WorldWideScience

Sample records for plant construction effects

  1. Summary of nuclear power plant construction

    International Nuclear Information System (INIS)

    Tamura, Saburo

    1973-01-01

    Various conditions for the construction of nuclear power plants in Japan without natural resources were investigated. Expansion of the sites of plants, change of reactor vessels, standardization of nuclear power plants, possiblity of the reduction of construction period, approaching of nuclear power plants to consuming cities, and group construction were studied. Evaluation points were safety and economy. Previous sites of nuclear power plants were mostly on plane ground or cut and enlarge sites. Proposals for underground or offshore plants have been made. The underground plants were made at several places in Europe, and the ocean plant is now approved in U.S.A. as a plant on a man-made island. Vessels for containing nuclear reactors are the last barriers to the leakage of radioactive substance. At the initial period, the vessels were made of steel, which were surrounded by shielding material. Those were dry well type containers. Then, vessel type changed to pressure-suppression type wet containers. Now, it tends to concrete (PC or RC) type containers. There is the policy on the standardization of nuclear power plants by U.S.A.E.C. in recent remarkable activity. The merit and effect of the standardization were studied, and are presented in this paper. Cost of the construction of nuclear power plants is expensive, and interest of money is large. Then, the reduction of construction period is an important problem. The situations of plants approaching to consuming cities in various countries were studied. Idea of group construction is described. (Kato, T.)

  2. PWR plant construction in Japan

    International Nuclear Information System (INIS)

    Tamura, Toshifumi

    2002-01-01

    The construction methods based on the experiences on the Nuclear Island, which is a critical path in the total construction schedule, have been studied and reconsidered in order to construct by more reliable and economical method. So various improved construction method are being applied and the duration of construction is being reduced continuously. So various improved construction method are being applied and the duration of construction is being reduced continuously. In this paper, the history of construction of twenty-three (23) PWR Plant, the actual construction methods and schedule of Ohi-3/4, to which the many improved methods were applied during their construction, are introduced mainly with the improved points for previously constructed plants. And also the situation of construction method for the next PWR Plant is simply explained

  3. Nitrogen and COD Removal from Septic Tank Wastewater in Subsurface Flow Constructed Wetlands: Plants Effects.

    Science.gov (United States)

    Collison, R S; Grismer, M E

    2015-11-01

    We evaluated subsurface flow (SSF) constructed wetland treatment performance with respect to organics (COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) wastewater as affected by the presence of plants, substrate "rock" cation exchange capacity (CEC), laboratory versus field conditions and use of synthetic as compared to actual domestic wastewater. This article considers the effects of plants on constructed wetland treatment in the field. Each constructed wetland system was comprised of two beds (2.6 m long by 0.28 m wide and deep filled with ~18 mm crushed lava rock) separated by an aeration tank connected in series. The lava rock had a porosity of ~47% and a CEC of 4 meq/100 gm. One pair of constructed wetland systems was planted with cattails in May 2008, while an adjacent pair of systems remained un-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each constructed wetland system and effluent samples were regularly collected and tested for COD and nitrogen species during four time periods spanning November 2008 through June 2009. These effluent concentrations were tested for statistical differences at the 95% level for individual time periods as well as the overall 6-month period. Organics removal from domestic wastewater was 78.8% and 76.1% in the planted and un-planted constructed wetland systems, respectively, while ammonium removal was 94.5% and 90.2%, respectively. Similarly, organics removal from the synthetic wastewater of equivalent strength was 88.8% and 90.1% for planted and un-planted constructed wetland systems, respectively, while ammonium removal was 96.9% and 97.3%, respectively.

  4. NSS design and plant construction interfaces

    International Nuclear Information System (INIS)

    Stewart, J.J.; Cobb, W.A.

    1976-01-01

    Interface management between NSS design, balance-of-plant design, and plant construction may have a significant effect on schedule stretchout and total plant costs. The paper discusses the importance of the NSS supplier's interface management role, the favorable and unfavorable influencing factors, and examples of interface areas in which experience has demonstrated that problems may arise. Where appropriate, actions are defined to avoid the problems or mitigate the consequences

  5. Clinch River Breeder Reactor Plant Project: construction schedule

    International Nuclear Information System (INIS)

    Purcell, W.J.; Martin, E.M.; Shivley, J.M.

    1982-01-01

    The construction schedule for the Clinch River Breeder Reactor Plant and its evolution are described. The initial schedule basis, changes necessitated by the evaluation of the overall plant design, and constructability improvements that have been effected to assure adherence to the schedule are presented. The schedule structure and hierarchy are discussed, as are tools used to define, develop, and evaluate the schedule

  6. Construction technique for a chemical plant (III)

    International Nuclear Information System (INIS)

    1978-08-01

    This book mentions design of instrumentation and construction for a chemical plant, which deals with the change of instrumentation, construction, choice of material test, construction of thermal insulation work for a chemical plant, about classification and main materials, the problems on construction, painting plan and construction for a chemical plant such as paint and painting, safety and hygiene, cleaning of a chemical plant on the time for washing and decision of the way of washing, start up test for a chemical plant such as introduction of the check, construction and repair.

  7. Nuclear plant construction and investment risk

    International Nuclear Information System (INIS)

    Studness, C.M.

    1984-01-01

    Escalated cost estimations, delays and cancellations in nuclear construction have caused a preoccupation with the risks of nuclear power plant construction that dominates utility stock investment, overshadowing increased earnings per share and recent growth in production. The issue will be resolved when increased power demand requires new construction, but the effect has so far been to erode the economic advantage of nuclear power and threaten the ability of utilities to get rate increases high enough to cover their costs. Projected delays and cost escalations and their effects must go into an economic appraisal of the investment risks

  8. Construction method for plant facility

    International Nuclear Information System (INIS)

    Ito, Arata; Hirono, Hideharu; Kyoda, Shigeru; Hanawa, Minoru; Sato, Hitoshi

    1998-01-01

    A caisson structure is disposed on a construction site for facilities of nuclear power plants. A digging work is performed below the caisson structure and, simultaneous with the digging work, a construction of a base, construction of plant facilities including a building and installation of plant facility are performed on the caisson structure. Then, the caisson structure is sank together with the structures on a base rock in association with the progress of the digging work and secured on the base rock. When securing them on the base rock, a groove is formed to the base rock along tuyere of the caisson structure so that the tuyere and a ceiling portion of the caisson structure are in direct contact with the base rock. Since the construction for the containing building conducted on the caisson structure is performed simultaneous with the digging work conducted below the caisson structure, the term required for the construction of the plant facilities can greatly reduced. (N.H.)

  9. Computer aided construction engineering system for nuclear power plants

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Nakajima, Akira; Miyahara, Ryohei; Miura, Jun

    1990-01-01

    The construction CAE system for nuclear power plants is the tool for the construction work simulator (procedure, processes and management simulation) connected to 3D-CAD (three-dimensional plant layout planning CAD). The data used for construction work simulation are registered in the data base as the installation smallest unit data from the 3D-CAD. This construction work simulator comprises the automatic installation procedure decision system, with which a construction planner decides installation procedure by using a high performance graphic work station, and based on a 3D-CAD model, utilizing empirical procedure logic, the dialogue system for making the installation procedure more optimal by utilizing effectively the graphic function, the evaluation system for synthetically evaluating workability, personnel plan and so on by adding the simulation of human behavior based on these procedures, the schedule system which carries out work process simulation based on the above, the data base system for letting to do these plans effectively and the project management system. By means of these, the plant construction of high quality is expected. (K.I.)

  10. Construction technique for a chemical plant (I)

    International Nuclear Information System (INIS)

    1978-08-01

    This book mentions the order of plant construction, building plant and related regulations, basic engineering design data, provide of equipment, plan and management on building plant, quality control, the budget and contract for building plant, public works for building chemical plant like road construction, basic plan and building for a chemical plant, introduction and principle on foundation improvement method, including pile foundation and design for footing, construction and installation for a chemical plant and a rotary machine for a chemical plant.

  11. Construction technique for a chemical plant (II)

    International Nuclear Information System (INIS)

    1978-08-01

    This book deals with design and construction for a chemical plant which includes design and building of steel structure for a chemical plant with types, basic regulation, plan, shop fabrication for steel structure and field construction. It explains design and construction of making building for a chemical construction with measurement, types of building and basic rule of the building, design of the building, constructing plumbing for a chemical plant with plan, management of material, checking for construction, construction of electrical installation on plan, know-how to construction and maintenance.

  12. Modeling the Effect of Plants and Peat on Evapotranspiration in Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Florent Chazarenc

    2010-01-01

    Full Text Available Evapotranspiration (ET in constructed wetlands (CWs represents a major factor affecting hydrodynamics and treatment performances. The presence of high ET was shown to improve global treatment performances, however ET is affected by a wide range of parameters including plant development and CWs age. Our study aimed at modelling the effect of plants and peat on ET in CWs; since we hypothesized peat could behave like the presence of accumulated organic matter in old CWs. Treatment performances, hydraulic behaviour, and ET rates were measured in eight 1 m2 CWs mesocosm (1 unplanted, 1 unplanted with peat, 2 planted with Phragmites australis, 2 planted with Typha latifolia and 2 planted with Phragmites australis with peat. Two models were built using first order kinetics to simulate COD and TKN removal with ET as an input. The effect of peat was positive on ET and was related to the better growth conditions it offered to macrophytes. Removal efficiency in pilot units with larger ET was higher for TKN. On average, results show for COD a k20 value of 0.88 d-1 and 0.36 d-1 for TKN. We hypothesized that the main effect of ET was to concentrate effluent, thus enhancing degradation rates.

  13. A qualitative model construction method of nuclear power plants for effective diagnostic knowledge generation

    International Nuclear Information System (INIS)

    Yoshikawa, Shinji; Endou, Akira; Kitamura, Yoshinobu; Sasajima, Munehiko; Ikeda, Mitsuru; Mizoguchi, Riichiro.

    1994-01-01

    This paper discusses a method to construct a qualitative model of a nuclear power plant, in order to generate effective diagnostic knowledge. The proposed method is to prepare deep knowledge to be provided to a knowledge compiler based upon qualitative reasoning (QR). Necessity of knowledge compilation for nuclear plant diagnosis will be explained first, and conventionally-experienced problems in qualitative reasoning and a proposed method to overcome this problem is shown next, then a sample procedure to build a qualitative nuclear plant model is demonstrated. (author)

  14. Plant reproduction is altered by simulated herbicide drift to constructed plant communities

    Science.gov (United States)

    Herbicide drift may have unintended impacts on native vegetation, adversely affecting structure and function of plant communities. However, these potential effects have been rarely studied or quantified. To determine potential ecological effects of herbicide drift, we construct...

  15. Quality control during construction of power plants

    International Nuclear Information System (INIS)

    Hartstern, R.F.

    1982-01-01

    This paper traces the background and examines the necessity for a program to control quality during the construction phase of a power plant. It also attempts to point out considerations for making these programs cost effective

  16. Rock cavity construction of a nuclear power plant: a case study

    International Nuclear Information System (INIS)

    Loken, P.C.; Bakke, J.; Gloersen, I.

    1979-01-01

    The major findings of a comprehensive study of the major aspects of rock cavity construction of a large nuclear power plant are: (1) current technology is adequate for the realization of such construction; (2) a method for estimating the probability of rock fallout and gross cavity instability is presently not available; (3) certain design modifications and amplifications must be made to prevent dependent failures; (4) no significant reduction in the immediate radiological effects of Class 9 accidents will result unless special design measures are made for this purpose; (5) the vulnerability of the plant to certain external effects is significantly reduced; (6) the total time for the realization of such construction will be significantly longer than that for a traditionally constructed plant; and (7) the extra cost will be substantial

  17. Construct ability Improvement for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Soo; Lee, Jong Rim; Kim, Jong Ku [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The purpose of this study was to identify methods for improving the construct ability of nuclear power plants. This study reviewed several references of current construction practices of domestic and overseas nuclear plants in order to identify potential methods for improving construct ability. The identified methods for improving construct ability were then evaluated based on the applicability to domestic nuclear plant construction. The selected methods are expected to reduce the construction period, improve the quality of construction, cost, safety, and productivity. Selection of which methods should be implemented will require further evaluation of construction modifications, design changes, contract revisions. Among construction methods studied, platform construction methods can be applied through construction sequence modification without significant design changes, and Over the Top construction method of the NSSS, automatic welding of RCL pipes, CLP modularization, etc., are considered to be applied after design modification and adjustment of material lead time. (author). 49 refs., figs., tabs.

  18. Applicability of the 'constructional fire prevention for industrial plants' to power plants

    International Nuclear Information System (INIS)

    Hammacher, P.

    1978-01-01

    Power plants, especially nuclear power plants, are considered because of their high value and large construction volume to be among the most important industrial constructions of our time. They have a very exposed position from the point of view of fire prevention because of their constructional and operational concept. The efforts in the Federal Republic of Germany to standardize laws and regulations for fire prevention in industrial plants (industrial construction code, DIN 18230) must be supported if only because they would simplify the licensing procedure. However these regulations cannot be applied in many cases and especially in the main buildings of thermal power plants without restricting or even endangering the function or the safety of such plants. At the present state of the art many parts of the power plant can surely be defined as 'fire safe'. Fire endangered plant components and rooms are protected according to their importance by different measures (constructional measures, fire-fighting equipments, extractors for flue gases and for heat, fire-brigade of the plant). (orig.) [de

  19. Application of linear scheduling method (LSM) for nuclear power plant (NPP) construction

    International Nuclear Information System (INIS)

    Kim, Woojoong; Ryu, Dongsoo; Jung, Youngsoo

    2014-01-01

    Highlights: • Mixed use of linear scheduling method with traditional CPM is suggested for NPP. • A methodology for selecting promising areas for LSM application is proposed. • A case-study is conducted to validate the proposed LSM selection methodology. • A case-study of reducing NPP construction duration by using LSM is introduced. - Abstract: According to a forecast, global energy demand is expected to increase by 56% from 2010 to 2040 (EIA, 2013). The nuclear power plant construction market is also growing with sharper competition. In nuclear power plant construction, scheduling is one of the most important functions due to its large size and complexity. Therefore, it is crucial to incorporate the ‘distinct characteristics of construction commodities and the complex characteristics of scheduling techniques’ (Jung and Woo, 2004) when selecting appropriate schedule control methods for nuclear power plant construction. However, among various types of construction scheduling techniques, the traditional critical path method (CPM) has been used most frequently in real-world practice. In this context, the purpose of this paper is to examine the viability and effectiveness of linear scheduling method (LSM) applications for specific areas in nuclear power plant construction. In order to identify the criteria for selecting scheduling techniques, the characteristics of CPM and LSM were compared and analyzed first through a literature review. Distinct characteristics of nuclear power plant construction were then explored by using a case project in order to develop a methodology to select effective areas of LSM application to nuclear power plant construction. Finally, promising areas for actual LSM application are suggested based on the proposed evaluation criteria and the case project. Findings and practical implications are discussed for further implementation

  20. Application of linear scheduling method (LSM) for nuclear power plant (NPP) construction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woojoong, E-mail: minidung@nate.com [Central Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Daejeon 305-343 (Korea, Republic of); Ryu, Dongsoo, E-mail: energyboy@khnp.co.kr [Central Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Daejeon 305-343 (Korea, Republic of); Jung, Youngsoo, E-mail: yjung97@mju.ac.kr [College of Architecture, Myongji University, Yongin 449-728 (Korea, Republic of)

    2014-04-01

    Highlights: • Mixed use of linear scheduling method with traditional CPM is suggested for NPP. • A methodology for selecting promising areas for LSM application is proposed. • A case-study is conducted to validate the proposed LSM selection methodology. • A case-study of reducing NPP construction duration by using LSM is introduced. - Abstract: According to a forecast, global energy demand is expected to increase by 56% from 2010 to 2040 (EIA, 2013). The nuclear power plant construction market is also growing with sharper competition. In nuclear power plant construction, scheduling is one of the most important functions due to its large size and complexity. Therefore, it is crucial to incorporate the ‘distinct characteristics of construction commodities and the complex characteristics of scheduling techniques’ (Jung and Woo, 2004) when selecting appropriate schedule control methods for nuclear power plant construction. However, among various types of construction scheduling techniques, the traditional critical path method (CPM) has been used most frequently in real-world practice. In this context, the purpose of this paper is to examine the viability and effectiveness of linear scheduling method (LSM) applications for specific areas in nuclear power plant construction. In order to identify the criteria for selecting scheduling techniques, the characteristics of CPM and LSM were compared and analyzed first through a literature review. Distinct characteristics of nuclear power plant construction were then explored by using a case project in order to develop a methodology to select effective areas of LSM application to nuclear power plant construction. Finally, promising areas for actual LSM application are suggested based on the proposed evaluation criteria and the case project. Findings and practical implications are discussed for further implementation.

  1. Advanced construction methods for new nuclear power plants

    International Nuclear Information System (INIS)

    Bilbao y Leon, Sama; Cleveland, John; Moon, Seong-Gyun; Tyobeka, Bismark

    2009-01-01

    The length of the construction and commissioning phases of nuclear power plants have historically been longer than for conventional fossil fuelled plants, often having a record of delays and cost overruns as a result from several factors including legal interventions and revisions of safety regulations. Recent nuclear construction projects however, have shown that long construction periods for nuclear power plants are no longer the norm. While there are several inter-related factors that influence the construction time, the use of advanced construction techniques has contributed significantly to reducing the construction length of recent nuclear projects. (author)

  2. Construction of the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Jicha, J.

    1989-01-01

    The Temelin nuclear power plant with four WWER-1000 reactors is designed to supply electricity in an amount of 23 TWh/yr and heat in an amount of 8000 TJ/yr in the first stage. The maximum heat extraction should be 922 MW. The plant construction includes the building of 10 buildings, the total cost being 52 thousand million Czechoslovak crowns. Another 41 investment items are associated with the plant construction. The most important of them include constructions for leading out the electric power, for standby electricity supply for the power plant, and for the extraction of heat from the plant and its supply to the town of Ceske Budejovice. The first unit should be started up for test performance in November 1992, the second in 1994 and the whole power plant should be complete by 1998. The state of the construction by February 1989 is described in detail. Attention is also paid to the preparatory activity for the operation and to social welfare of the personnel. (Z.M.)

  3. Application of RFID to High-Reliability Nuclear Power Plant Construction

    International Nuclear Information System (INIS)

    Kenji Akagi; Masayuki Ishiwata; Kenji Araki; Jun-ichi Kawahata

    2006-01-01

    In nuclear power plant construction, countless variety of parts, products, and jigs more than one million are treated under construction. Furthermore, strict traceability to the history of material, manufacturing, and installation is required for all products from the start to finish of the construction, which enforce much workforce and many costs at every project. In an addition, the operational efficiency improvement is absolutely essential for the effective construction to reduce the initial investment for construction. As one solution, RFID (Radio Frequent Identification) application technology, one of the fundamental technologies to realize a ubiquitous society, currently expands its functionality and general versatility at an accelerating pace in mass-production industry. Hitachi believes RFID technology can be useful of one of the key solutions for the issues in non-mass production industry as well. Under this situation, Hitachi initiated the development of next generation plant concept (ubiquitous plant construction technology) which utilizes information and RFID technologies. In this paper, our application plans of RFID technology to nuclear power is described. (authors)

  4. Application of RFID to High-Reliability Nuclear Power Plant Construction

    Energy Technology Data Exchange (ETDEWEB)

    Akagi, Kenji; Ishiwata, Masayuki; Araki, Kenji; Kawahata, Jun-ichi [Hitachi, Ltd. (Japan)

    2006-07-01

    In nuclear power plant construction, countless variety of parts, products, and jigs more than one million are treated under construction. Furthermore, strict traceability to the history of material, manufacturing, and installation is required for all products from the start to finish of the construction, which enforce much workforce and many costs at every project. In an addition, the operational efficiency improvement is absolutely essential for the effective construction to reduce the initial investment for construction. As one solution, RFID (Radio Frequent Identification) application technology, one of the fundamental technologies to realize a ubiquitous society, currently expands its functionality and general versatility at an accelerating pace in mass-production industry. Hitachi believes RFID technology can be useful of one of the key solutions for the issues in non-mass production industry as well. Under this situation, Hitachi initiated the development of next generation plant concept (ubiquitous plant construction technology) which utilizes information and RFID technologies. In this paper, our application plans of RFID technology to nuclear power is described. (authors)

  5. Construction labor productivity during nuclear power plant construction

    International Nuclear Information System (INIS)

    Murray, W.B.

    1980-01-01

    There is no single satisfactory way to measure productivity in the construction industry. The industry is too varied, too specialized and too dependent upon vast numbers of interrelations between trades, contractors, designers and owners. Hence, no universally reliable indices for measuring construction productivity has been developed. There are problems that are generic to all large union-built nuclear power plants. The actions of any one owner cannot rectify the shortcomings of the construction industry. The generic problems are being identified, and many national organizations are attempting to make the construction industry more productive by recommending various changes

  6. Development of new construction technologies for nuclear power plant

    International Nuclear Information System (INIS)

    Kawamata, Susumu; Itoh, Daisuke; Ichizono, Katsuyuki

    1995-01-01

    In order to proceed rationally with the construction of a nuclear power station, the followings are the subject to solve beside reducing the construction cost: shortening the construction period, improving the quality, and securing safety in the construction work. As a measure to solve the matters, we correctly construct the plant mainly applying 'all-weather proof construction method' and 'pre-assembled large-block construction method'. Furthermore, as the plant construction control system, we perform a construction work applying the design change management system, pre-assessment for safety, and the whole facility check. As a result of our effort, it was attained that when we compare the matured plant with the first unit, the construction cost is reduced by 30%, the construction period is shortened by 12 months, site manpower is decreased by 30%, and the plant had no sudden shutdowns even during the trial operation period. (author)

  7. Advanced plant engineering and construction of Japanese ABWRs

    International Nuclear Information System (INIS)

    Gotoh, N.; Sumikawa, J.; Yoshida, N.; Yoshida, M.

    1998-01-01

    Remarkable improvement has been made in recent nuclear power plant design and construction in Japan. These many improved engineering technologies has been made a good use in the lately commercial operated two world's first 1,356MWe ABW's (Advanced Boiling Water Reactors), and made a great contribution to the smooth progress and the completion of a highly reliable plant construction. Especially, two engineering technologies, (1), three-dimensional computer aided design system through engineering data-base, and (2), large scale modularising construction method, have been successfully applied as the integrated engineering technologies of the plant construction. And two integrated reviews, 'integrated design review, confirmation of new and changed design and prevention of failure recurrence' in the design stage, and 'constructing plant review' at the site, have been widely and systematically conducted as a link in the chain of steady reliability improvement activities. These advanced and/or continuous and steady technologies are one of most important factors for high reliability through the entire lifetime of a nuclear plant, including planning, design, construction, operation and maintenance stages. (author)

  8. A framework for quantifying the extent of impact to plants from linear construction.

    Science.gov (United States)

    Xiao, Jun; Shi, Peng; Wang, Ya-Feng; Yu, Yang; Yang, Lei

    2017-05-30

    We present a novel framework that accurately evaluates the extent of a linear project's effect from the variability of the structure of the plant community while avoiding interference caused by pioneer species and invasive species. This framework was based on the change of dominant species in the plant community affected by construction. TWINSPAN classification and variation of the integrated importance value (IIV) of each plant species group were used to characterize the process of change in the structure of the plant community. Indicator species group and its inflection point were defined and used to judge the extent of the effects of pipelines. Our findings revealed that dominant species in the working area of the pipeline construction were different from the original plant communities. With the disturbance decreased, the composition and structure of the plant communities gradually changed. We considered the outer limit of the area affected by the construction to be the first area in which the plant community reached a steady state and was similar to the original community. The framework could be used in the post eco-environment impact assessment of linear construction to estimate the intensity of disturbance and recovery condition.

  9. Nuclear power plant construction

    International Nuclear Information System (INIS)

    Lima Moreira, Y.M. de.

    1979-01-01

    The legal aspects of nuclear power plant construction in Brazil, derived from governamental political guidelines, are presented. Their evolution, as a consequence of tecnology development is related. (A.L.S.L.) [pt

  10. Construction-man hour estimation for nuclear power plants

    International Nuclear Information System (INIS)

    Paek, J.H.

    1987-01-01

    This study centers on a statistical analysis of the preliminary construction time, main construction time, and total construction man hours of nuclear power plants. The use of these econometric techniques allows the major man hour driving variables to be identified through multivariate analysis of time-series data on over 80 United States nuclear power plants. The analysis made in this study provides a clearer picture of the dynamic changes that have occurred in the man hours of these plants when compared to engineering estimates of man hours, and produces a tool that can be used to project nuclear power plant man hours

  11. Analysis of nuclear power plant construction costs

    International Nuclear Information System (INIS)

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs

  12. Analysis of nuclear power plant construction costs

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  13. Construction plant requirements for nuclear sites

    International Nuclear Information System (INIS)

    Tatum, C.B.; Harris, J.A.

    1981-01-01

    Planning and developing the temporary construction plant facilities for a nuclear project is equivalent to providing utility services for a small city. Provision of adequate facilities is an important factor in the productivity of both the manual and non-manual work force. This paper summarizes construction facility requirements for a two unit (1300 MWe each) nuclear project. Civil, mechanical and electrical facilities are described, including design, installation and operation. Assignment of responsibility for specific work tasks regarding the construction plant is also discussed. In presenting this data, the authors seek to transfer experience and assist in the provision of adequate facilities on future projects

  14. Nuclear power plant equipment design and construction rules

    International Nuclear Information System (INIS)

    Boiron, P.

    1983-03-01

    Presentation of the AFCEN (French association for nuclear power plant equipment design and construction rules) working, of its edition activity and of somes of its edited documents such as RCC-C (design and construction rules for PWR power plant fuel assemblies) and RCC-E (design and construction rules for nuclear facility electrical equipments) [fr

  15. Nuclear power plant construction activity, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors

  16. Effect of construction time, interest rate, and inflation on the capital cost of nuclear power plants

    International Nuclear Information System (INIS)

    Abel, P.S.; Greybeck, E.M.; Omberg, R.P.

    1981-09-01

    Cost estimates for nuclear power plants currently under construction are on the order of four billion dollars. It will be shown, in this paper, that this is a direct consequence of relatively high inflation rates and relatively long construction times. If either inflation rates or construction times, or a combination thereof, should decrease significantly, cost estimates for nuclear power plants could return to approximately two billion dollars

  17. Methodology for modular nuclear plant design and construction

    International Nuclear Information System (INIS)

    Lapp, C.W.; Golay, M.

    1992-01-01

    During the past decade, the rising cost of nuclear power plant construction has caused the cancellation of many projects and has forced some utilities into bankruptcy. Many factors have contributed to capital cost increases, including regulatory changes, the absence of standard designs, and low worker productivity. Low worker productivity can be attributed to the conventional building process, which is not conductive to productive labor. This study presents innovative ways to reduce the capital cost of nuclear plants through more efficient construction processes designed to increase worker productivity. A major portion of the plant capital cost is the interest paid during construction on borrowed capital. Modular fabrication could potentially reduce interest payments by compressing the construction schedule of nuclear facilities. Additional cost savings expected from modular designs arise from improved quality, productivity, and schedule control in fabrication of plant elements within a factory environment

  18. Modularization Technology in Power Plant Construction

    International Nuclear Information System (INIS)

    Kenji Akagi; Kouichi Murayama; Miki Yoshida; Junichi Kawahata

    2002-01-01

    Since the early 1980's, Hitachi has been developing and applying modularization technology to domestic nuclear power plant construction, and has achieved great rationalization. Modularization is one of the plant construction techniques which enables us to reduce site labor by pre-assembling components like equipment, pipes, valves and platforms in congested areas and installing them using large capacity cranes for cost reduction, better quality, safety improvement and shortening of construction time. In this paper, Hitachi's modularization technologies are described especially from with respect to their sophisticated design capabilities. The application of 3D-CAD at the detailed layout design stage, concurrent design environment achieved by the computer network, module design quantity control and the management system are described. (authors)

  19. Effect of plants in constructed wetlands for organic carbon and nutrient removal: a review of experimental factors contributing to higher impact and suggestions for future guidelines.

    Science.gov (United States)

    Jesus, João M; Danko, Anthony S; Fiúza, António; Borges, Maria-Teresa

    2018-02-01

    Constructed wetland is a proven technology for water pollution removal, but process mechanisms and their respective contribution are not fully understood. The present review details the effect of plants on removal efficiency of constructed wetlands by focusing on literature that includes experiments with unplanted controls for organic carbon and nutrient (N and P) removal. The contribution of plant direct uptake is also assessed. Although it was found that several studies, mostly at laboratory or pilot scales, showed no statistical differences between planted and unplanted controls, some factors were found that help maximize the effect of plants. This study intends to contribute to a better understanding of the significance of the effect of plants in a constructed wetland, as well as to suggest a set of experimental guidelines in this field.

  20. Construction risks of nuclear power plants for use in cost-effectiveness considerations

    International Nuclear Information System (INIS)

    Bock-Werthmann, W.

    1986-08-01

    The construction risk study is concerned with a nuclear power station of 1300 MW(e) design output. The risk figures obtained demonstrate that construction risks of nuclear power plants form a substantial share of the total risk from all steps of the nuclear fuel cycle. When compared with other risk figures it is apparent that only the fatalities caused by the extraction of uranium are of similar magnitude. (55 references). (DG)

  1. Effect of different plant species in pilot constructed wetlands for wastewater reuse in agriculture

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2013-09-01

    Full Text Available In this paper the first results of an experiment carried out in Southern Italy (Sicily on the evapotranspiration (ET and removal in constructed wetlands with five plant species are presented. The pilot plant used for this study is made of twelve horizontal sub-surface flow constructed wetlands (each with a surface area of 4.5 m2 functioning in parallel, and it is used for tertiary treatment of part of the effluents from a conventional municipal wastewater treatment plant (trickling filter. Two beds are unplanted (control while ten beds are planted with five different macrophyte species: Cyperus papyrus, Vetiveria zizanoides, Miscanthus x giganteus, Arundo donax and Phragmites australis (i.e., every specie is planted in two beds to have a replication. The influent flow rate is measured in continuous by an electronic flow meter. The effluent is evaluated by an automatic system that measure the discharged volume for each bed. Physical, chemical and microbiological analyses were carried out on wastewater samples collected at the inlet of CW plant and at the outlet of the twelve beds. An automatic weather station is installed close to the experimental plant, measuring air temperature, wind speed and direction, rainfall, global radiation, relative humidity. This allows to calculate the reference Evapotranspiration (ET0 with the Penman-Monteith formula, while the ET of different plant species is measured through the water balance of the beds. The first results show no great differences in the mean removal performances of the different plant species for TSS, COD and E.coli, ranged from, respectively, 82% to 88%, 60% to 64% and 2.7 to 3.1 Ulog. The average removal efficiency of nutrient (64% for TN; 61 for NH4-N, 31% for PO4-P in the P.australis beds was higher than that other beds. From April to November 2012 ET measured for plant species were completely different from ET0 and ETcontrol, underlining the strong effect of vegetation. The cumulative

  2. Modular construction approach for advanced nuclear plants

    International Nuclear Information System (INIS)

    Johnson, F.T.; Orr, R.S.; Boudreaux, C.P.

    1988-01-01

    Modular construction has been designated as one of the major features of the AP600 program, a small innovative 600-MW (electric) advanced light water reactor (ALWR) that is currently being developed by Westinghouse and its subcontractors. This program is sponsored by the US Department of Energy (DOE) in conjunction with several other DOE and Electric Power Research Institute ALWR programs. Two major objectives of the AP600 program are as follows: (1) to provide a cost of power competitive with other power generation alternatives; and (2) to provide a short construction schedule that can be met with a high degree of certainty. The AP600 plant addresses these objectives by providing a simplified plant design and an optimized plant arrangement that result in a significant reduction in the number and size of systems and components, minimizes the overall building volumes, and consequently reduces the required bulk quantities. However, only by adopting a modular construction approach for the AP600 can the full cost and schedule benefits be realized from the advances made in the plant systems design and plant arrangement. Modularization is instrumental in achieving both of the above objectives, but most of all, a total modularization approach is considered absolutely essential to ensure that an aggressive construction schedule can be met with a high degree of certainty

  3. Yemen watched from cement plant construction work. Cement plant koji wo toshite mita Yemen

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, M [Kajima Corp., Tokyo (Japan)

    1993-06-25

    Construction of a cement plant was planned at southern part of Yemen. This is a cement plant with annual production 500,000 tons. The term of work was from January, 1990 to February, 1993. The present paper describes an outline the construction of this Cement Plant, the nationality and living environment in Yemen, and construction equipment which was used. The construction work consisted of 113,000m[sup 3] of digging, 82,000m[sup 3] of backfilling, 66,100m[sup 3] of concreting, and 29,285m[sup 3] of asphalt pavement. Reinforcing steel weighing 6,400 tons and steel frame weighing 3,600 tons were totally used. Equipment weighing 7,912 tons and electric devices weighing 1,299 tons were totally installed. For this construction work, two crawler cranes, six hydraulic cranes, aggregate plant, concrete mixers, and construction equipment, such as bulldozers, shovels, and dumpers, were brought from Japan. 5 figs.

  4. Toshiba's developments on construction techniques of nuclear power plants

    International Nuclear Information System (INIS)

    Hayashi, Y.; Itoh, N.

    1987-01-01

    Reliable and economic energy supplies are fundamental requirements of energy policies in Japan. To accomplish these needs, nuclear power plants are being increased in Japan. In recent years, construction cost increases and schedule extensions have affected the capital cost of nuclear energy, compared with fossil power plants, due to lower costs of oil and coal. On the other hand, several severe regulations have been applied to nuclear power plant designs. High-quality and cooperative engineering and harmonized design of equipment and parts are strongly required. Therefore, reduced construction costs and scheduling, as well as higher quality and reliability, are the most important items for nuclear industry. Toshiba has developed new construction techniques, as well as design and engineering tools for control and management, that demonstrate the positive results achieved in the shorter construction period of 1100-MW(electric) nuclear power plants. The normal construction period so far is 64 months, whereas the current construction period is 52 months. (New construction techniques are partially applied). In future years, the construction period will be lowered to 48 months. (New construction techniques are fully applied). A construction period is defined as time from the start of rock inspection to the start of commercial operation

  5. Evaluation of construction cost of pyro-partitioning plant

    International Nuclear Information System (INIS)

    Kinoshita, Kensuke; Kurata, Masateru; Inoue, Tadashi

    1999-01-01

    This study was conducted to evaluate the construction cost of a pyro-partitioning plant. The plant capacity was chosen to accommodate processing of the HLLW generated by PUREX reprocessing of 800 ton of spent LWR fuel. The block flow diagram and mass balance obtained from our previous experimental data were used to produce a detailed process-flow diagram and to design the plant. In this evaluation, the plant was estimated to cover an area of about 90 m x 70 m, and to cost $576 million for construction. This study shows that the cost of process equipments, such as reaction vessels, accountability tanks and so on, is just about 13% of total construction cost. On the other hand, the cost of process robots and the equipments for key measurement point (KMP) is major part in the cost of in-cell equipment. So it is clear that the construction cost can be reduced by reducing the number of material balance area (MBA) and KMP. (author)

  6. Strengthening of nuclear power plant construction safety management

    International Nuclear Information System (INIS)

    Yu Jun

    2012-01-01

    The article describes the warning of the Fukushima nuclear accident, and analyzes the major nuclear safety issues in nuclear power development in China, problems in nuclear power plants under construction, and how to strengthen supervision and management in nuclear power construction. It also points out that the development of nuclear power must attach great importance to the safety, and nuclear power plant construction should strictly implement the principle of 'safety first and quality first'. (author)

  7. EVMS for nuclear power plant construction: status and implementation

    International Nuclear Information System (INIS)

    Roh, M. S.; Kwak, J. K.; Park, S. Y.

    2012-01-01

    The Earned Value Management System (EVMS) method integrates three critical elements of project management scope, cost and time management. It requires the periodic monitoring of actual expenditures and physical scope accomplishments and allows calculation of cost and schedule variances along with performance indices. It allows for casting of project cost and schedule at completion and highlights the possible need for corrective action. It is anticipated that there will be intense competition in the nuclear industry as the cost and time for nuclear power plant construction. In order to attain competitive advantages, utilizing advanced project control systems by integrating cost and time management is of great concern for practitioners. This paper is to review the status of EVMS and its effective implementation to nuclear power plant construction

  8. Construction, Maintenance and Demolition of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Smet, Camiel de [Hilti Corporation, P.O. Box 333, FL-9494 Schaan (Liechtenstein)

    2008-07-01

    Hilti is your reliable partner in nuclear power plant construction, maintenance and demolition worldwide. Professional advice and innovative solutions for virtually every phase of construction and supply technologically leading products and systems to increase your productivity and help to create and maintain safe and lasting plants is offered. The solutions for nuclear power plants construction, maintenance and demolition have been employed with great success in many different countries on a wide variety of projects due in no small way to their worldwide availability. An unbroken, international exchange of experience upholds a permanent innovation process. This assures our customers that they always receive products on the very latest technological standard. This paper is not intended to cover all topics related to nuclear power plants. The idea is more to give a kind of an overview. The paper covers briefly the following topics: safety (corrosion and fire), fastenings, measuring and finally decommissioning of nuclear power plants. (author)

  9. Construction, Maintenance and Demolition of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Smet, Camiel de

    2008-01-01

    Hilti is your reliable partner in nuclear power plant construction, maintenance and demolition worldwide. Professional advice and innovative solutions for virtually every phase of construction and supply technologically leading products and systems to increase your productivity and help to create and maintain safe and lasting plants is offered. The solutions for nuclear power plants construction, maintenance and demolition have been employed with great success in many different countries on a wide variety of projects due in no small way to their worldwide availability. An unbroken, international exchange of experience upholds a permanent innovation process. This assures our customers that they always receive products on the very latest technological standard. This paper is not intended to cover all topics related to nuclear power plants. The idea is more to give a kind of an overview. The paper covers briefly the following topics: safety (corrosion and fire), fastenings, measuring and finally decommissioning of nuclear power plants. (author)

  10. Plant Engineering and Construction System with Knowledge Management: A Case Study in NPP Construction in Hitachi-GE NE

    International Nuclear Information System (INIS)

    Mochida, T.; Hamamoto, M.; Nakamitsu, N.

