. The results indicated that the PI gene was up-regulated in the rice plant challenged by brown planthopper. For the first time, we reported the expression changes of proteinase inhibitor gene in plant which was infested by a piercing/sucking insect.

  14. Trypanoplasma borreli cystein proteinase activities support a conservation of function with respect to digestion of host proteins in common carp

    NARCIS (Netherlands)

    Ruszczyk, A.; Forlenza, M.; Joerink, M.; Ribeiro, C.M.S.; Jurecka, P.M.; Wiegertjes, G.F.

    2008-01-01

    Trypanoplasma borreli is an extracellular parasite that is transmitted by a leech vector and is naturally found in the blood of cyprinid fish. High parasitemia and associated severe anemia together with splenomegaly are typical of infection of common carp, Cyprinus carpio L. Papain-like cysteine pro

  15. Antitumor Effects In Vitro and In Vivo and Mechanisms of Protection against Melanoma B16F10-Nex2 Cells By Fastuosain, a Cysteine Proteinase from Bromelia fastuosa1

    OpenAIRE

    Guimarães-Ferreira, Carla A; Rodrigues, Elaine G; Renato A Mortara; Cabral, Hamilton; Fabiana A. Serrano; Ribeiro-dos-Santos, Ricardo; Travassos, Luiz R.

    2007-01-01

    In the present work, the antitumor effect of fastuosain, a cysteine proteinase from Bromelia fastuosa, was investigated. In the intravenous model of lung colonization in C57Bl/6 mice, fastuosain and bromelain injected intraperitoneally were protective, and very few nodules of B16F10-Nex2 melanoma cells were detected. Tumor cells treated with fastuosain showed reduced expression of CD44 and decreased invasion through Matrigel, lost their cytoplasmic extensions and substrate adherence, and beca...

  16. Plant collagenase: unique collagenolytic activity of cysteine proteases from ginger.

    Science.gov (United States)

    Kim, Misook; Hamilton, Susan E; Guddat, Luke W; Overall, Christopher M

    2007-12-01

    Two cysteine proteases, GP2 and GP3, have been isolated from ginger rhizomes (Zingiber officinale). GP2 is virtually identical to a previously identified ginger protease GPII [K.H. Choi, and R.A. Laursen, Amino-acid sequence and glycan structures of cysteine proteases with proline specificity from ginger rhizome Zingiber officinale, Eur. J. Biochem. 267 (2000) 1516-1526.], and cleaves native type I collagen at multiple discrete sites, which are in the interior of the triple helical region of this molecule. In reaction with proline-containing peptides GP2 shows preference for Pro in the P2 position, and at least 10-fold higher efficiency of hydrolysis than papain. Comparison of models of GP2 and GP3 with the crystal structure of papain shows that the three enzymes have different S2 pocket structures. The S2 pocket in GP2 and GP3 is half the size of that of papain. GP2 is the only reported plant cysteine protease with a demonstrated ability to hydrolyse native collagen. The results support a role for ginger proteases as an alternative to papain, in commercial applications such as meat tenderization, where collagen is the target substrate. PMID:17920199

  17. 杜梨CPI基因的克隆、序列分析及表达%Cloning, sequencing and expression of a cysteine proteinase inhibitor gene (PbCPI) from Pyrus betulaefolia Bunge

    Institute of Scientific and Technical Information of China (English)

    李慧; 丛郁; 常有宏; 蔺经; 盛宝龙

    2011-01-01

    植物半胱氨酸蛋白酶抑制剂(Cysteine proteinase inhibitor,CPI)在植物的抗逆基因工程中发挥着越来越重要的作用,分离和克隆植物CPI基因进而研究该基因的功能是植物抗逆基因工程研究的热点.为从分子水平上揭示CPI基因在杜梨防御机制中所起的作用,利用RACE和PCR方法,从杜梨种子中克隆CPI基因的cDNA和DNA序列,并采用跨内含子表达引物进行半定量RT-PCR来分析该基因在不同胁迫条件下的表达情况.结果表明:PbCPI基因cDNA长度为987 bp,开放阅读框包含738个核苷酸,编码1个由信号肽(26个氨基酸)和成熟肽(219个氨基酸)组成的多肽.该多肽预测的等电点为6.68,估计的相对分子质量为27 190.其对应基因组DNA序列由3个外显子(1 ~302 bp,401 ~772 bp,1615~1 897 bp)和2个内含子(303~400 bp,773~1 614 bp)组成.通过PSORT进行亚细胞定位分析发现PbCPI蛋白位于内质网上.PbCPI基因编码的多肽具有植物CPI产生抑制活性所必需的一级结构:2个甘氨酸残基( Gly46-Gly47)、假定的反应域QXVXG(Q90 -V91 -V92 -A93 -G94)和A/PW基序(p120-w121);并包含植物CPI家族高度保守的特征序列模式LARFAVQEHN、QVVAG和YQAKVWVKPW.进化树分析表明PbCP1和蔷薇科植物CPI蛋白位于分子进化树的同一发育分支上,并且与苹果MdCPI(AAO19652)蛋白具有较高的一致性(95.92%).杜梨叶片中PbCPI为诱导型表达,高温(30℃)、低温(4℃)、NaCl、机械损伤、MeJA或ABA处理4h后其表达量明显上调,即其对温度胁迫、盐碱、机械损伤和外源激素处理均存在转录响应,这表明该基因参与了杜梨对生物或非生物胁迫的防御机制.%Plant cysteine proteinase inhibitor (CPI) has played more and more important roles in the fields of plant genetic engineering for resistance to adverse environments. It is one of the hot issues to isolate and validate CPI gene functions in the stress-tolerance gene engineering at present

  18. Antitumor Effects In Vitro and In Vivo and Mechanisms of Protection against Melanoma B16F10-Nex2 Cells By Fastuosain, a Cysteine Proteinase from Bromelia fastuosa

    Directory of Open Access Journals (Sweden)

    Carla A. Guimarães-Ferreira

    2007-09-01

    Full Text Available In the present work, the antitumor effect of fastuosain, a cysteine proteinase from Bromelia fastuosa, was investigated. In the intravenous model of lung colonization in C57BI/6 mice, fastuosain and bromelain injected intraperitoneally were protective, very few nodules of B16F10-Nex2 melanoma cells were detected. Tumor cells treated with fastuosain showed reduced expression of CD44 and decreased invasion through Matrigel, lost their cytoplasmic extensions and substrate adherence, became round and detached, forming strongly bound cell clusters in suspension. Peritoneal cells recruited and activated by fastuosain treatment (mainly monocytic cells and lymphocytes migrated to the lung, where pulmonary melanoma metastases grew. Adoptive transference of peritoneal cells recruited by fastuosain had no protective effect against lung metastases in recipient mice. Treatment of green fluorescent protein -chimeric animals with fastuosain did not change the number of cells that migrated to the lung, compared to PBSinjected control mice, but the number of positive major histocompatibility complex class II cells increased with fastuosain treatment. Murine antibodies against fastuosain, bromelain, cathepsins B and L crossreacted in ELISA and recognized surface and cytoplasmic components expressed on B16F10-Nex2 cells. Anti-fastuosain antibodies were cytotoxic/lytic to B16F10-Nex2 cells. Antitumor effects of fastuosain involve mainly the direct effect of the enzyme and elicitation of protective antibodies.

  19. Antitumor effects in vitro and in vivo and mechanisms of protection against melanoma B16F10-Nex2 cells by fastuosain, a cysteine proteinase from Bromelia fastuosa.

    Science.gov (United States)

    Guimarães-Ferreira, Carla A; Rodrigues, Elaine G; Mortara, Renato A; Cabral, Hamilton; Serrano, Fabiana A; Ribeiro-dos-Santos, Ricardo; Travassos, Luiz R

    2007-09-01

    In the present work, the antitumor effect of fastuosain, a cysteine proteinase from Bromelia fastuosa, was investigated. In the intravenous model of lung colonization in C57Bl/6 mice, fastuosain and bromelain injected intraperitoneally were protective, and very few nodules of B16F10-Nex2 melanoma cells were detected. Tumor cells treated with fastuosain showed reduced expression of CD44 and decreased invasion through Matrigel, lost their cytoplasmic extensions and substrate adherence, and became round and detached, forming strongly bound cell clusters in suspension. Peritoneal cells recruited and activated by fastuosain treatment (mainly monocytic cells and lymphocytes) migrated to the lung, where pulmonary melanoma metastases grew. Adoptive transference of peritoneal cells recruited by fastuosain had no protective effect against lung metastases in recipient mice. Treatment of green fluorescent protein-chimeric animals with fastuosain did not change the number of cells that migrated to the lung, compared to PBS-injected control mice, but the number of positive major histocompatibility complex class II cells increased with fastuosain treatment. Murine antibodies against fastuosain, bromelain, and cathepsins B and L cross-reacted in ELISA and recognized surface and cytoplasmic components expressed on B16F10-Nex2 cells. Anti-fastuosain antibodies were cytotoxic/lytic to B16F10-Nex2 cells. Antitumor effects of fastuosain involve mainly the direct effect of the enzyme and elicitation of protective antibodies.

  20. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Mehdi Shahbazi

    Full Text Available Canine Visceral Leishmaniasis (CVL is a major veterinary and public health problem caused by Leishmania infantum (L. infantum in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.

  1. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    Science.gov (United States)

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.

  2. Transgenic tobacco plants harboring tomato proteinase inhibitor II gene and their insect resistance

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The plant expression vectors pBCT2 and pBT2 were constructed with the cDNA sequence (tin2) and genomic DNA sequence (tin2i) of tomato proteinase inhibitor II gene respectively. Then the two expression vectors were transferred into tobacco via the Agrobacterium tumefaciens strain LBA4404, and transgenic tobacco plants were generated. Molecular analysis and trypsin activity assay showed that both cDNA and genomic DNA were expressed properly in the transgenic plants. Insecticidal activities in these transgenic plants indicated that transgenic tobacco plants carrying tin2i sequence were more resistant to 2-instar larvae of Heliothis armigera Hubner than those carrying tin2 sequence. Therefore the intron of tin2i sequence might be a contributor to insecticidal activity of the transgenic tobacco.

  3. Entamoeba histolytica Cysteine Proteinase 5 Evokes Mucin Exocytosis from Colonic Goblet Cells via αvβ3 Integrin.

    Directory of Open Access Journals (Sweden)

    Steve Cornick

    2016-04-01

    Full Text Available Critical to the pathogenesis of intestinal amebiasis, Entamoeba histolytica (Eh induces mucus hypersecretion and degrades the colonic mucus layer at the site of invasion. The parasite component(s responsible for hypersecretion are poorly defined, as are regulators of mucin secretion within the host. In this study, we have identified the key virulence factor in live Eh that elicits the fast release of mucin by goblets cells as cysteine protease 5 (EhCP5 whereas, modest mucus secretion occurred with secreted soluble EhCP5 and recombinant CP5. Coupling of EhCP5-αvβ3 integrin on goblet cells facilitated outside-in signaling by activating SRC family kinases (SFK and focal adhesion kinase that resulted in the activation/phosphorlyation of PI3K at the site of Eh contact and production of PIP3. PKCδ was activated at the EhCP5-αvβ3 integrin contact site that specifically regulated mucin secretion though the trafficking vesicle marker myristoylated alanine-rich C-kinase substrate (MARCKS. This study has identified that EhCP5 coupling with goblet cell αvβ3 receptors can initiate a signal cascade involving PI3K, PKCδ and MARCKS to drive mucin secretion from goblet cells critical in disease pathogenesis.

  4. Entamoeba histolytica Cysteine Proteinase 5 Evokes Mucin Exocytosis from Colonic Goblet Cells via αvβ3 Integrin.

    Science.gov (United States)

    Cornick, Steve; Moreau, France; Chadee, Kris

    2016-04-01

    Critical to the pathogenesis of intestinal amebiasis, Entamoeba histolytica (Eh) induces mucus hypersecretion and degrades the colonic mucus layer at the site of invasion. The parasite component(s) responsible for hypersecretion are poorly defined, as are regulators of mucin secretion within the host. In this study, we have identified the key virulence factor in live Eh that elicits the fast release of mucin by goblets cells as cysteine protease 5 (EhCP5) whereas, modest mucus secretion occurred with secreted soluble EhCP5 and recombinant CP5. Coupling of EhCP5-αvβ3 integrin on goblet cells facilitated outside-in signaling by activating SRC family kinases (SFK) and focal adhesion kinase that resulted in the activation/phosphorlyation of PI3K at the site of Eh contact and production of PIP3. PKCδ was activated at the EhCP5-αvβ3 integrin contact site that specifically regulated mucin secretion though the trafficking vesicle marker myristoylated alanine-rich C-kinase substrate (MARCKS). This study has identified that EhCP5 coupling with goblet cell αvβ3 receptors can initiate a signal cascade involving PI3K, PKCδ and MARCKS to drive mucin secretion from goblet cells critical in disease pathogenesis. PMID:27073869

  5. Cysteine-based redox regulation and signalling in plants

    Directory of Open Access Journals (Sweden)

    Jérémy eCouturier

    2013-04-01

    Full Text Available Living organisms are subjected to oxidative stress conditions which are characterized by the production of reactive oxygen (ROS, nitrogen (RNS and sulfur (RSS species. In plants as in other organisms, many of these compounds have a dual function as they damage different types of macromolecules but they also likely fulfil an important role as secondary messengers. Owing to the reactivity of their thiol groups, some protein cysteine residues are particularly prone to oxidation by these molecules. In the past years, besides their recognized catalytic and regulatory functions, the modification of cysteine thiol group was increasingly viewed as either protective or redox signalling mechanisms. The most physiologically relevant reversible redox post-translational modifications (PTMs are disulfide bonds, sulfenic acids, S-glutathionylated adducts, S-nitrosothiols and to a lesser extent S-sulfenylamides, thiosulfinates and S-persulfides. These redox PTMs are mostly controlled by two oxidoreductase families, thioredoxins and glutaredoxins. This review focuses on recent advances highlighting the variety and physiological roles of these PTMs and the proteomic strategies used for their detection.

  6. Trichocystatin-2 (TC-2): an endogenous inhibitor of cysteine proteinases in Trichomonas vaginalis is associated with TvCP39.

    Science.gov (United States)

    Puente-Rivera, Jonathan; Ramón-Luing, Lucero de los Ángeles; Figueroa-Angulo, Elisa Elvira; Ortega-López, Jaime; Arroyo, Rossana

    2014-09-01

    The causal agent of trichomoniasis is a parasitic protist, Trichomonas vaginalis, which is rich in proteolytic activity, primarily carried out by cysteine proteases (CPs). Some CPs are known virulence factors. T. vaginalis also possesses three genes encoding endogenous cystatin-like CP inhibitors. The aim of this study was to identify and characterize one of these CP inhibitors. Using two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), a cystatin-like peptidase inhibitor dubbed Trichocystatin-2 (TC-2) was identified in the T. vaginalis active degradome in association with TvCP39, a 39kDa CP involved in cytotoxicity. To characterize the TC-2 inhibitor, we cloned and expressed the tvicp-2 gene, purified the recombinant protein (TC-2r), and produced a specific polyclonal antibody (α-TC-2r). This antibody recognized a 10kDa protein band by western blotting. An indirect immunofluorescence assay (IFA) and cell fractionation assays using the α-TC-2r antibody showed that TC-2 was localized in the cytoplasm and lysosomes and that it colocalized with TvCP39. TC-2r showed inhibitory activity against papain, cathepsin-L, and TvCP39 in trichomonad extracts and live parasites but not legumain-like CPs. Live trichomonads treated with TC-2r showed reduced trichomonal cytotoxicity to HeLa cell monolayers in a TC-2r-concentration-dependent manner. In this study, we identified and characterized an endogenous cystatin-like inhibitor in T. vaginalis, TC-2, which is associated with TvCP39 and appears to regulate the cellular damage caused by T. vaginalis.

  7. The recombinant prepro region of TvCP4 is an inhibitor of cathepsin L-like cysteine proteinases of Trichomonas vaginalis that inhibits trichomonal haemolysis.

    Science.gov (United States)

    Cárdenas-Guerra, Rosa Elena; Ortega-López, Jaime; Flores-Pucheta, Claudia Ivonne; Benítez-Cardoza, Claudia Guadalupe; Arroyo, Rossana

    2015-02-01

    Trichomonas vaginalis expresses multiple proteinases, mainly of the cysteine type (CPs). A cathepsin L-like 34kDa CP, designated TvCP4, is synthesized as a 305-amino-acid precursor protein. TvCP4 contains the prepro fragment and the catalytic triad that is typical of the papain-like CP family of clan CA. The aim of this work was to determine the function of the recombinant TvCP4 prepro region (ppTvCP4r) as a specific inhibitor of CPs. We cloned, expressed, and purified the recombinant TvCP4 prepro region. The conformation of the purified and refolded ppTvCP4r polypeptide was verified by circular dichroism spectroscopy and fluorescence emission spectra. The inhibitory effect of ppTvCP4r was tested on protease-resistant extracts from T. vaginalis using fluorogenic substrates for cathepsin L and legumain CPs. In 1-D zymograms, the inhibitory effect of ppTvCP4r on trichomonad CP proteolytic activity was observed in the ∼97, 65, 39, and 30 kDa regions. By using 2-D zymograms and mass spectrometry, several of the CPs inhibited by ppTvCP4r were identified. A clear reduction in the proteolytic activity of several cathepsin L-like protein spots (TvCP2, TvCP4, TvCP4-like, and TvCP39) was observed compared with the control zymogram. Moreover, pretreatment of live parasites with ppTvCP4r inhibited trichomonal haemolysis in a concentration dependent manner. These results confirm that the recombinant ppTvCP4 is a specific inhibitor of the proteolytic activity of cathepsin L-like T. vaginalis CPs that is useful for inhibiting virulence properties depending on clan CA papain-like CPs.

  8. A recombinant plasmid of composite cysteine proteinase inhibitor/glyceraldehyde-3-phosphate dehydrogenase gene of periodic Brugia malayi functions on DNA immunity in the host

    Directory of Open Access Journals (Sweden)

    Z Fang

    2016-01-01

    Full Text Available Objectives: Both cysteine proteinase inhibitors (CPIs and glyceraldehyde-3-phosphate dehydrogenase (GAPDH play important roles in the pathogenesis of parasites and their relationship with the hosts. We constructed a new eukaryotic recombinant expression plasmid pcDNA3.1(+-BmCPI/BmGAPDH of periodic Brugia malayi for investigation of the DNA vaccine-elicited immune responses. Materials and Methods: We cloned a gene encoding the CPIs and GAPDH from periodic B. malayi into vector pcDNA3.1. The composited plasmid or the control was injected into the tibialis anterior muscle of the hind leg in BALB/c mice, respectively. The target genes were detected by reverse transcription-polymerase chain reaction in muscle tissues. The stimulation index (SI of T-lymphocyte proliferation and the levels of interferon-gamma (INF-g and interleukin-4 ( IL-4 in serum were detected by thiazolyl blue tetrazolium blue and enzyme-linked immunosorbent assays. Results: The pcDNA3.1(+-BmCPI/BmGAPDH was amplified from muscle tissues of the mice after immunisation. The SI of the immunised group was significantly higher than that of the two control groups (P < 0.05. The levels of INF-g and IL-4 of pcDNA3.1(+-BmCPI/BmGAPDH group were both higher than those of the two control groups (P < 0.05. The level of INF-g of pcDNA3.1(+-BmCPI/BmGAPDH group was significantly higher than that of pcDNA3.1(+-BmCPI/CpG group (P < 0.05. Conclusions: We conclude that the recombinant plasmid pcDNA3.1(+-BmCPI/BmGAPDH could elicit specific humoural and cellular immune responses in mice.

  9. Characterization of cysteine proteases in Malian medicinal plants.

    Science.gov (United States)

    Bah, Sékou; Paulsen, Berit S; Diallo, Drissa; Johansen, Harald T

    2006-09-19

    Extracts form 10 different Malian medicinal plants with a traditional use against schistosomiasis were investigated for their possible content of proteolytic activity. The proteolytic activity was studied by measuring the hydrolysis of two synthetic peptide substrates Z-Ala-Ala-Asn-NHMec and Z-Phe-Arg-NHMec. Legumain- and papain-like activities were found in all tested crude extracts except those from Entada africana, with the papain-like activity being the strongest. Cissus quadrangularis, Securidaca longepedunculata and Stylosanthes erecta extracts showed high proteolytic activities towards both substrates. After gel filtration the proteolytic activity towards the substrate Z-Ala-Ala-Asn-NHMec in root extract of Securidaca longepedunculata appeared to have Mr of 30 and 97kDa, while the activity in extracts from Cissus quadrangularis was at 39kDa. Enzymatic activity cleaving the substrate Z-Phe-Arg-NHMec showed apparent Mr of 97 and 26kDa in extracts from roots and leaves of Securidaca longepedunculata, while in Cissus quadrangularis extracts the activity eluted at 39 and 20kDa, with the highest activity in the latter. All Z-Phe-Arg-NHMec activities were inhibited by E-64 but unaffected by PMSF. The legumain activity was unaffected by E-64 and PMSF. The SDS-PAGE analysis exhibited five distinct gelatinolytic bands for Cissus quadrangularis extracts (115, 59, 31, 22 and 20kDa), while two bands (59 and 30kDa) were detected in Securidaca longepedunculata extracts. The inhibition profile of the gelatinolytic bands and that of the hydrolysis of the synthetic substrates indicate the cysteine protease class of the proteolytic activities. Several cysteine protease activities with different molecular weights along with a strong variability of these activities between species as well as between plant parts from the same species were observed. PMID:16621376

  10. Opposite Effects on Spodoptera littoralis Larvae of High Expression Level of a Trypsin Proteinase Inhibitor in Transgenic Plants1

    Science.gov (United States)

    De Leo, Francesca; Bonadé-Bottino, Michel A.; Ceci, Luigi R.; Gallerani, Raffaele; Jouanin, Lise

    1998-01-01

    This work illustrates potential adverse effects linked with the expression of proteinase inhibitor (PI) in plants used as a strategy to enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi) and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants expressing the mustard trypsin PI 2 (MTI-2) at different levels were obtained. First-instar larvae of the Egyptian cotton worm (Spodoptera littoralis Boisd.) were fed on detached leaves of these plants. The high level of MTI-2 expression in leaves had deleterious effects on larvae, causing mortality and decreasing mean larval weight, and was correlated with a decrease in the leaf surface eaten. However, larvae fed leaves from plants expressing MTI-2 at the low expression level did not show increased mortality, but a net gain in weight and a faster development compared with control larvae. The low MTI-2 expression level also resulted in increased leaf damage. These observations are correlated with the differential expression of digestive proteinases in the larval gut; overexpression of existing proteinases on low-MTI-2-expression level plants and induction of new proteinases on high-MTI-2-expression level plants. These results emphasize the critical need for the development of a PI-based defense strategy for plants obtaining the appropriate PI-expression level relative to the pest's sensitivity threshold to that PI. PMID:9808744

  11. Potato type I and II proteinase inhibitors: modulating plant physiology and host resistance.

    Science.gov (United States)

    Turra, David; Lorito, Matteo

    2011-08-01

    Serine protease inhibitors (PIs) are a large and complex group of plant proteins. Members of the potato type I (Pin1) and II (Pin2) proteinase inhibitor families are among the first and most extensively characterized plant PIs. Many insects and phytopathogenic microorganisms use intracellular and extracellular serine proteases playing important roles in pathogenesis. Plants, however, are able to fight these pathogens through the activation of an intricate defence system that leads to the accumulation of various PIs, including Pin1 and Pin2. Several transgenic plants over-expressing members of the Pin1 and Pin2 families have been obtained in the last twenty years and their enhanced defensive capabilities demonstrated against insects, fungi and bacteria. Furthermore, Pin1 and Pin2 genetically engineered plants showed altered regulation of different plant physiological processes (e.g., dehydratation response, programmed cell death, plant growth, trichome density and branching), supporting an endogenous role in various plant species in addition to the well established defensive one. This review summarizes the current knowledge about Pin1 and Pin2 structure, the role of these proteins in plant defence and physiology, and their potential exploitation in biotechnology. PMID:21418020

  12. The expression analysis of cysteine proteinase-like protein in wild-type and nm2 mutant silkworm (Lepidoptera: Bombyx mori).

    Science.gov (United States)

    Wu, Fan; Kang, Lequn; Wang, Pingyang; Zhao, Qiaoling

    2016-07-15

    The mutant of non-molting in the 2nd instar (nm2) is a recently discovered mutant of Bombyx mori. The mutant cannot molt and exuviate and died successively in premolting of 2nd instar. In this study, two dimensional gel electrophoresis (2-DE) was performed to screen the differential expression of epidermis proteins in pre-molting larvae of 2nd instar between the wild-type and nm2 mutant. Interestingly, a cysteine proteinase-like (BmCP-like) protein in nm2 was significantly higher than that of the wild-type. The transcription profiles of BmCP-like gene were investigated by quantitative real-time PCR (qRT-PCR), and the result revealed that BmCP-like mRNA was remarkably higher in nm2 than that of the wild-type. The transcription level of BmCP-like was high in the epidermis while low in the midgut and hemocytes, and fluctuate with development, while the highest in the newly molted larvae of 3rd and lowest in the pre-molting of the 1st and 2nd instar. The body of injected BmCP-like RNAi of 2nd larvae formed a dark spots around the injection place. These results suggested the BmCP-like gene play a key role in the degradation of the cuticle and epidermis layer during molting of 1st and 2nd instar silkworm. Furthermore, the ORF of BmCP-like gene in nm2 was the same to the wild-type. These studies give us a hint that BmCP-like gene maybe not the major gene responsible for nm2, but BmCP-like gene might participate in the immune systems of silkworm, and the upregulation of BmCP-like transcription in the nm2 mutant might be induced by the disadvantages that limit the growth and development of silkworm in order to survive. PMID:27080953

  13. The Onchocerca volvulus cysteine proteinase inhibitor, Ov-CPI-2, is a target of protective antibody response that increases with age.

    Directory of Open Access Journals (Sweden)

    Fidelis Cho-Ngwa

    Full Text Available BACKGROUND: Despite considerable efforts, a suitable vaccine against Onchocerca volvulus infection has remained elusive. Herein, we report on the use of molecular tools to identify and characterize O. volvulus antigens that are possibly associated with the development of concomitant immunity in onchocerciasis. METHODOLOGY/PRINCIPAL FINDINGS: Third-stage larvae (L3 and molting L3 (mL3 O. volvulus stage-specific cDNA libraries were screened with a pool of sera from chronically infected patients who had likely developed such immunity. The 87 immunoreactive clones isolated were grouped into 20 distinct proteins of which 12 had already been cloned and/or characterized before and 4 had been proven to be protective in a small O. volvulus animal model. One of these, onchocystatin (Ov-CPI-2, a previously characterized O. volvulus cysteine proteinase inhibitor was, overall, the most abundant clone recognized by the immune sera in both the L3 and mL3 cDNA libraries. To further characterize its association with protective immunity, we measured the IgG subclass and IgE class specific responses to the antigen in putatively immune (PI and infected (INF individuals living in a hyperendemic area in Cameroon. It appeared that both groups had similar IgG3 and IgE responses to the antigen, but the INF had significantly higher IgG1 and IgG4 responses than the PI individuals (p<0.05. In the INF group, the IgG3 levels increased significantly with the age of the infected individuals (r = 0.241; p<0.01. The IgG1 responses in the INF were high regardless of age. Notably, culturing L3 in vitro in the presence of anti-Ov-CPI-2 monospecific human antibodies and naïve neutrophils resulted in almost complete inhibition of molting of L3 to L4 and to cytotoxicity to the larvae. CONCLUSIONS/SIGNIFICANCE: These results add to the knowledge of protective immunity in onchocerciasis and support the possible involvement of anti-Ov-CPI-2 IgG1 and/or IgG3 cytophilic antibodies in the

  14. 天冬氨酸/半胱氨酸组织蛋白酶在光老化成纤维细胞中的表达变化%Expressions of aspartic proteinase and cysteine proteinase in photoaged fibroblasts

    Institute of Scientific and Technical Information of China (English)

    赖维; 郑跃; 陆春; 万苗坚; 谢淑霞; 许庆芳; 关蕾; 叶张章; 易金玲

    2010-01-01

    Objective To investigate the expression changes of aspartic proteinase (cathepsin D) and cysteine proteinase (cathepsin K) in photoaged fibroblasts. Methods The senescence of human fibroblasts was induced via culture in the presence of 8-methoxypsralen (MOP) of 50 mg/L in darkness for 24 hours followed by irradiation with UVA of 80 kJ/m~2. Then, aged fibroblasts were confirmed by senescence-associated β-galactosidase (SA-β-gal) staining. Real-time RT-PCR and Western blot were carried out to detect the mRNA and protein expressions of cathepsin D and cathepsin K in photoaged and normal control fibroblasts, respectively. Results Western blot showed a significant difference between photoaged and control fibroblasts in the grey scale of cathepsin D and cathepsin K (3.25 ± 0.33 vs 14.18 ± 2.25, f = 30.61, P < 0.01; 2.39 ± 0.66 vs 29.38 ± 4.62, t = 12.63, P< 0.01). The △Ct values for cathepsin D and cathepsin K mRNA were 2.79 ± 0.17 and -0.92 ± 0.06, respectively, in photoaged fibroblasts, significantly lower than those in the control fibroblasts (4.54 ± 0.34, 2.57 ± 0.13, t = 20.78, 28.50, respectively, both P < 0.01). According to the value of 2~(-△△Ct), the expression of cathepsin D and cathepsin K mRNA decreased 0.24 ± 0.021 and 0.09 ± 0.005 folds, respectively, in photoaged fibroblasts compared with the control fibroblasts. Conclusion The expression of cathepsin D and cathepsin K is decreased in photoaged fibroblasts.%目的 探讨天冬氨酸组织蛋白酶(cathepsin D)及半胱氨酸组织蛋白酶(cathepsin K)在光老化成纤维细胞中的表达变化.方法 培养原代人皮肤成纤维细胞,在50 mg/L的8-甲氧沙林(8-MOP)培养基中避光孵育24 h后,用80 kJ/m~2 UVA照射,体外诱导培养细胞光老化.衰老相关-β-半乳糖苷酶(SA-β-Gal)染色证明老化诱导成功.Western印迹及实时定量RT-PCR对比检测光老化成纤维细胞及正常成纤维细胞eathepsin K和cathepsin D蛋白及基因表达.结果 Western印

  15. Immunization with the cysteine proteinase Ldccys1 gene from Leishmania (Leishmania) chagasi and the recombinant Ldccys1 protein elicits protective immune responses in a murine model of visceral leishmaniasis.

    Science.gov (United States)

    Ferreira, Josie Haydée L; Gentil, Luciana Girotto; Dias, Suzana Souza; Fedeli, Carlos Eduardo C; Katz, Simone; Barbiéri, Clara Lúcia

    2008-01-30

    The gene Ldccys1 encoding a cysteine proteinase of 30 kDa from Leishmania (Leishmania) chagasi, as well as the recombinant cysteine proteinase rLdccys1, obtained by cloning and expression of the Ldccys1 gene in the pHIS vector, were used to evaluate their ability to induce immune protective responses in BALB/c mice against L. (L.) chagasi infection. Mice were immunized subcutaneously with rLdccys1 plus Bacille Calmette Guerin (BCG) or Propionibacterium acnes as adjuvants or intramuscularly with a plasmid carrying the Ldccys1 gene (Ldccys1/pcDNA3) and CpG ODN as the adjuvant, followed by a booster with rLdccys1 plus CpG ODN. Two weeks after immunization the animals were challenged with 1 x 10(7) amastigotes of L. (L.) chagasi. Both immunization protocols induced significant protection against L. (L.) chagasi infection as shown by a very low parasite load in the spleen of immunized mice compared to the non-immunized controls. However, DNA immunization was 10-fold more protective than immunization with the recombinant protein. Whereas rLdccys1 induced a significant secretion of IFN-gamma and nitric oxide (NO), animals immunized with the Ldccys1 gene increased the production of IgG2a antibodies, IFN-gamma and NO. These results indicated that protection triggered by the two immunization protocols was correlated to a predominant Th1 response.

  16. Accumulation of helper component/proteinase and coat protein of turnip mosaic virus in intact plants.

    Science.gov (United States)

    Ohshima, K

    1999-02-01

    The helper component/proteinase (HC/Pro) protein of turnip mosaic virus (TuMV) was fused with glutathione S-transferase (GST) and expressed as a fusion protein in Escherichia coli. The quality of antiserum raised against the GST-HC/Pro fusion protein was compared to that of antiserum raised against coat protein (CP) by image analyser. The result showed that these antisera were of similar quality. Then the both antisera were used to follow the time course of accumulation of HC/Pro protein and CP in intact TuMV-infected leaves. CP appeared first at day 3 post inoculation (p.i.) and gradually accumulated in uninoculated upper leaves, whereas HC/Pro protein appeared first at day 4 p.i., accumulated up to day 7 p.i. and then gradually decreased. Potyvirus proteins are encoded by a single translation unit spanning most of the genome and are presumably synthesized in equimolar ratios. Therefore, the reduced accumulation of HC/Pro protein in relation to CP at one month p.i. in infected plants is presumed to be the result of its degradation. PMID:10672341

  17. The knockdown of each component of the cysteine proteinase-adhesin complex of Entamoeba histolytica (EhCPADH) affects the expression of the other complex element as well as the in vitro and in vivo virulence.

    Science.gov (United States)

    Ocádiz-Ruiz, Ramón; Fonseca, Wendy; Linford, Alicia S; Yoshino, Timothy P; Orozco, Esther; Rodríguez, Mario A

    2016-01-01

    Entamoeba histolytica is the protozoan parasite causative of human amoebiasis, disease responsible for 40 000-100 000 deaths annually. The cysteine proteinase-adhesin complex of this parasite (EhCPADH) is a heterodimeric protein formed by a cysteine protease (EhCP112) and an adhesin (EhADH) that plays an important role in the cytopathic mechanism of this parasite. The coding genes for EhCP112 and EhADH are adjacent in the E. histolytica genome, suggesting that their expression may be co-regulated, but this hypothesis has not yet been confirmed. Here, we performed the knockdown of EhCP112 and EhADH using gene-specific short-hairpin RNAs (shRNA), and the effect of these knockdowns on the expression of both complex components as well as on the in vitro and in vivo virulence was analysed. Results showed that the knockdown of one of the EhCPADH components produced a simultaneous downregulation of the other protein. Accordingly, a concomitant reduction in the overall expression of the complex was observed. The downregulation of each component also produced a significant decrease in the in vitro and in vivo virulence of trophozoites. These results demonstrated that the expression of EhCP112 and EhADH is co-regulated and confirmed that the EhCPADH complex plays an important role in E. histolytica virulence.

  18. Inhibitors of lysosomal cysteine proteases

    Directory of Open Access Journals (Sweden)

    Lyanna O. L.

    2011-04-01

    Full Text Available The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic analogs.

  19. Antitumor Effects In Vitro and In Vivo and Mechanisms of Protection against Melanoma B16F10-Nex2 Cells By Fastuosain, a Cysteine Proteinase from Bromelia fastuosa1

    Science.gov (United States)

    Guimarães-Ferreira, Carla A; Rodrigues, Elaine G; Mortara, Renato A; Cabral, Hamilton; Serrano, Fabiana A; Ribeiro-dos-Santos, Ricardo; Travassos, Luiz R

    2007-01-01

    In the present work, the antitumor effect of fastuosain, a cysteine proteinase from Bromelia fastuosa, was investigated. In the intravenous model of lung colonization in C57Bl/6 mice, fastuosain and bromelain injected intraperitoneally were protective, and very few nodules of B16F10-Nex2 melanoma cells were detected. Tumor cells treated with fastuosain showed reduced expression of CD44 and decreased invasion through Matrigel, lost their cytoplasmic extensions and substrate adherence, and became round and detached, forming strongly bound cell clusters in suspension. Peritoneal cells recruited and activated by fastuosain treatment (mainly monocytic cells and lymphocytes) migrated to the lung, where pulmonary melanoma metastases grew. Adoptive transference of peritoneal cells recruited by fastuosain had no protective effect against lung metastases in recipient mice. Treatment of green fluorescent protein-chimeric animals with fastuosain did not change the number of cells that migrated to the lung, compared to PBS-injected control mice, but the number of positive major histocompatibility complex class II cells increased with fastuosain treatment. Murine antibodies against fastuosain, bromelain, and cathepsins B and L cross-reacted in ELISA and recognized surface and cytoplasmic components expressed on B16F10-Nex2 cells. Anti-fastuosain antibodies were cytotoxic/lytic to B16F10-Nex2 cells. Antitumor effects of fastuosain involve mainly the direct effect of the enzyme and elicitation of protective antibodies. PMID:17898868

  20. Enzymatic response of the eucalypt defoliator Thyrinteina arnobia (Stoll) (Lepidoptera: Geometridae) to a bis-benzamidine proteinase Inhibitor. i.

    Science.gov (United States)

    Marinho-Prado, Jeanne Scardini; Lourenção, A L; Guedes, R N C; Pallini, A; Oliveira, J A; Oliveira, M G A

    2012-10-01

    Ingestion of proteinase inhibitors leads to hyperproduction of digestive proteinases, limiting the bioavailability of essential amino acids for protein synthesis, which affects insect growth and development. However, the effects of proteinase inhibitors on digestive enzymes can lead to an adaptive response by the insect. In here, we assessed the biochemical response of midgut proteinases from the eucalypt defoliator Thyrinteina arnobia (Stoll) to different concentrations of berenil, a bis-benzamidine proteinase inhibitor, on eucalyptus. Eucalyptus leaves were immersed in berenil solutions at different concentrations and fed to larvae of T. arnobia. Mortality was assessed daily. The proteolytic activity in the midgut of T. arnobia was assessed after feeding on plants sprayed with aqueous solutions of berenil, fed to fifth instars of T. arnobia for 48 h before midgut removal for enzymatic assays. Larvae of T. arnobia were able to overcome the effects of the lowest berenil concentrations by increasing their trypsin-like activity, but not as berenil concentration increased, despite the fact that the highest berenil concentration resulted in overproduction of trypsin-like proteinases. Berenil also prevented the increase of the cysteine proteinases activity in response to trypsin inhibition. PMID:23950094

  1. A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers.

    Science.gov (United States)

    Bienert, Gerd P; Cavez, Damien; Besserer, Arnaud; Berny, Marie C; Gilis, Dimitri; Rooman, Marianne; Chaumont, François

    2012-07-01

    AQPs (aquaporins) are conserved in all kingdoms of life and facilitate the rapid diffusion of water and/or other small solutes across cell membranes. Among the different plant AQPs, PIPs (plasma membrane intrinsic proteins), which fall into two phylogenetic groups, PIP1 and PIP2, play key roles in plant water transport processes. PIPs form tetramers in which each monomer acts as a functional channel. The intermolecular interactions that stabilize PIP oligomer complexes and are responsible for the resistance of PIP dimers to denaturating conditions are not well characterized. In the present study, we identified a highly conserved cysteine residue in loop A of PIP1 and PIP2 proteins and demonstrated by mutagenesis that it is involved in the formation of a disulfide bond between two monomers. Although this cysteine seems not to be involved in regulation of trafficking to the plasma membrane, activity, substrate selectivity or oxidative gating of ZmPIP1s (Zm is Zea mays), ZmPIP2s and hetero-oligomers, it increases oligomer stability under denaturating conditions. In addition, when PIP1 and PIP2 are co-expressed, the loop A cysteine of ZmPIP1;2, but not that of ZmPIP2;5, is involved in the mercury sensitivity of the channels.

  2. S1 subsite specificity of a recombinant cysteine proteinase, CPB, of Leishmania mexicana compared with cruzain, human cathepsin L and papain using substrates containing non-natural basic amino acids.

    Science.gov (United States)

    Alves, L C; Melo, R L; Sanderson, S J; Mottram, J C; Coombs, G H; Caliendo, G; Santagada, V; Juliano, L; Juliano, M A

    2001-03-01

    We have explored the substrate specificity of a recombinant cysteine proteinase of Leishmania mexicana (CPB2.8 Delta CTE) in order to obtain data that will enable us to design specific inhibitors of the enzyme. Previously we have shown that the enzyme has high activity towards substrates with a basic group at the P1 position [Hilaire, P.M.S., Alves, L.C., Sanderson, S.J., Mottram, J.C., Juliano, M.A., Juliano, L., Coombs, G.H. & Meldal M. (2000) Chem. Biochem. 1, 115--122], but we have also observed high affinity for peptides with hydrophobic residues at this position. In order to have substrates containing both features, we synthesized one series of internally quenched fluorogenic peptides derived from the sequence ortho-amino-benzoyl-FRSRQ-N-[2,4-dinitrophenyl]-ethylenediamine, and substituted the Arg at the P1 position with the following non-natural basic amino acids: 4-aminomethyl-phenylalanine (Amf), 4-guanidine-phenylalanine (Gnf), 4-aminomethyl-N-isopropyl-phenylalanine (Iaf), 3-pyridyl-alanine (Pya), 4-piperidinyl-alanine (Ppa), 4-aminomethyl-cyclohexyl-alanine (Ama), and 4-aminocyclohexyl-alanine (Aca). For comparison, the series derived from ortho-amino-benzoyl-FRSRQ-N-[2,4-dinitrophenyl]-ethylenediamine was also assayed with cruzain (the major cysteine proteinase of Trypanosoma cruzi), human cathepsin L and papain. The peptides ortho-amino-benzoyl-FAmfSRQ-N-[2,4-dinitrophenyl]-ethylenediamine (k(cat)/K(m) = 12,000 mM(-1) x s(-1)) and ortho-amino-benzoyl-FIafSRQ-N-[2,4-dinitrophenyl]-ethylenediamine (k(cat)/K(m) = 27,000 mM(-1) x s(-1)) were the best substrates for CPB2.8 Delta CTE. In contrast, ortho-amino-benzoyl-FAmaSRQ-N-[2,4-dinitrophenyl]-ethylenediamine and ortho-amino-benzoyl-FAcaSRQ-N-[2,4-dinitrophenyl]-ethylenediamine were very resistant and inhibited this enzyme with K(i) values of 23 nM and 30 nM, respectively. Cruzain hydrolyzed quite well the substrates in this series with Amf, Ppa and Aca, whereas the peptide with Ama was resistant and

  3. Clan CD of cysteine peptidases as an example of evolutionary divergences in related protein families across plant clades

    OpenAIRE

    Cambra Marin, Ines; García Ramos, Francisco Javier; Martinez Muñoz, Manuel

    2010-01-01

    Comparative genomic analyses are powerful tools that can be used to analyze the presence, conservation, and evolution of protein families and to elucidate issues concerning their function. To deal with these questions, we have chosen the clan CD of cysteine peptidases, which is formed by different protein families that play key roles in plants. An evolutionary comparative analysis of clan CD cysteine peptidases in representative species of different taxonomic groups that appeared during the e...

  4. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants.

    Science.gov (United States)

    Kovács, Judit; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2016-06-01

    The hypersensitive response (HR), a type of programmed cell death (PCD) during biotic stress is mediated by salicylic acid (SA). The aim of this work was to reveal the role of proteolysis and cysteine proteases in the execution of PCD in response of SA. Tomato plants were treated with sublethal (0.1 mM) and lethal (1 mM) SA concentrations through the root system. Treatment with 1 mM SA increased the electrolyte leakage and proteolytic activity and reduced the total protein content of roots after 6 h, while the proteolytic activity did not change in the leaves and in plants exposed to 0.1 mM SA. The expression of the papain-type cysteine protease SlCYP1, the vacuolar processing enzyme SlVPE1 and the tomato metacaspase SlMCA1 was induced within the first three hours in the leaves and after 0.5 h in the roots in the presence of 1 mM SA but the transcript levels did not increase significantly at sublethal SA. The Bax inhibitor-1 (SlBI-1), an antiapoptotic gene was over-expressed in the roots after SA treatments and it proved to be transient in the presence of sublethal SA. Protease inhibitors, SlPI2 and SlLTC were upregulated in the roots by sublethal SA but their expression remained low at 1 mM SA concentration. It is concluded that in contrast to leaves the SA-induced PCD is associated with increased proteolytic activity in the root tissues resulting from a fast up-regulation of specific cysteine proteases and down-regulation of protease inhibitors. PMID:27165526

  5. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants.

    Science.gov (United States)

    Kovács, Judit; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2016-06-01

    The hypersensitive response (HR), a type of programmed cell death (PCD) during biotic stress is mediated by salicylic acid (SA). The aim of this work was to reveal the role of proteolysis and cysteine proteases in the execution of PCD in response of SA. Tomato plants were treated with sublethal (0.1 mM) and lethal (1 mM) SA concentrations through the root system. Treatment with 1 mM SA increased the electrolyte leakage and proteolytic activity and reduced the total protein content of roots after 6 h, while the proteolytic activity did not change in the leaves and in plants exposed to 0.1 mM SA. The expression of the papain-type cysteine protease SlCYP1, the vacuolar processing enzyme SlVPE1 and the tomato metacaspase SlMCA1 was induced within the first three hours in the leaves and after 0.5 h in the roots in the presence of 1 mM SA but the transcript levels did not increase significantly at sublethal SA. The Bax inhibitor-1 (SlBI-1), an antiapoptotic gene was over-expressed in the roots after SA treatments and it proved to be transient in the presence of sublethal SA. Protease inhibitors, SlPI2 and SlLTC were upregulated in the roots by sublethal SA but their expression remained low at 1 mM SA concentration. It is concluded that in contrast to leaves the SA-induced PCD is associated with increased proteolytic activity in the root tissues resulting from a fast up-regulation of specific cysteine proteases and down-regulation of protease inhibitors.

  6. Chemical evidence for the pH-dependent control of ion-pair geometry in cathepsin B. Benzofuroxan as a reactivity probe sensitive to differences in the mutual disposition of the thiolate and imidazolium components of cysteine proteinase catalytic sites.

    Science.gov (United States)

    Willenbrock, F; Brocklehurst, K

    1986-08-15

    Benzofuroxan reacts with the catalytic-site thiol group of cathepsin B (EC 3.4.22.1) to produce stoichiometric amount of the chromophoric reduction product, o-benzoquinone dioxime. In a study of the pH-dependence of the kinetics of this reaction, most data were collected for the bovine spleen enzyme, but the more limited data collected for the rat liver enzyme were closely similar both in the magnitude of the values of the second-order rate constants (k) and in the shape of the pH-k profile. In acidic and weakly alkaline media, the reaction is faster than the reactions of benzofuroxan with some other cysteine proteinases. For example, in the pH region around 5-6, the reaction of cathepsin B is about 10 times faster than that of papain, 15 times faster than that of stem bromelain and 6 times faster than that of ficin. The pH-dependence of k for the reaction of cathepsin B with benzofuroxan was determined in the pH range 2.7-8.3. In marked contrast with the analogous reactions of papain, ficin and stem bromelain [reported by Shipton & Brocklehurst (1977) Biochem. J. 167, 799-810], the pH-k profile for the cathepsin B reaction contains a sigmoidal component with pKa 5.2 in which k increases with decrease in pH. This modulation of the reactivity of the catalytic-site -S-/-ImH+ ion-pair state of cathepsin B (produced by protonic dissociation from -SH/-ImH+ with pKa approx. 3) towards a small, rigid, electrophilic reagent, in a reaction that appears to involve both components of the ion-pair for efficient reaction, suggests that the state of ionization of a group associated with a molecular pKa of approx. 5 may control ion-pair geometry. This might account for the remarkable finding [reported by Willenbrock & Brocklehurst (1984) Biochem. J. 222, 805-814] that, although the ion-pair appears to be generated in cathepsin B as the pH is increased across pKa 3.4, catalytic competence is not generated until the pH is increased across pKa 5-6.

  7. The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice.

    Science.gov (United States)

    Martins-Olivera, Bruno Tadeu; Almeida-Reis, Rafael; Theodoro-Júnior, Osmar Aparecido; Oliva, Leandro Vilela; Neto Dos Santos Nunes, Natalia; Olivo, Clarice Rosa; Vilela de Brito, Marlon; Prado, Carla Máximo; Leick, Edna Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Righetti, Renato Fraga; Tibério, Iolanda de Fátima Lopes Calvo

    2016-01-01

    Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment.

  8. A trypsin-like proteinase in the midgut of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae): purification, characterization, and host plant inhibitors.

    Science.gov (United States)

    Ranjbar, Mina; Zibaee, Arash; Sendi, Jalal Jalali

    2014-01-01

    A trypsin-like proteinase was purified and characterized in the midgut of Ectomyelois ceratoniae. A purification process that used Sepharyl G-100 and DEAE-cellulose fast flow chromatographies revealed a proteinase with specific activity of 66.7 μmol/min/mg protein, recovery of 27.04 and purification fold of 23.35. Molecular weight of the purified protein was found to be 35.8 kDa. Optimal pH and temperature were obtained 9 and 20°C for the purified trypsin proteinase, respectively. The purified enzyme was significantly inhibited by PMSF, TLCK, and SBTI as specific inhibitors of trypsins in which TLCK showed the highest inhibitory effect. Trypsin proteinase inhibitors were extracted from four varieties of pomegranate including Brait, Torsh-Sabz, May-Khosh, and Shirin by ion exchange chromatography. It was found that fractions 17-20 of Brait; fractions 18 and 21-26 of Torsh-Sabz; fractions 1-7, 11-17, and 19-21 of May-Khosh and fraction 8 for Shirin showed presence of trypsin inhibitor in these host. Comparison of their inhibitory effects on the purified trypsin proteinase of E. ceratoniae demonstrated that fractions from May-khosh variety had the highest effect on the enzyme among other extracted fractions. Characterization of serine proteinases of insects mainly trypsins is one of the promising methods to decrease population and damages via extracting their inhibitors and providing resistant varieties.

  9. The Botrytis cinerea aspartic proteinase family

    NARCIS (Netherlands)

    Have, ten A.; Espino, J.J.; Dekkers, E.; Sluyter, Van S.; Brito, N.; Kay, J.; González, C.; Kan, van J.A.L.

    2010-01-01

    The ascomycete plant pathogen Botrytis cinerea secretes aspartic proteinase (AP) activity. Functional analysis was carried out on five aspartic proteinase genes (Bcap1-5) reported previously. Single and double mutants lacking these five genes showed neither a reduced secreted proteolytic activity, n

  10. The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza

    Energy Technology Data Exchange (ETDEWEB)

    Khataee, Alireza, E-mail: ar_khataee@yahoo.com [University of Tabriz, Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry (Iran, Islamic Republic of); Movafeghi, Ali [University of Tabriz, Department of Plant Biology, Faculty of Natural Sciences (Iran, Islamic Republic of); Nazari, Fatemeh [University of Tabriz, Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry (Iran, Islamic Republic of); Vafaei, Fatemeh [University of Tabriz, Department of Plant Biology, Faculty of Natural Sciences (Iran, Islamic Republic of); Dadpour, Mohammad Reza [University of Tabriz, Department of Horticultural Science, Faculty of Agriculture (Iran, Islamic Republic of); Hanifehpour, Younes; Joo, Sang Woo, E-mail: swjoo@yu.ac.kr [Yeungnam University, School of Mechanical Engineering (Korea, Republic of)

    2014-12-15

    Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15–20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes’ activity.Graphical Abstract.

  11. Thiol accumulation and cysteine desulfhydrase activity in H2S-fumigated leaves and leaf homogenates of cucurbit plants

    NARCIS (Netherlands)

    Schütz, Bärbel; De Kok, Luit J.; Rennenberg, Heinz

    1991-01-01

    Fumigation of both, cucurbit plants and cucurbit leaf homogenates with hydrogen sulfide (H2S) resulted in an increase in soluble thiol, mainly glutathione and cysteine. In leaf homogenates this increase was counteracted or prevented by the addition at 1 mM of inhibitors of pyridoxalphosphate depende

  12. Proteinase activity in latex of three plants of the family Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    Andréa Michel Sobottka

    2014-09-01

    Full Text Available In the family of Euphorbiaceae,the genera Euphorbia and Sapium are known to contain essentially latex-bearing species. In the present study, the latex of Euphorbia selloi(Klotzsch & Garcke Boiss., Euphorbia papillosa A.St.-Hil., and Sapium glandulosum (L. Morong, plants native from Brazil, were examined concerning proteolytic activity. All studied species have proteins with significant proteolytic activity and E. papillosa has the greatest specific activity. Aiming to verify the type of protease present, an assay with different inhibitors was performed. In the three tested plants, the proteolytic activity was significantly inhibited by a serine protease inhibitor 4-(2-aminoethyl-benzenesulfonyl fluoride hydrochloride (AEBSF. Using techniques of electrophoresis with polyacrylamide gels (SDS-PAGE, the subunits of proteins were separated according to their molecular masses, and the protein activity was visually detected by zymography.

  13. Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants - From the field to the test tube and back

    DEFF Research Database (Denmark)

    Jutta, Papenbrock; Anja, Riemenschneider; Kamp, Anja;

    2007-01-01

    in plants which might be involved in SIR, such as high levels of thiols, glucosinolates, cysteine-rich proteins, phytoalexins, elemental sulfur, or H2S. Probably more than one strategy is used by plants. Species- or even variety-dependent differences in the development of SIR are probably used. Our research...... focussed mainly on the release of H2S as defence strategy. In field experiments using different Brassica napus genotypes it was shown that the genetic differ- ences among Brassica genotypes lead to differences in sulfur content and L-cysteine desulfhydrase activity. Another field ex- periment demonstrated...... that sulfur supply and infection with Pyrenopeziza brassica influenced L-cysteine desulfhydrase activity in Brassica napus. Cysteine-degrading enzymes such as cysteine desulfhydrases are hypothesized to be involved in H2S release. Several L- and D-cysteine-specific desulfhydrase candidates have been isolated...

  14. Immobilised native plant cysteine proteases: packed-bed reactor for white wine protein stabilisation.

    Science.gov (United States)

    Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Acciaro, Giuseppe; Zappino, Matteo; Esti, Marco

    2016-02-01

    This research presents a feasibility study of using a continuous packed-bed reactor (PBR), containing immobilised native plant cysteine proteases, as a specific and mild alternative technique relative to the usual bentonite fining for white wine protein stabilisation. The operational parameters for a PBR containing immobilised bromelain (PBR-br) or immobilised papain (PBR-pa) were optimised using model wine fortified with synthetic substrate (Bz-Phe-Val-Arg-pNA). The effectiveness of PBR-br, both in terms of hazing potential and total protein decrease, was significantly higher than PBR-pa, in all the seven unfined, white wines used. Among the wines tested, Sauvignon Blanc, given its total protein content as well as its very high intrinsic instability, was selected as a control wine to evaluate the effect of the treatment on wine as to its soluble protein profile, phenolic composition, mineral component, and sensory properties. The treatment in a PBR containing immobilised bromelain appeared effective in decreasing both wine hazing potential and total protein amount, while it did not significantly affect the phenol compounds, the mineral component nor the sensory quality of wine. The enzymatic treatment in PBR was shown to be a specific and mild technique for use as an alternative to bentonite fining for white wine protein stabilisation. PMID:27162393

  15. An electroblotting, two-step procedure for the detection of proteinases and the study of proteinase/inhibitor complexes in gelatin-containing polyacrylamide gels.

    Science.gov (United States)

    Visal-Shah, S; Vrain, T C; Yelle, T C; Nguyen-Quoc, B; Michaud, D

    2001-08-01

    A two-step gelatin/polyacrylamide gel electrophoresis (gelatin/PAGE) procedure was devised for the detection of proteinases and the study of proteinase/inhibitor interactions in complex biological extracts. The proteins are first resolved by sodium dodecyl sulfate (SDS)-PAGE under reducing or nonreducing conditions, and electrotransferred into a 0.75 mm-thick accompanying polyacrylamide slab gel containing 0.1% w/v porcine gelatin. The active proteinase bands are developed by a gelatin proteolysis step in the accompanying gel in the presence or absence of diagnostic proteinase inhibitors, allowing the assessment of proteinase classes and the visual discrimination of inhibitor-'sensitive' and -'insensitive' proteinases in complex extracts. Alternatively, protein extracts are preincubated with specific reversible inhibitors before electrophoresis, allowing a rapid discrimination of strong and weak interactions implicating proteinases and reversible inhibitors. In comparison with the standard gelatin/PAGE procedure, that involves copolymerization of gelatin with acrylamide in the resolving gel, this new procedure simplifies proteinase patterns, avoids overestimation of proteinase numbers in complex extracts, and allows in certain conditions the estimation of proteinase molecular weights. Stem bromelain (EC 3.4.22.32), bovine trypsin (EC 3.4.21.4), papain (EC 3.4.22.2), and the extracellular (digestive) cysteine proteinases of five herbivorous pests are used as model enzymes to illustrate the usefulness of this approach in detecting proteinases and in studying their interactions with specific proteinaceous inhibitors potentially useful in biotechnology.

  16. PAPAIN, A PLANT ENZYME OF BIOLOGICAL IMPORTANCE: A REVIEW

    OpenAIRE

    Ezekiel Amri; Florence Mamboya

    2012-01-01

    Papain is a plant proteolytic enzyme for the cysteine proteinase family cysteine protease enzyme in which enormous progress has been made to understand its functions. Papain is found naturally in papaya (Carica papaya L.) manufactured from the latex of raw papaya fruits. The enzyme is able to break down organic molecules made of amino acids, known as polypeptides and thus plays a crucial role in diverse biological processes in physiological and pathological states, drug designs, industrial us...

  17. Proteinase activity regulation by glycosaminoglycans

    Directory of Open Access Journals (Sweden)

    Tersariol I.L.S.

    2002-01-01

    Full Text Available There are few reports concerning the biological role and the mechanisms of interaction between proteinases and carbohydrates other than those involved in clotting. It has been shown that the interplay of enzymes and glycosaminoglycans is able to modulate the activity of different proteases and also to affect their structures. From the large number of proteases belonging to the well-known protease families and also the variety of carbohydrates described as widely distributed, only few events have been analyzed more deeply. The term "family" is used to describe a group of proteases in which every member shows an evolutionary relationship to at least one other protease. This relationship may be evident throughout the entire sequence, or at least in that part of the sequence responsible for catalytic activity. The majority of proteases belong to the serine, cysteine, aspartic or metalloprotease families. By considering the existing limited proteolysis process, in addition to the initial idea that the proteinases participate only in digestive processes, it is possible to conclude that the function of the enzymes is strictly limited to the cleavage of intended substrates since the destruction of functional proteins would result in normal tissue damage. In addition, the location as well as the eventual regulation of protease activity promoted by glycosaminoglycans can play an essential role in the development of several physiopathological conditions.

  18. Cloning and tissue expression of cysteine proteinase inhibitor (CPI) gene family inNicotiana tabacum L%烟草半胱氨酸蛋白酶抑制剂(CPI)基因家族的克隆及组织表达谱分析

    Institute of Scientific and Technical Information of China (English)

    林世锋; 元野; 任学良; 邹颉; 黎瑞源; 郭玉双; 赵杰宏; 王仁刚

    2014-01-01

    运用生物信息学方法,结合RT-PCR和SMART RACE技术从烟草(Nicotiana tabacum)中克隆了4个CPI基因的全长cDNA序列,分别命名为NtCPI1、NtCPI2、NtCPI3和NtCPI4, GenBank登陆号分别为KF057988、KF057989、KF057990和KF057991。基因序列分析表明4个基因分别编码98、98、120和123个氨基酸残基的蛋白质,都具有CPI反应位点的保守基序GG、QXVXQ和A/PW,同时具有植物CPI所特有的LARFAV基序,其中NtCPI3和NtCPI4的N端还包含一段27个氨基酸残基组成的信号肽。实时荧光定量PCR试验表明,4个基因的组织表达谱很广,在根、茎、叶和芽组织中都有表达。研究结果为进一步研究半胱氨酸蛋白酶抑制剂在植物中的生理功能奠定了基础。%Full-length cDNAs of fourCPI genes includingNtCPI1、NtCPI2、NtCPI3andNtCPI4were cloned fromNicotiana tabacum L. cv. K326 using RT-PCR and SMART RACE technique. Their sequences were deposited in GenBank with accession number KF057988, KF057989, KF057990 and KF057991. Sequence analysis showed that these four genes were predicted products of 98, 98, 120 and 123 amino acid residues, respectively. In addition to the typical inhibitory motifs, i.e. central signature motif QXVXG, a GG doublet in terminal region, and A/PW residues in C-terminal part. These deduced amino acid sequences contained PhyCys-specific LARFAV-like motif in the N-terminal region, of which a N-terminal signal peptide of 27 residues was found in both NtCPI3 and NtCPI4. Meanwhile, transcripts of these four genes were found in roots, stems, leaves and buds by real-time quantitative PCR, which indicated that they were broadly expressed in tobacco. This study laid foundation for further exploring physiological functions of these cysteine proteinase inhibitor genes in plants.