    2016-01-01

    Full text: Hitachi-GE Nuclear Energy, Ltd. (HGNE) has more than 40 years BWR plants construction experience. The company continues to develop plant engineering system and plant construction systems based on the experience and the lessons learned. Currently, these systems are integrated in a variety of knowledge bases using the latest information technology (IT). Their performance is continuously validated in the recent NPP constructions. Typical examples are shown as case studies for knowledge management. These plant engineering and construction management systems are essential to achieve the on-time and on-budget-goals in NPP construction projects. (author

  11. Problems and prospects of nuclear power plants construction

    Directory of Open Access Journals (Sweden)

    Pergamenshhik Boris Klimentyevich

    2014-02-01

    Full Text Available 60 years ago, in July 1954 in the city of Obninsk near Moscow the world's first nuclear power plant was commissioned with a capacity of 5 MW. Today more than 430 nuclear units with a total capacity of almost 375000 MW are in operation in dozens of the countries worldwide. 72 electrical power units are currently under construction, 8 of them are located in the Russian Federation. There will be no alternative to nuclear energy in the coming decades. Among the factors contributing to the construction of nuclear power plants reckon limited fossil fuel supply, lack of air and primarily carbon dioxide emissions. The holding back factors are breakdown, hazard, radioactive wastes, high construction costs and long construction period. Nuclear accidents in the power plant of «Three-Mile-Island» in the USA, in Chernobyl and in Japan have resulted in termination of construction projects and closure of several nuclear power plants in the Western Europe. The safety systems have become more complex, material consumption and construction costs have significantly increased. The success of modern competing projects like EPR-1600, AP1000, ABWR, national ones AES-2006 and VVER-TOI, as well as several others, depends not only on structural and configuration but also on construction and technological solutions. The increase of the construction term by one year leads to growth of estimated total costs by 3—10 %. The main improvement potentials include external plate reinforcement, pre-fabricated large-block assembly, production and installation of the equipment packages and other. One of the crucial success factors is highly skilled civil engineers training.

  12. A Study of the potency of construction service industries to support the first nuclear power plant construction in Indonesia

    International Nuclear Information System (INIS)

    Dharu Dewi; Sriyana

    2008-01-01

    The study was conducted to identify the potency of construction service industries to participate in nuclear power plant program in Indonesia. The potency is identified by evaluation results of national industries potency in some multinational construction service industries. The research methodology chosen was the survey method by sending questionnaires, visits to National industries, interview, and literature study. The data collection technique was sampling purposive. Data can be obtained from both primary and secondary data. The study results showed that the performance of construction service industries to support the NPP program must be increased through the selection of competent human resources, reliable equipment and an effective and efficient project management system, so that they can be expected to play necessary role in the nuclear power plant construction in Indonesia. (author)

  13. Construction and operation of biogas plants. Bau und Betrieb von Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, F. von

    1985-01-01

    Biogas utilisation in agriculture has increased considerably as a consequence of the energy crisis. So far, energy production was the most important aspect, and the high-quality natural fertilizer offered by the fermentation residues was commonly neglected. This fertilizer is an effective substitute for commercial fertilizers and thus contributes to the reduction of environmental pollution. The book discusses the chemical and biological mechanisms, the criteria of selection for plants and materials, optimum gas production techniques, uses of the product gas, and the advantages and properties of the biofertilizer produced. Planning procedures, design, construction, function and performance of several biogas production plants now in operation are described. Hints are given for do-it-yourself construction, as are cost-benefit calculations and decision aids for construction.

  14. Nuclear power plant containment construction

    International Nuclear Information System (INIS)

    Schabert, H.P.; Danisch, R.; Strickroth, E.

    1975-01-01

    The Nuclear Power Plant Containment Construction includes the spherical steel safety enclosure for the reactor and the equipment associated with the reactor and requiring this type of enclosure. This steel enclosure is externally structurally protected against accident by a concrete construction providing a foundation for the steel enclosure and having a cylindrical wall and a hemispherical dome, these parts being dimensioned to form an annular space surrounding the spherical steel enclosure, the latter and the concrete construction heretofore being concentrically arranged with respect to each other. In the disclosed construction the two parts are arranged with their vertical axis horizontally offset from each other so that opposite to the offsetting direction of the concrete construction a relatively large space is formed in the now asymmetrical annular space in which reactor auxiliary equipment not requiring enclosure by the steel containment vessel or safety enclosure, may be located outside of the steel containment vessel and inside of the concrete construction where it is structurally protected by the latter

  15. New plant construction cost and schedule

    International Nuclear Information System (INIS)

    Akins, M. J.

    2009-01-01

    The presentation covers the following topics: cost structure; capital costs; variation of capital costs; trends in power plant construction; studies of costs completion; periods and risks. Nuclear plant costs have recently risen so rapidly that vendors are not willing to publicly commit to cost estimates: ∼ $2000/Kw overnight costs in 2006 in the US market > $4000/Kw and in 2008 in the US market > $6000/Kw in 2008 in emerging markets. There is vendors pricing uncertainty. Current contract models may not apply. Current construction projects have problems: Olkiluoto-3 is reported to be 50% over budget and two years behind schedule, increasing perceptions that nuclear costs will continue to increase rapidly; Price of materials is a big volatile unknown, which may decrease Labor could become more available due to limited number of new projects; Lack of debt/credit to finance new project may decrease demand of new construction

  16. Belowground advantages in construction cost facilitate a cryptic plant invasion.

    Science.gov (United States)

    Caplan, Joshua S; Wheaton, Christine N; Mozdzer, Thomas J

    2014-04-30

    The energetic cost of plant organ construction is a functional trait that is useful for understanding carbon investment during growth (e.g. the resource acquisition vs. tissue longevity tradeoff), as well as in response to global change factors like elevated CO2 and N. Despite the enormous importance of roots and rhizomes in acquiring soil resources and responding to global change, construction costs have been studied almost exclusively in leaves. We sought to determine how construction costs of aboveground and belowground organs differed between native and introduced lineages of a geographically widely dispersed wetland plant species (Phragmites australis) under varying levels of CO2 and N. We grew plants under ambient and elevated atmospheric CO2, as well as under two levels of soil nitrogen. We determined construction costs for leaves, stems, rhizomes and roots, as well as for whole plants. Across all treatment conditions, the introduced lineage of Phragmites had a 4.3 % lower mean rhizome construction cost than the native. Whole-plant construction costs were also smaller for the introduced lineage, with the largest difference in sample means (3.3 %) occurring under ambient conditions. In having lower rhizome and plant-scale construction costs, the introduced lineage can recoup its investment in tissue construction more quickly, enabling it to generate additional biomass with the same energetic investment. Our results suggest that introduced Phragmites has had an advantageous tissue investment strategy under historic CO2 and N levels, which has facilitated key rhizome processes, such as clonal spread. We recommend that construction costs for multiple organ types be included in future studies of plant carbon economy, especially those investigating global change. Published by Oxford University Press on behalf of the Annals of Botany Company.

  17. A Study on Nonconformance and Construction Method Improvement for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Jong Yeob; Roh, Myung Sub

    2014-01-01

    Advanced power reactor was developed by domestic technology, and finally exported to abroad. In order to place the current nuclear power industrial base, construction has played a big role. Without magnificent construction technology, it would have been impossible to get a safe nuclear power plant on time and in budget. Construction industry occupies very large portion of the economy in South Korea and it has been a core of South Korea's economic growth. With a competitive construction industry and advanced nuclear power plant construction know-how, South Korea could provide safe and reliable nuclear power plants in domestic and world. However there are many repairs and number of corrective actions are in actual construction. Thus, this paper suggested the result of nonconformance and construction method improvement for nuclear power plant. Constructional engineering is a kind of science that has a variety of disciplines including structure, geology, mechanical equipment and other fields. Thus, the development of constructional engineering is closely associated with experience from failure and application advanced construction method. The recent experience in nuclear power plants construction has shown that those improved methods are fully applicable and can help shorten the construction schedule. The future of nuclear power plant construction seems to be more encouraged, even though it has many obstacles

  18. Major factors influencing craft productivity in nuclear power plant construction

    International Nuclear Information System (INIS)

    Borcherding, J.D.; Sebastian, S.J.

    1980-01-01

    This paper reports on a research study whose objective was to determine the most influential factors adversely affecting craft productivity in nuclear power plant construction from the perspective of the tradesmen employed at the sites. Data were collected through the use of a questionnaire survey and group interview sessions, predominantly with workmen, at six nuclear power plant construction projects. Craftsmen were chosen as the major data base because of their awareness of how their time would actually be spent on the project. Topics considered include the factors influencing craft productivity, material availability, redoing work, crew interfacing, overcrowded work areas, instruction time, inspection delays, craft turnover, craft absenteeism, foreman changes, foreman incompetence, engineering design lead time, comprehensive scheduling of the design function, the responsibility of the utility, value engineering, plant standardization, the effective utilization of the planning and scheduling system, and the labor-management committee

  19. Pipework in power plant construction

    International Nuclear Information System (INIS)

    Schwarzbach, K.

    1984-01-01

    With the development of conventional power plant construction to large unit sizes and because of the stringent safety requirements in nuclear poer stations, pipework installation has developed into a difficult operation closely inter-related with safety engineering. It is an important factor as far as completion dates and costs are concerned during the timely implementation of a subsequent construction phase which is characterized by high capital intensiveness. In order to keep both under control, prior planning and execution supported by electronic data processing are essential. (orig.) [de

  20. Engineering development in nuclear power plant construction

    International Nuclear Information System (INIS)

    Guenther, P.

    1979-01-01

    Proceeding from the up-to-now experience in the erection of nuclear power stations, especially of the first and second unit of the Greifswald nuclear power plant, the following essential aspects of the development of constructional engineering are discussed: (1) constructional features and criteria, (2) organizational management, (3) current status and problems in prelimary operations, and (4) possibilities of further expenditure reductions in constructing nuclear power stations

  1. Preliminary analysis of projected construction employment effects of building the defense waste processing facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Garey, R.B.; Blair, L.M.; Craig, R.L.; Stevenson, W.

    1981-09-01

    This study estimates the probable effects of constructing the DWPF on the surrounding labor markets. Analyses are based on data from the local and regional labor markets, information from experts on local construction activities, information on the labor requirements of the Vogtle Power Plant (two nuclear reactors) being built by Georgia Power Company in Burke County, Georgia, and an econometric model of the construction labor market, based on several surveys of workers building three Tennessee Valley Authority nuclear power plants. The results of this study are reported in three parts. In Part I, completed in May 1980, we describe the 1979 (base year) employment levels within the local and regional labor markets surrounding SRP, from which most DWPF construction workers are likely to be drawn. In Part II, completed in June 1980, we define the four local sources of construction employment that will compete for craftsmen when DWPF is built. Also in Part II, most of the projected impacts of the DWPF reference immobilization alternative (one of several alternatives that may be chosen) are reported. Several construction schedules and labor demand scenarios for the reference alternative are considered. In Part III, completed in January 1981, most of the estimated impacts of the DWPF alternative referred to as the staged process alternative are reported. Several construction schedules and labor demand scenarios for this alternative are considered

  2. Construction of overseas nuclear power plants for first time by Japanese industry

    International Nuclear Information System (INIS)

    Maruyama, Tohru; Naruse, Yoshihiro; Yabuta, Hitoshi

    2010-01-01

    In response to the worldwide demand for stable energy supplies and the reduction of greenhouse gas emissions, nuclear power plant construction projects have been expanding on a global scale. Even in the United States, where no nuclear power plants have been constructed over the past 30 years, there are plans for the construction of more than 30 plants. Toshiba has been awarded a contract for a nuclear power plant construction project in the U.S., the first case of overseas nuclear power plant construction by Japanese industry. Toshiba America Nuclear Energy Corporation (TANE), the first U.S. subsidiary in our nuclear business, located in Charlotte, North Carolina, is engaged in this globally prominent project, applying various technologies and know-how that we have cultivated over many years of experience in developing and constructing nuclear power plants in Japan and adapting them to U.S. business practices, laws, and regulations. (author)

  3. New developments in nuclear power plant construction

    International Nuclear Information System (INIS)

    Bivens, A.C.

    1983-01-01

    Specific examples of construction activities are presented which demonstrate that excellent results have been achieved in the areas of cost, schedule and quality. Examples of innovation and development are given that would be particularly applicable to future work either for new plants or for plants not yet completed. (author)

  4. Construction techniques and management methods for BWR plants

    International Nuclear Information System (INIS)

    Shimizu, Yohji; Tateishi, Mizuo; Hayashi, Yoshishige

    1989-01-01

    Toshiba is constantly striving for safer and more efficient plant construction to realize high-quality BWR plants within a short construction period. To achieve these aims, Toshiba has developed and improved a large number of construction techniques and construction management methods. In the area of installation, various techniques have been applied such as the modularization of piping and equipment, shop installation of reactor internals, etc. Further, installation management has been upgraded by the use of pre-installation review programs, the development of installation control systems, etc. For commissioning, improvements in commissioning management have been achieved through the use of computer systems, and testing methods have also been upgraded by the development of computer systems for the recording and analysis of test data and the automatic adjustment of controllers in the main control system of the BWR. This paper outlines these construction techniques and management methods. (author)

  5. Experience in the construction of a spent nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Yamashita, Hiroshi

    1976-01-01

    The construction and operation of a reprocessing plant was first published in 1956. The Reprocessing Expert Committee of AEC was established in 1959, and the preliminary design was finished in 1964 by NCP of Britain. The detailed design was completed in 1969 by SGN of France, and the training of operators was carried out in parallel with this in France. The results of the safety investigation was approved in Jan. 1970, and the construction was started in June 1971. The site of the reprocessing plant is the eastern part of the Tokai Establishment of PNC. The process adopted is the wet Purex process having been established in large practical plants. The treating capacity is 0.7 t/day. The main processes are acceptance and storage, mechanical treatment, and chemical treatment. The reprocessing facilities comprise the main shop, the analysis station, the main exhaust stack, the decontamination station, the solid waste store, the sea discharge pipe, and other incidental facilities. The construction works were about 7 months behind the schedule when the water flow test was finished. The chemical test was finished in March, 1975, and the uranium test is in progress since Sept., 1975. The problems for future are the developments of effective waste treatment and storing techniques, and the researches have been carried out by PNC. The construction project of the second plant is urgently required, since it takes 10 years from planning to operation. (Kako, I.)

  6. The modularization construction of piping system installation in AP1000 plant

    International Nuclear Information System (INIS)

    Lu Song; Wang Yuan; Wei Junming

    2012-01-01

    Modularization construction is the main technique used in AP1000 plants, the piping Modularization installation will impact directly to the module construction as the important part of the Modularization construction. After the piping system has took the modularization design in AP1000 plants, some installation works of piping system has moved from the site to fabrication shop. With improving the construction quality and minimizing the time frame of project, the critical paths can be optimized. This paper has analyzed the risk and challenge that met during the modularization construction period of piping systems though introducing the characteristic of modularization construction for AP1000 piping systems, and get construction experiences from the First AP1000 plants in the world, then it will be the firmly basics for the wide application of modularization construction in the future. (authors)

  7. Signalling network construction for modelling plant defence response.

    Directory of Open Access Journals (Sweden)

    Dragana Miljkovic

    Full Text Available Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2 triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be

  8. Nitrous oxide emission from polyculture constructed wetlands: Effect of plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yanhua [School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dong Chuan Road, Min Hang, Shanghai 200240 (China); Inamori, Ryuhei [Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Kong Hainan [School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dong Chuan Road, Min Hang, Shanghai 200240 (China)], E-mail: remanda@126.com; Xu Kaiqin [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506 (Japan); State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan Unviversity, Wuhan 430072 (China); Inamori, Yuhei [Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Kondo, Takashi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506 (Japan); Zhang Jixiang [School of Economics and Management, Southeast University, Nanjing, Jiangsu 210096 (China)

    2008-03-15

    Loss of nitrogen from the soil-plant system has raised environmental concern. This study assessed the fluxes of nitrous oxide (N{sub 2}O) in the subsurface flow constructed wetlands (CWs). To better understand the mechanism of N{sub 2}O emission, spatial distribution of ammonia-oxidizing bacteria (AOB) in four kinds of wetlands soil were compared. N{sub 2}O emission data showed large temporal and spatial variation ranging from -5.5 to 32.7 mg N{sub 2}O m{sup -2} d{sup -1}. The highest N{sub 2}O emission occurred in the cell planted with Phragmites australis and Zizania latifolia. Whereas, the lower emission rate were obtained in the cell planted with P. australis and Typha latifolia. These revealed that Z. latifolia stimulated the N{sub 2}O emission. Transportation of more organic matter and oxygen for AOB growth may be the reason. The study of AOB also supported this result, indicating that the root structure of Z. latifolia was favored by AOB for N{sub 2}O formation. - Zizania latifolia has a large contribution to global warming.

  9. Risk factors during construction of power plants using renewable energy sources

    Directory of Open Access Journals (Sweden)

    Nefedova Lyudmila Veniaminovna

    2016-12-01

    Full Text Available The authors consider main characteristics of modern development of renewable energy sources (RES. It is dedicated that there are some technical and economic barriers to the widespread use of renewable energy. For example, RES are inconstancy in time and space and have low density of energy flow. High capital intensity and cost price, long-term construction, a considerable degree of different kinds of risk, lack of competitiveness with hydrocarbon species generation in the existing regulatory environment are also inherent to RES. The role of the regulatory framework is shown according to perspective plans of construction of power plants using renewable energy sources. The main requirements which are applied to measures of state support of construction industry of renewable energy development are formulated. Current condition of construction industry of RES in Russia is assessed. The problems of risks which arise during construction of renewable energy facilities according to results of practical use of RES are discussed. And it is rather important to use stage assessment for the construction phase of the project during risk analysis of construction of alternative energy sources. The main groups of RES risks are described. The importance of regulatory and resource risks for effective development of renewable energy in Russia according to the method of strategic planning with the identification of the adverse effects of gradation factors are determined. The analysis of financial risks types and methods of its management during construction power generation projects based on different types of renewable energy resources are made. In the end of the article the authors make a conclusion, that the development of projects for the construction of power plants with the use of innovative technical solutions to ensure minimal risks to the environment and safe operation in various climatic conditions is a priority.

  10. Probabilistic cost estimating of nuclear power plant construction projects

    International Nuclear Information System (INIS)

    Finch, W.C.; Perry, L.W.; Postula, F.D.

    1978-01-01

    This paper shows how to identify and isolate cost accounts by developing probability trees down to component levels as justified by value and cost uncertainty. Examples are given of the procedure for assessing uncertainty in all areas contributing to cost: design, factory equipment pricing, and field labor and materials. The method of combining these individual uncertainties is presented so that the cost risk can be developed for components, systems and the total plant construction project. Formats which enable management to use the probabilistic cost estimate information for business planning and risk control are illustrated. Topics considered include code estimate performance, cost allocation, uncertainty encoding, probabilistic cost distributions, and interpretation. Effective cost control of nuclear power plant construction projects requires insight into areas of greatest cost uncertainty and a knowledge of the factors which can cause costs to vary from the single value estimates. It is concluded that probabilistic cost estimating can provide the necessary assessment of uncertainties both as to the cause and the consequences

  11. Effects of plant species on soil microbial processes and CH4 emission from constructed wetlands

    International Nuclear Information System (INIS)

    Wang, Yanhua; Yang, Hao; Ye, Chun; Chen, Xia; Xie, Biao; Huang, Changchun; Zhang, Jixiang; Xu, Meina

    2013-01-01

    Methane (CH 4 ) emission from constructed wetland has raised environmental concern. This study evaluated the influence of mono and polyculture constructed wetland and seasonal variation on CH 4 fluxes. Methane emission data showed large temporal variation ranging from 0 to 249.29 mg CH 4 m −2 h −1 . Results indicated that the highest CH 4 flux was obtained in the polyculture system, planted with Phragmites australis, Zizania latifolia and Typha latifolia, reflecting polyculture system could stimulate CH 4 emission. FISH analysis showed the higher amount of methanotrophs in the profile of Z. latifolia in both mono and polyculture systems. The highest methanogens amount and relatively lower methanotrophs amount in the profile of polyculture system were obtained. The results support the characteristics of CH 4 fluxes. The polyculture constructed wetland has the higher potential of global warming. -- Highlights: ► The polyculture constructed wetland has the higher contribution to CH 4 emission. ► The CH 4 –C conversion ranged from 0 to 3.7%. ► The Z. latifolia played important roles in methanotrophs growth and CH 4 consumption. ► Major influence of T-N, TOC and plant cover on CH 4 emission was obtained. -- The polyculture constructed wetland has the higher contribution to global warming

  12. Development of Advanced Concept for Shortening Construction Period of ABWR Plant

    International Nuclear Information System (INIS)

    Hiroshi Ijichi; Toshio Yamashita; Masahiro Tsutagawa; Hiroya Mori; Nobuaki Ooshima; Jun Miura; Minoru Kanechika; Nobuaki Miura

    2002-01-01

    Construction of a nuclear power plant (NPP) requires a very long period because of large amount of construction materials and many issues for negotiation among multiple sections. Shortening the construction period advances the date of return on an investment, and can also result in reduced construction cost. Therefore, the study of this subject has a very high priority for utilities. We achieved a construction period of 37 months from the first concrete work to fuel loading (F/L) (51.5 months from the inspection of the foundation (I/F) to the start of commercial operation (C/O)) at the Kashiwazaki-Kariwa NPPs No. 6 and 7 (KK-6/7), which are the first ABWR plants in the world. At TEPCO's next plant, we think that a construction period of less than 36 months (45 months from I/F to C/O) can be realized based on conventional methods such as early start of equipment installation and blocking of equipment to be brought in advance. Furthermore, we are studying the feasibility of a 21.5-month construction period (30 months from I/F to C/O) with advanced ideas and methods. The important concepts for a 21.5-month construction period are adoption of a new building structure that is the steel plate reinforced concrete (SC) structure and promotion of extensive modularization of equipment and building structure. With introducing these new concepts, we are planning the master schedule (M/S) and finding solutions to conflicts in the schedule of area release from building construction work to equipment installation work (schedule-conflicts.) In this report, we present the shortest construction period and an effective method to put it into practice for the conventional general arrangement (GA) of ABWR. In the future, we will continue the study on the improvement of building configuration and arrangements, and make clear of the concept for large composite modules of building structures and equipment. (authors)

  13. Design and construction of landslide preventive construction at Yamasubara hydroelectric power plant site. Yamasubata hatsudensho chiten ni okeru jisuberi taisaku koji no sekkei seko ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Takase, H; Ito, M; Sakata, M [The Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    1993-07-30

    This paper reports the design and construction of landslide preventive construction at the site of the Yamasubara hydroelectric power plant (with a maximum output of 40,700 kW) and the result of slope stability verification after completion of the construction. The moderate slope on top of the primary slide has sands presumed to be colluvial deposit distributed with a depth of 10 m or more, where occurrence of a secondary slip was feared as triggered by the primary slide. The power plant protective constructions consisted of concrete walls to protect the entire power plant including buildings, and falling stone protective fences installed around the surge tanks. The temporary measures were so set that groundwater levels are lowered to a level that can assure the slide safety factor of 1.0 or more by means of drain boring using the down-the-hole hammer type. The permanent protective construction used rock anchors that are superior in constructability and economy. The stability of sliding slope faces was verified to confirm effects of the protective constructions. The verification included observations of groundwater level behavior, water well-up from drain holes, and movements in the slopes. The result showed that the protective constructions have give sufficient effects. Continued slope stability control is important. 16 figs., 7 tabs.

  14. Geodesy problems in nuclear power plant construction

    International Nuclear Information System (INIS)

    Eory, K.

    1981-01-01

    The special geodetic problems encountered during the construction of the Paks nuclear power plants are treated. The main building with its hermetically connected components including the reactor, the steam generators, the circulation pumps etc. impose special requirements on the control net of datum points. The geodesy tasks solved during the construction of the main building are presented in details. (R.P.)

  15. A Study on the Approach to Quality Management in Construction of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Pingish, Panupong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Kwang Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2010-05-15

    The quality of works and services in nuclear facilities are important aspect of public safety and environmental protection. In the general legal framework for the regulation of nuclear power plants of each country, the requirement which effectiveness, overall quality management programme be established should be present. The organization having overall responsibility for a nuclear power plant shall be responsible for the establishment and implementation of the overall quality management programme for that plant. The construction methods available for new nuclear power plants are generally the same as those used for other big construction projects. The construction stage of a nuclear power plant includes a multitude of activities affecting quality which are performed by various organizations with specific responsibilities assigned to them. At the present, the IAEA source materials have been changing some documents for supporting tendency in the nuclear technology likewise in term of quality assurance concept to quality management concept. The principle goal for quality management is achieved assurance and sustainable with nuclear safety. This system brings all the requirements for managing facilities and activities together by only one system

  16. A Study on the Approach to Quality Management in Construction of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Pingish, Panupong; Choi, Kwang Sik

    2010-01-01

    The quality of works and services in nuclear facilities are important aspect of public safety and environmental protection. In the general legal framework for the regulation of nuclear power plants of each country, the requirement which effectiveness, overall quality management programme be established should be present. The organization having overall responsibility for a nuclear power plant shall be responsible for the establishment and implementation of the overall quality management programme for that plant. The construction methods available for new nuclear power plants are generally the same as those used for other big construction projects. The construction stage of a nuclear power plant includes a multitude of activities affecting quality which are performed by various organizations with specific responsibilities assigned to them. At the present, the IAEA source materials have been changing some documents for supporting tendency in the nuclear technology likewise in term of quality assurance concept to quality management concept. The principle goal for quality management is achieved assurance and sustainable with nuclear safety. This system brings all the requirements for managing facilities and activities together by only one system

  17. Current problems associated with nuclear plant construction contracts

    International Nuclear Information System (INIS)

    Albano, Raffaele.

    1977-01-01

    The expansion of nuclear electricity generating programmes has brought to the fore the problems associated with construction of this type of power plant. The paper analyses the contracts for such construction and describes the most common, the turnkey contract. The present tendency is to limit the scope of turnkey contracts to the nuclear system or simply to the reactor and this is especially common in advanced nuclear countries such as the US, Canada, Japan, UK and France, and this is also the case in Italy where the question of contracting nuclear plants is debated. In Germany the power utilities hold a large number of shares in the manufacturing industry and the turnkey contract is therefore more economically attractive. A detailed description of the contracting procedure is provided, including the suppliers' and purchasers' responsibilities, plant commissioning tests and handing over of the plant to the operator. (NEA) [fr

  18. Construction status report: nuclear power plants, data for decisions. Status report

    International Nuclear Information System (INIS)

    1976-01-01

    The document is the 28th edition summarizing the results of a management information system established by the Executive Director for Operations on the construction/fuel load activities of nuclear power plants. The report uses data collected from applicants sponsoring these projects, Office of Inspection and Enforcement, and the Office of Standards Development; and analyzed by the Office of Management Information and Program Control in the implementation of Management Information Systems. The status of 87 plants authorized to engage in construction in Region I through V is summarized in this document. This total includes (4) plants with construction exemptions, and (14) plants with an LWA

  19. Improvement of QA/QC activities in the construction of nuclear power plant

    International Nuclear Information System (INIS)

    Jinji Tomita; Shigetaka Tomaru

    1987-01-01

    Construction of commercial nuclear power plants in Japan started at around 1965. In this presentation are described quality assurance (QA) activities of a plant supplier who is a manufacturer of the key components as well. The QA activities until now are divided into several periods of the construction history in Japan. First term is 1960's when the QA activities are featured as the study and implementation through the construction of imported plants. Since then technologies and procedures of our own have been established and improved for the construction of high reliability plants. Our present QA activities are based on the active reflection of those lessons learned of past experiences. (author)

  20. Nuclear power plants. Construction status report, data as of September 30, 1977

    International Nuclear Information System (INIS)

    1977-10-01

    The report provides information for monitoring the progress of construction of nuclear power plants. It provides data for synchronizing the licensing process with predicted fuel loading dates, as well as providing a central federal government report for commercial reactor construction. It utilizes data collected from the utilities sponsoring these projects and the Office of Inspection and Enforcement, NRC, and analyzed by the Office of Management Information and Program Control in the implementation of Management Information Systems. T he status of 93 plants authorized to engage in construction activities is summarized. This total includes (4) plants with construction exemptions, and (11) plants with Limited Work Authorization Permits

  1. Construction and commissioning experience of evolutionary water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2004-04-01

    Electricity market liberalization is an established fact in several countries and there is a trend to adopt it in other countries. The essential aim of market liberalization is to improve the overall economic efficiency. In order that nuclear power remains a viable option for electricity generation, its costs should be competitive with alternative sources while, at the same time, it should have a safe and reliable operation record. The capital cost of nuclear power plants (NPPs) generally accounts for 43-70% of the total nuclear electricity generation costs, compared to 26-48% for coal plants and 13-32% for gas plants. Most of these expenditures are incurred during the construction phase of a NPP. The achievement of shorter construction periods using improved technology and construction methods has a significant benefit on the costs incurred prior to any production of electricity. This document is intended to make the recent worldwide experience on construction and commissioning of evolutionary water cooled NPPs available to Member States and especially to those with nuclear power plants under construction/planning, and to those seriously considering nuclear power projects in the future. The final aim is to assist utilities and other organizations in Member States to improve the construction of nuclear power plants and achieve shortened schedules and reduced costs without compromising quality and safety. This document aims to provide an overview of the most advanced technologies, methods and processes used in construction and commissioning of recent nuclear projects. To better achieve this objective the presentation is selectively focused more on the new developments rather than providing a full review of all issues related to construction and commissioning. The experience described in this TECDOC applies to managers, engineers, supervisors, technicians and workers in various organizations dealing with the site construction and commissioning of nuclear power plants

  2. Case study of the effects of public safety regulation on the construction costs of coal-fired and nuclear power plants

    International Nuclear Information System (INIS)

    Morris, C.D.

    1987-01-01

    Regulations intended to reduce the number of accidents at nuclear plants and the discharge of sulfur and particulate wastes at coal-fired power plants have become an important cause of construction cost escalation. Measuring the costs of these regulatory interventions is a difficult research task. The three-unit Bruce Mansfield coal-fired plant and the two-unit Beaver Valley nuclear power station located in Shippingport, Pennsylvania, provide a unique opportunity for a case study of the costs of regulation in the construction of both kinds of plants. The units of each plant were built sequentially over a period of intensifying regulation. The method used to measure the costs of public safety regulation in the construction of each kind of plant is to determine the connections between the issuances of the regulatory agencies (EPA and NRC) and cost escalations of succeeding units. The small cost escalations of the Mansfield 3 unit, in comparison to the massive costs of the Beaver Valley 2 unit, suggest that the design and construction of new coal-fired plants are not disrupted by regulatory interventions nearly as extensively as are nuclear units. Certain technical features of Beaver Valley 2, especially its small size and a design that is identical to the first unit's, further contribute to its cost escalations

  3. Construction costs, payback times, and the leaf economics of carnivorous plants.

    Science.gov (United States)

    Karagatzides, Jim D; Ellison, Aaron M

    2009-09-01

    Understanding how different plant species and functional types "invest" carbon and nutrients is a major goal of plant ecologists. Two measures of such investments are "construction costs" (carbon needed to produce each gram of tissue) and associated "payback times" for photosynthesis to recover construction costs. These measurements integrate among traits used to assess leaf-trait scaling relationships. Carnivorous plants are model systems for examining mechanisms of leaf-trait coordination, but no studies have measured simultaneously construction costs of carnivorous traps and their photosynthetic rates to determine payback times of traps. We measured mass-based construction costs (CC(mass)) and photosynthesis (A(mass)) for traps, leaves, roots, and rhizomes of 15 carnivorous plant species grown under greenhouse conditions. There were highly significant differences among species in CC(mass) for each structure. Mean CC(mass) of carnivorous traps (1.14 ± 0.24 g glucose/g dry mass) was significantly lower than CC(mass) of leaves of 267 noncarnivorous plant species (1.47 ± 0.17), but all carnivorous plants examined had very low A(mass) and thus, long payback times (495-1551 h). Our results provide the first clear estimates of the marginal benefits of botanical carnivory and place carnivorous plants at the "slow and tough" end of the universal spectrum of leaf traits.

  4. AGROBACTERIUM-MEDIATED TRANSFORMATION OF COMPOSITAE PLANTS. I. CONSTRUCTION OF TRANSGENIC PLANTS AND «HAIRY» ROOTS WITH NEW PROPERTIES

    Directory of Open Access Journals (Sweden)

    N. A.Matvieieva

    2013-02-01

    Full Text Available The review explores some of the recent advances and the author's own researchs concerning biotechnological approaches for Agrobacterium tumefaciens- and A. rhizogenes-mediated transformation of Compositae family plants. This paper reviews the results of genetic transformation of Compositae plants, including edible (Cichorium intybus, Lactuca sativa, oil (Helianthus annuus, decorative (Gerbera hybrida, medical (Bidens pilosa, Artemisia annua, Artemisia vulgaris, Calendula officinalis, Withania somnifera etc. plant species. Some Compositae genetic engineering areas are considered including creation of plants, resistant to pests, diseases and herbicides, to the effect of abiotic stress factors as well as plants with altered phenotype. The article also presents the data on the development of biotechnology for Compositae plants Cynara cardunculus, Arnica montana, Cichorium intybus, Artemisia annua "hairy" roots construction.

  5. Quality assurance in the construction of nuclear power plants

    International Nuclear Information System (INIS)

    Bernsen, S.A.

    1975-01-01

    A general survey of quality-assurance (QA) practices as they relate to the construction phase of nuclear power plants is presented. The article briefly outlines the evolution of construction QA requirements, describes construction practices and organizational relations that help identify the unique construction-phase features that affect QA practices, identifies some of the principal requirements and programmatic problems involving construction, and discusses potential trends and suggested guidelines for the implementation of particular practices. (U.S.)

  6. Rationalizing of construction engineering of nuclear power plants with pressurized water reactors

    International Nuclear Information System (INIS)

    Schmidt, S.

    1977-01-01

    Construction of large power plants requires further reduction of construction efforts and the construction period. A new constructional and technological solution has been developed with the steel-cell composite structure applied in the Greifswald nuclear power plant 'Bruno Leuschner' for the first time. Principles of design, fabrication, transport, and mounting are described. The benefits of the method are indicated. (author)

  7. Learning through delivery, Westinghouse AP1000 plant construction

    International Nuclear Information System (INIS)

    Gorgemans, J.; Hinman, R.D.; Steuck, C.M.; Greco, P.L.

    2014-01-01

    The AP1000 plant, which is a 1100 MWe class pressurized water reactor with passive safety features, is designed around a conventional 2 loop, 2 steam generator primary system configuration with 2 hot legs, 4 reactor coolant pumps directly mounted in the steam generator lower head and 4 cold legs. A particular feature of AP1000 is its modular construction to minimize the time and cost of construction. Modular construction allows activities to be run in parallel, it allows more activities to be performed in a controlled factory instead of in the field, and it provides a better level of quality. The AP1000 plant design includes 106 structural modules and 52 mechanical modules. Structural modules include all penetrations for piping, cable trays, HVAC duct runs, and all reinforcement for pipe, equipment hangers, and supports. Structural modules are shipped in sub-modules to support transportation by rail or truck or barge. Mechanical modules contain equipment such as pumps, tanks, heat exchangers, air-handling units, and filters along with interconnecting pipes, valves, instruments, wiring and support services. Modular construction requires strong coordination between engineering, supply chain and construction. A total of 8 AP1000 units are currently under construction in China and in the United States. The lessons learned and best practices of each new AP1000 construction are systematically incorporated into the standard design. (A.C.)

  8. Welding Metallurgy of Nickel-Based Superalloys for Power Plant Construction

    Science.gov (United States)

    Tung, David C.

    Increasing the steam temperature and pressure in coal-fired power plants is a perpetual goal driven by the pursuit of increasing thermal cycle efficiency and reducing fuel consumption and emissions. The next target steam operating conditions, which are 760°C (1400°F) and 35 MPa (5000 psi) are known as Advanced Ultra Supercritical (AUSC), and can reduce CO2 emissions up to 13% but this cannot be achieved with traditional power plant construction materials. The use of precipitation-strengthened Nickel-based alloys (superalloys) is required for components which will experience the highest operating temperatures. The leading candidate superalloys for power plant construction are alloys 740H, 282, and 617. Superalloys have excellent elevated temperature properties due to careful microstructural design which is achieved through very specific heat treatments, often requiring solution annealing or homogenization at temperatures of 1100 °C or higher. A series of postweld heat treatments was investigated and it was found that homogenization steps before aging had no noticeable effect on weld metal microhardness, however; there were clear improvements in weld metal homogeneity. The full abstract can be viewed in the document itself.

  9. Radioactive air emissions notice of construction and application for approval to construct the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    1992-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy, Richland Field Office. The Hanford Site manages and produces dangerous waste and mixed waste. (containing both radioactive and dangerous components). The US Department of Energy, Richland Field Office, currently stores mixed waste, resulting from various processing operations, in underground storage tanks. The Hanford Waste Vitrification Plant will be constructed and operated to process the high-activity fraction of mixed waste stored in these underground tanks. The Hanford Waste Vitrification Plant will solidify pretreated tank waste into a glass product that will be packaged for disposal in a national repository. Emissions from the Hanford Waste Vitrification Plant will be regulated by both the federal and state Clean Air Acts. The proposed Hanford Waste Vitrification Plant represents a new source of radioactive air emissions. Construction of the plant will require approval from both federal and state agencies. The Notice of Construction and Application for Approval to Construct the Hanford Waste Vitrification Plant contains information required under Title 40 of the Code of Federal Regulations, Chapter 61; and Chapter 246-247 of the Washington Administrative Code for a proposed new source of radioactive air emissions. The document contents are based on information contained in the Hanford Waste Vitrification Plant Reference Conceptual Design Report, the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report, Revision 0, and subsequent design changes made before August 1, 1992. The contents of this document may be modified to include more specific information generated during subsequent detailed design phases. Modifications will be submitted for regulatory review and approval, as appropriate

  10. The supply chain of civil construction industries for support the nuclear power plant construction in Indonesia

    International Nuclear Information System (INIS)

    Dharu Dewi; Sriyana; Moch-Djoko Birmano; Sahala Lumbanraja; Nurlaila

    2013-01-01

    The use of domestic products for electricity infrastructure has been set out in the Ministerial Decree number: 54/M-IND/PER/3/2012, but the infrastructure of nuclear power plants (NPP) construction has not been included. Therefore, the potential of the local industries needs to be mapped it especially supply chain of civil construction industries to estimate the capability of the local component level (DCL) at the nuclear power plant project in Indonesia. NPP is a high-technology so that if NPP will be constructed, it is necessary to involve the national capability as media technology transfer, especially for EPC (Engineering, Procurement and Construction) services. Civil construction (civil part) play role is very large, about 21%. Therefore it is necessary in particular the role of the national civil construction industry to increase the capability of local content. Preparation of Civil construction infrastructure are depend on the supply chain of raw materials. The aim of the research was to map the supply chain of the civil construction industries. Methodology this study is a survey of national industries, literature review, and searching web site. The result study is a map of civil construction industries with raw material supply chain. (author)

  11. Forecasting manpower requirements for nuclear power plant construction

    International Nuclear Information System (INIS)

    Seltzer, N.; Schriver, W.R.