  19. The squash aspartic proteinase inhibitor SQAPI is widely present in the cucurbitales, comprises a small multigene family, and is a member of the phytocystatin family.

    Science.gov (United States)

    Christeller, John T; Farley, Peter C; Marshall, Richelle K; Anandan, Ananda; Wright, Michele M; Newcomb, Richard D; Laing, William A

    2006-12-01

    The squash (Cucurbita maxima) phloem exudate-expressed aspartic proteinase inhibitor (SQAPI) is a novel aspartic acid proteinase inhibitor, constituting a fifth family of aspartic proteinase inhibitors. However, a comparison of the SQAPI sequence to the phytocystatin (a cysteine proteinase inhibitor) family sequences showed approximately 30% identity. Modeling SQAPI onto the structure of oryzacystatin gave an excellent fit; regions identified as proteinase binding loops in cystatin coincided with regions of SQAPI identified as hypervariable, and tryptophan fluorescence changes were also consistent with a cystatin structure. We show that SQAPI exists as a small gene family. Characterization of mRNA and clone walking of genomic DNA (gDNA) produced 10 different but highly homologous SQAPI genes from Cucurbita maxima and the small family size was confirmed by Southern blotting, where evidence for at least five loci was obtained. Using primers designed from squash sequences, PCR of gDNA showed the presence of SQAPI genes in other members of the Cucurbitaceae and in representative members of Coriariaceae, Corynocarpaceae, and Begoniaceae. Thus, at least four of seven families of the order Cucurbitales possess member species with SQAPI genes, covering approximately 99% of the species in this order. A phylogenetic analysis of these Cucurbitales SQAPI genes indicated not only that SQAPI was present in the Cucurbitales ancestor but also that gene duplication has occurred during evolution of the order. Phytocystatins are widespread throughout the plant kingdom, suggesting that SQAPI has evolved recently from a phytocystatin ancestor. This appears to be the first instance of a cystatin being recruited as a proteinase inhibitor of another proteinase family.

  20. 溶组织内阿米巴半胱氨酸蛋白酶的纯化及其活性的初步研究%Preliminary Study on Isolation, Purification and Hydrolytic Activity of Cysteine Proteinases in Entamoeba histol ytica

    Institute of Scientific and Technical Information of China (English)

    严哲; 陈绳亮; 毛孙忠

    2001-01-01

    目的探索溶组织内阿米巴通过基底膜进入固有膜的机制,了解其半胱氨酸蛋白酶(cysteine pro-teinase, CP)与胞外基质的相互作用.方法阿米巴裂解液通过laminin-Sepharose亲和层析和分离纯化,经分子量测定、测序及抑制剂实验,证明为CP,以凝胶电泳测定其水解活性.结果纯化的CP与1aminin有较强亲和力,其分子量为27 kDa,被EC-64所抑制,并具水解活性.结论溶组织内阿米巴半胱氨酸蛋白酶与胞外基质laminin特异性结合,起水解作用,可能是入侵肠粘膜细胞基底膜的关键.

  1. Effects of pH on the association between the inhibitor cystatin and the proteinase chymopapain.

    Science.gov (United States)

    Reyes-Espinosa, Francisco; Arroyo-Reyna, Alfonso; Garcia-Gutierrez, Ponciano; Serratos, Iris N; Zubillaga, Rafael A

    2014-01-01

    Cysteine proteinases are involved in many aspects of physiological regulation. In humans, some cathepsins have shown another function in addition to their role as lysosomal proteases in intracellular protein degradation; they have been implicated in the pathogenesis of several heart and blood vessel diseases and in cancer development. In this work, we present a fluorometric and computational study of the binding of one representative plant cysteine proteinase, chymopapain, to one of the most studied inhibitors of these proteinases: chicken cystatin. The binding equilibrium constant, Kb, was determined in the pH range between 3.5 and 10.0, revealing a maximum in the affinity at pH 9.0. We constructed an atomic model for the chymopapain-cystatin dimer by docking the individual 3D protein structures; subsequently, the model was refined using a 100 ns NPT molecular dynamics simulation in explicit water. Upon scrutiny of this model, we identified 14 ionizing residues at the interface of the complex using a cutoff distance of 5.0 Å. Using the pKa values predicted with PROPKA and a modified proton-linkage model, we performed a regression analysis on our data to obtain the composite pKavalues for three isoacidic residues. We also calculated the electrostatic component of the binding energy (ΔGb,elec) at different pH values using an implicit solvent model and APBS software. The pH profile of this calculated energy compares well with the experimentally obtained binding energy, ΔGb. We propose that the residues that form an interchain ionic pair, Lys139A from chymopapain and Glu19B from cystatin, as well as Tyr61A and Tyr67A from chymopapain are the main residues responsible for the observed pH dependence in the chymopapain- cystatin affinity.

  2. Molecular dynamic and docking interaction study of Heterodera glycines serine proteinase with Vigna mungo proteinase inhibitor.

    Science.gov (United States)

    Prasad, C V S Siva; Gupta, Saurabh; Gaponenko, Alex; Tiwari, Murlidhar

    2013-08-01

    Many plants do produce various defense proteins like proteinase inhibitors (PIs) to protect them against various pests. PIs function as pseudosubstrates of digestive proteinase, which inhibits proteolysis in pests and leads to amino acid deficiency-based mortality. This work reports the structural interaction studies of serine proteinase of Heterodera glycines (SPHG) with Vigna mungo proteinase inhibitor (VMPI). 3D protein structure modeling, validation of SPHG and VMPI, and their putative protein-protein binding sites were predicted. Protein-protein docking followed by molecular dynamic simulation was performed to find the reliable confirmation of SPHG-VMPI complex. Trajectory analysis of each successive conformation concludes better interaction of first loop in comparison with second loop. Lysine residues of first loop were actively participating in complex formation. Overall, this study discloses the structural aspects and interaction mechanisms of VMPI with SPHG, and it would be helpful in the development of pest-resistant genetically modified crops.

  3. Antibody in sera of patients infected with Trichomonas vaginalis is to trichomonad proteinases.

    OpenAIRE

    Alderete, J F; Newton, E.; C. Dennis; Neale, K A

    1991-01-01

    BACKGROUND--A recent report demonstrated the immunogenic character of the cysteine proteinases of Trichomonas vaginalis. It was of interest, therefore, to examine for the presence of serum anti-proteinase antibody among patients with trichomoniasis. METHODS--An immunoprecipitation assay was used involving protein A-bearing Staphylococcus aureus first coated with the IgG fraction of goat anti-human Ig and then mixed with individual sera of patients to bind human antibody. These antibody-coated...

  4. RESEARCH ON PROTEINASE INHIBITORS OF BEANS PHASEOLUS VULGARIS TO MAKE PLANT PROTECTION PRODUCTS FROM PESTS AND DISEASES

    OpenAIRE

    Pavlovskaya, N.; Gagarina, I.; Dzumabaeva, B.; Dzangalina, E.

    2014-01-01

    An animal body and seed plants have a complex of proteolytic ferments which react in reserve protein breakdown to amino acids in food digestion and seed sprouting. At present a few hundreds of peptidohydrolases of different origin have been described. In regulation of proteolysis inhibitors of proteolytic ferments react. In a living organism they are presented by means of specific protein. Inhibitors have an ability to slow down or stop fermentation. They react in immunity apoptosis, protect ...

  5. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana.

    Science.gov (United States)

    Romero, Luis C; Aroca, M Ángeles; Laureano-Marín, Ana M; Moreno, Inmaculada; García, Irene; Gotor, Cecilia

    2014-02-01

    Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor molecule involved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its derivative molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine is synthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed by O-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resulting in a complex array of isoforms and subcellular cysteine pools. In recent years, significant progress has been made in Arabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the discovery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCS with S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions. Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signaling molecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essential role in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which is essential for root hair development and plant responses to pathogens.

  6. Digestive duet: midgut digestive proteinases of Manduca sexta ingesting Nicotiana attenuata with manipulated trypsin proteinase inhibitor expression.

    Directory of Open Access Journals (Sweden)

    Jorge A Zavala

    Full Text Available BACKGROUND: The defensive effect of endogenous trypsin proteinase inhibitors (NaTPIs on the herbivore Manduca sexta was demonstrated by genetically altering NaTPI production in M. sexta's host plant, Nicotiana attenuata. To understand how this defense works, we studied the effects of NaTPI on M. sexta gut proteinase activity levels in different larval instars of caterpillars feeding freely on untransformed and transformed plants. METHODOLOGY/ PRINCIPAL FINDINGS: Second and third instars larvae that fed on NaTPI-producing (WT genotypes were lighter and had less gut proteinase activity compared to those that fed on genotypes with either little or no NaTPI activity. Unexpectedly, NaTPI activity in vitro assays not only inhibited the trypsin sensitive fraction of gut proteinase activity but also halved the NaTPI-insensitive fraction in third-instar larvae. Unable to degrade NaTPI, larvae apparently lacked the means to adapt to NaTPI in their diet. However, caterpillars recovered at least part of their gut proteinase activity when they were transferred from NaTPI-producing host plants to NaTPI-free host plants. In addition extracts of basal leaves inhibited more gut proteinase activity than did extracts of middle stem leaves with the same protein content. CONCLUSIONS/ SIGNIFICANCE: Although larvae can minimize the effects of high NaTPI levels by feeding on leaves with high protein and low NaTPI activity, the host plant's endogenous NaTPIs remain an effective defense against M. sexta, inhibiting gut proteinase and affecting larval performance.

  7. Plasmin: indigenous milk proteinase

    Directory of Open Access Journals (Sweden)

    Samir Kalit

    2002-06-01

    Full Text Available The most important characteristic of plasmin, as significant indigenous milk proteinase, its concentration, concentration measuring procedure and activity of plasmin are described. The most important factors, which have an influence on concentration and plasmin activity in milk, are stage of lactation and mastitis (high somatic cell count – SCC. In high SCC milk indigenous proteinase activity increased, especially in plasmin and plasminogen system.Specific hydrolytic activity of plasmin during primary proteolysis of some casein fractions is described. ß-CN is most susceptible fraction, but αs1-CN and αs2-Cn are less susceptible to degradation by plasmin. Almost all fractions of κ-CN are resistant to degradation by plasmin. Activation of plasminogen to plasmin is very complex biochemical process influenced by activators and inhibitors in milk, and can be increased in high SCC milk. There are many various types of inhibitors in milk serum and ßlactoglobulin is the most important after its thermal denaturation. Addition of aprotinin and soybean tripsin inhibitors in milk inhibits plasmin activity. Most important characteristic of plasmin is its thermostability onpasteurisation and even sterilisation. Mechanism of thermal inactivation of plasmin with developing covalent disulphide interaction between molecule of plasmin and serum proteins (mostly ß-laktoglobulin is described. Thermosensitive inhibitors of plasminogen activators and inhibitors of plasmin are inactivated by short pasteurisation and therefore increase plasmin activity,while higher temperature and longer treatment time inactivate plasmin activity.

  8. Cystatin M/E expression is restricted to differentiated epidermal keratinocytes and sweat glands: a new skin-specific proteinase inhibitor that is a target for cross-linking by transglutaminase.

    NARCIS (Netherlands)

    Zeeuwen, P.L.J.M.; Vlijmen-Willems, I.M.J.J. van; Jansen, B.J.H.; Sotiropoulou, G.; Curfs, J.H.A.J.; Meis, J.F.G.M.; Janssen, J.J.M.; Ruissen, F. van; Schalkwijk, J.

    2001-01-01

    Using serial analysis of gene expression on cultured human keratinocytes we found high expression levels of genes putatively involved in host protection and defense, such as proteinase inhibitors and antimicrobial proteins. One of these expressed genes was the recently discovered cysteine proteinase

  9. Digestive duet: Midgut digestive proteinases of Manduca sexta ingesting Nicotiana attenuata with manipulated trypsin proteinase inhibitor expression

    NARCIS (Netherlands)

    Zavala, J.A.; Giri, A.P.; Jongsma, M.A.; Baldwin, I.T.

    2008-01-01

    The defensive effect of endogenous trypsin proteinase inhibitors (NaTPIs) on the herbivore Manduca sexta was demonstrated by genetically altering NaTPI production in M. sexta's host plant, Nicotiana attenuata. To understand how this defense works, we studied the effects of NaTPI on M. sexta gut prot

  10. Thiol-activated serine proteinases from nymphal hemolymph of the African migratory locust, Locusta migratoria migratorioides.

    Science.gov (United States)

    Hanzon, Jacob; Smirnoff, Patricia; Applebaum, Shalom W; Mattoo, Autar K; Birk, Yehudith

    2003-02-01

    Two unique serine proteinase isoenzymes (LmHP-1 and LmHP-2) were isolated from the hemolymph of African migratory locust (Locusta migratoria migratorioides) nymphs. Both have a molecular mass of about 23 kDa and are activated by thiol-reducing agents. PMSF abolishes enzymes activity only after thiol activation, while the cysteine proteinase inhibitors E-64, iodoacetamide, and heavy metals fail to inhibit the thiol-activated enzymes. The N-terminal sequence was determined for the more-abundant LmHP-2 isoenzyme. It exhibits partial homology to that of other insect serine proteinases and similar substrate specificity and inhibition by the synthetic and protein trypsin inhibitors pABA, TLCK, BBI, and STI. The locust trypsins LmHP-1 and LmHP-2 constitute a new category of serine proteases wherein the active site of the enzyme is exposed by thiol activation without cleavage of peptide bonds. PMID:12559979

  11. [Proteinase-proteinase inhibitor complex in rats under oxidative stress caused by administration of cobalt chloride].

    Science.gov (United States)

    Kaliman, P A; Samokhin, A A; Samokhina, L M

    2000-01-01

    Mechanisms of proteinase-inhibitor proteinase system response was estimated following of cobalt chloride injection. The increase proteinase activity, which led to significant decrease of alpha-2-macroglobulin (alpha-2-MG) level was established that indicated to the removal of the proteinase in complex with alpha-2-MG from the organism. Increase of alpha-1-proteinase inhibitor (alpha-1-PI) trypsin-inhibitory activity in the kidneys testify about removal of oxidative alpha-1-PI. PMID:10979565

  12. Microbial inhibitors of cysteine proteases.

    Science.gov (United States)

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted. PMID:27048482

  13. Cloning and characterization of a gene encoding cysteine proteases from senescent leaves of Gossypium hirsutum

    Institute of Scientific and Technical Information of China (English)

    SHEN Fafu; YU Shuxun; HAN Xiulan; FAN Shuli

    2004-01-01

    A gene encoding a cysteine proteinase was isolated from senescent leave of cotton (Gossypium hirsutum) cv liaomian No. 9 by utilizing rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR), and a set of consensus oligonucleotide primers was designed to anneal the conserved sequences of plant cysteine protease genes. The cDNA, which designated Ghcysp gene, contained 1368 bp terminating in a poly(A)+ trail, and included a putative 5′(98 bp) and a 3′(235 bp) non-coding region. The opening reading frame (ORF) encodes polypeptide 344 amino acids with the predicted molecular mass of 37.88 kD and theoretical pI of 4.80. A comparison of the deduced amino acid sequence with the sequence in the GenBank database has shown considerable sequence similarity to a novel family of plant cysteine proteases. This putative cotton Ghcysp protein shows from 67% to 82% identity to the other plants. All of them share catalytic triad of residues, which are highly conserved in three regions. Hydropaths analysis of the amino acid sequence shows that the Ghcysp is a potential membrane protein and localizes to the vacuole, which has a transmembrane helix between resides 7-25. A characteristic feature of Ghcysp is the presence of a putative vacuole-targeting signal peptide of 19-amino acid residues at the N-terminal region. The expression of Ghcysp gene was determined using northern blot analysis. The Ghcysp mRNA levels are high in development senescent leaf but below the limit of detection in senescent root, hypocotyl, faded flower, 6 d post anthesis ovule, and young leaf.

  14. Effect of added proteinases and level of starter culture on the formation of biogenic amines in raw milk Manchego cheese.

    Science.gov (United States)

    Fernández-García, E; Tomillo, J; Núñez, M

    1999-11-15

    The influence of two proteinases (Bacillus subtilis neutral proteinase and Micrococcus sp. cysteine proteinase) and two starter culture levels (0.1% and 1%) on biogenic amine formation has been studied in raw ewes' milk Manchego cheese. Amino acid decarboxylating micro-organisms were determined on tyrosine enriched selective media. Biogenic amines were analysed by capillary electrophoresis in citrate buffer at pH 3.6. Addition of proteinases and level of starter culture did not influence the population of micro-organisms with amino acid decarboxylating activity, which represented on average 1% of the bacterial population in 30-day-old cheeses. Tyramine and histamine were detected in all batches of cheese from day 30. Concentrations of tyramine and histamine were higher in cheeses made from milk with neutral proteinase (up to 356 and 284 mg kg(-1), respectively, after 90 days) than in cheeses made from milk with cysteine proteinase (up to 269 and 189 mg kg(-1), respectively) or with no proteinase added (up to 305 and 226 mg kg(-1), respectively). Formation of tyramine and histamine was also favoured in cheeses made with 1% starter culture with respect to cheeses made with only 0.1% starter culture, probably due to the higher pH values of the former cheeses. After 90 days of ripening, concentrations of 10-20 mg kg(-1) phenylethylamine were observed in 9 of the 12 batches, and levels < 10 mg kg(-1) tryptamine were only detected in 3 batches, with no significant relationship between the concentration of these amines and proteinase addition or level of starter culture. PMID:10733250

  15. Purification of a cysteine protease inhibitor from larval hemolymph of the Tobacco Hornworm (Manduca sexta) and functional expression of the recombinant protein.

    Science.gov (United States)

    A cysteine protease inhibitor (CPI) with an apparent molecular mass of 11.5 kDa was purified from larval hemolymph of the tobacco hornworm (Manduca sexta) by gel filtration of Sephadex G-50 followed by hydrophobic and ion-exchange column chromatographies. The purified cysteine proteinase inhibitor, ...

  16. 植物半胱氨酸合成及调控研究进展%Advancement in Research on Synthesis and Regulation of Cysteine in Plants

    Institute of Scientific and Technical Information of China (English)

    王小芳; 杨玲娟; 董晓宁; 李志孝; 焦成瑾

    2011-01-01

    硫是植物重要的营养元素.植物将氧化态硫吸收并还原后,首先合成半胱氨酸使其进入各种代谢途径.合成半胱氨酸的两种酶--丝氨酸乙酰转移酶和O-乙酰丝氨酸硫醇裂合酶均由多基因家族编码,并能可逆的结合形成二酶复合物进行有效的合成调节.本文对近年来半胱氨酸合成相关酶表达、定位、活性调控及转基因效果研究进展作了简要介绍,并对将来需要重点研究的方面作了展望.%Sulfur is an essential element that is taken up by plants in the oxidation state form, reduced to H2S,and first incorporated into cysteine before involving metabolic processes. Cysteine synthesis occurs through two sequential reactions catalyzed by serine acetyltransferase (SAT) and O-acetylserine(thiol)lyase (OAS-TL),both of which are encoded by multigene families, and reversibly form a dienzyme complex to play a regulatory role. In this review, we summarize the recent progress made in the understanding of Cys synthesis, including the isoform expression, localization, activity regulation as well as efficiency of genetic transformation. Finally,aspects of the particularly important research in the future are suggested.

  17. A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis toxin.

    Directory of Open Access Journals (Sweden)

    Srinidi Mohan

    Full Text Available When caterpillars feed on maize (Zea maize L. lines with native resistance to several Lepidopteran pests, a defensive cysteine protease, Mir1-CP, rapidly accumulates at the wound site. Mir1-CP has been shown to inhibit caterpillar growth in vivo by attacking and permeabilizing the insect's peritrophic matrix (PM, a structure that surrounds the food bolus, assists in digestion and protects the midgut from microbes and toxins. PM permeabilization weakens the caterpillar defenses by facilitating the movement of other insecticidal proteins in the diet to the midgut microvilli and thereby enhancing their toxicity. To directly determine the toxicity of Mir1-CP, the purified recombinant enzyme was directly tested against four economically significant Lepidopteran pests in bioassays. Mir1-CP LC(50 values were 1.8, 3.6, 0.6, and 8.0 ppm for corn earworm, tobacco budworm, fall armyworm and southwestern corn borer, respectively. These values were the same order of magnitude as those determined for the Bacillus thuringiensis toxin Bt-CryIIA. In addition to being directly toxic to the larvae, 60 ppb Mir1-CP synergized sublethal concentrations of Bt-CryIIA in all four species. Permeabilization of the PM by Mir1-CP probably provides ready access to Bt-binding sites on the midgut microvilli and increases its activity. Consequently, Mir1-CP could be used for controlling caterpillar pests in maize using non-transgenic approaches and potentially could be used in other crops either singly or in combination with Bt-toxins.

  18. A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis toxin.

    Science.gov (United States)

    Mohan, Srinidi; Ma, Peter W K; Williams, W Paul; Luthe, Dawn S

    2008-03-12

    When caterpillars feed on maize (Zea maize L.) lines with native resistance to several Lepidopteran pests, a defensive cysteine protease, Mir1-CP, rapidly accumulates at the wound site. Mir1-CP has been shown to inhibit caterpillar growth in vivo by attacking and permeabilizing the insect's peritrophic matrix (PM), a structure that surrounds the food bolus, assists in digestion and protects the midgut from microbes and toxins. PM permeabilization weakens the caterpillar defenses by facilitating the movement of other insecticidal proteins in the diet to the midgut microvilli and thereby enhancing their toxicity. To directly determine the toxicity of Mir1-CP, the purified recombinant enzyme was directly tested against four economically significant Lepidopteran pests in bioassays. Mir1-CP LC(50) values were 1.8, 3.6, 0.6, and 8.0 ppm for corn earworm, tobacco budworm, fall armyworm and southwestern corn borer, respectively. These values were the same order of magnitude as those determined for the Bacillus thuringiensis toxin Bt-CryIIA. In addition to being directly toxic to the larvae, 60 ppb Mir1-CP synergized sublethal concentrations of Bt-CryIIA in all four species. Permeabilization of the PM by Mir1-CP probably provides ready access to Bt-binding sites on the midgut microvilli and increases its activity. Consequently, Mir1-CP could be used for controlling caterpillar pests in maize using non-transgenic approaches and potentially could be used in other crops either singly or in combination with Bt-toxins.

  19. Inibidores de proteases de hospedeiros nativos e exóticos e sua ação em intestinos de lagartas de Thyrinteina leucoceraea Proteinase inhibitors of novel and native host plants and their action in midgut of Thyrinteina leucoceraea caterpillars

    Directory of Open Access Journals (Sweden)

    Jeanne Scardini Marinho

    2008-12-01

    hosts (also Myrtaceae in Brazil and introduced from Australia, suffer attacks by T. leucoceraea, which became a severe pest of this plant. Plants can defend themselves against herbivores using proteinase inhibitors which reduce insect development and lead them to death. Thus, based on studies on the development of T. leucoceraea caterpillars on these two hosts and plant defense, this work aimed to verify the production of proteinase inhibitors by guava and eucalyptus plants upon T. leucoceraea attack, and to observe the biochemical response of the midgut of the caterpillars to these inhibitors. Eucalyptus plants produced more proteinase inhibitors than guava plants. The good development of T. leucoceraea in eucalyptus plants despite the high concentration of proteinase inhibitors may be due to an increase of enzyme activity in the caterpillars' midgut. Our data suggest that T. leucoceraea developed an adaptation to the proteinase inhhibitor produced by eucalyptus plants, by increasing serine-proteinase and cys-proteinase activities.

  20. S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shengbao eXu

    2013-11-01

    Full Text Available S-nitrosoglutathione reductase (GSNOR is believed to modulate effects of reactive oxygen and nitrogen species through catabolism of S-nitrosoglutathione (GSNO. We combined bioinformatics of plant GSNOR genes, localization of GSNOR in Arabidopsis thaliana, and microarray analysis of a GSNOR null mutant to gain insights into the function and regulation of this critical enzyme in nitric oxide homeostasis. GSNOR-encoding genes are known to have high homology across diverse eukaryotic taxa, but contributions of specific conserved residues have not been assessed. With bioinformatics and structural modeling, we show that plant GSNORs likely localize to the cytosol, contain conserved, solvent-accessible cysteines, and tend to be encoded by a single gene. Arabidopsis thaliana homozygous for GSNOR loss-of-function alleles exhibited defects in stem and trichome branching, and complementation with GFP-tagged GSNOR under control of the native promoter quantitatively rescued these phenotypes. GSNOR-GFP showed fluorescence throughout Arabidopsis seedlings, consistent with ubiquitous expression of the protein, but with especially high fluorescence in the root tip, apical meristem and flowers. At the cellular level we observed cytosolic and nuclear fluorescence, with exclusion from the nucleolus. Microarray analysis identified 99 up- and 170 downregulated genes (≥2-fold; p ≤ 0.01 in a GSNOR null mutant compared to wild type. Six members of the plant specific, ROXY glutaredoxins and three BHLH transcription factors involved in iron homeostasis were strongly upregulated, supporting a role for GSNOR in redox and iron metabolism. One third of downregulated genes are linked to pathogen resistance, providing further basis for the reported pathogen sensitivity of GSNOR null mutants. Together, these findings indicate GSNOR regulates multiple developmental and metabolic programs in plants and offer insight into putative routes of post-translational GSNOR regulation.

  1. Researches on Sequence of Plant Cystatin: Phytocystatin

    Institute of Scientific and Technical Information of China (English)

    QINQingfeng; HEWei; LIANGJun; ZHANGXingyao

    2005-01-01

    Plant cystatins or phytocystatins are cysteine proteinase inhibitors exist widely in different plant species. Because they can kill insects by inhibiting the digestive function of the cysteine proteinase in gut, they are believed to play an important role in plant's defense against pests. Phytocystatins contain the conserved QXVXG motif and show some features on their sequence different to animal cystatins.After sequencing the protein directly and the cDNA clone, a large number of plant cystatins have been characterized. A multialignment with BLAST software and a detail analysis of 38 phytocystatins show that phytocystatins possess a specific conserved amino acid sequence [LRVI]-[AGT]-[RQKE]-[FY]-[AS]-[VI]-X-[EGHDQV]-[HYFQ]-N different to the conserved sequence demonstrated by Margis in 1998. This conserved sequence can be enough to detect with exclusivity phytocystatin sequences on protein data banks. A classification of these phytocystatins is performed and they can be divided into 3 groups according to their features on amino acid sequence, and the group-I can be still divided into 3 subgroups based on the feature of their amino acid and genomic sequence. By the CLUSTALX software,the most conserved nucleotide sequences of phytocystatins were found, which could be used to design the degenerate premiers to search new phytocystatins with PCR reaction.

  2. Molecular cloning and characterization of cystatin, a cysteine protease inhibitor, from bufo melanostictus.

    Science.gov (United States)

    Liu, Wa; Ji, Senlin; Zhang, A-Mei; Han, Qinqin; Feng, Yue; Song, Yuzhu

    2013-01-01

    Cystatins are efficient inhibitors of papain-like cysteine proteinases, and they serve various important physiological functions. In this study, a novel cystatin, Cystatin-X, was cloned from a cDNA library of the skin of Bufo melanostictus. The single nonglycosylated polypeptide chain of Cystatin-X consisted of 102 amino acid residues, including seven cysteines. Evolutionary analysis indicated that Cystatin-X can be grouped with family 1 cystatins. It contains cystatin-conserved motifs known to interact with the active site of cysteine proteinases. Recombinant Cystatin-X expressed and purified from Escherichia coli exhibited obvious inhibitory activity against cathepsin B. rCystatin-X at a concentration of 8 µM inhibited nearly 80% of cathepsin B activity within 15 s, and about 90% of cathepsin B activity within 15 min. The Cystatin-X identified in this study can play an important role in host immunity and in the medical effect of B. melanostictus.

  3. Simultaneous determination of individual isothiocyanates in plant samples by HPLC-DAD-MS following SPE and derivatization with N-acetyl-l-cysteine.

    Science.gov (United States)

    Pilipczuk, Tadeusz; Kusznierewicz, Barbara; Chmiel, Tomasz; Przychodzeń, Witold; Bartoszek, Agnieszka

    2017-01-01

    The procedure for the isothiocyanates (ITCs) determination that involves derivatization with N-acetyl-l-cysteine (NAC) and separation by HPLC was developed. Prior to derivatization, plant ITCs were isolated and purified using solid-phase extraction (SPE). The optimum conditions of derivatization are: 500μL of isopropanolic eluate obtained by SPE combined with 500μL of derivatizing reagent (0.2M NAC and 0.2M NaHCO3 in water) and reaction time of 1h at 50°C. The formed dithiocarbamates are directly analyzed by HPLC coupled with diode array detector and mass spectrometer if required. The method was validated for nine common natural ITCs. Calibration curves were linear (R(2)⩾0.991) within a wide range of concentrations and limits of detection were below 4.9nmol/mL. The recoveries were in the range of 83.3-103.7%, with relative standard deviations <5.4%. The developed method has been successfully applied to determine ITCs in broccoli, white cabbage, garden cress, radish, horseradish and papaya. PMID:27507514

  4. Proteinases in Naegleria Fowleri (strain NF3), a pathogenic amoeba: a preliminary study.

    Science.gov (United States)

    Mat Amin, Nakisah

    2004-12-01

    Naegleria fowleri is a free-living amoeba, known as a causative agent for a fatal disease of the central nervous system (CNS) in man such as Primary amoebic meningoencephalitis (PAM). Factors contributing to its pathogenicity and its distribution in the environment have been investigated by previous researchers. In case of its pathogenicity, several enzymes such as phospolipase A and sphingomyelinase, have been proposed to probably act as aggressors in promoting PAM but no study so far have been conducted to investigate the presence of proteinase enzyme in this amoeba although a 56kDa cystein proteinase enzyme has been identified in Entamoeba histolytica as an important contributing factor in the amoeba's virulence. In this preliminary study, a pathogenic amoeba, Naegleria fowleri (strain NF3) was examined for the presence of proteinases. Samples of enzymes in this amoeba were analysed by electrophoresis using SDS-PAGE-gelatin gels. The results showed that this amoeba possesses at least two high molecular weight proteinases on gelatin gels; their apparent molecular weights are approximately 128 kDa and approximately 170 kDa. Band of approximately 128 kDa enzyme is membrane-associated and its activity is higher at alkaline pH compared with lower pH; at lower pH, its activity is greatly stimulated by DTT. The approximately 170 kDa band enzyme appears to be inactivated at pH 8.0, at lower ph its activity is higher and DTT-dependance. The activity of this enzyme is partially inhibited by inhibitor E-64 but markedly inhibited to antipain suggesting it belongs to the cysteine proteinase group.

  5. The Cysteine Protease–Cysteine Protease Inhibitor System Explored in Soybean Nodule Development

    Directory of Open Access Journals (Sweden)

    Marian Dorcas Quain

    2013-08-01

    Full Text Available Almost all protease families have been associated with plant development, particularly senescence, which is the final developmental stage of every organ before cell death. Proteolysis remobilizes and recycles nitrogen from senescent organs that is required, for example, seed development. Senescence-associated expression of proteases has recently been characterized using large-scale gene expression analysis seeking to identify and characterize senescence-related genes. Increasing activities of proteolytic enzymes, particularly cysteine proteases, are observed during the senescence of legume nodules, in which a symbiotic relationship between the host plant and bacteria (Rhizobia facilitate the fixation of atmospheric nitrogen. It is generally considered that cysteine proteases are compartmentalized to prevent uncontrolled proteolysis in nitrogen-fixing nodules. In addition, the activities of cysteine proteases are regulated by endogenous cysteine protease inhibitors called cystatins. These small proteins form reversible complexes with cysteine proteases, leading to inactivation. However, very little is currently known about how the cysteine protease-cysteine protease inhibitor (cystatin system is regulated during nodule development. Moreover, our current understanding of the expression and functions of proteases and protease inhibitors in nodules is fragmented. To address this issue, we have summarized the current knowledge and techniques used for studying proteases and their inhibitors including the application of “omics” tools, with a particular focus on changes in the cysteine protease-cystatin system during nodule development.

  6. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction

    OpenAIRE

    Chae, Keun; Gonong, Benedict J.; Kim, Seung-Chul; Kieslich, Chris A.; Morikis, Dimitrios; Balasubramanian, Shruthi; Lord, Elizabeth M

    2010-01-01

    Lily stigma/style cysteine-rich adhesin (SCA), a plant lipid transfer protein (LTP) which is secreted into the extracellular matrix, functions in pollen tube guidance in fertilization. A gain-of-function mutant (ltp5-1) for Arabidopsis LTP5, an SCA-like molecule, was recently shown to display defects in sexual reproduction. In the current study, it is reported that ltp5-1 plants have dwarfed primary shoots, delayed hypocotyl elongation, various abnormal tissue fusions, and display multibranch...

  7. Proteinase from germinating bean cotyledons. Evidence for involvement of a thiol group in catalysis.

    Science.gov (United States)

    Csoma, C; Polgár, L

    1984-09-15

    To degrade storage proteins germinating seeds synthesize proteinases de novo that can be inhibited by thiol-blocking reagents [Baumgartner & Chrispeels (1977) Eur. J. Biochem. 77, 223-233]. We have elaborated a procedure for isolation of such a proteinase from the cotyledons of Phaseolus vulgaris. The purification procedure involved fractionation of the cotyledon homogenate with acetone and with (NH4)2SO4 and successive chromatographies on DEAE-cellulose, activated thiol-Sepharose Sepharose and Sephacryl S-200. The purified enzyme has an Mr of 23,400, proved to be highly specific for the asparagine side chain and blocking of its thiol group resulted in loss of the catalytic activity. The chemical properties of the thiol group of the bean enzyme were investigated by acylation with t-butyloxycarbonyl-L-asparagine p-nitro-phenyl ester and by alkylations with iodoacetamide and iodoacetate. Deviations from normal pH-rate profile were observed, which indicated that the thiol group is not a simple functional group, but constitutes a part of an interactive system at the active site. The pKa value for acylation and the magnitude of the rate constant for alkylation with iodoacetate revealed that the bean proteinase possesses some properties not shared by papain and the other cysteine proteinases studied to date. PMID:6385962

  8. Cysteine and Cysteine-Related SignalingPathways in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor moleculeinvolved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its deriva-tive molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine issynthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed byO-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resultingin a complex array of isoforms and subcellular cysteine pools, in recent years, significant progress has been made inArabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the dis-covery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCSwith S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions.Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signalingmolecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essentialrole in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which isessential for root hair development and plant responses to pathogens.

  9. A sycamore cell wall polysaccharide and a chemically related tomato leaf polysaccharide possess similar proteinase inhibitor-inducing activities.

    Science.gov (United States)

    Ryan, C A; Bishop, P; Pearce, G

    1981-09-01

    A large pectic polysaccharide, called rhamnogalacturonan I, that is solubilized by a fungal endo-alpha-1,4-polygalacturonase from the purified walls of suspension-cultured sycamore cells possesses proteinase inhibitor-inducing activity similar to that of the proteinase inhibitor-inducing factor, a pectic-like oligosaccharide fraction isolated from tomato leaves. This suggests that the proteinase inhibitor-inducing activity resides in particular polysaccharide fragments which can be released when plant cell walls are exposed to appropriate enzyme degradation as a result of either wounding or pest attack.

  10. PAPAIN, A PLANT ENZYME OF BIOLOGICAL IMPORTANCE: A REVIEW

    Directory of Open Access Journals (Sweden)

    Ezekiel Amri

    2012-01-01

    Full Text Available Papain is a plant proteolytic enzyme for the cysteine proteinase family cysteine protease enzyme in which enormous progress has been made to understand its functions. Papain is found naturally in papaya (Carica papaya L. manufactured from the latex of raw papaya fruits. The enzyme is able to break down organic molecules made of amino acids, known as polypeptides and thus plays a crucial role in diverse biological processes in physiological and pathological states, drug designs, industrial uses such as meat tenderizers and pharmaceutical preparations. The unique structure of papain gives it the functionality that helps elucidate how proteolytic enzymes work and also makes it valuable for a variety of purposes. In the present review, its biological importance, properties and structural features that are important to an understanding of their biological function are presented. Its potential for production and market opportunities are also discussed.

  11. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects

    Energy Technology Data Exchange (ETDEWEB)

    Zavala, J.; Casteel, C.; DeLucia, E.; Berenbaum, M. [University of Illinois at Urbana-Champaign, Urbana, IL (United States)

    2008-04-01

    Elevated levels of atmospheric carbon dioxide (CO{sub 2}), a consequence of anthropogenic global change, can profoundly affect the interactions between crop plants and insect pests and may promote yet another form of global change: the rapid establishment of invasive species. Elevated CO{sub 2} increased the susceptibility of soybean plants grown under field conditions to the invasive Japanese beetle (Popillia japonica) and to a variant of western corn rootworm (Diabrotica virgifera virgifera) resistant to crop rotation by down-regulating gene expression related to defense signaling [lipoxygenase 7 (lox7), lipoxygenase 8 (lox8), and 1-aminocyclopropane-1-carboxylate synthase (acc-s)]. The down-regulation of these genes, in turn, reduced the production of cysteine proteinase inhibitors (CystPIs), which are specific deterrents to coleopteran herbivores. Beetle herbivory increased CystPI activity to a greater degree in plants grown under ambient than under elevated CO{sub 2}. Gut cysteine proteinase activity was higher in beetles consuming foliage of soybeans grown under elevated CO{sub 2} than in beetles consuming soybeans grown in ambient CO{sub 2}, consistent with enhanced growth and development of these beetles on plants grown in elevated CO{sub 2}. These findings suggest that predicted increases in soybean productivity under projected elevated CO{sub 2} levels may be reduced by increased susceptibility to invasive crop pests.

  12. Autoactivation of proteinase A initiates activation of yeast vacuolar zymogens

    DEFF Research Database (Denmark)

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.

    1992-01-01

    The Saccharomyces cerevisiae PEP4 gene encodes proteinase A, an aspartyl protease. pep4 mutants are defective in the activation of many vacuolar hydrolases, including proteinase B. We have expressed a pep4 mutation which directs the accumulation of pro-proteinase A with a defective active site. C...... of the mutant zymogen, owing to a strong, proteinase-B-dependent, phenotypic lag. In a proteinase-B-negative strain, processing of pro-proteinase A led to an active form of a higher molecular mass than the normal mature form....

  13. Functional Characterization of Cucumis metuliferus Proteinase Inhibitor Gene (CmSPI) in Potyviruses Resistance

    OpenAIRE

    Chia-Wei Lin; Mei-Hsiu Su; Yu-Tsung Lin; Chien-Hung Chung; Hsin-Mei Ku

    2015-01-01

    Proteinase inhibitors are ubiquitous proteins that block the active center or interact allosterically with proteinases and are involved in plant physiological processes and defense responses to biotic and abiotic stresses. The CmSPI gene identified from Cucumis metuliferus encodes a serine type PI (8 kDa) that belongs to potato I type family. To evaluate the effect of silencing CmSPI gene on Papaya ringspot virus resistance, RNA interference (RNAi) with an inter-space hairpin RNA (ihpRNA) con...

  14. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter

    Science.gov (United States)

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  15. Plasmodium falciparum proteinases: cloning of the putative gene coding for the merozoite proteinase for erythrocyte invasion (MPEI and determination of hydrolysis sites of spectrin by Pf37 proteinase

    Directory of Open Access Journals (Sweden)

    I. Florent

    1994-01-01

    Full Text Available Numerous proteinase activities have been shown to be essential for the survival of Plasmodium falciparum. One approach to antimalarial chemotherapy, would be to block specifically one or several of these activities, by using compounds structurally analogous to the substrates of these proteinases. Such a strategy requires a detailed knowledge of the active site of the proteinase, in order to identify the best substrate for the proteinase. Aiming at developing such a strategy, two proteinases previously identified in our laboratory, were chosen for further characterization of their molecular structure and properties: the merozoite proteinase for erythrocytic invasion (MPEI, involved in the erythrocyte invasion by the merozoites, and the Pf37 proteinase, which hydrolyses human spectrin in vitro.

  16. Differential gene expression for suicide-substrate serine proteinase inhibitors (serpins) in vegetative and grain tissues of barley

    DEFF Research Database (Denmark)

    Roberts, T.H.; Marttila, S.; Rasmussen, S.K.;

    2003-01-01

    Proteins of the serpin superfamily (similar to43 kDa) from mature cereal grains are in vitro suicide-substrate inhibitors of specific mammalian serine proteinases of the chymotrypsin family. However, unlike the 'standard-mechanism' serine proteinase inhibitors (kDa), the biological functions...... of plant serpins are unknown. Expression studies of genes encoding members of three subfamilies of serpins (BSZx, BSZ4 and BSZ7) in developing grain and vegetative tissues of barley (Hordeum vulgare L.) showed that transcripts encoding BSZx, which inhibits distinct proteinases at overlapping reactive...... their irreversible inhibitory mechanism in the inhibition of exogenous proteinases capable of breaking down seed storage proteins, and in the defence of specific cell types in vegetative tissues....

  17. Proteinase K improves quantitative acylation studies.

    Science.gov (United States)

    Fränzel, Benjamin; Fischer, Frank; Steegborn, Clemens; Wolters, Dirk Andreas

    2015-01-01

    Acetylation is a common PTM of proteins but is still challenging to analyze. Only few acetylome studies have been performed to tackle this issue. Yet, the detection of acetylated proteins in complex cell lysates remains to be improved. Here, we present a proteomic approach with proteinase K as a suitable protease to identify acetylated peptides quantitatively. We first optimized the digestion conditions using an artificial system of purified bovine histones to find the optimal protease. Subsequently, the capability of proteinase K was demonstrated in complex HEK293 cell lysates. Finally, SILAC in combination with MudPIT was used to show that quantification with proteinase K is possible. In this study, we identified a sheer number of 557 unique acetylated peptides originating from 633 acetylation sites.

  18. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene.

    Directory of Open Access Journals (Sweden)

    Ann C Smigocki

    Full Text Available Proteinase inhibitors provide a means of engineering plant resistance to insect pests. A Beta vulgaris serine proteinase inhibitor gene (BvSTI was fused to the constitutive CaMV35S promoter for over-expression in Nicotiana benthamiana plants to study its effect on lepidopteran insect pests. Independently derived BvSTI transgenic tobacco T2 homozygous progeny were shown to have relatively high BvSTI gene transcript levels. BvSTI-specific polyclonal antibodies cross-reacted with the expected 30 kDA recombinant BvSTI protein on Western blots. In gel trypsin inhibitor activity assays revealed a major clear zone that corresponded to the BvSTI proteinase inhibitor that was not detected in the untransformed control plants. BvSTI-transgenic plants were bioassayed for resistance to five lepidopteran insect pests. Spodoptera frugiperda, S. exigua and Manduca sexta larvae fed BvSTI leaves had significant reductions in larval weights as compared to larvae fed on untransformed leaves. In contrast, larval weights increased relative to the controls when Heliothis virescens and Agrotis ipsilon larvae were fed on BvSTI leaves. As the larvae entered the pupal stage, pupal sizes reflected the overall larval weights. Some developmental abnormalities of the pupae and emerging moths were noted. These findings suggest that the sugar beet BvSTI gene may prove useful for effective control of several different lepidopteran insect pests in genetically modified tobacco and other plants. The sugar beet serine proteinase inhibitor may be more effective for insect control because sugar beet is cropped in restricted geographical areas thus limiting the exposure of the insects to sugar beet proteinase inhibitors and build up of non-sensitive midgut proteases.

  19. [Effect of adrenal stress on activity of proteinase and alpha-1-proteinase inhibitor in rats].

    Science.gov (United States)

    Samokhina, L M; Kaliman, P A

    1994-01-01

    The effect of adrenal stress on the proteinase and alpha-1-proteinase inhibitor activities in blood serum and cytosols of the rat organs were investigated. The reliable change was marked only in the alpha-1-PI level research of lung tissue cytosol. The proteolysis suppression was revealed in the heart and kidney tissue, while the proteolysis activation was revealed in serum and less in the lung tissue cytosol. Changes in proteinase level in the myocardium and kidney tissue play the primary role in respect to those of the other research liquids under study. PMID:7747353

  20. A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase.

    Science.gov (United States)

    Fook, J M S L L; Macedo, L L P; Moura, G E D D; Teixeira, F M; Oliveira, A S; Queiroz, A F S; Sales, M P

    2005-05-01

    Proteinaceous inhibitors with high inhibitory activities against human neutrophil elastase (HNE) were found in seeds of the Tamarind tree (Tamarindus indica). A serine proteinase inhibitor denoted PG50 was purified using ammonium sulphate and acetone precipitation followed by Sephacryl S-300 and Sephadex G-50 gel filtration chromatographies. Inhibitor PG50 showed a Mr of 14.9 K on Sephadex G-50 calibrated column and a Mr of 11.6 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PG50 had selective activity while cysteine proteinases (papain and bromelain) and serine proteinases (porcine pancreatic elastase and bovine chymotrypsin) were not inhibited, it was strongly effective against serine proteinases such as bovine trypsin and isolated human neutrophil elastase. The IC50 value was determined to be 55.96 microg.mL-1. PG50 showed neither cytotoxic nor haemolytic activity on human blood cells. After pre-incubation of PG50 with cytochalasin B, the exocytosis of elastase was initiated using PAF and fMLP. PG50 exhibited different inhibition on elastase release by PAF, at 44.6% and on release by fMLP, at 28.4%. These results showed that PG50 preferentially affected elastase release by PAF stimuli and this may indicate selective inhibition on PAF receptors.

  1. Solution structure of PMP-C: a new fold in the group of small serine proteinase inhibitors.

    Science.gov (United States)

    Mer, G; Hietter, H; Kellenberger, C; Renatus, M; Luu, B; Lefèvre, J F

    1996-04-26

    The solution structure and the disulfide pairings of a 36-residue proteinase inhibitor isolated from the insect Locusta migratoria have been determined using NMR spectroscopy and simulated annealing calculations. The peptide, termed PMP-C, was previously shown to inhibit bovine alpha-chymotrypsin as well as human leukocyte elastase, and was also found to block high-voltage-activated Ca2+ currents in rat sensory neurones. PMP-C has a prolate ellipsoid shape and adopts a tertiary fold hitherto unobserved in the large group of small "canonical" proteinase inhibitors. The over-all fold consists mainly of three strands arranged in a right-handed twisted, antiparallel, beta-sheet that demarcates a cavity, together with a linear amino-terminal segment oriented almost perpendicular to the three strands of the beta-sheet. Inside the cavity a phenyl ring constitutes the centre of a hydrophobic core. The proteinase binding loop is located in the carboxy-terminal part of the molecule, between two cysteine residues involved in disulfide bridges. Its conformation resembles that found in other small canonical proteinase inhibitors. A comparison of PMP-C structure with the recently published solution structure of the related peptide PMP-D2 shows that the most significant differences are complementary changes involved in the stabilization of similar folds. This comparison led us to review the structure of PMP-D2 and to identify two salt bridges in PMP-D2.

  2. Isolation and characterization of two forms of an acidic bromelain stem proteinase.

    Science.gov (United States)

    Harrach, T; Eckert, K; Maurer, H R; Machleidt, I; Machleidt, W; Nuck, R

    1998-05-01

    Two forms of an acidic bromelain proteinase isolated from crude bromelain, an extract from pineapple stem, were found by a two-step FPLC purification procedure. The basic main components were removed by cation exchange chromatography and the breakthrough fraction was further resolved by anion exchange chromatography into 15 protein fractions, only two of which, called SBA/a and SBA/b, were proteolytically active. These components were characterized by electrospray mass spectroscopy (ESMS), isoelectric focusing, N-terminal amino acid sequence analysis, monosaccharide analysis, and enzymatic parameters. The molecular masses of SBA/a and SBA/b were determined by ESMS to be 23,550 and 23,560, respectively. The isoelectric points (pI) of the two bands of SBA/a were 4.8 and 4.9; SBA/b focused as a single band at pI = 4.8. Partial N-terminal amino acid sequences (11 residues) were identical to SBA/a and SBA/b and identical with those of stem bromelain, the basic main proteinase of the pineapple stem, and fruit bromelain, the acidic main proteinase of the pineapple fruit. Both components are highly glycosylated; hydrolysis of SBA/a yielded about twofold more monosaccharide per protein than SBA/b. The comparison of the catalytic properties of SBA/a with those of SBA/b revealed no relevant differences in the hydrolysis of three peptidyl-NH-Mec substrates and in the inhibition profiles using chicken cystatin and E-64, indicating that these components can be considered as two forms of a single enzyme. Both forms are scarcely inhibited by chicken cystatin and slowly inactivated by E-64, hence are nontypical cysteine proteinases of the papain superfamily.

  3. Proteinase genes of cheese starter cultures

    NARCIS (Netherlands)

    Kok, Jan

    1991-01-01

    The proteolytic enzymes of lactococci are of eminent importance for milk fermentations. By the combined action of proteinases and peptidases milk protein is degraded to peptides and amino acids which are required for cell growth and contribute to the organoleptic properties of the foods. The importa

  4. Antifeedant effects of proteinase inhibitors on feeding behaviors of adult western corn rootworm (Diabrotica virgifera virgifera).

    Science.gov (United States)

    Kim, Jae Hak; Mullin, Christopher A

    2003-04-01

    Low-molecular-weight peptidyl proteinase inhibitors (PIs) including leupeptin, calpain inhibitor I, and calpeptin were found to be potent antifeedants for adult western corn rootworm (WCR) against the phagostimulation of cucurbitacin B (Cuc B) or a corn pollen extract (CPE). Leupeptin was the strongest (ED50 = 0.36 and 0.55 nmol/disk for Cuc B and CPE, respectively) among PIs tested with an antifeedant potency much stronger than the steroid progesterone (ED50 = 2.29 and 5.05 nmol/disk for Cuc B and CPE, respectively), but slightly less than the reference alkaloid, strychnine (ED50 = 0.17 and 0.37 nmol/disk for Cuc B and CPE, respectively). All active PIs contain a di- or tripeptidyl aldehyde moiety, indicating that PIs exert their antifeedant effects by covalent interaction with putative sulfhydryl (SH) groups on taste receptors as do these PIs with cysteine proteinases. However, opposite inhibition potency against Cuc B versus CPE by two thiol-group reducing agents, DTT and L-cysteine, and the results with other cysteine-modifying reagents obscure the net functional role of SH groups at WCR taste chemoreceptors. Surprisingly, the model phagostimulant for diabroticites, Cuc B, was more easily counteracted by these feeding deterrents than the stimulants present in CPE. Three-dimensional structure-antifeedant relationships for the PIs suggest that a novel taste chemoreception mechanism exists for these peptidyl aldehydes or that they fit partially into a strychnine binding pocket on protein chemoreceptors. Favorable economic benefit may be achieved if PIs are discovered to be useful in adult WCR control, since both pre- and postingestive sites would be targeted. PMID:12775144

  5. The maize cystatin CC9 interacts with apoplastic cysteine proteases.

    Science.gov (United States)

    van der Linde, Karina; Mueller, André N; Hemetsberger, Christoph; Kashani, Farnusch; van der Hoorn, Renier A L; Doehlemann, Gunther

    2012-11-01

    In a recent study we identified corn cystain9 (CC9) as a novel compatibility factor for the interaction of the biotrophic smut fungus Ustilago maydis with its host plant maize. CC9 is transcriptionally induced during the compatible interaction with U. maydis and localizes in the maize apoplast where it inhibits apoplastic papain-like cysteine proteases. The proteases are activated during incompatible interaction and salicylic acid (SA) treatment and, in turn, are sufficient to induce SA signaling including PR-gene expression. Therefore the inhibition of apoplastic papain-like cysteine proteases by CC9 is essential to suppress host immunity during U. maydis infection. Here were present new experimental data on the cysteine protease-cystatin interaction and provide an in silco analysis of plant cystatins and the identified apoplastic cysteine proteases.

  6. Formation of cysteine-S-conjugates in the Maillard reaction of cysteine and xylose.

    Science.gov (United States)

    Cerny, Christoph; Guntz-Dubini, Renée

    2013-11-15

    Cysteine-S-conjugates (CS-conjugates) occur in foods derived from plant sources like grape, passion fruit, onion, garlic, bell pepper and hops. During eating CS-conjugates are degraded into aroma-active thiols by β-lyases that originate from oral microflora. The present study provides evidence for the formation of the CS-conjugates S-furfuryl-l-cysteine (FFT-S-Cys) and S-(2-methyl-3-furyl)-l-cysteine (MFT-S-Cys) in the Maillard reaction of xylose with cysteine at 100°C for 2h. The CS-conjugates were isolated using cationic exchange and reversed-phase chromatography and identified by (1)H NMR, (13)C NMR and LC-MS(2). Spectra and LC retention times matched those of authentic standards. To the best of our knowledge, this is the first time that CS-conjugates are described as Maillard reaction products. Furfuryl alcohol (FFA) is proposed as an intermediate which undergoes a nucleophilic substitution with cysteine. Both FFT-S-Cys and MFT-S-Cys are odourless but produce strong aroma when tasted in aqueous solutions, supposedly induced by β -lyases from the oral microflora. The perceived aromas resemble those of the corresponding aroma-active thiols 2-furfurylthiol (FFT) and 2-methyl-3-furanthiol (MFT) which smell coffee-like and meaty, respectively.

  7. Solution structure of the squash aspartic acid proteinase inhibitor (SQAPI) and mutational analysis of pepsin inhibition.

    Science.gov (United States)

    Headey, Stephen J; Macaskill, Ursula K; Wright, Michele A; Claridge, Jolyon K; Edwards, Patrick J B; Farley, Peter C; Christeller, John T; Laing, William A; Pascal, Steven M

    2010-08-27

    The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel beta-sheet gripping an alpha-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting beta-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S' side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp(32)-Asp(215) diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin.

  8. Cloning and sequence analysis of serine proteinase of Gloydius ussuriensis venom gland

    International Nuclear Information System (INIS)

    Objective: To construct a cDNA library by using mRNA from Gloydius ussuriensis (G. Ussuriensis) venom gland, to clone and analyze serine proteinase gene from the cDNA library. Methods: Total RNA was isolated from venom gland of G. ussuriensis, mRNA was purified by using mRNA isolation Kit. The whole length cDNA was synthesized by means of smart cDNA synthesis strategy, and amplified by long distance PCR procedure, lately cDAN was cloned into vector pBluescrip-sk. The recombinant cDNA was transformed into E. coli DH5α. The cDNA of serine proteinase gene in the venom gland of G. ussuriensis was detected and amplified using the in situ hybridization. The cDNA fragment was inserted into pGEMT vector, cloned and its nucleotide sequence was determined. Results: The capacity of cDNA library of venom gland was above 2.3 x 106. Its open reading frame was composed of 702 nucleotides and coded a protein pre-zymogen of 234 amino acids. It contained 12 cysteine residues. The sequence analysis indicated that the deduced amino acid sequence of the cDNA fragment shared high identity with the thrombin-like enzyme genes of other snakes in the GenBank. the query sequence exhibited strong amino acid sequence homology of 85% to the serine proteas of T. gramineus, thrombin-like serine proteinase I of D. acutus and serine protease catroxase II of C. atrox respectively. Based on the amino acid sequences of other thrombin-like enzymes, the catalytic residues and disulfide bridges of this thrombin-like enzyme were deduced as follows: catalytic residues, His41, Asp86, Ser180; and six disulfide bridges Cys7-Cys139, Cys26-Cys42, Cys74-Cys232, Cys118-Cys186, Cys150-Cys165, Cys176-Cys201. Conclusion: The capacity of cDNA library of venom gland is above 2.3 x 106, overtop the level of 105 capicity. The constructed cDNA library of G. ussuriensis venom gland would be helpful platform to detect new target genes and further gene manipulate. The cloned serine proteinase gene exhibits strong amino

  9. Interaction between pyrite and cysteine

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-she; WANG Zhao-hui; LI Bang-mei; ZHANG Yan-hua

    2006-01-01

    The adsorption mechanism of cysteine on pyrite was studied by amounts adsorbed, FTIR and XRD measurements. The results obtained by adsorption experiment suggest that as the mass ratio of mineral to cysteine mp/mc is greater than 5, the amounts adsorbed on mineral is stable after adsorption for 15 min and cysteine adsorbing with mp/mc shows the same tendency. It can be inferred by its Langmuir-type adsorption isotherm that chemical interaction governs the entire adsorption process. The results from FTIR and XRD prove that the functional groups of cysteine appear with blue shift of their characteristic adsorption peak in FTIR spectrum; meanwhile, the lattice constant obviously decreases and the widening of crystal planes such as (210), (220) and (211) is found after cysteine adsorbing on mineral.

  10. Seed-specific aspartic proteinase FeAP12 from buckwheat (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Timotijević Gordana S.

    2010-01-01

    Full Text Available Aspartic proteinase gene (FeAP12 has been isolated from the cDNA library of developing buckwheat seeds. Analysis of its deduced amino acid sequence showed that it resembled the structure and shared high homology with typical plant aspartic proteinases (AP characterized by the presence of a plant-specific insert (PSI, unique among APs. It was shown that FeAP12 mRNA was not present in the leaves, roots, steam and flowers, but was seed-specifically expressed. Moreover, the highest levels of FeAP12 expression were observed in the early stages of seed development, therefore suggesting its potential role in nucellar degradation.

  11. [Effect of pentoxyphylline on certain indicators of the proteinase-proteinase inhibitor system in rats upon administration of cycloheximide].

    Science.gov (United States)

    Samokhin, A A; Kaliman, P A; Samokhinka, L M

    2001-01-01

    The pentoxifylline influence on neutral proteinase, alpha-2-macroglobulin, trypsin-alpha-1-proteinase inhibitor and elastaseinhibitory activity under cycloheximide injection has been investigated. Two hours after cycloheximide injection the activity of neutral proteinases increases in rats serum, lungs, heart, liver and kidneys. The preliminary injection of pentoxifylline prevents increase of neutral proteinases activity. Cycloheximide also decreases alpha-2-macroglobulin activity in serum and liver and trypsin-, elastaseinhibitory activity of alpha-1-proteinase inhibitor in all investigated organs. At using pentoxifylline the alpha-2-macroglobulin activity doesn't change in liver and increases in serum in comparison with only cycloheximide and there are no observed any alpha-1 inhibitor proteinase activity changes in rats serum and organs. PMID:12035527

  12. Molecular Biology, Biochemistry and Cellular Physiology of Cysteine Metabolism in Arabidopsis thaliana

    OpenAIRE

    Hell, Rüdiger; Wirtz, Markus

    2011-01-01

    Cysteine is one of the most versatile molecules in biology, taking over such different functions as catalysis, structure, regulation and electron transport during evolution. Research on Arabidopsis has contributed decisively to the understanding of cysteine synthesis and its role in the assimilatory pathways of S, N and C in plants. The multimeric cysteine synthase complex is present in the cytosol, plastids and mitochondria and forms the centre of a unique metabolic sensing and signaling sys...

  13. Direct targeting of Arabidopsis cysteine synthase complexes with synthetic polypeptides to selectively deregulate cysteine synthesis.

    Science.gov (United States)

    Wawrzyńska, Anna; Kurzyk, Agata; Mierzwińska, Monika; Płochocka, Danuta; Wieczorek, Grzegorz; Sirko, Agnieszka

    2013-06-01

    Biosynthesis of cysteine is one of the fundamental processes in plants providing the reduced sulfur for cell metabolism. It is accomplished by the sequential action of two enzymes, serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). Together they constitute the hetero-oligomeric cysteine synthase (CS) complex through specific protein-protein interactions influencing the rate of cysteine production. The aim of our studies was to deregulate the CS complex formation in order to investigate its function in the control of sulfur homeostasis and optimize cysteine synthesis. Computational modeling was used to build a model of the Arabidopsis thaliana mitochondrial CS complex. Several polypeptides based on OAS-TL C amino-acid sequence found at SAT-OASTL interaction sites were designed as probable competitors for SAT3 binding. After verification of the binding in a yeast two-hybrid assay, the most strongly interacting polypeptide was introduced to different cellular compartments of Arabidopsis cell via genetic transformation. Moderate increase in total SAT and OAS-TL activities, but not thiols content, was observed dependent on the transgenic line and sulfur availability in the hydroponic medium. Though our studies demonstrate the proof of principle, they also suggest more complex interaction of both enzymes underlying the mechanism of their reciprocal regulation. PMID:23602110

  14. Properties of a subtilisin-like proteinase from a psychrotrophic Vibrio species comparison with proteinase K and aqualysin I.

    Science.gov (United States)

    Kristjánsson, M M; Magnússon, O T; Gudmundsson, H M; Alfredsson, G A; Matsuzawa, H

    1999-03-01

    An extracellular serine proteinase purified from cultures of a psychrotrophic Vibrio species (strain PA-44) belongs to the proteinase K family of the superfamily of subtilisin-like proteinases. The enzyme is secreted as a 47-kDa protein, but under mild heat treatment (30 min at 40 degrees C) undergoes autoproteolytic cleavage on the carboxyl-side of the molecule to give a proteinase with a molecular mass of about 36 kDa that apparently shares most of the enzymatic characteristics and the stability of the 47-kDa protein. In this study, selected enzymatic properties of the Vibrio proteinase were compared with those of the related proteinases, proteinase K and aqualysin I, as representative mesophilic and thermophilic enzymes, respectively. The catalytic efficiency (kcat/Km) for the amidase activity of the cold-adapted enzyme against succinyl-AAPF-p-nitroanilide was significantly higher than that of its mesophilic and thermophilic counterparts, especially when compared with aqualysin I. The stability of the Vibrio proteinase, both towards heat and denaturants, was found to be significantly lower than of either proteinase K or aqualysin I. One or more disulfide bonds in the psychrotrophic proteinase are important for the integrity of the active enzyme structure, as disulfide cleavage, either by reduction with dithiothreitol or by sulfitolysis, led to a loss in its activity. Under the same conditions, aqualysin I was also partially inactivated by dithiothreitol, but the activity of proteinase K was unaffected. The disulfides of either proteinase K or aqualysin I were not reactive towards sulfitolysis, except under denaturing conditions, while all disulfides of the Vibrio proteinase reacted in absence of a denaturant. The reactivity of the disulfides of the proteins as a function of denaturant concentration followed the order: Vibrio proteinase > proteinase K > aqualysin I. The same order of reactivity was also observed for the inactivation of the enzymes by H2O2

  15. Stress inducible proteinase inhibitor diversity in Capsicum annuum

    Directory of Open Access Journals (Sweden)

    Mishra Manasi

    2012-11-01

    Full Text Available Abstract Background Wound-inducible Pin-II Proteinase inhibitors (PIs are one of the important plant serine PIs which have been studied extensively for their structural and functional diversity and relevance in plant defense against insect pests. To explore the functional specialization of an array of Capsicum annuum (L. proteinase inhibitor (CanPIs genes, we studied their expression, processing and tissue-specific distribution under steady-state and induced conditions. Inductions were performed by subjecting C. annuum leaves to various treatments, namely aphid infestation or mechanical wounding followed by treatment with either oral secretion (OS of Helicoverpa armigera or water. Results The elicitation treatments regulated the accumulation of CanPIs corresponding to 4-, 3-, and 2-inhibitory repeat domains (IRDs. Fourty seven different CanPI genes composed of 28 unique IRDs were identified in total along with those reported earlier. The CanPI gene pool either from uninduced or induced leaves was dominated by 3-IRD PIs and trypsin inhibitory domains. Also a major contribution by 4-IRD CanPI genes possessing trypsin and chymotrypsin inhibitor domains was specifically revealed in wounded leaves treated with OS. Wounding displayed the highest number of unique CanPIs while wounding with OS treatment resulted in the high accumulation of specifically CanPI-4, -7 and −10. Characterization of the PI protein activity through two dimensional gel electrophoresis revealed tissue and induction specific patterns. Consistent with transcript abundance, wound plus OS or water treated C. annuum leaves exhibited significantly higher PI activity and isoform diversity contributed by 3- and 4-IRD CanPIs. CanPI accumulation and activity was weakly elicited by aphid infestation yet resulted in the higher expression of CanPI-26, -41 and −43. Conclusions Plants can differentially perceive various kinds of insect attacks and respond appropriately through activating

  16. Characterization of proteinases from the midgut of Rhipicephalus (Boophilus microplus involved in the generation of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Craik Charles S

    2010-07-01

    Full Text Available Abstract Background Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins. A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood. Here we report, for the first time, the contribution of two midgut proteinases to the generation of hemocidins. Results An aspartic proteinase, designated BmAP, was isolated from the midgut of Rhipicephalus (Boophilus microplus using three chromatographic steps. Reverse transcription-quantitative polymerase chain reaction revealed that BmAP is restricted to the midgut. The other enzyme is a previously characterized midgut cathepsin L-like cysteine proteinase designated BmCL1. Substrate specificities of native BmAP and recombinant BmCL1 were mapped using a synthetic combinatorial peptide library and bovine hemoglobin. BmCL1 preferred substrates containing non-polar residues at P2 subsite and polar residues at P1, whereas BmAP hydrolysed substrates containing non-polar amino acids at P1 and P1'. Conclusions BmAP and BmCL1 generate hemocidins from hemoglobin alpha and beta chains in vitro. We postulate that hemocidins may be important for the control of tick pathogens and midgut flora.

  17. Crystallization and preliminary X-ray analysis of ginkbilobin-2 from Ginkgo biloba seeds: a novel antifungal protein with homology to the extracellular domain of plant cysteine-rich receptor-like kinases

    Energy Technology Data Exchange (ETDEWEB)

    Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi [Department of Applied Biochemical Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Hatano, Ken-ichi [Department of Chemistry and Chemical Biology, Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515 (Japan); Tanokura, Masaru, E-mail: amtanok@mail.ecc.u-tokyo.ac.jp [Department of Applied Biochemical Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2007-09-01

    Purification and crystallization of ginkbilobin-2 and its selenomethionine derivative allowed the collection of complete data to 2.38 Å resolution and multiwavelength anomalous diffraction data sets, respectively. The antifungal protein ginkbilobin-2 (Gnk2) from Ginkgo biloba seeds does not show homology to other pathogenesis-related proteins, but does show homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Native Gnk2 purified from ginkgo nuts and the selenomethionine derivative of recombinant Gnk2 (SeMet-rGnk2) were crystallized by the sitting-drop vapour-diffusion method using different precipitants. X-ray diffraction data were collected from Gnk2 at 2.38 Å resolution and from SeMet-rGnk2 at 2.79 Å resolution using a synchrotron-radiation source. The crystals of both proteins belonged to the primitive cubic space group P2{sub 1}3, with unit-cell parameters a = b = c = 143.2 Å.

  18. Crystallization and preliminary X-ray analysis of ginkbilobin-2 from Ginkgo biloba seeds: a novel antifungal protein with homology to the extracellular domain of plant cysteine-rich receptor-like kinases

    International Nuclear Information System (INIS)

    Purification and crystallization of ginkbilobin-2 and its selenomethionine derivative allowed the collection of complete data to 2.38 Å resolution and multiwavelength anomalous diffraction data sets, respectively. The antifungal protein ginkbilobin-2 (Gnk2) from Ginkgo biloba seeds does not show homology to other pathogenesis-related proteins, but does show homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Native Gnk2 purified from ginkgo nuts and the selenomethionine derivative of recombinant Gnk2 (SeMet-rGnk2) were crystallized by the sitting-drop vapour-diffusion method using different precipitants. X-ray diffraction data were collected from Gnk2 at 2.38 Å resolution and from SeMet-rGnk2 at 2.79 Å resolution using a synchrotron-radiation source. The crystals of both proteins belonged to the primitive cubic space group P213, with unit-cell parameters a = b = c = 143.2 Å

  19. Evidence for several cysteine transport mechanisms in the mitochondrial membranes of Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Chun Pong; Wirtz, Markus; Hell, Rüdiger

    2014-01-01

    Cysteine is essential for many mitochondrial processes in plants, including translation, iron-sulfur cluster biogenesis and cyanide detoxification. Its biosynthesis is carried out by serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL) which can be found in the cytosol, plastids and mitochondria. Mutants lacking one compartment-specific OAS-TL isoform show viable phenotypes, leading to the hypothesis that the organellar membranes are permeable to substrates and products of the cysteine biosynthetic pathway. In this report, we show that exogenouslly supplied [(35)S]cysteine accumulates in the mitochondrial fraction and is taken up into isolated mitochondria for in organello protein synthesis. Analysis of cysteine uptake by isolated mitochondria and mitoplasts indicates that cysteine is transported by multiple facilitated mechanisms that operate in a concentration gradient-dependent manner. In addition, cysteine uptake is dependent mainly on the ΔpH across the inner membrane. The rates of mitochondrial cysteine transport can be mildly altered by specific metabolites in the cyanide detoxification-linked sulfide oxidation, but not by most substrates and products of the cysteine biosynthetic pathway. Based on these results, we propose that the transport of cysteine plays a pivotal role in regulating cellular cysteine biosynthesis as well as modulating the availability of sulfur for mitochondrial metabolism.

  20. Chemoenzymatic Synthesis of Oligo(L-cysteine) for Use as a Thermostable Bio-Based Material.

    Science.gov (United States)

    Ma, Yinan; Sato, Ryota; Li, Zhibo; Numata, Keiji

    2016-01-01

    Oligomerization of thiol-unprotected L-cysteine ethyl ester (Cys-OEt) catalyzed by proteinase K in aqueous solution has been used to synthesize oligo(L-cysteine) (OligoCys) with a well-defined chemical structure and relatively large degree of polymerization (DP) up to 16-17 (average 8.8). By using a high concentration of Cys-OEt, 78.0% free thiol content was achieved. The thermal properties of OligoCys are stable, with no glass transition until 200 °C, and the decomposition temperature could be increased by oxidation. Chemoenzymatically synthesized OligoCys has great potential for use as a thermostable bio-based material with resistance to oxidation. PMID:26388290

  1. In silico analysis of sequential, structural and functional diversity of wheat cystatins and its implication in plant defense.

    Science.gov (United States)

    Dutt, Shriparna; Singh, V K; Marla, Soma S; Kumar, Anil

    2010-03-01

    Phytocystatins constitute a multigene family that regulates the activity of endogenous and/or exogenous cysteine proteinases. Cereal crops like wheat are continuously threatened by a multitude of pathogens, therefore cystatins offer to play a pivotal role in deciding the plant response. In order to study the need of having diverse specificities and activities of various cystatins, we conducted comparative analysis of six wheat cystatins (WCs) with twelve rice, seven barley, one sorghum and ten corn cystatin sequences employing different bioinformatics tools. The obtained results identified highly conserved signature sequences in all the cystatins considered. Several other motifs were also identified, based on which the sequences could be categorized into groups in congruence with the phylogenetic clustering. Homology modeling of WCs revealed 3D structural topology so well shared by other cystatins. Protein-protein interaction of WCs with papain supported the notion that functional diversity is a con-sequence of existing differences in amino acid residues in highly conserved as well as relatively less conserved motifs. Thus there is a significant conservation at the sequential and structural levels; however, concomitant variations maintain the functional diversity in this protein family, which constantly modulates itself to reciprocate the diversity while counteracting the cysteine proteinases.

  2. The embryo's cystatin C and F expression functions as a protective mechanism against the maternal proteinase cathepsin S in mice.

    Science.gov (United States)

    Baston-Buest, D M; Schanz, A; Buest, S; Fischer, J C; Kruessel, J S; Hess, A P

    2010-04-01

    A successful implantation of a mammalian embryo into the maternal endometrium depends on a highly synchronized fetal-maternal dialogue involving chemokines, growth factors, and matrix-modifying enzymes. A growing body of evidence suggests an important role for proteinases playing a role in matrix degeneration and enhancing the embryo's invasive capacity and influencing the mother's immunological status in favor of the conceptus. This study focused on the expression of cathepsin S (CTSS) and its inhibitors in the murine fetal-maternal interface as well as the detection of the cellular sources of either proteinase and inhibitors. Nested RT-PCR for detection of embryonic mRNAs, immunohistochemistry of maternal and fetal tissues in B6C3F1 mice, and FACS analysis for determination of immunocompetent cell population were applied. This study shows that the cysteine proteinase CTSS is upregulated in the stroma of the implantation site, and that pregnancy induces an influx of CTSS-positive uterine natural killer cells. Compared to maternal tissues, the CTSS inhibitors cystatin F and C, but not the proteinase itself, are expressed in blastocysts. In conclusion, CTSS underlies a hormonal regulation in the maternal tissue and therewith most likely supports the embryonic implantation. The invading embryo regulates the depth of its own invasion through the expression of the cathepsin inhibitors and furthermore, interleukin-6 to activate CTSS in maternal tissues. Additionally, the observed decrease in CD3(+) cells leads to the hypothesis that cells of the cytotoxic T-cell group are down-regulated in the decidua to support the implantation and ensure the survival of the embryo.

  3. Cystatin F regulates proteinase activity in IL-2-activated natural killer cells.

    Science.gov (United States)

    Maher, Katarina; Konjar, Spela; Watts, Colin; Turk, Boris; Kopitar-Jerala, Natasa

    2014-01-01

    Cystatin F is a unique member of the cystatin family of cysteine protease inhibitors, which is synthesized as an inactive dimer and it is activated by N-terminal cleavage in the endolysosomes. It is expressed in the cells of the immune system: myeloid cells and the cells involved in target cell killing: natural killer (NK) cells and cytotoxic T cells (CTLs). Upon activation of the NK cells with interleukin 2 (IL-2), cystatin F was found upregulated and co-localized in cytotoxic granules with cathepsin C (CatC) and CatV. However, cystatin F inhibits the CatC in cells only when its N-terminal part is processed. Although cystatin F could inhibit both CatV and CatC, the IL-2 stimulation of the YT cells resulted in an increased CatV activity, while the CatC activity was unchanged. The incubation of IL-2 activated NK cells with a cysteine proteinase inhibitor E-64d increased the cystatin F dimer formation. Our results suggest that cystatin F not only inhibits CatV, but it is processed by the CatV in order to inhibit the CatC activity in cytotoxic granules. The regulation of the CatC activity in the cytotoxic granules of the NK cells by the cystatin F could be important for the processing and activation of granule-associated serine proteases - granzymes.

  4. Purification and partial characterisation of a cathepsin L-like proteinase from sea cucumber (Stichopus japonicus) and its tissue distribution in body wall.

    Science.gov (United States)

    Zhou, Da-Yong; Chang, Xian-Na; Bao, Sha-Sha; Song, Liang; Zhu, Bei-Wei; Dong, Xiu-Ping; Zong, Yuan; Li, Dong-Mei; Zhang, Mao-Mao; Liu, Yu-Xin; Murata, Yoshiyuki

    2014-09-01

    A cathepsin L-like proteinase (CLP) with molecular weight of 30.9 kDa from the gut of sea cucumber (Stichopus japonicas, S. japonicus) was isolated and purified to homogeneity by several chromatographic procedures. The enzyme exhibited optimum activity at pH 5.0-5.5 and 50 °C, and showed thermostability up to 40 °C. The enzyme activity was completely inhibited by Zn(2+), strongly inhibited by Fe(2+) and Cu(2+), drastically reduced by cysteine proteinase inhibitors, but slightly enhanced by thiol-activating agents. The enzyme efficiently hydrolysed the specific substrate of cathepsin L, but hardly hydrolysed the specific substrates for cathepsin B, cathepsin H and cathepsin K. Immunohistochemical studies indicated that the CLP was more abundant in the epidermis rather than in the dermis of S. japonicus body wall. The distribution of CLP showed positive correlation with autolysis rate. Therefore, the relationship between CLP and autolysis deserved further study.

  5. [Characterization of thermal denaturation process of proteinase K by spectrometry].

    Science.gov (United States)

    Zhang, Qi-Bing; Na, Xin-Zhu; Yin, Zong-Ning

    2013-07-01

    The effect of different temperatures on the activity and conformational changes of proteinase K was studied. Methods Proteinase K was treated with different temperatures, then denatured natural substrate casein was used to assay enzyme activity, steady-state and time-resolved fluorescence spectroscopy was used to study tertiary structure, and circular dichroism was used to study secondary structure. Results show with the temperature rising from 25 to 65 degrees C, the enzyme activity and half-life of proteinase K dropped, maximum emission wavelength red shifted from 335 to 354 nm with fluorescence intensity decreasing. Synchronous fluorescence intensity of tryptophan residues decreased and that of tyrosine residues increased. Fluorescence lifetime of tryptophan residues reduced from 4. 427 1 to 4. 032 4 ns and the fraction of alpha-helix dropped. It was concluded that it is simple and accurate to use steady-state/time-resolved fluorescence spectroscopy and circular dichroism to investigate thermal stability of proteinase K. Thermal denaturation of proteinase K followed a three-state process. Fluorescence intensity of proteinase K was affected by fluorescence resonance energy transfer from tyrosine to tryptophan residues. The alpha-helix was the main structure to maintain conformational stability of enzyme active site of proteinase K.

  6. Digestive proteinases from marine organisms and their applications

    Directory of Open Access Journals (Sweden)

    Sappasith Klomklao

    2008-01-01

    Full Text Available Fish viscera have wide biotechnological potential as a source of digestive enzymes, especially proteinases. The biological diversity of fish species provides a wide array of enzymes with unique properties. Fish digestive proteolytic enzymes most commonly found include pepsin and trypsin. Those enzymes from fish viscera may have the advantages for the applications in the food industry since their temperature and other characteristics differ from homologous proteinases from warm-blooded animals. Therefore, digestive proteinases can be isolated as a value-added product from fish viscera and used as the processing aids in food industries to maximize the utilization of marine resources.

  7. [Inactivation of T4 phage in water environment using proteinase].

    Science.gov (United States)

    Lü, Wen-zhou; Yang, Qing-xiang; Zhang, Yu; Yang, Min; Zhu, Chun-fang

    2004-09-01

    The inactivation effectiveness of proteinase to viruses was investigated by using T4 phage as a model virus. The results showed that the inactivation effectiveness of proteinase to T4 phage was obvious. In the optimum conditions and 67.5 u/mL concentration, the inactivation rate of proteinase K to T4 phage in sterilized water and in sewage achieved 99.4% and 49.4% respectively in an hour, and achieved >99.9% and 81.1% in three hours. The inactivation rate of the industrial proteinase 1398 to T4 phage in sterilized water achieved 74.4% in an hour. The effects of pH and temperature on the inactivation effectiveness was not evident.

  8. Production of a heterologous proteinase A by Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, K; Tidemand, L D; Winther, Jakob R.;

    2001-01-01

    In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter. As a refer......In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter......, compared to a yield of 0.40 g/g in S. cerevisiae. Overexpression of PEP4 led to the secretion of active proteinase A in both S. kluyveri and S. cerevisiae. The yield of active proteinase A during growth on glucose was found to be 3.6-fold higher in S. kluyveri than in the S. cerevisiae reference strain....

  9. Evolutionary patterns of proteinase activity in attine ant fungus gardens

    DEFF Research Database (Denmark)

    Semenova, Tatyana; Hughes, David Peter; Boomsma, Jacobus Jan;

    2011-01-01

    of evolutionary more derived fungal symbionts. This notion is also supported by buffering capacities of fungus gardens at pH 5.2 being remarkably high, and suggests that the fungal symbiont actively helps to maintain garden acidity at this specific level. Metalloproteinases dominated the activity profiles....... Conclusions: Proteinase pH optima and buffering capacities of fungal symbionts appear to have evolved remarkable adaptations to living in obligate symbiosis with farming ants. Although the functional roles of serine and metalloproteinases in fungus gardens are unknown, the differential production...... hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved. Results: We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing...

  10. Proteinase 3 and prognosis of patients with acute myocardial infarction

    OpenAIRE

    Ng, Leong L.; Khan, Sohail Q; Narayan, Hafid; Quinn, Paulene; Squire, Iain B; Davies, Joan E.

    2010-01-01

    Abstract Background A multimarker approach may be useful for risk stratification in AMI patients, particularly utilising pathways that are pathophysiologically distinct. Aim Our aim was to assess the prognostic value of Proteinase 3 in patients post acute myocardial infarction (AMI). We compared the prognostic value of Proteinase 3, an inflammatory marker to an established marker N-terminal pro-B-type natriuretic peptide (NT-proBNP) post-AMI. Method We recruited 9...

  11. Purification of human leucocyte DNA: proteinase K is not necessary.

    Science.gov (United States)

    Douglas, A M; Georgalis, A M; Benton, L R; Canavan, K L; Atchison, B A

    1992-03-01

    A rapid nontoxic method for the purification of DNA from human leucocytes is described. Preliminary experiments which tested different methods of DNA purification indicated that digestion of proteins with proteinase K was unnecessary. This led to the development of a simple procedure involving lysis of the cells in SDS followed by extraction with 6 M NaCl. The method described overcomes the requirement for lengthy incubations in the presence of expensive proteinase K and subsequent extraction with toxic chemicals.

  12. Using a Caesalpinia echinata Lam. protease inhibitor as a tool for studying the roles of neutrophil elastase, cathepsin G and proteinase 3 in pulmonary edema.

    Science.gov (United States)

    Cruz-Silva, Ilana; Neuhof, Christiane; Gozzo, Andrezza Justino; Nunes, Viviane Abreu; Hirata, Izaura Yoshico; Sampaio, Misako Uemura; Figueiredo-Ribeiro, Rita de Cássia; Neuhof, Heinz; Araújo, Mariana da Silva

    2013-12-01

    Acute lung injury (ALI) is characterized by neutrophil infiltration and the release of proteases, mainly elastase (NE), cathepsin G (Cat G) and proteinase 3 (PR3), which can be controlled by specific endogenous inhibitors. However, inhibitors of these proteases have been isolated from different sources, including plants. For this study, CeEI, or Caesalpinia echinata elastase inhibitor, was purified from C. echinata (Brazil-wood) seeds after acetone fractionation, followed by ion exchange and reversed phase chromatographic steps. Characterization with SDS-PAGE, stability assays, amino acid sequencing and alignment with other protein sequences confirmed that CeEI is a member of the soybean Kunitz trypsin inhibitor family. Like other members of this family, CeEI is a 20 kDa monomeric protein; it is stable within a large pH and temperature range, with four cysteine residues forming two disulfide bridges, conserved amino acid residues and leucine-isoleucine residues in the reactive site. CeEI was able to inhibit NE and Cat G at a nanomolar range (with K(i)s of 1.9 and 3.6 nM, respectively) and inhibited PR3 within a micromolar range (K(i) 3.7 μM), leading to hydrolysis of specific synthetic substrates. In a lung edema model, CeEI reduced the lung weight and pulmonary artery pressure until 180 min after the injection of zymosan-activated polymorphonuclear neutrophils. In experiments performed in the presence of a Cat G and PR3, but not an NE inhibitor, lung edema was reduced only until 150 min and pulmonary artery pressure was similar to that of the control. These results confirm that NE action is crucial to edema establishment and progression. Additionally, CeEI appears to be a useful tool for studying the physiology of pulmonary edema and provides a template for molecular engineering and drug design for ALI therapy.

  13. The effect of calciums on molecular motions of proteinase K.

    Science.gov (United States)

    Liu, Shu-Qun; Tao, Yan; Meng, Zhao-Hui; Fu, Yun-Xin; Zhang, Ke-Qin

    2011-02-01

    The native serine protease proteinase K binds two calcium cations. It has been reported that Ca(2+) removal decreased the enzyme's thermal stability and to some extent the substrate affinity, but has discrepant effects on catalytic activity of the enzyme. Molecular dynamics simulations were performed on the Ca(2+)-bound and Ca(2+)-free proteases to investigate the mechanism by which the calciums affect the structural stability, molecular motions, and catalytic activity of proteinase K. Very similar structural properties were observed between these two forms of proteinase K during simulations; and several long-lived hydrogen bonds and salt bridges common to both forms of proteinase K were found to be crucial in maintaining the local conformations around these two Ca(2+) sites. Although Ca(2+) removal enhanced the overall flexibility of proteinase K, the flexibility in a limited number of segments surrounding the substrate-binding pockets decreased. The largest differences in the equilibrium structures of the two simulations indicate that, upon the removal of Ca(2+), the large concerted motion originating from the Ca1 site can transmit to the substrate-binding regions but not to the catalytic triad residues. In conjunction with the large overlap of the essential subspaces between the two simulations, these results not only provide insight into the dynamics of the underlying molecular mechanism responsible for the unchanged enzymatic activity as well as the decreased thermal stability and substrate affinity of proteinase K upon Ca(2+) removal, but also complement the experimentally determined structural and biochemical data.

  14. TRANSGENIC PLANTS RESISTANT TO INSECTS

    Directory of Open Access Journals (Sweden)

    S. Kereša

    2009-09-01

    Full Text Available Proteinase inhibitors are secondary metabolites present in all plants and it seems that their major role is protection of plants against attacks of animals, insects and microorganisms. One of the family of proteinase inhibitors are squash inhibitors of serine proteinases purified from seeds belonging to genera Cucurbita, Cucumis and Momordica. Squash inhibitors consist of 29-32 amino acid residues and are considered to be the smallest inhibitors of the serine proteinases known. Because of shortness, genes for these inhibitors could be synthesised and modified at different ways. Modifications could lead to changes in inhibitor activity. Tobacco as a model plant was transformed with 12 different genes of squash inhibitors. Stable integration of transgenes in putative transgenic plants was determined by PCR analysis using genomic DNA and primers that anneal to promoter and terminator region. The first step of proteinase inhibitor gene expression in transgenic plants was revealed by RT-PCR analysis. In entomological tests where larvae were fed with leaves, influence of transgenic T0 plants, as well as non-transgenic control plants on retardation of larval growth of S. littoralis was examined. Results of entomological tests showed that it is possible to express squash proteinase inhibitors in plants at level that significantly reduces S. littoralis larval growth.

  15. [Effect of quercetin on some indicators of the proteinase-proteinase inhibitor system in rats upon administration of cobalt chloride to them].

    Science.gov (United States)

    Kaliman, P A; Samokhin, A A; Samokhina, L M

    2001-01-01

    The results of quercetin effect on some changes of proteinase--proteinase inhibitor system parameters in rats under cobalt chloride injection are shown. It was established that preliminary quercetin administration prevened neutral proteinase activation and alpha-2-macroglobulin activity decreasing after 2 h of cobalt chloride influence. PMID:12199071

  16. Aspartic proteinases in the digestive tract of marine decapod crustaceans.

    Science.gov (United States)

    Navarrete del Toro, María de Los Angeles; García-Carreño, Fernando; López, Manuel Díaz; Celis-Guerrero, Laura; Saborowski, Reinhard

    2006-08-01

    Decapod crustaceans synthesize highly active proteolytic enzymes in the midgut gland and release at least a part of them into the stomach where they facilitate the first step in peptide hydrolysis. The most common proteinases in the gastric fluid characterized so far are serine proteinases, that is, trypsin and chymotrypsin. These enzymes show highest activities at neutral or slightly alkaline conditions. The presence of acid proteinases, as they prevail in vertebrates, has been discussed contradictorily yet in invertebrates. In this study, we show that acid aspartic proteinases appear in the gastric fluid of several decapods. Lobsters Homarus gammarus showed the highest activity with a maximum at pH 3. These activities were almost entirely inhibited by pepstatin A, which indicates a high share of aspartic proteinases. In other species (Panulirus interruptus, Cancer pagurus, Callinectes arcuatus and Callinectes bellicosus), proteolytic activities were present at acid conditions but were distinctly lower than in H. gammarus. Zymograms at pH 3 showed in each of the studied species at least one, but mostly two-four bands of activity. The apparent molecular weight of the enzymes ranged from 17.8 to 38.6 kDa. Two distinct bands were identified which were inhibited by pepstatin A. Acid aspartic proteinases may play an important role in the process of extracellular digestion in decapod crustaceans. Activities were significantly higher in clawed lobster than in spiny lobster and three species of brachyurans. Therefore, it may be suggested that the expression of acid proteinases is favored in certain groups and reduced in others. PMID:16788916

  17. Selective modification of phosphoribulokinase cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, T.J.; Mende-Mueller, L.M.; Miziorko, H.M.

    1987-05-01

    The most reactive sulfhydryl in native phosphoribulokinase can be selectively alkylated with iodoacetate; complete loss of activity results. Composition and N-terminal analyses of the peptide bearing this -SH show that cys-16 is the modification site. In the presence of Mg and ATP, a nonessential -SH is modified; catalytic activity is unchanged. The peptide bearing this cysteine has been characterized by amino acid composition and N-terminal analyses (Phe-Phe-Asn-Pro-Val-Tyr-(Ile/Leu)...). Enzyme alkylated at this site is subject to reversible oxidative inactivation, showing that this cysteine is not involved in regulation of activity. A cysteine distinct from this nonessential residue is suggested by crosslinking studies to be close (5a) to cys-16. The site-directed inhibitor fluorosulfonylbenzoyladenosine (FSBA) inactivates enzyme by modifying cys-16. Carboxymethylation of enzyme after FSBA incorporation, followed by DTT treatment, unmasks the initial modification site and allows (/sup 14/C)-iodoacetate labeling. The tryptic peptide bearing this residue co-chromatographs with and is identical in composition to the cys-16 containing peptide.

  18. Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L. plants.

    Science.gov (United States)

    Rodrigues, Silas P; Ventura, José A; Aguilar, Clemente; Nakayasu, Ernesto S; Choi, HyungWon; Sobreira, Tiago J P; Nohara, Lilian L; Wermelinger, Luciana S; Almeida, Igor C; Zingali, Russolina B; Fernandes, Patricia M B

    2012-06-18

    Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers' regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses.

  19. Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L. plants.

    Science.gov (United States)

    Rodrigues, Silas P; Ventura, José A; Aguilar, Clemente; Nakayasu, Ernesto S; Choi, HyungWon; Sobreira, Tiago J P; Nohara, Lilian L; Wermelinger, Luciana S; Almeida, Igor C; Zingali, Russolina B; Fernandes, Patricia M B

    2012-06-18

    Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers' regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses. PMID:22465191

  20. Molecular Biology, Biochemistry and Cellular Physiology of Cysteine Metabolism in Arabidopsis thaliana

    Science.gov (United States)

    Hell, Rüdiger; Wirtz, Markus

    2011-01-01

    Cysteine is one of the most versatile molecules in biology, taking over such different functions as catalysis, structure, regulation and electron transport during evolution. Research on Arabidopsis has contributed decisively to the understanding of cysteine synthesis and its role in the assimilatory pathways of S, N and C in plants. The multimeric cysteine synthase complex is present in the cytosol, plastids and mitochondria and forms the centre of a unique metabolic sensing and signaling system. Its association is reversible, rendering the first enzyme of cysteine synthesis active and the second one inactive, and vice-versa. Complex formation is triggered by the reaction intermediates of cysteine synthesis in response to supply and demand and gives rise to regulation of genes of sulfur metabolism to adjust cellular sulfur homeostasis. Combinations of biochemistry, forward and reverse genetics, structural- and cell-biology approaches using Arabidopsis have revealed new enzyme functions and the unique pattern of spatial distribution of cysteine metabolism in plant cells. These findings place the synthesis of cysteine in the centre of the network of primary metabolism. PMID:22303278

  1. Localization and accessibility of antigenic sites of the extracellular serine proteinase of Lactococcus lactis

    NARCIS (Netherlands)

    Laan, Harm; Kok, Jan; Haandrikman, Alfred J.; Venema, Gerhardus; Konings, Wilhelmus

    1992-01-01

    Lactococcus lactis strains produce an extracellular subtilisin-related serine proteinase in which immunologically different components can be distinguished. Monoclonal antibodies specific for the different proteinase components have been raised and their epitopes were identified. By Western-blot ana

  2. Pregnancy zone protein, a proteinase-binding macroglobulin. Interactions with proteinases and methylamine.

    Science.gov (United States)

    Christensen, U; Simonsen, M; Harrit, N; Sottrup-Jensen, L

    1989-11-28

    Human pregnancy zone protein (PZP) is a major pregnancy-associated plasma protein, strongly related to alpha 2-macroglobulin (alpha 2M). Its properties and its reactions with a number of enzymes, particularly chymotrypsin, and with methylamine have been investigated. It is concluded that native PZP molecules are dimers of disulfide-bridged 180-kDa subunits and that proteinase binding results in covalent 1:1 (tetrameric)PZP-enzyme complexes. Native PZP is unstable, and storage should be avoided, but when kept unfrozen at 0 degree C most PZP preparations stay native 1-3 months. The reaction of PZP with chymotrypsin involves (i) proteolysis of bait regions, (ii) cleavage of beta-cysteinyl-gamma-glutamyl thiol ester groups, (iii) some change of the conformation and quaternary structure of PZP, and (iv) the formation of covalent 1:1 chymotrypsin-PZP(tetramer) complexes in which chymotrypsin is active but shows less activity than free chymotrypsin. The emission spectra of intrinsic fluorescence show significant differences between the PZP-chymotrypsin complex and its native components, whereas no differences are observed between methylamine-reacted PZP and native PZP. Methylamine reacts with the beta-cysteinyl-gamma-glutamyl thiol ester groups of PZP in a second-order process with k = (13.6 +/- 0.5) M-1 s-1, pH 7.6, 25 degrees C. The reaction product is PZP(dimers); no PZP(tetramers) are formed. The proteinase-binding specificity of PZP is far more restricted than that of alpha 2M. Certain chymotrypsin-like and trypsin-like enzymes are bound much less efficiently than is chymotrypsin itself.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Purification and characterization of a proteinase from pineapple fruit, fruit bromelain FA2.

    Science.gov (United States)

    Yamada, F; Takahashi, N; Murachi, T

    1976-06-01

    Fruit bromelain FA2, the main proteinase component of the juice of pineapple fruit, has been purified and characterized. 1. Efficient extraction of this enzyme from the crude material was possible using "Cellulosin AP," a microbial polysaccharidase preparation containing cellulase, hemicellulase, and pectinase. The enzyme was purified mainly by successive applications of anion-exchange chromatography, yielding an apparently homogeneous protein as judged by several physical, chemical, and immunochemical criteria. Properties of FA2 include: molecular weight, 31,000; isoelectric point, pH 4.6; absorbance at 280 nm of a 1% solution at pH 7.0 per cm, 19.2. 2. FA2 gave only alanine phenylthiohydantoin upon amino-terminal group analysis by the Edman procedure. Stepwise degradation yielded the amino-terminal sequence Ala-Val-Pro-Gln-Ser-Ile-Asp-Trp-Arg-Asp-Tyr-Gly-Ala. The amino acid composition of FA2 was not markedly different from that of stem bromelain, except for a much smaller lysine content and a smaller alanine content relative to glycine in FA2. FA2 contained neither amino sugars nor neutral carbohydrates as determined by several methods, so FA2 is not a glycoprotein. 3. By labeling the reactive cysteine residue (CYS) with [14C]iodoacetate, the following partial amino acid sequence has been determined. Asn-Glx-Asn-Pro-Cys-Gly-Ala-CYS.

  4. Isolation and structural analysis of a gene coding for a novel type of aspartic proteinase from buckwheat seed (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Milisavljević Mira Đ.

    2007-01-01

    Full Text Available A novel type of aspartic proteinase gene was isolated from the cDNA library of developing buckwheat seeds. This cDNA, FeAPL1, encoded an AP-like protein lacking the plant-specific insert (PSI domain characteristic of typical plant aspartic proteinases. In addition the corresponding genomic fragment was isolated. It is demonstrated that this gene does not contain introns. Since bioinformatics analysis of the Arabidopsis genome showed that most potential AP genes are intronless and PSI-less, it appears that "atypical" is an inappropriate word for that class of AP. Isolation of this specific buckwheat gene among the small group of those isolated from other plant species provides a new perspective on the diversity of AP family members in plants. .

  5. Multiple pathways for vacuolar sorting of yeast proteinase A

    DEFF Research Database (Denmark)

    Westphal, V; Marcusson, E G; Winther, Jakob R.;

    1996-01-01

    The sorting of the yeast proteases proteinase A and carboxypeptidase Y to the vacuole is a saturable, receptor-mediated process. Information sufficient for vacuolar sorting of the normally secreted protein invertase has in fusion constructs previously been found to reside in the propeptide...

  6. Purification and characterization of major extracellular proteinases from Trichophyton rubrum.

    Science.gov (United States)

    Asahi, M; Lindquist, R; Fukuyama, K; Apodaca, G; Epstein, W L; McKerrow, J H

    1985-11-15

    Two extracellular proteinases that probably play a central role in the metabolism and pathogenesis of the most common dermatophyte of man, Trichophyton rubrum, were purified to homogeneity. Size-exclusion chromatography and Chromatofocusing were used to purify the major proteinases 42-fold from crude fungal culture filtrate. The major enzyme has pI 7.8 and subunit Mr 44 000, but forms a dimer of Mr approx. 90 000 in the absence of reducing agents. A second enzyme with pI 6.5 and subunit Mr 36 000, was also purified. It is very similar in substrate specificity to the major enzyme but has lower specific activity, and may be an autoproteolysis product. The major proteinase has pH optimum 8, a Ca2+-dependence maximum of 1 mM, and was inhibited by serine-proteinase inhibitors, especially tetrapeptidyl chloromethane derivatives with hydrophobic residues at the P-1 site. Kinetic studies also showed that tetrapeptides containing aromatic or hydrophobic residues at P-1 were the best substrates. A kcat./Km of 27 000 M-1 X S-1 was calculated for the peptide 3-carboxypropionyl-Ala-Ala-Pro-Phe-p-nitroanilide. The enzyme has significant activity against keratin, elastin and denatured type I collagen (Azocoll).

  7. Plasma cysteine, cystine, and glutathione in cirrhosis.

    Science.gov (United States)

    Chawla, R K; Lewis, F W; Kutner, M H; Bate, D M; Roy, R G; Rudman, D

    1984-10-01

    Plasma contains three forms of cyst(e)ine: cysteine, cystine, and protein-bound cysteine. The former is a thiol and the latter two are disulfides. The levels of all three types of cyst(e)ine, as well as the cysteinyl tripeptide glutathione, were measured in the plasma of 14 normal and 10 cirrhotic individuals. All subjects ate mixed foods. Some cirrhotic patients were studied during nasogastric hyperalimentation with Vivonex (Norwich Eaton Pharmaceuticals, Norwich, N.Y.) as well as during total parenteral nutrition with FreAmine III (American McGaw, Irvine, Calif.); neither formula contains cyst(e)ine. Regardless of the nature of the diet, cirrhotic patients had significantly subnormal values for cysteine, glutathione, and albumin. In addition, the following significant changes were found to be diet-dependent: (a) elevated methionine during Vivonex, (b) subnormal taurine during mixed foods and total parenteral nutrition, (c) depressed protein-bound cysteine during total parenteral nutrition, (d) depressed cyst(e)ine thiol/disulfide ratio during mixed foods, and (e) depressed total thiol during Vivonex and total parenteral nutrition. The data indicate multiple abnormalities in sulfur metabolism in cirrhosis. PMID:6468868

  8. Functional Characterization of Cucumis metuliferus Proteinase Inhibitor Gene (CmSPI) in Potyviruses Resistance.

    Science.gov (United States)

    Lin, Chia-Wei; Su, Mei-Hsiu; Lin, Yu-Tsung; Chung, Chien-Hung; Ku, Hsin-Mei

    2015-07-01

    Proteinase inhibitors are ubiquitous proteins that block the active center or interact allosterically with proteinases and are involved in plant physiological processes and defense responses to biotic and abiotic stresses. The CmSPI gene identified from Cucumis metuliferus encodes a serine type PI (8 kDa) that belongs to potato I type family. To evaluate the effect of silencing CmSPI gene on Papaya ringspot virus resistance, RNA interference (RNAi) with an inter-space hairpin RNA (ihpRNA) construct was introduced into a PRSV-resistant C. metuliferus line. CmSPI was down-regulated in CmSPI RNAi transgenic lines in which synchronously PRSV symptoms were evident at 21 day post inoculation. Alternatively, heterogeneous expression of CmSPI in Nicotiana benthamiana was also conducted and showed that CmSPI can provide resistance to Potato virus Y, another member of Potyvirus, in transgenic N. benthamiana lines. This study demonstrated that CmSPI plays an important role in resistant function against potyviruses in C. metuliferus and N. benthamiana. PMID:26184285

  9. Functional Characterization of Cucumis metuliferus Proteinase Inhibitor Gene (CmSPI in Potyviruses Resistance

    Directory of Open Access Journals (Sweden)

    Chia-Wei Lin

    2015-07-01

    Full Text Available Proteinase inhibitors are ubiquitous proteins that block the active center or interact allosterically with proteinases and are involved in plant physiological processes and defense responses to biotic and abiotic stresses. The CmSPI gene identified from Cucumis metuliferus encodes a serine type PI (8 kDa that belongs to potato I type family. To evaluate the effect of silencing CmSPI gene on Papaya ringspot virus resistance, RNA interference (RNAi with an inter-space hairpin RNA (ihpRNA construct was introduced into a PRSV-resistant C. metuliferus line. CmSPI was down-regulated in CmSPI RNAi transgenic lines in which synchronously PRSV symptoms were evident at 21 day post inoculation. Alternatively, heterogeneous expression of CmSPI in Nicotiana benthamiana was also conducted and showed that CmSPI can provide resistance to Potato virus Y, another member of Potyvirus, in transgenic N. benthamiana lines. This study demonstrated that CmSPI plays an important role in resistant function against potyviruses in C. metuliferus and N. benthamiana.

  10. Getting a Knack for NAC: N-Acetyl-Cysteine

    OpenAIRE

    Sansone, Randy A.; Sansone, Lori A.

    2011-01-01

    N-acetyl-cysteine, N-acetylcysteine, N-acetyl cysteine, and N-acetyl-L-cysteine are all designations for the same compound, which is abbreviated as NAC. NAC is a precursor to the amino acid cysteine, which ultimately plays two key metabolic roles. Through its metabolic contribution to glutathione production, cysteine participates in the general antioxidant activities of the body. Through its role as a modulator of the glutamatergic system, cysteine influences the reward-reinforcement pathway....

  11. Perspectives of digestive pest control with proteinase inhibitors that mainly affect the trypsin-like activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    M.E. Pereira

    2005-11-01

    Full Text Available The present study describes the main characteristics of the proteolytic activities of the velvetbean caterpillar, Anticarsia gemmatalis Hübner, and their sensitivity to proteinase inhibitors and activators. Midguts of last instar larvae reared on an artificial diet were homogenized in 0.15 M NaCl and centrifuged at 14,000 g for 10 min at 4ºC and the supernatants were used in enzymatic assays at 30ºC, pH 10.0. Basal total proteolytic activity (azocasein hydrolysis was 1.14 ± 0.15 absorbance variation min-1 mg protein-1, at 420 nm; basal trypsin-like activity (N-benzoyl-L-arginine-p-nitroanilide, BApNA, hydrolysis was 0.217 ± 0.02 mmol p-nitroaniline min-1 mg protein-1. The maximum proteolytic activities were observed at pH 10.5 using azocasein and at pH 10.0 using BApNA, this pH being identical to the midgut pH of 10.0. The maximum trypsin-like activity occurred at 50ºC, a temperature that reduces enzyme stability to 80 and 60% of the original, when pre-incubated for 5 and 30 min, respectively. Phenylmethylsulfonyl fluoride inhibited the proteolytic activities with an IC50 of 0.39 mM for azocasein hydrolysis and of 1.35 mM for BApNA hydrolysis. Benzamidine inhibited the hydrolysis with an IC50 of 0.69 and 0.076 mM for azocasein and BApNA, respectively. The absence of cysteine-proteinases is indicated by the fact that 2-mercaptoethanol and L-cysteine did not increase the rate of azocasein hydrolysis. These results demonstrate the presence of serine-proteinases and the predominance of trypsin-like activity in the midgut of Lepidoptera insects, now also detected in A. gemmatalis, and suggest this enzyme as a major target for pest control based on disruption of protein metabolism using proteinase inhibitors.

  12. Cysteine S-conjugate β-lyases

    OpenAIRE

    Arthur J. L. Cooper; Krasnikov, Boris F.; Pinto, John T.; Bruschi, Sam A.

    2010-01-01

    Cysteine S-conjugate β-lyases are pyridoxal 5′-phosphate (PLP)-containing enzymes that catalyze the conversion of cysteine S-conjugates [RSCH2CH(NH3+)CO2−] and selenium Se-conjugates [RSeCH2CH(NH3+)CO2−] that contain a leaving group in the β position to pyruvate, ammonium and a sulfur-containing fragment (RSH) or selenium-containing fragment (RSeH), respectively. At least ten PLP enzymes catalyze β-elimination reactions with such cysteine S-conjugates. All are enzymes involved in amino acid m...

  13. Characterization of a cloned subtilisin-like serine proteinase from a psychrotrophic Vibrio species.

    Science.gov (United States)

    Arnórsdottir, Jóhanna; Smáradóttir, Rúna B; Magnússon, Olafur Th; Thorbjarnardóttir, Sigrídur H; Eggertsson, Gudmundur; Kristjánsson, Magnús M

    2002-11-01

    The gene encoding a subtilisin-like serine proteinase in the psychrotrophic Vibrio sp. PA44 has been successfully cloned, sequenced and expressed in Escherichia coli. The gene is 1593 basepairs and encodes a precursor protein of 530 amino acid residues with a calculated molecular mass of 55.7 kDa. The enzyme is isolated, however, as an active 40.6-kDa proteinase, without a 139 amino acid residue N-terminal prosequence. Under mild conditions the enzyme undergoes a further autocatalytic cleavage to give a 29.7-kDa proteinase that retains full enzymatic activity. The deduced amino acid sequence of the enzyme has high homology to proteinases of the proteinase K family of subtilisin-like proteinases. With respect to the enzyme characteristics compared in this study the properties of the wild-type and recombinant proteinases are the same. Sequence analysis revealed that especially with respect to the thermophilic homologues, aqualysin I from Thermus aquaticus and a proteinase from Thermus strain Rt41A, the cold-adapted Vibrio-proteinase has a higher content of polar/uncharged amino acids, as well as aspartate residues. The thermophilic enzymes had a higher content of arginines, and relatively higher number of hydrophobic amino acids and a higher aliphatic index. These factors may contribute to the adaptation of these proteinases to different temperature conditions.

  14. Long-term cysteine fortification impacts cysteine/glutathione homeostasis and food intake in ageing rats

    OpenAIRE

    Vidal, Karine; Breuille, Denis; Serrant, Patrick; Denis, Philippe; Glomot, Francoise; Bechereau, Fabienne; PAPET, Isabelle

    2014-01-01

    Healthy ageing is associated with higher levels of glutathione. The study aimed to determine whether long-term dietary fortification with cysteine increases cysteine and glutathione pools, thus alleviating age-associated low-grade inflammation and resulting in global physiological benefits. The effect of a 14-week dietary fortification with cysteine was studied in non-inflamed (NI, healthy at baseline) and in spontaneously age-related low-grade inflamed (LGI, prefrail at baseline) 21-month-ol...

  15. Proteinases of Streptomyces fradiae. I. Preliminary characterization and purification.

    Science.gov (United States)

    Galas, E; Kaluzewska, T

    1989-01-01

    A keratinolytic strain of S. fradiae has been shown to synthesize a complex of extracellular proteinases degrading native keratin proteins, elastin and collagen as well as some globular proteins. These enzymes are characterized by basic optimal pH and are inactivated by pheynlmethylsulfonyl fluoride (PMSF). Using preparative polyacrylamide gel electrophoresis, ion-exchange chromatography and affinity chromatography, 6 fractions of active protein of diversified proteolytic activity have been distinguished in the preparation studied.

  16. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Zhen Wang; Jie-Li Mao; Ying-Jun Zhao; Chuan-You Li; Cheng-Bin Xiang

    2015-01-01

    L‐Cysteine plays a prominent role in sulfur metabo-lism of plants. However, its role in root development is largely unknown. Here, we report that L‐cysteine reduces primary root growth in a dosage‐dependent manner. Elevating cel ular L‐cysteine level by exposing Arabidopsis thaliana seedlings to high L‐cysteine, buthionine sulphoximine, or O‐acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cel marker as wel as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L‐cysteine significantly reduces the protein level of two sets of stem cel specific transcription factors PLETHORA1/2 and SCR/SHR. However, L‐cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post‐transcriptional mech-anism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L‐cysteine level acts to maintain root stem cel niche by regulating basal‐and auxin‐induced expression of PLT1/2 and SCR/SHR. L‐Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth.

  17. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin

    2015-02-01

    L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth.

  18. Dispersal of Bap-mediated Staphylococcus aureus biofilm by proteinase K.

    Science.gov (United States)

    Kumar Shukla, Sudhir; Rao, Toleti Subba

    2013-02-01

    The dominant role of biofilm-associated protein (Bap) in Staphylococcus aureus biofilm development prompted us to investigate Bap as a potential target for proteinase-mediated biofilm dispersion. Biofilm assay in microtitre plates showed that proteinase K hampered the early adhesion of cells as well as biofilm development. Proteinase K treatment of 24- and 48-h-old biofilms showed enhanced dispersion of bap-positive S. aureus biofilm; however, proteinase K did not affect the bap-negative S. aureus biofilm. When antibiotics were used in combination with proteinase K, significant enhancement in antibiotic action was noticed against bap-positive S. aureus biofilm. This study establishes that antibiotics in combination with proteinase K can be used for controlling S. aureus biofilms in whose development Bap surface protein has a major role. We propose that Bap protein could be a potential target for therapeutic control of S. aureus infections (for example, bovine mastitis).

  19. Trichoderma harzianum transformant has high extracellular alkaline proteinase expression during specific mycoparasitic interactions

    Directory of Open Access Journals (Sweden)

    Goldman Maria Helena S.

    1998-01-01

    Full Text Available The mycoparasite Trichoderma harzianum produces an alkaline proteinase that may be specifically involved in mycoparasitism. We have constructed transformant strains of this fungus that overexpress this alkaline proteinase. Some of the transformants were assessed for alkaline proteinase activity, and those with higher activity than the wild type were selected for further studies. One of these transformant strains produced an elevated and constitutive pbr1 mRNA level during mycoparasitic interactions with Rhizoctonia solani.

  20. Mechanism of Excretion of a Bacterial Proteinase: Factors Controlling Accumulation of the Extracellular Proteinase of a Sarcina Strain (Coccus P)

    Energy Technology Data Exchange (ETDEWEB)

    BISSELL, MINA J.; TOSI, ROBERTO; GORINI, LUIGI

    1970-06-29

    It has been known that the extracellular proteinase of Coccus P is found only in cultures grown in the presence of Ca{sup 2+}. It is now shown that this cation is required neither for synthesis, excretion, or activation of a zymogen nor as a prosthetic factor necessary for enzymatic activity. The only function of Ca{sup 2+} is to stabilize the active structure of the enzyme molecule, presumably by substituting for absence of S-S bridges. In the absence of Ca{sup 2+} , the excreted proteinase undergoes rapid autodigestion and, instead of the active protein, its hydrolytic products are accumulated in the culture fluid. In minimal medium and under conditions of enzyme stability [presence of Ca{sup 2+} and Ficoll (Pharmacia)], Coccus P accumulates the proteinase at a gradually reduced speed although the rate of cultural growth remains constant. It is shown that this decline in rate of accumulation is caused by the excreted proteinase itself, possibly acting on its own precursor emerging from the cell in a form susceptible to proteolytic attack and not amenable to Ca{sup 2+} protection. A proteinase precursor is actually demonstrable in a calciumless culture at the onset of the enzyme accumulation which follows Ca{sup 2+} addition. It is suggested that excreted proteins require an unfolded (or incompletely folded) structure to cross the cell envelope. The proteinase excreted by a Sarcina strain (Coccus P) is found only in cultures containing Ca{sup 2+} ions (1), a feature common to proteinases of other bacteria (4, 12, 18) and to other excreted enzymes (14). Among the nontoxic divalent cations, Ca{sup 2+} is rather specific in this effect. Other ions such as Mn{sup 2+} or Mg{sup 2+}, the latter being present in all media as an indispensible growth factor, are ineffective. Addition of Ca{sup 2+} to the proteolytically inactive supernatant fluid of a calcium- free culture does not result in the appearance of the missing enzyme activity. The early assumption that Ca{sup 2

  1. A new crystal form of proteinase A, a non-pepsin-type acid proteinase from Aspergillus niger var. macrosporus.

    Science.gov (United States)

    Tanokura, M; Sasaki, H; Muramatsu, T; Iwata, S; Hamaya, T; Takizawa, T; Takahashi, K

    1993-10-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase, whose catalytic residues and mechanism remain to be elucidated. A new form of proteinase A crystals more suitable for crystallography than that obtained previously was prepared from an ammonium sulfate solution at pH 3.5 by the hanging-drop vapor diffusion method. The space group of the crystals was P2(1)2(1)2(1), with unit cell dimensions of a = 69.75 +/- 0.06 A, b = 87.55 +/- 0.05 A, and c = 60.83 +/- 0.04 A. On the assumption of two enzyme molecules per asymmetric unit, the calculated volume to unit protein mass ratio (Vm) was 2.08 A3/Da. By assuming the specific volume to be 0.74 cm3/g, the solvent content (Vso1) was estimated to be 41%, i.e., much larger than that of the crystal form obtained previously at pH 2.0 (Vso1 = 26%). Diffraction data were collected up to a resolution higher than 1.6 A, using the Weissenberg camera for macromolecular crystallography with synchrotron radiation.

  2. Cloning of a serine proteinase inhibitor from bovine brain: expression in the brain and characterization of its target proteinases.

    Science.gov (United States)

    Nakaya, N; Nishibori, M; Kawabata, M; Saeki, K

    1996-12-01

    A cDNA encoding of the serine proteinase inhibitor (serpin), B-43, was cloned from the cDNA library of the bovine brain. It encoded 378 amino acids, and the MW of the protein was estimated to be 42.6 kDa, which is consistent with that of the native B-43 purified from the bovine brain. The homology search revealed that B-43 belongs to the ovalbumin branch of the serpin superfamily. Among them, B-43 was most homologous to human placental thrombin inhibitor (PI-6) and its murine counterpart, with the amino acid identity of 76% and 71%, respectively. Northern blot analysis showed that the size of the transcript was 1.4 kb, and that the expression of B-43 in the bovine brain varied depending on the brain regions, i.e. a lower level of expression was observed in the cerebral cortex and the hippocampus compared to the level of expression that was observed in the medulla oblongata. [35S]-labeled B-43 protein was synthesized in vitro by using a rabbit reticulocyte lysate system, which formed complexes with proteinases such as thrombin, trypsin, alpha-chymotrypsin, and 7S nerve growth factor (NGF), but not with urokinase or plasmin. These results, together with the immunohistochemical localization of B-43 in astrocytes and in some neurons which was observed in the previous study suggest that B-43 may be involved in the regulation of serine proteinases present in the brain or extravasated from the blood.

  3. Co-expression of cystatin inhibitors OCI and OCII in transgenic potato plants alters Colorado potato beetle development

    Science.gov (United States)

    Oryzacystatins I and II (OCI and OCII) show potential for controlling pests that utilize cysteine proteinases for protein digestion. To strengthen individual inhibitory range and achieve an additive effect in the overall efficiency of these proteins against pests, both cystatin genes were co-express...

  4. Reduction of Guanosyl Radical by Cysteine and Cysteine-Glycine Studied by Time-Resolved CIDNP

    NARCIS (Netherlands)

    Morozova, O.B.; Kaptein, R.; Yurkovskaya, A.V.

    2012-01-01

    As a model for chemical DNA repair, reduction of guanosyl radicals in the reaction with cysteine or the dipeptide cysteine-glycine has been studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP). Radicals were generated photochemically by pulsed laser irradiation of a solut

  5. Crystal Structure of Mammalian Cysteine dioxygenase: A Novel Mononuclear Iron Center for Cysteine Thiol Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons,C.; Liu, Q.; Huang, Q.; Hao, Q.; Begley, T.; Karplus, P.; Stipanuk, M.

    2006-01-01

    Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteinesulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or to the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5 Angstroms resolution, and these results confirm the canonical cupin {beta}-sandwich fold and the rare cysteinyl-tyrosine intramolecular crosslink (between Cys93 and Tyr157) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His86, His88, and His140) and a water molecule. Attempts to acquire a structure with bound ligand using either co-crystallization or soaks with cysteine revealed the formation of a mixed disulfide involving Cys164 near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploring the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.

  6. Reconstruction of Cysteine Biosynthesis Using Engineered Cysteine-Free and Methionine-Free Enzymes

    Science.gov (United States)

    Wang, Kendrick; Fujishima, Kosuke; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J.

    2016-01-01

    Ten of the proteinogenic amino acids can be generated abiotically while the remaining thirteen require biology for their synthesis. Paradoxically, the biosynthesis pathways observed in nature require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine. Here, we substituted alternate amino acids for cysteine and also methionine, which is biosynthesized from cysteine, in serine acetyl transferase (CysE) and O-acetylserine sulfhydrylase (CysM). CysE function was rescued by cysteine-and-methionine-free enzymes and CysM function was rescued by cysteine-free enzymes. Structural modeling suggests that methionine stabilizes CysM and is present in the active site of CysM. Cysteine is not conserved among CysE and CysM protein orthologs, suggesting that cysteine is not functionally important for its own synthesis. Engineering biosynthetic enzymes that lack the amino acids being synthesized provides insights into the evolution of amino acid biosynthesis and pathways for bioengineering.

  7. π-Clamp-mediated cysteine conjugation

    Science.gov (United States)

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; van Voorhis, Troy; Pentelute, Bradley L.

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the ‘π-clamp’, that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.

  8. Multifunctional amaranth cystatin inhibits endogenous and digestive insect cysteine endopeptidases: A potential tool to prevent proteolysis and for the control of insect pests.

    Science.gov (United States)

    Valdés-Rodríguez, Silvia; Galván-Ramírez, Juan Pablo; Guerrero-Rangel, Armando; Cedro-Tanda, Alberto

    2015-01-01

    In a previous study, the amaranth cystatin was characterized. This cystatin is believed to provide protection from abiotic stress because its transcription is induced in response to heat, drought, and salinity. It has also been shown that recombinant amaranth cystatin inhibits bromelain, ficin, and cysteine endopeptidases from fungal sources and also inhibits the growth of phytopathogenic fungi. In the present study, evidence is presented regarding the potential function of amaranth cystatin as a regulator of endogenous proteinases and insect digestive proteinases. During amaranth germination and seedling growth, different proteolytic profiles were observed at different pH levels in gelatin-containing SDS-PAGE. Most of the proteolytic enzymes detected at pH 4.5 were mainly inhibited by trans-epoxysuccinyl-leucyl amido(4-guanidino)butane (E-64) and the purified recombinant amaranth cystatin. Furthermore, the recombinant amaranth cystatin was active against insect proteinases. In particular, the E-64-sensitive proteolytic digestive enzymes from Callosobruchus maculatus, Zabrotes subfasciatus, and Acanthoscelides obtectus were inhibited by the amaranth cystatin. Taken together, these results suggest multiple roles for cystatin in amaranth, specifically during germination and seedling growth and in the protection of A. hypochondriacus against insect predation. Amaranth cystatin represents a promising tool for diverse applications in the control of insect pest and for preventing undesirable proteolytic activity. PMID:25345487

  9. Multifunctional amaranth cystatin inhibits endogenous and digestive insect cysteine endopeptidases: A potential tool to prevent proteolysis and for the control of insect pests.

    Science.gov (United States)

    Valdés-Rodríguez, Silvia; Galván-Ramírez, Juan Pablo; Guerrero-Rangel, Armando; Cedro-Tanda, Alberto

    2015-01-01

    In a previous study, the amaranth cystatin was characterized. This cystatin is believed to provide protection from abiotic stress because its transcription is induced in response to heat, drought, and salinity. It has also been shown that recombinant amaranth cystatin inhibits bromelain, ficin, and cysteine endopeptidases from fungal sources and also inhibits the growth of phytopathogenic fungi. In the present study, evidence is presented regarding the potential function of amaranth cystatin as a regulator of endogenous proteinases and insect digestive proteinases. During amaranth germination and seedling growth, different proteolytic profiles were observed at different pH levels in gelatin-containing SDS-PAGE. Most of the proteolytic enzymes detected at pH 4.5 were mainly inhibited by trans-epoxysuccinyl-leucyl amido(4-guanidino)butane (E-64) and the purified recombinant amaranth cystatin. Furthermore, the recombinant amaranth cystatin was active against insect proteinases. In particular, the E-64-sensitive proteolytic digestive enzymes from Callosobruchus maculatus, Zabrotes subfasciatus, and Acanthoscelides obtectus were inhibited by the amaranth cystatin. Taken together, these results suggest multiple roles for cystatin in amaranth, specifically during germination and seedling growth and in the protection of A. hypochondriacus against insect predation. Amaranth cystatin represents a promising tool for diverse applications in the control of insect pest and for preventing undesirable proteolytic activity.

  10. Gelatinases and serine proteinase inhibitors of seminal plasma and the reproductive tract of turkey (Meleagris gallopavo).