    1978-01-01

    This paper presents both the methodology and results of a segment of a comprehensive construction manpower demand forecasting system aimed at forecasting virtually all construction manpower requirements in the United States of America. The part of the system dealing with the demand for construction workers needed to build nuclear powered electricity generating plants is discussed here. The object of the system is to forecast manpower construction needs for each of 29 construction crafts on a monthly basis in each of 10 geographical regions of the United States. The method used is to establish profiles of the types of workers and time phasing required in the past. Profiling was done for different types of plants, different capacity classes, and different geographical locations. An appropriate worker profile matrix cannot simply be multiplied by the capacity of the proposed plant if the number of man-hours required per kilowatt of generating capacity is not constant. The value of this latter variable has changed considerably recently - presumably because of an increased awareness of environmental and safety considerations. Econometric techniques are used to forecast values for man-hours per kilowatt which are then multiplied by projected new capacity to be put in place. The resulting total man-hour requirement is then allocated over time and by craft through use of a worker profile matrix. The summary results indicate that 20 percent increases in man-hours required per kilowatt of capacity can be expected between 1977 and 1981. Total construction labour demand will rise from 65,700 work-years in 1977 to nearly 96,600 work-years in 1981. Forecasts of the actual number of different types of workers to be demanded in each month and in each region are available from the system. (author)

  12. Modularization in construction processes New Nuclear Power Plants

    International Nuclear Information System (INIS)

    Martinez, I.; Cobos, A.; Herrera Ropero, D.

    2012-01-01

    The aim of this work is that it has the capacity and expertise to analyze the suitability of modular technology design and construction compared to conventional nuclear plants. It will define the criteria for selecting the areas of modularity and the impact on design and its interfaces with engineering, supply, including logistics and construction.

  13. Construction times and the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Erramuspe, H.J.

    1988-01-01

    The construction and the decommissioning periods of nuclear power plants (NPP), are studied, due to their importance in the generation costs. With reference to the construction periods of these plants, a review is made of the situation and technical improvements made in different countries, with the purpose of shortening them. In regard to the decommissioning of NPP, the present and future situations are reviewed in connection with different stages of decommissioning and their related problems, as the residual radioactivity of different components, and the size of the final wastes to be disposed of. The possibilities of plant life extensions are also revised in connection with these problems. Finally, the expected decommissioning costs are analyzed. (Author) [es

  14. A study of public acceptance of construction of atomic power plant

    International Nuclear Information System (INIS)

    Harada, Kazunori; Matsuhashi, Ryuji; Yoshida, Yoshikuni

    2011-01-01

    In June 2010, Basic Energy Plan was approved in a Cabinet meeting. It says that Japan aims to construct more than 14 atomic power plants by 2030. Today, there are 12 plans of construction of atomic power plant, but it is hard to say that their plans easily come off. That's because public acceptance of atomic power plant is low in Japan, for example local residents wage opposition campaigns. This study conducts a survey in the form of a questionnaire and analyzes it by Analytical Hierarchical Process (AHP). Analytic Hierarchy Process is a structured technique for dealing with complex decisions. A questionnaire using AHP is very easy to answer and analyze. This survey was conducted in 2 areas. First area is Hohoku-cho, Yamaguchi Pref. that had a plan of construction of atomic power plant and the plan was demolished by opposition campaigns. Second area is Kaminoseki-cho, Yamaguchi Pref. that has a plan of construction of atomic power plant now and the plan is working order. Public acceptance can be calculated from survey data of 2 areas, and it helps to understand why first area disapproved a plan of atomic power plant and second area approves it. We consider a model to analyze public acceptance. (author)

  15. Study on nuclear power plant project construction and management mode in China

    International Nuclear Information System (INIS)

    Wang Kai; Chen Lian

    2009-01-01

    Project management mode plays a key role in project construction, especially in nuclear power field. From the aspects of right, responsibility and benefit, this paper discussed the differences among the common used project management modes. Also the main kinds of the construction management modes used in China's nuclear power plants were summarized. At last, considering the experience of Ningde nuclear power plant, this paper put forward several perspectives about the selection of project management mode in nuclear power plant construction. (authors)

  16. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review

    International Nuclear Information System (INIS)

    Marchand, L.; Mench, M.; Jacob, D.L.; Otte, M.L.

    2010-01-01

    This review integrates knowledge on the removal of metals and metalloids from contaminated waters in constructed wetlands and offers insight into future R and D priorities. Metal removal processes in wetlands are described. Based on 21 papers, the roles and impacts on efficiency of plants in constructed wetlands are discussed. The effects of plant ecotypes and class (monocots, dicots) and of system size on metal removal are addressed. Metal removal rates in wetlands depend on the type of element (Hg > Mn > Fe = Cd > Pb = Cr > Zn = Cu > Al > Ni > As), their ionic forms, substrate conditions, season, and plant species. Standardized procedures and data are lacking for efficiently comparing properties of plants and substrates. We propose a new index, the relative treatment efficiency index (RTEI), to quantify treatment impacts on metal removal in constructed wetlands. Further research is needed on key components, such as effects of differences in plant ecotypes and microbial communities, in order to enhance metal removal efficiency. - A new index, the relative treatment efficiency index (RTEI), to quantify treatment impacts on metal and metalloid removal in constructed wetlands.

  17. Application of ABWR construction database to nuclear power plant project

    International Nuclear Information System (INIS)

    Takashima, Atsushi; Katsube, Yasuhiko

    1999-01-01

    Tokyo Electric Power Company (TEPCO) completed the construction of Kashiwazaki-Kariwa Nuclear Power Station Unit No. 6 and No. 7 (K-6/7) as the first advanced boiling water reactors (ABWR) in the world successfully. K-6 and K-7 started their commercial operations in November, 1996 and in July, 1997 respectively. We consider ABWR as a standard BWR in the world as well as in Japan because ABWR is highly reputed. However, because the interval of our nuclear power plant construction is going to be longer, our engineering level on plant construction will be declining. Hence it is necessary for us to maintain our engineering level. In addition to this circumstance, we are planning to wide application of separated purchase orders for further cost reduction. Also there is an expectation for our contribution to ABWR plant constructions overseas. As facing these circumstances, we have developed a construction database based on our experience for ABWR construction. As the first step of developing the database for these use, we analyzed our own activities in the previous ABWR construction. Through this analysis, we could define activity units of which the project consists. As the second step, we clarified the data which are treated in each activity unit and the interface among them. By taking these steps, we could develop our database efficiently. (author)

  18. An economic analysis of the effects of regulatory delay on nuclear power plant construction. Technical report

    International Nuclear Information System (INIS)

    Maloney, M.T.; Walsh, M.D.

    1980-08-01

    In order to evaluate the impact that any government regulation has on society, an accurate measure of the costs imposed by the regulation is essential. Current government estimates of the cost of pollution control legislation have failed to include the costs of project delays that firms may experience when complying with such standards. Clearly, if these delays are the direct result of such legislation their costs should be included for a proper evaluation. The purpose of this report is to define and measure the true impact that construction deals have on the total project costs of a specific industry. The Nuclear Power Industry has been chosen to illustrate the problem. First, the industry is examined in terms of its economic and physical environment. A model is then developed to deal with the costs involved in the construction of a typical nuclear plant. The model is tested by regressing time and cost data of 31 completed plants to determine the impact that unanticipated delays have had on total project costs. These results indicate that such delays would increase the total project costs of a typical 1,000 mw plant by .8 percent per month in the initial stage of the project and 1.1 percent per month after actual construction begins

  19. The effectiveness of new austrian tunnelling method (NATM for hydro power plant construction: lau gunung power plant, north sumatera, indonesia

    Directory of Open Access Journals (Sweden)

    Ade Khoir Rizki

    2017-01-01

    Full Text Available Hydro Electric Power Plant is a power generating system using gravity fall of water as the main force to move the turbine and generate electricity. The construction purpose of Lau Gunung hydropower (2×7. 5 MW that is located in Dairi, North Sumatra, is to Supply power to 14,000 house of the surrounding region. The river run-off system, where the water is immediately contained and then flowed through a tunnel considering the discharge flowing river, where it is constant and does not occur in the fluctuating water level. The Lau Gunung river has the minimum flow that can exceed from 15 to 25 m3/s with a high tunnel dimensions of 4 metres long, 3,9 metres wide and a length of 1,6 kilometres. In terms of the analysis of the time effectiveness of the NATM can be saved because of the continuous work of 24 hours, without any obstacles in which the sub methods used include the drilling & blasting. The tunnel then use the form of steel reinforcement rib and Safety shotcrete lining. The general review may show that using NATM result a tremendous savings, also the use of horse shape conduce small displacement which is effective for the construction.

  20. The de-construction programme for EDF'S first generation power plants

    International Nuclear Information System (INIS)

    Zask, G.; Corcuff, A.

    2003-01-01

    Before 2001 EDF had adopted a 'long wait' scenario for the de-construction of nuclear power plants, consisting of waiting for a period of 5 to 10 years for IAEA level 2 (partial release of the site), then postponing the total de-construction of the facility for 25 to 50 years, in order to benefit from the natural decay of the radioactivity and thereby reduce the dosimetry of the personnel and the costs. Today, as regards the 8 power plants of the first generation and Creys-Malville, EDF has decided to undertake the total de-construction over a period of 25 years of all its reactors that have ceased commercial operation. The forecast cost of this programme amounts to Euro 3 billion. It thus intends to demonstrate its capacity to control, within the scale of the human lifespan, the entire life cycle of its nuclear power plants, while minimising the impact on man and the environment. This choice of immediate dismantling for the power plants of the first generation does not prejudge what will be done, when the time comes, for the PWR plants currently in operation. The paper has the following contents: 1. General; 2.The facilities concerned; 3. Chronological sequence adopted for de-construction; 4. Milestones and critical paths; 4.1. Simplification of the administrative procedures; 4.2. The waste channels; 4.3. Industrial organisation; 4.3.1. Creation of Centre d'Ingenierie De-construction et Environnement (CIDEN); 4.3.2. Responsibilities, interfaces and co-ordination of the various departments concerned (Role of owner: Responsibility as nuclear operator; Overall co-ordination; Operational steering of projects); 4.3.3. Internal authorization process; 4.3.4. Obtaining and maintaining skills (Training; Environment; De-construction; Radiological protection, radiology, radioecology; Processing of waste and approval of the cycle); 4.3.5. Monitoring of works and surveillance of service providers; 4.3.6. Radiological protection, environment; 4.3.7. Control of conventional

  1. Integrated construction management technology for power plants

    International Nuclear Information System (INIS)

    Okada, Hisako; Miura, Jun; Nishitani, Yasuhiko

    2003-01-01

    The improvement and rationalization of the plant construction technology has been promoted in order to shorten the construction period, to improve the quality and reliability, and especially to reduce construction costs. With the recent remarkable advances of computer technology, it is necessary to introduce an electronic information technology (IT) into the construction field, and to develop a business process. In such a situation, Hitachi has developed and applied integrated construction support system, which is consistent among design, production and construction. This system has design information and schedule information made electronically as a basic database, and characterizes with project management function based on that information. By introduction of this system, electronic processing of information and reduction of paperwork has enabled high efficiency and standardization of on-site indirect work. Furthermore, by collaboration with the civil company, electrical data exchange has been carried out and developed techniques to improve the interface between mechanical and civil work. High accuracy of construction planning and unification of schedule data have been achieved, and consequently, rework and adjustment at the job site have been greatly reduced. (author)

  2. International comparison of economic and technical indexes of nuclear power plant construction

    International Nuclear Information System (INIS)

    Majer, P.; Fialova, H.

    1988-01-01

    The comparison of capital costs of the construction of nuclear power plants takes into consideration the following aspects: the delineation of the installation, the determination of costs and their break-down, the impact of the time factor, the conversion of the costs to a comparable unit. Power plants are always compared with roughly the same power capacity, this even when conditions for construction are not fully comparable. Construction costs may be divided into, e.g., pre-construction costs, direct capital costs, indirect capital costs, interest during construction. The time factor is manifest in the duration of construction and in the concrete year of construction for which the comparison is being made. The inflationary rise in prices and interests are increasing capital costs by roughly 5 - 8% per annum. The comparison of costs expressed in different currencies is made either by conversion using the rate of exchange or by comparing the time expended for the construction of the power plant. Various methods of comparison are discussed. (J.B.). 7 refs

  3. [Risk communication in construction of new nuclear power plant].

    Science.gov (United States)

    He, Gui-Zhen; Lü, Yong-Long

    2013-03-01

    Accompanied by construction of new nuclear power plants in the coming decades in China, risk management has become increasingly politicized and contentious. Nuclear risk communication is a critical component in helping individuals prepare for, respond to, and recover from nuclear power emergencies. It was discussed that awareness of trust and public attitudes are important determinants in nuclear power risk communication and management. However, there is limited knowledge about how to best communicate with at-risk populations around nuclear power plant in China. To bridge this gap, this study presented the attitudinal data from a field survey in under-building Haiyang nuclear power plant, Shandong Province to measure public support for and opposition to the local construction of nuclear power plant. The paper discussed the structure of the communication process from a descriptive point of view, recognizing the importance of trust and understanding the information openness. The results showed that decision-making on nuclear power was dominated by a closed "iron nuclear triangle" of national governmental agencies, state-owned nuclear enterprises and scientific experts. Public participation and public access to information on nuclear constructions and assessments have been marginal and media was a key information source. As information on nuclear power and related risks is very restricted in China, Chinese citizens (51%) tend to choose the government as the most trustworthy source. More respondents took the negative attitudes toward nuclear power plant construction around home. It drew on studies about risk communication to develop some guidelines for successful risk communication. The conclusions have vast implications for how we approach risk management in the future. The findings should be of interest to state and local emergency managers, community-based organizations, public health researchers, and policy makers.

  4. Delays in nuclear power plant construction. Volume II. Final report

    International Nuclear Information System (INIS)

    Mason, G.E.; Larew, R.E.; Borcherding, J.D.; Okes, S.R. Jr.; Rad, P.F.

    1977-01-01

    The report identifies barriers to shortening nuclear power plant construction schedules and recommends research efforts which should minimize or eliminate the identified barriers. The identified barriers include (1) Design and Construction Interfacing Problems; (2) Problems Relating to the Selection and Use of Permanent Materials and Construction Methods; (3) Construction Coordination and Communication Problems; and (4) Problems Associated with Manpower Availability and Productivity

  5. Delays in nuclear power plant construction. Volume I. Final report

    International Nuclear Information System (INIS)

    1977-01-01

    The report identifies barriers to shortening nuclear power plant construction schedules and recommends research efforts which should minimize or eliminate the identified barriers. The identified barriers include: (1) Design and Construction Interfacing Problems; (2) Problems Relating to the Selection and Use of Permanent Materials and Construction Methods; (3) Construction Coordination and Communication Problems; and (4) Problems Associated with Manpower Availability and Productivity

  6. 75 FR 32313 - Specifications and Drawings for Construction Direct Buried Plant

    Science.gov (United States)

    2010-06-08

    ... construction units for Fiber-to-the-Home, remove redundant or outdated requirements, and simplify the.... Because of Fiber-to-the-Home construction and advancements made in construction installation methods and... Construction Direct Buried Plant AGENCY: Rural Utilities Service, USDA. ACTION: Proposed Rule. SUMMARY: The...

  7. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2004-01-01

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government

  8. Effect of long construction times on utility financial requirements

    International Nuclear Information System (INIS)

    Francis, J.M.

    1981-01-01

    It is well-known that long construction times significantly increase the cost of an individual nuclear plant. Long construction times, however, are not confined to either a single plant or a single utility. Rather, they apparently occur in almost all nuclear plants currently under construction. The total financial requirement to complete the 82 nuclear plants currently under construction was assessed. The analysis was performed assuming a construction time of ten years in one case, and six years in another. It was found that decreasing the construction time from ten to six years will reduce the financial requirements of the utility industry by $89 billion

  9. Case study: Proposed application of project management techniques for construction of nuclear power plant in Malaysia

    International Nuclear Information System (INIS)

    Syahirah Abdul Rahman; Phongsakorn Prak Tom; Wan Abd Hadi Wan Abu Bakar; Shaharum Ramli

    2010-01-01

    This study discusses the techniques of project management for the construction of nuclear power plants that can be used in Malaysia. Nuclear power reactors are expected to apply is the categories of Gen III + reactor where it is safer and more modern than the first generation of reactors built in the 1970s. The objective of this study is that the construction of this reactor to be completed by the stipulated time and not exceed the cost estimates. In addition, project management is also able to meet all the specifications and achieve the quality standard. In this study, the techniques used in project management to ensure the success of construction projects of nuclear power plants are a Gantt Chart, CPM/ PERT and Microsoft Project. From the study, found that these techniques can assist in facilitating the management of the project for the construction of nuclear power plants to ensure that the estimated time and cost can be managed more effectively as well as quality of care. (author)

  10. Support to design and construction of the PBMR plant

    International Nuclear Information System (INIS)

    Cazorla, F.; Moron, P.; Gonzalez, J. I.

    2010-01-01

    Developing the new reactor design to a licensable state for constructing a pilot plant is a tough task require specific resources, concerning knowledge and previous experience, which trespassing the pure scientific or technologic knowledge linked to the reactor conceptual design. Taking into consideration the experience derived from the collaboration between the South African company PBMR (PTY) Ltd.; the Pebble Bed Modular Reactor Designer, and Tecnatom SA, the article presents some of the aspects in which the companies or organization in charge of the design can demand external support to license and construct the pilot plants with guaranteed success. (Author)

  11. The design and construction of the windscale vitrification plant and vitrified product store

    International Nuclear Information System (INIS)

    Heafield, W.; Woodall, A.; Elsden, A.D.

    1987-01-01

    The paper describes the background of High Level Waste storage and vitrification development in the UK and its application to Reprocessing Operations at Sellafield. The main stages in the vitrification process and associated maintenance facilities are described together with the layout of the Windscale Vitrification Plant (WVP) and associated Vitrified Product Store (VPS). The design and construction techniques employed for example, the use of Computer Aided Design and the effect of automatic pipe bending/orbital welding and the use of precast units for cell construction, are discussed and current construction progress is highlighted. The vitrification process uses complex mechanical plant operating in high temperature and radiation fields. An extensive engineering and process development programme has been carried out. A full scale inactive facility (FSIF) has been constructed and the objectives and results from the operation of FSIF are presented. In addition to engineering and process development, a comprehensive programme of glass technology development has been carried out to establish maximum waste incorporation levels, reaction kinetic and product properties of the candidate glass formulations

  12. [Ecological risk assessment of dam construction for terrestrial plant species in middle reach of Lancangjiang River, Southwest China].

    Science.gov (United States)

    Li, Xiao-Yan; Dong, Shi-Kui; Liu, Shi-Liang; Peng, Ming-Chun; Li, Jin-Peng; Zhao, Qing-He; Zhang, Zhao-Ling

    2012-08-01

    Taking the surrounding areas of Xiaowan Reservoir in the middle reach of Lancangjiang River as study area, and based on the vegetation investigation at three sites including electricity transmission area (site 1), electricity-transfer substation and roadsides to the substation (site 2), and emigration area (site 3) in 1997 (before dam construction), another investigation was conducted on the vegetation composition, plant coverage, and dominant species at the same sites in 2010 (after dam construction), aimed to evaluate the ecological risk of the dam construction for the terrestrial plant species in middle reach of Lancangjiang River. There was an obvious difference in the summed dominance ratio of dominant species at the three sites before and after the dam construction. According the types of species (dominant and non-dominant species) and the changes of plant dominance, the ecological risk (ER) for the plant species was categorized into 0 to IV, i.e., no or extremely low ecological risk (0), low ecological risk (I), medium ecological risk (II), high ecological risk (III), and extremely high ecological risk (IV). As affected by the dam construction, the majority of the species were at ER III, and a few species were at ER IV. The percentage of the plant species at ER III and ER IV at site 3 was higher than that at sites 1 and 2. The decrease or loss of native plants and the increase of alien or invasive plants were the major ecological risks caused by the dam construction. Effective protection strategies should be adopted to mitigate the ecological risk of the dam construction for the terrestrial plants at species level.

  13. Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands

    Science.gov (United States)

    Albers, P.H.; Camardese, M.B.

    1993-01-01

    The pH of lake water is often inversely correlated with concentrations of trace metals in the water column. Concentrations of Al, Cd, Ca, Cu, Fe, Hg, Pb, Mg, Mn, Ni, P, and Zn were compared in water, plants, and aquatic insects from three acidified (pH 5.0) and three nonacidified (pH 6.5) constructed wetlands. Concentrations of Zn in water and bur-reed (Sparganium americanum) were higher in acidified wetlands than in nonacidified wetlands. Floating nonrooted plants contained mean concentrations of Fe, Mg, and Mn that were higher than recommended maximum levels for poultry feed. The mean concentrations of all metals in insects were below recommended maximum levels for poultry feed and below levels that cause toxic effects in wild birds. Smaller than expected increases of metal concentrations in the water of acidified wetlands were probably due to limited mobilization of metals from the sediments and insignificant changes in sedimentation of aqueous metals. Calcium was lower in acidified than in nonacidified wetland water, but the Ca content of insects and bur-reed was not lower. Low concentrations of Ca in aquatic insects from both groups of wetlands indicate that calcium-rich crustaceans and mollusks are probably important to female waterfowl and their young during the spring, when invertebrates make up the majority of the diet. Although toxic effects from metal ingestion seem to be unlikely consequences of wetland acidification, the adverse effect of low pH on the occurrence of crustaceans and mollusks could threaten egg production and development of young.

  14. Plants in constructed wetlands help to treat agricultural processing wastewater

    Directory of Open Access Journals (Sweden)

    Mark Grismer

    2008-05-01

    Full Text Available Over the past three decades, wineries in the western United States and sugarcane processing for ethanol in Central and South America have experienced problems related to the treatment and disposal of process wastewater. Both winery and sugarcane (molasses wastewaters are characterized by large organic loadings that change seasonally and are detrimental to aquatic life. We examined the role of plants for treating these wastewaters in constructed wetlands. In the greenhouse, subsurface-flow flumes with volcanic rock substrates and plants steadily removed approximately 80% of organic-loading oxygen demand from sugarcane process wastewater after about 3 weeks of plant growth; unplanted flumes removed about 30% less. In field studies at two operational wineries, we evaluated the performance of similar-sized, paired, subsurface constructed wetlands with and without plants; while both removed most of the oxygen demand, removal rates in the planted system were slightly greater and significantly different from those of the unplanted system under field conditions.

  15. The evaluation, design and construction of the uranium plant for Chemwes Limited

    International Nuclear Information System (INIS)

    Viljoen, E.B.; Bluhm, B.J.; Pilkington, W.; Taylor, J.L.; Robinson, J.E.; Le Grange, P.

    1981-01-01

    The Chemwes uranium plant was designed and constructed within fifteen months; commissioning started during June 1979, and the plant was producing at design capacity four months later. This account highlights the procedures and methods adopted to bring the plant into production. The description of the various phases includes some details of the early evaluation, and the feasibility and optimization studies; of the financing, project management, design, construction, and commissioning of the plant; and of the training of personnel. Some of the mistakes made and the factors that contributed to the success are also listed [af

  16. Data processing project management in the construction of plants and power stations

    International Nuclear Information System (INIS)

    Huelsen, H.; Hayen, W.

    1987-01-01

    The requirements of project management in plant construction i.e. basic data, supervision and control became more and more detailed. These requirements can only satisfactorily be met with the help of data processing. Piping design requires up to 50% of the whole amount of engineering in design and management of plant construction. We present data processing project management system which explains the connections of single aspects. Its connections consists of: collection of basic data, plant design and installation, supervision of planning and installation, planning and calculation, collection, use, administration and approval of plan data, procurement material, construction of the model (1:25), and installation. (orig.) [de

  17. Development of construction technology for nuclear power plants

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1975-01-01

    Stringent safety requirements for nuclear power plants create new technological problems in their construction. The development is influenced by the mode of operation of the respective reactors which leads to different construction styles of the reactor buildings. Accomodation of extraordinary load cases such as earthquake, airplane crash, and blast due to chemical explosions, requires additional treatment. Significant new problems arise for the prestressed concrete reactor pressure vessels and concrete containments, prestressed or reinforced. (orig.) [de

  18. Computer integrated construction at AB building in reprocessing plant

    International Nuclear Information System (INIS)

    Takami, Masahiro; Azuchi, Takehiro; Sekiguchi, Kenji

    1999-01-01

    JNFL (Japan Nuclear Fuel Limited) is now processing with construction of the spent nuclear fuel reprocessing plant at Rokkasho Village in Aomori Prefecture, which is coming near to the busiest period of construction. Now we are trying to complete the civil work of AB Building and KA Building in a very short construction term by applying CIC (Computer Integrated Construction) concept, in spite of its hard construction conditions, such as the massive and complicated building structure, interferences with M and E (Mechanical and Electrical) work, severe winter weather, remote site location, etc. The key technologies of CIC are three-dimensional CAD, information network, and prefabrication and mechanization of site work. (author)

  19. New experience on construction and installation work in Qinshan PHWR nuclear power plant

    International Nuclear Information System (INIS)

    Lu Huaxiang

    2004-01-01

    The article provides a summary of the new experience on construction management and construction technology in the field of civil construction and installation work in Qinshan PHWR nuclear power plant, with focus on innovation in project management mode, new technology application and computerized management of construction and installation work. Management innovation, technical innovation and information technology are the key contributors to overall success of Qinshan PHWR nuclear power plant in construction and installation work. The new experience derived in these fields will be of great significance to promote independent construction of the new-round nuclear power projects in China. (author)

  20. Problems of economic assessment of social impacts of construction anO operation of nuctear power plant in the area

    International Nuclear Information System (INIS)

    Koudelka, F.

    1984-01-01

    The impacts of nuclear power plant construction and operation are divided into economic, demographic, on town planning, historic, etc. Further subdivision is performed according to the intensity of construction impacts, to the sequence and quality of impact and to the effects in space and time. The area of environmental impacts is classified into the protective area and the areas of immediate, limited and broad impact. The methods of the evaluation of nuclear power plant construction and operation impacts are discussed. (E.S.)

  1. Quality control of three main materials for civil construction of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Feng

    2011-01-01

    The construction and operation of nuclear power plant is a systematic engineering. To ensure quality and safety of nuclear power plants, each work from design to operation can have certain impact on the quality and safety of the project. The quality of each related work shall be controlled. Starting from the quality control over raw materials for the civil construction of nuclear power plant, this article mainly analyzes how to control the quality and manage the three main materials of steel, concrete and modular parts in the civil construction. (author)

  2. Approaches to assessment of socio-demographic and economic aspects of nuclear power plant construction and operation

    International Nuclear Information System (INIS)

    Uvirova, E.

    1984-01-01

    The paper informs of solving the task of economic evaluation of transient and permanent social consequences of the construction and operation of nuclear power plants. The solution takes place in three stages: 1. drafting of methodology, 2. trial of methodology in localities of current nuclear power plant construction, 3. analysis of results and finalizing of methodology. The task is aimed at studying the questions of the return and profitability of investments, the evaluation of optimal economic lifetime, and the effective restoration of basic funds. Its model solution shows the national economy relations of nuclear power. Also discussed is the question of the use of non-balance heat from nuclear power plants. (E.S.)

  3. Reactivation of nuclear power plant construction projects. Plant status, policy issues and regulatory options

    International Nuclear Information System (INIS)

    Spangler, M.B.

    1986-07-01

    Prior to the TMI-2 accident on March 28, 1979, four nuclear power plant units that had previously been issued a construction permit were cancelled, principally because of reduced projections of regional power demand. Since that time, an additional 31 units with CPs have been cancelled and eight units deferred. On December 23, 1985 one of the deferred units (Limerick-2) was reactivated and construction resumed. The primary objective of this policy study is to identify the principal issues requiring office-level consideration in the event of reactivation of the construction of one or more of the nuclear power plants falling into two categories: (1) LWR units issued a construction permit whose construction has been cancelled, and (2) LWR units whose construction has been deferred. The study scope is limited to identifying regulatory issues or questions deserving analysis rather than providing, at this time, answers or recommended actions. Five tasks are addressed: a tabulation and discussion of the status of all cancelled and deferred LWR units; and identification of potential safety and environmental issues; an identification of regulatory or policy issues and needed information to determine the desirability of revising certain rules and policies; and identification of regulatory options and decision criteria; and an identification of decision considerations in determining staff requirements and organizational coordination of LWR reactivation policy and implementation efforts. 41 refs

  4. Construction works of large scale impervious wall in construction of No.2 plant in Onagawa Nuclear Power Station, Tohoku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Ueda, Kozaburo; Sugeno, Yoshisada; Takahashi, Hitoshi

    1991-01-01

    The main buildings for No. 2 plant in Onagawa Nuclear Power Station are constructed on the bedrocks about 14 m below the sea surface. Therefore, for the purpose of executing the works by shutting seawater off and dry work, the large scale impervious wall of about 500 m extension was installed underground. The feature of this impervious wall is the depth of embedment of about 3 m into the hard bedrocks having the uniaxial compressive strength of 2000 kg/cm 2 at maximum, carried out with the newly developed hard rock excavator. The outline of these construction works is reported. No. 2 plant in Onagawa Nuclear Power Station is the BWR plant of 825 MWe output. The construction works of the power station were began in August, 1989, and the rate of progress in civil engineering works as of the end of September, 1990 was 21.3%. The planning of the impervious wall, the geological features at the site, the method of shutting seawater off, the selection of wall materials, the design of the wall body, the investigation of the quantity of spring water, the execution of the construction and execution management, and the confirmation of the effect of the wall are reported. (K.I.)

  5. Study on modular construction management in AP1000 nuclear plant project

    International Nuclear Information System (INIS)

    Fang Xiaopeng; Shen Wenrong; Sun Kebin; Wei Zhong

    2010-01-01

    The construction of AP1000 Nuclear Power Plant (NPP) has commenced in China. The AP1000 NPP features a passive design concept and modular construction technology. Based on the management of the construction of current AP1000 NNP, this paper describes the effects on Nuclear Island (NI) construction project management resulting from modular construction technology, as well as new construction techniques and methods. This paper puts forward new requirements for construction schedule management of the nuclear island construction at different levels. The AP1000 NI construction logic features the parallel construction of civil and structural erection as the main approach, with the integrated schedule of module fabrication, assembly and installation as support. The structural modules of AP1000 project are prefabricated in shop, delivered to site as sub-modules and assembled to integrated structural module. The assembled module is transported to the construction site, hoisted and finally set in NI. This paper illustrates how to ensure the construction quality of structural modules by analyzing the interface process and key links in the quality control program, and introduces how to ensure the safety of heavy structural components during various construction phases by evaluating and analyzing the construction safety process. This paper also makes an analysis of the safe environment for the assembly and installation of Containment Vessel, the management of product protection and personnel safety inside the Containment Building during 'Open Top' construction, raises to implement effective protection for the numerous pre-set mechanical modules and equipments, as well as personnel safety protection programs and measures. The modular construction feature of AP1000 NPP design requires technique improvement and management innovation during the NI construction. This paper makes a study and research on the control management of schedule, quality and safety of AP1000 NPP NI

  6. Reactor plant construction productivity, why so different

    International Nuclear Information System (INIS)

    Palmeter, S.B.

    1976-01-01

    The manual labor component (manhours per kw) required to construct a nuclear power plant has increased radically since the advent of the fixed price turnkey projects of the late 1960's and early 1970's. Utilities and their architect-engineers have been, for the past several years, evaluating and diagnosing possible reasons for the increase and, in particular, the wide variation in labor manhours per kw among plants built in the same time frame. Since construction labor can amount to as much as 35--40% of direct capital cost, ways and means must be found to arrest this manhour escalation. One important way is by improving productivity. Some of the manhour increase is beyond an owner's control, e.g. NRC regulatory and other federal and state requirements adding to the scope of work. Several areas where there is potential for productivity improvement are identified as follows: (1) Revise contract strategy and bid work on a fixed price basis. This can be done by utilizing bid packages where the scope of work is clearly identified and based on well defined plans and specifications. (2) Upgrade the quality of construction management and remove first line supervision from union control. Use periodic work sampling to pinpoint causes and cure for poor productivity. (3) Reduce design complexity and improve constructibility by means of innovative design and material utilization--models help. (4) Improve labor productivity by restoring management rights in collective bargaining agreements. If this is not possible, go open shop or owner build with your own work force

  7. Modular construction of nuclear power plants in Korea and technical issues - 15051

    International Nuclear Information System (INIS)

    Kim, T.I.; Kim, K.K.; Yoon, J.J.; Han, G.E.

    2015-01-01

    The construction of nuclear power plants (NPPs) is the process of installing structures, systems and components (SCCs) of NPPs within a targeted time and a budget while ensuring quality and safety. Recently various efforts have been made in the nuclear industry to construct NPPs more effectively and modular construction has been highlighted as one of the most effective methods. Modular construction has been known to be effective in reducing construction time, allocating labor and equipment more efficiently while ensuring quality. The installation of structures and systems requires stable provision of labor force which is essential to keep the installation work of bulk materials such as re-bars, pipes and so forth in a construction site over a long period. Especially, in the case of the structure work, it is greatly affected by weather conditions such as rainfall, snow and wind, and discontinuity of installation work due to weather is directly related with success of a construction project. The most significant feature of modular construction is that SSCs could be pre-fabricated at an off-site factory or an assembly shop near a construction site, which provides stable labor force and favorable work condition impervious to weather. Reinforced concrete is largely used in NPPs and re-bar and form works are time consuming requiring lots of labor force at a construction site. Various efforts have been made to install re-bars and forms at the same time, which led to the development of SC structures. SC structures are composed of face steel plates which work as forms for concrete pouring as well as reinforcement for concrete. In this paper, we are going to introduce module types applicable to construction of NPPs and the status of modular construction in Korea. In addition, several issues will be addressed for the successful application of modular construction

  8. Evaluation of the energy required for constructing and operating a fusion power plant

    International Nuclear Information System (INIS)

    Buende, R.

    1982-09-01

    The energy required for constructing and operating a tokamak fusion power plant is appraised with respect to the energy output during the lifetime of the plant. A harvesting factor is deduced as a relevant figure of energetic merit and is used for a comparison between fusion, fission, and coal-fired power plants. Because fusion power plants involve considerable uncertainties the comparison is supplemented by a sensitivity analysis. In comparison with Light Water Reactor plants fusion power plants appear to be rather favourable in this respect. The energy required for providing the fuel is relatively low for fusion plants, thus overcompensating the considerable higher amount of energy necessary for constructing the fusion power plant. (orig.)

  9. Electric utility power plant construction costs, 1st Edition

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    New UDI report combines historical construction costs for more than 1,000 coal, oil, gas, nuclear and geothermal units that have entered commercial operation since 1966 and projected power plant construction costs for about 400 utility-owned generating units scheduled to enter commercial operation during the next 20 years. Key design characteristics and equipment suppliers, A/E, constructor and original installed cost data. Direct construction costs without AFUDC are provided where known. Historical construction cost data are also provided for about 130 utility-owned hydroelectric, gas turbine, combined-cycle and diesel units (these data are generally for units entering service after 1980)

  10. 47 CFR 32.2003 - Telecommunications plant under construction.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Telecommunications plant under construction. 32.2003 Section 32.2003 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet...

  11. Experience in constructing a spent nuclear fuel reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sakuma, A.; Inoue, K.

    1977-01-01

    Towards the end of 1970, Japan Gasoline Co. Ltd. (JGC) and Saint-Gobain Techniques Nouvelles of France received an order for the construction of a reprocessing plant from Power Reactor and Nuclear Fuel Development Corporation, as a joint prime contractor. The work executed by JGC in this project is reported and consisted of: (1) Procurement, inspection and schedule control of equipment and materials other than those imported from Europe; (2) Conclusion of contracts with various subcontractors relating to the building construction, piping and other work; and (3) Supervision of field work. The field work began in June 1971 and was completed in about 40 months. The overall field labour mobilized during that time totalled about 410,000 man-days, and 900,000 man-hours were spent by the JGC engineers. With the object of constructing a high-quality plant, JGC since 1969 has started to investigate subcontractors in Japan as well as undertaking the selection, education and training of prospective subcontractors. For the welding work in particular, techniques were imported from France and domestic techniques were developed at the same time. Completion of the blank tests was estimated to require 33 months, but the schedule was delayed about seven months for various reasons. Obviously there is room for many improvements when constructing future nuclear chemical plants. However, careful consideration should also be given from the basic design stage onward, to the methods and sequence of construction so that a simplified plan can be obtained from which the work could be easily executed without resorting to special technology. This would lead to reduction in construction time, and a safer and more reliable plant at lower cost. (author)

  12. A Continuing Education Short Course and Engineering Curriculum to Accelerate Workforce Development in Wind Power Plant Design, Construction, and Operations

    Energy Technology Data Exchange (ETDEWEB)

    Tinjum, James [Univ. of Wisconsin, Madison, WI (United States)

    2012-11-29

    Significant advances in wind turbine technology and wind turbine power plant capabilities are appearing in the U.S. Sites that only 10 years ago might have been overlooked are being considered for build out. However, the development of a skilled workforce in the engineering fields and construction trades lags the potential market, especially if the industry is expected to site, design, construct, and operate sufficient wind power plant sites to meet the potential for 20% wind energy by 2030. A select few firms have penetrated the engineer-procure-construction (EPC) market of wind power plant construction. Competition and know-how in this market is vital to achieve cost-effective, design-construct solutions. The industry must produce or retrain engineers, contractors, and technicians to meet ambitious goals. Currently, few universities offer undergraduate or graduate classes that teach the basics in designing, building, and maintaining wind power plants that are safe, efficient, and productive.

  13. Safety-related concrete structure design and construction of Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Morishita, Hideki; Munakata, Yoshinari; Togashi, Akihito

    2003-01-01

    The Rokkasho Reprocessing Plant of the Japan Nuclear Fuel Co. Ltd., is a facility to reprocess remained uranium without firing and newly formed plutonium contained in spent fuels used at the nuclear power stations, to produce fuels to be repeatedly used. Constructions in this facility has some characteristics shown as follows: 1) radiation shielding and seismic isolated functions like those at the nuclear power plants, 2) reduction of wall thickness based on partially using heavy concrete at walls required for radiation shielding, 3) protective design against fly-coming matters such as aircrafts, 4) construction period reduction based on winter construction and large scale block engineering. Here were described characteristics of designs on radiation shielding, seismic isolated and fly-coming matters protection construction engineering and quality control on concrete. (G.K.)