    Science.gov (United States)

    Kotłowska, M; Kowalski, R; Glogowski, J; Jankowski, J; Ciereszko, A

    2005-04-01

    This study examined proteolytic enzymes and serine proteinase inhibitors in turkey seminal plasma with relation to their distribution within the reproductive tract and to yellow semen syndrome (YSS). Proteases of blood plasma, extracts from the reproductive tract, and seminal plasma were analyzed by gelatin zymography. We found a clear regional distribution of proteolytic enzymes in the turkey reproductive tract. Each part was characterized by a unique profile of serine proteolytic enzymes of molecular weights ranging from 29 to 88 kDa. The ductus deferens was found to be a site of very intense proteolytic activity. Two metalloproteases of 58 and 66 kDa were detected in all parts of the reproductive tract and seminal plasma. Using electrophoretic methods for detection of anti-trypsin activity, we found three serine proteinase inhibitors in turkey seminal plasma. Two inhibitors were found in the testis and epididymis and a third in the ductus deferens and seminal plasma. Blood plasma was characterized by the presence of two metalloproteinases and one serine proteinase inhibitor (of low migration rate) that were also detected in the reproductive tract. Amidase and anti-trypsin activities (expressed per gram of protein) differed for yellow and white seminal plasma. We concluded that turkey seminal plasma contains metalloproteases, serine proteinases, and serine proteinase inhibitors. The metalloproteases and one proteinase inhibitor are related to blood proteinases but the other two inhibitors and serine proteinases seem to be unique for the reproductive tract.

  11. [Activity of Ca(2+)-dependent neutral proteinases in rat organs under cobalt and mercury chloride injection].

    Science.gov (United States)

    Kaliman, P A; Samokhin, A A; Samokhina, L M

    2003-01-01

    The activity of Ca(2+)-dependent neutral proteinases in rats under cobalt and mercury chloride injection was investigated. The calpains activity increase in the lungs, heart, liver and kidneys was revealed after 2 h cobalt chloride action. The mercury chloride gives a reliable increase of calcium-dependent neutral proteinases only in the kidneys. PMID:14574747

  12. Controlled intracellular proteolysis during postpartal involution of the uterus: characterization and regulation of an alkaline proteinase.

    Science.gov (United States)

    Roth, M; Hoechst, M; Afting, E G

    1981-01-01

    The postpartal involution of the uterus is predominantly due to cellular hypotrophy. This implies an intracellular proteolytic system which must be carefully controlled pre and post partum. We have characterized and partially purified a proteinase with an alkaline pH-optimum of activity and a proteinase inhibitor protein which inhibits this proteinase very strongly. The alkaline proteinase copurifies with the actomyosin complex of the uterine myometrium and degrades the actomyosin complex with a concomitant loss of its myosin-ATPase activity. The alkaline proteinase is a very labile enzyme, markedly sensitive to SH-group modifying agents and has very high molecular weight at the present state of purification. This proteolytic enzyme could specifically be separated from the main components of the actomyosin complex by extraction with low ionic strength phosphate buffers. The proteinase inhibitor protein may control the activity of this alkaline proteinase during pregnancy and involution. The inhibitor protein raises 15-fold during pregnancy, possibly blocks important steps of intracellular proteolysis and permits organ growth. The dramatic fall of the inhibitor protein activity after parturition, which precedes the loss of weight, could release the proteolytic system, including the alkaline proteinase, and permits controlled intracellular degradation.

  13. Effects of cysteine protease inhibitors on oviposition rate of the western flower thrips, Frankliniella occidentalis.

    Science.gov (United States)

    Annadana, S; Peters, J; Gruden, K; Schipper, A; Outchkourov, N S; Beekwilder, M J.; Udayakumar, M; Jongsma, M A.

    2002-07-01

    Proteolytic activity in whole insect extracts of the western flower thrips, Frankliniella occidentalis, was found to belong predominantly to the class of cysteine proteases. The pH optimum of the general proteolytic activity was determined to be 3.5, which is low when compared to other insects using cysteine proteases for protein digestion. The proteinaceous cysteine protease inhibitors chicken cystatin, potato cystatin and sea anemone equistatin inhibited in vitro more than 90% of the protease activity. To test in vivo the biological effect of such inhibitors on the oviposition rate of western flower thrips, recombinant potato cystatin and equistatin were fed to adult females. A gradual reduction in oviposition rate to about 45% of control was observed when reared on these PIs for a period of 5 days, with no increase in mortality. These results are discussed in the light of the application of protease inhibitors in transgenic plants to control this insect pest.

  14. Hieronymain I, a new cysteine peptidase isolated from unripe fruits of Bromelia hieronymi Mez (Bromeliaceae).

    Science.gov (United States)

    Bruno, Mariela A; Pardo, Marcelo F; Caffini, Néstor O; López, Laura M I

    2003-02-01

    A new peptidase, named hieronymain I, was purified to homogeneity from unripe fruits of Bromelia hieronymi Mez (Bromeliaceae) by acetone fractionation followed by cation exchange chromatography (FPLC) on CM-Sepharose FF. Homogeneity of the enzyme was confirmed by mass spectroscopy (MALDI-TOF), isoelectric focusing, and SDS-PAGE. Hieronymain is a basic peptidase (pI > 9.3) and its molecular mass was 24,066 Da. Maximum proteolytic activity on casein (>90% of maximum activity) was achieved at pH 8.5-9.5. The enzyme was completely inhibited by E-64 and iodoacetic acid and activated by the addition of cysteine; these results strongly suggest that the isolated protease should be included within the cysteine group. The N-terminal sequence of hieronymain (ALPESIDWRAKGAVTEVKRQDG) was compared with 25 plant cysteine proteases that showed more than 50% of identity.

  15. Serpins in plants and green algae

    DEFF Research Database (Denmark)

    Roberts, Thomas Hugh; Hejgaard, Jørn

    2008-01-01

    . Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors...... of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting...

  16. Cysteine biosynthesis, in concert with a novel mechanism, contributes to sulfide detoxification in mitochondria of Arabidopsis thaliana

    NARCIS (Netherlands)

    Birke, Hannah; Haas, Florian H.; De Kok, Luit J.; Balk, Janneke; Wirtz, Markus; Hell, Ruediger

    2012-01-01

    In higher plants, biosynthesis of cysteine is catalysed by OAS-TL [O-acetylserine(thiol)lyase], which replaces the activated acetyl group of O-acetylserine with sulfide. The enzyme is present in cytosol, plastids and mitochondria of plant cells. The sole knockout of mitochondrial OAS-TL activity (oa

  17. The role of compartment-specific cysteine synthesis for sulfur homeostatis during H2S exposure in Arabidopsis

    NARCIS (Netherlands)

    Birke, Hannah; De Kok, Luit J.; Wirtz, M; Hell, R

    2015-01-01

    Sulfide is the end-product of assimilatory sulfate reduction in chloroplasts. It is then used by O-acetylserine(thiol)lyase (OAS-TL) to produce cysteine, the source of reduced sulfur in plants. While its formation in chloroplasts is essential for plant metabolism, sulfide is also a potent toxin main

  18. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  19. Structure and mechanism of mouse cysteine dioxygenase

    Science.gov (United States)

    McCoy, Jason G.; Bailey, Lucas J.; Bitto, Eduard; Bingman, Craig A.; Aceti, David J.; Fox, Brian G.; Phillips, George N.

    2006-01-01

    Cysteine dioxygenase (CDO) catalyzes the oxidation of l-cysteine to cysteine sulfinic acid. Deficiencies in this enzyme have been linked to autoimmune diseases and neurological disorders. The x-ray crystal structure of CDO from Mus musculus was solved to a nominal resolution of 1.75 Å. The sequence is 91% identical to that of a human homolog. The structure reveals that CDO adopts the typical β-barrel fold of the cupin superfamily. The NE2 atoms of His-86, -88, and -140 provide the metal binding site. The structure further revealed a covalent linkage between the side chains of Cys-93 and Tyr-157, the cysteine of which is conserved only in eukaryotic proteins. Metal analysis showed that the recombinant enzyme contained a mixture of iron, nickel, and zinc, with increased iron content associated with increased catalytic activity. Details of the predicted active site are used to present and discuss a plausible mechanism of action for the enzyme. PMID:16492780

  20. Characterization of the Cysteine Content in Proteins Utilizing Cysteine Selenylation with 266 nm Ultraviolet Photodissociation (UVPD)

    Science.gov (United States)

    Parker, W. Ryan; Brodbelt, Jennifer S.

    2016-08-01

    Characterization of the cysteine content of proteins is a key aspect of proteomics. By defining both the total number of cysteines and their bound/unbound state, the number of candidate proteins considered in database searches is significantly constrained. Herein we present a methodology that utilizes 266 nm UVPD to count the number of free and bound cysteines in intact proteins. In order to attain this goal, proteins were derivatized with N-(phenylseleno)phthalimide (NPSP) to install a selectively cleavable Se-S bond upon 266 UVPD. The number of Se-S bonds cleaved upon UVPD, a process that releases SePh moieties, corresponds to the number of cysteine residues per protein.

  1. Salicylic acid and cysteine contribute to arbutin-induced alleviation of angular leaf spot disease development in cucumber.

    Science.gov (United States)

    Kuźniak, Elżbieta; Wielanek, Marzena; Chwatko, Grażyna; Głowacki, Rafał; Libik-Konieczny, Marta; Piątek, Milena; Gajewska, Ewa; Skłodowska, Maria

    2015-06-01

    Arbutin induced suppression of angular leaf spot disease in cucumber resulting from lower populations of Pseudomonas syringae pv lachrymans in the infected tissues. This study provides insight into mechanisms that may potentially account for this effect. In the absence of the pathogen, exogenous arbutin-induced expression of PR1, the marker of salicylic acid signaling, increased the content of salicylic acid and modulated the cysteine pool. This suggested that arbutin promoted cucumber plants to a "primed" state. When challenged with the pathogen, the arbutin-treated plants showed strongly reduced infection symptoms 7 days after inoculation. At this time point, they were characterized by higher contents of free and protein-bound cysteine due to higher cysteine biosynthetic capacity related to increased activities of serine acetyltransferase and cysteine synthase when compared with plants infected without arbutin treatment. Moreover, in the arbutin-treated and infected plants the contents of free salicylic acid and its conjugates were also increased, partly owing to its biosynthesis via the phenylpropanoid pathway. We suggest that arbutin-induced abrogation of angular leaf spot disease in cucumber could be mediated by salicylic acid and cysteine-based signaling. PMID:25955697

  2. Salicylic acid and cysteine contribute to arbutin-induced alleviation of angular leaf spot disease development in cucumber.

    Science.gov (United States)

    Kuźniak, Elżbieta; Wielanek, Marzena; Chwatko, Grażyna; Głowacki, Rafał; Libik-Konieczny, Marta; Piątek, Milena; Gajewska, Ewa; Skłodowska, Maria

    2015-06-01

    Arbutin induced suppression of angular leaf spot disease in cucumber resulting from lower populations of Pseudomonas syringae pv lachrymans in the infected tissues. This study provides insight into mechanisms that may potentially account for this effect. In the absence of the pathogen, exogenous arbutin-induced expression of PR1, the marker of salicylic acid signaling, increased the content of salicylic acid and modulated the cysteine pool. This suggested that arbutin promoted cucumber plants to a "primed" state. When challenged with the pathogen, the arbutin-treated plants showed strongly reduced infection symptoms 7 days after inoculation. At this time point, they were characterized by higher contents of free and protein-bound cysteine due to higher cysteine biosynthetic capacity related to increased activities of serine acetyltransferase and cysteine synthase when compared with plants infected without arbutin treatment. Moreover, in the arbutin-treated and infected plants the contents of free salicylic acid and its conjugates were also increased, partly owing to its biosynthesis via the phenylpropanoid pathway. We suggest that arbutin-induced abrogation of angular leaf spot disease in cucumber could be mediated by salicylic acid and cysteine-based signaling.

  3. Selectively colorimetric detection of cysteine with triangular silver nanoprisms

    Institute of Scientific and Technical Information of China (English)

    Tong Wu; Yuan Fang Li; Cheng Zhi Huang

    2009-01-01

    Triangular silver nanoprisms were prepared and applied to make colorimetric detection of cysteine based on our findings that cysteine could lead to the blue shift of the dipole plasmon resonance absorption,but other 19 kinds of natural amino acids could not.Cysteine with a concentration 160 nmol/L can result in a color change that can be discerned with naked eyes.

  4. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Dutta

    2015-04-01

    Full Text Available Root-knot nematodes (Meloidogyne incognita cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco and soybean that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1, was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60-80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants.

  5. In vivo and in vitro effect of Acacia nilotica seed proteinase inhibitors on Helicoverpa armigera (Hübner) larvae

    Indian Academy of Sciences (India)

    S Ramesh Babu; B Subrahmanyam; Srinivasan; I M Santha

    2012-06-01

    Acacia nilotica proteinase inhibitor (AnPI) was isolated by ammonium sulphate precipitation followed by chromatography on DEAE-Sephadex A-25 and resulted in a purification of 10.68-fold with a 19.5% yield. Electrophoretic analysis of purified AnPI protein resolved into a single band with molecular weight of approximately 18.6+1.00 kDa. AnPI had high stability at different pH values (2.0 to 10.0) except at pH 5.0 and are thermolabile beyond 80°C for 10 min. AnPI exhibited effective against total proteolytic activity and trypsin-like activity, but did not show any inhibitory effect on chymotrypsin activity of midgut of Helicoverpa armigera. The inhibition kinetics studies against H. armigera gut trypsin are of non-competitive type. AnPI had low affinity for H. armigera gut trypsin when compared to SBTI. The partially purified and purified PI proteins-incorporated test diets showed significant reduction in mean larval and pupal weight of H. armigera. The results provide important clues in designing strategies by using the proteinase inhibitors (PIs) from the A. nilotica that can be expressed in genetically engineered plants to confer resistance to H. armigera.

  6. [Phospholipase, proteinase and hemolytic activities of Candida albicans isolates obtained from clinical specimens].

    Science.gov (United States)

    Yenişehirli, Gülgün; Bulut, Yunus; Tunçoglu, Ebru

    2010-01-01

    This study was aimed to determine the phospholipase, proteinase and hemolytic activities of Candida albicans strains isolated from clinical specimens. A total of 147 C. albicans strains isolated from blood (n = 29), respiratory specimens (n = 44), urine (n = 52), pus (n = 17) and stool (n = 5) were included in the study. Proteinase and phospholipase activities were determined in 81% and 76% of C. albicans isolates, respectively. All C. albicans isolates revealed beta-hemolytic activity on Sabouraud dextrose agar supplemented with 7% fresh sheep blood and 3% glucose. Phospholipase and proteinase positivity were highest among the respiratory isolates. Proteinase activity of respiratory (93%) and blood (83%) isolates were statistically significantly higher than that of urine (77%; p = 0.032), pus (65%; p = 0.007) and stool isolates (60%; p = 0.026). While phospholipase activity showed statistically significant difference between respiratory (84%) and pus (53%) isolates (p = 0.014), no statistically significant difference was determined for blood (79%), urine (75%) and stool (80%) isolates (p > 0.05). Two blood isolates with 4+ proteinase activity and 3 urine isolates with 3+ proteinase activity were phospholipase negative. One urine isolate with 4+ phospholipase activity and 4 with 3+ phospholipase activity were proteinase negative. Phospholipase and proteinase negative 1 isolate from stool and 1 isolate from pus were found to have 4+ hemolytic activity. In conclusion, besides proteinase and phospholipase enzyme activities, hemolytic activity may play an important role for the C.albicans infections. The pathogenetic role of these virulence factors should be evaluated by further clinical studies.

  7. [Growth-inhibitory activity of Cladosporium cladosporioides by cysteine].

    Science.gov (United States)

    Watanabe, Toshihiko; Ueno, Yukihiro; Ogasawara, Ayako; Mikami, Takeshi; Matsumoto, Tatsuji

    2007-07-01

    When Cladosporium cladosporioides was cultured with cysteine, its growth was completely inhibited statically. The growth of C. cladosporioides cultured on potato-dextrose agar plates was also inhibited by the addition of cysteine. The production of ATP in C. cladosporioides was inhibited by cysteine. When a silicone block was incubated with C. cladosporioides, the surface of the block was coated with the biofilm of C. cladosporioides. However, the block containing cysteine was not covered with biofilm. These results indicate that cysteine is useful as a material to prevent the growth of C. cladosporioides.

  8. Proteinase K processing of rabbit muscle creatine kinase

    DEFF Research Database (Denmark)

    Leydier, C; Andersen, Jens S.; Couthon, F;

    1997-01-01

    Proteinase K cleaves selectively both cytosolic and mitochondrial isoforms of creatine kinase leading to the appearance of two fragments, a large N-terminal one (K1) and a small C-terminal peptide (K2) which remain associated together. The loss of enzymatic activity correlates with the extent...... of monomer cleavage. N-terminal sequencing of the K2 fragments from rabbit cytosolic and pig mitochondrial creatine kinase shows that these peptides begin with A328 and A324, respectively. Electrospray ionization mass spectrometry demonstrates that K2 peptide is composed of 53 residues (A328-K380). However......, the C-terminal end of the K1 fragment is not A327 as expected, but D325. Thus, the amino acids residues T326 and A327 have been eliminated by the protease....

  9. Purification and Characterization of an Extracellular Proteinase from Brevibacterium linens ATCC 9174

    OpenAIRE

    Rattray, F P; Bockelmann, W; Fox, P. F.

    1995-01-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8.5 and 50(deg)C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 126 kDa by gel filtration, indicating that the native enzyme exists as a dimer. Mg(sup2+) and Ca(sup2+) activated the proteinase, as did NaCl; however, Hg(sup2+), Fe(sup2+), and Zn(sup2+) caused strong i...

  10. Purification and Characterization of an Extracellular Proteinase from Brevibacterium-Linens ATCC-9174

    DEFF Research Database (Denmark)

    Rattray, F P; Bockelmann, W; Fox, P F

    1995-01-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8,5 and 50 degrees C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis...... and 126 kDa by gel filtration, indicating that the native enzyme exists as a dimer. Mg2+ and Ca2+ activated the proteinase, as did NaCl; however, Hg2+ Fe2+, and Zn2+ caused strong inhibition. The sequence of the first 20 N-terminal amino acids was NH2-Ala-Lys- Asn...

  11. Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume.

    Science.gov (United States)

    Tabe, Linda; Wirtz, Markus; Molvig, Lisa; Droux, Michel; Hell, Ruediger

    2010-03-01

    There have been many attempts to increase concentrations of the nutritionally essential sulphur amino acids by modifying their biosynthetic pathway in leaves of transgenic plants. This report describes the first modification of cysteine biosynthesis in developing seeds; those of the grain legume, narrow leaf lupin (Lupinus angustifolius, L.). Expression in developing lupin embryos of a serine acetyltransferase (SAT) from Arabidopsis thaliana (AtSAT1 or AtSerat 2;1) was associated with increases of up to 5-fold in the concentrations of O-acetylserine (OAS), the immediate product of SAT, and up to 26-fold in free cysteine, resulting in some of the highest in vivo concentrations of these metabolites yet reported. Despite the dramatic changes in free cysteine in developing embryos of SAT overexpressers, concentrations of free methionine in developing embryos, and the total cysteine and methionine concentrations in mature seeds were not significantly altered. Pooled F(2) seeds segregating for the SAT transgene and for a transgene encoding a methionine- and cysteine-rich sunflower seed storage protein also had increased OAS and free cysteine, but not free methionine, during development, and no increase in mature seed total sulphur amino acids compared with controls lacking SAT overexpression. The data support the view that the cysteine biosynthetic pathway is active in developing seeds, and indicate that SAT activity limits cysteine biosynthesis, but that cysteine supply is not limiting for methionine biosynthesis or for storage protein synthesis in maturing lupin embryos in conditions of adequate sulphur nutrition. OAS and free methionine, but not free cysteine, were implicated as signalling metabolites controlling expression of a gene for a cysteine-rich seed storage protein. PMID:19939888

  12. Kinetics and mechanism of proteinase-binding of pregnancy zone protein (PZP). Appearance of sulfhydryl groups in reactions with proteinases.

    Science.gov (United States)

    Christensen, U; Sottrup-Jensen, L; Simonsen, M

    1992-01-01

    Proteinase binding by pregnancy zone protein (PZP), an alpha-macroglobulin involves bait region cleavages, association of dimeric-PZP into tetrameric and reaction of internal gamma-glutamyl-beta-cysteinyl thiol esters of PZP with proteinase side chains. The product is an equimolar enzyme-PZP(tetramer) covalently linked complex with four free sulfhydryl groups. The kinetics of the appearances of sulfhydryl groups during the reaction of PZP with chymotrypsin has been investigated using stopped-flow and conventional mixing techniques over a broad concentration range. Thiol ester cleavages followed double exponential decays corresponding with two steps. The faster one resulted in the appearance of three sulfhydryl groups with an observed rate constant, k(obs) = k1.1 + k1.2 delta E, dependent on the excess concentration of chymotrypsin, delta E, and k1.1 = 0.03 s-1 and k1.2 = 4 x 10(4) M-1 s-1. The last sulfhydryl group appeared in a slower step, with similar concentration dependence and k2.1 approximately 0.003 s-1 and k2.2 approximately 5 x 10(3) M-1s-1. Covalent binding of the enzyme apparently was simultaneous with the faster thiol ester cleavage step. Based on these and previous results a model of the reaction mechanism of the proteinase binding reaction of PZP is proposed. It consists of four major steps: (i) Bait region cleavage of PZP-dimers by the enzyme, (ii) fast association of enzyme-PZP(dimer) species with native PZP or with another enzyme-PZP(dimer) compound resulting in release of one of the associated enzyme molecules (iii) reaction of an average of three thiol esters of the enzyme-PZP(tetramer) intermediate with the associated internal enzyme molecule or with an external one. In this step one enzyme molecule becomes covalently linked to the PZP-(tetramer), three sulfhydryl groups appear and the enzymic activity of the bound enzyme molecule decreases to the level of that of the final complex. (iv) Hydrolysis of the last thiol ester and in the presence of

  13. Primary hepatocytes from mice lacking cysteine dioxygenase show increased cysteine concentrations and higher rates of metabolism of cysteine to hydrogen sulfide and thiosulfate.

    Science.gov (United States)

    Jurkowska, Halina; Roman, Heather B; Hirschberger, Lawrence L; Sasakura, Kiyoshi; Nagano, Tetsuo; Hanaoka, Kenjiro; Krijt, Jakub; Stipanuk, Martha H

    2014-05-01

    The oxidation of cysteine in mammalian cells occurs by two routes: a highly regulated direct oxidation pathway in which the first step is catalyzed by cysteine dioxygenase (CDO) and by desulfhydration-oxidation pathways in which the sulfur is released in a reduced oxidation state. To assess the effect of a lack of CDO on production of hydrogen sulfide (H2S) and thiosulfate (an intermediate in the oxidation of H2S to sulfate) and to explore the roles of both cystathionine γ-lyase (CTH) and cystathionine β-synthase (CBS) in cysteine desulfhydration by liver, we investigated the metabolism of cysteine in hepatocytes isolated from Cdo1-null and wild-type mice. Hepatocytes from Cdo1-null mice produced more H2S and thiosulfate than did hepatocytes from wild-type mice. The greater flux of cysteine through the cysteine desulfhydration reactions catalyzed by CTH and CBS in hepatocytes from Cdo1-null mice appeared to be the consequence of their higher cysteine levels, which were due to the lack of CDO and hence lack of catabolism of cysteine by the cysteinesulfinate-dependent pathways. Both CBS and CTH appeared to contribute substantially to cysteine desulfhydration, with estimates of 56 % by CBS and 44 % by CTH in hepatocytes from wild-type mice, and 63 % by CBS and 37 % by CTH in hepatocytes from Cdo1-null mice.

  14. Crystallization and preliminary X-ray investigation of proteinase A, a non-pepsin-type acid proteinase from Aspergillus niger var. macrosporus.

    Science.gov (United States)

    Tanokura, M; Matsuzaki, H; Iwata, S; Nakagawa, A; Hamaya, T; Takizawa, T; Takahashi, K

    1992-01-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase distinctly different in various properties from the family of pepsin-type aspartic proteinases, and so far it remains unknown which residues participate in the catalysis of the enzyme and how the mechanism operates. The acid proteinase A was crystallized from an ammonium sulfate solution by the hanging-drop vapor diffusion method. The space group of the crystals was P2(1)2(1)2(1) with unit cell dimensions of a = 54.7 A, b = 70.4 A and c = 38.0 A. On the assumption that there is one enzyme molecule in the asymmetric unit, the calculated ratio of volume to unit protein mass (Vm) was 1.64 A3 per dalton. Diffraction data were collected up to a resolution higher than 1.5 A, using the Weissenberg camera for macromolecular crystallography with synchrotron radiation. The crystal of proteinase A is, therefore, suitable for the structural analysis with a high resolution.

  15. Implantation serine proteinase 2 is a monomeric enzyme with mixed serine proteolytic activity and can silence signalling via proteinase activated receptors.

    Science.gov (United States)

    Sharma, Navneet; Fahr, Jochen; Renaux, Bernard; Saifeddine, Mahmoud; Kumar, Rajeev; Nishikawa, Sandra; Mihara, Koichiro; Ramachandran, Rithwik; Hollenberg, Morley D; Rancourt, Derrick E

    2013-12-01

    Implantation serine proteinase 2 (ISP2), a S1 family serine proteinase, is known for its role in the critical processes of embryo hatching and implantation in the mouse uterus. Native implantation serine proteinases (ISPs) are co-expressed and co-exist as heterodimers in uterine and blastocyst tissues. The ISP1-ISP2 enzyme complex shows trypsin-like substrate specificity. In contrast, we found that ISP2, isolated as a 34 kDa monomer from a Pichia pastoris expression system, exhibited a mixed serine proteolytic substrate specificity, as determined by a phage display peptide cleavage approach and verified by the in vitro cleavage of synthetic peptides. Based upon the peptide sequence substrate selectivity, a database search identified many potential ISP2 targets of physiological relevance, including the proteinase activated receptor 2 (PAR2). The in vitro cleavage studies with PAR2-derived peptides confirmed the mixed substrate specificity of ISP2. Treatment of cell lines expressing proteinase-activated receptors (PARs) 1, 2, and 4 with ISP2 prevented receptor activation by either thrombin (PARs 1 and 4) or trypsin (PAR2). The disarming and silencing of PARs by ISP2 may play a role in successful embryo implantation.

  16. The pep4 gene encoding proteinase A is involved in dimorphism and pathogenesis of Ustilago maydis.

    Science.gov (United States)

    Soberanes-Gutiérrez, Cinthia V; Juárez-Montiel, Margarita; Olguín-Rodríguez, Omar; Hernández-Rodríguez, César; Ruiz-Herrera, José; Villa-Tanaca, Lourdes

    2015-10-01

    Vacuole proteases have important functions in different physiological processes in fungi. Taking this aspect into consideration, and as a continuation of our studies on the analysis of the proteolytic system of Ustilago maydis, a phytopathogenic member of the Basidiomycota, we have analysed the role of the pep4 gene encoding the vacuolar acid proteinase PrA in the pathogenesis and morphogenesis of the fungus. After confirmation of the location of the protease in the vacuole using fluorescent probes, we obtained deletion mutants of the gene in sexually compatible strains of U. maydis (FB1 and FB2), and analysed their phenotypes. It was observed that the yeast to mycelium dimorphic transition induced by a pH change in the medium, or the use of a fatty acid as sole carbon source, was severely reduced in Δpep4 mutants. In addition, the virulence of the mutants in maize seedlings was reduced, as revealed by the lower proportion of plants infected and the reduction in size of the tumours induced by the pathogen, when compared with wild-type strains. All of these phenotypic alterations were reversed by complementation of the mutant strains with the wild-type gene. These results provide evidence of the importance of the pep4 gene for the morphogenesis and virulence of U. maydis.

  17. C1A cysteine protease-cystatin interactions in leaf senescence.

    Science.gov (United States)

    Díaz-Mendoza, Mercedes; Velasco-Arroyo, Blanca; González-Melendi, Pablo; Martínez, Manuel; Díaz, Isabel

    2014-07-01

    Senescence-associated proteolysis in plants is a crucial process to relocalize nutrients from leaves to growing or storage tissues. The massive net degradation of proteins involves broad metabolic networks, different subcellular compartments, and several types of proteases and regulators. C1A cysteine proteases, grouped as cathepsin L-, B-, H-, and F-like according to their gene structures and phylogenetic relationships, are the most abundant enzymes responsible for the proteolytic activity during leaf senescence. Besides, cystatins as specific modulators of C1A peptidase activities exert a complex regulatory role in this physiological process. This overview article covers the most recent information on C1A proteases in leaf senescence in different plant species. Particularly, it is focussed on barley, as the unique species where the whole gene family members of C1A cysteine proteases and cystatins have been analysed.

  18. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K

    OpenAIRE

    Peng Sang; Qiong Yang; Xing Du; Nan Yang; Li-Quan Yang; Xing-Lai Ji; Yun-Xin Fu; Zhao-Hui Meng; Shu-Qun Liu

    2016-01-01

    To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD) simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K) have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy la...

  19. Sap6, a secreted aspartyl proteinase, participates in maintenance the cell surface integrity of Candida albicans

    OpenAIRE

    Buu, Leh-Miauh; Chen, Yee-Chun

    2013-01-01

    Background The polymorphic species Candida albicans is the major cause of candidiasis in humans. The secreted aspartyl proteinases (Saps) of C. albicans, encoded by a family of 10 SAP genes, have been investigated as the virulent factors during candidiasis. However, the biological functions of most Sap proteins are still uncertain. In this study, we applied co-culture system of C. albicans and THP-1 human monocytes to explore the pathogenic roles and biological functions of Sap proteinases. R...

  20. Biodistribution, pharmacokinetics and toxicity of a Vasconcellea cundinamarcensis proteinase fraction with pharmacological activity

    Directory of Open Access Journals (Sweden)

    Fernanda O. Lemos

    2016-02-01

    Full Text Available Abstract Prior studies demonstrate that a proteinase fraction from Vasconcellea cundinamarcensis V.M. Badillo, Caricaceae, exhibits wound healing activity in gastric and cutaneous models and antitumoral/antimetastatic effects. Here, we present the toxicity, pharmacokinetics and biodistribution data for this proteinase fraction following a single dose into Swiss mice by i.v., s.c. or p.o. routes. The i.v. and s.c. toxicity assays demonstrate that proteinase fraction at ≤20 mg/kg is non-lethal after single injection, while parental administration (p.o. of ≤300 mg/kg does not cause death. Based on p.o. acute toxicity dose using Organisation for Economic Cooperation and Development protocols, proteinase fraction ranks as Class IV “harmful” substance. Proteinase fraction shows high uptake determined as Kp (distribution tissue/blood in organs linked to metabolism and excretion. Also, high bioavailability (≈100% was observed by s.c. administration. The blood contents following i.v. dose fits into a pharmacokinetic bi-compartmental model, consisting of high removal constants – kel 0.22 h−1 and kd 2.32 h−1and a half-life – t½ = 3.13 h. The Ames test of proteinase fraction (0.01–1% demonstrates absence of mutagenic activity. Likewise, genotoxic evaluation of proteinase fraction (5 or 10 mg/kg, i.p. shows no influence in micronuclei frequency. In conclusion, the acute doses for proteinase fraction lack mutagenic and genotoxic activity, clearing the way for clinical assays.

  1. Neutrophil-derived Oxidants and Proteinases as Immunomodulatory Mediators in Inflammation

    OpenAIRE

    V. Witko-Sarsat; B. Descamps-Latscha

    1994-01-01

    Neutrophils generate potent microbicidal molecules via the oxygen-dependent pathway, leading to the generation of reactive oxygen intermediates (ROI), and via the non-oxygen dependent pathway, consisting in the release of serine proteinases and metalloproteinases stored in granules. Over the past years, the concept has emerged that both ROI and proteinases can be viewed as mediators able to modulate neutrophil responses as well as the whole inflammatory process. This is w...

  2. TcCYPR04, a Cacao Papain-Like Cysteine-Protease Detected in Senescent and Necrotic Tissues Interacts with a Cystatin TcCYS4

    OpenAIRE

    Thyago Hermylly Santana Cardoso; Ana Camila Oliveira Freitas; Bruno Silva Andrade; Aurizangela Oliveira de Sousa; André da Silva Santiago; Daniela Martins Koop; Karina Peres Gramacho; Fátima Cerqueira Alvim; Fabienne Micheli; Carlos Priminho Pirovani

    2015-01-01

    The interaction amongst papain-like cysteine-proteases (PLCP) and their substrates and inhibitors, such as cystatins, can be perceived as part of the molecular battlefield in plant-pathogen interaction. In cacao, four cystatins were identified and characterized by our group. We identified 448 proteases in cacao genome, whereof 134 were cysteine-proteases. We expressed in Escherichia coli a PLCP from cacao, named TcCYSPR04. Immunoblottings with anti-TcCYSPR04 exhibited protein increases during...

  3. Modulation of ion transport across rat distal colon by cysteine

    Directory of Open Access Journals (Sweden)

    Martin eDiener

    2012-03-01

    Full Text Available The aim of this study was to identify the actions of stimulation of endogenous production of H2S by cysteine, the substrate for the two H2S-producing enzymes, cystathionin-beta-synthase and cystathionin-gamma-lyase, on ion transport across rat distal colon. Changes in short-circuit current (Isc induced by cysteine were measured in Ussing chambers. Free cysteine caused a concentration-dependent, transient fall in Isc, which was sensitive to amino-oxyacetate and beta-cyano-L-alanine, i.e. inhibitors of H2S-producing enzymes. In contrast, Na cysteinate evoked a biphasic change in Isc, i.e. an initial fall followed by a secondary increase, which was also reduced by these enzyme inhibitors. All responses were dependent on the presence of Cl- and inhibited by bumetanide, suggesting that free cysteine induces an inhibition of transcellular Cl- secretion, whereas Na cysteinate – after a transient inhibitory phase – activates anion secretion. The assumed reason for this discrepancy is a fall in the cytosolic pH induced by free cysteine, but not by Na cysteinate, as observed in isolated colonic crypts loaded with the pH-sensitive dye, BCECF. Intracellular acidification is known to inhibit epithelial K+ channels. Indeed, after preinhibition of basolateral K+ channels with tetrapentylammonium or Ba2+, the negative Isc induced by free cysteine was reduced significantly. In consequence, stimulation of endogenous H2S production by Na cysteinate causes, after a short inhibitory response, a delayed activation of anion secretion, which is missing in the case of free cysteine, probably due to the cytosolic acidification. In contrast, diallyl trisulfide, which is intracellularly converted to H2S, only evoked a monophasic increase in Isc without the initial fall observed with Na cysteinate. Consequently, time course and amount of produced H2S seem to strongly influence the functional response of the colonic epithelium evoked by this gasotransmitter.

  4. Two pathways for cysteine biosynthesis in Leishmania major

    OpenAIRE

    Williams, Roderick A. M.; Westrop, Gareth D.; Coombs, Graham H.

    2009-01-01

    Abstract Genome mining and biochemical analyses have shown that L. major possesses two pathways for cysteine synthesis - the de novo biosynthesis pathway comprising serine acetyltransferase (SAT) and cysteine synthase (CS) and the reverse transsulfuration (RTS) pathway comprising cystathionine ?-synthase (CBS) and cystathionine gamma-lyase (CGL). The L. major CS (LmjCS) is similar to the type A CSs of bacteria and catalyses the synthesis of cysteine using O-acetyserine and sulfide...

  5. Cysteine-containing peptides having antioxidant properties

    Science.gov (United States)

    Bielicki, John K.

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  6. The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis.

    Science.gov (United States)

    Beers, Eric P; Jones, Alan M; Dickerman, Allan W

    2004-01-01

    The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by plant proteases. Recent indications that the 26S proteasome, a T1 family-threonine protease, is a regulator of light and hormone responsive signal transduction highlight the potential of proteases to participate in many aspects of plant growth and development. Recent discoveries that proteases are required for stomatal distribution, embryo development and disease resistance point to wider roles for four additional multigene families that include some of the most frequently studied (yet poorly understood) plant proteases: the subtilisin-like, serine proteases (family S8), the papain-like, cysteine proteases (family C1A), the pepsin-like, aspartic proteases (family A1) and the plant matrixin, metalloproteases (family M10A). In this report, 54 subtilisin-like, 30 papain-like and 59 pepsin-like proteases from Arabidopsis, are compared with S8, C1A and A1 proteases known from other plant species at the functional, phylogenetic and gene structure levels. Examples of structural conservation between S8, C1A and A1 genes from rice, barley, tomato and soybean and those from Arabidopsis are noted, indicating that some common, essential plant protease roles were established before the divergence of monocots and eudicots. Numerous examples of tandem duplications of protease genes and evidence for a variety of restricted expression patterns suggest that a high degree of specialization exists among proteases within each family. We propose that comprehensive analysis of the functions of these genes in Arabidopsis will firmly establish serine, cysteine and aspartic proteases as regulators and effectors of a wide range of plant processes.

  7. Cysteine-reactive covalent capture tags for enrichment of cysteine-containing peptides.

    Science.gov (United States)

    Giron, Priscille; Dayon, Loïc; Mihala, Nikolett; Sanchez, Jean-Charles; Rose, Keith

    2009-11-01

    Considering the tremendous complexity and the wide dynamic range of protein samples from biological origin and their proteolytic peptide mixtures, proteomics largely requires simplification strategies. One common approach to reduce sample complexity is to target a particular amino acid in proteins or peptides, such as cysteine (Cys), with chemical tags in order to reduce the analysis to a subset of the whole proteome. The present work describes the synthesis and the use of two new cysteinyl tags, so-called cysteine-reactive covalent capture tags (C3T), for the isolation of Cys-containing peptides. These bifunctional molecules were specifically designed to react with cysteines through iodoacetyl and acryloyl moieties and permit efficient selection of the tagged peptides. To do so, a thioproline was chosen as the isolating group to form, after a deprotection/activation step, a thiazolidine with an aldehyde resin by the covalent capture (CC) method. The applicability of the enrichment strategy was demonstrated on small synthetic peptides as well as on peptides derived from digested proteins. Mass spectrometric (MS) analysis and tandem mass spectrometric (MS/MS) sequencing confirmed the efficient and straightforward selection of the cysteine-containing peptides. The combination of C3T and CC methods provides an effective alternative to reduce sample complexity and access low abundance proteins. PMID:19813279

  8. Heterologous expression of Hordeum vulgare cysteine protease in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben B;

    Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned with and w......Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned...

  9. Lipases and proteinases in milk : occurrence, heat inactivation, and their importance for the keeping quality of milk products

    OpenAIRE

    Driessen, F.M.

    1983-01-01

    The occurrence and heat inactivation of native and bacterial lipases and proteinases in milk were studied.Production of these enzymes by Gram-negative psychrotrophic bacteria in milk was found to take place towards the end of exponential growth and in the stationary growth phase.Kinetics of heat inactivation in milk of milk lipoprotein lipase, alkaline milk proteinase and lipases and proteinases of some Gram-negative bacteria are given.The effects of residual lipolytic and proteolytic activit...

  10. The kinetics of proteinase K digestion of linear prion polymers.

    Science.gov (United States)

    Masel, J; Jansen, V A

    1999-09-22

    Transmissible spongiform encephalopathies such as scrapie are caused by a protein-only infectious agent, known as a prion. It is not clear how a protein can be capable of replicating itself, and the mechanism remains controversial. One influential model hypothesizes that prions are nucleated, macroscopically linear polymers. We investigated the theoretical kinetics of this model and derived predictions which could be used to test the model. In the model, the polymerization and depolymerization rates are independent polymer size. This leads to an exponential size distribution at equilibrium. In agreement with a prediction stemming from this size distribution, the average size of PrP-res polymers was proportional to the square root of the concentration of PrP-res in a published study of in vitro conversion. Prion digestion by proteinase K (PK) is predicted to be biphasic. The second phase of digestion should be virtually independent of the PK concentration and should depend on the initial size distribution of prion polymers. For initially equilibrated polymers with an exponential size distribution, phase two digestion is exponential at a predicted rate. This rate varies in a defined way with the concentration used for equilibration and with other parameters which affect the average polymer size.

  11. The role of compartment-specific cysteine synthesis for sulfur homeostasis during H2S exposure in Arabidopsis.

    Science.gov (United States)

    Birke, Hannah; De Kok, Luit J; Wirtz, Markus; Hell, Rüdiger

    2015-02-01

    Sulfide is the end-product of assimilatory sulfate reduction in chloroplasts. It is then used by O-acetylserine(thiol)lyase (OAS-TL) to produce cysteine, the source of reduced sulfur in plants. While its formation in chloroplasts is essential for plant metabolism, sulfide is also a potent toxin mainly targeting respiration in mitochondria. Here, the application of sublethal concentrations of sulfide to Arabidopsis thaliana was used to by-pass assimilatory sulfate reduction, resulting in down-regulation of most genes of the pathway. The dualism of sulfide as substrate and toxin was investigated using knock-out mutants of the chloroplast-, mitochondrion- and cytosol-targeted OAS-TL isoforms. Surprisingly, growth retardation due to intoxication by sulfide was independent of the presence or absence of the three OAS-TL isoforms, indicating rapid exchange towards sulfur homoeostasis between the compartments. Cysteine, glutathione and sulfate, and less so S-sulfocysteine, were identified as major sinks for excess sulfide in wild-type plants. Additionally, the concentration of thiosulfate increased 1,000-fold, pointing towards a significant function of thiosulfate formation during H2S exposure. Synthesis of cysteine in the cytosol was found to be particularly important for accumulation of sulfite, sulfate and thiosulfate, indicating an important role for cytosolic OAS-TL for the re-oxidation of sulfide. The results show that thiosulfate and sulfate accumulation is strongly linked to cytosolic cysteine synthesis and that scavenging of sulfide by cysteine synthesis enhances sulfur compound accumulation. However, lack of cysteine synthesis in a subcellular compartment has no crucial consequences for toxicity and subsequent growth retardation.

  12. Structural and functional characterization of proteinase inhibitors from seeds of Cajanus cajan (cv. ICP 7118).

    Science.gov (United States)

    Swathi, Marri; Lokya, Vadthya; Swaroop, Vanka; Mallikarjuna, Nalini; Kannan, Monica; Dutta-Gupta, Aparna; Padmasree, Kollipara

    2014-10-01

    Proteinase inhibitors (C11PI) from mature dry seeds of Cajanus cajan (cv. ICP 7118) were purified by chromatography which resulted in 87-fold purification and 7.9% yield. SDS-PAGE, matrix assisted laser desorption ionization time-of-flight (MALDI-TOF/TOF) mass spectrum and two-dimensional (2-D) gel electrophoresis together resolved that C11PI possessed molecular mass of 8385.682 Da and existed as isoinhibitors. However, several of these isoinhibitors exhibited self association tendency to form small oligomers. All the isoinhibitors resolved in Native-PAGE and 2-D gel electrophoresis showed inhibitory activity against bovine pancreatic trypsin and chymotrypsin as well as Achaea janata midgut trypsin-like proteases (AjPs), a devastating pest of castor plant. Partial sequences of isoinhibitor (pI 6.0) obtained from MALDI-TOF/TOF analysis and N-terminal sequencing showed 100% homology to Bowman-Birk Inhibitors (BBIs) of leguminous plants. C11PI showed non-competitive inhibition against trypsin and chymotrypsin. A marginal loss (<15%) in C11PI activity against trypsin at 80 (°)C and basic pH (12.0) was associated with concurrent changes in its far-UV CD spectra. Further, in vitro assays demonstrated that C11PI possessed significant inhibitory potential (IC50 of 78 ng) against AjPs. On the other hand, in vivo leaf coating assays demonstrated that C11PI caused significant mortality rate with concomitant reduction in body weight of both larvae and pupae, prolonged the duration of transition from larva to pupa along with formation of abnormal larval-pupal and pupal-adult intermediates. Being smaller peptides, it is possible to express C11PI in castor to protect them against its devastating pest A. janata. PMID:25093261

  13. Role of cysteine-58 and cysteine-95 residues in the thiol di-sulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti.

    Science.gov (United States)

    Chauhan, Nikhil; Hoti, S L

    2016-01-01

    Macrophage Migration Inhibitory Factor (MIF) is the first human cytokine reported and was thought to have a central role in the regulation of inflammatory responses. Homologs of this molecule have been reported in bacteria, invertebrates and plants. Apart from cytokine activity, it also has two catalytic activities viz., tautomerase and di-sulfide oxidoreductase, which appear to be involved in immunological functions. The CXXC catalytic site is responsible for di-sulfide oxidoreductase activity of MIF. We have recently reported thiol-disulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti (Wba-MIF-2), although it lacks the CXXC motif. We hypothesized that three conserved cysteine residues might be involved in the formation of di-sulfide oxidoreductase catalytic site. Homology modeling of Wba-MIF-2 showed that among the three cysteine residues, Cys58 and Cys95 residues came in close proximity (3.23Å) in the tertiary structure with pKa value 9, indicating that these residues might play a role in the di-sulfide oxidoreductase catalytic activity. We carried out site directed mutagenesis of these residues (Cys58Ser & Cys95Ser) and expressed mutant proteins in Escherichia coli. The mutant proteins did not show any oxidoreductase activity in the insulin reduction assay, thus indicating that these two cysteine residues are vital for the catalytic activity of Wba-MIF-2. PMID:26432350

  14. Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase. Potential role of procollagen C-proteinase.

    Science.gov (United States)

    Panchenko, M V; Stetler-Stevenson, W G; Trubetskoy, O V; Gacheru, S N; Kagan, H M

    1996-03-22

    Lysyl oxidase is secreted from fibrogenic cells as a 50-kDa proenzyme that is proteolytically processed to the mature enzyme in the extracellular space. To characterize the secreted proteinase activity, a truncated, recombinant form of lysyl oxidase was prepared as a proteinase substrate containing the sequence of the propeptide cleavage region. The processing proteinase activity secreted by cultured fibrogenic cells resists inhibitors of serine or aspartyl proteinases as well as tissue inhibitor of matrix metalloproteinases-2 (MMP-2) but is completely inhibited by metal ion chelators. Known metalloproteinases were tested for their activity toward this substrate. Carboxyl-terminal procollagen proteinase (C-proteinase), MMP-2, and conditioned fibrogenic cell culture medium cleave the lysyl oxidase substrate to the size of the mature enzyme. The NH2-terminal sequence generated by arterial smooth muscle conditioned medium and the C-proteinase but not by MMP-2, i.e. Asp-Asp-Pro-Tyr, was identical to that previously identified in mature lysyl oxidase isolated from connective tissue. The C-proteinase activity against the model substrate was inhibited by a synthetic oligopeptide mimic of the cleavage sequence (Ac-Met-Val-Gly-Asp-Asp-Pro-Tyr-Asn-amide), whereas this peptide also inhibited the generation of lysyl oxidase activity in the medium of fetal rat lung fibroblasts in culture. In toto, these results identify a secreted metalloproteinase activity participating in the activation of prolysyl oxidase, identify inhibitors of the processing activity, and implicate procollagen C-proteinase in this role.

  15. Cysteine could change the transport mechanism of PVP-coated silver nanoparticles in porous media

    Science.gov (United States)

    Yang, X.; Lin, S.; Wiesner, M.

    2012-12-01

    Silver nanoparticles (AgNPs) can hardly be removed by wastewater treatment plant and have big potential to enter groundwater, jeopardizing the water quality & aquatic ecosystem. Most AgNPs have surface coatings such as polyvinylpyrrolidone (PVP) which dominate their transport in porous media. Our previous study shows that PVP may promote the deposition of AgNPs on silica surface by a bridging mechanism. This study further explored how cysteine, a natural organic matter type, may influence the role of the PVP coating on AgNP translocation. Dynamic Light Scattering (DLS) measurement (Figure 1A) shows that the PVP coating rendered the AgNP dispersion high stability during the measuring period (3hrs). Addition of 100 ppm cysteine to the dispersion resulted in a rapid decrease in particle size from 100nm to 52nm within one hour, following which no further decline in particle size occurred. Column experiment results (Figure 1B) show that corresponding to the particle size change was a substantial decrease in particle deposition rates: introduction of 100 ppm cysteine into the particle dispersion resulted in a decrease in AgNP attenuation by the porous medium from 67% to 26%. The decline in particle size suggested that cysteine may have displaced the macromolecular PVP from the particle surface. Desorption of PVP resulted in a weakening or vanish of polymer bridging effect which in turn lowered the deposition rates substantially. This study demonstrated an implication of environmental transformation of coated AgNPs to their mobility in saturated sand aquifers. Acknowledgment Xinyao Yang appreciates the Natural Science Foundation of China (Grant No.:41101475) for covering the registration fee and traveling costs.igure 1 Particle size measurement (A) and breakthrough curves (B) of PVP-coated silver nanoparticle in the absence and presence of cysteine: pH=7.0, ionic strength=1mM, flow rate=1ml/min.

  16. Activity profiling of papain-like cysteine proteases in plants

    NARCIS (Netherlands)

    Hoorn, van der R.A.L.; Leeuwenburgh, M.A.; Bogyo, M.; Joosten, M.H.A.J.; Peck, S.C.

    2004-01-01

    Transcriptomic and proteomic technologies are generating a wealth of data that are frequently used by scientists to predict the function of proteins based on their expression or presence. However, activity of many proteins, such as transcription factors, kinases, and proteases, depends on posttransl

  17. To study the recovery of L-Cysteine using halloysite nanotubes after heavy metal removal

    Science.gov (United States)

    Thakur, Juhi

    2016-04-01

    Industrial wastes are a major source of soil and water pollution that originate from mining industries, chemical industries, metal processing industries, etc. These wastes consist of a variety of chemicals including phenolics, heavy metals, etc. Use of industrial effluent and sewage sludge on agricultural land has become a common practice in the world which results in these toxic metals being transferred and ultimately concentrate in plant tissues from water and the soil. The metals that get accumulated, prove detrimental to plants themselves and may also cause damage to the healths of animals as well as man. This is because the heavy metals become toxins above certain concentrations, over a narrow range. As a further matter, these metals negatively affect the natural microbial populations as well, that leads to the disruption of fundamental ecological processes. However, many techniques and methods have been advanced to clear the heavy metal polluted soils and waters. One important method is by removing heavy metals with the help of amino acids like L-Cysteine and L-Penicillamine. But also, economy of removal of pollutant heavy metals from soils and waters is a major concern. Present study helps in decreasing the cost for large-scale removal of heavy metals from polluted water by recovering the amino acid (L-Cysteine) after removal of nickel (Ni+2) at a fixed pH, by binding the Ni+2 with halloysite nanotubes(HNT), so that L-Cysteine can be reused again for removal of heavy metals.

  18. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    Directory of Open Access Journals (Sweden)

    Leah Theresa Sigle

    2013-09-01

    Full Text Available Sandflies (Diptera: Psychodidae are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2. Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.

  19. Determination of germ tube, phospholipase, and proteinase production by bloodstream isolates of Candida albicans

    Directory of Open Access Journals (Sweden)

    Antonella Souza Mattei

    2013-06-01

    Full Text Available Introduction Candida albicans is a commensal and opportunistic agent that causes infection in immunocompromised individuals. Several attributes contribute to the virulence and pathogenicity of this yeast, including the production of germ tubes (GTs and extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate GT production and phospholipase and proteinase activities in bloodstream isolates of C. albicans. Methods One hundred fifty-three C. albicans isolates were obtained from blood samples and analyzed for GT, phospholipase, and proteinase production. The assays were performed in duplicate in egg yolk medium containing bovine serum albumin and human serum. Results Detectable amounts of proteinase were produced by 97% of the isolates, and 78% of the isolates produced phospholipase. GTs were produced by 95% of the isolates. A majority of the isolates exhibited low levels of phospholipase production and high levels of proteinase production. Conclusions Bloodstream isolates of C. albicans produce virulence factors such as GT and hydrolytic enzymes that enable them to cause infection under favorable conditions.

  20. NaCl-activated extracellular proteinase from Virgibacillus sp. SK37 isolated from fish sauce fermentation.

    Science.gov (United States)

    Sinsuwan, S; Rodtong, S; Yongsawatdigul, J

    2007-06-01

    Virgibacillus sp. SK37 exhibited high extracellular proteolytic activity in skim milk broth containing 10% NaCl. Optimum conditions of the crude proteinase were at pH 8.0 and 65 degrees C. The proteinase was strongly inhibited by phenylmethanesulfonyl fluoride (PMSF) and preferably hydrolyzed Suc-Ala-Ala-Pro-Phe-AMC, suggesting the serine proteinase with a subtilisin-like characteristic. Proteolytic activity increased with NaCl concentration up to 20%. Ca(2+) activated the enzyme activity but reduced enzyme stability at 65 degrees C. Several proteinases with dominant molecular mass (MW) of 81, 67, 63, 50, 38, and 18 kDa were detected on native-polyacrylamide gel electrophoresis (native-PAGE) activity staining in the absence and presence of 25% NaCl. These results demonstrated that Virgibacillus sp. SK37 produced salt-activated extracellular proteinases. Virgibacillus sp. SK37 could be a promising strain for starter culture development used in fish sauce fermentation. PMID:17995713

  1. An O-acetylserine (thiol) lyase from Leucaena leucocephala is a cysteine synthase but not a mimosine synthase.

    Science.gov (United States)

    Yafuso, Jannai T; Negi, Vishal Singh; Bingham, Jon-Paul; Borthakur, Dulal

    2014-07-01

    In plants, the final step of cysteine formation is catalyzed by O-acetylserine (thiol) lyase (OAS-TL). The purpose of this study was to isolate and characterize an OAS-TL from the tree legume Leucaena leucocephala (leucaena). Leucaena contains a toxic, nonprotein amino acid, mimosine, which is also formed by an OAS-TL, and characterization of this enzyme is essential for developing a mimosine-free leucaena for its use as a protein-rich fodder. The cDNA for a cytosolic leucaena OAS-TL isoform was obtained through interspecies suppression subtractive hybridization. A 40-kDa recombinant protein was purified from Escherichia coli and used in enzyme activity assays where it was found to synthesize only cysteine. The enzyme followed Michaelis-Menten kinetics, and the Km was calculated to be 1,850±414 μM sulfide and the Vmax was 200.6±19.92 μM cysteine min(-1). The N-terminal affinity His-tag was cleaved from the recombinant OAS-TL to eliminate its possible interference in binding with the substrate, 3-hydroxy-4-pyridone, for mimosine formation. The His-tag-cleaved OAS-TL was again observed to catalyze the formation of cysteine but not mimosine. Thus, the cytosolic OAS-TL from leucaena used in this study is specific for only cysteine synthesis and is different from previously reported OAS-TLs that also function as β-substituted alanine synthases.

  2. A novel cysteine desulfurase influencing organosulfur compounds in Lentinula edodes.

    Science.gov (United States)

    Liu, Ying; Lei, Xiao-Yu; Chen, Lian-Fu; Bian, Yin-Bing; Yang, Hong; Ibrahim, Salam A; Huang, Wen

    2015-01-01

    Organosulfur compounds are the basis for the unique aroma of Lentinula edodes, and cysteine sulfoxide lyase (C-S lyase) is the key enzyme in this trait. The enzyme from Alliium sativum has been crystallized and well-characterized; however, there have been no reports of the characterization of fungi C-S lyase at the molecular level. We identified a L. edodes C-S lyase (Lecsl), cloned a gene of Csl encoded Lecsl and then combined modeling, simulations, and experiments to understand the molecular basis of the function of Lecsl. Our analysis revealed Lecsl to be a novel cysteine desulfurase and not a type of cysteine sulfoxide lyase. The pyridoxal-5-phosphate (PLP) molecule bonded tightly to Lecsl to form a Lecsl-PLP complex. Moreover, the Lecsl had one active center that served to bind two kinds of substrates, S-methyl-L-cysteine sulfoxide and L-cysteine, and had both cysteine sulfoxide lyase and cysteine desulfurase activity. We found that the amino acid residue Asn393 was essential for the catalytic activity of Lecsl and that the gene Csl encoded a novel cysteine desulfurase to influence organosulfur compounds in L. edodes. Our results provide a new insight into understanding the formation of the unique aroma of L. edodes.

  3. Antimicrobial Peptides from Plants

    Science.gov (United States)

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  4. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  5. Proteinase-antiproteinase balance in tracheal aspirates from neonates.

    Science.gov (United States)

    Sluis, K B; Darlow, B A; Vissers, M C; Winterbourn, C C

    1994-02-01

    We wanted to identify the inhibitors of neutrophil elastase, quantify their activities in the upper airways of neonates, and relate these to the presence of active elastase and the likelihood of elastolytic injury occurring due to inhibitory capacity being overwhelmed. Activities of neutrophil elastase and its inhibitors were measured in tracheal aspirates from 17 infants, 10 of whom subsequently developed bronchopulmonary dysplasia. All aspirates contained immunologically detectable alpha 1-proteinase inhibitor (alpha 1-PI), but their inhibitory capacity against neutrophil elastase ranged from being undetectable to being in excess of the amount of alpha 1-PI detected immunologically. When the alpha 1-PI was removed from each of the aspirates, using a specific antibody, from 0-50% of the original activity remained, indicating the presence of another elastase inhibitor. Its properties were consistent with it being the low molecular mass, secretory leucoproteinase inhibitor (SLPI), also known as bronchial antileucoproteinase. The alpha 1-PI was from 0-100% active. Most of the inactive inhibitor was shown by western blotting to be complexed with elastase, with a small amount of cleaved material. There was no evidence of major oxidative inactivation. Free elastase was detected in only three of the aspirates; these had little or no detectable elastase inhibitory capacity, and most of their alpha 1-PI was complexed. Elastase load, comprising the sum of free and complexed elastase, correlated closely with myeloperoxidase activity, a recognized marker of inflammatory activity. Active SLPI levels showed a positive correlation with gestational age (r = 0.66). We conclude that most neutrophil elastase in the upper airways of ventilated infants is complexed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7909297

  6. Neutrophil elastase and proteinase 3 trafficking routes in myelomonocytic cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaellquist, Linda; Rosen, Hanna [Department of Hematology, BMC C14, Lund University, SE-221 84 Lund (Sweden); Nordenfelt, Pontus [Section for Clinical and Experimental Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund (Sweden); Calafat, Jero; Janssen, Hans [Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 1211066, Amsterdam (Netherlands); Persson, Ann-Maj [Department of Hematology, BMC C14, Lund University, SE-221 84 Lund (Sweden); Hansson, Markus, E-mail: Markus.Hansson@med.lu.se [Department of Hematology, BMC C14, Lund University, SE-221 84 Lund (Sweden); Olsson, Inge [Department of Hematology, BMC C14, Lund University, SE-221 84 Lund (Sweden)

    2010-11-15

    Neutrophil elastase (NE) and proteinase 3 (PR3) differ in intracellular localization, which may reflect different trafficking mechanisms of the precursor forms when synthesized at immature stages of neutrophils. To shed further light on these mechanisms, we compared the trafficking of precursor NE (proNE) and precursor PR3 (proPR3). Like proNE [1], proPR3 interacted with CD63 upon heterologous co-expression in COS cells but endogenous interaction was not detected although cell surface proNE/proPR3/CD63 were co-endocytosed in myelomonocytic cells. Cell surface proNE/proPR3 turned over more rapidly than cell surface CD63 consistent with processing/degradation of the pro-proteases but recycling of CD63. Colocalization of proNE/proPR3/CD63 with clathrin and Rab 7 suggested trafficking through coated vesicles and late endosomes. Partial caveolar trafficking of proNE/CD63 but not proPR3 was suggested by colocalization with caveolin-1. Blocking the C-terminus of proNE/proPR3 by creating a fusion with FK506 binding protein inhibited endosomal re-uptake of proNE but not proPR3 indicating 'pro{sub C}'-peptide-dependent structural/conformational requirements for proNE but not for proPR3 endocytosis. The NE aminoacid residue Y199 of a proposed NE sorting motif that interacts with AP-3 [2] was not required for proNE processing, sorting or endocytosis in rat basophilic leukemia (RBL) cells expressing heterologous Y199-deleted proNE; this suggests operation of another AP-3-link for proNE targeting. Our results show intracellular multi-step trafficking to be different between proNE and proPR3 consistent with their differential subcellular NE/PR3 localization in neutrophils.

  7. Structure-Function of Falcipains: Malarial Cysteine Proteases

    Directory of Open Access Journals (Sweden)

    Kailash C. Pandey

    2012-01-01

    Full Text Available Evidence indicates that cysteine proteases play essential role in malaria parasites; therefore an obvious area of investigation is the inhibition of these enzymes to treat malaria. Studies with cysteine protease inhibitors and manipulating cysteine proteases genes have suggested a role for cysteine proteases in hemoglobin hydrolysis. The best characterized Plasmodium cysteine proteases are falcipains, which are papain family enzymes. Falcipain-2 and falcipain-3 are major hemoglobinases of P. falciparum. Structural and functional analysis of falcipains showed that they have unique domains including a refolding domain and a hemoglobin binding domain. Overall, the complexes of falcipain-2 and falcipain-3 with small and macromolecular inhibitors provide structural insight to facilitate the design or modification of effective drug treatment against malaria. Drug development targeting falcipains should be aided by a strong foundation of biochemical and structural studies.