  14. HSE management for AP1000 nuclear plant construction in EPC mode

    International Nuclear Information System (INIS)

    He Xiaogang; Wei Zhong

    2010-01-01

    As a new nuclear type, AP1000 will become the development direction of Chinese nuclear project. EPC General Contract mode is favored by nuclear owners both at home and abroad. Therefore, there is necessity for studying HSE management system and method suitable for AP1000 nuclear plant construction (ANPC) based on combination of AP1000 construction characters in EPC mode. This can not only ensure safety for ANPC but also positively promote national nuclear power development. For this reason, based on site HSE management of the first AP1000 nuclear plant under construction, HSE management system and method for ANPC in EPC mode was proposed after analysis of the character of EPC mode and ANPC character. It is hoped that it will be helpful for safe construction for ANPC. (authors)

  15. Nuclear Power Plants. Construction status report, data as of February 28, 1978

    International Nuclear Information System (INIS)

    1978-03-01

    Data on the construction status of nuclear power plants in the US as of February 28, 1978 are presented. The data include licensing activities affecting the construction as well as detailed information on construction activities and schedules

  16. Biological/ecological investigations parallel to wind power plant construction and operation. Final report. Biologisch-oekologische Begleituntersuchungen zum Bau und Betrieb von Windkraftanlagen. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, M; Clemens, T; Grote, G; Hartmann, G; Hartwig, E; Lammen, C; Vauk-Hentzelt, E

    1990-01-01

    In view of the fact that there is no validated knowledge in Germany on the environmental effects of wind power plant construction and operation, the Norddeutsche Naturschutzakademie was asked by the BMFT to carry out a study in this field. The following problems were investigated: General ecological assessment and ornithological assessment of sites; investigations parallel to plant construction and operation, ecological effects; long-term effects; proposal of landscape conservation measures in regions with wind power plants. The report presents the results of the investigation. (BWI).

  17. Risks and challenges associated with the design and construction of a nuclear power plant

    International Nuclear Information System (INIS)

    Liebana Martinez, B.; Armas Garcia, A.; Martinez Gozalo, I.

    2011-01-01

    The construction of a nuclear power plant project, considering the period prior to the operation of the plant, requires a very strict risk control to ensure compliance with a series of challenges. The present paper identifying the most important challenges facing the construct ability and license requirements of the process, identifying the interfaces and proposing a methodology of construction to meet the challenge of a construction process in 5 years.

  18. Construction of an experimental plot seeder of wheat planting and compare it by imported one

    Directory of Open Access Journals (Sweden)

    I Eskandari

    2016-09-01

    spinner can be equipped with a 4 or 6 outlet delivery head, depending on row spacing. The planter is fitted with hoe openers. Alternatively, spear-point openers have sometimes been used under conventional tillage systems. Seeding depth control was achieved by an adjustment screw handle. The plot seeder is being moved by a 9.6 kW engine, and has been successfully used in applications. Field experiment established by using 4 plot length (2, 3, 4 and 6 with 4 replication by the constructed plot seeder and imported plot seeder. Crop measurements were planted height, spike m-2, seeds/spike, Thousand kernel weight, Biological and grain yield, harvest index and drill measurements were seeding depth, uniformity of row spacing in action, seed counter performance, power requirement, slippage evenly of rows after planting. Results and Discussion Results showed that there were significant differences between the plant emergences. The emergencies were higher in plots, which planted by the new plot seeder. The differences between seed distribution of openers were insignificant, but the variances of new plot seeder and imported plot seeder were 0.267 and 1.05 respectively. Mean planting depth of plots planted by the Wintersteiger plot seeder was 0.8 cm shallower than the adjusted planting depth while mean planting depth in plots planted by constructing machine had only 0.01 cm variation. Results of variance analysis revealed that effect of treatments on wheat grain yield and yield components was significant. So that, highest grain yield (4216 kgha-1, biological yield (8704 kgha-1, number of spikes per square meter (649spike, obtained from a plot which planted by constructed plot seeder. Increasing yield of treatments which planted by constructed plot seeder might be because of increasing the number of spikes per square meter in those treatments. The mean of spike per square meter in plots of new planter was 691 spikes which were116 spike more than plots planted by imported plot seeder

  19. Experience from construction and operation of Karachi nuclear power plant

    International Nuclear Information System (INIS)

    Zaidi, S.M.N.

    1977-01-01

    Pakistan's first nuclear power plant (KANUPP) is owned and operated by the Pakistan Atomic Energy Commission (PAEC). It uses a heavy water moderated and cooled natural uranium fuelled reactor. Total installed capacity is 137 MW(e). It was designed, constructed and commissioned by Canadian General Electric Co. Ltd. (CGE) as Prime Contractor. Construction started in mid-1966 and was completed in mid 1970; commissioning started in early 1970 and was completed at the end of 1972. Intensive on-the-job training for 20 engineers and 15 operators was provided by CGE in Canada. Ten engineers also worked in CGE's design offices. With this key group of engineers and technicians PAEC had no difficulty in taking over the plant from CGE after completion. The construction of the plant in a developing country presented special problems to CGE. The relatively small local construction firms had limited experience and equipment. Construction plant, equipment and tools were scarce. Fabrication and workshop facilities of limited scope were available but their quotations were relatively high. A scarcity of engineering, technical and skilled manpower for the construction of the project left as the only alternative on-site training for carefully recruited technicians. The results were most gratifying and compared favourably with CGE's Canadian experience. Welding, pipe fitting, tubing work and electrical connections were excellent. The local staff's productivity and dedication were very good. In the commissioning period, PAEC and CGE engineers and technicians worked as one team, testing and debugging the equipment and systems and demonstrating the contractual performance warranties. This period extended to approximately three years due to many technical problems resulting from equipment failures, environmental problems, system problems, plant loading limitations in view of the relatively small size of the grid system and special requirement of fuel conditioning to avoid premature fuel

  20. Nuclear power plants. Construction status report, data as of April 30, 1978

    International Nuclear Information System (INIS)

    1978-05-01

    Data on the construction status of nuclear power plants in the U.S. as of April 30, 1978 are presented. The data include licensing activities affecting the construction as well as detailed information on construction activities and schedules

  1. Nuclear power plants. Construction status report, data as of June 30, 1977. Data for decisions

    International Nuclear Information System (INIS)

    1977-07-01

    The report is designed to provide the necessary information for monitoring the progress of construction of nuclear power plants. It provides data for synchronizing the licensing process with predicted fuel loading dates, as well as providing a central federal government report for commercial reactor construction. It utilizes data collected from the utilities sponsoring these projects and the Office of Inspection and Enforcement, NRC, and analyzed by the Office of Management Information and Program Control in the implementation of Management Information Systems. The status of the 92 plants authorized to engage in construction activities is summarized. This total includes 4 plants with construction exemptions, and 18 plants with Limited Work Authorization Permits

  2. The research on the material management system in nuclear power plant construction process

    International Nuclear Information System (INIS)

    Liu Xuegeng; Huang Zhongping

    2010-01-01

    According to the module construction speciality of nuclear power plant, this article analyzes the relationship between the actual amount of the material transported to the construction site and the planed needs of the material, and points out the zero inventory management target in the nuclear power plant construction site. Based on this, the article put forward a nuclear power plant material management system which is based on the 'pull' information driver. This system is composed by material coding sub-system, procurement and site material integrated management sub-system and project control sub-system, and is driven by the material demand from construction site to realize the JIT purchasing. This structure of the system can reduce the gap between the actual amount of the material transported to the site and the planed needs of the material and achieve the target of reducing storage at construction site. (authors)

  3. Issues and measures in the design process from the perspective of risk management of construction projects. study of power plant construction projects accident cases

    International Nuclear Information System (INIS)

    Iwahara, Hirohiko; Shiraki, Wataru; Inomo, Hitoshi; Hasegawa, Syuichi

    2015-01-01

    Construction of power plants, foundation work, consisting of a wide variety of construction work, such as plant equipment work. And, civil engineering, technician electrical such as different engineering field, is a comprehensive construction project that works for the design conditions of the structure. However, if the cooperation design conditions is not sufficient, as a construction project, the optimal structures may not be said to have been built. As a result, total cost or increased, including the initial cost of the end construction projects, it is be a cause of the accident. Previous studies, plant equipment construction, is related to safety management and risk of foundation work such as individual construction were many. In this paper, as an example the power plant construction, and performs the following discussion from the point of view of risk management of large-scale construction projects that these individual construction work together with each other. The importance of design conditions cooperation, (1) 'Challenges and countermeasures of ordering method of construction projects', to verify from the (2) 'actually happened substation foundation displacement accident'. And on whether or not the construction project order institutions can be involved in the design from the site preparation stage, we study (3) for 'construction work scope and risk control the construction project ordering institutions to implement' the risk to the natural disaster (earthquake). From these, we describe the challenges and measures in the construction project of the design process. (author)

  4. 4D Simulation for Nuclear Power Plant Construction

    International Nuclear Information System (INIS)

    Jeong, Seo G.; Suh, Kune Y.

    2006-01-01

    For the timely and competitive response to rapidly changing energy environment at the turn of millennium, there is a desperate need to build the nuclear power plant (NPP) in the virtual reality of digital engineering prior to commissioning. To construct a NPP is a highly integrated, voluminous project. Verification of design and initial planning is prerequisite to construction to confirm optimal fabrication and high productivity. This paper presents the design feasibility by simulating the initial construction plan of NPP using four-dimensional (4D) simulation. The virtual reality method, using three dimensional (3D) computer-aided design (CAD) model, enables various designs in the project launching stage to be promptly and exactly previewed

  5. Simulation of power plant construction in competitive Korean electricity market

    International Nuclear Information System (INIS)

    Ahn, Nam Sung; Huh, Sung Chul

    2001-01-01

    This paper describes the forecast of power plant construction in competitive Korean electricity market. In Korea, KEPCO (Korean Electric Power Corporation, fully controlled by government) was responsible for from the production of the electricity to the sale of electricity to customer. However, the generation part is separated from KEPCO and six generation companies were established for whole sale competition from April 1st, 2001. The generation companies consist of five fossil power companies and one nuclear power company. Fossil power companies are schedule to be sold to private companies including foreign investors. Nuclear power company is owned by government. The competition in generation market will start from 2003. ISO (Independence System Operator) will purchase the electricity from the power exchange market. The market price is determined by the SMP (System Marginal Price) which is decided by the balance between demand and supply of electricity in power exchange market. Under this uncertain circumstance, the energy policy planners are interested to the construction of the power plant in the future. These interests are accelerated due to the recent shortage of electricity supply in California. In the competitive market, investors are no longer interested in the investment for the capital intensive, long lead time generating technologies. Large nuclear and coal plants were no longer the top choices. Instead, investors in the competitive market are interested in smaller, more efficient, cheaper, cleaner technologies such as CCGT (Combined Cycle Gas Turbine). Electricity is treated as commodity in the competitive market. The investor's behavior in the commodity market shows that the new investment decision is made when the market price exceeds the sum of capital cost and variable cost of the new facility and the existing facility utilization depends on the marginal cost of the facility. This investor's behavior can be applied to the new investments for the

  6. A comparative analysis of methods to represent uncertainty in estimating the cost of constructing wastewater treatment plants.

    Science.gov (United States)

    Chen, Ho-Wen; Chang, Ni-Bin

    2002-08-01

    Prediction of construction cost of wastewater treatment facilities could be influential for the economic feasibility of various levels of water pollution control programs. However, construction cost estimation is difficult to precisely evaluate in an uncertain environment and measured quantities are always burdened with different types of cost structures. Therefore, an understanding of the previous development of wastewater treatment plants and of the related construction cost structures of those facilities becomes essential for dealing with an effective regional water pollution control program. But deviations between the observed values and the estimated values are supposed to be due to measurement errors only in the conventional regression models. The inherent uncertainties of the underlying cost structure, where the human estimation is influential, are rarely explored. This paper is designed to recast a well-known problem of construction cost estimation for both domestic and industrial wastewater treatment plants via a comparative framework. Comparisons were made for three technologies of regression analyses, including the conventional least squares regression method, the fuzzy linear regression method, and the newly derived fuzzy goal regression method. The case study, incorporating a complete database with 48 domestic wastewater treatment plants and 29 industrial wastewater treatment plants being collected in Taiwan, implements such a cost estimation procedure in an uncertain environment. Given that the fuzzy structure in regression estimation may account for the inherent human complexity in cost estimation, the fuzzy goal regression method does exhibit more robust results in terms of some criteria. Moderate economy of scale exists in constructing both the domestic and industrial wastewater treatment plants. Findings indicate that the optimal size of a domestic wastewater treatment plant is approximately equivalent to 15,000 m3/day (CMD) and higher in Taiwan

  7. Design and construction of nuclear power plants

    International Nuclear Information System (INIS)

    Meiswinkel, Ruediger; Meyer, Julian; Schnell, Juergen

    2013-01-01

    Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply. Building structures required for nuclear installations whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overview from approval aspects given by nuclear and construction law, with special attention to the interface between plant and construction engineering, to a building structure classification. All life cycle phases are considered, with the primary focus on execution. Accidental actions on structures, the safety concept and design and fastening systems are exposed to a particular treatment. Selected chapters of the German concrete yearbook ''Beton-Kalender'' are now available in English. The new English BetonKalender Series delivers internationally useful engineering expertise and industrial know-how from Germany.

  8. Construction Technologies for Nuclear Power Plants

    International Nuclear Information System (INIS)

    2011-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Statute Article III, A.6, the IAEA safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on and practical application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. There are three distinct significant phases in a nuclear power plant (NPP) project after the signing of a contract; engineering, procurement, and construction and commissioning. Experience gained over the last forty years has shown that the construction phase is one of the most critical phases for the success of a project. Success is defined as completing the project with the specified quality, and within budget and schedule. The key to a successful construction project is to have an established programme that integrates the critical attributes into the overall project. Some of

  9. New technologies for lower-cost design and construction of new nuclear power plants. Annex 20

    International Nuclear Information System (INIS)

    Ritterbusch, S.E.; Bryan, R.E.; Harmon, D.L.

    2002-01-01

    Electric Power Research Institute studies indicate that in order to be competitive with gas-fired electric power plant capital costs, new nuclear plant capital cost in the USA must be decreased by at least 35% to 40% relative to costs of some Advanced Light Water Reactors designed in the early 1990s. To address this need, the U. S. Department of Energy is sponsoring three separate projects under its Nuclear Energy Research Initiative. These projects are the Risk-Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants, the Smart Equipment Nuclear Power Plant Program, and the Design, Procure, Construct, Install and Test Program. The goal of the Design-Construction program is reduction of the complete nuclear plant design-procure-construct-install-test cycle schedule and cost. A 3D plant model was combined with a construction schedule to produce a 4D visualization of plant construction, which was then used to analyze plant construction methods. Insights include the need for concurrent engineering, a plant-wide central database, and use of the World-Wide WEB. The goal of Smart Equipment program is to design, develop, and evaluate the methods for implementing smart equipment and predictive maintenance technology. 'Smart' equipment means components and systems that are instrumented and monitored to detect incipient failures in order to improve their reliability. The resulting smart equipment methods will be combined with a more risk-informed regulatory approach to allow plant designers to (1) simplify designs without compromising overall reliability and safety and (2) maintain more reliable plants at lower cost. Initial results show that rotating equipment such as charging pumps would benefit most from smart instrumentation and that the technique of Bayesian Belief Networks would be most appropriate for providing input to a health monitoring system. (author)

  10. Will nuclear power plant standardization reduce the licensing impact on construction

    International Nuclear Information System (INIS)

    Allen, J.M.; Bingham, W.G.; Keith, D.G.

    1976-01-01

    The NRC and the nuclear industry have been pursuing standardization quite vigorously in an effort to reduce the cost and schedule for the design and construction of nuclear power plants. The NRC is currently reviewing standard plant applications submitted under each of four standardization options. In addition, the NRC has published Standard Review Plans and Standard Technical Specifications. Although problems exist in the implementation of standardization and in areas unaffected by standardization, each of these standardization methods has the potential to reduce the licensing impact on construction

  11. Socio-demographic and economic aspects of nuclear power plant construction and operation

    International Nuclear Information System (INIS)

    1984-01-01

    The proceedings contain 10 papers of which 9 have been inputted in INIS. The papers deal with the economic, social and ecological consequences of the construction of nuclear power plants. Various approaches are listed to the economic evaluation of the said consequences. The question is discussed of the efficiency of investments for the construction of nucliear power plants as are the probiems of sitting large projects. (E.S.)

  12. 75 FR 59933 - Specifications and Drawings for Construction of Direct Buried Plant

    Science.gov (United States)

    2010-09-29

    ... include new construction units for Fiber-to-the-Home, remove redundant or outdated requirements, and... in Fiber-to-the-Home construction as well as installation methods and materials. In order for... for Construction of Direct Buried Plant AGENCY: Rural Utilities Service, USDA. ACTION: Final rule...

  13. The use of fly ash the thermal power plants in the construction

    Science.gov (United States)

    Fediuk, R. S.; Yushin, A. M.

    2015-10-01

    The problems of ecological and radiation safety of the construction of man-made waste like fly ash thermal power plants were researched. The chemical composition of TPPs ashes of Primorsky Territory was studied, defined their specific effective activity of natural radionuclides. The most modern research methods were used - differential thermal analysis, thermogravimetry, X-ray analysis. It was revealed that the ash of the Primorskaya TPP and Partizanskaya TPP has exceed the permissible parameters of radioactivity, so not suitable for use in construction. Ashes of Vladivostok TPP-2 and Artem TPP of Primorsky Region on parameters radioactivity and chemical composition have suitable for use as a filler in the concrete.

  14. Changing priorities of codes and standards -- quality engineering: Experiences in plant construction, maintenance, and operation

    International Nuclear Information System (INIS)

    Antony, D.D.; Suleski, P.F.; Meier, J.C.

    1994-01-01

    Application of the ASME Code across various fossil and nuclear plants necessitates a Company approach adapted by unique status of each plant. This arises from State Statutes, Federal Regulations and consideration of each plant's as-built history over a broad time frame of design, construction and operation. Additionally, the National Board Inspection Code accompanies Minnesota Statutes for plants owned by Northern States Power Company. This paper addresses some key points on NSP's use of ASME Code as a principal mechanical standard in plant design, construction and operation. A primary resource facilitating review of Code provisions is accurate status on current plant configuration. As plant design changes arise, the Code Edition/Addenda of original construction and installed upgrades or replacements are considered against available options allowed by current standards and dialog with the Jurisdictional Authority. Consistent with the overall goal of safe and reliable plant operation, there are numerous Code details and future needs to be addressed in concert with expected plant economics and planned outages for implementation. The discussion begins in the late 60's with new construction of Monticello and Prairie Island (both nuclear), through Sherburne County Units 1 through 3 (fossil), and their changes, replacements or repairs as operating plants

  15. Information management system for design, construction and operation of nuclear power plants

    International Nuclear Information System (INIS)

    Bolch, M.C.; Jones, C.R.

    1990-01-01

    This paper describes the principal requirements and features of a computerized information management system (IMS) believed to be a necessary part of the program to design, build and operate the next generation of nuclear power plants in the United States. This way a result of extensive review and input from an industry group studying future nuclear power plant construction improvements. The needs of the power plant constructor, owner and operator for such a computerized technical data base are described in terms of applications and scope and timing of turnover of the IMS by the plant designer. The applications cover the full life cycle of the plant including project control, construction activities, quality control, maintenance and operation. The scope of the IMS is also described in terms of the technical data to be included, hardware and software capabilities and training. The responsibilities of the plant designer for developing the IMS and generating the technical data base is defined as part of the plant process. The requirements to be met include a comprehensive plant data model and computer system hardware and software

  16. Information management system for design, construction and operation of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, M.C. (Duke Power Co. (US)); Jones, C.R. (S. Levy Inc. (US))

    1990-01-01

    This paper describes the principal requirements and features of a computerized information management system (IMS) believed to be a necessary part of the program to design, build and operate the next generation of nuclear power plants in the United States. This way a result of extensive review and input from an industry group studying future nuclear power plant construction improvements. The needs of the power plant constructor, owner and operator for such a computerized technical data base are described in terms of applications and scope and timing of turnover of the IMS by the plant designer. The applications cover the full life cycle of the plant including project control, construction activities, quality control, maintenance and operation. The scope of the IMS is also described in terms of the technical data to be included, hardware and software capabilities and training. The responsibilities of the plant designer for developing the IMS and generating the technical data base is defined as part of the plant process. The requirements to be met include a comprehensive plant data model and computer system hardware and software.

  17. Nuclear power plants: data for decisions. Construction status report: data as of July 31, 1977

    International Nuclear Information System (INIS)

    1977-08-01

    This management report is designed to provide the necessary information for monitoring the progress of construction of nuclear power plants. It provides data for synchronizing the licensing process with predicted fuel loading dates, as well as providing a central federal government report for commercial reactor construction. It utilizes data collected from the utilities sponsoring these projects and the Office of Inspection and Enforcement, NRC, and analyzed by the Office of Management Information and Program Control in the implementation of Management Information Systems. The status of the 91 plants authorized to engage in construction activities in Regions I thru V is summarized in this document. This total includes (4) plants with construction exemptions, and (10) plants with Limited Work Authorization Permits

  18. Improving quality and the assurance of quality in the design and construction of nuclear power plants: a report to Congress

    International Nuclear Information System (INIS)

    Altman, W.; Ankrum, T.; Brach, W.

    1984-05-01

    A study was conducted of existing and alternative programs for improving quality and the assurance of quality in the design and construction of commercial nuclear power plants. A primary focus of the study was to determine the underlying causes of major quality-related problems in the construction of some nuclear power plants and the untimely detection and correction of these problems. The study concluded that the root cause for major quality-related problems was the failure or inability of some utility managements to effectively implement a management system that ensured adequate control over all aspects of the project. These management shortcoming arose in part from inexperience on the part of some project teams in the construction of nuclear power plants. NRC's past licensing and inspection practices did not adequately screen construction permit applicants for overall capability to manage or provide effective management oversight over the construction project. The study recommends a number of improvements in industry and NRC programs. For industry, the study recommends self-imposed rising standards of excellence, treatment of quality assurance as a management tool, not a substitute for management, improved trend analysis and identification of root causes of quality problems, and a program of comprehensive third party audits of present and future construction projects. To improve NRC programs, the study recommends a heavier emphasis on team inspections and resident inspectors, an enhanced review of new applicant's capabilities to construct commercial nuclear power plants, more attention to management issues, improved diagnostic and trending capabilities, improved quality and quality assurance for operating reactors, and development of guidance to facilitate the prioritization of quality assurance measures commensurate with the importance of plant structures, systems, and components to the achievement of safety

  19. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1989-10-01

    Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule duration, and to simplify design. This document discusses construction approaches. 77 refs., 5 figs., 6 tabs

  20. International construction trends for power plants

    International Nuclear Information System (INIS)

    Armor, A.F.

    1991-01-01

    In this review of trends in new, worldwide plant construction it is apparent that the technologies being applied are often geared to the cost of money issue. In an era when interest rates can fluctuate widely, particularly in Third World countries, the need to put new power plants on-line quickly has become a key issue. For example, this has largely triggered the move to smaller, more dispersed plants, with unit sizes 400 MW and below, compared with the 1,000 MW + sizes of 10-20 years ago. It has also renewed the emphasis on modular methods of building components, and on innovative transportation procedures. It has given support to the packaged power plants, such as PFBC, which can be largely pre-assembled. In the US, it has spawned a new infrastructure of independent constructors and power generators, who have partially lifted the burden of new plant financing from the shoulders of the utilities. Yet, national needs are not always the same. Fuels may or may not be indigenous. Environmental restrictions are nationally, or even locally, imposed. Government subsidies and strategic needs can override the short-term objectives. This paper briefly surveys current approaches to new generating plants in some key areas of the world. One aspect of electric power generation seems clear. In terms of power consumption, the world is on the move again - not only in third world countries, but also in the developed nations as the memories of the oil embargo of 15 years ago fade. Trends are discussed for the US, Japan, the rest of Asia, South Africa, Western Europe, Russia, and Eastern Europe

  1. 135 tf climbing crane for the construction of large scale plants

    International Nuclear Information System (INIS)

    1981-01-01

    Development of a larger capacity, wider working radius and higher lift climbing crane was in demand since the large block construction method become common in plant construction. At first, scaling up of the conventional climbing crane was planned. But, it turned out that the deflection at the top of the jib would cause the load to drift at takeoff in crane operation. Therefore, the crane was newly designed to solve the problem. Some of its advantage are as follows. (1) This crane can be used as either a climbing or a nonclimbing type depending on installation locations and objective plants. (2) Accurate and easy operation is achieved because of little deflection at the top of the jib. (3) Efficient crane operation is possible through high speed hoisting and slewing motions in frequent auxiliary hoisting operations. (4) The construction time can be shortened by adopting pin joints between the blocks and by reducing the number of assembling parts at the site. A nonclimbing type crane is now in operation at the nuclear power plant in Kashiwazaki and a climbing type will be in operation at the nuclear power plant in Fukushima this year. The report presents an outline of the specifications, structures and advantages. (author)

  2. Current status of construction of nuclear power plants No. 7, No. 8 in Korea

    International Nuclear Information System (INIS)

    Sug, S.H.

    1979-01-01

    The up-to-date accomplishment and future work in the construction of nuclear power plants in Korea are outlined. The scope of the construction project of the No. 7 and No. 8 power plants, selection of the suppliers of the main instruments, assessment of the planning, architecture, engineering, construction fund, procurement of nuclear fuel, and the necessities of home production of various nuclear materials are briefly summarized. (author)

  3. Technology transfer by industry for the construction of nuclear power plants

    International Nuclear Information System (INIS)

    Frewer, H.; Altvater, W.

    1977-01-01

    The construction of nuclear power plants call for a wide sphere of industrial activities, nuclear as well as conventional. For a specific country the ways and methods of developing an industrial nuclear power program and reaching the target of independence, will widely differ, depending on the size of the country, the economic situation, the already existing industrial manufacturing and engineering capacities, the time schedule of the program and the type of contracting. The experience in effective technology transfer for the strengthening and setting up the national industry, and the engineering capacities, needed for the construction of nuclear power plants up to the largest size existing today are considered. The German nuclear power industry gained this experience in connection with the turn-key supply of the first units in various countries. The prerequisites and national nuclear power programs were different. Based on a successful technological development, including standardization, the German nuclear power industry could meet the demand and different approaches in these countries. The main features and practices followed for the transfer of technology is described for three different cases, namely Argentina, Brazil and Iran. (author)

  4. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1987-12-01

    Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule durations, and to simplify design. This document discusses successes and problems in construction. 49 refs., 16 figs., 8 tabs

  5. Nuclear power plants. The market for services, retrofitting, construction of new plants and dismantling of older plants in Europe through 2030

    International Nuclear Information System (INIS)

    Briese, Dirk; Hoemske, Tom

    2010-01-01

    The power plant scene in Europe is characterized by new power plant projects and retrofitting projects everywhere. This is due to the ageing of existing power plants and to increasing energy demand. Currently, there are projects for 48 power plant units with an installed capacity of 70 GW. According to a study of the nuclear power plant sector, about 16 GW will probably be constructed prior to 2030. The reference scenario presented in this article assumes a dynamic increase of 15 thousand million Euros per annum through 2016/2018. (orig.)

  6. Using game technologies to improve the safety of construction plant operations.

    Science.gov (United States)

    Guo, Hongling; Li, Heng; Chan, Greg; Skitmore, Martin

    2012-09-01

    Many accidents occur world-wide in the use of construction plant and equipment, and safety training is considered by many to be one of the best approaches to their prevention. However, current safety training methods/tools are unable to provide trainees with the hands-on practice needed. Game technology-based safety training platforms have the potential to overcome this problem in a virtual environment. One such platform is described in this paper - its characteristics are analysed and its possible contribution to safety training identified. This is developed and tested by means of a case study involving three major pieces of construction plant, which successfully demonstrates that the platform can improve the process and performance of the safety training involved in their operation. This research not only presents a new and useful solution to the safety training of construction operations, but illustrates the potential use of advanced technologies in solving construction industry problems in general. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effect of construction of Dukovany nuclear power plant on development of organizational structure of Prumyslove Stavby Brno

    International Nuclear Information System (INIS)

    Miks, L.

    1985-01-01

    Prumyslove stavby was set up in 1969 and its structure has undergone considerable changes. No major changes were made during the pre-production stage and in the construction preparation period (1969-77). With increased building work volume the organizational structure expanded: new units, such as building site plants, etc., were opened. The current period is characterized by gradual reduction in production capacity, mainly in units providing special jobs. All production units will be closed down with the termination of the nuclear power plant in 1987. (Pu)

  8. Effects of constructed wetland design on ibuprofen removal – A mesocosm scale study

    DEFF Research Database (Denmark)

    Zhang, Liang; Lyu, Tao; Zhang, Yang

    2017-01-01

    This study aimed to investigate the effects of constructed wetland design (unsaturated, saturated and aerated saturated) and plant species (Juncus, Typha, Berula, Phragmites and Iris) on the mass removal and removal kinetics of the pharmaceutical ibuprofen. Planted systems had higher ibuprofen...

  9. Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Maltais-Landry, Gabriel [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada); Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)], E-mail: gabriel.maltais-landry@umontreal.ca; Maranger, Roxane [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada)], E-mail: r.maranger@umontreal.ca; Brisson, Jacques [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada); Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)], E-mail: jacques.brisson@umontreal.ca; Chazarenc, Florent [Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)

    2009-03-15

    Greenhouse gas (GHG) emissions by constructed wetlands (CWs) could mitigate the environmental benefits of nutrient removal in these man-made ecosystems. We studied the effect of 3 different macrophyte species and artificial aeration on the rates of nitrous oxide (N{sub 2}O), carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) production in CW mesocosms over three seasons. CW emitted 2-10 times more GHG than natural wetlands. Overall, CH{sub 4} was the most important GHG emitted in unplanted treatments. Oxygen availability through artificial aeration reduced CH{sub 4} fluxes. Plant presence also decreased CH{sub 4} fluxes but favoured CO{sub 2} production. Nitrous oxide had a minor contribution to global warming potential (GWP < 15%). The introduction of oxygen through artificial aeration combined with plant presence, particularly Typha angustifolia, had the overall best performance among the treatments tested in this study, including lowest GWP, greatest nutrient removal, and best hydraulic properties. - Methane is the main greenhouse gas produced in constructed wetlands and oxygen availability is the main factor controlling fluxes.

  10. Wind Power Plants Fundamentals, Design, Construction and Operation

    CERN Document Server

    Twele, Jochen

    2012-01-01

    Wind power plants teaches the physical foundations of usage of Wind Power. It includes the areas like Construction of Wind Power Plants, Design, Development of Production Series, Control, and discusses the dynamic forces acting on the systems as well as the power conversion and its connection to the distribution system. The book is written for graduate students, practitioners and inquisitive readers of any kind. It is based on lectures held at several universities. Its German version it already is the standard text book for courses on Wind Energy Engineering but serves also as reference for practising engineers.

  11. Concerning the structure of occupational accidents involving construction workers in the erection of nuclear power plants

    International Nuclear Information System (INIS)

    Nowak, B.; Roebenack, K.D.

    1991-01-01

    An investigation of 561 occupational accidents involving construction workers which took place during the construction of nuclear power plants failed to show any significant deviation in comparison with general construction as regards process classification, classification of accidents according to occupation and situation, and accidents severity. Occupational accidents which are typial for nuclear power plant construction are a rare exception. (orig.) [de

  12. The analysis of energy-time sequences in the nuclear power plants construction

    International Nuclear Information System (INIS)

    Milivojevic, S.; Jovanovic, V.; Riznic, J.

    1983-01-01

    The current nuclear energy development pose many problems; one of them is nuclear power plant construction. They are evaluated energy and time features of the construction and their relative ratios by the analysis of available data. The results point at the reached efficiency of the construction and, in the same time, they are the basis for real estimation of energy-time sequences of the construction in the future. (author)

  13. Financial qualifications review of applicants for nuclear power plant construction permits

    International Nuclear Information System (INIS)

    Hendrickson, P.L.; Mullen, M.F.; Carr, D.B.

    1988-09-01

    The NRC and its predecessor the AEC have had a regulatory requirement since 1956 that utilities seeking a construction permit for a nuclear power plant be financially qualified to construct and operate the plant. Several amendments to the requirements were made over the years including an attempt in 1982 to drop financial qualification review for electric utilities. This attempt was subsequently found invalid by a federal court. Nevertheless, financial qualification reviews consume significant amounts of NRC staff time and time at Atomic Safety and Licensing Board hearings. The analysis reported in this study was conducted to determine whether there is any empirical evidence of a relationship between a utility's financial health at the time of its construction permits application and the subsequent safety performance of the operating plant. The principal financial measures used to test for this relationship were bond rating, interest coverage ratio, debt/asset ratio, debt/equity ratio, and rate of return on equity. The principal safety measure was the long-term average of the scores assigned the utility in four key areas by the NRC under the Systematic Assessment of Licensee Performance program. The results of the analysis showed no evidence of a relationship between financial health at the time of the construction permit and subsequent safety performance. 7 refs., 16 figs., 4 tabs

  14. Building technology on construction site of nuclear power plant at Zaporozh'e

    Energy Technology Data Exchange (ETDEWEB)

    Dusek, R; Matyas, V [Vodni Stavby, Prague (Czechoslovakia)

    1981-12-01

    Basic data and technical and economic indexes are shown for a WWER 1000 nuclear power plant being built 120 km off Zaporozh'e (USSR). The schedule of construction and the choice of the means of mechanization used for building work are reported. Discussed are building machines used, the location of assembly cranes of the main unit, the design and the building technology of the reactor part, the engine house, deisel generator station, the special operations building, the use of concrete and steel units in the building, and the procurement of materials for the construction. The knowledge gained from the building of the power plant will be applied in the CSSR in the building of 1000 MW unit power plants.

  15. Experience in construction and operation of HWR plants in Argentina

    International Nuclear Information System (INIS)

    Madero, C.C.; Cosentino, J.O.

    1982-01-01

    ''ATUCHA I'', the first nuclear power plant in Argentina, is in commerical operation since 1974 with a high capacity factor. The reactor is based on the MZFR prototype designed by SIEMENS with natural uranium and heavy water and PWR technic. The plant was built by SIEMENS on a turnkey contract and was rated 340 MWe. The offer presented in that opportunity by KWU was based on two reactors (ATUCHA I type) inside one single containment, due to the limitation in power of the reactor. Subsequent changes in the nature of the contract resulted in an active participation of CNEA engineering groups in the erection and commissioning of the reactor. In 1978 the national government approved a nuclear power plan to install four 600 MWe HWR plants until 1995. To start implementing this program, CNEA called for tenders for the supply of components and services for the ATUCHA II plant, in connection with the establishment of a local engineering company and the supply and construction of a heavy water production plant. In 1980 a contract was signed with KWU and the local company ENACE was formed to act as architect engineer and site coordinator. The plant will be located in the ATUCHA I site and the reactor will be similar but double in power to that one. Following the schedule of the nuclear plan, CNEA has just started preliminary studies for the next nuclear plant. ENACE will be responsible for the preparation of an offer for an ATUCHA reactor type. Local engineering and manufacturing firms, upon request and coordination from CNEA, and evaluating the local capacity to participate in the design and construction of a CANDU type nuclear plant. Final decision on this fourth nuclear plant in Argentina will be taken middle 1983. (J.P.N.)

  16. Quality assurance during site construction of nuclear power plants

    International Nuclear Information System (INIS)

    1981-01-01

    This Safety Guide provides requirements and recommendations related to the establishment and implementation of a quality assurance programme for the site construction activities at nuclear power plants. These include activities such as fabricating, erecting, installing, handling, storing, cleaning, flushing, inspecting, testing, modifying, repairing, and maintaining

  17. Abstract of articles presented at the seminar of investigating the construction of nuclear power plant in Iran

    International Nuclear Information System (INIS)

    Hariri, A.; Khonsari Moosavi, R.; Shoai-Naini, J.; Motamedi, M.A.

    1982-01-01

    Under five subtitles papers had been presented to the seminar of investigating the construction of nuclear power plant held at Isfahan by Atomic Energy Organization of Iran (AEOI). 1.The necessity of constructing nuclear power plants in Iran with relation to the development of nuclear technology. 2.Seven articles survey the problem of fuel cycling and the potentiallity of AEOI in this field. 3. Four papers allocate to the technology of nuclear safety and radiation protection. 4.Three papers evaluate technical and scientific capabitities of AEOI for constructing nuclear power plants, and two paper about planning and training man power with an aim toward construction of nuclear power plants

  18. Meditation on the construction of exemplar plant for briquetted coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Kuiyi [China National Coal Industry Import and Export Corporation, Beijing (China)

    1997-12-31

    China uses a considerable amount of anthracite, but the fines from anthracite mining are not sufficiently used. This project involved the construction of a plant for the manufacture of anthracite briquettes under high pressure, for use in gasification plants. The characteristics of the coals used and the types of briquette formed are described. 2 tabs.

  19. Biogas plants: Design, construction and operation

    International Nuclear Information System (INIS)

    2001-01-01

    At the big readiness of waste coming from the agricultural activities are looked for the production of Energy and Payments, the biogas like product of the organic decomposition under anaerobic conditions, their composition and characteristic. The elements that conform the design as the digester, the storage, the load tanks and it discharges and the conduction is described and analyzed. They are given a series of elements to obtain the characteristics of the system possible to place as: planning, calculations, evaluation, execution and operation. Lastly the steps are indicated that should be continued in the construction of the plant including planning for the work

  20. AP1000 plant construction in China: Ansaldo Nucleare contribution

    International Nuclear Information System (INIS)

    Frogheri, Monica; Saiu, Gianfranco

    2009-01-01

    On 24th of July 2007 Westinghouse Electric Co. signed landmark contracts with China's State Nuclear Power Technology Corporation (SNPTC), to provide four AP1000 nuclear power plants in China. The AP1000 is a two-loop 1117 MWe Pressurized Water Reactor (PWR). It is based on proven technology, but with an emphasis on safety features that rely on natural driving forces, such as pressurized gas, gravity flow, natural circulation flow and convection. Ansaldo Nucleare has provided a significant support to the passive plant technology development and, starting from 2000, is cooperating with Westinghouse to development of the AP1000 Plant. In the frame of the AP1000 Chinese agreement, Ansaldo Nucleare, in Joint Venture with Mangiarotti Nuclear, has signed a contract with Westinghouse for the design and the supply of innovative components to be installed in the first AP1000 unit to be constructed at the Sanmen site. The contract includes: the design of the steel containment vessel, preparation of construction and fabrication, specifications, design and supply of SCV mechanical penetrations, air locks and equipment hatches. Moreover, Ansaldo Nucleare is in charge of the final design of the AP1000 PRHR-HX and together with Mangiarotti Nuclear will supply the component for the Sanmen Unit 1 NPP. The paper presents an overview of the design and manufacturing activities performed by Ansaldo Nucleare and its partners for the AP1000 plant in China. (authors)

  1. A concise biogas plant construction suitable for Ghana and other tropical countries

    Energy Technology Data Exchange (ETDEWEB)

    Gbagbo, J.K.N.

    1997-04-01

    This report is intended to be used by people in the field of biogas for workshops, technicians, teachers to educate as well as to carry out hands on constructions in Ghana and other tropical countries. Chapter 1, discusses the biogas technology, what a biogas plant is, and how it functions. Chapter 2, describes the entire process. Chapter 3, discusses the necessary conditions for fermentation. Chapter 4, the measuring parameters for monitoring the system. Chapter 5, describes the various types of biogas plants suitable for tropical countries. Chapter 6, describes a planning guide for Ghana and other tropical countries. Chapter 7, discusses digester sizing and finally, Chapter 8, describes a concise biogas plant construction suitable for the rural areas of Ghana and other tropical countries. (au)

  2. Quality assurance in the construction phase of the Guangdong Daya Bay Nuclear Power Plant

    International Nuclear Information System (INIS)

    Chen Heling; Zou Xiaoshun

    1994-11-01

    The quality assurance system of Guangdong Daya Bay Nuclear Power Plant during construction phase is briefly introduced. It includes the quality assurance organization and multiple quality control system of the owner (GNPJVC) and contractors. The status of the programmes implementation has been also described through presenting of some important quality assurance activities such as quality surveillance, QA audit and nonconformance control. In addition, the effectiveness of GNPP Construction QA Program has been analyzed and evaluated and both positive and negative experience have been summarized which could be used for reference by the nuclear power constructors. (6 figs.)

  3. Quality assurance in the construction phase of the Guangdong Daya Bay Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Heling, Chen; Xiaoshun, Zou [Guangdong Nuclear Power Joint Venture Company (China)

    1994-11-01

    The quality assurance system of Guangdong Daya Bay Nuclear Power Plant during construction phase is briefly introduced. It includes the quality assurance organization and multiple quality control system of the owner (GNPJVC) and contractors. The status of the programmes implementation has been also described through presenting of some important quality assurance activities such as quality surveillance, QA audit and nonconformance control. In addition, the effectiveness of GNPP Construction QA Program has been analyzed and evaluated and both positive and negative experience have been summarized which could be used for reference by the nuclear power constructors. (6 figs.).

  4. Technical data for concentrated solar power plants in operation, under construction and in project

    Directory of Open Access Journals (Sweden)

    Ugo Pelay

    2017-08-01

    Full Text Available This article presents technical data for concentrated solar power (CSP plants in operation, under construction and in project all over the world in the form of tables. These tables provide information about plants (e.g., name of the CSP plant, country of construction, owner of the plant, aim of the plant and their technical characteristics (e.g., CSP technology, solar power, area of the plant, presence and type of hybridization system, electricity cost, presence and type of TES, power cycle fluid, heat transfer fluid, operating temperature, operating pressure, type of turbine, type and duration of storage, etc.. Further interpretation of the data and discussions on the current state-of-the-art and future trends of CSP can be found in the associated research article (Pelay et al., 2017 [1].

  5. Rationalization of design and construction of buildings for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Shunsaku; Mitsumatsu, Kazuo

    1987-02-01

    This article presents various rationalization methods introduced in the past few years for design and construction of BWR nuclear power plant buildings. When the site for a nuclear power plant has been decided, investigation is made on various aspects of possible earthquakes, based on which anti-earthquake design for the plant site is established. The next step is to examine the displacements and stresses that may occur to various parts of the bulding from a postulated earthquake. This is normally called the earthquake response analysis and consists of calculating the behaviors of the buildings using large computers. A seismic controlled structure system has recently proposed, aiming to reduce the displacements and stresses of the building itself by controlling the flexibility of the installed seismic apparatus against the input of external loads. Lately, high strength concrete and high strength reinforcing steel bars (rebars) are being considered for practical application. If advanced computers and related accessories are utilized to the maximum, it will lead not only to efficiency in the design work but to the possibility of optimized design. For rational construction, a combined scaffolding and temporary support has been devised to reduce the time and volume of required temporary work. What have been developed for rationalization of construction work also include robots for heavy weight rebar fabrication, horizontal reed blind type rebars, portable concrete distributor, all weather environment facilities, and construction materials conveyance system. (Nogami, K.).

  6. Rationalization of design and construction of buildings for nuclear power plants

    International Nuclear Information System (INIS)

    Satoh, Shunsaku; Mitsumatsu, Kazuo

    1987-01-01

    This article presents various rationalization methods introduced in the past few years for design and construction of BWR nuclear power plant buildings. When the site for a nuclear power plant has been decided, investigation is made on various aspects of possible earthquakes, based on which anti-earthquake design for the plant site is established. The next step is to examine the displacements and stresses that may occur to various parts of the bulding from a postulated earthquake. This is normally called the earthquake response analysis and consists of calculating the behaviors of the buildings using large computers. A seismic controlled structure system has recently proposed, aiming to reduce the displacements and stresses of the building itself by controlling the flexibility of the installed seismic apparatus against the input of external loads. Lately, high strength concrete and high strength reinforcing steel bars (rebars) are being considered for practical application. If advanced computers and related accessories are utilized to the maximum, it will lead not only to efficiency in the design work but to the possibility of optimized design. For rational construction, a combined scaffolding and temporary support has been devised to reduce the time and volume of required temporary work. What have been developed for rationalization of construction work also include robots for heavy weight rebar fabrication, horizontal reed blind type rebars, portable concrete distributor, all weather environment facilities, and construction materials conveyance system. (Nogami, K.)

  7. Special issue on start of construction of the Ohma nuclear power plant of J-Power

    International Nuclear Information System (INIS)

    Takahashi, Taizo

    2008-01-01

    The Electric Power Development Co., Ltd. (J-Power) started construction of its Ohma nuclear power plant - a 1383 MWe Advanced Boiling Water Reactor (ABWR) - in Aomori prefecture on May 2008. The reactor of the Ohma plant will be the first to load MOX fuels in all of its reactor cores. It will be able to consume a quarter of all the recycled MOX fuels produced at Rokkasho reprocessing plant and hence make a major contribution to Japan's policy of recycling plutonium recovered from spent fuels. Special issue reviewed history and overview of the Ohma plant as well as its significance to enhance power generation portfolio in corresponding with national interests. Local governor's expectations and present state of the Ohma plant were also described. After preparation works, construction began on excavation of foundation for the service building, proceeding as always with safety the foremost priority during construction. (T. Tanaka)

  8. Construction permit of nuclear power plants in case of leasing

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Guiding lines (unofficial): 1. A leasing company can be founded to finance and to operate a nuclear power plant. 2. The leasing company does not require a license according to section 7 of the Atomic Energy Act, for it neither constructs nor posesses the nuclear power plant. 3. This also applies if the proprietor, and later on operator, of the nuclear power plant holds an interest in this leasing company as a shareholder. Section 7, and 19 subsection 3 of the Atomic Energy Act. Higher Administrative Court of Rhineland Palatinate, Decision of July 20sup(th), 1982. (orig.) [de

  9. Application and development analysis of nuclear power plant modular construction

    International Nuclear Information System (INIS)

    Fang Xiaopeng

    2015-01-01

    Modular Construction is currently one of the major development trends for the nuclear power plant construction technology worldwide. In the first-of-a-kind AP1000 Nuclear Power Project practiced in China, the large-scale structural modules and mechanical modules have been successfully fabricated, assembled and installed. However, in the construction practice of the project, some quality issues are identified with the assembly and installation process of large-scale structural modules in addition to the issue of incomplete supply of mechanical modules, which has failed to fully demonstrate the features and merits of modular construction. This paper collects and consolidates the issues of modular construction of AP1000 first of a kind reactor, providing root cause analysis in the aspects of process design, quality control, site construction logic, interface management in the process of module fabrication, assembly and installation; modular construction feasibility assessment index is proved based on the quantification and qualitative analysis of the impact element. Based on the modular construction feasibility, NPP modular construction improvement suggestions are provided in the aspect of modular assembly optimization definition, tolerance control during the fitting process and the construction logic adjustment. (author)

  10. A novel approach to the generation of seamless constructs for plant transformation

    DEFF Research Database (Denmark)

    Kronbak, Remy; Ingvardsen, Christina R.; Madsen, Claus K.

    2014-01-01

    Background: When creating plant transformation vectors, full control of nucleotides flanking the insert in the final construct may be desirable. Modern ligase-independent methods for DNA-recombination are based on linearization by classical type II restriction endonucleases (REs) alone or in comb......Background: When creating plant transformation vectors, full control of nucleotides flanking the insert in the final construct may be desirable. Modern ligase-independent methods for DNA-recombination are based on linearization by classical type II restriction endonucleases (REs) alone...... on wheat and barley endosperm cells for transient gfp expression.Conclusions: All nucleotides flanking an insert in a biolistic plant transformation vector can be customized by means of SRL in combination with SLIC. Especially type IIS REs promote an efficient cloning result. Based on our findings, we...

  11. Development of advanced concept for shortening construction period of ABWR plant (part 2)

    International Nuclear Information System (INIS)

    Fujita, Tomohiro; Satoh, Takashi

    2003-01-01

    The construction of the first building fully applying SC structure, which is indispensable for shortening construction period of ABWR plants (21.5 months from the first concrete work to fuel loading), has been started since August 2002 in Japan. Before the construction start, a pre-construction test with some actual size SC panels was carried out to confirm the SC modular construction method. The outline of the design and the construction of the first full-SC building and the results of the pre-construction test are reported. (author)

  12. Visualization of construction engineering

    International Nuclear Information System (INIS)

    Okada, Hisako; Miura, Jun

    2000-01-01

    It is required for nuclear power plant construction to reduce construction cost and shorten construction period. An early and accurate construction planning including schedule coordination among the companies has recently become more important and it is possible to obtain necessary information for construction planning in early stage. In this situation, we have been developing a visualization system for construction engineering for nuclear power plants. This system has an interface with the existing Plant Layout 3D-CAD system and consists of three sub systems: (1) Scheduling and simulation system, (2) Yard planning system and (3) Scaffolding planning system. This paper describes overview of this system. This visualization system is very helpful for construction engineers to easily understand situation and environment around installation area, to easily plan a work sequence and confirm the planned schedule, and it is also effective for customers and workers to understand the planning. As a result, this visualization system enables safety and high quality construction. (author)

  13. Construction method for plant and facility for performing the method

    International Nuclear Information System (INIS)

    Matsuura, Tadashi; Koda, Koichi; Miyahara, Ryohei; Hasegawa, Hiroshi; Tatehoko, Kazuto; Takeda, Masakado; Yoshinaga, Toshiaki.

    1997-01-01

    For constructing a nuclear power plant, it is necessary to dispose a large-scaled temporarily constructed yard for install or operate a large crane. Rails are laid in series over located positions of a plurality of buildings, and a gantry crane which moves on rails and has a size striding over the buildings is disposed. The crane can work for loading operation required for the construction of a plurality of buildings and can operate over the entire region for the range of the loading operation even for large weighted loads. The gantry crane is moved toward the seashore, and construction materials and products transported on the sea are received by the gantry crane and installed to the buildings. The transportation on the land for the construction materials and products is reduced to improve efficiency. In addition, the rails are extended beyond the region where the buildings are constructed, and a yard is constructed along the extended region. The transportation from the yard can be conducted economically and efficiently with no relaying operation. (N.H.)

  14. Country Report Summary: Japan [Project Management in Nuclear Power Plant Construction: Guidelines and Experience

    International Nuclear Information System (INIS)

    2012-01-01

    The Hokkaido Electric Power Company (HEPCO) is the owner of the Tomari NPP comprising three operating PWR units. The latest unit to be connected to the grid, Tomari Unit 3, is a 3-loop PWR power plant with an electric output of 912 MW(e) supplied by Mitsubishi Heavy Industries (MHI). This is the newest unit in HEPCO and it is the newest PWR unit in Japan as well. The first concrete at Tomari Unit 3 was poured at the end of summer in 2004. The unit entered into commercial operation in December 2009. The Tomari site is located on a northern Japanese island. It is battered by strong winds and receives much snow in the winter. Therefore, civil works and building construction were temporarily suspended every year from the beginning of December until the end of March. This increased construction duration by one year compared to other sites. Consequently from first concrete to the start of commercial operation construction at Tomari lasted 64 months. There are specific factors in the approach to construction of nuclear power plants in Japan. (1) Japanese legislation defines that the sole licensee must be the electric power company. This implies that the electric power company is responsible for the safety of the plant and in that capacity it must submit for approval the Safety Analysis Report (SAR) but it is also responsible for the design and reliability of the plant; hence it must also submit for approval the Construction Plan (CP), containing all necessary detailed design information. Consequently, the electric power company becomes the sole counterpart to the regulatory body on all aspects of the project. (2) All Japanese electric power companies are considerably large and have the tradition to do the engineering of their power plant themselves, and this not only for nuclear but also for conventional power plant. Therefore, the owner/utilities in Japan carry themselves the burden of major portions of the engineering, procurement and construction (EPC) of their NPPs

  15. Nuclear power plants: construction status report, data as of 6/30/82

    International Nuclear Information System (INIS)

    1982-10-01

    This report is compiled by the Nuclear Regulatory Commission's Office of Resource Management to provide information necessary for monitoring progress of all nuclear power plants which have Construction Permits. The report includes data from utilities sponsoring the construction, as well as from NRC's Office of Inspection and Enforcement. This data is used to synchronize the licensing process with predicted fuel load dates for this central Federal Government presentation of commercial reactor construction

  16. Nuclear power plants. Construction status report, data as of 30 Nov. 78

    International Nuclear Information System (INIS)

    1978-12-01

    The report is compiled to provide the information necessary for monitoring progress of the 94 plants under authorized construction. The report includes data from utilities sponsoring the construction, as well as from NRC's Office of Inspection and Enforcement, which have been analyzed by the OMPA in implementing Management Information Systems. This data is used to synchronize the licensing process with predicted fuel load dates for this central Federal Government presentation of commercial reactor construction

  17. Nuclear power plants: construction status report, data as of 03/31/82

    International Nuclear Information System (INIS)

    1982-06-01

    This report is compiled by the Nuclear Regulatory Commission's Office of Resource Management to provide information necessary for monitoring progress of all nuclear power plants which have Construction Permits. The report includes data from utilities sponsoring the construction, as well as from NRC's Office of Inspection and Enforcement. This data is used to synchronize the licensing process with predicted fuel load dates for this central Federal Government presentation of commercial reactor construction

  18. 32 CFR 644.486 - Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or...

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar contracts. 644.486 Section 644.486 National... Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar...

  19. Development of hot water utilizing power plant in fiscal 1998. Development of a binary cycle power generation plant (development of a 10-MW class plant); 1998 nendo nessui riyo hatsuden plant nado kaihatsu. Binary cycle hatsuden plant no kaihatsu (10MW kyu plant no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper summarizes the achievements in fiscal 1998 on developing a 10-MW geothermal power plant in the Hohi-Sugawara area being a representative area of middle-to-high temperature hot water resources. In designing the plant, domestic and overseas surveys were carried out on media suitable for binary cycle power plants, thermal cycle characteristics, construction cost, environmental effects, safety, operation, maintenance and control. Latest technologies were also surveyed and analyzed. The plant construction performed development construction around the testing devices, new construction of a plant control room building, constructions for installing electrical machines including the hot water system testing devices, river water intake facility construction, and cooling water intake facility installing construction. The environmental effect investigation included investigations on rain falls, river flow rates, hot springs, spring water, monitoring during the construction, and the state of transplantation of precious plants, and observation on groundwater variation. In verifying the geothermal water pumping system, factory tests were carried out on DHP3 demonstration machine which couples the pump section of a down-hole pump with the motor section, whose performance and functions were verified. (NEDO)

  20. Assessment of the impact of nuclear power plant construction and operation on small regions

    International Nuclear Information System (INIS)

    Johnson, M.H. Jr.

    1977-01-01

    This study addresses the problem of the comprehensive, quantitative evaluation of the environmental, economic, and social impacts of the construction and operation of nuclear power plant on a given region. A theoretical model of the regional impacts is constructed employing input-output methods that are extended to include ecologic as well as economic effects. Thus, the regional model explicitly incorporates environmental feedback as a consequence of economic activity. The model is then employed to estimate the impact of the construction and operation of a nuclear power facility on a small region in South Carolina. Measures of economic and environmental effects include estimates of changes in output, income, employment, local government revenue and expenditure, external costs of environmental decay, pollution loads, and common-property resource usage. Results indicate that, in the South Carolina case study, significant gains in social welfare accrued to the region due to the construction and operation of the nuclear power facility. Further, the theoretical method developed herein provides a comprehensive method of objectively assessing various types of impacts on a region as small as several contiguous counties or even a single county

  1. Construction quality assurance for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-10-01

    This Standard contains the requirements for the quality assurance program applicable to the construction phase of a nuclear power plant. This Standard covers all activities carried out for and by the owner from the receipt of components or materials on the site to their incorporation in systems or structures as required by drawings or other formal engineering information. It also covers the provision of required support activities and equipment and applies at all stages on the site as far as the testing of components or systems before they are submitted for commissioning. 2 figs.

  2. Construction quality assurance for nuclear power plants

    International Nuclear Information System (INIS)

    1983-10-01

    This Standard contains the requirements for the quality assurance program applicable to the construction phase of a nuclear power plant. This Standard covers all activities carried out for and by the owner from the receipt of components or materials on the site to their incorporation in systems or structures as required by drawings or other formal engineering information. It also covers the provision of required support activities and equipment and applies at all stages on the site as far as the testing of components or systems before they are submitted for commissioning. 2 figs

  3. Assessment of modular construction for safety-related structures at advanced nuclear power plants

    International Nuclear Information System (INIS)

    Braverman, J.; Morante, R.; Hofmayer, C.

    1997-03-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. The objective in utilizing modular construction is to reduce the construction schedule, reduce construction costs, and improve the quality of construction. This report documents the results of a program which evaluated the proposed use of modular construction for safety-related structures in advanced nuclear power plant designs. The program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules. The program was conducted in three phases. The objective of the first phase was to identify the technical issues and the need for further study in order to support NRC licensing review activities. The two key findings were the need for supplementary review criteria to augment the Standard Review Plan and the need for verified design/analysis methodology for unique types of modules, such as the concrete-filled steel module. In the second phase of this program, Modular Construction Review Criteria were developed to provide guidance for licensing reviews. In the third phase, an analysis effort was conducted to determine if currently available finite element analysis techniques can be used to predict the response of concrete-filled steel modules

  4. Business data processing in the service of quality and safety in nuclear power plant construction

    International Nuclear Information System (INIS)

    Chassignet, C.

    1980-01-01

    Construction of a nuclear power plant implies collection and correlation of several thousand items of information which must be identified and which must remain retrievable throughout the service life of the plant. The Framatome Corporation, which has one of the largest nuclear power plant construction programs in the world, therefore set up a processing and checking system for the documents containing this information. The author describes the functions and principles of this system (known as SHARAD), together with its technical data and its operation [fr

  5. Constructing wetlands: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    Science.gov (United States)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-04-01

    Interest is growing in using soft sediment as a building material in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here the option of dredging some of the clay-rich lake-bed sediment and using it to construct 10.000 ha of wetland will soon go under construction. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a six-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling as well as yellowing of foliage. The N:P ratios of plant tissue were low and were affected not by hampered uptake of N but by enhanced uptake of P. Plant analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose that when building wetlands from these mud deposits Fe-tolerant species are used rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the building material and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  6. Costs of construction, operation and maintenance of nuclear power plants - determinant factors

    International Nuclear Information System (INIS)

    Silva, R.A. da

    1981-01-01

    A study about the construction costs of the Angra-1 nuclear power plant, including direct costs, equipment costs, installation and indirect costs such as: engineering, job-training and administration is presented. The operation and maintenance costs of the Angra-1 nuclear power plant and costs of energy generation are still studied. (E.G.) [pt

  7. Effects of Nitrogen and Phosphorus Fertilizer and Topsoil Amendment on Native Plant Cover in Roadside Revegetation Projects.

    Science.gov (United States)

    Hillhouse, Heidi L; Schacht, Walter H; Soper, Jonathan M; Wienhold, Carol E

    2018-01-01

    Establishing vegetation on roadsides following construction can be challenging, especially for relatively slow growing native species. Topsoil is generally removed during construction, and the surface soil following construction ("cut-slope soils") is often compacted and low in nutrients, providing poor growing conditions for vegetation. Nebraska Department of Transportation (NDOT) protocols have historically called for nitrogen (N) and phosphorus (P) fertilization when planting roadside vegetation following construction, but these recommendations were developed for cool-season grass plantings and most current plantings use slower-establishing, native warm-season grasses that may benefit less than expected from current planting protocols. We evaluated the effects of nitrogen and phosphorus fertilization, and also topsoil amendment, on the foliar cover of seeded and non-seeded species planted into two post-construction roadside sites in eastern Nebraska. We also examined soil movement to determine how planting protocols and plant growth may affect erosion potential. Three years after planting, we found no consistent effects of N or P fertilization on foliar cover. Plots receiving topsoil amendment had 14% greater cover of warm-season grasses, 10% greater total foliar cover, and 4-13% lower bare ground (depending on site) than plots without topsoil. None of the treatments consistently affected soil movement. We recommend that NDOT change their protocols to remove N and P fertilization and focus on stockpiling and spreading topsoil following construction.

  8. Effects of Nitrogen and Phosphorus Fertilizer and Topsoil Amendment on Native Plant Cover in Roadside Revegetation Projects

    Science.gov (United States)

    Hillhouse, Heidi L.; Schacht, Walter H.; Soper, Jonathan M.; Wienhold, Carol E.

    2018-01-01

    Establishing vegetation on roadsides following construction can be challenging, especially for relatively slow growing native species. Topsoil is generally removed during construction, and the surface soil following construction ("cut-slope soils") is often compacted and low in nutrients, providing poor growing conditions for vegetation. Nebraska Department of Transportation (NDOT) protocols have historically called for nitrogen (N) and phosphorus (P) fertilization when planting roadside vegetation following construction, but these recommendations were developed for cool-season grass plantings and most current plantings use slower-establishing, native warm-season grasses that may benefit less than expected from current planting protocols. We evaluated the effects of nitrogen and phosphorus fertilization, and also topsoil amendment, on the foliar cover of seeded and non-seeded species planted into two post-construction roadside sites in eastern Nebraska. We also examined soil movement to determine how planting protocols and plant growth may affect erosion potential. Three years after planting, we found no consistent effects of N or P fertilization on foliar cover. Plots receiving topsoil amendment had 14% greater cover of warm-season grasses, 10% greater total foliar cover, and 4-13% lower bare ground (depending on site) than plots without topsoil. None of the treatments consistently affected soil movement. We recommend that NDOT change their protocols to remove N and P fertilization and focus on stockpiling and spreading topsoil following construction.

  9. Delays in nuclear power plant construction. Progress report, September 15, 1976--September 14, 1977

    International Nuclear Information System (INIS)

    Mason, G.E.; Larew, R.E.

    1977-01-01

    This report identifies barriers to shortening nuclear power plant construction schedules and recommends research efforts that should minimize or eliminate the identified barriers. The identified barriers include: (1) design and construction interfacing problems; (2) problems relating to the selection and use of permanent materials and construction methods; (3) construction coordination and communication problems; and (4) problems associated with manpower availability and productivity;

  10. Role of Plants in a Constructed Wetland: Current and New Perspectives

    Directory of Open Access Journals (Sweden)

    Amit Gross

    2013-04-01

    Full Text Available The role of plants in the treatment of effluents by constructed wetland (CW systems is under debate. Here, we review ways in which plants can affect CW processes and suggest two novel functions for plants in CWs. The first is salt phytoremediation by halophytes. We have strong evidence that halophytic plants can reduce wastewater salinity by accumulating salts in their tissues. Our studies have shown that Bassia indica, a halophytic annual, is capable of salt phytoremediation, accumulating sodium to up to 10% of its dry weight. The second novel use of plants in CWs is as phytoindicators of water quality. We demonstrate that accumulation of H2O2, a marker for plant stress, is reduced in the in successive treatment stages, where water quality is improved. It is recommended that monitoring and management of CWs consider the potential of plants as phytoremediators and phytoindicators.

  11. Augmented reality for improved communication of construction and maintenance plans in nuclear power plants

    International Nuclear Information System (INIS)

    Sorensen, Soren S.

    2010-01-01

    The purpose of implementing Augmented Reality, AR, in the planning, construction and maintenance of Nuclear Power Plants is to secure strict control, precise and correct constructions, exact execution of assignments and heightened safety at all levels. Communication of construction plans to ensure precise and correct assembly of structural elements is essential in all building projects. This is especially crucial in the construction of nuclear plants and installation of new components. The current ways in which construction plans are communicated, blueprints, 3D digital models and written descriptions all embody the need for significant levels of abstraction and interpretation, and are thus both difficult to understand and can lead to misinterpretations. A simulation system with full scale three dimensional models experienced in the physical setting where operations are to take place would bring operators closer to the real life assignments. Augmented Reality is a visualization technology that provides this motivation. (author)

  12. Projecting labor demand and worker immigration at nuclear power plant construction sites: an evaluation of methodology

    International Nuclear Information System (INIS)

    Herzog, H.W. Jr; Schlottmann, A.M.; Schriver, W.R.

    1981-12-01

    The study evaluates methodology employed for the projection of labor demand at, and worker migration to, nuclear power plant construction sites. In addition, suggestions are offered as to how this projection methodology might be improved. The study focuses on projection methodologies which forecast either construction worker migration or labor requirements of alternative types of construction activity. Suggested methodological improvements relate both to institutional factors within the nuclear power plant construction industry, and to a better use of craft-specific data on construction worker demand/supply. In addition, the timeliness and availability of the regional occupational data required to support, or implement these suggestions are examined

  13. Needs for Constructing and Possibilities of Nuclear Power Plants Interconnection to the Croatian Electricity Grid

    International Nuclear Information System (INIS)

    Zeljko, M.; Bajs, D.

    1998-01-01

    Due to development of electric power system and considering an increase of electrical energy consumption, needs for larger units in new power plants are obvious. Connection of large nuclear power plants to the grid, depending on their power and location, usually requires significant investments in transmission network development and construction. Considering the capacity of the 400 kV transmission network in Croatia, this problem is evident. This paper deals with the possibilities of nuclear power plants construction, as one possible option in electric power system development, and their interconnection to the electricity grid. (author)

  14. Seismic effects on technological equipment and systems of nuclear power plants

    International Nuclear Information System (INIS)

    Masopust, R.; Pecinka, L.; Podrouzek, J.

    1983-01-01

    A survey is given of problems related to the construction of nuclear power plants with regard to seismic resistance. Sei--smic resistance of technological equipment is evaluated by experimental trials, calculation or the combination of both. Existing and future standards are given for the given field. The Czechoslovak situation is discussed as related to the construction of the Mochovce nuclear power plant. Procedures for testing seismic resistance, types of tests and methods of simulating seismic excitation are described. Antiseismic measures together with structural elements for limiting the seismic effects on technological equipment and nuclear power plant systems are summed up on the basis of foreign experience. (E.F.)

  15. The Brazilian participation in the nuclear power plant construction

    International Nuclear Information System (INIS)

    Fabricio, R.A.C.

    1981-01-01

    A brief review about the origin of the brazilian nuclear power program and the strategy adopted for its implementation in Brazil is presented. The creation of the Nuclebras Engineering S/A, the Germany technology transfer and the personell job-training in Brasil are discussed. Some management models used for nuclear power plant construction in the world are still presented. (E.G.) [pt

  16. Licensing for the construction of 'Almirante Alvaro Alberto' nuclear power plant

    International Nuclear Information System (INIS)

    1974-09-01

    The BRAZILIAN NUCLEAR ENERGIA COMMISSION (Comissao Nacional de Energia Nuclear - CNEN) presents in Report n 0 51 of its Reactors Department all the requirements for the construction permit of 'Almirante Alvaro Alberto' Nuclear Power Plant [pt

  17. Progressive building methods in nuclear power plant construction

    International Nuclear Information System (INIS)

    Sikura, V.

    1980-01-01

    A detailed description is given of the new prospective technologies used in the construction of the Bohunice V-1 nuclear power plant. They include the use of steel and large-area forms, the use of profile sheets as a substitute for forms, assembled raw partitions, wall shells consisting of clamped porous concrete slabs, assembled roof shells, special finish of concrete walls, bearing wall deep foundation, the use of modern building machinery for concreting, reinforcing and welding works. (M.S.)

  18. Final environmental statement related to construction of Midland Plant, Units 1 and 2 (Docket Nos. 50-329 and 50-330)

    International Nuclear Information System (INIS)

    1977-01-01

    This is a Final Detailed Statement on Environmental Considerations associated with construction and operation of Midland Plant Units 1 and 2 at Midland, Michigan, pursuant to a construction permit and operating license which has been applied for by the Consumers Power Company. The application is under review by the US Atomic Energy Commission's Regulatory Staff. The environmental impact, including adverse and beneficial effects, of the Midland Plant includes reassignment of use of about 1100 acres of agricultural and residential land for the cooling pond (the plant buildings are located on industrial zoned land); this resulted in the dislocation of approximately 25 residences and relocation of the Midland County Farm to a newly built structure; the destruction of a maximum of 4400 tons of phytoplankton per year at the intake of makeup water from the Tittabawassee River; and a predicted small increase in fogging effects in the near vicinity of the cooling pond. 34 refs., 19 figs., 26 tabs

  19. Power plant construction contracting in a changing regulatory environment

    International Nuclear Information System (INIS)

    Person, J.C.

    1993-01-01

    The 1965 blackout in the Northeast provided the wake-up call that spawned in unprecedented program of power plant construction by electric utilities. This building program began in the late 1960s and continued unabated through the 1970s. Beginning in the late 1970s, state regulators began in era of 'prudence' reviews which disallowed as imprudent significant portions of the costs of certain nuclear units being brought on line at the time. This regulatory experience brought about a fundamental change in the way in which utilities evaluated the need for additional capacity. This paper explores construction contracting trends in light of recent developments in the relationship between the electric utility and the state regulator. It is within this context that the utility decides: (1) whether to build, buy, or save; and (2) if the decision is to build, which project planning and administration considerations will maximize the utility's ability to incorporate project costs into the ratebase. In order to put these issues into their proper perspective, this paper first presents a brief overview of the prudence decisions of the past, and the chilling effect of these decisions generally on new project planning. The paper next focuses on the recent changes to the post-construction prudence review model, including the introduction of pre-approval arrangements and rolling prudence reviews. Following that will be a survey of new construction spending decisions in light of these changes. After an analysis of the bases for the prudence disallowances of the past and the application of the lessons learned from these disallowances to contract planning and administration issues of today, the paper will close with a discussion of the relative advantages and disadvantages of the most commonly used contract delivery methods in today's regulatory environment

  20. State of the art and further development of reinforced concrete wall cells for nuclear power plant construction

    International Nuclear Information System (INIS)

    Uhlemann, E.; Wartenberg, J.

    1985-01-01

    Reinforced concrete wall cells have been developed for nuclear power plant construction by the USSR and GDR. In this article, a new type of these cells, which will be used for constructing auxiliary equipment of the Stendal nuclear power plant, is described

  1. CORR Guidelines. Preparing and Conducting Review Missions of Construction Project Readiness for Nuclear Power Plants

    International Nuclear Information System (INIS)

    2013-01-01

    The construction readiness review (CORR) mission for nuclear power plant projects has been established with the aim of conducting peer reviews of construction projects related to nuclear power plants. Such a mission provides a detailed assessment of readiness for construction, construction progress, readiness for turnover, as well as recommendations for improvement. Organizations in Member States, such as nuclear utilities, owners, regulators and technical support organizations, can benefit from such reviews. A team of international experts with complementing specialities will conduct the CORR mission. The review is based on appropriate IAEA publications, such as IAEA Safety Standards Series Guides and IAEA Nuclear Energy Series publications, as well as on internationally recognized project and construction management guides. Mission findings are summarized in a mission report, which includes a list of recommendations, suggestions and identified good practices. The review is not intended to be a regulatory inspection or an audit against international codes and standards. Rather, it is a peer review aimed at improving implementation processes and procedures through an exchange of technical experiences and practices at the working level. The mission is applicable at any stage of a nuclear power plant construction project, although two specific phases are targeted: (1) start of construction mission (Phase 1 mission) and (2) an in-progress mission (Phase 2 mission). Missions are initiated when official requests are submitted by Member States through the appropriate IAEA channels

  2. Nuclear power plant construction and financial assistance - as regards subsidies for promotion of power plant siting

    International Nuclear Information System (INIS)

    Shindo, M.

    1983-01-01

    This paper describes the institutional framework for the granting of subsidies in particular to promote nuclear power plant construction in Japan. It also analyses the technical criteria applied and lists the type of improvements to various facilities and equipment made with such subsidies. (NEA) [fr

  3. The licensing procedure for construction and operation of nuclear power plants

    International Nuclear Information System (INIS)

    Salvatore, J.E.L.

    1980-03-01

    The licensing procedure for the construction and operation of the nuclear power plants in Brazil is analysed, according to the International Atomic Energy Agency orientation. The risks related to the nuclear energy is also emphasized. (A.L.) [pt

  4. The effect of economic growth, oil prices, and the benefits of reactor standardization: Duration of nuclear power plant construction revisited

    International Nuclear Information System (INIS)

    Csereklyei, Zsuzsanna; Thurner, Paul W.; Bauer, Alexander; Küchenhoff, Helmut

    2016-01-01

    The profitability of nuclear power plant investment is largely determined by the construction duration, which directly impacts discounted cash flows, debt and interest payments, as well as variable costs, such as labor. This paper analyzes the key drivers of construction duration using survival models. We focus especially on the strategic expectation formation of private and public utilities engaging in such highly risky megaprojects. Using a balanced dataset of explanatory variables and the IAEA/PRIS dataset of reactor construction starts between 1950 and 2013 we find that the expectation of rising oil prices and higher economic growth, along with the higher per capita GDP of a country tend to reduce the time needed to grid connection. We also identify the reactor models with the fastest construction duration. - Highlights: • We find that higher future economic growth speeds up nuclear reactor construction. • Higher national capacity (measured by income per capita) results in faster projects. • Higher oil prices during construction lead to faster construction times. • Reactor standardization may result in faster building times.

  5. The Brazilian experience in the civil construction of nuclear power plants

    International Nuclear Information System (INIS)

    Gonzaga, L.A.

    1985-01-01

    The processes and phases of technology absorption, together with the resultant Experience-Factor Model for civil Works, considering philosophy of operation of the civil contractor, design aspects and some structural influences for constructing nuclear power plants are presented. (Author) [pt

  6. The Brazilian experience in the civil construction of nuclear power plants

    International Nuclear Information System (INIS)

    Gonzaga, L.A.

    1985-01-01

    The processes and phases of technology absorption, together with the resultant Experience Factor Model for Civil Works, considering philosophy of operation of the civil contractor, design aspects and some structural influences for constructing nuclear power plants are presented. (author) [pt

  7. Power plant construction lead times: The value of contingency planning

    International Nuclear Information System (INIS)

    Rubin, L.J.

    1985-01-01

    In this paper an analysis of two different approaches to the construction of a major power plant (nuclear) is presented. The analysis compares an accelerated, ''go-for-broke'' strategy-which has some risk of being delayed-with a more deliberate contingency construction schedule in terms of revenue requirements and costs of electricity. It is demonstrated that under a wide variety of circumstances there are important advantages to the contingency strategy, but that the magnitude of those advantages is sensitive to the character of the power system being examined and to the flexibility of the contingency approach

  8. Natural and construction materials and plant products. Raw materials, constructional physics, design and construction. 2. upd. and enl. ed.; Natuerliche und pflanzliche Baustoffe. Rohstoff - Bauphysik - Konstruktion

    Energy Technology Data Exchange (ETDEWEB)

    Holzmann, Gerhard; Wangelin, Matthias; Bruns, Rainer

    2012-07-01

    The book discusses all relevant renewable constructional materials made from fibre or dyeing plants along with their physical and chemical fundamentals. Protection of resources, environmental protection, and pollutants in constructional materials are gone into as well. [German] Dieses Buch behandelt alle wichtige nachwachsenden, pflanzlichen Baustoffe aus Faser- und Faerberpflanzen sowie dazugehoerige physikalische und chemische Grundlagen. Angesprochen werden auch Ressourcen- und Umweltschutz sowie Schadstoffe aus Bauprodukten.

  9. Geopolymerisation of silt generated from construction and demolition waste washing plants.

    Science.gov (United States)

    Lampris, C; Lupo, R; Cheeseman, C R

    2009-01-01

    Recycling plants that size, sort and wash construction and demolition waste can produce high quality aggregate. However, they also produce up to 80ton per hour of filter cake waste containing fine (waste and normally landfilled. This research investigated the potential to form geopolymers containing silt, which would allow this problematic waste to be beneficially reused as aggregate. This would significantly improve the economic viability of recycling plants that wash wastes. Silt filter cakes have been collected from a number of aggregate washing plants operating in the UK. These were found to contain similar aluminosilicate crystalline phases. Geopolymer samples were produced using silt and silt mixed with either metakaolin or pulverised fuel ash (PFA). Silt geopolymers cured at room temperature had average 7-day compressive strengths of 18.7MPa, while partial substitution of silt by metakaolin or PFA increased average compressive strengths to 30.5 and 21.9MPa, respectively. Curing specimens for 24h at 105 degrees C resulted in a compressive strength of 39.7MPa and microstructural analysis confirmed the formation of dense materials. These strengths are in excess of those required for materials to be used as aggregate, particularly in unbound applications. The implications of this research for the management of waste silt at construction and demolition waste washing plants are discussed.

  10. 'Concrete shell formwork' technology applied to the construction of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Fejes, A.

    1982-01-01

    The conventional formworking technology could not meet the unusual requirements needed in constructing the concrete walls of the nuclear power plant building. A new concrete shell formworking developed in the Soviet Union has been adapted to meet the criteria. Prefabricated concrete shells are mounted separately during construction on separated parts of the reinforcing structure. The steps of the construction process are described with the economic evaluation of this new construction technology. (R.P.)

  11. The use of halophytic plants for salt phytoremediation in constructed wetlands.

    Science.gov (United States)

    Farzi, Abolfazl; Borghei, Seyed Mehdi; Vossoughi, Manouchehr

    2017-07-03

    This research studied the use of constructed wetlands (CWs) to reduce water salinity. For this purpose, three halophytic species of the Chenopodiaceae family (Salicornia europaea, Salsola crassa, and Bienertia cycloptera) that are resistant to saline conditions were planted in the CWs, and experiments were conducted at three different salinity levels [electrical conductivity (EC)∼2, 6, 10 dS/m]. EC and concentrations of calcium (Ca), magnesium (Mg), sodium (Na), and chlorine (Cl) were measured before and after phytoremediation with a retention time of 1 week. The results suggested that these plants were able to grow well and complete their life cycles at all the salinity levels within this study. Moreover, these plants reduced the measured parameters to acceptable levels. Therefore, these plants can be considered good options for salt phytoremediation.

  12. Potential environmental effects of fusion reactor power plants

    International Nuclear Information System (INIS)

    Young, J.R.; Gore, B.F.; Coffman, F.E.