  8. Reaction mechanism of -acylhydroxamate with cysteine proteases

    Indian Academy of Sciences (India)

    R Shankar; P Kolandaivel

    2007-09-01

    The gas-phase reaction mechanism of -acylhydroxamate with cysteine proteases has been investigated using ab initio and density functional theory. On the irreversible process, after breakdown of tetrahedral intermediate (INT1), small 1-2 anionotropic has been formed and rearranged to give stable by-products sulfenamide (P1) and thiocarbamate (P2) with considerable energy loss. While, on the reversible part of this reaction mechanism, intermediate (INT2) breaks down on oxidation, to form a stable product (P3). Topological and AIM analyses have been performed for hydrogen bonded complex in this reaction profile. Intrinsic reaction coordinates [IRC, minimum-energy path (MEP)] calculation connects the transition state between R-INT1, INT1-P1 and INT1-P2. The products P1, P2 and P3 are energetically more stable than the reactant and hence the reaction enthalpy is found to be exothermic.

  9. Vanadium inhibition of serine and cysteine proteases.

    Science.gov (United States)

    Guerrieri, N; Cerletti, P; De Vincentiis, M; Salvati, A; Scippa, S

    1999-03-01

    A study was made on the effect of vanadium, in both the tetravalent state in vanadyl sulphate and in the pentavalent state in sodium meta-vanadate, and ortho-vanadate, on the proteolysis of azocasein by two serine proteases, trypsin and subtilisin and two cysteine proteases bromelain and papain. Also the proteolysis of bovine azoalbumin by serine proteases was considered. An inhibitory effect was present in all cases, except meta-vanadate with subtilisin. The oxidation level of vanadium by itself did not determine the inhibition kinetics, which also depended on the type and composition of the vanadium containing molecule and on the enzyme assayed. The pattern of inhibition was similar for proteases belonging to the same class. The highest inhibition was obtained with meta-vanadate on papain and with vanadyl sulphate on bromelain.

  10. A new method of research on molecular evolution of pro-teinase superfamily

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The molecular evolutionary tree, also known as a phylogenetic tree, of the serine proteinase superfamily was constructed by means of structural alignment. Three-dimensional structures of proteins were aligned by the SSAP program of Orengo and Taylor to obtain evolutionary dis-tances. The resulting evolutionary tree provides a topology graph that can reflect the evolution of structure and function of homology proteinase. Moreover, study on evolution of the serine proteinase superfamily can lead to better under-standing of the relationship and evolutionary difference among proteins of the superfamily, and is of significance to protein engineering, molecular design and protein structure prediction. Structure alignment is one of the useful methods of research on molecular evolution of protein.

  11. Modification of standard proteinase K/phenol method for extraction of DNA from small tumour biopsies.

    Science.gov (United States)

    Pitera, R; Pitera, J E; Mufti, G J; Salisbury, J R

    1993-09-01

    The standard proteinase K/phenol DNA isolation method was found to produce unsatisfactory yields of DNA from small tissue biopsies (less than 50 mg). The influences of the volume of cell lysis buffer and the amount of proteinase K on the final DNA yield and quality were studied, and an improved method was devised and compared with both the standard procedure and a phenol-free protocol. The optimal volume of cell lysis buffer was found to be 200 microliters per mg of tissue while the optimal amount of proteinase K was 60 micrograms per mg of tissue. A mean yield of 12 mu/mg tissue of pure, high molecular weight DNA was achieved from 50 frozen samples prepared by crushing. Yields from 20 microns thick cryostat sections reached 30 micrograms/mg.

  12. Toll-like receptors recognize distinct proteinase-resistant glycoconjugates in Campylobacter jejuni and Escherichia coli.

    Science.gov (United States)

    Phongsisay, Vongsavanh; Hara, Hiromitsu; Fujimoto, Shuji

    2015-03-01

    Campylobacter jejuni causes gastroenteritis and autoimmune neuropathy Guillain-Barré syndrome. The mechanism by which C. jejuni infection results in such the hyperimmunity is not completely understood. Host immunity plays an important role in the disease pathogenesis; however, little is known how immune system recognizes this human pathogen. In this study, we report that Toll-like receptors recognize distinct proteinase K-resistant glycoconjugates in C. jejuni and Escherichia coli. Lipopolysaccharide is solely proteinase-resistant glycoconjugate in E. coli. In contrast, C. jejuni possesses at least five different components that are resistant to proteinase digestion and are capable of inducing NF-κB activation through TLR2 and TLR4. Possession of multiple activators of Toll-like receptors may be the unique strategy of C. jejuni to trigger hyperimmunity.

  13. Human placental extract mediated inhibition of proteinase K: implications of heparin and glycoproteins in wound physiology.

    Science.gov (United States)

    Sharma, Kanika; Mukherjee, Chaitali; Roy, Siddhartha; De, Debashree; Bhattacharyya, Debasish

    2014-09-01

    Efficient debridement of the wound bed following the removal of microbial load prevents its progression into a chronic wound. Bacterial infection and excessive proteolysis characterize impaired healing and therefore, their inhibition might restore the disturbed equilibrium in the healing process. Human placental extract exhibits reversible, non-competitive inhibition towards Proteinase K, a microbial protease, by stabilizing it against auto-digestion. Scattering and fluorescence studies followed by biochemical analysis indicated the involvement of a glycan moiety. Surface plasmon resonance demonstrated specific interaction of heparin with Proteinase K having Kd in μM range. Further, Proteinase K contains sequence motifs similar to other heparin-binding proteins. Molecular docking revealed presence of clefts suitable for binding of heparin-derived oligosaccharides. Comprehensive analysis of this inhibitory property of placental extract partly explains its efficacy in curing wounds with common bacterial infections.

  14. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Directory of Open Access Journals (Sweden)

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  15. Coronavirus 3CL(pro) proteinase cleavage sites: Possible relevance to SARS virus pathology

    DEFF Research Database (Denmark)

    Kiemer, Lars; Lund, Ole; Brunak, Søren;

    2004-01-01

    . Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results: We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network...... was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins...

  16. Proteinase, phospholipase, hyaluronidase and chondroitin-sulphatase production by Malassezia pachydermatis.

    Science.gov (United States)

    Coutinho, S D; Paula, C R

    2000-02-01

    The production of four functional enzyme categories was investigated in 30 strains of Malassezia pachydermatis isolated from dogs with otitis or dermatitis. The most appropriate reading intervals for these assays were determined with the aid of statistical comparisons. All strains produced proteinase and chondroitin-sulphatase; hyaluronidase and phospholipase were produced by all skin isolates (15/15) and 14 out of 15 ear canal isolates. Strains from ear canals did not differ significantly as a group from skin strains in quantitative production of any of the four enzymes; production of proteinase and chondroitin-sulphatase in particular was markedly uniform. PMID:10746230

  17. Specificity of proteinase K at P2 to P3' sub-sites and its comparison to other serine proteases.

    Science.gov (United States)

    Qasim, Mohammad A

    2014-01-01

    Specificity of the commercially important serine protease, proteinase K, has been investigated by measuring free energies of association of proteinase K with turkey ovomucoid third domain inhibitor variants at contact positions P2, P1, P1', P2', and P3'. Correlations of these values were run with similar values that have been obtained for six other serine proteases. Among the six proteases, subtilisin Carlsberg shows a near perfect correlation (Pearson Product correlation coefficient = 0.93 to 0.99) with proteinase K at all of these positions. Proteinase K has only 35% sequence identity with subtilisin Carlsberg, yet, the two enzymes are nearly identical in their specificity at P2 to P3' positions. With other serine proteases such as bovine chymotrypsin, human leukocyte elastase, porcine pancreatic elastase, Streptomyces griseus protease A and B, proteinase K showed relatively poor or no correlation.

  18. Inhibition of invasion and metastasis of MHCC97H cells by expression of snake venom cystatin through reduction of proteinases activity and epithelial-mesenchymal transition.

    Science.gov (United States)

    Tang, Nanhong; Xie, Qun; Wang, Xiaoqian; Li, Xiujin; Chen, Yanlin; Lin, Xu; Lin, Jianyin

    2011-05-01

    Snake venom cystatin (sv-cystatin) is a member of the cystatin family of cysteine protease inhibitors. To further evaluate the possibility of sv-cystatin in cancer therapy, this study examined the effects of sv-cystatin on the invasion and metastasis of liver cancer cells (MHCC97H) in vitro and in vivo as well as the underlying mechanism. sv-cystatin cDNA was transfected into MHCC97H cells and the anti-invasion and antimetastasis effects of sv-cystatin were determined using migration and matrigel invasion assays and a lung-metastasis mice model. The results suggest that sv-cyst clone (sv-cystatin expression in MHCC97H cells) delayed the invasion and metastasis in vitro and in vivo compared to the parental, mock and si-sv-cyst clone cells (inhibited sv-cystatin expression by siRNA). The decreased activities of cathepsin B, MMP-2 and MMP-9 and EMT change index including higher E-cadherin, lower N-cadherin and decreased Twist activity were observed in the sv-cyst clone, which contributes to the change in invasion and metastasis ability of MHCC97H cells. This study provides evidence that expression of the sv-cystatin gene in MHCC97H cells inhibits tumor cell invasion and metastasis through the reduction of the proteinases activity and Epithelial-Mesenchymal Transition (EMT), which might contribute to the anticancer research of the sv-cystatin protein.

  19. Expression of human α1-proteinase inhibitor in Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Punt Peter J

    2007-10-01

    Full Text Available Abstract Background Human α1-proteinase inhibitor (α1-PI, also known as antitrypsin, is the most abundant serine protease inhibitor (serpin in plasma. Its deficiency is associated with development of progressive, ultimately fatal emphysema. Currently in the United States, α1-PI is available for replacement therapy as an FDA licensed plasma-derived (pd product. However, the plasma source itself is limited; moreover, even with efficient viral inactivation steps used in manufacture of plasma products, the risk of contamination from emerging viruses may still exist. Therefore, recombinant α1-PI (r-α1-PI could provide an attractive alternative. Although r-α1-PI has been produced in several hosts, protein stability in vitro and rapid clearance from the circulation have been major issues, primarily due to absent or altered glycosylation. Results We have explored the possibility of expressing the gene for human α1-PI in the filamentous fungus Aspergillus niger (A. niger, a system reported to be capable of providing more "mammalian-like" glycosylation patterns to secretable proteins than commonly used yeast hosts. Our expression strategy was based on fusion of α1-PI with a strongly expressed, secreted leader protein (glucoamylase G2, separated by dibasic processing site (N-V-I-S-K-R that provides in vivo cleavage. SDS-PAGE, Western blot, ELISA, and α1-PI activity assays enabled us to select the transformant(s secreting a biologically active glycosylated r-α1-PI with yields of up to 12 mg/L. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS analysis further confirmed that molecular mass of the r-α1-PI was similar to that of the pd-α1-PI. In vitro stability of the r-α1-PI from A. niger was tested in comparison with pd-α1-PI reference and non-glycosylated human r-α1-PI from E. coli. Conclusion We examined the suitability of the filamentous fungus A. niger for the expression of the human gene for α1-PI, a medium size

  20. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    Directory of Open Access Journals (Sweden)

    Chunxiang Yao

    Full Text Available Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2, react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat, an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  1. Purification and characterization of cysteine aminotransferase from rat liver cytosol.

    Directory of Open Access Journals (Sweden)

    Akagi,Reiko

    1982-06-01

    Full Text Available Cysteine aminotransferase (L-cysteine: 2-oxoglutarate aminotransferase, EC 2.6.1.3 was purified over 400-fold from the high-speed supernatant fraction of rat liver. The purified enzyme was homogeneous as judged by gel filtration, isoelectric focusing and disc electrophoresis. The molecular weight of the enzyme was about 74,000 by gel filtration and the isoelectric point was 6.2 (4 degrees C. The enzyme catalyzed transamination between L-cysteine and 2-oxoglutarate and the reverse reaction. The optimum pH was 9.7. The Km value for L-cysteine was 22.2 mM, and that for 2-oxoglutaric acid was 0.06 mM. L-Aspartate was a potent inhibitor of the cysteine aminotransferase reaction. The enzyme was very active toward L-alanine 3-sulfinic acid at pH 8.0, and was also very active toward L-aspartic acid (Km = 1.6 mM. Ratios of activities for L-aspartic acid and L-cysteine were essentially constant during the purification of the enzyme. Evidence based on substrate specificity, enzyme inhibition, and physicochemical properties indicates that cytosolic cysteine aminotransferase is identical with cytosolic aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1.

  2. Negative Effects of a Nonhost Proteinase Inhibitor of ~19.8 kDa from Madhuca indica Seeds on Developmental Physiology of Helicoverpa armigera (Hübner

    Directory of Open Access Journals (Sweden)

    Farrukh Jamal

    2014-01-01

    Full Text Available An affinity purified trypsin inhibitor from the seed flour extracts of Madhuca indica (MiTI on denaturing polyacrylamide gel electrophoresis showed that MiTI consisted of a single polypeptide chain with molecular mass of ~19.8 kDa. MiTI inhibited the total proteolytic and trypsin-like activities of the midgut proteinases of Helicoverpa armigera larvae by 87.51% and 76.12%, respectively, at concentration of 5 µg/mL with an IC50 of 1.75 µg/mL against trypsin like midgut proteinases. The enzyme kinetic studies demonstrated that MiTI is a competitive inhibitor with a Ki value of 4.1×10−10 M for Helicoverpa trypsin like midgut proteinases. In vivo experiments with different concentrations of MiTI in artificial diet (0.5, 1.0, and 1.5% w/w showed an effective downfall in the larval body weight and an increase in larval mortality. The concentration of MiTI in the artificial diet to cause 50% mortality (LD50 of larvae was 1.5% w/w and that to cause reduction in mass of larvae by 50% (ED50 was 1.0% w/w. Nutritional indices observations suggest the toxic and adverse effects of MiTI on the growth and development of H. armigera larvae. The results suggest a strong bioinsecticidal potential of affinity purified MiTI which can be exploited in insect pest management of crop plants.

  3. Negative effects of a nonhost proteinase inhibitor of ~19.8 kDa from Madhuca indica seeds on developmental physiology of Helicoverpa armigera (Hübner).

    Science.gov (United States)

    Jamal, Farrukh; Singh, Dushyant; Pandey, Prabhash K

    2014-01-01

    An affinity purified trypsin inhibitor from the seed flour extracts of Madhuca indica (MiTI) on denaturing polyacrylamide gel electrophoresis showed that MiTI consisted of a single polypeptide chain with molecular mass of ~19.8 kDa. MiTI inhibited the total proteolytic and trypsin-like activities of the midgut proteinases of Helicoverpa armigera larvae by 87.51% and 76.12%, respectively, at concentration of 5 µg/mL with an IC50 of 1.75 µg/mL against trypsin like midgut proteinases. The enzyme kinetic studies demonstrated that MiTI is a competitive inhibitor with a K i value of 4.1 × 10(-10) M for Helicoverpa trypsin like midgut proteinases. In vivo experiments with different concentrations of MiTI in artificial diet (0.5, 1.0, and 1.5% w/w) showed an effective downfall in the larval body weight and an increase in larval mortality. The concentration of MiTI in the artificial diet to cause 50% mortality (LD50) of larvae was 1.5% w/w and that to cause reduction in mass of larvae by 50% (ED50) was 1.0% w/w. Nutritional indices observations suggest the toxic and adverse effects of MiTI on the growth and development of H. armigera larvae. The results suggest a strong bioinsecticidal potential of affinity purified MiTI which can be exploited in insect pest management of crop plants. PMID:25298962

  4. Expression of a pathogen-induced cysteine protease (AdCP) in tapetum results in male sterility in transgenic tobacco.

    Science.gov (United States)

    Shukla, Pawan; Singh, Naveen Kumar; Kumar, Dilip; Vijayan, Sambasivam; Ahmed, Israr; Kirti, Pulugurtha Bharadwaja

    2014-06-01

    Usable male sterility systems have immense potential in developing hybrid varieties in crop plants, which can also be used as a biological safety containment to prevent horizontal transgene flow. Barnase-Barstar system developed earlier was the first approach to engineer male sterility in plants. In an analogous situation, we have evolved a system of inducing pollen abortion and male sterility in transgenic tobacco by expressing a plant gene coding for a protein with known developmental function in contrast to the Barnase-Barstar system, which deploys genes of prokaryotic origin, i.e., from Bacillus amyloliquefaciens. We have used a plant pathogen-induced gene, cysteine protease for inducing male sterility. This gene was identified in the wild peanut, Arachis diogoi differentially expressed when it was challenged with the late leaf spot pathogen, Phaeoisariopsis personata. Arachis diogoi cysteine protease (AdCP) was expressed under the strong tapetum-specific promoter (TA29) and tobacco transformants were generated. Morphological and histological analysis of AdCP transgenic plants showed ablated tapetum and complete pollen abortion in three transgenic lines. Furthermore, transcript analysis displayed the expression of cysteine protease in these male sterile lines and the expression of the protein was identified in western blot analysis using its polyclonal antibody raised in the rabbit system. PMID:24615687

  5. Cloning and characterization of a novel cysteine protease gene (HbCP1) from Hevea brasiliensis

    Indian Academy of Sciences (India)

    Shi-Qing Peng; Jia-Hong Zhu; Hui-Liang Li; Wei-Min Tian

    2008-12-01

    The full-length cDNA encoding a cysteine protease, designated HbCP1, was isolated for the first time from Hevea brasiliensis by the rapid amplification of cDNA ends (RACE) method. HbCP1 contained a 1371 bp open reading frame encoding 457 amino acids. The deduced HbCP1 protein, which showed high identity to cysteine proteases of other plant species, was predicted to possess a putative repeat in toxin (RTX) domain at the N-terminal and a granulin (GRAN) domain at the C-terminal. Southern blot analysis indicated that the HbCP1 gene is present as a single copy in the rubber tree. Transcription pattern analysis revealed that HbCP1 had high transcription in laticifer, and low transcription in bark and leaf. The transcription of HbCP1 in latex was induced by ethylene and tapping. Cloning of the HbCP1 gene will enable us to further understand the molecular characterization of cysteine protease and its possible function in the rubber tree.

  6. Cathepsin K: a unique collagenolytic cysteine peptidase.

    Science.gov (United States)

    Novinec, Marko; Lenarčič, Brigita

    2013-09-01

    Cathepsin K has emerged as a promising target for the treatment of osteoporosis in recent years. Initially identified as a papain-like cysteine peptidase expressed in high levels in osteoclasts, the important role of this enzyme in bone metabolism was highlighted by the finding that mutations in the CTSK gene cause the rare recessive disorder pycnodysostosis, which is characterized by severe bone anomalies. At the molecular level, the physiological role of cathepsin K is reflected by its unique cleavage pattern of type I collagen molecules, which is fundamentally different from that of other endogenous collagenases. Several cathepsin K inhibitors have been developed to reduce the excessive bone matrix degradation associated with osteoporosis, with the frontrunner odanacatib about to successfully conclude Phase 3 clinical trials. Apart from osteoclasts, cathepsin K is expressed in different cell types throughout the body and is involved in processes of adipogenesis, thyroxine liberation and peptide hormone regulation. Elevated activity of cathepsin K has been associated with arthritis, atherosclerosis, obesity, schizophrenia, and tumor metastasis. Accordingly, its activity is tightly regulated via multiple mechanisms, including competitive inhibition by endogenous macromolecular inhibitors and allosteric regulation by glycosaminoglycans. This review provides a state-of-the-art description of the activity of cathepsin K at the molecular level, its biological functions and the mechanisms involved in its regulation. PMID:23629523

  7. Organometallic palladium reagents for cysteine bioconjugation

    Science.gov (United States)

    Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.

    2015-10-01

    Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications.

  8. Monomeric 55-kDa guanidinobenzoatase switches to a serine proteinase activity upon tetramerization. Tetrameric proteinase SP 220 K appears as the native form.

    Science.gov (United States)

    Poustis-Delpont, C; Thaon, S; Auberger, P; Gerardi-Laffin, C; Sudaka, P; Rossi, B

    1994-05-20

    Guanidinobenzoatases are cell surface enzymes present in cells capable of migration or remodeling. The guanidinobenzoatase purified to homogeneity from human renal carcinoma did not display gelatinase activity under the 55-kDa form (Poustis-Delpont, C., Descomps, R., Auberger, P., Delque-Bayer, P., Sudaka, P., and Rossi, B. (1992) Cancer Res. 52, 3622-3628). We bring new insights into the structure-activity relationships of this enzyme using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, [3H]diisopropyl fluorophosphate labeling, gelatin zymography, and immunodetection using a polyclonal antibody raised against the 55-kDa entity. Upon aggregation into a 220-kDa form, the enzyme exhibited [3H]diisopropyl fluorophosphate labeling and diisopropyl fluorophosphate-inhibitable gelatinase activity whereas its capability to cleave p-nitrophenyl p'-guanidinobenzoate as a substrate was abolished. Thus, the guanidinobenzoatase property appears as a feature of a 55-kDa inactive form of a serine proteinase subunit. After boiling in the presence of sodium dodecyl sulfate (3% w/v), the 220-kDa entity subjected to SDS-polyacrylamide gel electrophoresis could be dissociated into a 55-kDa protein as shown by silver staining. The resulting 55-kDa band remained [3H]diisopropyl fluorophosphate-labeled and reacted with anti-55-kDa guanidinobenzoatase antibodies, strongly suggesting that the 220-kDa proteinase was a noncovalently associated tetramer. Interestingly, Triton X-100 extracts of renal carcinoma plasma membranes exhibited a 220-kDa serine proteinase activity, as expressed in gelatin zymography, which was barely detectable in the non-tumoral counterpart. It is noteworthy that an anti-55-kDa guanidinobenzoatase reactive 220-kDa species was also observed in renal carcinoma plasma membranes extracts as assessed by Western blot, whereas it was hardly visible in the non-tumoral counterpart. No signal was immunodetected at M(r) 55,000 in renal carcinoma and kidney cortex

  9. Random substitution of large parts of the propeptide of yeast proteinase A

    DEFF Research Database (Denmark)

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.

    1995-01-01

    The yeast aspartic protease, proteinase A, has a 54 amino-acid propeptide, which is removed during activation of the zymogen in the vacuole. Apart from being involved inhibition/activation, the propeptide has been shown to be essential for formation of a stable active enzyme (van den Hazel, H. B....

  10. Subunit structure of karatasin, the proteinase isolated from Bromelia plumieri (karatas).

    Science.gov (United States)

    Montes, C; Amador, M; Cuevas, D; Cordoba, F

    1990-01-01

    Close to 15% of the karatasin proteinase activity in the fruit juice of Bromelia plumieri (karatas) is present outside dialysis Visking tubing in 7 days in 0.2 M acetate buffer (pH) 3.5 or 6.5) containing phenyl mercuric acetate. The small proteinase(s), distinct from the 85% activity in juice due to nondialysable karatasin with a reported Mr of 24,868, separates across Spectrapore (13 kDa) membranes but not across Spectrapore with 3.5 kDa average pore diameter. The dialyzed proteinase is named karatasin-D (K-D). Purified non-Dialysable karatasin can be dissociated to what seems to be K-D by incubation in a buffer solution, containing SDS and 2-mercaptoethanol with phenyl mercuric acetate, in dialysis experiments for 8 days at room temperature using Spectrapore 13 kDa tubing. Thus, native karatasin in B. plumieri fruit juice seem to be the result of association of 2 small molecular mass K-D subunits, linked together by disulfide bonds and electrostatic forces, in equilibrium with small amounts of free K-D molecules. The amino acid composition and partial sequence of karatasin up to the 14th position from the amino terminus have discrete analogies with papain and with stem bromelain.

  11. Successful treatment of murine muscular dystrophy with the proteinase inhibitor leupeptin.

    OpenAIRE

    Sher, J H; Stracher, A.; Shafiq, S A; Hardy-Stashin, J

    1981-01-01

    Mice with genetic muscular dystrophy were treated with intraperitoneal injections of the proteinase inhibitor leupeptin, beginning before the onset of weakness. A significant number of the treated animals failed to develop histological evidence of dystrophy, compared with controls. Leupeptin treatment prevented (or delayed) the onset of muscular dystrophy in this experiment.

  12. Fluorometric determination of acid proteinase activity in Candida albicans strains from diabetic patients with vulvovaginal candidiasis.

    Science.gov (United States)

    Yildirim, Zuhal; Kilic, Nedret; Kalkanci, Ayse

    2011-09-01

    Vulvovaginal candidiasis is one of the most frequent disorders in obstetrics and gynaecology. Approximately three-quarters of all adult women experience at least one episode of vulvovaginal candidiasis during their life span. Diabetes mellitus (DM) increases the rate of vaginal colonisation and infection with Candida species. The secreted acid proteinase might be especially relevant in the pathogenesis of vulvovaginal candidiasis. The aim of this study was to determine the acid proteinase activity in the samples of Candida albicans from diabetic patients with vulvovaginal candidiasis by a fluorometric method. Vaginal swabs were taken from 33 women (aged between 22 and 57 years) having symptoms of vaginitis. Patients were divided into three groups: control group, controlled diabetic group and uncontrolled diabetic group. The proteinase activity in the culture supernatants was determined by a modified fluorometric method. Acid proteinase activities were significantly increased in the uncontrolled diabetic group in comparison with both the control group and the controlled diabetic group (P albicans pathogenesis in diabetic patients. Improving glucose control may reduce the risk of Candida colonisation and potentially symptomatic infection, among women with diabetes and hence may be useful even for weaker enzyme activity measurements.

  13. Detergents modify proteinase K resistance of PrP Sc in different transmissible spongiform encephalopathies (TSEs).

    Science.gov (United States)

    Breyer, Johanna; Wemheuer, Wiebke M; Wrede, Arne; Graham, Catherine; Benestad, Sylvie L; Brenig, Bertram; Richt, Jürgen A; Schulz-Schaeffer, Walter J

    2012-05-25

    Prion diseases are diagnosed by the detection of their proteinase K-resistant prion protein fragment (PrP(Sc)). Various biochemical protocols use different detergents for the tissue preparation. We found that the resistance of PrP(Sc) against proteinase K may vary strongly with the detergent used. In our study, we investigated the influence of the most commonly used detergents on eight different TSE agents derived from different species and distinct prion disease forms. For a high throughput we used a membrane adsorption assay to detect small amounts of prion aggregates, as well as Western blotting. Tissue lysates were prepared using DOC, SLS, SDS or Triton X-100 in different concentrations and these were digested with various amounts of proteinase K. Detergents are able to enhance or diminish the detectability of PrP(Sc) after proteinase K digestion. Depending on the kind of detergent, its concentration - but also on the host species that developed the TSE and the disease form or prion type - the detectability of PrP(Sc) can be very different. The results obtained here may be helpful during the development or improvement of a PrP(Sc) detection method and they point towards a detergent effect that can be additionally used for decontamination purposes. A plausible explanation for the detergent effects described in this article could be an interaction with the lipids associated with PrP(Sc) that may stabilize the aggregates.

  14. Subcellular location of the helper component-proteinase of Cowpea Aphid-Borne Mosaic Virus

    NARCIS (Netherlands)

    Mlotshwa, S.; Verver, J.; Sithole-Niang, I.; Gopinath, K.; Carette, J.; Kammen, van A.; Wellink, J.

    2002-01-01

    The helper component-proteinase (HC-Pro) of Cowpea aphid-borne mosaic virus (CABMV) was expressed in Escherichia coli and used to obtain HC-Pro antiserum that was used as an analytical tool for HC-Pro studies. The antiserum was used in immunofluorescence assays to study the subcellular location of H

  15. Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis

    NARCIS (Netherlands)

    F. Noorbakhsh (Farshid); K. Tsutsui (Kazuyoshi); N. Vergnolle (Nathalie); L.A. Boven (Leonie); S.F. Shariat (Shahrokh); M. Vodjgani (Mohammed); K.G. Warren (Kenneth); P. Andrade-Gordon (Patricia); N.K. Hollenberg (Norman); C. Power (Christopher)

    2006-01-01

    textabstractThe proteinase-activated receptors (PARs) are widely recognized for their modulatory properties of inflammation and neurodegeneration. We investigated the role of PAR2 in the pathogenesis of multiple sclerosis (MS) in humans and experimental autoimmune encephalomyelitis (EAE) in mice. PA

  16. Isolation and characterization of a proteinase K sensitive PrPSc fraction

    Science.gov (United States)

    Recent studies have shown that a sizeable fraction of PrPSc present in prion-infected tissues is,contrary to previous conceptions, sensitive to digestion by proteinase K (PK). This finding has important implications in the context of diagnosis of prion disease, as PK has been extensively used in att...

  17. Proteinase K and the structure of PrPse: the good, the bad, and the ugly

    Science.gov (United States)

    Infectious proteins (prions) are, ironically, defined by their resistance to proteolytic digestion. A defining characteristic of the transmissible isoform of the prion protein (PrPSc) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunod...

  18. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles

    DEFF Research Database (Denmark)

    Serafimova, Iana M; Pufall, Miles A; Krishnan, Shyam;

    2012-01-01

    show that electron-deficient olefins, including acrylamides, can be tuned to react with cysteine thiols in a rapidly reversible manner. Installation of a nitrile group increased the olefins' intrinsic reactivity, but, paradoxically, eliminated the formation of irreversible adducts. Incorporation...

  19. Cysteine biosynthesis, in concert with a novel mechanism, contributes to sulfide detoxification in mitochondria of Arabidopsis thaliana.

    Science.gov (United States)

    Birke, Hannah; Haas, Florian H; De Kok, Luit J; Balk, Janneke; Wirtz, Markus; Hell, Rüdiger

    2012-07-15

    In higher plants, biosynthesis of cysteine is catalysed by OAS-TL [O-acetylserine(thiol)lyase], which replaces the activated acetyl group of O-acetylserine with sulfide. The enzyme is present in cytosol, plastids and mitochondria of plant cells. The sole knockout of mitochondrial OAS-TL activity (oastlC) leads to significant reduction of growth in Arabidopsis thaliana. The reason for this phenotype is still enigmatic, since mitochondrial OAS-TL accounts only for approximately 5% of total OAS-TL activity. In the present study we demonstrate that sulfide specifically intoxicates Complex IV activity, but not electron transport through Complexes II and III in isolated mitochondria of oastlC plants. Loss of mitochondrial OAS-TL activity resulted in significant inhibition of dark respiration under certain developmental conditions. The abundance of mitochondrially encoded proteins and Fe-S cluster-containing proteins was not affected in oastlC. Furthermore, oastlC seedlings were insensitive to cyanide, which is detoxified by β-cyano-alanine synthase in mitochondria at the expense of cysteine. These results indicate that in situ biosynthesis of cysteine in mitochondria is not mandatory for translation, Fe-S cluster assembly and cyanide detoxification. Finally, we uncover an OAS-TL-independent detoxification system for sulfide in mitochondria of Arabidopsis that allows oastlC plants to cope with high sulfide levels caused by abiotic stresses.

  20. Alanine substitutions of noncysteine residues in the cysteine-stabilized αβ motif

    OpenAIRE

    Yang, Ying-Fang; Cheng, Kuo-Chang; Tsai, Ping-Hsing; Liu, Chung-Cheng; Lee, Tian-Ren; Ping-Chiang Lyu

    2009-01-01

    The protein scaffold is a peptide framework with a high tolerance of residue modifications. The cysteine-stabilized αβ motif (CSαβ) consists of an α-helix and an antiparallel triple-stranded β-sheet connected by two disulfide bridges. Proteins containing this motif share low sequence identity but high structural similarity and has been suggested as a good scaffold for protein engineering. The Vigna radiate defensin 1 (VrD1), a plant defensin, serves here as a model protein to probe the amino ...

  1. Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products.

    Science.gov (United States)

    Konkit, Maytiya; Kim, Wonyong

    2016-07-01

    Several enzymes are involved in the process of converting milk to lactic acid and coagulated milk to curd and, therefore, are important in dairy fermented products. Amylase, proteinase, and lipase are enzymes that play an important role in degrading milk into monomeric molecules such as oligosaccharides, amino acids, and fatty acids, which are the main molecules responsible for flavors in cheese. In the current study, we determined the amylase, proteinase, and lipase activities of Lactococcus chungangensis CAU 28(T), a bacterial strain of nondairy origin, and compared them with those of the reference strain, Lactococcus lactis ssp. lactis KCTC 3769(T), which is commonly used in the dairy industry. Lactococcus chungangensis CAU 28(T) and L. lactis ssp. lactis KCTC 3769(T) were both found to have amylase, proteinase, and lipase activities in broth culture, cream cheese, and yogurt. Notably, the proteinase and lipase activities of L. chungangensis CAU 28(T) were higher than those of L. lactis ssp. lactis KCTC 3769(T), with proteinase activity of 10.50 U/mL in tryptic soy broth and 8.64 U/mL in cream cheese, and lipase activity of 100 U/mL of tryptic soy broth, and 100 U/mL of cream cheese. In contrast, the amylase activity was low, with 5.28 U/mL in tryptic soy broth and 8.86 U/mL in cream cheese. These enzyme activities in L. chungangensis CAU 28(T) suggest that this strain has potential to be used for manufacturing dairy fermented products, even though the strain is of nondairy origin. PMID:27108177

  2. Effect of Exogenous MJA Treatment of Tea Plants on the Growth of Geometrid Larvae

    Institute of Scientific and Technical Information of China (English)

    GUI Lian-you; CHEN Zong-mao; LIU Shu-sheng

    2005-01-01

    The effect of tea plant Camellia sinensis induced by exogenous methyl jasmonate (MJA) on lipoxygenase (LOX), polyphenol oxidase (PPO) and proteinase inhibitor (PI) activity in the leaves of tea plants, as well as the growth and midgut proteinase activity of the geometrid Ectropis obliqua larvae were studied. MJA significantly induced LOX, PPO and PI activity in leaves of tea plants. When geometrid larvae have fed on leaves of tea plants treated with MJA, the activities of the high alkaline trypsin-like enzyme and chymotrypsin-like enzyme in their midgut were significantly inhibited, but the activities of the low alkaline trypsin-like enzyme in their midgut were unaffected, leading to imbalance between different types of proteinase activity in the midgut of the larvae and in turn, the growth were inhibited. These chains of response may be an important mechanism of the direct resistance induced by MJA-treatment of tea plant on geometrid larvae.

  3. Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots

    Energy Technology Data Exchange (ETDEWEB)

    Vadas, Timothy M., E-mail: tvadas@umbc.ed [Department of Biological and Environmental Engineering, Cornell University, 320 Riley-Robb Hall, Ithaca, NY 14853 (United States); Ahner, Beth A., E-mail: baa7@cornell.ed [Department of Biological and Environmental Engineering, Cornell University, 320 Riley-Robb Hall, Ithaca, NY 14853 (United States)

    2009-08-15

    This study examines a new mechanism for the uptake of Pb and Cd into Brassica napus and Zea mays roots. During hydroponic experiments, the uptake of Pb and Cd was enhanced in the presence of cysteine and glutathione, whereas no or very low uptake was observed in EDTA and penicillamine controls. Uptake rates were also enhanced after pre-exposure to cysteine or glutathione and inhibited in the presence of vanadate, suggesting a biological mechanism of uptake. Increasing concentrations of glutathione in solution resulted in decreasing Pb uptake rates, indicating competition for transport between free-glutathione and Pb-glutathione species. Pb uptake in the presence of increasing cysteine concentrations resulted in decreased uptake initially but linearly increasing uptake at higher concentrations. Experimentation showed concentration dependent Pb uptake rates. We speculate that there are specific transporters for these thiol ligands and describe what barriers remain for application of this novel transport mechanism in chelator-assisted phytoremediation. - Cysteine and glutathione mediate the transport of lead and cadmium into plant roots.

  4. Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease.

    Science.gov (United States)

    Mohan, S; Ma, P W K; Pechan, T; Bassford, E R; Williams, W P; Luthe, D S

    2006-01-01

    A unique 33-kDa cysteine protease (Mir1-CP) rapidly accumulates at the feeding site in the whorls of maize (Zea mays L.) lines that are resistant to herbivory by Spodoptera frugiperda and other lepidopteran species. When larvae were reared on resistant plants, larval growth was reduced due to impaired nutrient utilization. Scanning electron microscopy (SEM) indicated that the peritrophic matrix (PM) was damaged when larvae fed on resistant plants or transgenic maize callus expressing Mir1-CP. To directly determine the effects of Mir1-CP on the PM in vitro, dissected PMs were treated with purified, recombinant Mir1-CP and the movement of Blue Dextran 2000 across the PM was measured. Mir1-CP completely permeabilized the PM and the time required to reach full permeability was inversely proportional to the concentration of Mir1-CP. Inclusion of E64, a specific cysteine protease inhibitor prevented the damage. The lumen side of the PM was more vulnerable to Mir1-CP attack than the epithelial side. Mir1-CP damaged the PM at pH values as high as 8.5 and more actively permeabilized the PM than equivalent concentrations of the cysteine proteases papain, bromelain and ficin. The effect of Mir1-CP on the PMs of Helicoverpa zea, Danaus plexippus, Ostrinia nubilalis, Periplaneta americana and Tenebrio molitor also was tested, but the greatest effect was on the S. frugiperda PM. These results demonstrate that the insect-inducible Mir1-CP directly damages the PM in vitro and is critical to insect defense in maize.

  5. Nitric Oxide Negatively Modulates Wound Signaling in Tomato Plants1

    Science.gov (United States)

    Orozco-Cárdenas, Martha L.; Ryan, Clarence A.

    2002-01-01

    Synthesis of proteinase inhibitor I protein in response to wounding in leaves of excised tomato (Lycopersicon esculentum) plants was inhibited by NO donors sodium nitroprusside and S-nitroso-N-acetyl-penicillamine. The inhibition was reversed by supplying the plants with the NO scavenger 2-(4-carboxiphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. NO also blocked the hydrogen peroxide (H2O2) production and proteinase inhibitor synthesis that was induced by systemin, oligouronides, and jasmonic acid (JA). However, H2O2 generated by glucose oxidase and glucose was not blocked by NO, nor was H2O2-induced proteinase inhibitor synthesis. Although the expression of proteinase inhibitor genes in response to JA was inhibited by NO, the expression of wound signaling-associated genes was not. The inhibition of wound-inducible H2O2 generation and proteinase inhibitor gene expression by NO was not due to an increase in salicylic acid, which is known to inhibit the octadecanoid pathway. Instead, NO appears to be interacting directly with the signaling pathway downstream from JA synthesis, upstream of H2O2 synthesis. The results suggest that NO may have a role in down-regulating the expression of wound-inducible defense genes during pathogenesis. PMID:12226527

  6. Cloning of a Potato Proteinase Inhibitor Gene PINII-2x from Diploid Potato (Solanum phurejia L.) and Transgenic Investigation of Its Potential to Confer Insect Resistance in Rice

    Institute of Scientific and Technical Information of China (English)

    Qing-Yun Bu; Liang Wu; Shi-Hu Yang; Jian-Min Wan

    2006-01-01

    Both cDNA and a genomic DNA fragment encoding a new potato proteinase inhibitor Ⅱ were isolated from a diploid potato IVP101 (Solanum phurejia L.) and named PINⅡ-2x. Nucleotide sequencing confirmed that the DNA fragment of PINⅡ-2xwas 580 bp, including a 115-bp intron and two exons. The deduced PINⅡ-2x protein contained an intact signal peptide and two active sites. The PINⅡ-2x gene and its deduced PINⅡ-2x protein had 88% and 93% homology with another tetraploid potato proteinase inhibitor Ⅱ, respectively. Northern blotting analysis indicated that the mRNA of PINⅡ-2x gene was wound induced in potato leaves. Binary vector pNAR301 and pNAR302 were constructed for rice transformation, in which the PINⅡ-2x cDNA was driven,respectively, by rice actin I promoter (Actl) and maize ubiquitin promoter (Ubil). Via an Agrobacteriummediated method, these two constructs were transferred into japonica rice cv. Xiushui 63. PCR and Southern blotting analysis for transgenic rice revealed the integration of the PINⅡ-2x gene. Northern blotting analysis also confirmed transcripts of the PINⅡ-2x gene in transgenic rice plants. Insect bioassays using stripe stem borer (Chilo suppressalis Walker) demonstrated that the average weight and body length of larvae in transgenic plants were only nearly 50% and 61% of those of larvae in control plants, respectively.These results indicate that the PINⅡ-2x gene should be an effective insect-resistance gene and could be valuable for application in crop breeding for insect resistance.

  7. THE ROLE OF CYSTEINE PROTEASE IN ALZHEIMER DISEASE

    Science.gov (United States)

    Hasanbasic, Samra; Jahic, Alma; Karahmet, Emina; Sejranic, Asja; Prnjavorac, Besim

    2016-01-01

    Introduction: Cysteine protease are biological catalysts which play a pivotal role in numerous biological reactions in organism. Much of the literature is inscribed to their biochemical significance, distribution and mechanism of action. Many diseases, e.g. Alzheimer’s disease, develop due to enzyme balance disruption. Understanding of cysteine protease’s disbalance is therefor a key to unravel the new possibilities of treatment. Cysteine protease are one of the most important enzymes for protein disruption during programmed cell death. Whether protein disruption is part of cell deaths is not enough clear in any cases. Thereafter, any tissue disruption, including proteolysis, generate more or less inflammation appearance. Review: This review briefly summarizes the current knowledge about pathological mechanism’s that results in AD, with significant reference to the role of cysteine protease in it. Based on the summary, new pharmacological approach and development of novel potent drugs with selective toxicity targeting cysteine protease will be a major challenge in years to come.

  8. Highly conserved salt bridge stabilizes a proteinase K subfamily enzyme, Aqualysin I, from Thermus aquaticus YT-1

    OpenAIRE

    Sakaguchi, Masayoshi; Osaku, Kanae; Maejima, Susumu; Ohno, Nao; Sugahara, Yasusato; Oyama, Fumitaka; Kawakita, Masao

    2014-01-01

    The proteinase K subfamily enzymes, thermophilic Aqualysin I (AQN) from Thermus aquaticus YT-1 and psychrophilic serine protease (VPR) from Vibrio sp. PA-44, have six and seven salt bridges, respectively. To understand the possible significance of salt bridges in the thermal stability of AQN, we prepared mutant proteins in which amino acid residues participating in salt bridges common to proteinase K subfamily members and intrinsic to AQN were replaced to disrupt the bridges one at a time. Di...

  9. Effect of insulin on the mRNA expression of procollagen N-proteinases in chondrosarcoma OUMS-27 cells

    OpenAIRE

    Akyol, Sumeyya; Cömertoğlu, İsmail; FIRAT, RIDVAN; Çakmak, Özlem; YUKSELTEN, YUNUS; ERDEN, GÖNÜL; Ugurcu, Veli; Demircan,Kadir

    2015-01-01

    Chondrosarcoma is one of the most common bone tumors, and at present, there is no non-invasive treatment option for this cancer. The chondrosarcoma OUMS-27 cell line produces proteoglycan and type II, IX, and XI collagens, which constitutes cartilage tissue. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) proteases are a group of secreted proteases, which include the procollagen N-proteinases ADAMTS-2, -3 and -14. These procollagen N-proteinases perform a role in the p...

  10. Inhibitory properties of cysteine protease pro-peptides from barley confer resistance to spider mite feeding.

    Science.gov (United States)

    Santamaria, M Estrella; Arnaiz, Ana; Diaz-Mendoza, Mercedes; Martinez, Manuel; Diaz, Isabel

    2015-01-01

    C1A plant cysteine proteases are synthesized as pre-pro-enzymes that need to be processed to become active by the pro-peptide claves off from its cognate enzyme. These pro-sequences play multifunctional roles including the capacity to specifically inhibit their own as well as other C1A protease activities from diverse origin. In this study, it is analysed the potential role of C1A pro-regions from barley as regulators of cysteine proteases in target phytophagous arthropods (coleopteran and acari). The in vitro inhibitory action of these pro-sequences, purified as recombinant proteins, is demonstrated. Moreover, transgenic Arabidopsis plants expressing different fragments of HvPap-1 barley gene containing the pro-peptide sequence were generated and the acaricide function was confirmed by bioassays conducted with the two-spotted spider mite Tetranychus urticae. Feeding trials resulted in a significant reduction of leaf damage in the transgenic lines expressing the pro-peptide in comparison to non-transformed control and strongly correlated with an increase in mite mortality. Additionally, the analysis of the expression levels of a selection of potential mite targets (proteases and protease inhibitors) revealed a mite strategy to counteract the inhibitory activity produced by the C1A barley pro-prodomain. These findings demonstrate that pro-peptides can control mite pests and could be applied as defence proteins in biotechnological systems.

  11. Inhibitory properties of cysteine protease pro-peptides from barley confer resistance to spider mite feeding.

    Directory of Open Access Journals (Sweden)

    M Estrella Santamaria

    Full Text Available C1A plant cysteine proteases are synthesized as pre-pro-enzymes that need to be processed to become active by the pro-peptide claves off from its cognate enzyme. These pro-sequences play multifunctional roles including the capacity to specifically inhibit their own as well as other C1A protease activities from diverse origin. In this study, it is analysed the potential role of C1A pro-regions from barley as regulators of cysteine proteases in target phytophagous arthropods (coleopteran and acari. The in vitro inhibitory action of these pro-sequences, purified as recombinant proteins, is demonstrated. Moreover, transgenic Arabidopsis plants expressing different fragments of HvPap-1 barley gene containing the pro-peptide sequence were generated and the acaricide function was confirmed by bioassays conducted with the two-spotted spider mite Tetranychus urticae. Feeding trials resulted in a significant reduction of leaf damage in the transgenic lines expressing the pro-peptide in comparison to non-transformed control and strongly correlated with an increase in mite mortality. Additionally, the analysis of the expression levels of a selection of potential mite targets (proteases and protease inhibitors revealed a mite strategy to counteract the inhibitory activity produced by the C1A barley pro-prodomain. These findings demonstrate that pro-peptides can control mite pests and could be applied as defence proteins in biotechnological systems.

  12. Hydrolytic activity of Virgibacillus sp. SK37, a starter culture of fish sauce fermentation, and its cell-bound proteinases.

    Science.gov (United States)

    Sinsuwan, Sornchai; Rodtong, Sureelak; Yongsawatdigul, Jirawat

    2012-08-01

    Fish sauce production relies on a natural fermentation process requiring 12-18 months for process completion. Virgibacillus sp. SK37 has been shown to be a potential strain for fish sauce acceleration. However, hydrolytic activity of proteinases bound at cell surface of this strain has not been well elucidated. Addition of 0.2 % CaCl(2) (w/w) in conjunction with starter cultures of Virgibacillus sp. SK 37 increased protein hydrolysis as measured by α-amino group content throughout fermentation (P Virgibacillus sp. SK 37 were extracted into a free form by incubating the washed cells in Ca(2+)-free buffer at 37 °C for 2 h. Cell-bound proteinases revealed molecular mass of 19, 20, 22, 32, 34, and 44 kDa based on a synthetic peptide zymogram. The proteinases showed subtilisin-like serine characteristics with the highest activity at 50 °C and pH 8 and 11. Activity of the extracted proteinases increased ~4 times at ≥100 mM CaCl(2). In addition, CaCl(2) enhanced thermal stability of the extracted proteinases. Enzymes showed proteolytic activity in either the absence or presence of 10 and 25 % NaCl toward fish muscle, soy protein isolate, and casein substrates. Cell-bound proteinases were likely to play an important role in protein hydrolysis during fish sauce fermentation. PMID:22806191

  13. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus.

    Science.gov (United States)

    Bressollier, P; Letourneau, F; Urdaci, M; Verneuil, B

    1999-06-01

    Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70 degrees C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.

  14. Purification and characterization of an elastinolytic proteinase secreted by cercariae of Schistosoma mansoni.

    Science.gov (United States)

    McKerrow, J H; Pino-Heiss, S; Lindquist, R; Werb, Z

    1985-03-25

    An elastinolytic proteinase secreted by tissue-invasive larvae of Schistosoma mansoni has been purified to homogeneity. Size-exclusion chromatography and chromatofocusing were used to purify the enzyme 18-fold from crude larval secretions. The native enzyme has a molecular weight of 30,000, a pI of 8, a pH optimum of 9, and a calcium dependence of 2 mM. A second Mr 17,000 form of the enzyme was present in crude secretions and appears to be an autoproteolysis product. The enzyme is a serine proteinase that preferentially binds tetrapeptide inhibitors or substrates with an aromatic or hydrophobic residue at the P-1 site. In addition to being active against elastin, the enzyme degrades Azocoll, gelatin, laminin, fibronectin, keratin, and type IV collagen.

  15. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin.

    Science.gov (United States)

    Oppert, B; Kramer, K J; Johnson, D; Upton, S J; Mcgaughey, W H

    1996-06-01

    The ability of proteinases in gut extracts of the Indianmeal moth, Plodia interpunctella, to hydrolyze Bacillus thuringiensis (Bt) protoxin, casein, and rho-nitroanilide substrates was investigated. A polyclonal antiserum to protoxin CryIA(c) was used in Western blots to demonstrate slower protoxin processing by gut enzymes from Bt subspecies entomocidus-resistant larvae than enzymes from susceptible or kurstaki-resistant strains. Enzymes from all three strains hydrolyzed N-alpha-benzoyl-L-arginine rho-nitroanilide, N-succinyl-ala-ala-pro-phenylalanine rho-nitroanilide, and N-succinyl-ala-ala-pro-leucine rho-nitroanilide. Zymograms and activity blots were used to estimate the apparent molecular masses, number of enzymes, and relative activities in each strain. Several serine proteinase inhibitors reduced gut enzyme activities, with two soybean trypsin inhibitors, two potato inhibitors, and chymostatin the most effective in preventing protoxin hydrolysis.

  16. The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology.

    Science.gov (United States)

    Bekhouche, Mourad; Colige, Alain

    2015-01-01

    Collagen fibers are the main components of most of the extracellular matrices where they provide a structural support to cells, tissues and organs. Fibril-forming procollagens are synthetized as individual chains that associate to form homo- or hetero-trimers. They are characterized by the presence of a central triple helical domain flanked by amino and carboxy propeptides. Although there are some exceptions, these two propeptides have to be proteolytically removed to allow the almost spontaneous assembly of the trimers into collagen fibrils and fibers. While the carboxy-propeptide is mainly cleaved by proteinases from the tolloid family, the amino-propeptide is usually processed by procollagen N-proteinases: ADAMTS2, 3 and 14. This review summarizes the current knowledge concerning this subfamily of ADAMTS enzymes and discusses their potential involvement in physiopathological processes that are not directly linked to fibrillar procollagen processing. PMID:25863161

  17. Modified TB rapid test by proteinase K for rapid diagnosis of pleural tuberculosis.

    Science.gov (United States)

    Yari, Shamsi; Hadizadeh Tasbiti, Alireza; Ghanei, Mostafa; Shokrgozar, Mohammad Ali; Fateh, Abolfazl; Yari, Fatemeh; Bahrmand, Ahmadreza

    2016-03-01

    The diagnosis of pleural tuberculosis continues to be a challenge due to the low sensitivity of traditional diagnostic methods. Better and more rapid tests are needed for diagnosis of pleural TB. In this study, pleural fluids were tested with rapid test to determine Mycobacterium tuberculosis (MTB antigen). Affinity chromatography was used to purify specific polyclonal antibodies against MTB antigen. Pleural samples after decontamination were treated with proteinase K. Rapid test for pleural fluids was prepared by specific antibody. Rapid test was performed on 85 pleural fluid patients. The patients had a mean age of 46.55 ± 15.96 years and 38 were men. The performance of rapid test, using proteinase K, was found to be the most impressive: sensitivity 93%, specificity 94%, PPV 90%, and NPV 96% compared with adenosine deaminase test (ADA), PCR, smear, and culture. The present study did demonstrate that modified TB rapid test can substantially improve the diagnosis of extrapulmonary TB.

  18. Enhanced response of a proteinase K-based conductometric biosensor using nanoparticles.

    Science.gov (United States)

    Nouira, Wided; Maaref, Abderrazak; Elaissari, Hamid; Vocanson, Francis; Siadat, Maryam; Jaffrezic-Renault, Nicole

    2014-07-23

    Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic). The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE). The biosensor was characterized with bovine serum albumin (BSA) as a standard protein. Higher sensitivity was obtained using gold nanoparticles. The linear range for BSA determination was then from 0.5 to 10 mg/L with a maximum response of 154 µs. These results are greater than that found without any nanoparticles (maximum response of 10 µs). The limit of detection (LOD) was 0.3 mg/L. An inter-sensor reproducibility of 3.5% was obtained.

  19. Human seminal proteinase and prostate-specific antigen are the same protein

    Indian Academy of Sciences (India)

    Abdul Waheed; Md Imtaiyaz Hassan; Robert L Van Etten; Faizan Ahmad

    2008-06-01

    Human seminal proteinase and prostate-specific antigen (PSA) were each isolated from human seminal fluid and compared. Both are glycoproteins of 32–34 kDa with protease activities. Based on some physicochemical, enzymatic and immunological properties, it is concluded that these proteins are in fact identical. The protein exhibits properties similar to kallikrein-like serine protease, trypsin, chymotrypsin and thiol acid protease. Tests of the activity of the enzyme against some potential natural and synthetic substrates showed that bovine serum albumin was more readily hydrolysed than casein. The results of this study should be useful in purifying and assaying this protein. Based on published studies and the present results, the broad proteolytic specificity of human seminal proteinase suggests a role for this protein in several physiological functions.

  20. Enhanced Response of a Proteinase K-Based Conductometric Biosensor Using Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wided Nouira

    2014-07-01

    Full Text Available Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic. The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE. The biosensor was characterized with bovine serum albumin (BSA as a standard protein. Higher sensitivity was obtained using gold nanoparticles. The linear range for BSA determination was then from 0.5 to 10 mg/L with a maximum response of 154 µs. These results are greater than that found without any nanoparticles (maximum response of 10 µs. The limit of detection (LOD was 0.3 mg/L. An inter-sensor reproducibility of 3.5% was obtained.

  1. Cloning and expression of an active aspartic proteinase from Mucor circinelloides in Pichia pastoris

    OpenAIRE

    Gama Salgado, Jose Antonio; Kangwa, Martin; Fernandez-Lahore, Marcelo

    2013-01-01

    Background Extracellular aspartic proteinase (MCAP) produced by Mucor circinelloides in solid state fermentations has been shown to possess milk clotting activity and represents a potential replacement for bovine chymosin in cheese manufacturing. Despite its prospects in the dairy industry, the molecular characteristics of this enzyme remain unknown. This work focuses on MCAP cloning and optimization of heterologous expression in Pichia pastoris, and characterization of the enzyme. Results Th...

  2. Proteinase 3 contributes to transendothelial migration of NB1-positive neutrophils

    OpenAIRE

    Kuckleburg, Christopher J.; Tilkens, Sarah M.; Santoso, Sentot; Newman, Peter J.

    2012-01-01

    Neutrophil transmigration requires the localization of neutrophils to endothelial cell junctions, where receptor-ligand interactions and the action of serine proteases promote leukocyte diapedesis. NB1 (CD177) is a neutrophil-expressed surface molecule that has been reported to bind proteinase 3 (PR3), a serine protease released from activated neutrophils. PR3 has demonstrated proteolytic activity on a number of substrates, including extracellular matrix proteins, although its role in neutrop...

  3. Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis.

    Science.gov (United States)

    Kumar, Rohitashw; Saraswat, Darpan; Tati, Swetha; Edgerton, Mira

    2015-07-01

    Candida albicans, a commensal fungus of the oral microbiome, causes oral candidiasis in humans with localized or systemic immune deficiencies. Secreted aspartic proteinases (Saps) are a family of 10 related proteases and are virulence factors due to their proteolytic activity, as well as their roles in adherence and colonization of host tissues. We found that mice infected sublingually with C. albicans cells overexpressing Sap6 (SAP6 OE and a Δsap8 strain) had thicker fungal plaques and more severe oral infection, while infection with the Δsap6 strain was attenuated. These hypervirulent strains had highly aggregative colony structure in vitro and higher secreted proteinase activity; however, the levels of proteinase activity of C. albicans Saps did not uniformly match their abilities to damage cultured oral epithelial cells (SCC-15 cells). Hyphal induction in cells overexpressing Sap6 (SAP6 OE and Δsap8 cells) resulted in formation of large cell-cell aggregates. These aggregates could be produced in germinated wild-type cells by addition of native or heat-inactivated Sap6. Sap6 bound only to germinated cells and increased C. albicans adhesion to oral epithelial cells. The adhesion properties of Sap6 were lost upon deletion of its integrin-binding motif (RGD) and could be inhibited by addition of RGD peptide or anti-integrin antibodies. Thus, Sap6 (but not Sap5) has an alternative novel function in cell-cell aggregation, independent of its proteinase activity, to promote infection and virulence in oral candidiasis.

  4. Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture

    OpenAIRE

    Talhouk, Rabih S.; CHIN, JENNIE R.; UNEMORI, ELAINE N.; Werb, Zena; Bissell, Mina J.

    1991-01-01

    The extracellular matrix (ECM) is an important regulator of mammary epithelial cell function both in vivo and in culture. Substantial remodeling of ECM accompanies the structural changes in the mammary gland during gestation, lactation and involution. However, little is known about the nature of the enzymes and the processes involved. We have characterized and studied the regulation of cell-associated and secreted mammary gland proteinases active at neutral pH that may be involved in degradat...

  5. Effect of acute ozone exposure on the proteinase-antiproteinase balance in the rat lung

    International Nuclear Information System (INIS)

    Lung disease may result from a persisting proteinase excess or a depletion of antiproteinase in pulmonary parenchyma. We investigated the in vivo effect of a 48-hr exposure to ozone at 0.5, 1.0, or 1.5 ppm on proteinase and antiproteinase activity of rat lungs. Elastase inhibitory capacities of serum, lung tissue, and airway washings were measured as indicators of antielastase activity. Trypsin inhibitory capacity was measured using an esterolytic procedure. Proteinase was measured as radioactive release from a 14C-globin substrate. The 48-hr exposures to O3 at levels up to 1 ppm produced concentration-dependent decreases of 35-80% of antiproteinase activities in serum and in lung tissue. However, exposure to 1.5 ppm O3 resulted in no decrease in antiproteinase activities. Acid proteinase activities (pH 4.2) were increased 65-120% by exposure to 1 or 1.5 ppm O3, which correlated with inflammatory cells noted histologically. At 1.5 ppm O3, pulmonary edema and hemorrhage were noted in histologic sections. These changes led to a flooding of the alveoli with up to 40 times normal protein levels and a greater than fivefold increase in airway antiproteinase. These data suggest that serum and soluble lung tissue antiproteinase activity decreased upon exposure to low levels of ozone. However, if O3 exposure is high enough to produce pulmonary hemorrhage, antiproteinase may increase following serum exudation. These changes may be important in the development of ozone-induced lung diseases, especially emphysema

  6. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways

    OpenAIRE

    Lund, Leif R.; Rømer, John; Thomasset, Nicole; Solberg, Helene; Pyke, Charles; Bissell, Mina J.; Danø, Keld; Werb, Zena

    1996-01-01

    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when ...

  7. Development of nitrile-based peptidic inhibitors of cysteine cathepsins.

    Science.gov (United States)

    Frizler, Maxim; Stirnberg, Marit; Sisay, Mihiret Tekeste; Gütschow, Michael

    2010-01-01

    It is now becoming clear that several papain-like cysteine cathepsins are involved in the pathophysiology of diseases such as osteoporosis, autoimmune disorders, and cancer. Therefore, the development of potent and selective cathepsin inhibitors is an attractive subject for medicinal chemists. New advances have been made for nitrile-based inhibitors, leading to the identification of the cathepsin K inhibitor odanacatib and other candidates with potential for therapeutic use. This review summarizes the development of peptidic and peptidomimetic compounds with an electrophilic nitrile 'warhead' as inhibitors of the cysteine cathepsins B, S, L, C, and K. Peptide nitriles have been shown to reversibly react with the active site cysteine under formation of a covalent thioimidate adduct. The structural optimization with respect to the positions P3, P2, P1, P1', and P2' resulted in the identification of potent and selective inhibitors of the corresponding cathepsins. The underlying structure-activity relationships are discussed herein. PMID:20166952

  8. L-Cysteine-assisted Synthesis of Copper Gallium Sulfide Microspheres

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiao-juan; ZHONG Jia-song; CAI Qian; HUANG Hai-yu; LIU Hai-tao; XIANG Wei-dong; SUN Jun-cai

    2012-01-01

    An effective L-cysteine-assisted synthetic route has been successfully developed to prepare copper gallium sulfide(CuGaS2) microspheres under solvothermal conditions with CuCI2-2H2O,GaCl3 and L-cysteine as source materials,in which L-cysteine was used as the sulfide source and eomplexing molecule.The experiments revealed that the synthesized sample was of a typical CuGaS2 tetragonal structure.Moreover,the prepared CuGaS2 crystals consisting of microspheres made up of nanoflakes,and the diameter of the nanoflakes was about 20 nm.Raman spectrum of the obtained CuGaS2 exhibits a high-intensity peak of the A1 mode at 306 cm-1.Meanwhile,a possible growth mechanism was proposed based on the investigations.