    1976-01-01

    Construction and operation of fusion power plants is expected to reduce the total environmental effects of 21st century power generation. Fusion power plant impacts due to noise, odors, vibrations, and sanitary wastes are expected to be insignificant. impacts due to land use, chemical releases, and aesthetics are expected to be reduced. Impacts due to heat releases, local socio-economic changes, and non-radioactive liquid and solid disposal are expected to be comparable to those for the alternative fission or coal-fired power systems. Radiation doses to the public due to radioactive wastes are expected to be comparable to, or less than, the trivial low doses due to fission power systems. Research and development will be required, however, to assure adequate containment of tritium, the primary radioisotope of concern. Prevention of accidental tritium releases is within the capability of current engineering practice. Current technology is capable of handling the solid radioactive waste which may be produced, with insignificant environmental impact. Major research efforts are necessary to determine if subtle long-term effects of magnetic fields exist and should be of concern. In view of the large quantities of construction materials required for fusion. Material availability may dictate 21st century power plant design and construction. The accident potential of fusion power plants should be lower than for fission systems. Accidental criticalities and plasma runaways are not considered to be possible. Loss of coolant accidents are not expected to result in damage to the containment. No fission products or actinides are present to be released in an accident, and most activation products are immobilized in structures. The biological hazard of tritium is orders of magnitude smaller than for fission products and actinides. Safeguards against diversion of fissile materials are not expected to be necessary

  13. Removal efficiencies of constructed wetland and efficacy of plant on treating benzene

    Directory of Open Access Journals (Sweden)

    Florencio Ballesteros, Jr.

    2016-03-01

    Full Text Available Leaking underground petroleum storage poses human and environmental health risks as it contaminates the soil and the groundwater. Of the many contaminants, benzene – a major constituent of gasoline, is of primary concern. It is an identified carcinogen with a permissible limit set at a low level of 0.005 mg L−1. This poses technical and regulatory challenge to remediation of contaminated sites. Various specialized treatment methods are available, but despite of the high removal efficiencies of sophisticated treatments, the residual level still poses health risks. Thus, additional alternative ways that are cost effective and require minimum technical expertise are necessary, and a constructed wetland (CW is a potential alternative. This study evaluates the performance of a surface flow type CW for the removal of benzene from the contaminated water. It further determines the efficacy of a common reed plant Phragmites karka in treating benzene. Planted and unplanted CW were acclimated with benzene for 16 wk and tested for an 8-d hydraulic retention time at benzene levels of 66 and 45 mg L−1. Results indicate that the planted CW performed better and gave reliable and stable results.

  14. THREE-DIMENSIONAL GEOFILTRATIONAL MODEL OF THE ROGUN HYDRO POWER PLANT CONSTRUCTION SITE

    Directory of Open Access Journals (Sweden)

    Khokhotva Sergey Nikolaevich

    2017-05-01

    Full Text Available The article deals with technique of creation and results of calculations of the three-dimensional geofiltrational model of the Rogun HPP construction site. When performing works on creation of the Rogun HPP three-dimensional geofiltration model, geological and hydrogeological conditions of the Rogun HPP construction site were analyzed. They showed that the construction site consists mostly of fractured rocks of various weathering degrees. In terms of preservation, four preservation zones were identified in the rock mass. These zones define the features of hydrogeological conditions that have emerged in the area of construction. Calculation results illustrated the absence of seepage areas on the lower slope of dam; this is the indication of normal operation of the dam impervious circuit. The drainage system of the underground hydropower plant has a high efficiency. Operation of the drainage galleries complex leads to a significant reduction of piezometric pressure on roofs of the machine and transformer halls. Above the underground structures a completely drained area is formed. Completed forecast calculations on geofiltration model of the Rogun hydropower plant determine the hydrostatic pressure and piezometric pressure at any point of the modeled area. These data can be used as loads while designing of lining of underground workings.

  15. Worldwide construction

    International Nuclear Information System (INIS)

    Williamson, M.

    1994-01-01

    The paper lists major construction projects in worldwide processing and pipelining, showing capacities, contractors, estimated costs, and time of construction. The lists are divided into refineries, petrochemical plants, sulfur recovery units, gas processing plants, pipelines, and related fuel facilities. This last classification includes cogeneration plants, coal liquefaction and gasification plants, biomass power plants, geothermal power plants, integrated coal gasification combined-cycle power plants, and a coal briquetting plant

  16. Big five general contractors dominate civil construction market of nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The Japanese construction industry is a key industry accounting for about 20 % of the GNP, and the investment in construction amounted to 51,200 billion yen in fiscal 1984. 515,000 firms employing about 5.5 million workers belong to the industry. 99.4 % of these firms is the enterprises capitalized at less than 100 million yen, and most of them are small self-employment enterprises. The Construction Business Law provides that those who wish to engage in construction are required to obtain a permit from the Construction Ministry or from a local prefectural governor. There are big five and seven sub-major construction companies in Japan. The big five formed the tie-up relations with three nuclear reactor manufacturers. 76 civil engineering and construction companies recorded the sales related to nuclear power in 1983 amounting to 330.9 billion yen, equivalent to 21 % of the total nuclear-related sales. The construction of nuclear power plants and the characteristics of the construction, and the activities of the big five in the field of nuclear industry are reported. (Kako, I.)

  17. The Comparative Effectiveness of Variants of Construction of Electricity Export Projects

    Directory of Open Access Journals (Sweden)

    Anatoly Vladimirovich Lagerev

    2014-06-01

    Full Text Available The study describes a methodological approach that evaluates the comparative efficiency of construction of export-oriented power plants and transmission lines taking into account the development of power industry in the region and uncertainty (ambiguity of initial information. At the first stage the authors determine socio-economic effects of each project of construction of export-oriented power plants. With the help of optimization models they choose options that can guarantee the balanced and cost-effective development of the regional electric power system. Then using a simulation model the researchers assess commercial viability of previously selected projects. The article applies this approach for selecting the preferred option of electricity export from Eastern Siberia to China. This study shows that the project of CPP based on Kovykta natural gas with electricity transmission line to Chinese border (near Zabaikalsk is more preferable one in comparison with other projects (CPP based on Kansk-Achinsk coal in Krasnoyarsky krai; CPP based on coal in the Republic of Buryatia and Zabaikalsky krai (Olon-Shibirskaya CPP; New Kharanorskaya CPP; CPP based on Mugunsky coal in Irkutskaya oblast

  18. Plant X-tender: An extension of the AssemblX system for the assembly and expression of multigene constructs in plants

    Science.gov (United States)

    Machens, Fabian; Coll, Anna; Baebler, Špela; Messerschmidt, Katrin; Gruden, Kristina

    2018-01-01

    Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scar-free and sequence-independent multigene assembly strategy AssemblX, based on overlap-depended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster

  19. Plant X-tender: An extension of the AssemblX system for the assembly and expression of multigene constructs in plants.

    Science.gov (United States)

    Lukan, Tjaša; Machens, Fabian; Coll, Anna; Baebler, Špela; Messerschmidt, Katrin; Gruden, Kristina

    2018-01-01

    Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scar-free and sequence-independent multigene assembly strategy AssemblX, based on overlap-depended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster

  20. Site infrastructure as required during the construction and erection of nuclear power plants

    International Nuclear Information System (INIS)

    Haas, K.F.; Wagner, H.

    1978-01-01

    In general, in an exchange of experience on constructing nuclear power plants priority is given to design and lay-out, financing, quality assurance etc., but in this paper an attempt has been made to describe range and type of site infrastructure required during construction and erection. Site infrastructure will make considerable demands on the planning, supply of material and maintenance that may result from the frequently very isolated location of power plant sites. Examples for specific values and experiences are given for a nuclear power plant with two units on the 1300-MW type at present under construction of the Persian Gulf in Iran. Data concerning the site infrastructure, including examples, are given and explained on the basis of graphs. The site is split up into a technical and a social infrastructure. The main concern of the technical site infrastructure is the timely provision and continuous availability of electric energy, water, communication grids, workshops, warehouses, offices, transport and handling facilities, as well as the provision of heavy load roads, harbour facilities, etc. The social site infrastructure in general comprises accommodation, food supplies and the care and welfare of all site personnel, which includes a hospital, school, self-service shop, and sport and recreation facilities. (author)

  1. Fire protection programme during construction of the Chashma nuclear power plant

    International Nuclear Information System (INIS)

    Mian Umer, M.

    1998-01-01

    A clear view is given of several measures that have been taken with regard to fire prevention, protection and fire fighting during all phases of the construction, installation and commissioning of the Chasma nuclear power plant to protect personnel and equipment so that any delays in plant operation as a result of fire incident can be avoided. These measures include the precautions taken, the provisions made for fire extinguishers and hydrants, and the setting up of a fire brigade. An overview is also given of the fire incidents that have occurred. (author)

  2. 10-MWe solar-thermal central-receiver pilot plant: collector subsystem foundation construction. Revision No. 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-18

    Bid documents are provided for the construction of the collector subsystem foundation of the Barstow Solar Pilot Plant, including invitation to bid, bid form, representations and certifications, construction contract, and labor standards provisions of the Davis-Bacon Act. Instructions to bidders, general provisions and general conditions are included. Technical specifications are provided for the construction. (LEW)

  3. Pretension construction of safety shell in Chashma nuclear power plant

    International Nuclear Information System (INIS)

    Gong Zhenbin; Li Yinong; Ni Shaowen

    1999-01-01

    19T16 post-tension grouped anchor system is applied to the safety shell pretension in Chashma Nuclear Power Plant. The stretching force of each bundle is about 3800 kN and the prestressed reinforcement is stretched in five stages. The double-control measurement of stress controlling and extension checking is applied in strict accordance with the principle of symmetrical construction

  4. Construction of a power plant with prototype DLN combustion turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M.L. [CSW Energy, Dallas, TX (United States); Drummond, L.J. [Zurn NEPCO, Redmond, WA (United States)

    1996-12-31

    Design and construction of a power plant is always a difficult process and this is especially true when the main keystone, the combustion turbine engine, is being modified by the manufacturer resulting in numerous changes in the design interfaces. The development of the design and construction of the Orange Cogeneration Facility has been in parallel with major modification of the LM6000 to DLE technology (a Dry Low NO{sub x} combustion system). The Dry Low NO{sub x} Combustion System for a combustion turbine offered a means to reduce water usage, lower Zero Liquid Discharge System operating costs and reduce emissions to meet Florida Department of Environmental Protection requirements. This development was successfully accomplished by Owner, EPC contractor and Combustion Turbine Manufacturer by maintaining flexibility in the design and construction while the design interfaces and performance of the combustion turbines were being finalized.

  5. Impact of Nuclear Power and Desalination Plant Construction Toward National and East Java Economic

    International Nuclear Information System (INIS)

    Ratya-Anindita; Sriyana; M-Nasrullah

    2006-01-01

    The objective of this study is to determine the economic impacts of the construction of the nuclear power plant 2 x 100 MW(e) SMART type with desalination 4 x 10,000 m 3 which would conduct in years 2008 to 2017 in Madura Island, East Java. The predicted IO tables of 2008-2017 have been created by the application of dynamic IO projection. The economic impact was estimated through multiplier effect which covers direct impact and indirect impact as well as the induced effect. The expenditures of SMART nuclear power and desalination plant to the domestic contractors is estimated to amount to 88.2 million US dollar or 25.6 % of the whole expenditures. The total impact of the project to the national economy would be Rp. 6,329,347 million, Rp. 8,439,130 million, and Rp. 12,658,695 million for each scenario of the exchange rate as high as Rp. 7,500/US dollar, Rp. 10,000/US dollar, Rp. 15,000/US dollar, respectively for the scenario of dynamic growth. The total impact of the project to the provincial economy of East Java would be as much as Rp. 3,253,498 million, Rp. 4,337,997 million, and Rp. 6,506,995 million for each scenario of the exchange rate as high as Rp. 7,500/US dollar, Rp. 10,000/US dollar, Rp. 15,000/US dollar, respectively under the former scenario. Cumulative direct impact since pre-construction to construction period had been calculated as much as US dollar 101.8 million for sectors number 48.52 and 62. This have brought much impact on other sectors in national or provincial levels of economy. (author)

  6. Construction time of PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Carajilescov, Pedro; Moreira, Joao M.L., E-mail: pedro.carajilescov@ufabc.edu.b, E-mail: joao.moreira@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Center of Engineering, Modeling and Applied Social Sciences

    2011-07-01

    The cost of electricity generated by nuclear power is greatly affected by the capital cost, which is dependent on the construction time of the plant. This work analyses the construction time of PWRs in several countries with different market structure and licensing experience. Countries which succeeded to establish a more collaborative environment among utilities, constructors, regulators, and energy planners through effective partnerships were able to build PWRs in shorter times. The construction time in Germany, France and Russia was around 80 months and in Japan, about 60 months. The envelope of 95% of the cases includes a range between 50 and 250 months of construction time. The evaluations show that construction time of PWRs has been longer for countries that did not hold the technology to build their own reactors, and depended on contracts with foreign suppliers. The nominal power of the reactors was considered a measure of plant size, technology complexity and standardization. Countries with standardized reactor designs (France, Japan and Russia) were able to build plants in shorter times. (author)

  7. Construction time of PWRs

    International Nuclear Information System (INIS)

    Carajilescov, Pedro; Moreira, Joao M.L.

    2011-01-01

    The cost of electricity generated by nuclear power is greatly affected by the capital cost, which is dependent on the construction time of the plant. This work analyses the construction time of PWRs in several countries with different market structure and licensing experience. Countries which succeeded to establish a more collaborative environment among utilities, constructors, regulators, and energy planners through effective partnerships were able to build PWRs in shorter times. The construction time in Germany, France and Russia was around 80 months and in Japan, about 60 months. The envelope of 95% of the cases includes a range between 50 and 250 months of construction time. The evaluations show that construction time of PWRs has been longer for countries that did not hold the technology to build their own reactors, and depended on contracts with foreign suppliers. The nominal power of the reactors was considered a measure of plant size, technology complexity and standardization. Countries with standardized reactor designs (France, Japan and Russia) were able to build plants in shorter times. (author)

  8. Project management in fossil plant construction: A perspective for the Nineties

    International Nuclear Information System (INIS)

    Bhatia, N.K.

    1991-01-01

    The continuing growth in demand for electric power, and the reluctance of electric utility management to commit to new capacity additions has created a potential for somewhat hectic activity in the fossil power plant construction market. With the changing matrix of power plant types and ownerships, the project manager is called upon to deliver a complex product with exacting contract requirements: lump sum contracts, competitive pricing, short schedules, and performance guarantees. A shortage of experienced professionals in the ranks of the owners, engineers, contractors, and suppliers magnifies the challenge. Plant replication, automation, creative management of vendors and contractors, and participative management of the work force will be key elements of successful projects. Partnering between the clients and the engineers-constructors will be an interesting new relationship model

  9. Ecological and evolutionary consequences of niche construction for its agent.

    Science.gov (United States)

    Kylafis, Grigoris; Loreau, Michel

    2008-10-01

    Niche construction can generate ecological and evolutionary feedbacks that have been underinvestigated so far. We present an eco-evolutionary model that incorporates the process of niche construction to reveal its effects on the ecology and evolution of the niche-constructing agent. We consider a simple plant-soil nutrient ecosystem in which plants have the ability to increase the input of inorganic nutrient as an example of positive niche construction. On an ecological time scale, the model shows that niche construction allows the persistence of plants under infertile soil conditions that would otherwise lead to their extinction. This expansion of plants' niche, however, requires a high enough rate of niche construction and a high enough initial plant biomass to fuel the positive ecological feedback between plants and their soil environment. On an evolutionary time scale, we consider that the rates of niche construction and nutrient uptake coevolve in plants while a trade-off constrains their values. Different evolutionary outcomes are possible depending on the shape of the trade-off. We show that niche construction results in an evolutionary feedback between plants and their soil environment such that plants partially regulate soil nutrient content. The direct benefit accruing to plants, however, plays a crucial role in the evolutionary advantage of niche construction.

  10. Problems and experience of regulatory review associated with plant construction and commissioning

    International Nuclear Information System (INIS)

    Commander, W.

    1979-01-01

    The work of the Assessment Branch of NII covering the regulatory review during design safety assessment, construction, commissioning and operation is described commencing with the nuclear licensing procedure through licence variations and conditions attached to the licence, to the final stages of plant construction up to commercial operation and full power production. The importance of the application of safety assessment principles is outlined, the importance of the Safety Inspectorate Schedule described, and the need to retain organisational and regulatory flexibility emphasised. (author)

  11. Outline of principle of design construction of demolished concrete from electric power plant

    International Nuclear Information System (INIS)

    Takahashi, Tomohiko; Sakagami, Takeharu; Inagaki, Hirokazu; Morozumi, Hironori; Muranaka, Kenji

    2005-01-01

    'The principle of design construction of recycled demolished concrete from electric power plant' (a plan) is going to be published by TSCE Concrete Committee in 2005. The abstract of the above principle is described. A large amount of demolished concrete is generated by decommissioning of atomic power plant. About 450,000 to 500,000t of concrete with small radiation level per an atomic power plant will be generated. This report included decommissioning of Tokai power plant, characteristics of subject of demolished concrete, the recycled demolished concrete, fresh conditions of the recycled demolished concrete, the strength, deformation properties, durability, alkali silica reactivity of them and control measurement. (S.Y.)

  12. Integrated Cost and Schedule Control Systems for Nuclear Power Plant Construction: Leveraging Strategic Advantages to Owners and EPC Firms

    Directory of Open Access Journals (Sweden)

    Youngsoo Jung

    2015-01-01

    Full Text Available As the owners expect that the cost and time for nuclear power plant construction would decrease with new entrants into the market, there will be severer competition in the nuclear industry. In order to achieve performance improvement and to attain competitive advantages under the globalized competition, practitioners and researchers in the nuclear industry have recently exerted efforts to develop an advanced and efficient management methodology for the nuclear mega-projects. Among several candidates, integrated cost and schedule control system is of great concern because it can effectively manage the three most important project performances including cost, time, and quality. In this context, the purpose of this paper is to develop a project numbering system (PNS of integrated cost and schedule control system for nuclear power plant construction. Distinct attributes of nuclear power plant construction were investigated first in order to identify influencing variables that characterize real-world implementation of advanced cost and schedule controls. A scenario was then developed and analysed to simulate a case-project. By using this case-project, proposed management requirements, management methods, measurement techniques, data structure, and data collection methods for integrated cost and schedule PNS were illustrated. Finally, findings and implications are outlined, and recommendations for further research are presented.

  13. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1989-01-01

    Under Contract No. AC03-86SF16565, Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule durations, and to simplify design. This document discusses design requirements. 36 refs., 57 figs., 56 tabs

  14. Use of industrial isotopes in the construction of an integrated steel plant

    International Nuclear Information System (INIS)

    Narasimha Rao, Y.V.; Prasad, G.C.

    1977-01-01

    The applications of radioisotopes by industrial radiography methods in the control of quality of welding of steel structures and equipment during the construction of a steel plant are highlighted. Some of the main units that are controlled in a steel plant by the radiography methods are boilers, pressure vessels, blast furnace shells and stoves, L.D. convertors, technological pipelines etc. After briefly describing the different radioisotopes (sources) and the accessories required for radiography work, the different techniques adopted for determining the defects in the welded joints are mentioned. A mention is also made of the different types of image quality indicators (penetrameters) and their relative advantages. The norms for control and acceptance of the defects for different structures are also covered. Finally, the safety requirements that are to be followed during radiography work at the site of erection, where different agencies of construction work simultaneously are dealt with. (author)

  15. Guideline for design and construction radiation monitoring equipments for Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Miyabe, Kenjiro; Ninomiya, Kazushige; Jin, Kazumi; Morifuji, Masayuki; Nemoto, Kazuhiko; Sato, Akira; Kawai, Keiichi

    1999-12-01

    Various kind of radiation monitoring equipment are used in radiation controlled area at each facility of Tokai reprocessing plant. These equipments have been designed and constructed based on the users requirements, and permitted by governmental regulation office. And, design has been carried out in consideration of the adoption of the new technology and our operational experience. Then, it has been used effectively for the radiation control of the facilities. This report summarizes the technical requirements that should be taken into consideration in the design and installation of radiation monitoring equipments. These requirements are fundamentally applicable when the equipments of the new facilities will be designed or the present instruments will be replaced. (author)

  16. Measurements of the radioactivity of power plant by-products processed into construction materials

    International Nuclear Information System (INIS)

    Marcinkowski, S.A.; Dudelewski, H.A.

    1992-01-01

    The subject of the recycling of residual products comprising, inter alia, fly ash and slags accuring from the combustion of black and brown coal in modern coal dust boilers in the power industry has been topical for a number of years. Numerous discussions and articles in technical periodicals and the daily press have revolved around the problem of the radioactivity of construction materials or construction elements obtained from fly ash or slags of power plant. In Poland, this was a forbidden subject until the publication in 1980 by the Warsaw institute of construction technology of standard no. 234 entitled: 'Recommendations for establishing the natural radioactivity of products processed into construction materials'. (orig.) [de

  17. Engineering and training simulators: A combined approach for nuclear plant construction projects

    International Nuclear Information System (INIS)

    Harnois, Olivier; Gain, Pascal; Bartak, Jan; Gathmann, Ralf

    2007-01-01

    Full text: Simulation technologies have always been widely used on nuclear applications, but with a clear division between engineering application, using highly validated code run in batch mode, and training purpose where real time computation is a mandatory requirement. Thanks to the flexibility of modern simulation technology and the increased performance of computers, it becomes now possible to develop Nuclear Power plant simulators that can be used both for engineering and training purposes. In the last years, the revival of nuclear industry raised a number of new construction or plant finishing projects in which the application of this combined approach would result in decisive improvement on plant construction lead times, better project control and cost optimizations. The simulator development is to be executed in a step-wise approach, scheduled in parallel with the plant design and construction phases. During a first step, the simulator will model the plant nuclear island systems plus the corresponding instrumentation and control, specific malfunctions and local commands. It can then be used for engineering activities defining and validating the plant operating strategies in case of incidents or accidents. The Simulator executive Station and Operator Station will be in prototype version with an interface imagery enabling monitoring and control of the simulator. Availability of such simulation platform leads to a significant increase in efficiency of the engineering works, the possibility to validate basic design hypotheses and detect defects and conflicts early. The second phase will consist in the fully detailed simulation of Main Control Room plant supervision and control MMI, taking into account I and C control loops detailed design improvement, while having sufficient fidelity in order to be suitable for the future operator training. Its use will enable the engineering units not only to specify and validate normal, incident and accident detailed plant

  18. Looking back on safety management in construction of advanced thermal nuclear power plant 'Fugen'

    International Nuclear Information System (INIS)

    Emori, Kengo

    1979-01-01

    The safety management of the advanced thermal nuclear power plant ''Fugen'' during the period from the preparation of plant construction in October, 1970, to the full power operation in March, 1979, is looked back and explained. Any large human and material accidents did not occur during the long construction time. The total numbers of persons and hours were 1.397 x 10 6 workers and 11.55 x 10 6 hours, respectively. The number of labor accidents was twenty with no dead person, the number of loss days was 645 days, the number of accident rate was 1.73, the intensity rate was 0.06, and the mean rate of labor accidents per year per 1000 workers was 6.4. The radiation exposure dose was 65.27 man-rem for the managed 1804 workers in total, during the testing and operating periods. These data show that the safety management for ''Fugen'' is very excellent, considering the following special features: 1) there were many works which were carried out for the first time, 2) the construction of the plant was conducted by five contractors taking partial charge, there were many kinds of construction works, the construction and testing periods were long, and the workers had to go to the site from Tsuruga city by car and bus. The organization of preventing disasters, the concrete implementation items for safety management, including the planning of activities, various meetings, patrol, education and training, the honoring system, the prevention of traffic accident and so on, and the results of actual safety management are explained with the reflection. (Nakai, Y.)

  19. Development of technology for brown coal liquefaction. Design, construction and operation of pilot plant; development of 50t/d pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    1986-08-01

    As for the development of 50t/d pilot plant for the development of liquefaction plant of Victorian brown coal in Austraria, outline of the contents about the second stage construction following the first stage construction up to this time is reported from the following 4 viewpoints; 1: design of process apparatuses, 2: manufacture of apparatuses, 3: fieldwork of the construction and 4: operation of the first stage facilities. On the first item the outline of detail design made by Japanese and Australian companies is described. On the second item the acceptance of purchasing goods from Japan and Australia and the condition of inspection and quality assurance to specific principal parts are described. On the third item the supplementary construction of the first stage, contents of constructions of the second stage are described. On the fourth item, preparation for operation, target, the whole circumstances and the results of maintenance, especially review of operation technique, training of operators, and occurrence and repair of troubles are described. As other relevant works, envirommental assessment, waste disposal, enviromental monitoring for exhaust gases, drainage and working enviroments, safety measure, educational training and moreover activities for local district people and the state of labor market as the support for execution of the project are described.

  20. Economic and ecological assessment of impact of construction and operation of nuclear power plant as large capital construction project with respect to control of national economy development

    International Nuclear Information System (INIS)

    Bucek, M.

    1984-01-01

    The evaluation of costs and environmental impacts of the construction and operation of nuclear power plants is concentrated into two problem areas: 1. the calculation of capital and operation costs for the prevention and minimization of envirommental damage and restoration of the environment, 2. the calculation of damage to the environment of nuclear power plant construction and operation. The ecological cost benefit of capital costs is assessed. In Czechoslovakia there does not exist any method for converting cost effectiveness of investments into environmental protection. This problem is incorporated in the general method of assessing capital cost benefit. The relations are given for total socio-economic capital cost benefit and cost benefit of investments into environmental protection. Ecological investment is not exempted from the investment fund and from the point of view of content may be devided into net and gross ecological investment and from the point of view of time into preventive and compensation ecological investment. In the USSR the method has beem developed of the ecological and economic evaluation of projects for the construction and reconstruction of production units which proceeds from the evaluation of the negative environmental impact of wastes. The basic relations are given of the benefit of ecological investments. (E.S.)

  1. Wind Energy and Wildlife Pre- and Post-Construction Project at Pantex Plant

    Energy Technology Data Exchange (ETDEWEB)

    Matlack, Raymond S. [Texas A & M Univ., College Station, TX (United States)

    2018-01-03

    From 2009-2017, we conducted pre- and post-construction monitoring of wildlife at the Pantex Plant before and after construction of five wind turbines on the plant in 2014-2015. Pre-construction acoustic monitoring for bats was conducted at five sites on Pantex. Acoustic (here after Anabat) files were downloaded 30 times with Anabat files recorded from 6/21/2010 through 1/17/2014. The resulting data include over 3,000,000 files and we hope to analyze them in the future. We were never successful recording acoustic data after 2014 (post-construction). This is despite numerous attempts to trouble shoot our acoustic monitors. Wind damage to cables going from the body of the monitor to their microphones could not be repaired or replaced while towers were standing. Sampling of breeding birds was accomplished through point counts conducted at sites selected for turbine construction and others selected as control sites. Precipitation varied greatly over the course of the study, from a low of 17.81 cm (7.01 inches) during 2011 to a high of 87.96 cm (34.63 inches) during 2015. The pre-construction portion of the project was characterized by fairly extreme drought starting in 2011. Total precipitation for 2011 and 2012 was just 49.12 cm (19.34 inches), less than 50% of the average for a two-year period. The impact of this drought on nesting grassland birds manifest as low nesting species richness and abundance. In 2011 and 2012, 20 and 17 species were documented during point counts, respectively. Post-construction sampling followed the wet year of 2015 (87.96 cm, 34.63 inches). Species richness of nesting birds in 2016 and 2017 was considerably higher than during the drought, 40 and 37 species, respectively. We suspect changes in resource availability associated with relief from drought starting after 2015 was responsible for the recovery/increase in species detected during the breeding season; less importantly any changes from installation of turbines or changes in surface

  2. Validation of generic cost estimates for construction-related activities at nuclear power plants: Final report

    International Nuclear Information System (INIS)

    Simion, G.; Sciacca, F.; Claiborne, E.; Watlington, B.; Riordan, B.; McLaughlin, M.

    1988-05-01

    This report represents a validation study of the cost methodologies and quantitative factors derived in Labor Productivity Adjustment Factors and Generic Methodology for Estimating the Labor Cost Associated with the Removal of Hardware, Materials, and Structures From Nuclear Power Plants. This cost methodology was developed to support NRC analysts in determining generic estimates of removal, installation, and total labor costs for construction-related activities at nuclear generating stations. In addition to the validation discussion, this report reviews the generic cost analysis methodology employed. It also discusses each of the individual cost factors used in estimating the costs of physical modifications at nuclear power plants. The generic estimating approach presented uses the /open quotes/greenfield/close quotes/ or new plant construction installation costs compiled in the Energy Economic Data Base (EEDB) as a baseline. These baseline costs are then adjusted to account for labor productivity, radiation fields, learning curve effects, and impacts on ancillary systems or components. For comparisons of estimated vs actual labor costs, approximately four dozen actual cost data points (as reported by 14 nuclear utilities) were obtained. Detailed background information was collected on each individual data point to give the best understanding possible so that the labor productivity factors, removal factors, etc., could judiciously be chosen. This study concludes that cost estimates that are typically within 40% of the actual values can be generated by prudently using the methodologies and cost factors investigated herein

  3. Improvement of design and construction technology in Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Yomei Kato; Kiyoshi Shmizu

    1987-01-01

    Nuclear power generation currently offers economic merits superior to those of other methods dependant on such thermal power ganeration as petroleum, LNG, or coal. However, it is essential for the nuclear power generation continuously to retain economic superiority through concurently maintaining its high safety features and outstanding reliability. For achieving this purpose, taking into account of importance explained above, we have been developing and improving those of technologies such as design, engineering, and construction regarding the both field of management and techniques useful for plant construction. This paper covers the several instructive matters which Hitachi has accomplished throughout having had his hand in the project jobs. (author)

  4. Optimalisation of national industry participation in nuclear power plant construction

    International Nuclear Information System (INIS)

    Sriyana

    2008-01-01

    A study of national industry participation based on recent data has already been conducted. The current industry data is used to estimate the optimum level of national industry participation in nuclear power plant (NPP) construction based on the prior study. The purpose of the study is to give a figure of the optimum level of national industry participation in NPP construction. The scope of the study is the NPP construction project in related to the potency of national industry to participate in the project. The methodology used in the study are literature study, web surfing for industrial data, and on-the-spot industry survey that are potential to participate in NPP construction. In addition to that, discussion with expertise of industrial practitioner was also conducted. The study concludes that (1) based on the recent national industry capability provided and compared to prior similar study, it is estimated that the level of national industry participation in the first NPP construction with the capacity of 1000 MWe PWR is about 40%. (2) to accelerate NPP technology transfer, we need to build a small size NPP. The nuclear island will be developed by BATAN in cooperation with national industry and the non-nuclear island will be developed by national industry. Universities and other academicians should be involved to support and keep the sustainability of man power availability in developing the NPP technology. (author)

  5. Advanced plant design recommendations from Cook Nuclear Plant experience

    International Nuclear Information System (INIS)

    Zimmerman, W.L.

    1993-01-01

    A project in the American Electric Power Service Corporation to review operating and maintenance experience at Cook Nuclear Plant to identify recommendations for advanced nuclear plant design is described. Recommendations so gathered in the areas of plant fluid systems, instrument and control, testing and surveillance provisions, plant layout of equipment, provisions to enhance effective maintenance, ventilation systems, radiological protection, and construction, are presented accordingly. An example for a design review checklist for effective plant operations and maintenance is suggested

  6. Experience with construction and assembly of V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Prochazka, J.; Stepanek, S.; Drahy, J.

    1981-01-01

    The model is discussed of the constructions of the V-1 nuclear power plant at Jaslovske Bohunice with SKODA Trust fulfilling the role of the general supplier of the secondary part technology and the chief and special assembly contractor. The SKODA Trust mediated the Soviet supplies of technology, Soviet assembly and special assembly, and the mounting of the primary part according to Soviet projects. Plant start-up was safeguarded by the investor through Bohunice power plant staff and Soviet experts. The assembly of the primary circuit and the test assembly of reactor parts are described and the experience gained is discussed. The technological requirements are illustrated by the most important characteristics of the individual parts of the primary circuit. Also described are the design specifications of the 220 MW saturated steam turbine and the experience with its assembly and start-up. (B.S.)

  7. Draft environmental statement related to construction of Yellow Creek Nuclear Plant, Units 1 and 2: (Docket Nos. STN 50-566 and STN 50-567)

    International Nuclear Information System (INIS)

    1977-06-01

    The proposed action is the issuance of construction permits to the Tennessee Valley Authority for the construction of the Yellow Creek Nuclear Plant Units 1 and 2. The 470-hectare site is predominantly wooded. Construction-related activities on the site would disturb about 59 hectares. The portion of this land not to be used for plant facilities, parking lots, roads, etc., will be restored by seeding and landscaping. The temporary removal of vegetation will tend to promote erosion. Increased siltation and turbidity can be expected in the Yellow Creek embayment during construction, but measures will be taken to minimize these effects. A maximum of 237.6 m 3 /min of make-up water will be withdrawn from the Yellow Creek embayment, of which 106 m 3 /min will be returned to Pickwick Lake via a pipeline with the dissolved solids concentration increased by a factor of about two. About 106 m 3 /min will be evaporated to the atmosphere by the cooling towers. The volume of thermal discharge (106 m 3 /min) is small compared with the flow in Pickwick Lake (minimum daily average flow of 7812 m 3 /min) and the effect on the Pickwick Lake ecosystem is not expected to be significant. During periods of average flow the plant could use about 24% of the flow through Yellow Creek embayment. Chemical discharges (with the possible exception of copper) from the plant will be diluted to concentrations below those which might adversely affect aquatic biota. The risk associated with accidental radiation exposure will be very low. 42 figs., 100 tabs

  8. Inspection of nuclear power plants under construction in Spain

    International Nuclear Information System (INIS)

    Santoma, L.

    1977-01-01

    Brief summary of the situation of the nuclear industry in Spain, in order to better understand the questions involved in the inspection of the Spanish nuclear power plants, as well as the experience acquired, followed by a description of some of the problems which have arisen during the construction phase. Also the problems faced by the Inspection of the Junta de Energia Nuclear are described in order to fulfill the missions entrusted to it. Finally, some recommendations are made in light of the experience had by Spain.(author) [es

  9. Regulatory inspection activities on nuclear power plant sites during construction in the United Kingdom

    International Nuclear Information System (INIS)

    Jeffery, J.V.

    1977-01-01

    The work of regulatory inspection of the construction of the plant on the site is performed not only by the inspector who has been allocated to inspection duties for that site but also by the specialist staff who are involved with the safety assessment of the plant. The co-ordination of this work is described in the paper and examples are given of inspection activities associated with the enforcement requirements of licence conditions as well as those related to the inspection of the plant itself. (author)

  10. Farmer's Friend Biodigester Model Construction Manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    The success or failure of any biodigester depends mainly upon the suitability of the design, site for construction and quality of construction works, as well as quality of construction materials and workmanship involved during construction. This booklet provides the extensive information on various methods for selecting the appropriate size and site for construction, as well as construction work steps related to the Farmer's Friend model (2005) of biodigester. First, mason's responsibilities are explained. Second, the report continues with the sizes of available biodigesters and the quantity of feeding required. Then, the components of the biogas plant and instructions as to how to select the appropriate size are described. It continues with construction materials and appliances, and the selection of the construction site. Finally, the plant construction is explained from lay-out work to the construction of compost pits, finishing work and instructions to users. If the concerned mason/plumber strictly follows the instruction as described in this construction manual, the biodigester will function properly with the anticipated efficiency and the owner will get the return of his/her investment. This will encourage his/her relatives and neighbours to install biodigesters. However, if the biodigester functions poorly, nobody will be motivated to install it. Poor quality plants will harm the reputation of biogas technology and will have serious negative effects on promotion and extension activities. The masons should, therefore, be well aware that good quality plants will certainly increase the rate of installation with the demonstration effect that ultimately benefits itself, the farmer, and the country as a whole.

  11. Mitigation of socio-economic impacts due to the construction of energy projects in rural communities: an evaluation of the Hartsville nuclear power plant transportation-mitigation program

    International Nuclear Information System (INIS)

    Whitney, T.C.

    1982-01-01

    This study analyzes the effects of a commuter ride-sharing program in mitigating the harmful socio-economic impacts of a short-term, labor-intensive nuclear-power-plant construction project. The major hypothesis is that transportation-mitigation programs are more cost-effective in reducing the undesirable socio-economic impacts of large-scale construction projects than programs designed to mitigate impacts through the provision of public services for migrating workers. The dissertation begins by delineating the socio-economic effects of large-scale construction projects in rural areas. It proceeds to show how some of the deleterious impacts were mitigated using a commuter ride-sharing program. After the range of potential socio-economic impacts was established, a framework was developed to evaluate the effects of the transportation-mitigation program in mediating the harmful impacts. The framework involved the integration of the cost-benefit technique with social-impact assessment. The evaluation was grounded in a comparative framework whereby the Hartsville project community was compared with a similar community undergoing the construction of a nuclear power plant but without a commuter ride-sharing program, and a community not experiencing a major construction project. The research findings indicated that the transportation-mitigation program substantially reduced the in-migration of construction workers into the Hartsville-Trousdale County area. Further, the program was cost effective, with a benefit-cost ratio of 2.5 and net benefits totalling 28 million dollars

  12. Lessons learned from standardized plant design and construction

    International Nuclear Information System (INIS)

    Roche, B.

    1999-01-01

    Following France's hydropower program, Electricite de France began producing electricity with nuclear power during the 60s with units that were all different. In the early 70s, EDF launched an extensive nuclear program which was fueled by the 1973 oil crisis. The particularity of this program is based on the standardization of the design which enables the cost of engineering studies, components and construction to be reduced. As all of the sites presented various conditions, a single design was possible except for the heat sink, connection to the grid and foundations. In order to follow technical progress, the program was divided into several homogeneous series: CP0, CP1 and CP2 for 900 MWe reactors, P4 and P'4 for 1300 MWe reactors and N4 for 1450 MWe reactors. EDF has managed to apply standardization throughout the service life of the plant: all units of the same series are modified in the same manner and with a same batch of modifications. The standardization of operations is also the EDF's rule: technical specifications, safety reports, and safety procedures are normally the same for units belonging to the same series. Nevertheless, when plant design and operations, and heavy maintenance are considered, it becomes increasingly difficult to maintain strict standardization across the board: when examined closely, variations are possible-as regards the chemical specifications of the secondary system, for instance. On the other hand, at the fabrication stage, it is difficult to maintain fabrication procedures and alloy compositions rigorously the same. Standardization offers a tremendous advantage representing 30-40% of construction costs. The main drawback is the risk of generic defects. On the other hand, the risk is rather small owing to the small differences among units. (author)

  13. Environmental standard review plans for the environmental review of construction permit applications for nuclear power plants

    International Nuclear Information System (INIS)

    1979-05-01

    Information is presented concerning environmental descriptions; plant description; environmental impacts of construction; environmental impacts of station operation; environmental measurements and monitoring programs; environmental impacts of postulated accidents involving radioactive materials; the need for the plant; alternatives to the project; and evaluation of the proposed action

  14. Guidebook on design, construction and operation of pilot plants for uranium ore processing

    International Nuclear Information System (INIS)

    1990-01-01

    The design, construction and operation of a pilot plant are often important stages in the development of a project for the production of uranium concentrates. Since building and operating a pilot plant is very costly and may not always be required, it is important that such a plant be built only after several prerequisites have been met. The main purpose of this guidebook is to discuss the objectives of a pilot plant and its proper role in the overall project. Given the wide range of conditions under which a pilot plant may be designed and operated, it is not possible to provide specific details. Instead, this book discusses the rationale for a pilot plant and provides guidelines with suggested solutions for a variety of problems that may be encountered. This guidebook is part of a series of Technical Reports on uranium ore processing being prepared by the IAEA's Division of Nuclear Fuel Cycle and Waste Management. 42 refs, 7 figs, 3 tabs

  15. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D. (Argonne National Lab., IL (United States)); Rastorfer, J.R. (Chicago State Univ., IL (United States). Dept. of Biological Sciences ANL/CSU Cooperative Herbarium, Chicago, IL (United States)); Van Dyke, G.D. (Trinity Christian Coll., Palos Heights, IL (United States). Dept. of Biology)

    1991-07-01

    Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1 {times}1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems {ge}2 cm dbh in 10 {times} 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs.

  16. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan

    International Nuclear Information System (INIS)

    Zellmer, S.D.; Rastorfer, J.R.; Van Dyke, G.D.

    1991-07-01

    Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1 x1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems ≥2 cm dbh in 10 x 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs

  17. Development of knowledge acquisition methods for knowledge base construction for autonomous plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, S. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Sasajima, M.; Kitamura, Y.; Ikeda, M.; Mizoguchi, R.

    1993-03-01

    In order to enhance safety and reliability of nuclear plant operation, it is strongly desired to construct diagnostic knowledge base without lacking, contradiction, and description inconsistency. Nowadays, an advanced method Knowledge Compiler` has been studied to acquire diagnostic knowledge, mainly based on qualitative reasoning technique, without accumulating heuristics by interviews. Until now, 2 methods to suppress the ambiguity observed when qualitative reasoning mechanism were applied to heat transport systems of nuclear power plants: In the first method, qualitative values are allocated to the system variables along with the causality direction, avoiding contradictions among plural variables in each qualitative constraint describing knowledge of deviation propagation, heat balance, or energy conservation. In the second method, all the qualitative information is represented as a set of simultaneous qualitative equations. And, an appropriate subset is selected so that the qualitative solutions of unknowns in this subset can be derived independently of the remaining part. A contrary method is applied for the selected subset to derive local solutions. Then the problem size is reduced by substituting solutions of the subset, in a recursive manner. In the previous report on this research project, complete computer softwares have been constructed based on these methods, and applied to a 2-loop heat transport system of a nuclear power plant. The detailed results are discussed in this report. In addition, an integrated configuration of diagnostic knowledge generation system of nuclear power plants is proposed, based upon the results and new foundings obtained through the research activities so far, and the future works to overcome remaining problems are also identified. (author)

  18. Construction of a new wastewater treatment plant, building 676, route Maxwell

    CERN Multimedia

    SC Unit

    2008-01-01

    A new wastewater treatment plant is being constructed on Route Maxwell to treat the effluents from the TS/MME/CCS surface treatment workshops. For this purpose, excavation work is being performed in two separate locations along Route Maxwell, causing a slight disruption to traffic in these areas. Site access through Gate C should, however, be maintained. The work is scheduled to continue through until February 2009.

  19. Housekeeping during the construction phase of nuclear power plants - approved 1973

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Housekeeping requirements are presented for the control of work activities, conditions, and environments that can affect the quality of important parts of a nuclear power plant during the construction phase. These parts include the structures, systems, and components whose satisfactory performance is required for the plant to operate reliably, to prevent accidents that cause undue risk to the health and safety of the public, or to mitigate the consequences of such accidents if they were to occur. Housekeeping encompasses all activities related to control of cleanness of facilities, cleanness of material and equipment, fire prevention and fire protection including disposal of combustible materials and debris, control of access, and protection of equipment not denoted in other Standards

  20. Ecological impact from large constructions of hydroelectric power plants in Parana River, Brazil

    International Nuclear Information System (INIS)

    Bonetto, Argentino A.

    1992-01-01

    An analysis over environmental impacts on Parana River as a result of the hydroelectric power plants construction is presented. Hydroelectric dams, also including the planned ones, are showing during the explanation, and biologic aspects are discussed. 30 refs., 4 figs., 2 tabs

  1. Quality assurance of civil works during the construction of a nuclear power plant in Germany, F.R

    International Nuclear Information System (INIS)

    Hillemeier, B.

    1980-01-01

    During the construction of Nuclear Power Plants in Germany extended system-oriented steps will have to be mentioned, which the 'Kerntechnischer Ausschuss' has gathered up in his KTA-rules. The lecture outlines the organization and the performance of QA-requirements which are the common and lawful basis for the construction in Germany. The organizational structure and the functional responsability assignments at HOCHTIEF, one of the leading European contractors, will be represented. At last the QA-procedures will be described for a Nuclear Power Plant under erection. (orig.)

  2. The effects of plant diversity on nitrous oxide emissions in hydroponic microcosms

    Science.gov (United States)

    Sun, Hongying; Zhang, Chongbang; Song, Changchun; Chang, Scott X.; Gu, Baojing; Chen, Zhengxin; Peng, Changhui; Chang, Jie; Ge, Ying

    2013-10-01

    Previous studies have shown that plant diversity can improve the wastewater purification efficiency of constructed wetlands (CWs), but its effect on the nitrous oxide (N2O) emission in CWs has been unknown. To investigate the effect of plant diversity on the N2O emission, we established four plant species richness levels (each level containing 1, 2, 3 and 4 species, respectively) by using 96 hydroponic microcosms. Results showed that plant species richness enhanced the N2O emission, ranging from 27.1 to 115.4 μg N2O m-2 d-1, and improved nitrate removal (P 0.05), but improved nitrogen removal (P < 0.001). Hence, our study highlights the importance of both plant species richness and species identity in mediating the N2O emission and nitrogen removal in CWs.

  3. Design, construction and operation of Ontario Hydro's CANDU plants

    International Nuclear Information System (INIS)

    Campbell, P.G.

    1981-06-01

    Ontario Hydro has been producing electricity commercially from nuclear power since 1968, using CANDU reactors which have proved enormously successful. The 206-MW Douglas Point station, nearly 10 times larger than the first Canadian power reactor, NPD-2, resulted from a cooperative effort between Atomic Energy of Canada Ltd., the provincial government of Ontario, and Ontario Hydro. This approach led to a basic working relationship between the parties, with Ontario Hydro acting as project manager and builder, and AECL acting as consultant with respect to the nuclear components. Before Douglas Point was fully commissioned Ontario Hydro was ready to commit itself to more nuclear stations, and work was started on the four-unit Pickering nuclear generating station. Multi-unit stations were adopted to achieve economies of scale, and the concept has been retained for all subsequent nuclear power plants constructed in the province. The organization of Ontario Hydro's project management, construction, and operation of nuclear generating stations is described. Performance of the existing stations and cost of the power they produce have been entirely acceptable

  4. 77 FR 29701 - Impact of Construction (Under a Combined License) of New Nuclear Power Plant Units on Operating...

    Science.gov (United States)

    2012-05-18

    ... New Nuclear Power Plant Units on Operating Units at Multi-Unit Sites AGENCY: Nuclear Regulatory... construct and operate new nuclear power plants (NPPs) on multi-unit sites to provide an evaluation of the... License) of New Nuclear Power Plants on Operating Units at Multi-Unit Sites (Package). ML112630039 Federal...

  5. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D S; Lee, D S [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C Y [Seoul National University, Seoul (Korea, Republic of); and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  6. Design and construction of an inexpensive homemade plant growth chamber.

    Science.gov (United States)

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  7. Design and construction of an inexpensive homemade plant growth chamber.

    Directory of Open Access Journals (Sweden)

    Fumiaki Katagiri

    Full Text Available Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W x 1.8 m (D x 2 m (H, providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant

  8. Cost effective decommissioning and dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Wasinger, Karl

    2012-01-01

    As for any large and complex project, the basis for cost effective decommissioning and dismantling of nuclear power plants is established with the development of the project. Just as its construction, dismantling of a nuclear power plant is similarly demanding. Daily changing situations due to the progress of construction - in the present case progress of dismantling - result in significant logistical challenges for project managers and site supervisors. This will be aggravated by the fact that a considerable amount of the removed parts are contaminated or even activated. Hence, not only occupational health, safety and environmental protection is to be assured, employees, public and environment are to be adequately protected against the adverse effect of radioactive radiation as well. Work progress and not least expenses involved with the undertaking depend on adherence to the planned course of actions. Probably the most frequent cause of deviation from originally planned durations and costs of a project are disruptions in the flow of work. For being enabled to counteract in a timely and efficient manner, all required activities are to be comprehensively captured with the initial planning. The effect initial activities may have on subsequent works until completion must particularly be investigated. This is the more important the larger and more complex the project actually are. Comprehensive knowledge of all the matters which may affect the progress of the works is required in order to set up a suitable work break-down structure; such work break-down structure being indispensable for successful control and monitoring of the project. In building the related organizational structure of the project, all such stakeholders not being direct part of the project team but which may potentially affect the progress of the project are to be considered as well. Cost effective and lost time injury free dismantling of decommissioned nuclear power plants is based on implementing

  9. Analysis of effect of safety classification on DCS design in nuclear power plants

    International Nuclear Information System (INIS)

    Gou Guokai; Li Guomin; Wang Qunfeng

    2011-01-01

    By analyzing the safety classification for the systems and functions of nuclear power plants based on the general design requirements for nuclear power plants, especially the requirement of availability and reliability of I and C systems, the characteristics of modem DCS technology and I and C products currently applied in nuclear power field are interpreted. According to the requirements on the safety operation of nuclear power plants and the regulations for safety audit, the effect of different safety classifications on DCS design in nuclear power plants is analyzed, by considering the actual design process of different DCS solutions in the nuclear power plants under construction. (authors)

  10. Dynamic cost control information system for nuclear power plant construction

    International Nuclear Information System (INIS)

    Wang Yongqing; Liu Wei

    1998-01-01

    The authors first introduce the cost control functions of some overseas popular project management software at present and the specific ways of cost control of nuclear power plant construction in China. Then the authors stress the necessity of cost and schedule control integration and present the concept of dynamic cost control, the design scheme of dynamic cost control information system and the data structure modeling. Based on the above, the authors can develop the system which has the functions of dynamic estimate, cash flow management and cost optimization for nuclear engineering

  11. Design and construction of coke battery 1A at Radlin coke plant, Poland

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Kravchenko; D.P. Yarmoshik; V.B. Kamenyuka; G.E. Kos' kova; N.I. Shkol' naya; V.V. Derevich; A.S. Grankin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    In the design and construction of coke battery 1A at Radlin coke plant (Poland), coking of rammed coke with a stationary system was employed for the first time. The coke batteries are grouped in blocks. Safety railings are provided on the coke and machine sides of the maintenance areas.

  12. Construction of a model of the process of accumulation of radionuclides of corrosion products on the equipment in nuclear power plants with boiling-water reactors

    International Nuclear Information System (INIS)

    Tevlin, S.A.

    1985-01-01

    This paper addresses the problem of corrosion of the structural materials of the reactor loop. This problem can be solved by constructing physical models of the process of accumulation of radionuclides on the equipment at nuclear power plants and by constructing the analytical apparatus for describing them. These models are presented here, and allow the analyzing of the effect of separate states and thermophysical factors, determination of the basic factors, and the ability to foresee in timely fashion the water state and structural measures required to lower the rate of growth and to decrease the amount of radionuclides deposited on the equipment in the nuclear power plant

  13. A Post Licensing Study of Community Effects at Two Operating Nuclear Power Plants. Final Report.

    Science.gov (United States)

    Purdy, Bruce J.; And Others

    In an effort to identify and assess the social, economic, and political effects of nuclear power plant construction and operation upon two host communities (Plymouth, Massachusetts and Waterford, Connecticut), a post-licensing review revealed that the primary impact of the nuclear power plants in both communities was an increase in the property…

  14. Effect of reversal of the flow direction on hydrodynamic characteristics and plants cultivated in constructed wetland systems

    Directory of Open Access Journals (Sweden)

    Gheila Corrêa Ferres Baptestini

    2016-01-01

    Full Text Available The objective of the present study was to evaluate the effect of reversal of the flow direction, when used the surface flow as an operating criteria, on hydrodynamic characteristics and plants grown in horizontal subsurface-flow constructed wetland systems (HSF-CWs. For this purpose, six HSF-CWs were used: two non-cultivated (HSF-CWs 1 and 4, two cultivated with Tifton 85 grass (Cynodon spp. (HSF-CWs 2 and 5 and two cultivated with Alternanthera (Alternanthera philoxeroides (HSF-CWs 3 and 6. It was made a reversal in the flow direction of the HSF-CWs 1, 2 and 3. The reversal of the wastewater flow direction was performed when the superficial flow of the wastewater applied (SF reached 50% of the length of the HSF-CWs. There was a single reversal for each system, on different dates. Reversing the flow direction promoted distinction on the dry matter yield of Tifton 85 grass. This was not observed in HSF-CWs cultivated with Alternanthera. The reversal of the wastewater flow direction promoted, in principle, the extinction of the SF advance in the HSF-CWs, but did not prevent its return. Waiting for the SF to reach 50% of the length was not the best criterion for reversing the flow direction.

  15. Lifestyle of the biotroph Agrobacterium tumefaciens in the ecological niche constructed on its host plant.

    Science.gov (United States)

    González-Mula, Almudena; Lang, Julien; Grandclément, Catherine; Naquin, Delphine; Ahmar, Mohammed; Soulère, Laurent; Queneau, Yves; Dessaux, Yves; Faure, Denis

    2018-07-01

    Agrobacterium tumefaciens constructs an ecological niche in its host plant by transferring the T-DNA from its Ti plasmid into the host genome and by diverting the host metabolism. We combined transcriptomics and genetics for understanding the A. tumefaciens lifestyle when it colonizes Arabidopsis thaliana tumors. Transcriptomics highlighted: a transition from a motile to sessile behavior that mobilizes some master regulators (Hfq, CtrA, DivK and PleD); a remodeling of some cell surface components (O-antigen, succinoglucan, curdlan, att genes, putative fasciclin) and functions associated with plant defense (Ef-Tu and flagellin pathogen-associated molecular pattern-response and glycerol-3-phosphate and nitric oxide signaling); and an exploitation of a wide variety of host resources, including opines, amino acids, sugars, organic acids, phosphate, phosphorylated compounds, and iron. In addition, construction of transgenic A. thaliana lines expressing a lactonase enzyme showed that Ti plasmid transfer could escape host-mediated quorum-quenching. Finally, construction of knock-out mutants in A. tumefaciens showed that expression of some At plasmid genes seemed more costly than the selective advantage they would have conferred in tumor colonization. We provide the first overview of A. tumefaciens lifestyle in a plant tumor and reveal novel signaling and trophic interplays for investigating host-pathogen interactions. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  16. Microstructure of Concrete with Aggregates from Construction and Demolition Waste Recycling Plants.

    Science.gov (United States)

    Bravo, Miguel; Santos Silva, António; de Brito, Jorge; Evangelista, Luís

    2016-02-01

    This paper intends to analyze the microstructure of concrete with recycled aggregates (RA) from construction and demolition waste from various Portuguese recycling plants. To that effect, several scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses were performed. Various concrete mixes were evaluated in order to analyze the influence of the RA's collection point and consequently of their composition on the mixes' characteristics. Afterward all the mixes were subjected to the capillary water absorption test in order to quantitatively evaluate their porosity. Results from the SEM/EDS analysis were compared with those from capillary water absorption test. The SEM/EDS analysis showed that the bond capacity of aggregates to the new cement paste is greatly influenced by the RA's nature. On the other hand, there was an increase in porosity with the incorporation of RA.

  17. Construction labor productivity during nuclear power plant construction

    International Nuclear Information System (INIS)

    Murray, W.B.

    1980-01-01

    This paper discusses the three different types of productivity programs used at the Wm. H. Zimmer Nuclear Power Station construction site. The Standard Cost Estimate as Productivity Measurement compares actual units installed to estimated units. The Manpower and Equipment Utilization Study measures the present utilization level of the construction work force, identifies opportunities for productivity improvement, and establishes a data base against which future improvements could be made. The special productivity program is a specialized and detailed study of first line supervision. Productivity is defined as the degree of efficiency attained in the use of labor, professional and management skills and knowledge, materials and equipment, and time and money to produce an end result. It is concluded that a more consistent system of productivity measurements needs to be developed and promoted for general use in the construction industry

  18. AP1000 construction schedule

    International Nuclear Information System (INIS)

    Winters, J.W.

    2001-01-01

    Westinghouse performed this study as part of EPRI interest in advancing the use of computer aided processes to reduce the cost of nuclear power plants. EPRI believed that if one could relate appropriate portions of an advanced light water reactor plant model to activities in its construction sequence, and this relationship could be portrayed visually, then optimization of the construction sequence could be developed as never before. By seeing a 3-D representation of the plant at any point in its construction sequence, more informed decisions can be made on the feasibility or attractiveness of follow on or parallel steps in the sequence. The 3-D representation of construction as a function of time (4-D) could also increase the confidence of potential investors concerning the viability of the schedule and the plant ultimate cost. This study performed by Westinghouse confirmed that it is useful to be able to visualize a plant construction in 3-D as a function of time in order to optimize the sequence of construction activities. (author)

  19. Achievement report for fiscal 1981 on Sunshine Program-assisted project. Survey of Australian industrial capability and construction capability relative to Australian brown coal liquefaction plant construction project; 1981 nendo Goshu kattan ekika plant no kensetsu ni kakawaru kogyoryoku, kensetsu kojiryoku ni kansuru chosa seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The industrial capability and construction capability of Australia are surveyed in relation with the project of constructing a brown coal liquefaction plant there. Australian heavy industry is conspicuously advanced in the field of mining machinery involving coal, iron ore, and other mineral resources. On the other hand, in the fields of general-purpose machinery for plants and of civil engineering machinery, it is behind other countries in terms of technology and cost because of the small market. When an industrial project is implemented in Australia, consulting firms, engineering contractors, etc., operate independently from each other, and the project is propelled forward under a perfect specialization system. Labor-related problems in the civil engineering and construction industry are the recruitment of laborers which is difficult and the delay in and suspension of construction due to labor disputes that take place very frequently. In Victoria State where a brown coal liquefaction plant is under construction, the availability of laborers specializing in construction is rather higher than in other states, and there is no important problem in this respect. One cannot be too prudent in Victoria State, however, since it includes a region which is the most notorious in Australia in terms of labor-management dispute. (NEDO)

  20. Contribution of quality assurance to effective nuclear power plant operation

    International Nuclear Information System (INIS)

    Raisic, N.

    1984-01-01

    The regulatory requirements related to quality assurance (QA) serve as an effective mechanism in establishing and implementing the QA programme during the design, construction and operation of nuclear power plants. However, these requirements only relate to the equipment and activities concerning the safety of nuclear power plants; the decision as to their implementation on other non-safety-related equipment is left to the plant management. As a result, operation statistics show that the safety-related systems are performing satisfactorily and that they are not of serious concern to plant unavailability. On the other hand, non-safety-related equipment which is still vital to plant performances is more frequently responsible for plant outages and losses in electricity production. QA programmes implemented on such equipment are in principle less strict, unsystematic and, in a number of cases, non-existent. An attempt has been made to analyse the existing operating experience data in order to identify the correlation of outage statistics with QA programmes required by existing standards and their implementation practices, both in respect of programme coverage and intensity. Unfortunately, existing operating experience data cannot directly correlate plant performance with the QA programmes implemented in order to demonstrate the effectiveness of QA techniques to plant safety, reliability of plant equipment and plant availability. For these reasons an analysis is made of outage statistics to identify the modes and causes of outages and to relate them to existing QA requirements and practices. Some conclusions are deduced that relate to a possible improvement of plant performance by consequent implementation of QA requirements to the equipment and activities responsible for both plant safety and efficient electricity production, and by adequate grading of QA activities to obtain a cost-effective QA programme in plant operation. (author)

  1. Intervention of French safety authorities during the design and construction phases of the Creys-Malville plant

    International Nuclear Information System (INIS)

    Orzoni, G.

    1985-01-01

    The intervention of French safety authorities during the design and construction phases of the Creys-Malville plant has been made by the different means of technical regulation, of several successive authorizations bound to different steps, and of numerous surveillance visits. Some safety-related problems have been met. Some of them are detailed, relating to the basis accident for containment design, decay heat removal, polar crane of reactor building, seismic resistance of main vessel internals, core cover plug, design and fabrication of steam generators. The main problems met during the design reviews and the construction phase of the plant have been solved in time; the safety level reached is provisionally judged acceptable by the French safety authorities

  2. Construction of a new waste-water treatment plant, building 676, route Maxwell

    CERN Multimedia

    TS Department

    2008-01-01

    A new waste-water treatment plant is being constructed on Route Maxwell to treat the effluents from the TS/MME/CCS surface treatment workshops. For this purpose, excavation work is being performed in two separate locations along Route Maxwell, causing a slight disruption to traffic in these areas. Site access through Gate C should, however, be maintained. The work is scheduled to continue until February 2009.

  3. Optimized construction of biogas plants; Optimierte Bauweise fuer Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-19

    Within the conference of the International Trade Fair for Biogas Plant Technology at 21st February, 2012 in Berlin, the following lectures were held: (1) Optimized dimensions of containers for small systems of liquid manure (Manfred Thalmann); (2) Microferm mini biogas plants (Bart Brouwer); (3) Fermentation of stackable biomass in rural biogas plant - The DeNaBa system (Christian Deterding); (4) The Sauter Biogas System for the fermentation of liquid manure, solid dung, and other residual materials (Stefan Sauter); (5) Bio-electricity: Controllable power generation by means of biogas plants (Matthias Sonnleitner); (6) Reduction of the effort and increase of the yield using UDR fixed bed technology (Alfred van den Berg); (7) Prestressed concrete container for biogas plants: Area of application - quality - options (Harald Feldmann); (8) Corrosion protection of agricultural and communal biogas plants (Michael Normann); (9) Fundamentals of efficient and effective flow generation in biogas plants (Kay Rotalski); (10) Rotary piston screw pistons and eccentric screw pumps (Thorsten Gilles).

  4. Participation of SKODA JS in the construction of the Temelin and Mochovce nuclear power plants

    International Nuclear Information System (INIS)

    Svec, A.; Zach, J.; Ruzicka, P.

    2000-01-01

    SKODA JS is the traditional manufacturer of WWER type reactor equipment and also supplier of the primary circuits and of equipment for the transport, refuelling and storage of fuel for Ver type nuclear power plants built in the Czech and Slovak Republics. The paper deals with activities of the company SKODA JS at two power plants whose reactor units are close to completion, viz. the Mochovce NPP in the Slovak Republic (4 x Ver 440 MW; unit 1 was put in operation in 1998, unit 2 is in the stage of commissioning, units 3 and 4 are not to be completed) and the Temelin NPP in the Czech Republic (2 x Ver 1000 MW, commissioning of units 1 and 2 is expected in 2001 and 2002, respectively). The scope of supplies to the two nuclear power plants (detailed design, delivery of equipment, installation, commissioning) and the course of construction from SKODA JS's viewpoint are described. The most important design changes and improvements made during the construction are highlighted. (author)

  5. Savannah River Plant engineering, design, and construction history of ``S`` projects and other work, January 1961--December 1964. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1970-03-01

    The work described in this volume of ``S`` Projects History is an extension of the type of work described in Volume I. E.I. du Pont de flemours & Company had entered into Contract AT (07-2)-l with the United States Atomic Energy Commission to develop, design, construct, install, and operate facilities to produce heavy water, fissionable materials, and related products. Under this contract,, Du Pont constructed and operated the Savannah River Plant. The engineering, design, and construction for most of the larger ``S`` projects was performed by the Engineering DeDartment. For some of the large and many of the smaller projects the Engineering Department was responsible only for the construction because the Atomic Energy Division (AED) of the Explosives Department handled the other phases. The Engineering Department Costruction Division also performed the physical work for many of the plant work orders. This volume includes a general description of the Du Pont Engineering Department activities pertaining to the engineering, design, and construction of the ``S`` projects at the Savannah River Plant; brief summaries of the projects and principal work requests; and supplementary informaticn on a few subjects in Volume I for which final data was not available at the closing date. Projects and other plant engineering work which were handled entirely by the Explosives Department -- AED are not included in this history.

  6. Limitation of radioactive excursions by the containment construction

    International Nuclear Information System (INIS)

    Janssen, L.G.J.

    1987-01-01

    The last barrier against the spread of fission products into the environment consists, in nuclear power plants, of the containment construction or safety enclosure. A brief survey of the influence of such an enclosure on the safety of a nuclear power plant is outlined for the various containment constructions for light-water reactors. Also the possibilities of failure of these constructions are discussed and some processes are described which can contribute effectively on the quantity of fission products that can be spread into the environment in case of a reactor accident. (Auth.)

  7. Advanced design and construction technology for ABWR

    International Nuclear Information System (INIS)

    Kawahara, Akira

    2003-01-01

    Recently, many countries start planning to construct nuclear plants, and the electric power companies and the plant suppliers are acutely aware of the importance of the technical infrastructure required for construction planning and execution as this has a significant influence on construction costs. Plant suppliers in Japan have been focusing its attention on the efficiency of construction from earlier, because of its significant role in determining overall construction costs. Through continuous efforts to reduce fieldwork costs, we have developed unique technologies, especially the 3D-CAD system and other advanced construction technologies including modularization. We, plant suppliers are now turning its attention to overseas nuclear plants construction also, and are developing more rational, economical, and global construction based on its vast experience in construction techniques. In this report, the evolution of plant engineering methods and construction technologies, the present level of progress in construction, and technical developments for the future, are described. (author)

  8. Feasibility study on floating nuclear power plant (1). Conceptual design study of FNPP. Construct research

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, Noriaki; Shimazaki, Junya; Ochiai, Masaaki [Department of Nuclear Energy System, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Takahashi, Masao [Niigata Engineering Co. Ltd., Tokyo (Japan); Nakazawa, Toshio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sato, Kazuo [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    2001-02-01

    Offshore siting methods for a nuclear power plant are classified into three types as a floating type, a settled type and a land reclamation type. The floating nuclear power plant (FNPP) has a number of advantages, such as seismic isolation, standardization of design and manufacturing, and reduction of construction period. It is, however, required for FNPP to establish the safety standards, which are different from ones for land based nuclear power plant. Investigations for this subject have not been conducted sufficiently. In this report, design study on a concept for FNPP and a review on stability evaluation for the floating platform, which were performed in order to study the safety concept of the FNPP are described. The basic concept of the FNPP are described. The basic concept for FNPP is as follows: The FNPP is sited approximately 1 - 2km off the sea coast on the open sea with water depth of about 20m and it is moored of protected sea by the breakwater, it provide a floating platform for a 1,100MWe class PWR plant. The results of design study show that the floating platform for 1,100MWe class PWR plant of 300m (L) x 80m (W) x 35m (H), and displacement of approximately 300,000 ton can be constructed in a dockyard. This floating platform guarded by the breakwater is found to be stable enough to install the nuclear power plant from the analysis simulating the movement of the platform due to sea wave or wind. (author)

  9. Testing in power plant construction as well as in the petrochemical and chemical industry

    International Nuclear Information System (INIS)

    Riess, N.; Schittko, H.

    1978-01-01

    In general, the upgrading of requirements for the most different fields of engineering is also characterized by a corresponding effort in testing. In this context especially nondestructive tests of materials are of outstanding importance. In the fields of power plant construction (among others, components for nuclear power plants) as well as petrochemical and chemical industry considered here, almost all nondestructive test methods are applied. This paper discusses not so much theoretical testing problems, but rather test objects as well as specifications and testing equipment. (orig./HP) [de

  10. Challenges encountered during an accelerated cogeneration plant construction and commissioning schedule

    International Nuclear Information System (INIS)

    Good, R.L.; Cox, T.P.; Vallejo, J.M.

    1988-01-01

    A decision was made in 1986 to proceed with a 110 magawatt grassroots cogeneration plant to supply the steam and electrical requirements of a large, integrated petrochemical manufacturing facility. Though some preliminary engineering had been done and long delivery equipment purchase orders had been let in the summer of 1986, detailed engineering did not commence until late October and construction until mid-December, 1986. Federal income tax consideration required that the project be in service prior to the end of 1987. This eleven month construction, commissioning, and start up schedule was achieved with 100 per cent operation occurring on December 22, 1987. Numerous challenges were met by the lean Project Team during this accelerated schedule. This paper discusses the development of: Project Team Staffing, Operator and Maintenance Staffing and Training, Commissioning Schedules and Staffing, solutions to Significant Technical Problems

  11. Application of large-scaled pre-cast components for the construction of water intake for a nuclear power plant

    International Nuclear Information System (INIS)

    Topolnicki, M.

    1976-01-01

    Problem of the construction of water intake for a 4000 MW nuclear power plant located at the seashore is solved. The advantages of application of large-size pre-cast components are presented,. The constructional solutions and proposed technologies are described in detail. (A.S.)

  12. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power Plant...

  13. Experience in construction of a spent nuclear fuel reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sakuma, A.; Inoue, K.

    1977-01-01

    In June 1970, Japan Gasoline Co., Ltd (JGC)and Saint-Goblan Techniques Nouvelles of France received an order for the construction of a reprocessing plant from Power Reactor and Nuclear Fuel Development Corporation, as a joint prime contractor. JGC was responsible for: procurement, inspection, and schedule control of equipment and materials other than those imported from Europe; for conclusion of contracts with various subcontractors relating to the building construction, piping, and similar work; and for supervision of field work. Field work began in June 1971 and was completed in about 40 months. This paper describes the experiences of JGC during the period of the entire operation, and on the basis of this experience recommends modifications to their approach to similar projects in the future

  14. Partial construction halt to HTR reactor revoked

    International Nuclear Information System (INIS)

    Dauk, W.

    1981-01-01

    The Higher Administrative Court has dismissed the decision of the Arnsberg Administrative Court of February 5, 1981, which had decided in favour of an action for restitution of the suspensive power of an action for annulment of the part-construction permit for the Schmehausen nuclear power plant with a high-temperature reactor, i.e. in favour of a halt to construction. The Higher Administrative Court has revoked this decision on formal grounds - incompetence of the Administrative Court - and on substantial grounds - the halt to construction would be too hard on the power plant producer. The author agrees with this and discusses some aspects of judgment, effective legal aid, etc. (HSCH) [de

  15. Basic Study of Establishment of Quality Assurance Processes to Develop an Integrated Quality Assurance System for Nuclear Power Plant Construction

    International Nuclear Information System (INIS)

    Lim, Byungki; Moon, Byeongsuk; Lee, Jae Kyoung

    2014-01-01

    An integrated quality assurance system has necessitated carrying out quality assurance programs in a systematic manner because the opportunities to expand business in overseas markets have increased since the export of a nuclear power plant to UAE in 2009. In this study, we use PDCA method to systematically analyze the quality assurance procedures that were used in previous projects for constructing nuclear power plants. We reached a classification system of quality assurance processes at each phase of nuclear power plant construction by integrating similar work related to quality such as planning, design, equipment manufacturing, construction and start-up. We also established a hierarchy of quality assurance processes to develop an integrated quality assurance system as a technology goal to be developed later. To obtain most updated quality assurance activities, a quality assurance process is structured by integrating similar works analyzed from quality assurance procedures through PDCA cycle method. At the implementation phase of Hierarchy of quality processes and sequence of processes for constructing nuclear power plant are established in this study. Integrated quality assurance system is to be developed by connecting organizations as well as stakeholders such as owners, Architect engineering, suppliers, contractors, and sub-contractors to carry out assigned work efficiently

  16. Basic Study of Establishment of Quality Assurance Processes to Develop an Integrated Quality Assurance System for Nuclear Power Plant Construction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Byungki; Moon, Byeongsuk; Lee, Jae Kyoung [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    An integrated quality assurance system has necessitated carrying out quality assurance programs in a systematic manner because the opportunities to expand business in overseas markets have increased since the export of a nuclear power plant to UAE in 2009. In this study, we use PDCA method to systematically analyze the quality assurance procedures that were used in previous projects for constructing nuclear power plants. We reached a classification system of quality assurance processes at each phase of nuclear power plant construction by integrating similar work related to quality such as planning, design, equipment manufacturing, construction and start-up. We also established a hierarchy of quality assurance processes to develop an integrated quality assurance system as a technology goal to be developed later. To obtain most updated quality assurance activities, a quality assurance process is structured by integrating similar works analyzed from quality assurance procedures through PDCA cycle method. At the implementation phase of Hierarchy of quality processes and sequence of processes for constructing nuclear power plant are established in this study. Integrated quality assurance system is to be developed by connecting organizations as well as stakeholders such as owners, Architect engineering, suppliers, contractors, and sub-contractors to carry out assigned work efficiently.

  17. A review of plant-pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands

    DEFF Research Database (Denmark)

    Carvalho, Pedro N; Basto, M Clara P; Almeida, C Marisa R

    2014-01-01

    the potential impact of veterinary and human pharmaceuticals on arable land. However, plant uptake as well as phytotoxicity data are scarcely studied. Simultaneously, phytoremediation as a tool for pharmaceutical removal from soils, sediments and water is starting to be researched, with promising results....... This review gives an in-depth overview of the phytotoxicity of pharmaceuticals, their uptake and their removal by plants. The aim of the current work was to map the present knowledge concerning pharmaceutical interactions with plants in terms of uptake and the use of plant-based systems for phytoremediation...

  18. Flood control construction of Shidao Bay nuclear power plant and safety analysis for hypothetical accident of HTR-PM

    International Nuclear Information System (INIS)

    Chen Yongrong; Zhang Keke; Zhu Li

    2014-01-01

    A series of events triggered by tsunami eventually led to the Fukushima nuclear accident. For drawing lessons from the nuclear accident and applying to Shidao Bay nuclear power plant flood control construction, we compare with the state laws and regulations, and prove the design of Shidao Bay nuclear power plant flood construction. Through introducing the history of domestic tsunamis and the national researches before and after the Fukushima nuclear accident, we expound the tsunami hazards of Shidao Bay nuclear power plant. In addition, in order to verify the safety of HTR-PM, we anticipate the contingent accidents after ''superposition event of earthquake and extreme flood'', and analyse the abilities and measures of HTR-PM to deal with these beyond design basis accidents (BDBA). (author)

  19. Digital Technology for Construction Period Reduction of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    You, Y. M. [PHILOSOPHIA, Inc., Seoul (Korea, Republic of); Suh, K. Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2009-10-15

    PHILOSOPHIA, Inc. and Seoul National University have jointly developed a first-of-a-kind engineering (FOAKE) solution. The solution lends itself to the four-plus-dimensional (4{sup +}D) Technology{sup TM} resorting to three -dimensional (3D) computer-aided design (CAD) digital mockup (DMU). The aim is to minimize the working hours via process optimization by real-time exchange of design and process information in the ubiquitous system. The 4{sup +}D Technology{sup TM} in the 3D virtual reality (VR) space and time plus cost coordinates, is developed to reduce the construction time as well as cost of nuclear power plants (NPPs) by optimizing the manufacturing procedure and construction process. The 4{sup +}D Technology{sup TM} anchored to the 3D CAD DMU allows the interference of the NPP components to be checked upon early in the design stage, and the process sequences to be optimized. Moreover, its ergonomic and robotic technologies enable simulation of all the aspects of the workers, robots and machines involved in the construction process. One of the greatest advantages of the 4{sup +}D Technology{sup TM} lies in that any change of the overall process procedures can virtually be tested. On the other hand, it shall financially be unbearable to alter the procedures consisting of plenty of structures and components, complicated detailed processes and long work hours in the physical space.

  20. Digital Technology for Construction Period Reduction of Nuclear Power Plants

    International Nuclear Information System (INIS)

    You, Y. M.; Suh, K. Y.

    2009-01-01

    PHILOSOPHIA, Inc. and Seoul National University have jointly developed a first-of-a-kind engineering (FOAKE) solution. The solution lends itself to the four-plus-dimensional (4 + D) Technology TM resorting to three -dimensional (3D) computer-aided design (CAD) digital mockup (DMU). The aim is to minimize the working hours via process optimization by real-time exchange of design and process information in the ubiquitous system. The 4 + D Technology TM in the 3D virtual reality (VR) space and time plus cost coordinates, is developed to reduce the construction time as well as cost of nuclear power plants (NPPs) by optimizing the manufacturing procedure and construction process. The 4 + D Technology TM anchored to the 3D CAD DMU allows the interference of the NPP components to be checked upon early in the design stage, and the process sequences to be optimized. Moreover, its ergonomic and robotic technologies enable simulation of all the aspects of the workers, robots and machines involved in the construction process. One of the greatest advantages of the 4 + D Technology TM lies in that any change of the overall process procedures can virtually be tested. On the other hand, it shall financially be unbearable to alter the procedures consisting of plenty of structures and components, complicated detailed processes and long work hours in the physical space

  1. Works of shifting discharge facilities in construction for adding No.3 and No.4 plants to Oi Nuclear Power Station

    International Nuclear Information System (INIS)

    Matsuoka, Gen-ichi; Yoshida, Atsumu.

    1989-01-01

    At present in Oi Power Station, No.1 and No.2 plants of 1175 MWe output each are in operation, but in order to stabilize electric power supply for a long period, Kansai Electric Power Co., Inc. earnestly advances the construction works for adding No.3 and No.4 plants of each 1180 MWe output PWR. No.3 plant is expected to begin the operation in October, 1991, and No.4 plant in August, 1992. The works for creating the site were started in July, 1985, and the flat land of about 60,000 m 2 and the reclaimed land of about 80,000 m 2 were prepared. Subsequently, the main construction works were started in May, 1987, and the rate of general progress was 21 % in No.3 plant and 2 % in No.4 plant as of the end of October, 1988. Due to the addition of No.3 and No.4 plants, the quantity of condenser cooling water discharge increases to 318 m 3 /s from 150 m 3 /s at present, therefore, the bank having discharge holes is shifted from the present position about 100 m toward sea. As to the problems, the shifting works in flowing water, the method of shifting, the examination on lifting caissons and culverts, the trial construction of chemical anchors and so on were investigated. The execution of the shifting works is reported. (K.I.)

  2. A Strategy for Accomplishing Human-Performance Monitoring of Constructing NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chanho; Jung, Yeonsub [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The main purpose of HPM(Human performance monitoring) is that no significant safety degradation occurs due to changes in design, procedures, training, or staffing during the plant operation. Accordingly, the strategy for accomplishing HPM should be to maintain the acceptable level of human performance for safety operation. This paper presents a strategy to fulfill HPM effectively for constructing NPPs in Korea. Activities for HPM in constructing plants need to be divided into two large parts on the basis of the fuel loading, which could be a good strategy to accomplish HPM effectively. That is, the activities such as making HPM plan and developing its indexes are performed before the fuel loading, while the activities of maintaining acceptable HP levels are conducted after the fuel loading. This HPM strategy includes not only maintaining the criteria of human performance established during ISV, but also improving human performance through existing activities during the plant operation. Constructing plants will also make actively use of the existing programs for enhancing human performance.