  9. Orchestrating redox signaling networks through regulatory cysteine switches.

    Science.gov (United States)

    Paulsen, Candice E; Carroll, Kate S

    2010-01-15

    Hydrogen peroxide (H(2)O(2)) acts as a second messenger that can mediate intracellular signal transduction via chemoselective oxidation of cysteine residues in signaling proteins. This Review presents current mechanistic insights into signal-mediated H(2)O(2) production and highlights recent advances in methods to detect reactive oxygen species (ROS) and cysteine oxidation both in vitro and in cells. Selected examples from the recent literature are used to illustrate the diverse mechanisms by which H(2)O(2) can regulate protein function. The continued development of methods to detect and quantify discrete cysteine oxoforms should further our mechanistic understanding of redox regulation of protein function and may lead to the development of new therapeutic strategies.

  10. Phycobilin:cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins.

    Science.gov (United States)

    Zhao, Kai-Hong; Su, Ping; Tu, Jun-Ming; Wang, Xing; Liu, Hui; Plöscher, Matthias; Eichacker, Lutz; Yang, Bei; Zhou, Ming; Scheer, Hugo

    2007-09-01

    Phycobilisomes, the light-harvesting complexes of cyanobacteria and red algae, contain two to four types of chromophores that are attached covalently to seven or more members of a family of homologous proteins, each carrying one to four binding sites. Chromophore binding to apoproteins is catalyzed by lyases, of which only few have been characterized in detail. The situation is complicated by nonenzymatic background binding to some apoproteins. Using a modular multiplasmidic expression-reconstitution assay in Escherichia coli with low background binding, phycobilin:cystein-84 biliprotein lyase (CpeS1) from Anabaena PCC7120, has been characterized as a nearly universal lyase for the cysteine-84-binding site that is conserved in all biliproteins. It catalyzes covalent attachment of phycocyanobilin to all allophycocyanin subunits and to cysteine-84 in the beta-subunits of C-phycocyanin and phycoerythrocyanin. Together with the known lyases, it can thereby account for chromophore binding to all binding sites of the phycobiliproteins of Anabaena PCC7120. Moreover, it catalyzes the attachment of phycoerythrobilin to cysteine-84 of both subunits of C-phycoerythrin. The only exceptions not served by CpeS1 among the cysteine-84 sites are the alpha-subunits from phycocyanin and phycoerythrocyanin, which, by sequence analyses, have been defined as members of a subclass that is served by the more specialized E/F type lyases.

  11. Browning inhibition mechanisms by cysteine, ascorbic acid and citric acid, and identifying PPO-catechol-cysteine reaction products.

    Science.gov (United States)

    Ali, Hussein M; El-Gizawy, Ahmed M; El-Bassiouny, Rawia E I; Saleh, Mahmoud A

    2015-06-01

    The titled compounds were examined as PPO inhibitors and antibrowning agents; their various mechanisms were investigated and discussed. All compounds reduced significantly both the browning process and PPO activity. Browning index gave strong correlation with PPO activity (r(2) = 0.96, n = 19) indicating that the browning process is mainly enzymatic. Ascorbic acid could reduce the formed quinone instantly to the original substrate (catechol) at high concentration (>1.5 %) while at lower concentrations acted as competitive inhibitor (KI = 0.256 ± 0.067 mM). Cysteine, at higher concentrations (≥1.0 %), reacted with the resulted quinone to give a colorless products while at the low concentrations, cysteine worked as competitive inhibitor (KI = 1.113 ± 0.176 mM). Citric acid acted only as PPO non-competitive inhibitor with KI = 2.074 ± 0.363 mM. The products of PPO-catechole-cysteine reaction could be separation and identification by LC-ESI-MS. Results indicated that the product of the enzymatic oxidation of catechol, quinone, undergoes two successive nucleophilic attacks by cysteine thiol group. Cysteine was condensed with the resulted mono and dithiocatechols to form peptide side chains.

  12. Comparison of self-processing of foot-and-mouth disease virus leader proteinase and porcine reproductive and respiratory syndrome virus leader proteinase nsp1α.

    Science.gov (United States)

    Steinberger, Jutta; Kontaxis, Georg; Rancan, Chiara; Skern, Tim

    2013-09-01

    The foot-and-mouth disease virus leader proteinase (Lb(pro)) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb(pro) L200F provide structural evidence for intramolecular self-processing. (15)N-HSQC measurements of Lb(pro) L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb(pro), lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb(pro), stably binds its own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lb(pro) and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb(pro).

  13. Comparison of self-processing of foot-and-mouth disease virus leader proteinase and porcine reproductive and respiratory syndrome virus leader proteinase nsp1α

    International Nuclear Information System (INIS)

    The foot-and-mouth disease virus leader proteinase (Lbpro) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lbpro L200F provide structural evidence for intramolecular self-processing. 15N-HSQC measurements of Lbpro L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLbpro, lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lbpro, stably binds its own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lbpro and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lbpro. - Highlights: • We examine self-processing of the leader protease of foot-and-mouth disease virus. • NMR analysis strongly supports intramolecular self-processing. • Self-processing is a dynamic process with no stable complex. • Structural comparison with nsp1α of PRRSV which forms stable intramolecular complex. • Subdomain orientation explains differences in stability of intramolecular complexes

  14. Characterization of certain proteinase isoenzymes produced by benign and virulent strains of Bacteroides nodosus.

    Science.gov (United States)

    Green, R S

    1985-11-01

    Three proteinase isoenzymes from one benign strain of Bacteroides nodosus and five proteinase isoenzymes from each of two virulent strains of B. nodosus were purified by horizontal slab polyacrylamide gel electrophoresis. The purified isoenzymes hydrolysed casein, collagen I, collagen III, elastin, alpha-elastin, fibrinogen, gelatin, haemoglobin and alpha-keratin. The pH optima of all the isoenzymes lay between 7.25 and 9.5, the range of 8.75-9.25 being common to all. The isoenzymes were inhibited by phenylmethylsulphonyl fluoride, diphenylcarbamyl chloride, L-(1-tosylamide-2-phenyl)ethyl chloromethyl ketone, EGTA and EDTA, indicating that they were chymotrypsin-like serine proteinases that require a metal ion for stability or activity. EDTA inhibition was not reversed by addition of Ca2+ or Mg2+. Some isoenzymes were activated by Mg2+, Ca2+, Cr3+ and Se4+ and all were inhibited by Fe2+, Co2+, Cu2+, Zn2+, Cd2+ and Hg2+. Isoenzymes from benign strains had a lower temperature stability, losing all activity at 55 degrees C, whereas those from virulent strains lost all activity at 60 degrees C.

  15. [Characteristics of proteinase digestive function in invertebrates--inhabitants of cold seas].

    Science.gov (United States)

    Mukhin, V A; Smirnova, E B; Novikov, V Iu

    2007-01-01

    Digestive proteinases of various taxa of invertebrates of the Northern seas have been studied: crustaceans Paralithodes camtchaticus, Pandalus borealis; molluscs Chlamys islandicus, Buccinum undatum, Serripes groenlandicus, and echinoderms Strongylocentrotus droebachiensis, Cucumaria frondosa, Asterias rubens, and Grossaster papposus. The presence of two proteolytic activity peaks in the acid (pH 2.5-3.5) and low alkaline zones (pH 7.5-8.5) and a similar proteinase spectrum have been revealed in digestive organs of the studied animals. The proteolytic activity in digestive organs of the Barents Sea invertebrates exceeds significantly that of terrestrial homoiothermal animals, which seems to be an extensive compensation for poor differentiation of the digestive system and for low substrate specificity of the enzymes as well as for cold conditions of the habitat. The principal qualitative difference between vertebrates and invertebrates consists in that the latter have no pepsin activity, but do have the cathepsin activity that is absent in vertebrate digestive organs. Contribution to the acid proteolysis is made by lysosomal cathepsins, rather than by pepsins. Activity in the alkaline and neutral pH zones is provided by serine proteinases. In digestive cavities of invertebrates, hydrolysis of proteins and mechanical processing of food occur only in the low alkaline zone, whereas acid proteolysis has intracellular lysosomal localization. PMID:18038635

  16. Implantation Serine Proteinases heterodimerize and are critical in hatching and implantation

    Directory of Open Access Journals (Sweden)

    Meng Guoliang

    2006-12-01

    Full Text Available Abstract Background We have recently reported the expression of murine Implantation Serine Proteinase genes in pre-implantation embryos (ISP1 and uterus (ISP1 and ISP2. These proteinases belong to the S1 proteinase family and are similar to mast cell tryptases, which function as multimers. Results Here, we report the purification and initial characterization of ISP1 and 2 with respect to their physico-chemical properties and physiological function. In addition to being co-expressed in uterus, we show that ISP1 and ISP2 are also co-expressed in the pre-implantation embryo. Together, they form a heterodimer with an approximate molecular weight of 63 kD. This complex is the active form of the enzyme, which we have further characterized as being trypsin-like, based on substrate and inhibitor specificities. In addition to having a role in embryo hatching and outgrowth, we demonstrate that ISP enzyme is localized to the site of embryo invasion during implantation and that its activity is important for successful implantation in vivo. Conclusion On the basis of similarities in structural, chemical, and functional properties, we suggest that this ISP enzyme complex represents the classical hatching enzyme, strypsin. Our results demonstrate a critical role for ISP in embryo hatching and implantation.

  17. Cloning and characterization of an Eimeria acervulina sporozoite gene homologous to aspartyl proteinases.

    Science.gov (United States)

    Laurent, F; Bourdieu, C; Kaga, M; Chilmonczyk, S; Zgrzebski, G; Yvoré, P; Péry, P

    1993-12-01

    A lambda ZapII cDNA library was constructed using mRNA from Eimeria acervulina sporulated oocysts and screened with monoclonal antibodies raised against Eimeria tenella sporulated oocytes. Monoclonal antibody N3C8B12 identified a clone (6S2) potentially encoding an aspartyl proteinase since significant homology with cathepsin D, pepsin and renin proteinases was revealed by sequence comparisons. The 1500-bp cDNA fragment containing the coccidial gene was subcloned into pGEX-FA expression vector, leading to the production of an 80-kDa fusion protein (FA6S2) which was used to immunize rabbits. The anti-FA6S2 rabbit sera revealed a single 43-kDa protein present in Eimeria acervulina, Eimeria tenella, Eimeria maxima and Eimeria falciformis sporulated oocyst antigens. Indirect immunofluorescence and electron microscopy with mAb N3C8B12 localized the putative aspartyl proteinase in the refractile bodies of Eimeria tenella sporozoites.

  18. Rearch progress in the proteinase K%蛋白酶K的研究进展

    Institute of Scientific and Technical Information of China (English)

    吴彤; 王瑞明; 黄磊; 徐志南

    2013-01-01

    蛋白酶K是一种在生物科学研究和生物加工过程中具有多种应用的重要丝氨酸蛋白酶,并且在食品和饲料工业中有潜在的重要应用.本文对蛋白酶K的分子结构、催化特性、定向进化、重组表达和应用研究的最新进展进行了研究总结,并对蛋白酶K在未来的研究方向进行了展望.%Proteinase K is a kind of important serine protease which has a variety of application in biological science research and biological processing process and has an important potential application in the food and feed industry.In this paper,the molecular structure,catalytic properties of proteinase K,directed evolution,and the latest progress in the study of recombinant expression and application were summarized and the research direction of proteinase K in the future was prospected.

  19. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    Directory of Open Access Journals (Sweden)

    Di Sun

    2016-03-01

    Full Text Available The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized.

  20. Sequence comparison, molecular modeling, and network analysis predict structural diversity in cysteine proteases from the Cape sundew, Drosera capensis.

    Science.gov (United States)

    Butts, Carter T; Zhang, Xuhong; Kelly, John E; Roskamp, Kyle W; Unhelkar, Megha H; Freites, J Alfredo; Tahir, Seemal; Martin, Rachel W

    2016-01-01

    Carnivorous plants represent a so far underexploited reservoir of novel proteases with potentially useful activities. Here we investigate 44 cysteine proteases from the Cape sundew, Drosera capensis, predicted from genomic DNA sequences. D. capensis has a large number of cysteine protease genes; analysis of their sequences reveals homologs of known plant proteases, some of which are predicted to have novel properties. Many functionally significant sequence and structural features are observed, including targeting signals and occluding loops. Several of the proteases contain a new type of granulin domain. Although active site residues are conserved, the sequence identity of these proteases to known proteins is moderate to low; therefore, comparative modeling with all-atom refinement and subsequent atomistic MD-simulation is used to predict their 3D structures. The structure prediction data, as well as analysis of protein structure networks, suggest multifarious variations on the papain-like cysteine protease structural theme. This in silico methodology provides a general framework for investigating a large pool of sequences that are potentially useful for biotechnology applications, enabling informed choices about which proteins to investigate in the laboratory. PMID:27471585

  1. Ab Initio MD Simulations of the Brønsted Acidity of Glutathione in Aqueous Solutions: Predicting pKa Shifts of the Cysteine Residue.

    Science.gov (United States)

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-12-10

    The tripeptide glutathione (GSH) is one of the most abundant peptides and the major repository for nonprotein sulfur in both animal and plant cells. It plays a critical role in intracellular oxidative stress management by the reversible formation of glutathione disulfide with the thiol-disulfide pair acting as a redox buffer. The state of charge of the ionizable groups of GSH can influence the redox couple, and hence the pKa value of the cysteine residue of GSH is critical to its functioning. Here we report ab initio Car-Parrinello molecular dynamics simulations of glutathione solvated by 200 water molecules, all of which are considered in the simulation. We show that the free-energy landscape for the protonation-deprotonation reaction of the cysteine residue of GSH computed using metadynamics sampling provides accurate estimates of the pKa and correctly predicts the shift in the dissociation constant values as compared with the isolated cysteine amino acid.

  2. Protein cysteine modifications: (2) reactivity specificity and topics of medicinal chemistry and protein engineering.

    Science.gov (United States)

    Nagahara, Noriyuki; Matsumura, Tomohiro; Okamoto, Ryo; Kajihara, Yasuhiro

    2009-01-01

    Cysteine (cysteinyl residue) modifications in proteins result in diversity in protein functions. The reaction specificity of a protein with a modified cysteine residue is determined by the overall conditions of the protein, including the spatial position of the cysteine residue, electrostatic interactions between cysteine residue and other charged residues, spatial interactions between the cysteine residue and a chemical compound, electrophilicity of the chemical compound, and the pH of the solution. In cysteine-dependant enzymes, each specific type of cysteine modification characterizes the catalytic mechanism of the enzyme. Recently, the catalytic mechanisms of peroxiredoxins and cysteine proteases, which contain a cysteine residue(s) in their catalytic sites, have been elucidated. In the catalytic process of peroxiredoxins, a sulfenyl intermediate is formed by oxidation of the catalytic cysteine residue. On the other hand, in cysteine proteases, the catalytic cysteine residue reacts with the carboxyl carbon of a peptide substrate to form an intermediate complex via S-alkylation. In this review, we introduce the most current information on the applications of cysteine thiol chemistry for in vitro glycoprotein synthesis. Recently, a glycoprotein (monocyte chemotactic protein-3), containing an intact human complex-type sialyloligosaccharide has been chemically synthesized. The procedure used for this could have applications in the development of new protein-based drugs, including antineoplastic drugs and antibiotics. It can also potentially be applied for improving the half-life and reducing the toxicity of these drugs, and for preventing the development of multidrug resistance.

  3. Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica: identification of a RIM101/pacC homolog.

    OpenAIRE

    Lambert, M.; Blanchin-Roland, S; Le Louedec, F; Lepingle, A; Gaillardin, C.

    1997-01-01

    Depending on the pH of the growth medium, the yeast Yarrowia lipolytica secretes both an acidic proteinase and an alkaline proteinase, the synthesis of which is also controlled by carbon, nitrogen, and sulfur availability, as well as by the presence of extracellular proteins. Recessive mutations at four unlinked loci, named PAL1 to PAL4, were isolated which prevent alkaline proteinase derepression under conditions of carbon and nitrogen limitation at pH 6.8. These mutations markedly affect ma...

  4. Bioactivation of cysteine conjugates of 1-nitropyrene oxides by cysteine conjugate beta-lyase purified from Peptostreptococcus magnus.

    OpenAIRE

    Kataoka, K; Kinouchi, T; Akimoto, S; Ohnishi, Y

    1995-01-01

    To determine the role of cysteine conjugate beta-lyase (beta-lyase) in the metabolism of mutagenic nitropolycyclic aromatic hydrocarbons, we determined the effect of beta-lyase on the mutagenicities and DNA binding of cysteine conjugates of 4,5-epoxy-4,5-dihydro-1-nitropyrene (1-NP 4,5-oxide) and 9,10-epoxy-9,10-dihydro-1-nitropyrene (1-NP 9,10-oxide), which are detoxified metabolites of the mutagenic compound 1-nitropyrene. We purified beta-lyase from Peptostreptococcus magnus GAI0663, since...

  5. Chitosan in Plant Protection

    Directory of Open Access Journals (Sweden)

    Abdelbasset El Hadrami

    2010-03-01

    Full Text Available Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of phytoalexins, pathogen-related (PR proteins and proteinase inhibitors, lignin synthesis, and callose formation. Based on these and other proprieties that help strengthen host plant defenses, interest has been growing in using them in agricultural systems to reduce the negative impact of diseases on yield and quality of crops. This review recapitulates the properties and uses of chitin, chitosan, and their derivatives, and will focus on their applications and mechanisms of action during plant-pathogen interactions.

  6. DISULFIND: A DISULFIDE BONDING STATE AND CYSTEINE CONNECTIVITY PREDICTION SERVER

    OpenAIRE

    Ceroni, A; Passerini, A.; Vullo,A; Frasconi, P.

    2006-01-01

    DISULFIND is a server for predicting the disulfide bonding state of cysteines and their disulfide connectivity starting from sequence alone. Optionally, disulfide connectivity can be predicted from sequence and a bonding state assignment given as input. The output is a simple visualization of the assigned bonding state (with confidence degrees) and the most likely connectivity patterns. The server is available at .

  7. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B

    DEFF Research Database (Denmark)

    Baron, Caroline; Jacobsen, S.; Purslow, P.P.

    2004-01-01

    sequential C-terminal degradation pattern characteristic of this dipeptylpeptidase. The substrate primary structure was not found to be essential for regulation of the proteolytic activity of the cysteine peptidases studied. However, the degradation patterns obtained imply that calpains are involved in...

  8. Structure and Reactivity of the Cysteine Methyl Ester Radical Cation

    NARCIS (Netherlands)

    Osburn, S.; Steill, J. D.; Oomens, J.; O' Hair, R. A. J.; Van Stipdonk, M.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the cysteine methyl ester radical cation, CysOMe(center dot+), have been examined in the gas phase using a combination of experiment and density functional theory (DFT) calculations. CysOMe(center dot+) undergoes rapid ion molecule reactions with dimethyl disulfide, a

  9. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine.

    Science.gov (United States)

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C

    2015-09-24

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases.

  10. Role of cysteine residues in pseudouridine synthases of different families.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  11. Chloro(triphenylphosphole)gold(I) - A selective Chemosensor for Cysteine

    Indian Academy of Sciences (India)

    Maruthai Kumaravel; Maravanji S Balakrishna

    2016-02-01

    Photophysical studies of luminescent gold complex of triphenylphosphole has been described. Addition of biologically relevant thio compounds was found to quench its fluorescence in methanol solution. Based on this, a simple and selective luminescence sensing method for cysteine detection has been developed.

  12. Synthesis of Protein Bioconjugates via Cysteine-maleimide Chemistry.

    Science.gov (United States)

    Mason, Alexander F; Thordarson, Pall

    2016-01-01

    The chemical linking or bioconjugation of proteins to fluorescent dyes, drugs, polymers and other proteins has a broad range of applications, such as the development of antibody drug conjugates (ADCs) and nanomedicine, fluorescent microscopy and systems chemistry. For many of these applications, specificity of the bioconjugation method used is of prime concern. The Michael addition of maleimides with cysteine(s) on the target proteins is highly selective and proceeds rapidly under mild conditions, making it one of the most popular methods for protein bioconjugation. We demonstrate here the modification of the only surface-accessible cysteine residue on yeast cytochrome c with a ruthenium(II) bisterpyridine maleimide. The protein bioconjugation is verified by gel electrophoresis and purified by aqueous-based fast protein liquid chromatography in 27% yield of isolated protein material. Structural characterization with MALDI-TOF MS and UV-Vis is then used to verify that the bioconjugation is successful. The protocol shown here is easily applicable to other cysteine - maleimide coupling of proteins to other proteins, dyes, drugs or polymers. PMID:27501061

  13. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine.

    Science.gov (United States)

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C

    2015-01-01

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases. PMID:26400108

  14. Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases.

    Science.gov (United States)

    Carrillo, Laura; Martinez, Manuel; Ramessar, Koreen; Cambra, Inés; Castañera, Pedro; Ortego, Felix; Díaz, Isabel

    2011-01-01

    Phytocystatins are inhibitors of cysteine-proteases from plants putatively involved in plant defence based on their capability of inhibit heterologous enzymes. We have previously characterised the whole cystatin gene family members from barley (HvCPI-1 to HvCPI-13). The aim of this study was to assess the effects of barley cystatins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of proteolytic activity profile in both mite species showed the presence of the cysteine-proteases, putative targets of cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 protein were generated and the functional integrity of the cystatin transgene was confirmed by in vitro inhibitory effect observed against T. urticae and B. chilensis protein extracts. Feeding experiments impaired on transgenic lines performed with T. urticae impaired mite development and reproductive performance. Besides, a significant reduction of cathepsin L-like and/or cathepsin B-like activities was observed when the spider mite fed on maize plants expressing HvCPI-6 cystatin. These findings reveal the potential of barley cystatins as acaricide proteins to protect plants against two important mite pests.

  15. Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth.

    Science.gov (United States)

    Prabhu, Antony; Sarcar, Bhaswati; Kahali, Soumen; Yuan, Zhigang; Johnson, Joseph J; Adam, Klaus-Peter; Kensicki, Elizabeth; Chinnaiyan, Prakash

    2014-02-01

    The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography-based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis.

  16. Assay of Cysteine in Human Serum with Quinine-Ce4+ Chemiluminescence System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A sensitive and selective chemiluminescence (CL) method was developed for the determination of cysteine. This method is based on that the weak CL of cysteine oxidized with cerium (IV) can be greatly enhanced by quinine, and the total cysteine in human serum can be detected through simply diluting with water, showing a simpler analytical characteristic.

  17. Effects of cysteine on growth, protease production, and catalase activity of Pseudomonas fluorescens.

    OpenAIRE

    Himelbloom, B H; Hassan, H.M.

    1986-01-01

    Cysteine inhibits growth of and protease production by Pseudomonas fluorescens NC3. Catalase activity in P. fluorescens NC3 was increased by cysteine. The addition of exogenous hydrogen peroxide did not increase catalase activity, thus suggesting a role for the endogenous generation of hydrogen peroxide via the autoxidation of cysteine.

  18. Comparison of self-processing of foot-and-mouth disease virus leader proteinase and porcine reproductive and respiratory syndrome virus leader proteinase nsp1α

    Energy Technology Data Exchange (ETDEWEB)

    Steinberger, Jutta [Max F. Perutz Laboratories, Medical University of Vienna, Department of Medical Biochemistry, Dr. Bohr-Gasse 9/3, A-1030 Vienna (Austria); Kontaxis, Georg [Max F. Perutz Laboratories, University of Vienna, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, A-1030 Vienna (Austria); Rancan, Chiara [Helmholtz Zentrum München, Department of Gene Vectors, Haematologikum, Marchioninistrasse 25, D-81377 Munich (Germany); Skern, Tim, E-mail: timothy.skern@meduniwien.ac.at [Max F. Perutz Laboratories, Medical University of Vienna, Department of Medical Biochemistry, Dr. Bohr-Gasse 9/3, A-1030 Vienna (Austria)

    2013-09-01

    The foot-and-mouth disease virus leader proteinase (Lb{sup pro}) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb{sup pro} L200F provide structural evidence for intramolecular self-processing. {sup 15}N-HSQC measurements of Lb{sup pro} L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb{sup pro}, lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb{sup pro}, stably binds its own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lb{sup pro} and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb{sup pro}. - Highlights: • We examine self-processing of the leader protease of foot-and-mouth disease virus. • NMR analysis strongly supports intramolecular self-processing. • Self-processing is a dynamic process with no stable complex. • Structural comparison with nsp1α of PRRSV which forms stable intramolecular complex. • Subdomain orientation explains differences in stability of intramolecular complexes.

  19. Purification, characterization, primary structure, crystallization and preliminary crystallographic study of a serine proteinase from Streptomyces fradiae ATCC 14544.

    Science.gov (United States)

    Kitadokoro, K; Tsuzuki, H; Nakamura, E; Sato, T; Teraoka, H

    1994-02-15

    A proteinase having wide substrate specificity was isolated from Streptomyces fradiae ATCC 14544. This proteinase, which we propose to call SFase-2, was purified from the culture filtrate by S-Sepharose chromatography. The purified enzyme showed an apparent molecular mass of 19 kDa on SDS/PAGE. When synthetic peptides were used as substrates, SFase-2 showed broad substrate specificity. It also hydrolyzed keratin, elastin and collagen as proteinaceous substrates. It was completely inhibited by diisopropylfluorophosphate and chymostatin, but not by tosylphenylalaninechloromethane, tosyllysinechloromethane or EDTA, indicating that it can be classified as a serine proteinase. The matured protein sequence of SFase-2 was determined by a combination of amino acid sequencing and the DNA sequencing of the gene. SFase-2, consisting of 191 amino acids, is a novel proteinase. It showed 76% similarity in the amino acid sequence with Streptomyces griseus proteinase A [Johnson P. and Smillie L. B. (1974) FEBS Lett. 47, 1-6]. For insight into the three-dimensional structure of SFase-2, we obtained single crystals by the vapor diffusion method using sodium phosphate as a precipitant. These crystals belonged to the orthorhombic, space group P2(1)2(1)2(1) with cell dimensions a = 6.92 nm, b = 7.28 nm, c = 2.99 nm; one molecule was present in the asymmetric unit.

  20. Heat shock induction of a 65 kDa ATP—binding proteinase in rat C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    XUCUNSHUAN; MARCOMEYER; 等

    1999-01-01

    The 45,55,65 and 100kDa ATP-binding proteinases(ATP-BPases) of the heat-shocked (44℃ for 30 min,recovery for 12h) rat C6 glioma cells were purified by DEAE-ionexchange and ATP-affinity chromatography.Their molecular masses,isoelectric points (pI),pH-optima and other properties were analyzed by native proteinase gels.It was shown that the 65 kDa ATP-BPase is specifically induced by heat shock and not detectable in control cells.Its N-terminal 1-9amino acid sequence was determined by Edman degradation,but no homologies to other proteins in the protein data bases were found.30 and 31kDa proteinases can be cleaved from the 45,55 and 65 kDa proteinases to which they are linked.A possible relationship of the heat-induced 65 kDa ATP-BPase with the ATP-dependent proteinases (ATP-DPases) in prokaryotes and eukaryotes is discussed.

  1. Insight derived from molecular dynamics simulation into substrate-induced changes in protein motions of proteinase K.

    Science.gov (United States)

    Tao, Yan; Rao, Zi-He; Liu, Shu-Qun

    2010-10-01

    Because of the significant industrial, agricultural and biotechnological importance of serine protease proteinase K, it has been extensively investigated using experimental approaches such as X-ray crystallography, site-directed mutagenesis and kinetic measurement. However, detailed aspects of enzymatic mechanism such as substrate binding, release and relevant regulation remain unstudied. Molecular dynamics (MD) simulations of the proteinase K alone and in complex with the peptide substrate AAPA were performed to investigate the effect of substrate binding on the dynamics/molecular motions of proteinase K. The results indicate that during simulations the substrate-complexed proteinase K adopt a more compact and stable conformation than the substrate-free form. Further essential dynamics (ED) analysis reveals that the major internal motions are confined within a subspace of very small dimension. Upon substrate binding, the overall flexibility of the protease is reduced; and the noticeable displacements are observed not only in substrate-binding regions but also in regions opposite the substrate-binding groove/pockets. The dynamic pockets caused by the large concerted motions are proposed to be linked to the substrate recognition, binding, orientation and product release; and the significant displacements in regions opposite the binding groove/pockets are considered to play a role in modulating the dynamics of enzyme-substrate interaction. Our simulation results complement the biochemical and structural studies, highlighting the dynamic mechanism of the functional properties of proteinase K.

  2. Purification and Partial Characterization of Trypsin-Specific Proteinase Inhibitors from Pigeonpea Wild Relative Cajanus platycarpus L. (Fabaceae) Active against Gut Proteases of Lepidopteran Pest Helicoverpa armigera.

    Science.gov (United States)

    Swathi, Marri; Mishra, Prashant K; Lokya, Vadthya; Swaroop, Vanka; Mallikarjuna, Nalini; Dutta-Gupta, Aparna; Padmasree, Kollipara

    2016-01-01

    Proteinase inhibitors (PIs) are natural defense proteins of plants found to be active against gut proteases of various insects. A pigeonpea wild relative Cajanus platycarpus was identified as a source of resistance against Helicoverpa armigera, a most devastating pest of several crops including pigeonpea. In the light of earlier studies, trypsin-specific PIs (CpPI 63) were purified from mature dry seeds of C. platycarpus (ICPW-63) and characterized their biochemical properties in contributing to H. armigera resistance. CpPI 63 possessed significant H. armigera gut trypsin-like proteinase inhibitor (HGPI) activity than trypsin inhibitor (TI) activity. Analysis of CpPI 63 using two-dimensional (2-D) electrophoresis and matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that it contained several isoinhibitors and small oligomers with masses ranging between 6 and 58 kDa. The gelatin activity staining studies suggest that these isoinhibitors and oligomers possessed strong inhibitory activity against H. armigera gut trypsin-like proteases (HGPs). The N-terminal sequence of the isoinhibitors (pI 6.6 and pI 5.6) of CpPI 63 exhibited 80% homology with several Kunitz trypsin inhibitors (KTIs) as well as miraculin-like proteins (MLPs). Further, modification of lysine residue(s) lead to 80% loss in both TI and HGPI activities of CpPI 63. In contrast, the TI and HGPI activities of CpPI 63 were stable over a wide range of temperature and pH conditions. The reported results provide a biochemical basis for pod borer resistance in C. platycarpus. PMID:27656149

  3. Mass Spectrometric Analysis of l-Cysteine Metabolism: Physiological Role and Fate of l-Cysteine in the Enteric Protozoan Parasite Entamoeba histolytica

    OpenAIRE

    Jeelani, Ghulam; Sato, Dan; Soga, Tomoyoshi; Watanabe, Haruo; Nozaki, Tomoyoshi

    2014-01-01

    ABSTRACT l-Cysteine is essential for virtually all living organisms, from bacteria to higher eukaryotes. Besides having a role in the synthesis of virtually all proteins and of taurine, cysteamine, glutathione, and other redox-regulating proteins, l-cysteine has important functions under anaerobic/microaerophilic conditions. In anaerobic or microaerophilic protozoan parasites, such as Entamoeba histolytica, l-cysteine has been implicated in growth, attachment, survival, and protection from ox...

  4. Inhibition of tryptase and chymase induced nucleated cell infiltration by proteinase inhibitors

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Han-qiu CHEN; Jian ZHENG

    2004-01-01

    AIM: To investigate the ability of proteinase inhibitors to modulate nucleated cell infiltration into the peritoneum of mice induced by tryptase and chymase. METHODS: Human lung tryptase and skin chymase were purified by a similar procedure involving high salt extraction, heparin agarose affinity chromatography followed by S-200 Sephacryl gel filtration chromatography. The actions of proteinase inhibitors on tryptase and chymase induced nucleated cell accumulation were examined with a mouse peritoneum model. RESULTS: A selective chymase inhibitor Z-Ile-GluPro-Phe-CO2Me (ZIGPPF) was able to inhibit approximately 90% neutrophil, 73% eosinophil, 87% lymphocyte and 60% macrophage accumulation induced by chymase at 16 h following injection. Soy bean trypsin inhibitor (SBTI), chymostatin, and α1-antitrypsin showed slightly less potency than ZIGPPF in inhibition of the actions of chymase. While all tryptase inhibitors tested were able to inhibit neutrophil, eosinophil, and macrophage accumulation provoked by tryptase at 16 h following injection, only leupeptin, APC366, and aprotinin were capable of inhibiting tryptase induced lymphocyte accumulation. The inhibitiors of tryptase tested were also able to inhibit tryptase induced neutrophil and eosinophil accumulation at 6 h following injection. When being injected alone, all inhibitors of chymase and tryptase at the concentrations tested by themselves had no significant effect on the accumulation of nucleated cells in the peritoneum of mice at both 6 h and 16 h. CONCLUSION: Proteinase inhibitors significantly inhibited tryptase and chymase-induced nucleated cell accumulation in vivo, and therefore they are likely to be developed as a novel class of anti-inflammatory drugs.

  5. In vitro assay for HCV serine proteinase expressed in insect cells

    Institute of Scientific and Technical Information of China (English)

    Li-Hua Hou; Gui-Xin Du; Rong-Bin Guan; Yi-Gang Tong; Hai-Tao Wang

    2003-01-01

    AIM: To produce the recombinant NS3 protease of hepatitis C virus with enzymatic activity in insect cells.METHODS: The gene of HCV serine proteinase domain which encodes 181 amino acids was inserted into pFastBacHTc and the recombinant plasmid pFBCNS3N was transformed into DH10Bac competent cells for transposition.After the recombinant bacmids had been determined to be correct by both blue-white colonies and PCR analysis, the isolated bacmid DNAs were transfected into Sf9 insect cells.The bacmids DNA was verified to replicate in insect cells and packaged into baculovirus particles via PCR and electronic microscopic analysis. The insect cells infected with recombinant baculovirus were determined by SDS-PAGE and Western-blot assays. The recombinant protein was soluted in N-lauryl sarcosine sodium (NLS) and purifed by metalchelated-affinity chromatography, then the antigenicity of recombinant protease was determined by enzyme-linked immunoabsorbant assay and its enzymatic activity was detected.RESULTS: The HCV NS3 protease domain was expressed in insect cells at high level and it was partially solved in NLS.Totally 0.2 mg recombinant serine proteinase domain with high purity was obtained by metal-chelated-affinity chromatography from 5×107 cells, and both antigenicity and specificity of the protein were evaluated to be high when used as antigen to detect hepatitis C patients′ sera in indirect ELISA format. In vitro cleavage assay corroborated its enzymatic activity.CONCLUSION: The recombinant HCV NS3 proteinase expressed by insect cells is a membrane-binding protein with good antigenicity and enzymatic activity.

  6. Heterologous expression and purification of barley (Hordeum vulgare L.) cysteine protease in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach;

    2011-01-01

    The mobilization of protein during germination of barley seeds is essential and Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins [1]. Cysteine proteases exist as pro-enzyme until activated through reduction...... of the active site cysteines and via removal of the pro-domain. The complement of cysteine proteases is comprehensive and for detailed studies of the individual components of this complement, a fast and efficient eukaryotic expression platform is highly desirable. The barley key cysteine protease, endoprotease...

  7. Structural Studies of the Serine-Carboxyl Proteinase Kumamolisin and the Metallopeptidase Peptidyl-Dipeptidase Dcp

    OpenAIRE

    Comellas Bigler, Mireia

    2007-01-01

    The crystal structure of the serine-carboxyl proteinase kumamolisin was solved in native form and in complex with two aldehyde inhibitors. The structures show a subtilisin-like fold with a modified catalytic triad (Ser-Glu-Asp), which allows proteolytic activity at acidic pH. The crystal structure analysis of the full-length prokumamolisin S278A exhibits an uncleaved linker segment that extends along the active-site cleft in a substrate-like manner. This evidence points to an autocatalytic cl...

  8. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Leif R; Romer, John; Thomasset, Nicole; Solberg, Helene; Pyke, Charles; Bissell, Mina J; Dano, Keld; Werb, Zena

    1996-01-01

    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when {beta}-casein gene expression was still high. Apoptotic cells were then seen at least up to day 8 of involution, when {beta}-casein gene expression was being extinguished. Expression of sulfated glycoprotein-2 (SGP-2), interleukin-1{beta} converting enzyme (ICE) and tissue inhibitor of metalloproteinases-1 was upregulated at day 2, when apoptotic cells were seen initially. Expression of the matrix metalloproteinases gelatinase A and stromelysin-1 and the serine proteinase urokinase-type plasminogen activator, which was low during lactation, was strongly upregulated in parallel starting at day 4 after weaning, coinciding with start of the collapse of the lobulo-alveolar structures and the intensive tissue remodeling in involution. The major sites of mRNA synthesis for these proteinases were fibroblast-like cells in the periductal stroma and stromal cells surrounding the collapsed alveoli, suggesting that the degradative phase of involution is due to a specialized mesenchymal-epithelial interaction. To elucidate the functional role of these proteinases during involution, at the onset of weaning we treated mice systemically with the glucocorticoid hydrocortisone, which is known to inhibit mammary gland involution. Although the initial wave of apoptotic cells appeared in the lumina of the gland, the dramatic regression and tissue remodeling usually evident by day 5 was substantially inhibited by systemic treatment with hydrocortisone. mRNA and protein for gelatinase A, stromelysin

  9. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein.

    OpenAIRE

    Rattray, F P; Fox, P. F.; Healy, A.

    1997-01-01

    The specificity of the extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein was studied. Hydrolysis was monitored over time by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and urea-PAGE. The major pH 4.6-soluble peptides were isolated by high-performance liquid chromatography and identified by N-terminal amino acid sequencing and mass spectrometry. The major sites of hydrolysis were Ser-18-Ser-19, Glu-20-Glu-21, Gln-56-Ser-57, Gln-72-Asn-73, ...

  10. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein.

    OpenAIRE

    Rattray, F P; Fox, P. F.; Healy, A.

    1996-01-01

    The specificity of the extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein was studied. Hydrolysis was monitored over time by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and urea-PAGE. The major pH 4.6-soluble peptides were isolated by high-performance liquid chromatography and identified by N-terminal amino acid sequencing and mass spectrometry. The time course of peptide formation indicated that His-8-Gln-9, Ser-161-Gly-162, and eithe...

  11. Biochemical and biological characterization of two serine proteinases from Colombian Crotalus durissus cumanensis snake venom.

    Science.gov (United States)

    Patiño, Arley Camilo; Pereañez, Jaime Andrés; Gutiérrez, José María; Rucavado, Alexandra

    2013-03-01

    Two clotting serine proteinases, named Cdc SI and Cdc SII, were isolated and characterized for the first time from Colombian Crotalus durissus cumanensis snake venom. The enzymes were purified using two chromatographic steps: molecular exclusion on Sephacryl S-200 and RP-HPLC on C8 Column. The molecular masses of the proteins, determined by MALDI-TOF mass spectrometry, were 28,561.4 and 28,799.2 Da for Cdc SI and Cdc SII, respectively. The aim of the present study was to evaluate enzymatic, coagulant and toxic properties of the two enzymes. The serine proteinases hydrolyzed specific chromogenic substrate (BaPNA) and exhibited a Michaelis-Menten behavior. Cdc SI had V(max) of 0.038 ± 0.003 nmol/min and K(M) of 0.034 ± 0.017 mM, while Cdc SII displayed values of V(max) of 0.267 ± 0.011 nmol/min and K(M) of 0.145 ± 0.023 mM. N-terminal sequences were VIGGDEXNIN and VIGGDICNINEHNFLVALYE for Cdc SI and Cdc SII, respectively. Molecular masses, N-terminal sequences, inhibition assays, and enzymatic profile suggest that Cdc SI and Cdc SII belong to the family of snake venom thrombin-like enzymes. These serine proteinases differed in their clotting activity on human plasma, showing a minimum coagulant dose of 25 μg and 0.571 μg for Cdc SI and Cdc SII, respectively. Enzymes also showed coagulant activity on bovine fibrinogen and degraded chain α of this protein. Toxins lack hemorrhagic and myotoxic activities, but are capable to induce defibrin(ogen)ation, moderate edema, and an increase in vascular permeability. These serine proteinases may contribute indirectly to the local hemorrhage induced by metalloproteinases, by causing blood clotting disturbances, and might also contribute to cardiovascular alterations characteristic of patients envenomed by C. d. cumanensis in Colombia.

  12. Design, synthesis and inhibitory effect of pentapeptidyl chloromethyl ketones on proteinase K.

    Science.gov (United States)

    Kore, Anilkumar R; Shanmugasundaram, Muthian

    2010-12-01

    The synthesis and proteolytic inhibitor function of new modified pentapeptide MeOSuc-AAAPF-CH(2)Cl 6 is described. The efficacy of 6 in inhibiting the proteolytic activity of proteinase K at a concentration of 0.10 mM allows a signal to be obtained for an exogenous target ('Xeno RNA') at 29 PCR cycles (i.e., Ct=29), whereas the control MeOSuc-AAAPV-CH₂Cl 1 requires a 7.5-fold higher concentration (0.75 mM) to produce the same Ct.

  13. Purification, crystallization and preliminary crystallographic studies of a Kunitz-type proteinase inhibitor from tamarind (Tamarindus indica) seeds.

    Science.gov (United States)

    Patil, Dipak N; Chaudhry, Anshul; Sharma, Ashwani K; Tomar, Shailly; Kumar, Pravindra

    2009-07-01

    A Kunitz-type proteinase inhibitor has been purified from tamarind (Tamarindus indica) seeds. SDS-PAGE analysis of a purified sample showed a homogeneous band corresponding to a molecular weight of 21 kDa. The protein was identified as a Kunitz-type proteinase inhibitor based on N-terminal amino-acid sequence analysis. It was crystallized by the vapour-diffusion method using PEG 6000. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 37.2, b = 77.1, c = 129.1 A. Diffraction data were collected to a resolution of 2.7 A. Preliminary crystallographic analysis indicated the presence of one proteinase inhibitor molecule in the asymmetric unit, with a solvent content of 44%.

  14. Comparison of ACE inhibitory activity in skimmed goat and cow milk hydrolyzed by alcalase, flavourzyme, neutral protease and proteinase K

    Directory of Open Access Journals (Sweden)

    Bao Chunju

    2016-06-01

    Full Text Available Angiotensin I converting enzyme (ACE inhibitory peptides derived from milk proteins have obvious effect of lowering blood pressure, safe and non-toxic side effects. This study compared four commercial proteases, namely alcalase, flavourzyme, neutral protease and proteinase K for their ACE inhibitory activity in skimmed goat and cow milk and identified the best one with higher ACE inhibitory activity. The degree of hydrolysis (DH of alcalase and proteinase K were much higher than flavourzyme, neutral protease for both skimmed goat and cow milk. Alcalase was the best enzyme to produce ACE inhibitory peptides from goat milk, with the ACE inhibitory activity 95.31%, while proteinase K was the optimal protease for hydrolyzing cow milk, with 81.28% ACE inhibitory activity. Furthermore, no correlation was obtained between the ACE inhibitory activity and DH for both goat and cow milk.

  15. Crystal structure of a putative aspartic proteinase domain of the Mycobacterium tuberculosis cell surface antigen PE_PGRS16☆

    Science.gov (United States)

    Barathy, Deivanayaga V.; Suguna, Kaza

    2013-01-01

    We report the crystal structure of the first prokaryotic aspartic proteinase-like domain identified in the genome of Mycobacterium tuberculosis. A search in the genomes of Mycobacterium species showed that the C-terminal domains of some of the PE family proteins contain two classic DT/SG motifs of aspartic proteinases with a low overall sequence similarity to HIV proteinase. The three-dimensional structure of one of them, Rv0977 (PE_PGRS16) of M. tuberculosis revealed the characteristic pepsin-fold and catalytic site architecture. However, the active site was completely blocked by the N-terminal His-tag. Surprisingly, the enzyme was found to be inactive even after the removal of the N-terminal His-tag. A comparison of the structure with pepsins showed significant differences in the critical substrate binding residues and in the flap tyrosine conformation that could contribute to the lack of proteolytic activity of Rv0977. PMID:23923105

  16. Use of pentapeptide-insertion scanning mutagenesis for functional mapping of the plum pox virus helper component proteinase suppressor of gene silencing.

    Science.gov (United States)

    Varrelmann, Mark; Maiss, Edgar; Pilot, Ruth; Palkovics, Laszlo

    2007-03-01

    Helper component proteinase (HC-Pro) of Plum pox virus is a multifunctional potyvirus protein that has been examined intensively. In addition to its involvement in aphid transmission, genome amplification and long-distance movement, it is also one of the better-studied plant virus suppressors of RNA silencing. The first systematic analysis using pentapeptide-insertion scanning mutagenesis of the silencing suppression function of a potyvirus HC-Pro is presented here. Sixty-three in-frame insertion mutants, each containing five extra amino acids inserted randomly within the HC-Pro protein, were analysed for their ability to suppress transgene-induced RNA silencing using Agrobacterium infiltration in transgenic Nicotiana benthamiana plants expressing green fluorescent protein. A functional map was obtained, consisting of clearly defined regions with different classes of silencing-suppression activity (wild-type, restricted and disabled). This map confirmed that the N-terminal part of the protein, which is indispensable for aphid transmission, is dispensable for silencing suppression and supports the involvement of the central region in silencing suppression, in addition to its role in maintenance of genome amplification and synergism with other viruses. Moreover, evidence is provided that the C-terminal part of the protein, previously known to be necessary mainly for proteolytic activity, also participates in silencing suppression. Pentapeptide-insertion scanning mutagenesis has been shown to be a fast and powerful tool to functionally characterize plant virus proteins. PMID:17325375

  17. Cd-Cysteine Nanorods as a Fluorescence Sensor for Determination of Fe (III) in Real Samples.

    Science.gov (United States)

    Ghiamati, Ebrahim; Boroujerdi, Ramin

    2016-01-01

    A new Cd-Cysteine complex nanorods (Cd-Cys NRs) were synthesized in one step at room temperature, and its morphology, structure and spectral properties were characterized by transmission electron microscopy (TEM), elemental analysis (EA), X-Ray diffraction (XRD), solid state and normal UV-Vis, Fourier transform infrared (FTIR) and spectrofluorometry. The developed Cd-Cys NRs were used as a fluorescence sensor for detection of Fe (III) in different aqueous matrices. The selectivity and sensitivity of the fabricated nano-sensor based on its fluorescence quenching in the presence of Fe (III) were probed according to the Stern-Volmer equation. The detection limit of the method was in micro-molar per liter range. Cd-Cys NRs response tested in different complex samples such as Rosemary plant leaves, exhibited a well-defined response. Anticoagulation measurements were performed to evaluate their blood biocompatibility. PMID:26518579

  18. High-level expression of Proteinase K from Tritirachium album Limber in Pichia pastoris using multi-copy expression strains.

    Science.gov (United States)

    Yang, Hu; Zhai, Chao; Yu, Xianhong; Li, Zhezhe; Tang, Wei; Liu, Yunyun; Ma, Xiaojian; Zhong, Xing; Li, Guolong; Wu, Di; Ma, Lixin

    2016-06-01

    Proteinase K is widely used in scientific research and industries. This report was aimed to achieve high-level expression of proteinase K using Pichia pastoris GS115 as the host strain. The coding sequence of a variant of proteinase K that has higher activity than the wild type protein was chosen and optimized based on the codon usage preference of P. pastoris. The novel open reading frame was synthesized and a series of multi-copy expression vectors were constructed based on the pHBM905BDM plasmid, allowing for the tandem integration of multiple copies of the target gene into the genome of P. pastoris with a single recombination. These strains were used to study the correlation between the gene copy number and the expression level of proteinase K. The results of quantitative polymerase chain reaction (qPCR) indicated that the tandem expression cassettes were integrated into the host genome stably. Meanwhile, the results of qPCR and enzyme activity assays indicated that the mRNA and protein expression levels of the target gene increased as the gene copy number increased. Moreover, the effect of gene dosage on the expression level of the recombinant protein was more obvious using high-density fermentation. The maximum expression level and enzyme activity of proteinase K, which were obtained from the recombinant yeast strain bearing 5 copies of the target gene after an 84-h induction, were approximately 8.069 mg/mL and 108,295 U/mL, respectively. The recombinant proteinase was purified and characterized. The optimum pH and temperature for the activity of this protease were approximately pH 11 and 55 °C, respectively.

  19. Discovering mechanisms of signaling-mediated cysteine oxidation.

    Science.gov (United States)

    Poole, Leslie B; Nelson, Kimberly J

    2008-02-01

    Accumulating evidence reveals hydrogen peroxide as a key player both as a damaging agent and, from emerging evidence over the past decade, as a second messenger in intracellular signaling. This rather mild oxidant acts upon downstream targets within signaling cascades to modulate the activity of a host of enzymes (e.g. phosphatases and kinases) and transcriptional regulators through chemoselective oxidation of cysteine residues. With the recent development of specific detection reagents for hydrogen peroxide and new chemical tools to detect the generation of the initial oxidation product, sulfenic acid, on reactive cysteines within target proteins, the scene is set to gain a better understanding of the mechanisms through which hydrogen peroxide acts as a second messenger in cell signaling.

  20. Discovering mechanisms of signaling-mediated cysteine oxidation

    OpenAIRE

    Poole, Leslie B.; Kimberly J Nelson

    2008-01-01

    Accumulating evidence reveals hydrogen peroxide as a key player both as a damaging agent and, from emerging evidence over the last decade, as a second messenger in intracellular signaling. This rather mild oxidant acts upon downstream targets within signaling cascades to modulate the activity of a host of enzymes (e.g. phosphatases and kinases) and transcriptional regulators through chemoselective oxidation of cysteine residues. With the recent development of specific detection reagents for h...

  1. Brewer's spent grain and corn steep liquor as alternative culture medium substrates for proteinase production by Streptomyces malaysiensis AMT-3

    Directory of Open Access Journals (Sweden)

    Rodrigo Pires do Nascimento

    2011-12-01

    Full Text Available Brewer's spent grain and corn steep liquor or yeast extract were used as the sole organic forms for proteinase production by Streptomyces malaysiensis in submerged fermentation. The influence of the C and N concentrations, as well as the incubation periods, were assessed. Eight proteolytic bands were detected through gelatin-gel-electrophoresis in the various extracts obtained from the different media and after different incubation periods, with apparent molecular masses of 20, 35, 43, 50, 70, 100, 116 and 212 kDa. The results obtained suggest an opportunity for exploring this alternative strategy for proteinases production by actinomycetes, using BSG and CSL as economically feasible substrates.

  2. Isolation and characterization of βA3-crystallin associated proteinase from α-crystallin fraction of human lenses

    OpenAIRE

    Srivastava, O.P.; Srivastava, K.; Chaves, J. M.

    2008-01-01

    Purpose The purpose was to characterize the properties of a proteinase activity associated with βA3-crystallin, which was isolated from the α-crystallin fraction of human lenses. Methods An inactive, Arg-bond hydrolyzing proteinase in the α-crystallin fraction, which was isolated from the water soluble (WS) protein fraction of 60- to 70-year-old human lenses, was activated by sodium deoxycholate treatment. The activated enzyme was purified by a three-step procedure that included a size-exclus...

  3. Production of proteinase A by Saccharomyces cerevisiae in a cell-recycling fermentation system: Experiments and computer simulations

    DEFF Research Database (Denmark)

    Grøn, S.; Biedermann, K.; Emborg, Claus

    1996-01-01

    Overproduction of proteinase A by recombinant Saccharomyces cerevisiae was investigated by cultivations in a cell-recycling bioreactor. Membrane filtration was used to separate cells from the broth. Recycling ratios and dilution rates were varied and the effect on enzyme production was studied both...... experimentally and by computer simulations. Experiments and simulations showed that cell mass and product concentration were enhanced by high ratios of recycling. Additional simulations showed that the proteinase A concentration decreased drastically at high dilution rates and the optimal volumetric...

  4. [Characteristics of the Effect of Cestodes Parasitizing the Fish Intestine on the Activity of the Host Proteinases].

    Science.gov (United States)

    Izvekova, G I; Solovyev, M M

    2016-01-01

    The activity and spectrum of proteinases in the intestines of host fishes change upon infestation with cestodes. Serine proteinases are found to make a greater contribution to the total proteolytic activity. The reduction of proteolytic activity is associated with adsorption of the enzymes of the host on the surface of cestodes, and the increase in the activity is caused by the injury of the intestinal mucosa by the attachment apparatuses of cestodes. The inhibition of proteainase activity indicates the possible participation of microbiota enzymes in protein hydrolyses.

  5. Purification and characterization of a stable cysteine protease ervatamin B, with two disulfide bridges, from the latex of Ervatamia coronaria.

    Science.gov (United States)

    Kundu, S; Sundd, M; Jagannadham, M V

    2000-02-01

    Latex of the medicinal plant Ervatamia coronaria was found to contain at least three cysteine proteases with high proteolytic activity, called ervatamins. One of these proteases, named ervatamin B, has been purified to homogeneity using ion-exchange chromatography and crystallization. The molecular mass of the enzyme was estimated to be 26 000 Da by SDS-PAGE and gel filtration. The extinction coefficient (epsilon(1%)(280 nm)) of the enzyme was 20.5 with 7 tryptophan and 10 tyrosine residues per molecule. The enzyme hydrolyzed denatured natural substrates such as casein, azoalbumin, and azocasein with a high specific activity. In addition, it showed amidolytic activity toward N-succinyl-alanine-alanine-alanine-p-nitroanilide with an apparent K(m) and K(cat) of 6.6 +/- 0.5 mM and 1.87 x 10(2) s(-)(1), respectively. The pH optima was 6.0-6.5 with azocasein as substrate and 7.0-7.5 with azoalbumin as substrate. The temperature optimum was around 50-55 degrees C. The enzyme was basic with an isoelectric point of 9.35 and had no carbohydrate content. Both the proteolytic and amidolytic activity of the enzyme was strongly inhibited by thiol-specific inhibitors. Interestingly, the enzyme had only two disulfide bridges versus three as in most plant cysteine proteases of the papain superfamily. The enzyme was relatively stable toward pH, denaturants, temperature, and organic solvents. Polyclonal antibodies raised against the pure enzyme gave a single precipitin line in Ouchterlony's double immunodiffusion and typical color in ELISA. Other related proteases do not cross-react with the antisera to ervatamin B showing that the enzyme is immunologically distinct. The N-terminal sequence showed conserved amino acid residues and considerable similarity to typical plant cysteine proteases. PMID:10691612

  6. Proteinase K-catalyzed synthesis of linear and star oligo(L-phenylalanine) conjugates.

    Science.gov (United States)

    Ageitos, Jose M; Baker, Peter J; Sugahara, Michihiro; Numata, Keiji

    2013-10-14

    Chemoenzymatic synthesis of peptides is a green and clean chemical reaction that offers high yields without using organic synthesis and serves as an alternative to traditional peptide synthesis methods. This report describes the chemoenzymatic synthesis of oligo(L-phenylalanine) mediated by proteinase K from Tritirachium album, which is one of the most widely used proteases in molecular biological studies. The synthesized linear oligo-phenylalanine showed a unique self-assembly in aqueous solutions. To further functionalize linear oligo(L-phenylalanine) as a low-molecular-weight gelator, it was cosynthesized with tris(2-aminoethyl)amine to obtain star-oligo(L-phenylalanine), which was bioconjugated to demonstrate its self-assembly into fluorescent fibers. The self-assembled fibers of star-oligo(L-phenylalanine) formed fibrous networks with various branching ratios, which depended on the molecular weights and molecular aspect ratios of star-oligo(L-phenylalanine). This is the first study to demonstrate that proteinase K is a suitable enzyme for chemoenzymatic cosynthesis of oligopeptides and star-shaped heteropeptides.

  7. Secretory leukocyte proteinase inhibitor is preferentially increased in patients with acute respiratory distress syndrome.

    Science.gov (United States)

    Sallenave, J M; Donnelly, S C; Grant, I S; Robertson, C; Gauldie, J; Haslett, C

    1999-05-01

    Inappropriate release of proteases from inflammatory and stromal cells can lead to destruction of the lung parenchyma. Antiproteinases such as alpha-1-proteinase inhibitor (alpha1-Pi), secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (elafin) control excess production of human neutrophil elastase. In the present study, the concentrations of alpha1-Pi, SLPI and elafin found in bronchoalveolar lavage (BAL) fluid from control subjects, patients at risk of developing acute respiratory distress syndrome (ARDS) and patients with established ARDS were determined. Levels of all three inhibitors were raised in patients compared with normal subjects. SLPI was increased in the group of patients who were at risk of ARDS and went on to develop the condition, compared with the "at-risk" group who did not progress to ARDS (p=0.0083). Alpha1-Pi and elafin levels were similar in these two populations. In patients with established ARDS, both alpha1-Pi and SLPI levels were significantly increased, compared to patients at risk of ARDS who did (p=0.0089) or did not (p=0.0003) progress to ARDS. The finding of increased antiproteinases shortly before the development of acute respiratory distress syndrome provide further evidence for enhanced inflammation prior to clinical disease. PMID:10414400

  8. Secretory leukocyte proteinase inhibitor is a major leukocyte elastase inhibitor in human neutrophils.

    Science.gov (United States)

    Sallenave, J M; Si Tahar, M; Cox, G; Chignard, M; Gauldie, J

    1997-06-01

    Secretory leukocyte proteinase inhibitor (SLPI) is the main neutrophil elastase (HLE) inhibitor found in the upper airways during pulmonary inflammation. It has been shown to be synthesized and secreted in vitro by epithelial cells and has been localized in tracheal glands and bronchiolar epithelial cells by immunocytochemistry. In this study, using immunodetection and immunopurification techniques with specific anti-SLPI immunoglobulin G (IgG), we show that SLPI is present as a native 14-kDa molecule in neutrophil cytosol. In addition, we demonstrate that SLPI is the major inhibitor of HLE present in neutrophil cytosol because pre-incubation with specific anti-SLPI IgG was able to inhibit completely the anti-HLE activity of the cytosol. SLPI can be secreted (probably in an inactive form) by neutrophils and its secretion is enhanced when the cells are stimulated with phorbol myristate acetate (PMA). Elafin, an elastase-specific inhibitor, is also present in minute amounts in neutrophil cytosol and its secretion can be up-regulated. The presence of SLPI in the cytosol of neutrophils may serve as a protective screen against proteinases spilling from azurophilic granules. An alternative or supplementary role may be the maintenance of a differentiated phenotype. PMID:9201260

  9. Intracellular localization of Treponema denticola chymotrypsin-like proteinase in chronic periodontitis

    Directory of Open Access Journals (Sweden)

    Emilia Marttila

    2014-07-01

    Full Text Available Treponema denticola is an important periodontal pathogen capable of tissue invasion. Its chymotrypsin-like proteinase (CTLP can degrade a number of basement membrane components in vitro, thus suggesting a contribution to tissue invasion by the spirochete. The aim of this study was to analyze the localization of CTLP in chronic periodontitis tissues ex vivo. A polyclonal antibody specific to T. denticola cell-bound CTLP was used to detect the spirochetes in the gingival tissues of patients with moderate to severe chronic periodontitis (n=25 by immunohistochemistry and periodic acid-Schiff staining (PAS. The presence of T. denticola in the periodontal tissue samples was analyzed by PCR. Periodontal tissue samples of 12 of the 25 patients were found to be positive for T. denticola by PCR. Moreover, CTLP could be detected in the periodontal tissues of all these patients by immunohistochemistry. In the epithelium, the CTLP was mostly intracellular. Typically, the positive staining could be seen throughout the whole depth of the epithelium. When detected extracellularly, CTLP was localized mainly as granular deposits. The connective tissue stained diffusely positive in four cases. The positive staining co-localized with the PAS stain in nine cases. T. denticola and its CTLP could be detected in diseased human periodontium both intra- and extracellularly. The granular staining pattern was suggestive of the presence of T. denticola bacteria, whereas the more diffused staining pattern was indicative of the recent presence of the bacterium and shedding of the cell-bound proteinase.

  10. Morphological confocal microscopy in arthropods and the enhancement of autofluorescence after proteinase K extraction.

    Science.gov (United States)

    Valdecasas, Antonio G; Abad, Angela

    2011-02-01

    Procedures to study the molecular and morphological characteristics of microscopic organisms are often incompatible with each other. Therein, the realization of alternatives that make the characterization of these features compatible and simultaneously permit the deposition of the original material as a voucher sample into a reference collection is one of the foremost goals of biodiversity studies. In this study, we show that genomic extraction does not necessarily compromise the detailed study of the external morphology of microscopic organisms, and to do so, we used a group of aquatic mites (Acari, Hydrachnidia) as a test group. Hydrachnidia morphology is difficult to study when specimens have been stored in pure ethanol; however, proteinase K extraction leaves them flexible and easy to dissect, while, at the same time, maintaining all of their diagnostic features intact. Furthermore, autofluorescence is significantly enhanced after proteinase extraction. Our study was conducted with aquatic mites that were stored in absolute ethanol in the field and processed for DNA extraction using a Qiagen QIAamp minikit. Before and after molecular extraction, a laser scanning confocal microscopy morphological examination was carried out.

  11. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K.

    Science.gov (United States)

    Sang, Peng; Yang, Qiong; Du, Xing; Yang, Nan; Yang, Li-Quan; Ji, Xing-Lai; Fu, Yun-Xin; Meng, Zhao-Hui; Liu, Shu-Qun

    2016-02-19

    To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD) simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K) have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy landscapes (FELs) at the high solvent temperatures exhibit a more rugged surface, broader spanning range, and higher minimum free energy level than do those at the low solvent temperatures. Comparison between the dynamic hydrogen bond (HB) numbers reveals that the high solvent temperatures intensify the competitive HB interactions between water molecules and protein surface atoms, and this in turn exacerbates the competitive HB interactions between protein internal atoms, thus enhancing the conformational flexibility and facilitating the collective motions of the protein. A refined FEL model was proposed to explain the role of the solvent mobility in facilitating the cascade amplification of microscopic motions of atoms and atomic groups into the global collective motions of the protein.

  12. Characterization of a New Cell Envelope Proteinase PrtP from Lactobacillus rhamnosus CGMCC11055.

    Science.gov (United States)

    Guo, Tingting; Ouyang, Xudong; Xin, Yongping; Wang, Yue; Zhang, Susu; Kong, Jian

    2016-09-21

    Cell envelope proteinases (CEPs) play essential roles in lactic acid bacteria growth in milk and health-promoting properties of fermented dairy products. The genome of Lactobacillus rhamnosus CGMCC11055 possesses two putative CEP genes prtP and prtR2, and the PrtP displays the distinctive domain organization from PrtR2 reported. The PrtP was purified and biochemically characterized. The results showed that the optimal activity occurred at 44 °C, pH 6.5. p-Amidinophenylmethylsulfonyl fluoride obviously inhibited enzymatic activity, suggesting PrtP was a member of serine proteinases. Under the optimal conditions, β-casein was a favorite substrate over αS1- and κ-casein, and 35 oligopeptides were identified in the β-casein hydrolysate, including the phosphoserine peptide and bioactive isoleucine-proline-proline. By analysis of the amino acid sequences of those oligopeptides, proline was the preferred residue at the breakdown site. Therefore, we speculated that PrtP was a new type of CEPs from Lb. rhamnosus. PMID:27585760

  13. Diversity in proteinase specificity of thermophilic lactobacilli as revealed by hydrolysis of dairy and vegetable proteins.

    Science.gov (United States)

    Pescuma, Micaela; Espeche Turbay, María Beatriz; Mozzi, Fernanda; Font de Valdez, Graciela; Savoy de Giori, Graciela; Hebert, Elvira María

    2013-09-01

    Ability of industrially relevant species of thermophilic lactobacilli strains to hydrolyze proteins from animal (caseins and β-lactoglobulin) and vegetable (soybean and wheat) sources, as well as influence of peptide content of growth medium on cell envelope-associated proteinase (CEP) activity, was evaluated. Lactobacillus delbrueckii subsp. lactis (CRL 581 and 654), L. delbrueckii subsp. bulgaricus (CRL 454 and 656), Lactobacillus acidophilus (CRL 636 and 1063), and Lactobacillus helveticus (CRL 1062 and 1177) were grown in a chemically defined medium supplemented or not with 1 % Casitone. All strains hydrolyzed mainly β-casein, while degradation of αs-caseins was strain dependent. Contrariwise, κ-Casein was poorly degraded by the studied lactobacilli. β-Lactoglobulin was mainly hydrolyzed by CRL 656, CRL 636, and CRL 1062 strains. The L. delbrueckii subsp. lactis strains, L. delbrueckii subsp. bulgaricus CRL 656, and L. helveticus CRL 1177 degraded gliadins in high extent, while the L. acidophilus and L. helveticus strains highly hydrolyzed soy proteins. Proteinase production was inhibited by Casitone, the most affected being the L. delbrueckii subsp. lactis species. This study highlights the importance of proteolytic diversity of lactobacilli for rational strain selection when formulating hydrolyzed dairy or vegetable food products.

  14. Isolation and characterization of a gene encoding a polyethylene glycol-induced cysteine protease in common wheat

    Indian Academy of Sciences (India)

    Qing-Wei Zang; Cai-Xiang Wang; Xu-Yan Li; Zhi-Ai Guo; Rui-Lian Jing; Jun Zhao; Xiao-Ping Chang

    2010-09-01

    Plant cysteine protease (CP) genes are induced by abiotic stresses such as drought, yet their functions remain largely unknown. We isolated the full-length cDNA encoding a Triticum aestivum CP gene, designated TaCP, from wheat by the rapid amplification of cDNA ends (RACE) method. Sequence analysis revealed that TaCP contains an open reading frame encoding a protein of 362 amino acids, which is 96% identical to barley cysteine protease HvSF42. The TaCP transcript level in wheat seedlings was upregulated during polyethylene glycol (PEG) stress, with a peak appearing around 12 h after treatment. TaCP expression level increased rapidly with NaCl treatment at 48 h. TaCP responded strongly to low temperature (4°C) treatment from 1 h post-treatment and reached a peak of about 40-fold at 72 h. However, it showed only a very slight response to abscisic acid (ABA). More than one copy of TaCP was present in each of the three genomes of hexaploid wheat and its diploid donors. TaCP fused with green fluorescent protein (GFP) was located in the plasma membrane of onion epidermis cells. Transgenic Arabidopsis plants overexpressing TaCP showed stronger drought tolerance and higher CP activity under water-stressed conditions than wild-type Arabidopsis plants. The results suggest that TaCP plays a role in tolerance to water deficit.

  15. The Tomato yellow leaf curl virus (TYLCV) V2 protein interacts with the host papain-like cysteine protease CYP1

    OpenAIRE

    Bar-Ziv, Amalia; Levy, Yael; Hak, Hagit; Mett, Anahit; Belausov, Eduard; Citovsky, Vitaly; Gafni, Yedidya

    2012-01-01

    The V2 protein of Tomato yellow leaf curl geminivirus (TYLCV) is an RNA-silencing suppressor that counteracts the innate immune response of the host plant. However, this anti-host defense function of V2 may include targeting of other defensive mechanisms of the plant. Specifically, we show that V2 recognizes and directly binds the tomato CYP1 protein, a member of the family of papain-like cysteine proteases which are involved in plant defense against diverse pathogens. This binding occurred b...

  16. EFFECTS OF ATMOSPHERIC H2S ON THIOL COMPOSITION OF CROP PLANTS

    NARCIS (Netherlands)

    BUWALDA, F; DE KOK, LJ; Stulen, I.

    1993-01-01

    Exposure of crop plants to H2S resulted in an increase in thiol level and a change in the composition of the thiol pool. Non-leguminous species accumulated cysteine and glutathione in the light, whereas in the dark, substantial amounts of gamma-glutamyl-cysteine were also detected. In leguminous spe

  17. Epicutaneous Administration of Papain Induces IgE and IgG Responses in a Cysteine Protease Activity-Dependent Manner

    OpenAIRE

    Hideo Iida; Toshiro Takai; Yusuke Hirasawa; Seiji Kamijo; Sakiko Shimura; Hirono Ochi; Izumi Nishioka; Natsuko Maruyama; Hideoki Ogawa; Ko Okumura; Shigaku Ikeda

    2014-01-01

    Background: Epicutaneous sensitization to allergens is important in the pathogenesis of not only skin inflammation such as atopic dermatitis but also "atopic march" in allergic diseases such as asthma and food allergies. We here examined antibody production and skin barrier dysfunction in mice epicutaneously administered papain, a plant-derived occupational allergen belonging to the same family of cysteine proteases as mite major group 1 allergens. Methods: Papain and Staphylococcus aureus...

  18. Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume

    OpenAIRE

    Tabe, Linda; Wirtz, Markus; Molvig, Lisa; Droux , Michel; Hell, Ruediger

    2009-01-01

    There have been many attempts to increase concentrations of the nutritionally essential sulphur amino acids by modifying their biosynthetic pathway in leaves of transgenic plants. This report describes the first modification of cysteine biosyntheis in developing seeds; those of the grain legume, narrow leaf lupin (Lupinus angustifolius, L.). Expression in developing lupin embryos of a serine acetyltransferase (SAT) from Arabidopsis thaliana (AtSAT1 or AtSerat 2;1) was associated with increase...

  19. Kinetic modelling of enzyme inactivation Kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F.

    NARCIS (Netherlands)

    Schokker, E.P.

    1997-01-01

    The kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F was studied. It was established, by making use of kinetic modelling, that heat inactivation in the temperature range 35 - 70 °C was most likely caused by intermolecular autoproteolysis, where unfolded

  20. The epidermal growth factor precursor in the rat kidney seems to be processed by an aprotinin sensitive proteinase

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier; Raaberg, Lasse

    1992-01-01

    Epidermal growth factor (EGF) is synthesized as a membrane bound precursor in the rat kidney. The precursor seems to be processed by an aprotinin sensitive proteinase. Intravenous infusion of aprotinin reduces the urinary excretion of EGF by 85% and increases the amount of renal EGF. Kidney...

  1. Molecular cloning and functional characterisation of a cathepsin L-like proteinases from the fish kinetoplastid parasite Trypanosoma carassii

    NARCIS (Netherlands)

    Ruszczyk, A.; Forlenza, M.; Savelkoul, H.F.J.; Wiegertjes, G.F.

    2008-01-01

    Trypanosoma carassii is a fish kinetoplastid parasite that belongs to the family Trypanosomatida. In the present study we cloned a cathepsin L-like proteinase from T. carassii. The nucleotide sequence of 1371 bp translated into a preproprotein of 456 amino acids. The preproprotein contained the oxya

  2. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    Science.gov (United States)

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms.

  3. A distinct proteinase K resistant prion protein fragment in goats with no signs of disease in a classical scrapie outbreak

    NARCIS (Netherlands)

    Bouzalas, I.; Lörtscher, F.; Dovas, C.; Oevermann, A.; Langeveld, J.P.M.; Papanastassopoulou, M.; Papadopoulos, O.; Zurbriggen, A.; Seuberlich, T.

    2011-01-01

    Considerable efforts have been directed toward the identification of small-ruminant prion diseases, i.e., classical and atypical scrapie as well as bovine spongiform encephalopathy (BSE). Here we report the in-depth molecular analysis of the proteinase K-resistant prion protein core fragment (PrPres

  4. Highly conserved salt bridge stabilizes a proteinase K subfamily enzyme, Aqualysin I, from Thermus aquaticus YT-1.

    Science.gov (United States)

    Sakaguchi, Masayoshi; Osaku, Kanae; Maejima, Susumu; Ohno, Nao; Sugahara, Yasusato; Oyama, Fumitaka; Kawakita, Masao

    2014-01-01

    The proteinase K subfamily enzymes, thermophilic Aqualysin I (AQN) from Thermus aquaticus YT-1 and psychrophilic serine protease (VPR) from Vibrio sp. PA-44, have six and seven salt bridges, respectively. To understand the possible significance of salt bridges in the thermal stability of AQN, we prepared mutant proteins in which amino acid residues participating in salt bridges common to proteinase K subfamily members and intrinsic to AQN were replaced to disrupt the bridges one at a time. Disruption of a salt bridge common to proteinase K subfamily enzymes in the D183N mutant resulted in a significant reduction in thermal stability, and a massive change in the content of the secondary structure was observed, even at 70°C, in the circular dichroism (CD) analysis. These results indicate that the common salt bridge Asp183-Arg12 is important in maintaining the conformation of proteinase K subfamily enzymes and suggest the importance of proximity between the regions around Asp183 and the N-terminal region around Arg12. Of the three mutants that lack an AQN intrinsic salt bridge, D212N was more prone to unfolding at 80°C than the wild-type enzyme. Similarly, D17N and E237Q were less thermostable than the wild-type enzyme, although this may be partially due to increased autolysis. The AQN intrinsic salt bridges appear to confer additional thermal stability to this enzyme. These findings will further our understanding of the factors involved in stabilizing protein structure.

  5. Classification of Lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modeling

    DEFF Research Database (Denmark)

    Børsting, Mette Winther; Qvist, K.B.; Brockmann, E.;

    2015-01-01

    Lactococcus lactis strains depend on a proteolytic system for growth in milk to release essential AA from casein. The cleavage specificities of the cell envelope proteinase (CEP) can vary between strains and environments and whether the enzyme is released or bound to the cell wall. Thirty-eight Lc...

  6. Divalent metals stabilize cellular prion proteins and alter the rate of proteinase-K dependent limited proteolysis

    Science.gov (United States)

    Background: The key biochemical event in the pathogenesis of prion diseases is the conversion of normal cellular prion proteins (PrP**c) to the proteinase K (PK) resistant, abnormal form (PrP**sc); however, the cellular mechanisms underlying the conversion remain enigmatic. Binding of divalent ca...

  7. Lipases and proteinases in milk : occurrence, heat inactivation, and their importance for the keeping quality of milk products

    NARCIS (Netherlands)

    Driessen, F.M.

    1983-01-01

    The occurrence and heat inactivation of native and bacterial lipases and proteinases in milk were studied.Production of these enzymes by Gram-negative psychrotrophic bacteria in milk was found to take place towards the end of exponential growth and in the stationary growth phase.Kinetics of heat ina

  8. Activated human CD4 T cells express transporters for both cysteine and cystine

    DEFF Research Database (Denmark)

    Levring, Trine Bøegh; Hansen, Ann Kathrine; Nielsen, Bodil Lisbeth;

    2012-01-01

    Because naïve T cells are unable to import cystine due to the absence of cystine transporters, it has been suggested that T cell activation is dependent on cysteine generated by antigen presenting cells. The aim of this study was to determine at which phases during T cell activation exogenous...... cystine/cysteine is required and how T cells meet this requirement. We found that early activation of T cells is independent of exogenous cystine/cysteine, whereas T cell proliferation is strictly dependent of uptake of exogenous cystine/cysteine. Naïve T cells express no or very low levels of both...... cystine and cysteine transporters. However, we found that these transporters become strongly up-regulated during T cell activation and provide activated T cells with the required amount of cystine/cysteine needed for T cell proliferation. Thus, T cells are equipped with mechanisms that allow T cell...

  9. Cysteine 904 is required for maximal insulin degrading enzyme activity and polyanion activation.

    Directory of Open Access Journals (Sweden)

    Eun Suk Song

    Full Text Available Cysteine residues in insulin degrading enzyme have been reported as non-critical for its activity. We found that converting the twelve cysteine residues in rat insulin degrading enzyme (IDE to serines resulted in a cysteine-free form of the enzyme with reduced activity and decreased activation by polyanions. Mutation of each cysteine residue individually revealed cysteine 904 as the key residue required for maximal activity and polyanion activation, although other cysteines affect polyanion binding to a lesser extent. Based on the structure of IDE, Asn 575 was identified as a potential hydrogen bond partner for Cys904 and mutation of this residue also reduced activity and decreased polyanion activation. The oligomerization state of IDE did not correlate with its activity, with the dimer being the predominant form in all the samples examined. These data suggest that there are several conformational states of the dimer that affect activity and polyanion activation.

  10. Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Bader Oliver

    2008-07-01

    Full Text Available Abstract Background Kexin-like proteinases are a subfamily of the subtilisin-like serine proteinases with multiple regulatory functions in eukaryotes. In the yeast Saccharomyces cerevisiae the Kex2 protein is biochemically well investigated, however, with the exception of a few well known proteins such as the α-pheromone precursors, killer toxin precursors and aspartic proteinase propeptides, very few substrates are known. Fungal kex2 deletion mutants display pleiotropic phenotypes that are thought to result from the failure to proteolytically activate such substrates. Results In this study we have aimed at providing an improved assembly of Kex2 target proteins to explain the phenotypes observed in fungal kex2 deletion mutants by in vitro digestion of recombinant substrates from Candida albicans and C. glabrata. We identified CaEce1, CA0365, one member of the Pry protein family and CaOps4-homolog proteins as novel Kex2 substrates. Conclusion Statistical analysis of the cleavage sites revealed extended subsite recognition of negatively charged residues in the P1', P2' and P4' positions, which is also reflected in construction of the respective binding pockets in the ScKex2 enzyme. Additionally, we provide evidence for the existence of structural constrains in potential substrates prohibiting proteolysis. Furthermore, by using purified Kex2 proteinases from S. cerevisiae, P. pastoris, C. albicans and C. glabrata, we show that while the substrate specificity is generally conserved between organisms, the proteinases are still distinct from each other and are likely to have additional unique substrate recognition.

  11. Biosynthesis and Reactivity of Cysteine Persulfides in Signaling.

    Science.gov (United States)

    Yadav, Pramod K; Martinov, Michael; Vitvitsky, Victor; Seravalli, Javier; Wedmann, Rudolf; Filipovic, Milos R; Banerjee, Ruma

    2016-01-13

    Hydrogen sulfide (H2S) elicits pleiotropic physiological effects ranging from modulation of cardiovascular to CNS functions. A dominant method for transmission of sulfide-based signals is via posttranslational modification of reactive cysteine thiols to persulfides. However, the source of the persulfide donor and whether its relationship to H2S is as a product or precursor is controversial. The transsulfuration pathway enzymes can synthesize cysteine persulfide (Cys-SSH) from cystine and H2S from cysteine and/or homocysteine. Recently, Cys-SSH was proposed as the primary product of the transsulfuration pathway with H2S representing a decomposition product of Cys-SSH. Our detailed kinetic analyses demonstrate a robust capacity for Cys-SSH production by the human transsulfuration pathway enzymes, cystathionine beta-synthase and γ-cystathionase (CSE) and for homocysteine persulfide synthesis from homocystine by CSE only. However, in the reducing cytoplasmic milieu where the concentration of reduced thiols is significantly higher than of disulfides, substrate level regulation favors the synthesis of H2S over persulfides. Mathematical modeling at physiologically relevant hepatic substrate concentrations predicts that H2S rather than Cys-SSH is the primary product of the transsulfuration enzymes with CSE being the dominant producer. The half-life of the metastable Cys-SSH product is short and decomposition leads to a mixture of polysulfides (Cys-S-(S)n-S-Cys). These in vitro data, together with the intrinsic reactivity of Cys-SSH for cysteinyl versus sulfur transfer, are consistent with the absence of an observable increase in protein persulfidation in cells in response to exogenous cystine and evidence for the formation of polysulfides under these conditions. PMID:26667407

  12. Paired natural cysteine mutation mapping: aid to constraining models of protein tertiary structure.

    OpenAIRE

    Kreisberg, R.; Buchner, V.; Arad, D.

    1995-01-01

    This paper discusses the benefit of mapping paired cysteine mutation patterns as a guide to identifying the positions of protein disulfide bonds. This information can facilitate the computer modeling of protein tertiary structure. First, a simple, paired natural-cysteine-mutation map is presented that identifies the positions of putative disulfide bonds in protein families. The method is based on the observation that if, during the process of evolution, a disulfide-bonded cysteine residue is ...

  13. Functional contribution of cysteine residues to the human immunodeficiency virus type 1 envelope.

    OpenAIRE

    Tschachler, E; Buchow, H; Gallo, R C; Reitz, M S

    1990-01-01

    Although the envelope gene of human immunodeficiency virus type 1 shows considerable strain variability, cysteine residues of the envelope protein are strongly conserved, suggesting that they are important to the envelope structure. We constructed and analyzed mutants of a biologically active molecular clone of human immunodeficiency virus type 1 in which different cysteines were replaced by other amino acids in order to determine their functional importance. Substitution of cysteines 296 and...

  14. Quantitative Mapping of Reversible Mitochondrial Complex I Cysteine Oxidation in a Parkinson Disease Mouse Model*

    OpenAIRE

    Danielson, Steven R.; Held, Jason M.; Oo, May; Riley, Rebeccah; Gibson, Bradford W.; Andersen, Julie K.

    2011-01-01

    Differential cysteine oxidation within mitochondrial Complex I has been quantified in an in vivo oxidative stress model of Parkinson disease. We developed a strategy that incorporates rapid and efficient immunoaffinity purification of Complex I followed by differential alkylation and quantitative detection using sensitive mass spectrometry techniques. This method allowed us to quantify the reversible cysteine oxidation status of 34 distinct cysteine residues out of a total 130 present in muri...

  15. A novel cysteine desulfurase influencing organosulfur compounds in Lentinula edodes

    OpenAIRE

    Ying Liu; Xiao-Yu Lei; Lian-Fu Chen; Yin-Bing Bian; Hong Yang; Ibrahim, Salam A.; Wen Huang

    2015-01-01

    Organosulfur compounds are the basis for the unique aroma of Lentinula edodes, and cysteine sulfoxide lyase (C-S lyase) is the key enzyme in this trait. The enzyme from Alliium sativum has been crystallized and well-characterized; however, there have been no reports of the characterization of fungi C-S lyase at the molecular level. We identified a L. edodes C-S lyase (Lecsl), cloned a gene of Csl encoded Lecsl and then combined modeling, simulations, and experiments to understand the molecula...

  16. Characterization of Cysteine Coated Magnetite Nanoparticles as MRI Contrast Agent

    Institute of Scientific and Technical Information of China (English)

    Reza Ahmadi; Ning Gu; Hamid Reza Madaah Hosseini

    2012-01-01

    In this work, a kind of stabilized ferrofluid based on magnetite nanoparticles (mean core and its coating size about 21.9 and 1.6 nm, respectively) was synthesized via coprecipitation method. Cysteine was used as surfactant due to its proper conjunction to the surface of magnetite nanoparticles. Coating density and synthesized ferrofluids were characterized by using transmission electron microscope, thermogravimetry analysis, dynamic light scattering and fourier transform infrared spectroscopy techniques. Magnetic resonance imaging studies show that the synthesized ferrofluid can be used as a potential contrast enhancement agent especially for imaging lymphatic system.

  17. Bacterial proteinases as targets for the development of second-generation antibiotics.

    Science.gov (United States)

    Travis, J; Potempa, J

    2000-03-01

    The emergence of bacterial pathogen resistance to common antibiotics strongly supports the necessity to develop alternative mechanisms for combating drug-resistant forms of these infective organisms. Currently, few pharmaceutical companies have attempted to investigate the possibility of interrupting metabolic pathways other than those that are known to be involved in cell wall biosynthesis. In this review, we describe multiple, novel roles for bacterial proteinases during infection using, as a specific example, the enzymes from the organism Porphyromonas gingivalis, a periodontopathogen, which is known to be involved in the development and progression of periodontal disease. In this manner, we are able to justify the concept of developing synthetic inhibitors against members of this class of enzymes as potential second-generation antibiotics. Such compounds could not only prove valuable in retarding the growth and proliferation of bacterial pathogens but also lead to the use of this class of inhibitors against invasion by other infective organisms. PMID:10708847

  18. Specificity of the collagenolytic serine proteinase from the pancreas of the catfish (Parasilurus asotus).

    Science.gov (United States)

    Yoshinaka, R; Sato, M; Yamashita, M; Itoko, M; Ikeda, S

    1987-01-01

    The collagenolytic serine proteinase from the pancreas of the catfish (Parasilus asotus) had a pH optimum of 7.5 for native, reconstituted calf skin collagen fibrils. The enzyme was most stable at pH 6-9. The enzyme hydrolyzed heat-denatured collagen (gelatin), casein, hemoglobin and elastin in addition to native collagen but not virtually Tos-Arg-OEe, Bz-Tyr-OEe and Suc-(Ala)3-NA. The enzyme cleaved Leu-Gly (or Gln-Gly), Gly-Ile and Ile-Ala bonds on DNP-Pro-Leu-Gly-Ile-Ala-Gly-Arg-NH2 and DNP-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg. PMID:3480788

  19. The effect of proteinases (keratinases) in the pathogenesis of Dermatophyte infection using scanning electron microscope

    International Nuclear Information System (INIS)

    Objective: To study the inter-relationship between the stratum corneum of host and the fungal micro-organisms using scanning electron microscopy for a complete understanding of the host parasite relationship. Material and Methods: Skin surface biopsies were obtained two patients suffering from tinea cruris infection. One patient was infected with trichophyton rubrum and the other with epidermophytom floccosum strains. Results: The scanning electron microphotographs obtained from two patients showed a large number of villi in the infected area. The fungal hyphae were seen to placed intercellularly as well seem to be traversing through the corneocytes in many places. Conclusion: From the results observed in this study it could be suggested that the secretion of proteinases from the fungal hyphae together with the mechanical force of the invading organisms in vivo might be playing part in the invasion of the organisms. (author)

  20. Expression of Candida Albicans Secreted Aspartyl Proteinase in Acute Vaginal Candidiasis

    Institute of Scientific and Technical Information of China (English)

    LIN Nengxing; FENG Jing; TU Yating; FENG Aiping

    2007-01-01

    In order to analyze the in vivo expression of Candida albicans secreted aspartyl proteinases (SAP) in human vaginal infection, the vaginal secretion from 29 human subjects was collected by vaginal swab, and the expression of SAP1-SAP6 was detected by reverse-transcriptase polymerase chain reaction using specific primer sets. It was found that Sap2 and Sap5 were the most common genes expressed during infection; Sap3 and Sap4 were detected in all subjects and all 6 SAP genes were simultaneously expressed in some patients with vaginal candidiasis. It was suggested that the SAP family is expressed by Candida albicans during infection in human and that Candida albicans infection is associated with the differential expression of individual SAP genes which may be involved in the pathogenesis of vaginal candidiasis.

  1. Purification and characterization of elastase-specific inhibitor. Sequence homology with mucus proteinase inhibitor.

    Science.gov (United States)

    Sallenave, J M; Ryle, A P

    1991-01-01

    Elastase-specific inhibitor (ESI) was purified from sputum of patients with chronic bronchitis and compared with mucus proteinase inhibitor (MPI, BrI) isolated, without the use of affinity chromatography on an enzyme, from non-purulent sputum of a patient with bronchial carcinoma. The N-terminal sequence of 27 residues of the latter was determined and showed serine as the only N-terminus. The partial N-terminal amino-acid sequence of ESI shows some homology with MPI, especially around the reactive site of MPI for human neutrophil elastase. This region could therefore be the reactive site of ESI. The thermodynamic and kinetic constants of the reactions of ESI with human neutrophil elastase and with porcine pancreatic elastase show that ESI is a fast-acting inhibitor. PMID:2039600

  2. Carcass characteristics, the calpain proteinase system, and aged tenderness of Angus and Brahman crossbred steers.

    Science.gov (United States)

    Pringle, T D; Williams, S E; Lamb, B S; Johnson, D D; West, R L

    1997-11-01

    We used 69 steers of varying percentage Brahman (B) breeding (0% B, n = 11; 25% B, n = 13; 37% B, n = 10; 50% B, n = 12; 75% B, n = 12; 100% B, n = 11) to study the relationship between carcass traits, the calpain proteinase system, and aged meat tenderness in intermediate B crosses. Calpains and calpastatin activities were determined on fresh longissimus muscle samples using anion-exchange chromatography. The USDA yield and quality grade data (24 h) were collected for each carcass. Longissimus steaks were removed and aged for 5 or 14 d for determination of shear force and 5 d for sensory panel evaluation. Even though some yield grade factors were affected by the percentage of B breeding, USDA yield grades did not differ (P > .15) between breed types. Marbling score and USDA quality grade decreased linearly (P Brahman crosses. PMID:9374310

  3. Carcass characteristics, the calpain proteinase system, and aged tenderness of Angus and Brahman crossbred steers.

    Science.gov (United States)

    Pringle, T D; Williams, S E; Lamb, B S; Johnson, D D; West, R L

    1997-11-01

    We used 69 steers of varying percentage Brahman (B) breeding (0% B, n = 11; 25% B, n = 13; 37% B, n = 10; 50% B, n = 12; 75% B, n = 12; 100% B, n = 11) to study the relationship between carcass traits, the calpain proteinase system, and aged meat tenderness in intermediate B crosses. Calpains and calpastatin activities were determined on fresh longissimus muscle samples using anion-exchange chromatography. The USDA yield and quality grade data (24 h) were collected for each carcass. Longissimus steaks were removed and aged for 5 or 14 d for determination of shear force and 5 d for sensory panel evaluation. Even though some yield grade factors were affected by the percentage of B breeding, USDA yield grades did not differ (P > .15) between breed types. Marbling score and USDA quality grade decreased linearly (P Brahman crosses.

  4. Quantification of the degree of biotinylation of proteins using proteinase K digestion and competition ELISA.

    Science.gov (United States)

    Rispens, Theo; Ooijevaar-de Heer, Pleuni

    2016-03-01

    Quantification of the degree of biotinylation of proteins is useful to achieve and maintain a high degree of consistency of reagents used in research and diagnostic setting. Unfortunately, existing protocols and commercial kits suffer from a number of shortcomings that limit their usefulness. Here, we describe a simple protocol that overcomes the limitations of current assays. A robust competition ELISA was developed that is easy to carry out, uses no specialized equipment other than a standard plate reader for absorbance measurements and only reagents that are commonly available. The protocol uses a proteinase K digestion step of a sample of biotinylated protein to eliminate multivalency issues and sterical hindrance from bulky proteins. Furthermore, the use of an anti-biotin antibody instead of streptavidin results in a convenient range of sensitivity, avoiding million-fold dilutions that may impair precision. The resulting assay typically consumes about 1 μg of biotinylated protein.

  5. Antioxidant activity of bovine casein hydrolysates produced by Ficus carica L.-derived proteinase.

    Science.gov (United States)

    Di Pierro, Giovanna; O'Keeffe, Martina B; Poyarkov, Alexey; Lomolino, Giovanna; FitzGerald, Richard J

    2014-08-01

    A Ficus carica L. latex proteinase preparation was investigated for its ability to produce antioxidant hydrolysates/peptides from bovine casein (CN). The Oxygen Radical Absorbance Capacity (ORAC) values for NaCN and β-CN hydrolysates ranged from 0.06 to 0.18, and from 0.51 to 1.19μmol Trolox equivalents/mg freeze-dried sample, respectively. Gel permeation HPLC showed that the β-CN hydrolysate with a degree of hydrolysis of 21% had 65% of peptide material with a molecular mass <500Da. The RP-UPLC profiles also indicated that β-CN was substantially hydrolysed during the early stages of hydrolysis. Analysis of the 4h β-CN hydrolysate by LC-ESI-MS/MS allowed identification of 8 peptide sequences with potential antioxidant properties.

  6. Biospecific haemosorbents based on proteinase inhibitor. II. Efficiency of biospecific antiproteinase haemosorbent 'Ovosorb' in complex treatment of experimental generalized purulent peritonitis and acute destructive pancreatitis in dogs.

    Science.gov (United States)

    Platé, N A; Kirkovsky, V V; Antiperovich, O F; Nicolaichik, V V; Valueva, T A; Sinilo, S B; Moin, V M; Lobacheva, G A

    1994-03-01

    The biospecific antiproteinase haemosorbent (BAH) 'Ovosorb' containing, in the bulk of polyacryamide gel, the ovomucoid from whites of duck eggs, was used for a complex treatment of the experimental generalized purulent peritonitis and acute destructive pancreatitis in dogs. The efficiency of BAH was manifested in the significant reduction of lethality of the experimental animals, a more rapid liquidation of proteinasaemia, normalization in plasma of alpha 1-proteinase inhibitor and protein metabolism. Thus, by eliminating proteinases from circulation, Ovosorb contributes to the cessation of imbalance in the proteinase-inhibitor system and is efficient in the therapy of pathological states related to this imbalance. PMID:8031989

  7. COMPARATIVE ANALYSIS FOR METAL BINDING CAPACITY OF CYSTEINE BY USING UV-VIS SPECTROPHOTOMETER

    Directory of Open Access Journals (Sweden)

    Shivendu Ranjan

    2012-05-01

    Full Text Available The metal binding capacity of cysteine with three different metals Nickel, Copper and Lead was studied using UV-Vis spectrophotometer for which absorbance values were taken after interaction of cysteine with metal salt solutions (10ppm and 100ppm. Before taking above absorbance dilution factor was set using cysteine stock. The increase in peak intensity was observed when metal salt solution and metal saltcysteine solution were compared. Based on peak shift and peak intensity finally it can be concluded that the binding capacity of cysteine with Nickel is more, followed by lead and copper. The normal chromophore activity in cysteine is due to the sulphur in which the transition takes place from non bonding orbital’s to the excited antibonding orbital in the range of 210-215nm range. The binding of the metals with cysteine may affect the chromophore activity and may also lead to structural damage of the chromophore. This can give the decrease in the peak intensity or the complete shift in the peak. These results suggest that cysteine metal binding ability can be used for the removal of the metals in water purification. Also this property can be used in removal of metals from our body considering the fact that cysteine may not show adverse effect in the system. So we can go for designing a new type of drug containing cysteine which helps to prevent the accumulation of such metals and thus prevent us from adverse effect.

  8. Serine leucocyte proteinase inhibitor-treated monocyte inhibits human CD4(+) lymphocyte proliferation.

    Science.gov (United States)

    Guerrieri, Diego; Tateosian, Nancy L; Maffía, Paulo C; Reiteri, Romina M; Amiano, Nicolás O; Costa, María J; Villalonga, Ximena; Sanchez, Mercedes L; Estein, Silvia M; Garcia, Verónica E; Sallenave, Jean-Michel; Chuluyan, Héctor E

    2011-08-01

    Serine leucocyte proteinase inhibitor (SLPI) is the main serine proteinase inhibitor produced by epithelial cells and has been shown to be a pleiotropic molecule with anti-inflammatory and microbicidal activities. However, the role of SLPI on the adaptive immune response is not well established. Therefore, we evaluated the effect of SLPI on lymphocyte proliferation and cytokine production. Human peripheral blood mononuclear cells (PBMC) were treated with mitogens plus SLPI and proliferation was assessed by [(3) H]thymidine uptake. The SLPI decreased the lymphocyte proliferation induced by interleukin-2 (IL-2) or OKT3 monoclonal antibodies in a dose-dependent manner. Inhibition was not observed when depleting monocytes from the PBMC and it was restored by adding monocytes and SLPI. SLPI-treated monocyte slightly decreased MHC II and increased CD18 expression, and secreted greater amounts of IL-4, IL-6 and IL-10 in the cell culture supernatants. SLPI-treated monocyte culture supernatant inhibited the CD4(+) lymphocyte proliferation but did not affect the proliferation of CD8(+) cells. Moreover, IL-2 increased T-bet expression and the presence of SLPI significantly decreased it. Finally, SLPI-treated monocyte culture supernatant dramatically decreased interferon-γ but increased IL-4, IL-6 and IL-10 in the presence of IL-2-treated T cells. Our results demonstrate that SLPI target monocytes, which in turn inhibit CD4 lymphocyte proliferation and T helper type 1 cytokine secretion. Overall, these results suggest that SLPI is an alarm protein that modulates not only the innate immune response but also the adaptive immune response. PMID:21574992

  9. Serine leucocyte proteinase inhibitor-treated monocyte inhibits human CD4+ lymphocyte proliferation

    Science.gov (United States)

    Guerrieri, Diego; Tateosian, Nancy L; Maffía, Paulo C; Reiteri, Romina M; Amiano, Nicolás O; Costa, María J; Villalonga, Ximena; Sanchez, Mercedes L; Estein, Silvia M; Garcia, Verónica E; Sallenave, Jean-Michel; Chuluyan, Héctor E

    2011-01-01

    Serine leucocyte proteinase inhibitor (SLPI) is the main serine proteinase inhibitor produced by epithelial cells and has been shown to be a pleiotropic molecule with anti-inflammatory and microbicidal activities. However, the role of SLPI on the adaptive immune response is not well established. Therefore, we evaluated the effect of SLPI on lymphocyte proliferation and cytokine production. Human peripheral blood mononuclear cells (PBMC) were treated with mitogens plus SLPI and proliferation was assessed by [3H]thymidine uptake. The SLPI decreased the lymphocyte proliferation induced by interleukin-2 (IL-2) or OKT3 monoclonal antibodies in a dose-dependent manner. Inhibition was not observed when depleting monocytes from the PBMC and it was restored by adding monocytes and SLPI. SLPI-treated monocyte slightly decreased MHC II and increased CD18 expression, and secreted greater amounts of IL-4, IL-6 and IL-10 in the cell culture supernatants. SLPI-treated monocyte culture supernatant inhibited the CD4+ lymphocyte proliferation but did not affect the proliferation of CD8+ cells. Moreover, IL-2 increased T-bet expression and the presence of SLPI significantly decreased it. Finally, SLPI-treated monocyte culture supernatant dramatically decreased interferon-γ but increased IL-4, IL-6 and IL-10 in the presence of IL-2-treated T cells. Our results demonstrate that SLPI target monocytes, which in turn inhibit CD4 lymphocyte proliferation and T helper type 1 cytokine secretion. Overall, these results suggest that SLPI is an alarm protein that modulates not only the innate immune response but also the adaptive immune response. PMID:21574992

  10. Secretion of mucus proteinase inhibitor and elafin by Clara cell and type II pneumocyte cell lines.

    Science.gov (United States)

    Sallenave, J M; Silva, A; Marsden, M E; Ryle, A P

    1993-02-01

    The regulation of proteinases secreted by neutrophils is very important for the prevention of tissue injury. We recently described the isolation of elafin from bronchial secretions, a new elastase-specific inhibitor that is also found in the skin of patients with psoriasis. In this study, we investigated the secretion of elafin and mucus proteinase inhibitor (MPI), another inhibitor showing sequence similarity with elafin, in two lung carcinoma cell lines, NCI-H322 and A549, which have features of Clara cells and type II alveolar cells, respectively. The results presented show that the two inhibitors are produced when the cells are cultured either in serum-free or in serum-containing media. MPI was detected immunologically as a unique molecule of M(r) 14 kD, in accordance with previous studies. Conversely, one or two elafin-immunoreactive species were detected depending on the cell line: a 12- to 14-kD species was observed in the A549 cell line, regardless of the culture conditions, whereas in the NCI-H322 cell line we detected a 6-kD species in serum-containing (10% fetal calf serum) conditions and a 12- to 14-kD species in serum-free conditions. The 12- to 14-kD molecule probably represents an active precursor of elafin. Whether the cleavage of the 12- to 14-kD precursor giving rise to the elafin molecule is of any physiologic significance is not known. In showing for the first time that MPI and elafin (and its precursor) are secreted by the A549 cell line, this report implicates the type II alveolar cell in the defense of the peripheral lung against the neutrophil elastase secreted during inflammation. PMID:8427705

  11. Role of Candida albicans-Secreted Aspartyl Proteinases (Saps in Severe Early Childhood Caries

    Directory of Open Access Journals (Sweden)

    Wenqing Li

    2014-06-01

    Full Text Available Candida albicans is strongly associated with severe early childhood caries (S-ECC. However, the roles of secreted aspartyl proteinases (Saps, an important virulence factor of C. albicans, in the progress of S-ECC are not clear. In our study, the Saps activities were evaluated by the yeast nitrogen base–bovine serum albumi (YNB–BSA agar plate method and by the MTT method with bovine serum albumin (BSA as the substrate. Genotypes of C. albicans and gene expression of Sap1–5 were evaluated. The relationships of Saps activities and genotypes with S-ECC were analyzed. The results showed that enzyme activities of Saps in the S-ECC group were significantly higher than those in the caries free (CF group (p < 0.05. Genotypes A, B and C were detected in the S-ECC group, and genotypes A and C were detected in the CF group. In the genotype A group, Saps activity in the S-ECC group was significantly different from that in the CF group (p < 0.05. The gene expression level of Sap1 in the S-ECC group was significantly higher than that in the CF group (p = 0.001, while Sap4 expression was significantly lower than that in the CF group (p = 0.029. It can be concluded that Sap1–5 are the predominant proteinase genes expressed in C. albicans from dental biofilm and Sap1 may play an important role in the development of S-ECC.

  12. Unmasking of complements using proteinase-K in formalin fixed paraffin embedded renal biopsies.

    Science.gov (United States)

    Nada, R; Kumar, A; Kumar, V G; Gupta, K L; Joshi, K

    2016-01-01

    Renal biopsy interpretation requires histopathology, direct immunofluorescence (DIF) and electron microscopy. Formalin-fixed, paraffin-embedded tissue (FFPE) sent for light microscopy can be used for DIF after antigen retrieval. However, complement staining has not been satisfactory. We standardized DIF using proteinase-K for antigen retrieval in FFPE renal biopsies. A pilot study was conducted on known cases of membranous glomerulonephritis (MGN), membranoproliferative type-1 (MPGN-1), immunoglobulin A nephropathy (IgAN), and anti-glomerular basement disease (anti-GBM). Immunofluorescence panel included fluorescein isothiocyanate (FITC) conjugated IgG, IgA, IgM, complements (C3 and C1q), light chains (kappa, lambda) and fibrinogen antibodies. After standardization of the technique, 75 renal biopsies and 43 autopsies cases were stained. Out of 43 autopsy cases, immune-complex mediated glomerulonephritis (GN) was confirmed in 18 cases (Lupus nephritis-11, IgAN-6, MGN-1), complement-mediated dense deposit disease (DDD-1) and monoclonal diseases in 4 cases (amyloidosis-3, cast nephropathy-1). Immune-mediated injury was excluded in 17 cases (focal segmental glomerulosclerosis -3, crescentic GN-6 [pauci-immune-3, anti-GBM-3], thrombotic microangiopathy-5, atherosclerosis-3). Renal biopsies (n-75) where inadequate or no frozen sample was available; this technique classified 52 mesangiocapillary pattern as MPGN type-1-46, DDD-2 and (C3GN-4). Others were diagnosed as IgAN-3, lupus nephritis-2, MGN-4, diffuse proliferative glomerulonephritis (DPGN)-1, Non-IC crescentic GN-1, monoclonal diseases-3. In nine cases, DIF on FFPE tissue could not help in making diagnosis. Proteinase-K enzymatic digestion of FFPE renal biopsies can unmask complements (both C3 and C1q) in immune-complexes mediated and complement-mediated diseases. This method showed good results on autopsy tissues archived for as long as 15 years.

  13. Unmasking of complements using proteinase-K in formalin fixed paraffin embedded renal biopsies.

    Science.gov (United States)

    Nada, R; Kumar, A; Kumar, V G; Gupta, K L; Joshi, K

    2016-01-01

    Renal biopsy interpretation requires histopathology, direct immunofluorescence (DIF) and electron microscopy. Formalin-fixed, paraffin-embedded tissue (FFPE) sent for light microscopy can be used for DIF after antigen retrieval. However, complement staining has not been satisfactory. We standardized DIF using proteinase-K for antigen retrieval in FFPE renal biopsies. A pilot study was conducted on known cases of membranous glomerulonephritis (MGN), membranoproliferative type-1 (MPGN-1), immunoglobulin A nephropathy (IgAN), and anti-glomerular basement disease (anti-GBM). Immunofluorescence panel included fluorescein isothiocyanate (FITC) conjugated IgG, IgA, IgM, complements (C3 and C1q), light chains (kappa, lambda) and fibrinogen antibodies. After standardization of the technique, 75 renal biopsies and 43 autopsies cases were stained. Out of 43 autopsy cases, immune-complex mediated glomerulonephritis (GN) was confirmed in 18 cases (Lupus nephritis-11, IgAN-6, MGN-1), complement-mediated dense deposit disease (DDD-1) and monoclonal diseases in 4 cases (amyloidosis-3, cast nephropathy-1). Immune-mediated injury was excluded in 17 cases (focal segmental glomerulosclerosis -3, crescentic GN-6 [pauci-immune-3, anti-GBM-3], thrombotic microangiopathy-5, atherosclerosis-3). Renal biopsies (n-75) where inadequate or no frozen sample was available; this technique classified 52 mesangiocapillary pattern as MPGN type-1-46, DDD-2 and (C3GN-4). Others were diagnosed as IgAN-3, lupus nephritis-2, MGN-4, diffuse proliferative glomerulonephritis (DPGN)-1, Non-IC crescentic GN-1, monoclonal diseases-3. In nine cases, DIF on FFPE tissue could not help in making diagnosis. Proteinase-K enzymatic digestion of FFPE renal biopsies can unmask complements (both C3 and C1q) in immune-complexes mediated and complement-mediated diseases. This method showed good results on autopsy tissues archived for as long as 15 years. PMID:27194832

  14. Crystallization and preliminary X-ray diffraction studies of the cysteine protease ervatamin A from Ervatamia coronaria

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Sibani; Biswas, Sampa; Chakrabarti, Chandana; Dattagupta, Jiban K., E-mail: jibank.dattagupta@saha.ac.in [Saha Institue of Nuclear Physics, Crystallography and Molecular Biology Division, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2005-06-01

    Ervatamin A is a papain-family cysteine protease with high activity and stability. It has been isolated and purified from the latex of the medicinal flowering plant E. coronaria and crystallized by the vapour-diffusion technique. Crystals diffracted to 2.1 Å and the structure was solved by molecular replacement. The ervatamins are highly stable cysteine proteases that are present in the latex of the medicinal plant Ervatamia coronaria and belong to the papain family, members of which share similar amino-acid sequences and also a similar fold comprising two domains. Ervatamin A from this family, a highly active protease compared with others from the same source, has been purified to homogeneity by ion-exchange chromatography and crystallized by the vapour-diffusion method. Needle-shaped crystals of ervatamin A diffract to 2.1 Å resolution and belong to space group C222{sub 1}, with unit-cell parameters a = 31.10, b = 144.17, c = 108.61 Å. The solvent content using an ervatamin A molecular weight of 27.6 kDa is 43.9%, with a V{sub M} value of 2.19 Å{sup 3} Da{sup −1} assuming one protein molecule in the asymmetric unit. A molecular-replacement solution has been found using the structure of ervatamin C as a search model.

  15. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter.

    Science.gov (United States)

    Chu, Chiheng; Erickson, Paul R; Lundeen, Rachel A; Stamatelatos, Dimitrios; Alaimo, Peter J; Latch, Douglas E; McNeill, Kristopher

    2016-06-21

    Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify. PMID:27172378

  16. Enantiospecific adsorption of cysteine on a chiral Au34 cluster

    Science.gov (United States)

    Pelayo, José de Jesús; Valencia, Israel; Díaz, Gabriela; López-Lozano, Xóchitl; Garzón, Ignacio L.

    2015-12-01

    The interaction of biological molecules like chiral amino acids with chiral metal clusters is becoming an interesting and active field of research because of its potential impact in, for example, chiral molecular recognition phenomena. In particular, the enantiospecific adsorption (EA) of cysteine (Cys) on a chiral Au55 cluster was theoretically predicted a few years ago. In this work, we present theoretical results, based on density functional theory, of the EA of non-zwitterionic cysteine interacting with the C3-Au34 chiral cluster, which has been experimentally detected in gas phase, using trapped ion electron diffraction. Our results show that, indeed, the adsorption energy of the amino acid depends on which enantiomers participate in the formation Cys-Au34 chiral complex. EA was obtained in the adsorption modes where both the thiol, and the thiol-amino functional groups of Cys are adsorbed on low-coordinated sites of the metal cluster surface. Similarly to what was obtained for the Cys-Au55 chiral complex, in the present work, it is found that the EA is originated from the different strength and location of the bond between the COOH functional group and surface Au atoms of the Au34 chiral cluster. Calculations of the vibrational spectrum for the different Cys-Au34 diastereomeric complexes predict the existence of a vibro-enantiospecific effect, indicating that the vibrational frequencies of the adsorbed amino acid depend on its handedness.

  17. Functional characterization of enzymes involved in cysteine biosynthesis and H(2)S production in Trypanosoma cruzi.

    Science.gov (United States)

    Marciano, Daniela; Santana, Marianela; Nowicki, Cristina

    2012-10-01

    Trypanosoma cruzi is expected to synthetize de novo cysteine by different routes, among which the two-step pathway involving serine acetyltransferase and cysteine synthase (CS) is comprised. Also, cystathionine β synthase (CBS) might contribute to the de novo generation of cysteine in addition to catalyze the first step of the reverse transsulfuration route producing cystathionine. However, neither the functionality of CS nor that of cystathionine γ lyase (CGL) has been assessed. Our results show that T. cruzi CS could participate notably more actively than CBS in the de novo synthesis of cysteine. Interestingly, at the protein level T. cruzi CS is more abundant in amastigotes than in epimastigotes. Unlike the mammalian homologues, T. cruzi CGL specifically cleaves cystathionine into cysteine and is unable to produce H(2)S. The expression pattern of T. cruzi CGL parallels that of CBS, which unexpectedly suggests that in addition to the de novo synthesis of cysteine, the reverse transsulfuration pathway could be operative in the mammalian and insect stages. Besides, T. cruzi CBS produces H(2)S by decomposing cysteine or via condensation of cysteine with homocysteine. The latter reaction leads to cystathionine production, and is catalyzed remarkably more efficiently than the breakdown of cysteine. In T. cruzi like in other organisms, H(2)S could exert regulatory effects on varied metabolic processes. Notably, T. cruzi seems to count on stage-specific routes involved in cysteine production, the multiple cysteine-processing alternatives could presumably reflect this parasite's high needs of reducing power for detoxification of reactive oxygen species.

  18. Purification and characterization of four new cysteine endopeptidases from fruits of Bromelia pinguin L. grown in Cuba.

    Science.gov (United States)

    Payrol, Juan Abreu; Obregón, Walter D; Trejo, Sebastián A; Caffini, Néstor O

    2008-02-01

    Bromelia pinguin L. is a plant broadly distributed in Central America and Caribbean islands. The fruits have been used in traditional medicine as anthelmintic, probably owed to the presence of a mixture of cysteine endopeptidases, initially termed pinguinain. This work deals with the purification and characterization of the four main components of that mixture, two of them showing acid pI and the other two alkaline pI. Molecular masses (SDS-PAGE and MALDI-TOF), N-terminal sequence and the reactivity and kinetic parameters versus synthetic substrates (p-nitrophenyl-N-alpha-CBZ-amino acid esters, PFLNA, Z-Arg-Arg-p-NA, and Z-Phe-Arg-p-NA) of the studied peptidases are given, as well as the N-terminal sequences of the enzymes and the homology degree with other plant endopeptidases.

  19. A masquerade-like serine proteinase homologue is necessary for phenoloxidase activity in the coleopteran insect, Holotrichia diomphalia larvae.

    Science.gov (United States)

    Kwon, T H; Kim, M S; Choi, H W; Joo, C H; Cho, M Y; Lee, B L

    2000-10-01

    Previously, we reported the molecular cloning of cDNA for the prophenoloxidase activating factor-I (PPAF-I) that encoded a member of the serine proteinase group with a disulfide-knotted motif at the N-terminus and a trypsin-like catalytic domain at the C-terminus [Lee, S.Y., Cho, M.Y., Hyun, J.H., Lee, K.M., Homma, K.I., Natori, S. , Kawabata, S.I., Iwanaga, S. & Lee, B.L. (1998) Eur. J. Biochem. 257, 615-621]. PPAF-I is directly involved in the activation of pro-phenoloxidase (pro-PO) by limited proteolysis and the overall structure is highly similar to that of Drosophila easter serine protease, an essential serine protease zymogen for pattern formation in normal embryonic development. Here, we report purification and molecular cloning of cDNA for another 45-kDa novel PPAF from the hemocyte lysate of Holotrichia diomphalia larvae. The gene encodes a serine proteinase homologue consisting of 415 amino-acid residues with a molecular mass of 45 256 Da. The overall structure of the 45-kDa protein is similar to that of masquerade, a serine proteinase homologue expressed during embryogenesis, larval, and pupal development in Drosophila melanogaster. The 45-kDa protein contained a trypsin-like serine proteinase domain at the C-terminus, except for the substitution of Ser of the active site triad to Gly and had a disulfide-knotted domain at the N-terminus. A highly similar 45-kDa serine proteinase homologue was also cloned from the larval cDNA library of another coleopteran, Tenebrio molitor. By in vitro reconstitution experiments, we found that the purified 45-kDa serine proteinase homologue, the purified active PPAF-I and the purified pro-PO were necessary for expressing phenoloxidase activity in the Holotrichia pro-PO system. However, incubation of pro-PO with either PPAF-I or 45-kDa protein, no phenoloxidase activity was observed. Interestingly, when the 45-kDa protein was incubated with PPAF-I and pro-PO in the absence, but not in the presence of Ca2+, the 45-k

  20. Silencing Brassinosteroid Receptor BRI1 Impairs Herbivory-elicited Accumulation of Jasmonic Acid-isoleucine and Diterpene Glycosides, but not Jasmonic Acid and Trypsin Proteinase Inhibitors in Nicotiana attenuata

    Institute of Scientific and Technical Information of China (English)

    Da-Hai Yang; lan T.Baldwin; Jianqiang Wu

    2013-01-01

    The brassinosteroid (BR) receptor,BR insensitive 1 (BRI1),plays a critical role in plant development,but whether BRI1-mediated BR signaling is involved in plant defense responses to herbivores was largely unknown.Here,we examined the function of BRI1 in the resistance of Nicotiana attenuata (Solanaceae) to its specialist insect herbivore Manduca sexta.Jasmonic acid (JA) and JA-isoleucine conjugate (JA-Ile) are important hormones that mediate resistance to herbivores and we found that after wounding or simulated herbivory NaBRI1 had little effect on JA levels,but was important for the induction of JA-Ile.Further experiments revealed that decreased JAR (the enzyme for JA-Ile production) activity and availability of lie in NaBRI1-silenced plants were likely responsible for the low JA-Ile levels.Consistently,M.sexta larvae gained more weight on NaBRI1-silenced plants than on the control plants.Quantification of insect feeding-induced secondary metabolites revealed that silencing NaBRI1 resulted in decreased levels of carbon-rich defensive secondary metabolites (hydroxygeranyllinalool diterpene glycosides,chlorogenic acid,and rutin),but had little effect on the nitrogen-rich ones (nicotine and trypsin proteinase inhibitors).Thus,NaBRI1-mediated BR signaling is likely involved in plant defense responses to M.sexta,including maintaining JA-Ile levels and the accumulation of several carbon-rich defensive secondary metabolites.

  1. Polycarbophil-cysteine conjugates as platforms for oral polypeptide delivery systems.

    Science.gov (United States)

    Bernkop-Schnürch, A; Thaler, S C

    2000-07-01

    The purpose of the present study was to evaluate the potential of polycarbophil-cysteine conjugates as carrier systems for orally administered peptide and protein drugs. Mediated by a carbodiimide, cysteine was covalently attached to polycarbophil. The properties of resulting conjugates, displaying 35-50 microM thiol groups per gram of polymer, to bind polypeptides and to inhibit pancreatic proteases was evaluated in vitro. Results demonstrated that only some polypeptides are immobilized to the polycarbophil-cysteine conjugate. Due to the covalent attachment of cysteine to polycarbophil, the inhibitory effect of the polymer toward carboxypeptidase A (EC 3.4. 17.1) and carboxypeptidase B (EC 3.4.17.2) could be significantly (p polycarbophil could be improved by the covalent attachment of cysteine, the raised inhibitory effect seems to be based on the complexation of this divalent cation from the enzyme structure. Whereas the covalent attachment of cysteine on polycarbophil had no influence on the enzymatic activity of trypsin (EC 3.4.21.4) and elastase (EC 3.4.21. 36), the inhibitory effect of the polymer-cysteine conjugate toward chymotrypsin (EC 3.4.21.1) was significantly (p polycarbophil-cysteine conjugates seem to be a promising tool in protecting orally administered therapeutic polypeptides, which are not bound to the polymer, from presystemic metabolism in the intestine.

  2. Barley (Hordeum vulgare L.) cysteine proteases: heterologous expression, purification and characterization

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach;

    2011-01-01

    During germination of barley seeds, mobilization of protein is essential and cysteine proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins. Cysteine proteases exist as pro-enzyme and is activated through reduction of the active...

  3. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice.

    Science.gov (United States)

    Niewiadomski, Julie; Zhou, James Q; Roman, Heather B; Liu, Xiaojing; Hirschberger, Lawrence L; Locasale, Jason W; Stipanuk, Martha H

    2016-01-01

    To gain further insights into the effects of elevated cysteine levels on energy metabolism and the possible mechanisms underlying these effects, we conducted studies in cysteine dioxygenase (Cdo1)-null mice. Cysteine dioxygenase (CDO) catalyzes the first step of the major pathway for cysteine catabolism. When CDO is absent, tissue and plasma cysteine levels are elevated, resulting in enhanced flux of cysteine through desulfhydration reactions. When Cdo1-null mice were fed a high-fat diet, they gained more weight than their wild-type controls, regardless of whether the diet was supplemented with taurine. Cdo1-null mice had markedly lower leptin levels, higher feed intakes, and markedly higher abundance of hepatic stearoyl-CoA desaturase 1 (SCD1) compared to wild-type control mice, and these differences were not affected by the fat or taurine content of the diet. Thus, reported associations of elevated cysteine levels with greater weight gain and with elevated hepatic Scd1 expression are also seen in the Cdo1-null mouse model. Hepatic accumulation of acylcarnitines suggests impaired mitochondrial β-oxidation of fatty acids in Cdo1-null mice. The strong associations of elevated cysteine levels with excess H2 S production and impairments in energy metabolism suggest that H2 S signaling could be involved.

  4. Identification of Covalent Binding Sites Targeting Cysteines Based on Computational Approaches.

    Science.gov (United States)

    Zhang, Yanmin; Zhang, Danfeng; Tian, Haozhong; Jiao, Yu; Shi, Zhihao; Ran, Ting; Liu, Haichun; Lu, Shuai; Xu, Anyang; Qiao, Xin; Pan, Jing; Yin, Lingfeng; Zhou, Weineng; Lu, Tao; Chen, Yadong

    2016-09-01

    Covalent drugs have attracted increasing attention in recent years due to good inhibitory activity and selectivity. Targeting noncatalytic cysteines with irreversible inhibitors is a powerful approach for enhancing pharmacological potency and selectivity because cysteines can form covalent bonds with inhibitors through their nucleophilic thiol groups. However, most human kinases have multiple noncatalytic cysteines within the active site; to accurately predict which cysteine is most likely to form covalent bonds is of great importance but remains a challenge when designing irreversible inhibitors. In this work, FTMap was first applied to check its ability in predicting covalent binding site defined as the region where covalent bonds are formed between cysteines and irreversible inhibitors. Results show that it has excellent performance in detecting the hot spots within the binding pocket, and its hydrogen bond interaction frequency analysis could give us some interesting instructions for identification of covalent binding cysteines. Furthermore, we proposed a simple but useful covalent fragment probing approach and showed that it successfully predicted the covalent binding site of seven targets. By adopting a distance-based method, we observed that the closer the nucleophiles of covalent warheads are to the thiol group of a cysteine, the higher the possibility that a cysteine is prone to form a covalent bond. We believe that the combination of FTMap and our distance-based covalent fragment probing method can become a useful tool in detecting the covalent binding site of these targets. PMID:27483186

  5. Anomalous uptake and circulatory characteristics of the plant-based small RNA MIR2911

    Science.gov (United States)

    Yang, Jian; Hotz, Tremearne; Broadnax, LaCassidy; Yarmarkovich, Mark; Elbaz-Younes, Ismail; Hirschi, Kendal D.

    2016-01-01

    Inconsistent detection of plant-based dietary small RNAs in circulation has thwarted the use of dietary RNA therapeutics. Here we demonstrate mice consuming diets rich in vegetables displayed enhanced serum levels of the plant specific small RNA MIR2911. Differential centrifugation, size-exclusion chromatography, and proteinase K treatment of plant extracts suggest this RNA resides within a proteinase K-sensitive complex. Plant derived MIR2911 was more bioavailable than the synthetic RNA. Furthermore, MIR2911 exhibited unusual digestive stability compared with other synthetic plant microRNAs. The characteristics of circulating MIR2911 were also unusual as it was not associated with exosomes and fractionated as a soluble complex that was insensitive to proteinase K treatment, consistent with MIR2911 being stabilized by modifications conferred by the host. These results indicate that intrinsic stability and plant-based modifications orchestrate consumer uptake of this anomalous plant based small RNA and invite revisiting plant-based microRNA therapeutic approaches. PMID:27251858

  6. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors.

    Science.gov (United States)

    Siklos, Marton; BenAissa, Manel; Thatcher, Gregory R J

    2015-11-01

    Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy.

  7. Production of hydrogen sulfide from D-cysteine and its therapeutic potential

    Directory of Open Access Journals (Sweden)

    Norihiro eShibuya

    2013-07-01

    Full Text Available Accumulating evidence shows that H2S has physiological functions in various tissues and organs. It includes regulation of neuronal activity, vascular tension, a release of insulin, and protection of the heart, kidney and brain from ischemic insult. H2S is produced by enzymes from L-cysteine; cystathionine β-synthase (CBS, cystathionine γ-lyase (CSE, and 3-mercaptopyruvate sulfurtransferase (3MST along with cysteine aminotransferase (CAT. We recently discovered an additional pathway for the production of H2S from D-cysteine. D-Amino acid oxidase (DAO provides 3-mercaptopyruvate (3MP for 3MST to produce H2S. D-Cysteine protects cerebellar neurons from oxidative stress and attenuates ischemia-reperfusion injury caused in the kidney more effectively than L-cysteine. This review focuses on a novel pathway for the production of H2S and its therapeutic application especially to the renal diseases.

  8. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong, E-mail: yerong24@fudan.edu.cn

    2012-06-05

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  9. A fluorescence enhancement probe based on BODIPY for the discrimination of cysteine from homocysteine and glutathione.

    Science.gov (United States)

    Gong, Deyan; Tian, Yuejun; Yang, Chengduan; Iqbal, Anam; Wang, Zhiping; Liu, Weisheng; Qin, Wenwu; Zhu, Xiangtao; Guo, Huichen

    2016-11-15

    Herein, a fluorescent probe BODIPY-based glyoxal hydrazone (BODIPY-GH) (1) for cysteine based on inhibiting of intramolecular charge transfer (ICT) quenching process upon reaction with the unsaturated aldehyde has been synthesized, which exhibits longer excitation wavelength, selective and sensitive colorimetric and fluorimetric response toward cysteine in natural media. The probe shows highly selectivity towards cysteine over homocysteine and glutathione as well as other amino acids with a significant fluorescence enhancement response within 15min In the presence of 50 equiv. of homocysteine, the emission increased slightly within 15min and completed in 2.5h to reach its maximum intensity. Therefore, the discrimination of cysteine from homocysteine and glutathione can be achieved through detection of probe 1. It shows low cytotoxicity and excellent membrane permeability toward living cells, which was successfully applied to detect and image intracellular cysteine effectively by confocal fluorescence imaging. PMID:27176916

  10. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    Science.gov (United States)

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. PMID:25043896

  11. Proteinases from buckwheat (Fagopyrum esculentum moench seeds: Purification and properties of the 47 kDa enzyme

    Directory of Open Access Journals (Sweden)

    Timotijević Gordana S.

    2006-01-01

    Full Text Available Aspartic proteinases from buckwheat seeds are analyzed. Three forms of 47 kDa, 40 kDa and 28 kDa, were purified from mature buckwheat seeds, while two forms of 47 kDa and 28 kDa were detected in developing buckwheat seeds using pepstatin A affinity chromatography. A form of 47 kDa was selectively precipitated from other forms by ammonium sulfate precipitation. This enzyme resembles the chymosin-like pattern of proteolytic activity, as it was shown using BSA and k-casein as substrates, clarifying its ability for milk-clotting. The 47 kDa aspartic proteinase form is localized in the membrane fraction. .

  12. Cysteine Conjugate β-Lyase Activity of Rat Erythrocytes and Formation of β-Lyase-Derived Globin Monoadducts and Cross-Links after in Vitro Exposure of Erythrocytes to S-(1,2-Dichlorovinyl)-L-cysteine

    OpenAIRE

    Barshteyn, Nella; Elfarra, Adnan A.

    2009-01-01

    S-(1,2-Dichlorovinyl)-L-cysteine (DCVC), a mutagenic and nephrotoxic metabolite of trichloroethylene can be bioactivated to reactive metabolites, S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS) or chlorothioketene and/or 2-chlorothionoacetyl chloride, by cysteine conjugate S-oxidase (S-oxidase) and cysteine conjugate β-lyase (β-lyase), respectively. Previously, we characterized reactivity of DCVCS with Hb upon incubation of erythrocytes with DCVCS and provided evidence for formation of dis...

  13. The role of lysosomal cysteine proteases in crustacean immune response

    Directory of Open Access Journals (Sweden)

    FL Garcia-Carreño

    2014-04-01

    Full Text Available Over the long course of evolution and under the selective pressure exerted by pathogens and parasites, animals have selectively fixed a number of defense mechanisms against the constant attack of intruders. The immune response represents a key component to optimize the biological fitness of individuals. Two decades ago, prevention and control of diseases in crustacean aquaculture systems were considered priorities in most shrimp-producing countries, but knowledge was scarce and various pathogens have severely affected aquaculture development around the world. Scientific contributions have improved our understanding of the crustacean immune response. Several studies confirm the central role played by proteases in the immune response of animals, and the cooperative interaction of these enzymes in a wide variety of organisms is well known. This review summarizes the current information regarding the role of cysteine proteases in the immune system of Crustacea and points to aspects that are needed to provide a better integration of our knowledge.

  14. H2O2-Activated Up-Regulation of Glutathione in Arabidopsis Involves Induction of Genes Encoding Enzymes Involved in Cysteine Synthesis in the Chloroplast

    Institute of Scientific and Technical Information of China (English)

    Guillaume Queval; Dorothée Thominet; Hélène Vanacker; Myroslawa Miginiac-Maslow; Bertrand Gakière; Graham Noctor

    2009-01-01

    Glutathione is a key player in cellular redox homeostasis and, therefore, in the response to H2O2, but the factors regulating oxidation-activated glutathione synthesis are still unclear. We investigated H2O2-induced glutathione synthesis in a conditional Arabidopsis catalase-deficient mutant (cat2). Plants were grown from seed at elevated CO2 for 5 weeks, then transferred to air in either short-day or long-day conditions. Compared to cat2 at elevated CO2 or wild-type plants in any condition, transfer of cat2 to air in both photoperiods caused measurable oxidation of the leaf glutathione pool within hours. Oxidation continued on subsequent days and was accompanied by accumulation of glutathione. This effect was stronger in cat2 transferred to air in short days, and was not linked to appreciable increases in the extractable activities of or transcripts encoding enzymes involved in the committed pathway of glutathione synthesis. In contrast, it was accompanied by increases in serine, O-acetylserine, and cysteine. These changes in metabolites were accompanied by induction of genes encoding adenosine phosphosulfate reductase (APR), particularly APR3, as well as a specific serine acetyltransferase gene (SAT2.1) encoding a chloroplastic SAT. Marked induction of these genes was only observed in cat2 transferred to air in short-day conditions, where cysteine and glutathione accumulation was most dramatic. Unlike other SAT genes, which showed negligible induction in cat2, the relative abundance of APR and SAT2.1 transcripts was closely correlated with marker transcripts for H2O2 signaling. Together, the data underline the importance of cysteine synthesis in oxidant-induced up-regulation of glutathione synthesis and suggest that the chloroplast makes an important contribution to cysteine production under these circumstances.

  15. Protective role of antimannan and anti-aspartyl proteinase antibodies in an experimental model of Candida albicans vaginitis in rats.

    OpenAIRE

    De Bernardis, F.; Boccanera, M; Adriani, D; Spreghini, E; G. Santoni; Cassone, A.

    1997-01-01

    The role of antibodies (Abs) in the resistance to vaginal infection by Candida albicans was investigated by using a rat vaginitis model. Animals receiving antimannoprotein (anti-MP) and anti-aspartyl proteinase (Sap) Ab-containing vaginal fluids from rats clearing a primary C. albicans infection showed a highly significant level of protection against vaginitis compared to animals given Ab-free vaginal fluid from noninfected rats. Preabsorption of the Ab-containing fluids with either one or bo...

  16. In vitro Candida albicans biofilm induced proteinase activity and SAP8 expression correlates with in vivo denture stomatitis severity.

    Science.gov (United States)

    Ramage, Gordon; Coco, Brent; Sherry, Leighann; Bagg, Jeremy; Lappin, David F

    2012-07-01

    Denture stomatitis is a common inflammatory disorder of the palatal mucosa amongst denture wearers. The pathological changes are induced by Candida albicans biofilm on the fitting surface of the upper denture, and different individuals experience different levels of disease. C. albicans is known to produce secreted aspartyl proteinases (SAPs) to aid adhesion, invasion and tissue destruction. We hypothesised that differential expression and activity of SAPs from denture stomatitis isolates results in different levels of disease amongst denture wearers. We selected C. albicans isolates from asymptomatic controls and three different severities of disease [Newton’s type (NT) 0, I, II and III]. We assessed biofilm formation and proteinase activity for each biofilm and investigated the transcriptional profile of SAPs 1, 2, 5, 6 and 8 from early (12 h) and mature (24 h) biofilms. There were no significant differences between isolates with respect to biofilm formation, whereas proteinase activity normalised to biofilm growth was significantly increased in the diseased groups (p < 0.0001). Proteinase activity correlated strongly with SAP expression (p < 0.0001). SAP8 expression was the greatest, followed by SAP5, 6, 2 and 1. The diseased groups showed the greatest levels of SAP expression, with significant differences also observed between the groups (p < 0.005). All SAPs except SAP5 were expressed in greater amounts in the mature biofilms compared to early biofilms. Overall, this study suggests that SAP activity in biofilms determined in vitro may help to explain differences in disease severity. SAP8 has been shown for the first time to play a prominent role in biofilms.

  17. Extensive expansion of A1 family aspartic proteinases in fungi revealed by evolutionary analyses of 107 complete eukaryotic proteomes

    OpenAIRE

    Revuelta, M.V.; Kan, van, J.; Kay, J; Have, ten, P.

    2014-01-01

    The A1 family of eukaryotic aspartic proteinases (APs) forms one of the 16 AP families. Although one of the best characterized families, the recent increase in genome sequence data has revealed many fungal AP homologs with novel sequence characteristics. This study was performed to explore the fungal AP sequence space and to obtain an in-depth understanding of fungal AP evolution. Using a comprehensive phylogeny of approximately 700 AP sequences from the complete proteomes of 87 fungi and 20 ...

  18. prtH2, Not prtH, Is the Ubiquitous Cell Wall Proteinase Gene in Lactobacillus helveticus▿

    OpenAIRE

    Genay, M.; Sadat, L.; Gagnaire, V.; Lortal, S

    2009-01-01

    Lactobacillus helveticus strains possess an efficient proteolytic system that releases peptides which are essential for lactobacillus growth in various fermented dairy products and also affect textural properties or biological activities. Cell envelope proteinases (CEPs) are bacterial enzymes that hydrolyze milk proteins. In the case of L. helveticus, two CEPs with low percentages of amino acid identity have been described, i.e., PrtH and PrtH2. However, the distribution of the genes that enc...

  19. Effects of systemic flunixin meglumine, topical oxytetracycline, and topical prednisolone acetate on tear film proteinases innormal horses

    OpenAIRE

    Rainbow, Marc E

    2004-01-01

    The purpose of this study was to determine the effects of three medical treatments, topical oxytetracycline, topical prednisolone acetate, and systemic flunixin meglumine, on the activity of two proteinases, matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), in equine tear film. The study design consisted of twelve ophthalmically normal horses separated into three groups of four in a cross-over study design. Each group was treated for 5 days with flunixin meglumine (...

  20. Hepatocyte growth factor activator is a potential target proteinase for Kazal-type inhibitor in turkey (Meleagris gallopavo) seminal plasma.

    Science.gov (United States)

    Słowińska, Mariola; Bukowska, Joanna; Hejmej, Anna; Bilińska, Barbara; Kozłowski, Krzysztof; Jankowski, Jan; Ciereszko, Andrzej

    2015-08-01

    A peculiar characteristic of turkey seminal plasma is the increased activity of serine proteinases. It is of interest if the single-domain Kazal-type inhibitor controls the activity of turkey seminal plasma proteinases. Pure preparations of the Kazal-type inhibitor and anti-Kazal-type inhibitor monospecific immunoglobulin Gs were used as ligands in affinity chromatography for proteinase isolation from turkey seminal plasma. Gene expression and the immunohistochemical detection of the single-domain Kazal-type inhibitor in the reproductive tract of turkey toms are described. The hepatocyte growth factor activator (HGFA) was identified in the binding fraction in affinity chromatography. Hepatocyte growth factor activator activity was inhibited by the Kazal-type inhibitor in a dose-dependent manner. This protease was a primary physiological target for the single-domain Kazal-type inhibitor. Numerous proteoforms of HGFA were present in turkey seminal plasma, and phosphorylation was the primary posttranslational modification of HGFA. In addition to HGFA, acrosin was a target proteinase for the single-domain Kazal-type inhibitor. In seminal plasma, acrosin was present only in complexes with the Kazal-type inhibitor and was not present as a free enzyme. The single-domain Kazal-type inhibitor was specific for the reproductive tract. The germ cell-specific expression of Kazal-type inhibitors in the testis indicated an important function in spermatogenesis; secretion by the epithelial cells of the epididymis and the ductus deferens indicated that the Kazal-type inhibitor was an important factor involved in the changes in sperm membranes during maturation and in the maintenance of the microenvironment in which sperm maturation occurred and sperm was stored. The role of HGFA in these processes remains to be established.

  1. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets

    OpenAIRE

    Ma, Li; Perini, Rafael; McKnight, Webb; Dicay, Michael; Klein, Andre; Hollenberg, Morley D.; Wallace, John L

    2004-01-01

    The roles of proteinase-activated receptors (PARs) in platelet functions other than aggregation are not well understood. Among these is the release of factors that regulate the process of angiogenesis, such as endostatin and VEGF, which, respectively, inhibit and promote angiogenesis. PAR1 and PAR4 are expressed on the surface of human platelets and can be activated by thrombin. In the present study, we have attempted to determine the roles of PAR1 and PAR4 in regulating release of endostatin...

  2. Phospholipase, proteinase and haemolytic activities of Candida albicans isolated from oral cavities of patients with type 2 diabetes mellitus

    OpenAIRE

    Tsang, CSP; Chu, FCS; Leung, WK; Jin, LJ; Samaranayake, LP; Siu, SC

    2007-01-01

    The aim of this study was to biotype and characterize phospholipase, proteinase and haemolytic activities of oral Candida albicans isolates from 210 Chinese patients with type 2 diabetes mellitus (DM) and 210 age- and sex-matched healthy controls. Seventy-six and 50 C. albicans isolates were obtained from type 2 DM patients and controls, respectively, using the oral rinse technique. The isolates were characterized with a biotyping system based on enzyme profiles, carbohydrate assimilation pat...

  3. Use of proteinase K in the excystation of Sarcocystis cruzi sporocysts for in vitro culture and DNA extraction.

    Science.gov (United States)

    Ndiritu, W; Cawthorn, R J; Kibenge, F S

    1994-03-01

    Proteinase K was used for the cleaning of Sarcocystis cruzi (Apicomplexa) sporocysts prior to excystation. Bovine pulmonary endothelial cell cultures inoculated with the excysted sporozoites remained free of bacterial contamination for the duration of the experiment and had high yields of merozoites. The excysted sporozoites also yielded genomic DNA that could be labelled efficiently with 32P dATP by the random priming method.

  4. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick.

    Directory of Open Access Journals (Sweden)

    Sandra Macedo-Ribeiro

    Full Text Available Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine alpha-thrombin.boophilin complex, refined at 2.35 A resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S(1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9 degrees and is displaced by 6 A, while the C-terminal domain rotates almost 6 degrees accompanied by a 3 A displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P(1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin.boophilin.trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo.

  5. Modulation of enteroviral proteinase cleavage of poly(A)-binding protein (PABP) by conformation and PABP-associated factors

    OpenAIRE

    Rivera, Carlos I.; Lloyd, Richard E.

    2008-01-01

    Poliovirus (PV) causes a drastic inhibition of cellular cap-dependant protein synthesis due to the cleavage of translation factors eukaryotic initiation factor 4G (eIF4G) and poly (A) binding protein (PABP). Only about half of cellular PABP is cleaved by viral 2A and 3C proteinases during infection. We have investigated PABP cleavage determinants that regulate this partial cleavage. PABP cleavage kinetics analyses indicate that PABP exists in multiple conformations, some of which are resistan...

  6. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    International Nuclear Information System (INIS)

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines

  7. Enantiospecific adsorption of cysteine on a chiral Au34 cluster

    Science.gov (United States)

    de Jesús Pelayo, José; Valencia, Israel; Díaz, Gabriela; López-Lozano, Xóchitl; Garzón, Ignacio L.

    2015-12-01

    The interaction of biological molecules like chiral amino acids with chiral metal clusters is becoming an interesting and active field of research because of its potential impact in, for example, chiral molecular recognition phenomena. In particular, the enantiospecific adsorption (EA) of cysteine (Cys) on a chiral Au55 cluster was theoretically predicted a few years ago. In this work, we present theoretical results, based on density functional theory, of the EA of non-zwitterionic cysteine interacting with the C3-Au34 chiral cluster, which has been experimentally detected in gas phase, using trapped ion electron diffraction. Our results show that, indeed, the adsorption energy of the amino acid depends on which enantiomers participate in the formation Cys-Au34 chiral complex. EA was obtained in the adsorption modes where both the thiol, and the thiol-amino functional groups of Cys are adsorbed on low-coordinated sites of the metal cluster surface. Similarly to what was obtained for the Cys-Au55 chiral complex, in the present work, it is found that the EA is originated from the different strength and location of the bond between the COOH functional group and surface Au atoms of the Au34 chiral cluster. Calculations of the vibrational spectrum for the different Cys-Au34 diastereomeric complexes predict the existence of a vibro-enantiospecific effect, indicating that the vibrational frequencies of the adsorbed amino acid depend on its handedness. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by G. Delgado Barrio, A. Solov'Yov, P. Villarreal, R. Prosmiti.

  8. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  9. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  10. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae.

    Science.gov (United States)

    Johnson, D E; Brookhart, G L; Kramer, K J; Barnett, B D; McGaughey, W H

    1990-03-01

    Midgut homogenates from susceptible and resistant strains of the Indian meal moth, Plodia interpunctella, were compared for their ability to activate the entomocidal parasporal crystal protein from Bacillus thuringiensis. The properties of midgut proteinases from both types of larvae were also examined. Electrophoretic patterns of crystal protein from B. thuringiensis subspecies kurstaki (HD-1) and aizawai (HD-133 and HD-144) were virtually unchanged following digestion by either type of midgut homogenate. Changes in pH (9.5 to 11.5) or midgut homogenate concentration during digestion failed to substantially alter protein electrophoretic patterns of B. thuringiensis HD-1 crystal toxin. In vitro toxicity of crystal protein activated by either type of midgut preparation was equal toward cultured insect cells from either Manduca sexta or Choristoneura fumiferana. Electrophoresis of midgut extracts in polyacrylamide gels containing gelatin as substrate also yielded matching mobility patterns of proteinases from both types of midguts. Quantitation of midgut proteolytic activity using tritiated casein as a substrate revealed variation between midgut preparations, but no statistically significant differences between proteolytic activities from susceptible and resistant Indian meal moth larvae. Inhibition studies indicated that a trypsin-like proteinase with maximal activity at pH 10 is a major constituent of Indian meal moth midguts. The results demonstrated that midguts from susceptible and resistant strains of P. interpunctella are similar both in their ability to activate B. thuringiensis protoxin and in their proteolytic activity.

  11. Changes of balance between proteinase and their inhibitors in blood of pigs with high-velocity missile wounds

    Institute of Scientific and Technical Information of China (English)

    周元国; 朱佩芳; 周继红; 李晓炎

    2003-01-01

    Objective: To study the effect of imbalance between lysosomal enzymes and their inhibitors in blood on disturbance of the local and whole body after trauma. Methods: The dynamic changes of lysosomal enzymes and proteinase inhibitors were studied in 12 pigs with femoral comminuted fractures in both hind limbs caused by high velocity missiles. Four normal pigs served as controls. Results: After injury, the activity of Cathepsin D in arterial plasma increased gradually and reached the highest level at 8 hours, acid phosphatase in serum began to increase at 12 hours and the value of serum elastase did not change significantly. The level of α1-antitrypsin, a proteinase inhibitor in plasma, decreased significantly in the early stage after injury [73.5%±6.4% and 81.0%±5.1% of the baseline value (1.67 μmol*ml-1*min-1± 0.29 μmol*ml-1*min-1) at l and 2 hours after injury, respectively, P<0.05], then increased gradually and was higher than the baseline value at 12 hours after injury. Conclusions: Imbalance between lysosomal enzymes and proteinase inhibitors occurs soon after injury, which might result in continuous tissue damage and play an important role in the disturbance of general reaction after injury.

  12. Isolation, characterization and cDNA sequencing of a Kazal family proteinase inhibitor from seminal plasma of turkey (Meleagris gallopavo).

    Science.gov (United States)

    Słowińska, Mariola; Olczak, Mariusz; Wojtczak, Mariola; Glogowski, Jan; Jankowski, Jan; Watorek, Wiesław; Amarowicz, Ryszard; Ciereszko, Andrzej

    2008-06-01

    The turkey reproductive tract and seminal plasma contain a serine proteinase inhibitor that seems to be unique for the reproductive tract. Our experimental objective was to isolate, characterize and cDNA sequence the Kazal family proteinase inhibitor from turkey seminal plasma and testis. Seminal plasma contains two forms of a Kazal family inhibitor: virgin (Ia) represented by an inhibitor of moderate electrophoretic migration rate (present also in the testis) and modified (Ib, a split peptide bond) represented by an inhibitor with a fast migration rate. The inhibitor from the seminal plasma was purified by affinity, ion-exchange and reverse phase chromatography. The testis inhibitor was purified by affinity and ion-exchange chromatography. N-terminal Edman sequencing of the two seminal plasma inhibitors and testis inhibitor were identical. This sequence was used to construct primers and obtain a cDNA sequence from the testis. Analysis of a cDNA sequence indicated that turkey proteinase inhibitor belongs to Kazal family inhibitors (pancreatic secretory trypsin inhibitors, mammalian acrosin inhibitors) and caltrin. The turkey seminal plasma Kazal inhibitor belongs to low molecular mass inhibitors and is characterized by a high value of the equilibrium association constant for inhibitor/trypsin complexes.

  13. A thermolabile aspartic proteinase from Mucor mucedo DSM 809: gene identification, cloning, and functional expression in Pichia pastoris.

    Science.gov (United States)

    Yegin, Sirma; Fernandez-Lahore, Marcelo

    2013-06-01

    In this study, the cDNA encoding the aspartic proteinase of Mucor mucedo DSM 809 has been identified by RNA ligased-mediated and oligo-capping rapid amplification of cDNA ends (RACE) technique. The gene contained an open reading frame of 1,200 bp and encoded for a signal peptide of 21 amino acid residues. Two N-glycosylation sites were observed within the identified sequence. The proteinase gene was cloned into the vector pGAPZαA and expressed in Pichia pastoris X-33 for the first time. The protein has been secreted in functionally active form into the culture medium. The expression system does not require any acid activation process. The factors affecting the expression level were optimized in shaking flask cultures. Maximum enzyme production was observed with an initial medium pH of 3.5 at 20 °C and 220 rpm shaking speed utilizing 4 % glucose as a carbon and energy source. The enzyme was purified with cation exchange chromatography and further studies revealed that the enzyme was secreted in glycosylated form. The purified enzyme exhibited remarkable sensitivity to thermal treatment and became completely inactivated after incubation at 55 °C for 10 min. These results indicated that the recombinant proteinase could be considered as a potential rennet candidate for the cheese-making industry.

  14. Phospholipase, proteinase and haemolytic activities of Candida albicans isolated from oral cavities of patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Tsang, C S P; Chu, F C S; Leung, W K; Jin, L J; Samaranayake, L P; Siu, S C

    2007-10-01

    The aim of this study was to biotype and characterize phospholipase, proteinase and haemolytic activities of oral Candida albicans isolates from 210 Chinese patients with type 2 diabetes mellitus (DM) and 210 age- and sex-matched healthy controls. Seventy-six and 50 C. albicans isolates were obtained from type 2 DM patients and controls, respectively, using the oral rinse technique. The isolates were characterized with a biotyping system based on enzyme profiles, carbohydrate assimilation patterns and boric acid resistance of the yeasts, and the isolates were further tested for in vitro phospholipase, proteinase and haemolytic activities. The major biotypes of C. albicans isolates from the type 2 DM and control groups were A1R (42.1 %) and J1R (36.0 %), respectively. Significantly higher proteinase and haemolytic activities were found in the isolates from the type 2 DM group (P or =10 years of DM history than those with DM patients than in those from male counterparts (PCandida isolates taken from DM patients.

  15. Impact of Mercury(II) on proteinase K catalytic center: investigations via classical and Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Panek, Jarosław J; Mazzarello, Riccardo; Novič, Marjana; Jezierska-Mazzarello, Aneta

    2011-02-01

    Mercury(II) has a strong affinity for the thiol groups in proteins often resulting in the disruption of their biological functions. In this study we present classical and first-principles, DFT-based molecular dynamics (MD) simulations of a complex of Hg(II) and proteinase K, a well-known serine protease with a very broad and diverse enzymatic activity. It contains a catalytic triad formed by Asp39, His69, and Ser224, which is responsible for its biological activity. It was found previously by X-ray diffraction experiments that the presence of Hg(II) inhibits the enzymatic action of proteinase K by affecting the stereochemistry of the triad. Our simulations predict that (i) the overall structure as well as the protein backbone dynamics are only slightly affected by the mercury cation, (ii) depending on the occupied mercury site, the hydrogen bonds of the catalytic triad are either severely disrupted (both bonds for mercury at site 1, and the His69-Ser224 contact for mercury at site 2) or slightly strengthened (the Asp39-His69 bond when mercury is at site 2), (iii) the network of hydrogen bonds of the catalytic triad is not static but undergoes constant fluctuations, which are significantly modified by the presence of the Hg(II) cation, influencing in turn the triad's ability to carry out the enzymatic function--these facts explain the experimental findings on the inhibition of proteinase K by Hg(II).

  16. Purification and characterization of macrodontain I, a cysteine peptidase from unripe fruits of Pseudananas macrodontes (Morr.) harms (Bromeliaceae).

    Science.gov (United States)

    López, L M; Sequeiros, C; Natalucci, C L; Brullo, A; Maras, B; Barra, D; Caffini, N O

    2000-03-01

    A new papain-like cysteine peptidase isolated from fruits of Pseudananas macrodontes (Morr.) Harms, a species closely related to pineapple (Ananas comosus L.), has been purified and characterized. The enzyme, named macrodontain I, is the main proteolytic component present in fruit extracts and was purified by acetone fractionation followed by anion-exchange chromatography. Separation was improved by selecting both an adequate pH value and a narrow saline gradient. Optimum pH range (more than 90% of maximum activity with casein) was achieved at pH 6.1-8.5. Homogeneity of the enzyme was confirmed by bidimensional electrophoresis and mass spectroscopy (MS). Molecular mass of the enzyme was 23,459 (MS) and its isoelectric point was 6.1. The alanine, glutamine, and tyrosine derivatives were strongly preferred when the enzyme was assayed on N-alpha-CBZ-l-amino acid p-nitrophenyl esters. The N-terminal sequence of macrodontain (by comparison with the N-terminus of 30 plant proteases with more than 50% homology) showed a great deal of sequence similarity to the other pineapple-stem-derived cysteine endopeptidases, being 85.7, 85. 2, and 77.8% identical to comosain, stem bromelain, and ananain, respectively. It seems clear that the Bromeliaceae endopeptidases are more closely related to each other than to other members of the papain family, suggesting relatively recent divergence. PMID:10686143

  17. Mucolysis of the colonic mucus barrier by faecal proteinases: inhibition by interacting polyacrylate.

    Science.gov (United States)

    Hutton, D A; Pearson, J P; Allen, A; Foster, S N

    1990-03-01

    1. Mucolytic (mucus solubilizing) activity in human faeces has been characterized with both purified human and pig colonic mucin and shown to be mediated by proteolysis. 2. Mucolytic activity was demonstrated by: (i) a drop in mucin viscosity; (ii) a substantial reduction in mucin size, from polymer to degraded subunit, as assessed by Sepharose CL-2B gel filtration; (iii) formation of new N-terminal peptides. 3. Mucolytic activity was also followed in faecal extracts by its proteolytic activity using standard succinyl albumin substrate. Proteolysis extended over the pH range 4.5-11.0. Proteolysis was inhibited at pH 7.5 by soybean trypsin inhibitor and phenylmethanesulphonyl fluoride, suggesting the presence of serine proteinases. 4. The polyacrylate carbomer (934P) inhibited both mucolysis of pig colonic mucin and proteolysis of succinyl albumin. 5. Interaction between the polyacrylate (carbomer 934P) and purified human and pig colonic mucin was demonstrated by a marked synergistic increase in solution viscosity (360% above control). 6. The results demonstrate the presence of a mucolytic activity in the human colonic lumen that has the potential to degrade the mucus barrier, and that polyacrylates inhibit this mucolysis and interact to strengthen the colonic mucus barrier. Polyacrylates may therefore have therapeutic potential in inflammatory bowel disease where luminal proteolytic activity can be raised. PMID:2156646

  18. Stable and Simple Immobilization of Proteinase K Inside Glass Tubes and Microfluidic Channels.

    Science.gov (United States)

    Küchler, Andreas; Bleich, Julian N; Sebastian, Bernhard; Dittrich, Petra S; Walde, Peter

    2015-11-25

    Engyodontium album proteinase K (proK) is widely used for degrading proteinaceous impurities during the isolation of nucleic acids from biological samples, or in proteomics and prion research. Toward applications of proK in flow reactors, a simple method for the stable immobilization of proK inside glass micropipette tubes was developed. The immobilization of the enzyme was achieved by adsorption of a dendronized polymer-enzyme conjugate from aqueous solution. This conjugate was first synthesized from a polycationic dendronized polymer (denpol) and proK and consisted, on average, of 2000 denpol repeating units and 140 proK molecules, which were attached along the denpol chain via stable bis-aryl hydrazone bonds. Although the immobilization of proK inside the tube was based on nonspecific, noncovalent interactions only, the immobilized proK did not leak from the tube and remained active during prolonged storage at 4 °C and during continuous operation at 25 °C and pH = 7.0. The procedure developed was successfully applied for the immobilization of proK on a glass/PDMS (polydimethylsiloxane) microchip, which is a requirement for applications in the field of proK-based protein analysis with such type of microfluidic devices. PMID:26536248

  19. Original features of cell-envelope proteinases of Lactobacillus helveticus. A review.

    Science.gov (United States)

    Sadat-Mekmene, Leila; Genay, Magali; Atlan, Danièle; Lortal, Sylvie; Gagnaire, Valérie

    2011-03-15

    Lactobacillus helveticus is a lactic acid bacterium very used in fermented milks and cheese. The rapid growth of L. helveticus in milk is supported by an efficient cell envelope proteinase (CEP) activity, due to subtilisin-like serine proteases. These enzymes play also crucial roles in texture and flavor formation in dairy products as well as in generating in situ bioactive peptides. In L. helveticus, several genes encoding putative CEPs were detected and characterized by a large intraspecific diversity; little is known about regulation of expression of CEP-encoding genes. Anchored at the bacterial surface, CEPs are large-sized enzymes (> 150 kDa) hydrolyzing β- and α(s1)-casein as well. Substrate cleavages occur after almost all types of amino acids residues, but mass spectrometry analysis revealed L. helveticus strains with specific profiles of substrate hydrolysis, which could explain identification of strains associated with interesting technological properties. In this review, the most recent data regarding CEP-encoding genes, CEP activities toward caseins and L. helveticus strain diversity are discussed. PMID:21354644

  20. Proteinase 3 contributes to transendothelial migration of NB1-positive neutrophils.

    Science.gov (United States)

    Kuckleburg, Christopher J; Tilkens, Sarah B; Santoso, Sentot; Newman, Peter J

    2012-03-01

    Neutrophil transmigration requires the localization of neutrophils to endothelial cell junctions, in which receptor-ligand interactions and the action of serine proteases promote leukocyte diapedesis. NB1 (CD177) is a neutrophil-expressed surface molecule that has been reported to bind proteinase 3 (PR3), a serine protease released from activated neutrophils. PR3 has demonstrated proteolytic activity on a number of substrates, including extracellular matrix proteins, although its role in neutrophil transmigration is unknown. Recently, NB1 has been shown to be a heterophilic binding partner for the endothelial cell junctional protein, PECAM-1. Disrupting the interaction between NB1 and PECAM-1 significantly inhibits neutrophil transendothelial cell migration on endothelial cell monolayers. Because NB1 interacts with endothelial cell PECAM-1 at cell junctions where transmigration occurs, we considered that NB1-PR3 interactions may play a role in aiding neutrophil diapedesis. Blocking Abs targeting the heterophilic binding domain of PECAM-1 significantly inhibited transmigration of NB1-positive neutrophils through IL-1β-stimulated endothelial cell monolayers. PR3 expression and activity were significantly increased on NB1-positive neutrophils following transmigration, whereas neutrophils lacking NB1 demonstrated no increase in PR3. Finally, using selective serine protease inhibitors, we determined that PR3 activity facilitated transmigration of NB1-positive neutrophils under both static and flow conditions. These data demonstrate that PR3 contributes in the selective recruitment of the NB1-positive neutrophil population. PMID:22266279

  1. Circulating ADAM17 Level Reflects Disease Activity in Proteinase-3 ANCA-Associated Vasculitis.

    Science.gov (United States)

    Bertram, Anna; Lovric, Svjetlana; Engel, Alissa; Beese, Michaela; Wyss, Kristin; Hertel, Barbara; Park, Joon-Keun; Becker, Jan U; Kegel, Johanna; Haller, Hermann; Haubitz, Marion; Kirsch, Torsten

    2015-11-01

    ANCA-associated vasculitides are characterized by inflammatory destruction of small vessels accompanied by enhanced cleavage of membrane-bound proteins. One of the main proteases responsible for ectodomain shedding is disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). Given its potential role in aggravating vascular dysfunction, we examined the role of ADAM17 in active proteinase-3 (PR3)-positive ANCA-associated vasculitis (AAV). ADAM17 concentration was significantly increased in plasma samples from patients with active PR3-AAV compared with samples from patients in remission or from other controls with renal nonvascular diseases. Comparably, plasma levels of the ADAM17 substrate syndecan-1 were significantly enhanced in active AAV. We also observed that plasma-derived ADAM17 retained its specific proteolytic activity and was partly located on extracellular microparticles. Transcript levels of ADAM17 were increased in blood samples of patients with active AAV, but those of ADAM10 or tissue inhibitor of metalloproteinases 3, which inhibits ADAMs, were not. We also performed a microRNA (miR) screen and identified miR-634 as significantly upregulated in blood samples from patients with active AAV. In vitro, miR-634 mimics induced a proinflammatory phenotype in monocyte-derived macrophages, with enhanced expression and release of ADAM17 and IL-6. These data suggest that ADAM17 has a prominent role in AAV and might account for the vascular complications associated with this disease. PMID:25788529

  2. Proteinase K activity determination with β-galactosidase as sensitive macromolecular substrate.

    Science.gov (United States)

    Ghéczy, Nicolas; Küchler, Andreas; Walde, Peter

    2016-11-15

    Proteinase K from Engyodontium album (proK) is a relatively unspecific serine endopeptidase which is known to attack proteins yet in their native states. If the attacked protein is an enzyme, even a partial hydrolysis by proK may lead to an inactivation of the enzyme, which can be monitored by measuring the loss of catalytic activity of the attacked enzyme. E. coli β-galactosidase (β-Gal) was used in this work as such enzyme. It was found to be a convenient and sensitive macromolecular model substrate for comparing the "native protein-attacking ability" of free and immobilized proK at pH = 7.0 and 23 °C. The β-Gal activity was measured spectrophotometrically with o-nitrophenyl-β-galactopyranoside. Reproducible proK determinations were possible for as little as 4.3 ng proK by using a proK analyte solution of 10 nM. Compared to free proK, immobilized proK was much less efficient in inactivating β-Gal, most likely due to a decreased mobility of immobilized proK and a restricted accessibility of β-Gal to the active site of proK. Worth noting is, that under conditions at which β-Gal was completely inactivated by proK, the activity of hen egg lysozyme, horseradish peroxidase, or Aspergillus sp. glucose oxidase remained unaltered. PMID:27594349

  3. Thrombin-Mediated Direct Activation of Proteinase-Activated Receptor-2: Another Target for Thrombin Signaling.

    Science.gov (United States)

    Mihara, Koichiro; Ramachandran, Rithwik; Saifeddine, Mahmoud; Hansen, Kristina K; Renaux, Bernard; Polley, Danny; Gibson, Stacy; Vanderboor, Christina; Hollenberg, Morley D

    2016-05-01

    Thrombin is known to signal to cells by cleaving/activating a G-protein-coupled family of proteinase-activated receptors (PARs). The signaling mechanism involves the proteolytic unmasking of an N-terminal receptor sequence that acts as a tethered receptor-activating ligand. To date, the recognized targets of thrombin cleavage and activation for signaling are PAR1 and PAR4, in which thrombin cleaves at a conserved target arginine to reveal a tethered ligand. PAR2, which like PAR1 is also cleaved at an N-terminal arginine to unmask its tethered ligand, is generally regarded as a target for trypsin but not for thrombin signaling. We now show that thrombin, at concentrations that can be achieved at sites of acute injury or in a tumor microenvironment, can directly activate PAR2 vasorelaxation and signaling, stimulating calcium and mitogen-activated protein kinase responses along with triggeringβ-arrestin recruitment. Thus, PAR2 can be added alongside PAR1 and PAR4 to the targets, whereby thrombin can affect tissue function.

  4. Proteinase K and the structure of PrPSc: The good, the bad and the ugly.

    Science.gov (United States)

    Silva, Christopher J; Vázquez-Fernández, Ester; Onisko, Bruce; Requena, Jesús R

    2015-09-01

    Infectious proteins (prions) are, ironically, defined by their resistance to proteolytic digestion. A defining characteristic of the transmissible isoform of the prion protein (PrP(Sc)) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunodetection of PK-digested PrP(Sc) by Western blot, ELISA or immunohistochemical detection. PK digestion has also been used to detect differences in prion strains. Thus, PK has been a crucial tool to detect and, thereby, control the spread of prions. PK has also been used as a tool to probe the structure of PrP(Sc). Mass spectrometry and antibodies have been used to identify PK cleavage sites in PrP(Sc). These results have been used to identify the more accessible, flexible stretches connecting the β-strand components in PrP(Sc). These data, combined with physical constraints imposed by spectroscopic results, were used to propose a qualitative model for the structure of PrP(Sc). Assuming that PrP(Sc) is a four rung β-solenoid, we have threaded the PrP sequence to satisfy the PK proteolysis data and other experimental constraints.

  5. Proteinase K activity determination with β-galactosidase as sensitive macromolecular substrate.

    Science.gov (United States)

    Ghéczy, Nicolas; Küchler, Andreas; Walde, Peter

    2016-11-15

    Proteinase K from Engyodontium album (proK) is a relatively unspecific serine endopeptidase which is known to attack proteins yet in their native states. If the attacked protein is an enzyme, even a partial hydrolysis by proK may lead to an inactivation of the enzyme, which can be monitored by measuring the loss of catalytic activity of the attacked enzyme. E. coli β-galactosidase (β-Gal) was used in this work as such enzyme. It was found to be a convenient and sensitive macromolecular model substrate for comparing the "native protein-attacking ability" of free and immobilized proK at pH = 7.0 and 23 °C. The β-Gal activity was measured spectrophotometrically with o-nitrophenyl-β-galactopyranoside. Reproducible proK determinations were possible for as little as 4.3 ng proK by using a proK analyte solution of 10 nM. Compared to free proK, immobilized proK was much less efficient in inactivating β-Gal, most likely due to a decreased mobility of immobilized proK and a restricted accessibility of β-Gal to the active site of proK. Worth noting is, that under conditions at which β-Gal was completely inactivated by proK, the activity of hen egg lysozyme, horseradish peroxidase, or Aspergillus sp. glucose oxidase remained unaltered.

  6. Stable and Simple Immobilization of Proteinase K Inside Glass Tubes and Microfluidic Channels.

    Science.gov (United States)

    Küchler, Andreas; Bleich, Julian N; Sebastian, Bernhard; Dittrich, Petra S; Walde, Peter

    2015-11-25

    Engyodontium album proteinase K (proK) is widely used for degrading proteinaceous impurities during the isolation of nucleic acids from biological samples, or in proteomics and prion research. Toward applications of proK in flow reactors, a simple method for the stable immobilization of proK inside glass micropipette tubes was developed. The immobilization of the enzyme was achieved by adsorption of a dendronized polymer-enzyme conjugate from aqueous solution. This conjugate was first synthesized from a polycationic dendronized polymer (denpol) and proK and consisted, on average, of 2000 denpol repeating units and 140 proK molecules, which were attached along the denpol chain via stable bis-aryl hydrazone bonds. Although the immobilization of proK inside the tube was based on nonspecific, noncovalent interactions only, the immobilized proK did not leak from the tube and remained active during prolonged storage at 4 °C and during continuous operation at 25 °C and pH = 7.0. The procedure developed was successfully applied for the immobilization of proK on a glass/PDMS (polydimethylsiloxane) microchip, which is a requirement for applications in the field of proK-based protein analysis with such type of microfluidic devices.

  7. A subset of ulcerative colitis with positive proteinase-3antineutrophil cytoplasmic antibody

    Institute of Scientific and Technical Information of China (English)

    Jin Xu; Chuan-Hua Yang; Xiao-Yu Chen; Xu-Hang Li; Min Dai; Shu-Dong Xiao

    2008-01-01

    A small subset of patients with active ulcerative colitis is non-responsive to major known non-biological therapies.We reported 5 patients with positive serum proteinase-3 antineutrophil cytoplasmic antibody (PR3-ANCA) and tried to (1) identify the common clinical features of these patients; (2) investigate the efficacy of a novel therapy using a Chinese medicine compound; and (3) attract more gastroenterologists to be engaged in further study of this subset of patients. The common manifestations of disease in these 5 patients included recurrent bloody diarrhea and inflammatory lesions involving the entire colorectal mucosa. Initial treatment with intravenous methylprednisolone successfully induced remission.Four of these 5 patients were steroid-dependence,and immunosuppressants, such as azathioprine and cyclophosphamide, were ineffective. In 3 patients,only the particular Chinese medicine compound could induce and maintain remission. One patient underwent colectomy. No vascular inflammatory lesions were found by histopathological examination. Although more cases are needed for confirmation, our study indicates that ulcerative colitis with positive PR3-ANCA may belong to a subtype of refractory ulcerative colitis. The particular Chinese medicine compound used in our study is by far the most effective in the management of these patients,with additional advantages of having no noticeable sideeffects and less financial burden.

  8. Activation of human tonsil and skin mast cells by agonists of proteinase activated receptor-2

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Hua XIE; Yi-ling FU

    2005-01-01

    Aim: To investigate the effects of the agonists of proteinase activated receptor (PAR)-2,and histamine on degranulation of human mast cells. Methods: Human mast cells were enzymatically dispersed from tonsil and skin tissues. The dis persed cells were then cultured with various stimuli, and tryptase and histamine levels in cell supernatants collected from challenge tubes were measured. Results:PAR-2 agonist peptide SLIGKV provoked a dose-dependent release of histamine from skin mast cells. It also induced tryptase release from tonsil mast cells, tcLIGRLO appeared less potent than SLIGKV in induction of release of histamine and tryptase. Trypsin was able to induce a "bell" shape increase in tryptase release from tonsil mast cells. It was also able to induce a dose-dependent release of histamine from both tonsil and skin mast cells. The actions of trypsin on mast cells were inhibited by soy bean trypsin inhibitor (SBTI) or α1-antitrypsin (α1-AT).Time course study revealed that both stimulated tryptase or histamine release initiated within 10 s and reached their peak release between 4 and 6 min. Pretreatment of cells with metabolic inhibitors or pertussis toxin reduced the ability of mast cells to release tryptase or histamine. Conclusion: It was demonstrated that the in vitro tryptase release properties of human tonsil and skin mast cells suggested a novel type of mast cell heterogeneity. The activation of mast cells by PAR-2 agonists indicated a self-amplification mechanism of mast cell degranulation.

  9. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins.

    Science.gov (United States)

    Jiang, Peihua; Ji, Qingzhou; Liu, Zhan; Snyder, Lenore A; Benard, Lumie M J; Margolskee, Robert F; Max, Marianna

    2004-10-22

    A wide variety of chemically diverse compounds taste sweet, including natural sugars such as glucose, fructose, sucrose, and sugar alcohols, small molecule artificial sweeteners such as saccharin and acesulfame K, and proteins such as monellin and thaumatin. Brazzein, like monellin and thaumatin, is a naturally occurring plant protein that humans, apes, and Old World monkeys perceive as tasting sweet but that is not perceived as sweet by other species including New World monkeys, mouse, and rat. It has been shown that heterologous expression of T1R2 plus T1R3 together yields a receptor responsive to many of the above-mentioned sweet tasting ligands. We have determined that the molecular basis for species-specific sensitivity to brazzein sweetness depends on a site within the cysteine-rich region of human T1R3. Other mutations in this region of T1R3 affected receptor activity toward monellin, and in some cases, overall efficacy to multiple sweet compounds, implicating this region as a previously unrecognized important determinant of sweet receptor function. PMID:15299024

  10. The mechanism of cysteine detection in biological media by means of vanadium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, A. G. [Universidade Tecnologica Federal do Parana, Departamento Academico de Fisica (Brazil); Barison, A. [Universidade Federal do Parana, Departamento de Quimica (Brazil); Oliveira, V. S. [Universidade Federal do Parana, Departamento de Fisica (Brazil); Foti, L.; Krieger, M. A. [Fundacao Oswaldo Cruz, Instituto de Biologia Molecular do Parana (Brazil); Dhalia, R.; Viana, I. F. T. [Fundacao Oswaldo Cruz, Centro de Pesquisas Aggeu Magalhaes (Brazil); Schreiner, W. H., E-mail: wido@fisica.ufpr.br [Universidade Federal do Parana, Departamento de Fisica (Brazil)

    2012-09-15

    We report on the interaction of vanadate nanoparticles, produced using the laser ablation in liquids synthesis, with cysteine in biological molecules. Cysteine is a very important amino acid present in most proteins, but also because cysteine and the tripeptide glutathione are the main antioxidant molecules in our body system. Detailed UV-Vis absorption spectra and dynamic light scattering measurements were done to investigate the detection of cysteine in large biological molecules. The intervalence band of the optical absorption spectra shows capability for quantitative cysteine sensing in the {mu}M range in biological macromolecules. Tests included cytoplasmic repetitive antigen and flagellar repetitive antigen proteins of the Trypanosoma cruzi protozoa, as well as the capsid p24 proteins from Human Immunodeficiency Virus type 1 and type 2. Detailed NMR measurements for hydrogen, carbon, and vanadium nuclei show that cysteine in contact with the vanadate looses hydrogen of the sulphydryl side chain, while the vanadate is reduced. The subsequent detachment of two deprotonated molecules to form cystine and the slow return to the vanadate complete the oxidation-reduction cycle. Therefore, the vanadate acts as a charge exchanging catalyst on cysteine to form cystine. The NMR results also indicate that the nanoparticles are not formed by the common orthorhombic V{sub 2}O{sub 5} form.

  11. Leaf Rolling and Stem Fasciation in Grass Pea (Lathyrus sativus L. Mutant Are Mediated through Glutathione-Dependent Cellular and Metabolic Changes and Associated with a Metabolic Diversion through Cysteine during Phenotypic Reversal

    Directory of Open Access Journals (Sweden)

    Dibyendu Talukdar

    2014-01-01

    Full Text Available A Lathyrus sativus L. mutant isolated in ethylmethane sulfonate-treated M2 progeny of mother variety BioL-212 and designated as rlfL-1 was characterized by inwardly rolled-leaf and stem and bud fasciations. The mutant exhibited karyomorphological peculiarities in both mitosis and meiosis with origin of aneuploidy. The mitosis was vigorous with high frequency of divisional cells and their quick turnover presumably steered cell proliferations. Significant transcriptional upregulations of cysteine and glutathione synthesis and concomitant stimulations of glutathione-mediated antioxidant defense helped rlfL-1 mutant to maintain balanced reactive oxygen species (ROS metabolisms, as deduced by ROS-imaging study. Glutathione synthesis was shut down in buthionine sulfoximine- (BSO- treated mother plant and mutant, and leaf-rolling and stems/buds fasciations in the mutant were reversed, accompanied by normalization of mitotic cell division process. Antioxidant defense was downregulated under low glutathione-redox but cysteine-desulfurations and photorespiratory glycolate oxidase transcripts were markedly overexpressed, preventing cysteine overaccumulation but resulted in excess H2O2 in BSO-treated mutant. This led to oxidative damage in proliferating cells, manifested by severe necrosis in rolled-leaf and fasciated stems. Results indicated vital role of glutathione in maintaining abnormal proliferations in plant organs, and its deficiency triggered phenotypic reversal through metabolic diversions of cysteine and concomitant cellular and metabolic modulations.

  12. "Comparison of Adult Somatic and Cysteine Proteinas Antigens of Fasciola gigantica in Enzyme Linked Immunosorbent Assay for Serodiagnosis of Human Fasciolosis"

    Directory of Open Access Journals (Sweden)

    MB Rokni

    2002-08-01

    Full Text Available Fasciolosis caused by Fasciola hepatica and F.gigantica is one of the major public health problems in the world and in Iran. Considering that stool examination for Fasciola eggs is not a sensitive method and only 25% of infected patients pass the eggs in the faeces , and immunodiagnosis methods are more applicable for this purpose, the present study was conducted to compare the somatic (S and cysteine proteinase (CP antigens of F.gigantica in IgG-ELISA to diagnose human fasciolosis. This has been the first report on this case so far in Iran. Serum samples obtained from 178 individuals collected during the fasciolosis outbreak in 1999 in the Gilan province, northern Iran, that were coprologically positive for fasciolosis, were analyzed by IgG-ELISA for total antibody responses against (S and CP antigens from Fasciola gigantica. The cut-off points for (S and CP were 0.38 and 0.33, respectively. All cases that showed clinical manifestations of fasciolosis, were also seropositive using both (S and CP antigens whereas all 25 non-infected controls were seronegative. Therefore, the sensitivity of the test was 100% for both antigens. On the other hand the specificity of (S and CP antigens were calculated as 96.4% and 98.1%, respectively. The positive and negative predictive values of the test regarding (S antigen were 97.8% and 100%, whereas these values as for CP antigen were 98.9% and 100% correspondingly. Two individuals with hydatidosis and two with toxocariasis had antibodies against (S antigen whereas concerning CP antigen, one individual with hydatidosis and another with toxocariasis showed cross reactivity against it. We have demonstrated that altogether CP antigen provide a more conclusive diagnosis as possessing lower cut-off and enabling better to discriminate between seronegative and seropositive subpopulations.This study may be useful to implement a reliable test to diagnose human fasciolosis and for seroepidmiological objectives.

  13. Purification and characterization of a salt-activated and organic solvent-stable heterotrimer proteinase from Virgibacillus sp. SK33 isolated from Thai fish sauce.

    Science.gov (United States)

    Sinsuwan, Sornchai; Rodtong, Sureelak; Yongsawatdigul, Jirawat

    2010-01-13

    A NaCl-activated proteinase produced by Virgibacillus sp. SK33 was purified to homogeneity using phenyl-Sepharose and Sephadex G-75 with a yield of 12% and purification of 2.6-fold. A single protein was detected at approximately 32 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, three subunits with molecular weights of 27,858, 33,918, and 35,368 Da were obtained from MALDI-TOF mass spectra, implying that the enzyme was a heterotrimer. The isoelectric point of the proteinase was 5.4. Optimum catalytic activity was at 55 degrees C and pH 7.5. The enzyme showed serine characteristics as it was completely inhibited by phenylmethanesulfonyl fluoride. The purified proteinase showed broad specificity toward oxidized insulin B including Gln4, Cys7, Glu13, Ala14, Leu15,17, Tyr16,26, Arg22, Phe24,25, and Lys29. Dominant cleavage sites of the enzyme were Tyr16-Leu17 and Phe25-Tyr26, indicating that it preferably hydrolyzed aromatic amino acids located on the P1 site. Among various substrates studied, the enzyme hydrolyzed anchovy protein to the greatest extent at 4 M NaCl. Activity increased with either CaCl2 or NaCl concentration with the maximum 2-fold increase at either 50 mM CaCl2 or 4 M NaCl. The enzyme was also highly stable up to 500 mM CaCl2 or 4 M NaCl. The proteinase showed high stability in various organic solvents (25%, v/v) including dimethylsulfoxide, methanol, acetonitrile, and ethanol. Results of peptide mass fingerprint and de novo peptide sequencing showed that the purified proteinase is a novel proteinase. The proteinase from Virgibacillus sp. SK33 could have a potential application in high ionic strength environments and aqueous-organic solvent systems. PMID:19938835

  14. Preparation, crystallization and X-ray diffraction analysis to 1.5 Å resolution of rat cysteine dioxygenase, a mononuclear iron enzyme responsible for cysteine thiol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Chad R. [Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-8001 (United States); Hao, Quan [MacCHESS at the Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853-8001 (United States); Stipanuk, Martha H., E-mail: mhs6@cornell.edu [Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-8001 (United States)

    2005-11-01

    Recombinant rat cysteine dioxygenase (CDO) has been expressed, purified and crystallized and X-ray diffraction data have been collected to 1.5 Å resolution. Cysteine dioxygenase (CDO; EC 1.13.11.20) is an ∼23 kDa non-heme iron metalloenzyme that is responsible for the oxidation of cysteine by O{sub 2}, yielding cysteinesulfinate. CDO catalyzes the first step in the conversion of cysteine to taurine, as well as the first step in the catabolism of cysteine to pyruvate plus sulfate. Recombinant rat CDO was heterologously expressed, purified and crystallized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The optimal CDO crystals diffracted to 1.5 Å resolution and belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 57.55, c = 123.06 Å, α = β = γ = 90°. CDO shows little homology to any other proteins; therefore, the structure of the enzyme will be determined by ab initio phasing using a selenomethionyl derivative.

  15. Serine substitution for cysteine residues in levansucrase selectively abolishes levan forming activity.

    Science.gov (United States)

    Senthilkumar, Velusamy; Busby, Stephen J W; Gunasekaran, Paramasamy; Senthikumar, Velusamy; Bushby, Stephen J W

    2003-10-01

    Levansucrase is responsible for levan formation during sucrose fermentation of Zymomonas mobilis, and this decreases the efficiency of ethanol production. As thiol modifying agents decrease levan formation, a role for cysteine residues in levansucrase activity has been examined using derivatives of Z. mobilis levansucrase that carry serine substitutions of cysteine at positions 121, 151 or 244. These substitutions abolished the levan forming activity of levansucrase whilst only halving its activity in sucrose hydrolysis. Thus, polymerase and hydrolase activities of Z. mobilis levansucrase are separate and have different requirements for the enzyme's cysteine residues. PMID:14584923

  16. Cysteine as a non toxic corrosion inhibitor for copper alloys in conservation

    DEFF Research Database (Denmark)

    Gravgaard, Mari; van Lanschot, Jettie

    2012-01-01

    The aim of this work is to examine cysteine as an alternative to benzotriazole (BTA) for the conservation of archaeological objects with bronze disease. Investigation of the two inhibitors involved the use of electrochemical techniques, measurements of weight change in high humidity and comparative...... studies of colour changes in the corrosion products. The results obtained in this article demonstrate that cysteine could be a non-toxic alternative to BTA. Cysteine performed as well as BTA on pre-corroded coupons with bronze disease in high humidity and showed acceptable results during testing...

  17. Cystatins - Extra- and intracellular cysteine protease inhibitors: High-level secretion and uptake of cystatin C in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Wallin, Hanna; Bjarnadottir, Maria; Vogel, Lotte;

    2010-01-01

    Cystatins are present in mammals, birds, fish, insects, plants, fungi and protozoa and constitute a large protein family, with most members sharing a cysteine protease inhibitory function. In humans 12 functional cystatins exist, forming three groups based on molecular organisation and distributi...... reticulum rather than to acidic vesicular organelles, indicating limitations in the transport out from the cell rather than increased uptake as explanation for the elevated cellular cystatin levels seen in hereditary cystatin C amyloid angiopathy....... signal peptides) for cellular export following translation. Results indicating existence of systems for significant internalisation of type 2 cystatins from the extracellular to intracellular compartments are reviewed. Data showing that human neuroblastoma cell lines generally secrete high levels......, but also contain high amounts of cystatin C are presented. Culturing of these cells in medium containing cystatin C at concentrations found in body fluids resulted in increased intracellular cystatin C, as a result of an uptake process. At immunofluorescence cytochemistry a pronounced vesicular cystatin C...

  18. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley

    DEFF Research Database (Denmark)

    Rayapuram, Cbgowda; Jensen, Michael K; Maiser, Fabian;

    2012-01-01

    The receptor-like protein kinases (RLKs) constitute a large and diverse group of proteins controlling numerous plant physiological processes, including development, hormone perception and stress responses. The cysteine-rich RLKs (CRKs) represent a prominent subfamily of transmembrane-anchored RLKs......, followed by a rather short 17-amino-acid transmembrane domain, which includes an AAA motif, two features characteristic of endoplasmic reticulum (ER)-targeted proteins and, finally, a characteristic putative protein kinase domain in the C-terminus. The HvCRK1 transcript was isolated from leaves inoculated....... We have identified a putative barley (Hordeum vulgare) CRK gene family member, designated HvCRK1. The mature putative protein comprises 645 amino acids, and includes a putative receptor domain containing two characteristic ‘domain 26 of unknown function’ (duf26) domains in the N-terminal region...

  19. Soilborne wheat mosaic virus (SBWMV 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing

    Directory of Open Access Journals (Sweden)

    Howard Amanda

    2005-03-01

    Full Text Available Abstract Amino acid sequence analyses indicate that the Soilborne wheat mosaic virus (SBWMV 19K protein is a cysteine-rich protein (CRP and shares sequence homology with CRPs derived from furo-, hordei-, peclu- and tobraviruses. Since the hordei- and pecluvirus CRPs were shown to be pathogenesis factors and/or suppressors of RNA silencing, experiments were conducted to determine if the SBWMV 19K CRP has similar activities. The SBWMV 19K CRP was introduced into the Potato virus X (PVX viral vector and inoculated to tobacco plants. The SBWMV 19K CRP aggravated PVX-induced symptoms and restored green fluorescent protein (GFP expression to GFP silenced tissues. These observations indicate that the SBWMV 19K CRP is a pathogenicity determinant and a suppressor of RNA silencing.

  20. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2.

    Directory of Open Access Journals (Sweden)

    André N Mueller

    2013-02-01

    Full Text Available The basidiomycete Ustilago maydis causes smut disease in maize, with large plant tumors being formed as the most prominent disease symptoms. During all steps of infection, U. maydis depends on a biotrophic interaction, which requires an efficient suppression of plant immunity. In a previous study, we identified the secreted effector protein Pit2, which is essential for maintenance of biotrophy and induction of tumors. Deletion mutants for pit2 successfully penetrate host cells but elicit various defense responses, which stops further fungal proliferation. We now show that Pit2 functions as an inhibitor of a set of apoplastic maize cysteine proteases, whose activity is directly linked with salicylic-acid-associated plant defenses. Consequently, protease inhibition by Pit2 is required for U. maydis virulence. Sequence comparisons with Pit2 orthologs from related smut fungi identified a conserved sequence motif. Mutation of this sequence caused loss of Pit2 function. Consequently, expression of the mutated protein in U. maydis could not restore virulence of the pit2 deletion mutant, indicating that the protease inhibition by Pit2 is essential for fungal virulence. Moreover, synthetic peptides of the conserved sequence motif showed full activity as protease inhibitor, which identifies this domain as a new, minimal protease inhibitor domain in plant-pathogenic fungi.