  3. Comparison of the effects of nuclear power plants and thermal power plants on the environment

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.; Teverovskij, E.N.

    1976-01-01

    A comparison of ecological effects produced by a thermal power station (TPS) and a nuclear power plant (NPP) of similar electric capacity has been made. The ecological advantages of NPP over TPS are revealed in analysis of aerosol and gas blow-out and its danger for the environment. From the above data it follows that TPS as compared with NPP of similar electric capacity produces a 100 and 1000 fold higher air pollution effect than the latter. The dose of TPS radiation effect is minimum 500 times higher than that of NPP at normal operation. Large-scale construction of NPP is one of the most perfect means of atmosphere protection against harmful industrial discharges

  4. Three integrated photovoltaic/sound barrier power plants. Construction and operational experience

    International Nuclear Information System (INIS)

    Nordmann, T.; Froelich, A.; Clavadetscher, L.

    2002-01-01

    After an international ideas competition by TNC Switzerland and Germany in 1996, six companies where given the opportunity to construct a prototype of their newly developed integrated PV-sound barrier concepts. The main goal was to develop highly integrated concepts, allowing the reduction of PV sound barrier systems costs, as well as the demonstration of specific concepts for different noise situations. This project is strongly correlated with a German project. Three of the concepts of the competition are demonstrated along a highway near Munich, constructed in 1997. The three Swiss installations had to be constructed at different locations, reflecting three typical situations for sound barriers. The first Swiss installation was the world first Bi-facial PV-sound barrier. It was built on a highway bridge at Wallisellen-Aubrugg in 1997. The operational experience of the installation is positive. But due to the different efficiencies of the two cell sides, its specific yield lies somewhat behind a conventional PV installation. The second Swiss plant was finished in autumn 1998. The 'zig-zag' construction is situated along the railway line at Wallisellen in a densely inhabited area with some local shadowing. Its performance and its specific yield is comparatively low due to a combination of several reasons (geometry of the concept, inverter, high module temperature, local shadows). The third installation was constructed along the motor way A1 at Bruettisellen in 1999. Its vertical panels are equipped with amorphous modules. The report show, that the performance of the system is reasonable, but the mechanical construction has to be improved. A small trial field with cells directly laminated onto the steel panel, also installed at Bruettisellen, could be the key development for this concept. This final report includes the evaluation and comparison of the monitored data in the past 24 months of operation. (author)

  5. Construction, start-up and operation of Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Hornicek, Z.

    1989-01-01

    The Labor Safety Inspectorate have been supervising the construction of the Dukovany nuclear power plant since the construction start in 1977. It was found that in concreting the reactor building walls with concrete mixes, the regulations were not observed on the highest level for the concrete mix drop, and on the gap processing and concrete treatment when concreting was interrupted. Thus, concreting was halted until the conditions for concreting were met. Attention was focused on the protection of the hermetic casing from damage, which had very often happened. A number of shortcomings were detected in storing technology parts. The cleanliness was inspected of the facilities being assembled. The inspections also revealed shortcomings in sealed space tightness. The inspections of assembly and testing of facilities showed failures of the facilities themselves (control valves, electric motors, filter and pump sealing) and of the assembly process. Faults were also detected in electrical equipment. Only a very small part of the installation showed lifetime as specified by Decree 105/1982 Coll. laws on safety assurance in the nuclear power industry. Missing data in documentation led to delays in the start-up stages. The State Surveillance Body also inspected the results of equipment testing. Prior to physical start-up, all production facilities and buildings were inspected, labor safety was inspected for all personnel in communicating corridors, staircases, manholes and onservice and handling posts. Shortcomings were removed. The organization of assembly work was a considerable problem if staff from more organizations had to work together in the same workplace. A list of tasks is presented of State Surveillance Body in operation, maintenance, outages, repairs, and troubleshooting in a nuclear power plant. (J.B.)

  6. Constructing a sustainable power sector in China: current and future emissions of coal-fired power plants from 2010 to 2030

    Science.gov (United States)

    Tong, D.; Zhang, Q.

    2017-12-01

    As the largest energy infrastructure in China, power sector consumed more coal than any other sector and threatened air quality and greenhouse gas (GHG) abatement target. In this work, we assessed the evolution of coal-fired power plants in China during 2010-2030 and the evolution of associated emissions for the same period by using a unit-based emission projection model which integrated the historical power plants information, turnover of the future power plant fleet, and the evolution of end-of-pipe control technologies. We found that, driven by the stringent environmental legislation, SO2, NOx, and PM2.5 emissions from China's coal-fired power plants decreased by 49%, 45%, and 24% respectively during 2010-2015, comparing to 14% increase of coal consumption and 15% increase in CO2 emissions. We estimated that under current national energy development planning, coal consumption and CO2 emissions from coal-fired power plants will continue to increase until 2030, in which against the China's Intended Nationally Determined Contributions (INDCs) targets. Early retirement of old and low-efficient power plants will cumulatively reduce 2.2 Pg CO2 emissions from the baseline scenario during 2016-2030, but still could not curb CO2 emissions from the peak before 2030. Owing to the implementation of "near zero" emission control policy, we projected that emissions of air pollutants will significantly decrease during the same period under all scenarios, indicating the decoupling trends of air pollutants and CO2 emissions. Although with limited direct emission reduction benefits, increasing operating hours of power plants could avoid 236 GW of new power plants construction, which could indirectly reduce emissions embodied in the construction activity. Our results identified a more sustainable pathway for China's coal-fired power plants, which could reduce air pollutant emissions, improve the energy efficiency, and slow down the construction of new units. However, continuous

  7. Development of brown coal liquefaction. Design, construction and operation of a 50 t/d pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    1985-08-01

    As for the development of 50t/d pilot plant for the development of liquefaction plant of Victorian brown coal in Australia, outline of the results of the researches in 1984 is reported from the following 4 viewpoints; 1: design of process apparatuses, 2: manufacture of apparatuses, 3: field work of the construction, 4: preparation for operation of the plant. On the first item, the outline of ordering designed equipment from Japanese and Australian companies is described. On the second item the acceptance of purchasing goods from Japan and Australia and promotion of the inspection and quality assurance system. On the third item, contents of the continuous construction of the first stage are described. On the fourth item, the establishment and review of rules and regulations, training and education for operators, enviromental assessment, contents of safety and maintenance work and commissioning work by the promoting department for preparation of operation are described. Moreover support works of wide range for the promotion and adoption by necessary personnel, labour unions, the state of labour and activities for local discricts are described.

  8. Effects of spray drift of glyphosate on nontarget terrestrial plants-A critical review.

    Science.gov (United States)

    Cederlund, Harald

    2017-11-01

    Glyphosate is a widely used broad-spectrum postemergent herbicide used for weed control in both agricultural and nonagricultural settings. Spray drift of glyphosate can pose a risk to nontarget terrestrial plants and plant communities outside the intended area of application, but the lack of a well-established predicted-no-effect drift rate makes properly assessing such risk difficult. For this reason, a literature review and meta-analysis was carried out with the aim to determine the level of drift that is likely to cause harm to plants and to explore what spray-reducing targets would be sufficiently protective. No-observed-adverse effect rates, lowest-observed-adverse effect rates, and effect rates giving 10, 25, and 50% effects were extracted from a total of 39 different publications. The data were combined per species, and species sensitivity distributions were constructed and fitted with a log-logistic model to assess protectiveness. No systematic differences were detected between the responses of monocotyledons or dicotyledons, but wild plants were found to be generally less sensitive to glyphosate drift than domesticated plants. The results indicate that restricting spray drift to a level below 5 g a.e./ha would protect approximately 95% of all higher plant species against minor adverse effects of glyphosate drift and that rates below 1 to 2 g a.e./ha would be almost completely protective. No studies were encountered that evaluated effects of spray drift against nonvascular plants, and therefore, the conclusions are only valid for vascular plants. Environ Toxicol Chem 2017;36:2879-2886. © 2017 SETAC. © 2017 SETAC.

  9. New NPP Construction Experience in Finland

    International Nuclear Information System (INIS)

    Alm-Lytz, K.

    2016-01-01

    The paper discusses the experiences of the new nuclear power plant construction projects. The topics include the licensing and regulatory oversight process, completion of the design prior to construction, experience and know-how of the participating organisations, quality management in a nuclear construction project, safety culture aspects in a nuclear construction project, and the role and importance of regulator’s oversight. Finland has recent experience of new nuclear power plant construction, one plant unit being under construction close to commissioning phase and one plant unit in construction license phase. Each nation is solely responsible for the safety of its nuclear installations. Therefore, there are also national practices how nuclear power plants are licensed and how the safety and quality of these plants are verified during construction and operation. Differences in licensing, regulations and regulatory practices may have an impact on the design of the plant. There may be differences in how the detailed design has to be documented and how and when it needs to be submitted for approval to the regulator. To avoid surprises due to differences, it is beneficial for the owner and plant vendor to familiarize themselves early enough on the national practices and regulations to ensure that regulatory expectations and processes can be taken into account in the project implementation. In addition, the owner and the plant vendor have to understand what are the national safety goals and safety requirements that the plant has to fulfil, and what they mean to the detailed design of the plant. These have to be clarified and explicitly defined by the owner in terms of design criteria in the bidding documentation to avoid difficulties in the future steps of the project.

  10. Construction time of PWRs

    International Nuclear Information System (INIS)

    Moreira, João M.L.; Gallinaro, Bruno; Carajilescov, Pedro

    2013-01-01

    The construction time of PWRs is studied considering published data about nuclear power plants in the world. For the 268 PWRs in operation in 2010, the mode of the construction time distribution is around 5–6 years, and 80% of the plants were built in less than 120 months. To circumvent the problem of comparing plants with different size we normalized the construction time to plants with 1 GW. We restricted the analysis to 201 PWRs which suffered less from external factors that were beyond the control of the management from 1965 to 2010. The results showed that the normalized construction time did not increase over the years and nor with the plants’ gross power level. The learning rate of the industry regarding normalized construction times showed a reduction with 95% confidence level of about 0.56±0.07 months for each 10 GW of installed capacity. Over the years the normalized construction time decreased and became more predictable. The data showed that countries with more centralized regulatory, construction and operation environments were able to build PWRs in shorter times. Countries less experienced with the nuclear technology built PWRs in longer times. - Highlights: ► The construction time of PWRs is analyzed based on historical data. ► Different factors affecting construction time are considered in the analyses. ► The normalized construction time of PWRs decreased with time and gross power level. ► Countries with more centralized institutions built PWRs more quickly

  11. Factors influencing the motivation and productivity of craftsmen and foremen on large construction projects

    International Nuclear Information System (INIS)

    Garner, D.F.; Borcherding, J.D.; Samelson, N.M.

    1979-08-01

    Substantial cost overruns and schedule delays are traits of the power plant construction industry, specifically the young and controversial nuclear power plant construction industry. These cost and schedule overruns are having a significant effect on the economic feasibility of many power plants, and the future energy supply network of our country may have to be restructured in light of these overruns. A major cause of cost overruns is related to the declining rate of productivity of workers. Marjatta Strandell, an engineering and construction expert for the Pacific Power and Light Company, Portland, Oregon, reports that since 1970 craft productivity in nuclear and fossil-fuel power plant construction has been decreasing at an average annual rate of four percent. The cumulative effect of this indicates that, by 1980, the craft productivity would be a mere sixty percent of the 1970 craft productivity

  12. Stainless steels in power plant and plant construction. Papers

    International Nuclear Information System (INIS)

    1994-01-01

    The conference report comprises 14 papers on the corrosion characteristics of stainless steels in power plant and plant engineering. 9 papers are available as separate records in the ENERGY database. (MM) [de

  13. Construction of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Munson, D.E.; Matalucci, R.V. [Sandia National Lab., Albuquerque, NM (United States); Hoag, D.L.; Blankenship D.A. [RE/SPEC Inc., Albuquerque, NM (United States)] [and others

    1997-02-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories has the responsibility for experimental activities at the WIPP and has emplaced several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The construction of the tests relied heavily on earlier excavations at the WIPP site to provide a basis for selecting excavation, surveying, and instrumentation methods, and achievable construction tolerances. The tests were constructed within close tolerances to provide consistent room dimensions and accurate placement of gages. This accuracy has contributed to the high quality of data generated which in turn has facilitated the comparison of test results to numerical predictions. The purpose of this report is to detail the construction activities of the TSI tests.

  14. Construction of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Munson, D.E.; Matalucci, R.V.; Hoag, D.L.; Blankenship D.A.

    1997-02-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories has the responsibility for experimental activities at the WIPP and has emplaced several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The construction of the tests relied heavily on earlier excavations at the WIPP site to provide a basis for selecting excavation, surveying, and instrumentation methods, and achievable construction tolerances. The tests were constructed within close tolerances to provide consistent room dimensions and accurate placement of gages. This accuracy has contributed to the high quality of data generated which in turn has facilitated the comparison of test results to numerical predictions. The purpose of this report is to detail the construction activities of the TSI tests

  15. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  16. A regulatory perspective of the role of construction in revitalizing the United States nuclear industry

    International Nuclear Information System (INIS)

    Stello, V. Jr.

    1983-01-01

    Technical and managerial experience in nuclear power plant construction is presented from the perspective of the United States Nuclear Regulatory Commission (NRC). In the context of actions that would contribute to revitalizing the nuclear industry in the United States of America, greater effectiveness of utility management during construction is proposed. The reasons why management effectiveness is so important are developed beginning with summaries of defects that were built into several US plants under construction. The root causes of these significant defects were management failures. In terms of benefits, effective management is important because of its effects on nuclear safety, project construction costs, and future reliability of the plant after commissioning. Actions that would enhance good management include emphasizing the inseparable nature of production and quality, that quality cannot be inspected into a plant, and that a strong construction management staff and exchanges of experience and information are essential. Techniques that have been used successfully in construction management are discussed. NRC and industry initiatives are in progress to improve management responsibility and learning from experience. Projects include Owner's Certification, assessments of licensee performance, fostering good practices across the industry, and improving the NRC inspection programme. Revitalization will not be easy, but it is achievable. (author)

  17. Measuring the environmental costs of tidal power plant construction: A choice experiment study

    International Nuclear Information System (INIS)

    Lee, Joo-Suk; Yoo, Seung-Hoon

    2009-01-01

    Korea is considering the construction of a tidal power plant (TPP) at Garolim Bay. However, as the construction of the Garolim TPP (GTPP) is expected to entail some environmental damage, it has become an increasingly important topic for public debate. Using a choice experiment (CE) approach, this study attempts to measure the economic cost that results from the environmental damage caused by the construction of GTPP. The CE is used to measure the environmental costs of individual attributes, including the reduction in the area of the tidal flat, the degradation of seawater quality, and the destruction of marine life. The results indicate that the annual willingness to pay (WTP) per household for mitigating the environmental damage that results from the worst-possible situation in relation to the present situation is about 96,042 Korean won (USD 101.1) in the seven biggest cities (off-site regions) and 18,584 Korean won (USD 19.6) in Seosan and Taean (on-site regions). This study is expected to provide policy-makers with quantitative information that will be useful to decide whether or not GTPP should be constructed.

  18. Supply chain of steel industries for the nuclear power plant construction in Indonesia

    International Nuclear Information System (INIS)

    Dharu Dewi; Sahala M Lumbanraja

    2017-01-01

    Nuclear Power Plant (NPP) Construction needs steel materials for the manufacturing of heavy components and civil work construction. National industries is expected to supply steel components especially for non nuclear component needs. Supply chain of steel industries is required to know the potency of steel industries from upstream to downstream industries which can support the NPP construction sustainability. The type of steel needed in the NPP construction consist of structure steel, rebar, steel plate, etc. The aim of the study is to identify supply chain of steel industries from upstream industries to downstream industries so that they can supply steel needs in the NPP construction. The methodology used are literature review and industries survey by purposive sampling test which sent questionnaires and carrying out technical visits to the potential industries to supply steel components for NPP construction. From the analysis of the questionnaires and survey, it has been obtained that the Indonesian steel industries capable of supplying steel for construction materials of non-nuclear parts are PT. Krakatau Steel, PT. Gunung Steel Group (PT Gunung Garuda and PT. Gunung Raja Paksi), PT. Cilegon Fabricators and PT. Ometraco Arya Samanta. While steel materials for primary components with nuclear grade, such as steel materials for reactor vessels and pressure vessels, the Indonesian steel industry has not been able to supply them. Therefore, the Indonesian steel industries must improve its capability, both in raw material processing and fabrication capability in order to meet the requirements of specifications, codes and standards of nuclear grade. (author)

  19. RECOVERY OF AN OXISOL DEGRADED BY THE CONSTRUCTION OF A HYDROELECTRIC POWER PLANT

    Directory of Open Access Journals (Sweden)

    Joseane Carina Borges de Carvalho

    2015-12-01

    Full Text Available ABSTRACT The removal of thick layers of soil under native scrubland (Cerrado on the right bank of the Paraná River in Selvíria (State of Mato Grosso do Sul, Brazil for construction of the Ilha Solteira Hydroelectric Power Plant caused environmental damage, affecting the revegetation process of the stripped soil. Over the years, various kinds of land use and management systems have been tried, and the aim of this study was to assess the effects of these attempts to restore the structural quality of the soil. The experiment was conducted considering five treatments and thirty replications. The following treatments were applied: stripped soil without anthropic intervention and total absence of plant cover; stripped soil treated with sewage sludge and planted to eucalyptus and grass a year ago; stripped soil developing natural secondary vegetation (capoeira since 1969; pastureland since 1978, replacing the native vegetation; and soil under native vegetation (Cerrado. In the 0.00-0.20 m layer, the soil was chemically characterized for each experimental treatment. A 30-point sampling grid was used to assess soil porosity and bulk density, and to assess aggregate stability in terms of mean weight diameter (MWD and geometric mean diameter (GMD. Aggregate stability was also determined using simulated rainfall. The results show that using sewage sludge incorporated with a rotary hoe improved the chemical fertility of the soil and produced more uniform soil pore size distribution. Leaving the land to develop secondary vegetation or turning it over to pastureland produced an intermediate level of structural soil quality, and these two treatments produced similar results. Stripped soil without anthropic intervention was of the lowest quality, with the lowest values for cation exchange capacity (CEC and macroporosity, as well as the highest values of soil bulk density and percentage of aggregates with diameter size <0.50 mm, corroborated by its lower

  20. Overview of the ITER Tokamak complex building and integration of plant systems toward construction

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, Jean-Jacques, E-mail: jean-jacques.cordier@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Bak, Joo-Shik [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Baudry, Alain [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Benchikhoune, Magali [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Carafa, Leontin; Chiocchio, Stefano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Darbour, Romaric [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Elbez, Joelle; Di Giuseppe, Giovanni; Iwata, Yasuhiro; Jeannoutot, Thomas; Kotamaki, Miikka; Kuehn, Ingo; Lee, Andreas; Levesy, Bruno; Orlandi, Sergio [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Packer, Rachel [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Patisson, Laurent; Reich, Jens; Rigoni, Giuliano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); and others

    2015-10-15

    The ITER Tokamak complex consists of Tokamak, diagnostic and tritium buildings. The Tokamak machine is located in the bioshield pit of the Tokamak building. Plant systems are implemented in the three buildings and are strongly interfacing with the Tokamak. The reference baseline (3D) configuration is a set of over 1000 models that today defines in an exhaustive way the overall layout of Tokamak and plant systems, needed for fixing the interfaces and to complete the construction design of the buildings. During the last two years, one of the main ITER challenges was to improve the maturity of the plant systems layout in order to confirm their integration in the building final design and freeze the interface definitions in-between the systems and to the buildings. The propagation of safety requirements in the design of the nuclear building like confinement, fire zoning and radiation shielding is of first priority. A major effort was placed by ITER Organization together with the European Domestic Agency (F4E) and the Architect Engineer as a joint team to fix the interfaces and the loading conditions to buildings. The most demanding systems in terms of interface definition are water cooling, cryogenic, detritiation, vacuum, cable trays and building services. All penetrations through the walls for piping, cables and other equipment have been defined, as well as all temporary openings needed for the installation phase. Project change requests (PCR) impacting the Tokamak complex buildings have been implemented in a tight allocated time schedule. The most demanding change was to implement a new design of the Tokamak basic machine supporting system. The 18 supporting columns of the cryostat (2001 baseline) were replaced at the end of 2012 by a concrete crown and radial concrete ribs linked to the basemat and to the bioshield surrounding the Tokamak. The change was implemented successfully in the building construction design to allow basemat construction phase being performed

  1. Japanese experience in nuclear power plant construction

    International Nuclear Information System (INIS)

    Seko, T.

    1989-01-01

    Development of LWR in JAPAN started by introducing LWR from the U.S.A. Since then we have been improving existing technology and promoting domestic technology development based on experiences accumulated in Japan. As a result, recent operating performance has been excellent. As far as construction work is concerned, we also have been making our best efforts to improve the performance of construction work itself, with the cooperation of manufacturers. As for construction work, we have succeeded in improving the quality of construction work, shortening the construction period and reducing construction costs through new technology and Japanese-style work management

  2. Nuclear Power Plant Construction Contracts: A Review of the Major Problems

    International Nuclear Information System (INIS)

    Crawford, B.B.

    1977-01-01

    This paper analyses the problems raised by nuclear power plant construction contracts. To the extent these contracts can be defined as devices for allocating responsibilities and risks between the Contracting Parties, the author notes that the 'responsibilities' aspect presents no problem peculiar to the nuclear sector and that difficulties mainly stem from co-ordination of work. On the other hand, the list of problems linked to 'nuclear contract risks' is long: uncertainties in the licensing procedure and export licenses, changes in pricing due to inflation, imprevision and force majeure theories, protection of proprietary information, operator's civil liability for nuclear incidents. (NEA) [fr

  3. Construction of the Plant RT-2 as a way for solving the problem of VVER-1000 spent fuel management in Russia

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Lyubtsev, R.I.; Egorov, N.N.; Lebedev, V.A.; Revenko, Y.A.; Fedosov, Y.G.; Dubrovskii, V.M.

    1993-01-01

    Nuclear power in the Russian Federation in the future will be based on the VVER-1000 and it's modifications. To manage the spent fuels from this plant, the Plant RT-2 was designed to process the spent fuel. Plant construction was started in 1984 and stopped in 1989 due to economic difficulties. The necessity of the continuation of the plant is discussed

  4. Nuclear power plants in Europe 1995. Report about operation, construction, and planning in 18 European countries

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Report about Operation, Construction, and Planning in 18 European Countries Eighteen European countries operate and build, respectively, nuclear power plants in 1995. The ''Nuclear Power Plants in Europe 1995'' atw report singles out the main events and lines of development. As per August 1995, 214 (1994: 215) nuclear generating units (which means power reactors for the purposes of this report) with an aggregate 177,010 (176,322) MWe installed gross capacity are in operation in seventeen countries, and 26 (30) units with 24,786 (28,086) MWe are under construction in seven countries. This adds up to a total of 240 (245) nuclear generating units with an aggregate 201,796 (204,408) MWe. In the nuclear power plants in Europe, some 1048 TWh of nuclear power was converted into electric power in 1994; 792 TWh of this aggregate was converted in 137 units in the European Union (EU). In the EU the share of nuclear power in the public supply of electricity was 36%. Lithuania, with 77%, has the highest share of nuclear power in Europe, followed by France with 75% and Belgium with 56%. The lowest percentage, only 5%, is recorded in the Netherlands. As a consequence of electricity imports, nuclear power holds considerable shares in the public electricity supply also of countries in which no nuclear power plants are operated, such as Italy or Austria. (orig.) [de

  5. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  6. Study finds declining construction leadtimes for nukes being built

    International Nuclear Information System (INIS)

    Smock, R.

    1983-01-01

    A new Electric Power Research Institute (EPRI) study of 26 nuclear projects shows a decrease in the leadtime for nuclear plants under construction in contrast to the findings of other studies. The EPRI study plots construction leadtime against the year of construction permit issuance rather than the year of completion, and it eliminates management delays, physical plant differences, and management differences. The result is a two-part trendline reflecting the discontinuity of regulatory ratchet effects, which cause 50% of construction leadtime delay while labor material delivery problems account for 20% and deliberate delays 22% of leadtime delay. When allowance is made for deliberate delays, there is no growth in construction leadtime. There was no correlation of utility finances, the accuracy of load growth forecasts, or the state regulatory environment to the length of construction. 3 figures,

  7. Effective Safety Management in Construction Project

    Science.gov (United States)

    Othman, I.; Shafiq, Nasir; Nuruddin, M. F.

    2017-12-01

    Effective safety management is one of the serious problems in the construction industry worldwide, especially in large-scale construction projects. There have been significant reductions in the number and the rate of injury over the last 20 years. Nevertheless, construction remains as one of the high risk industry. The purpose of this study is to examine safety management in the Malaysian construction industry, as well as to highlight the importance of construction safety management. The industry has contributed significantly to the economic growth of the country. However, when construction safety management is not implemented systematically, accidents will happen and this can affect the economic growth of the country. This study put the safety management in construction project as one of the important elements to project performance and success. The study emphasize on awareness and the factors that lead to the safety cases in construction project.

  8. Construction completion report

    International Nuclear Information System (INIS)

    1990-01-01

    This Construction Completion Report documents the major construction projects at the Waste Isolation Pilot Plant (WIPP) site and related information on contracts, schedules, and other areas which affected construction. This report is not intended to be an exhaustive detailed analysis of construction, but is a general overview and summary of the WIPP construction. 10 refs., 29 figs

  9. Effects of radiation rays on construction materials

    International Nuclear Information System (INIS)

    Akkurt, I.; Kilicarslan, S.; Basyigit, C.; Kacar, A.

    2006-01-01

    Molecules that are bring into existence material determined as gas, liquid and stiff according to their internal structures and heat. Materials show various reaction to various effects that is result from all kind of materials have various internal structures. Radiation is covert materials' mechanical, physical and chemical properties. Nowadays in construction formation there isn't using only one material it is preferred that kind of materials composition because of there are run into some problems about choosing and decision sort of material. Material that using in construction is classified as metals, plastics and ceramics in three groups. About sixty percent of construction cost is being formed from construction materials. In this study effects of various radiations on construction materials are being investigated and the end of study it is being suggestion some useful construction materials according to usage land and radiation properties

  10. Construction contracting for the 1990s

    International Nuclear Information System (INIS)

    Kane, C.; Lyon, V.F.

    1991-01-01

    This paper reports that power plant constructing during the 1980s is over. Demand growth projections presently anticipate a need for 100,000 MW of new capacity by the year 2000, with only a small percentage of the demand growth currently under construction. Given a six-year lead time for baseload plants, a surge of activity must now begin. Another development over the past five years has been a conscious decision by regulators in increase rates only for the costs of efficiently built plants. The cost of construction inefficiencies will no longer be shouldered by investors. Large construction claims, excessive cost overruns, and expensive delays will no longer be passed on to the consumer automatically. Utility commissions will require the inefficient builders to either clean up their act or forego building their own plants. The most traditional contracting scheme, general contracting, will probably be the lease desirable in the construction of new power plants. General contracting is a single, general construction contract based on a detailed design. The design is not performed by the general contractor

  11. Study of the influencies of Angra-1 nuclear power plant construction in Angra dos Reis

    International Nuclear Information System (INIS)

    Ferreira Netto, L.

    1982-01-01

    The report presents a comprehensive evaluation of the influence caused by Angra-1 Nuclear Power Plants (Central Nuclear Almirante Alvaro Alberto) construction on the Angra dos Reis City - Rio de Janeiro - Brazil. The analysis performed adopts a multi-dimensional methodology with four analysis dimensions: political-institutional, physical-territorial, social-economic and temporal. (author)

  12. Design and construction of solidification and dewatering facility at Alabama Power Company's Farley Nuclear Plant

    International Nuclear Information System (INIS)

    Farnsworth, P.

    1988-01-01

    The approximate total cost of the structure and supporting piping systems is estimated to be 4.1 million dollars. Total dose savings per year could be as high as 70 man Rem for resin processing alone. The ability to store refueling equipment, process contaminated oils, load and unload trucks and containers regardless of weather conditions and support repair work on equipment greatly enhances the cost effectiveness of the project. It will take at least one year of operation of the facility to accurately assess the true cost savings to Alabama Power Company. The morale factor for the Waste and Decon Group has escalated measurably due to the dose reduction to our personnel. Plant and company management are well pleased due to the possibility of a spill or release to the environment has been eliminated which was on intangible cost. Facility construction has been completed as of this date and resin transfer anticipated within the next few days. Some of the problems encountered in planning and constructing this solidification and dewatering facility are presented. A safety evaluation for the facility is included in the appendix

  13. Westinghouse experience over the past 10 years in negotiating and constructing nuclear power plants

    International Nuclear Information System (INIS)

    Richards, D.E.

    1979-01-01

    Reason for delays in delivery times for nuclear plant are discussed in the light of Westinghouse experience. Today the lead time for the construction of the plant is no longer dictated by the lead time of the nuclear steam supply system. The increased complexity of contract negotiations and of standards and specifications contributes to the delays. Site work is constantly subject to delays due to various labour problems. The main delays stem from regulatory authorities, environmentalists and political considerations. Lateness on the plant causes problems of warranty, storage of equipment and of finance. Westinghouse procedures for alleviating delays during erection are outlined. As the start-up schedule dictates erection, purchasing and design, it should be established as early as possible. A typical overall schedule for a PWR is outlined. It is concluded that completion of plant within schedule requires decisions on basic principles and sufficient detailed planning and organisational structures to be established before the start of the project followed by strong project management. The discussion following the conference is also recorded. (U.K.)

  14. Technical and economic aspects of successful nuclear plant construction projects in the U.S. and future prospects

    International Nuclear Information System (INIS)

    Braun, C.; Rahn, F.J.

    1986-01-01

    Taken together as stones in a mosaic, the individual successes and failures of various nuclear plant construction programs begin to form a larger picture. Certain prerequisites to good experience become apparent. They are: agreement of need, constancy of purpose, rationalization of vendor/utility organizations, stable regulatory environment and plant standardization. Equally important is a belief that power plant costs can be contained and the commitment to do something about them. A Calvinist approach to spending, namely that costs are preordained and cannot be affected by mere men, is self-defeating. There is no escaping these conclusions nor the need to implement them

  15. Construction of phosphomannose isomerase (PMI) transformation vectors and evaluation of the effectiveness of vectors in tobacco (Nicotiana tabacum L).

    Science.gov (United States)

    Bahariah, Bohari; Parveez, Ghulam Kadir Ahmad; Masani, Mat Yunus Abdul; Khalid, Norzulaani

    2012-01-01

    Phosphomannose isomerase (pmi) gene isolated from Escherichia coli allows transgenic plants carrying it to convert mannose-6- phosphate (from mannose), a carbon source that could not be naturally utilized by plants into fructose-6-phosphate which can be utilized by plants as a carbon source. This conversion ability provides energy source to allow the transformed cells to survive on the medium containing mannose. In this study, four transformation vectors carrying the pmi gene alone or in combination with the β-glucuronidase (gusA) gene were constructed and driven by either the maize ubiquitin (Ubi1) or the cauliflower mosaic virus (CaMV35S) promoter. Restriction digestion, PCR amplification and sequencing were carried out to ensure sequence integrity and orientation. Tobacco was used as a model system to study the effectiveness of the constructs and selection system. PMI11G and pMI3G, which carry gusA gene, were used to study the gene transient expression in tobacco. PMI3 construct, which only carries the pmi gene driven by CaMV35S promoter, was stably transformed into tobacco using biolistics after selection on 30 g 1(-1) mannose without sucrose. Transgenic plants were verified using PCR analysis. PMI/pmi - Phosphomannose isomerase, Ubi1 - Maize ubiquitin promoter, CaMV35S - Cauliflower mosaic virus 35S promoter, gusA - β-glucuronidase GUS reporter gene.

  16. Consideration of the legal system required for achievement of current nuclear power plant construction programmes

    International Nuclear Information System (INIS)

    Castellon Fernandez, E.; Forum Atomico Espanol, Madrid)

    1976-01-01

    The extensive nuclear power plant construction programmes currently in progress in western countries require updating of the legislation in force in this field, especially as regards the following: acquisition of the sites necessary by means of a national planning programme of available sites; simplification of formalities concerning issuance of administrative licenses; revision of the principle of absolute and exclusive liability of the nuclear operator which forms the basis of the third party liability system for nuclear damage; radioactive waste management and decommissioning of nuclear plants. Furthermore, this new legislation should be harmonized between the different countries concerned. (N.E.A.) [fr

  17. Main problems of increasing labour productivity in the power plant construction

    International Nuclear Information System (INIS)

    Falaleev, P.P.

    1984-01-01

    The reserve for labour productivity growth in power-, industrial- and civil engineering in the USSR Minenergo system are discussed. Such reserve comprises: introduction of effective designs, increase of technological readiness of structures; a higher mechanization level in construction, improvement of industrial organization, economical and social aspects. Decrease of labour inputs in NPP construction will be attained by using unified designs of serial WWER-1000, RBMK-1000- and RBMK-1500 reactors as well as by developing nuclear power construction complexes-industrial-construction enterprises for manufacturing and transport of special structures as well as for performing civil engineering and installation work on the ground part of the reactor building and special structure. Other potentialities for increasing labour productivity in NPP construction are considered

  18. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Dutta

    2015-04-01

    Full Text Available Root-knot nematodes (Meloidogyne incognita cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco and soybean that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1, was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60-80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants.

  19. Effect of bond administration on construction project delivery

    Directory of Open Access Journals (Sweden)

    Oke Ayodeji Emmanuel

    2016-12-01

    Full Text Available Construction bond administration involves management of bond issues from inception of obtaining bond from guarantor to the point of release of contractor by the client. This process has posted a lot of challenges to construction stakeholders; it is therefore, necessary to examine the relationship between bond administration and project success. Archival data of completed bonded building projects were gathered through a pro forma developed for this purpose. Using Pearson product moment of correlation, it was revealed that the cost of securing a construction bond has a positive and significant effect on the initial and final costs of the project, while the number of days needed to secure a construction bond has no significant effect on the initial and final durations of the construction project. In order to establish the relationship between project delivery indices of cost and time and the construction bond administration variables, iteration of linear regression was adopted to arrive at the best-fit equation. Factors affecting the cost of securing construction bonds from guarantors should be identified and given adequate attention by construction stakeholders in order to minimize the effect of construction bond administration on project delivery.

  20. Radiological and chemical characterization report for the planned Quarry Construction Staging Area and Water Treatment Plant: Revision 1

    International Nuclear Information System (INIS)

    1989-03-01

    The Quarry Construction Staging Area and Water Treatment Plant (QCSA) will be used in the support of the bulk waste removal of the Weldon Spring Quarry. Radiological and chemical characterization was performed on a 12 acre site where the QCSA will be constructed. The characterization revealed approximately .5 acres of radiologically contaminated land. No chemical contamination was found. 8 refs., 5 figs., 7 tabs

  1. Using PROGUMBEL to predict extreme external hazards during nuclear power plant construction

    International Nuclear Information System (INIS)

    Diburg, S.; Hoelscher, N.; Niemann, H.J.; Meiswinkel, R.

    2010-01-01

    Safety considerations concerning the construction of power plants, supporting structure planning, safety concept and structural design require reliable data on external events, their incidence probability and characteristic parameters. The basis for supporting structure calculations based on probabilistic reliability considerations is the knowledge on the statistical distribution or the incidence frequency of specific phenomena and their characteristic basic variables. The extreme value statistics software PRO GUMBEL is the extended version of the original GUMBEL software used for seismic assessments. The authors describe the features of the software, that covers seismic events, flooding and extreme storms.

  2. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Apfelbaum, Steven L. [Applied Ecological Services Inc., Brodhead, WI (United States); Duvall, Kenneth W. [Sterling Energy Services, LLC, Atlanta, GA (United States); Nelson, Theresa M. [Applied Ecological Services Inc., Brodhead, WI (United States); Mensing, Douglas M. [Applied Ecological Services Inc., Brodhead, WI (United States); Bengtson, Harlan H. [Sterling Energy Services, LLC, Atlanta, GA (United States); Eppich, John [Waterflow Consultants, Champaign, IL (United States); Penhallegon, Clayton [Sterling Energy Services, LLC, Atlanta, GA (United States); Thompson, Ry L. [Applied Ecological Services Inc., Brodhead, WI (United States)

    2013-12-01

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive

  3. Environmental studies in conjunction with the construction of nuclear power plants Pt. 2

    International Nuclear Information System (INIS)

    Horvath, L.G.; Bede, G.; Gacs, I.

    1980-01-01

    A status-of-the-art report is presented to summarize the studies in progress in Hungary concerning the radionuclide release of nuclear power plants and the motion and migration of radionuclides in the atmosphere. The presently available computerized models are described, their objectives, performances and advantages are discussed. Some examples are given to illustrate the applicability of the various models. They will be adapted to the local environmental, meteorological and architectural conditions of the Paks nuclear power plant under construction. The cooperation of research groups participating in the development or adaption of the different computerized models will continue during the start-up and operation of the Paks-1 reactor and the models will be improved on the basis of field experiences. New models will also be developed. (D.Gy.)

  4. Completion of latest ABWR 'SHIKA Unit 2' construction

    International Nuclear Information System (INIS)

    Yamazaki, Tatsuhiro; Yoshimoto, Yuichiro

    2007-01-01

    The Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Company, Inc. is the first Advanced BWR unit built in Japan by a single contractor and it is among the largest nuclear power stations in Japan. Its construction started in August 1999 when the first construction permit was issued. The design and construction of the plant was carried out with utmost care for betterment of operational safety, reliability and economy. The construction advanced on schedule and the plant entered its commercial operation in March 2006 as planned. Hitachi, Ltd. supplied the entire plant from design, fabrication and construction including the reactor and steam turbine generation system. In the design and construction of the plant, the most advanced technology has been applied in order to match the civil construction process and aim to supply safest, reliable and economical power plant. (author)

  5. Effect of N:P ratio of influent on biomass, nutrient allocation, and recovery of Typha latifolia and Canna 'Bengal Tiger' in a laboratory-scale constructed wetland

    Science.gov (United States)

    Constructed wetlands (CWs) are an effective low-technology approach for treating agricultural, industrial, and municipal wastewater. Recovery of phosphorous by constructed wetland plants may be affected by wastewater nitrogen to phosphorous (N:P) ratios. Varying N:P ratios were supplied to Canna '...

  6. Application of coupled symbolic and numeric processing to an advanced scheduling system for plant construction

    International Nuclear Information System (INIS)

    Kobayashi, Yasuhiro; Takamoto, Masanori; Nonaka, Hisanori; Yamada, Naoyuki

    1994-01-01

    A scheduling system has been developed by integrating symbolic processing functions for constraint handling and modification guidance, with numeric processing functions for schedule optimization and evaluation. The system is composed of an automatic schedule generation module, interactive schedule revision module and schedule evaluation module. The goal of the problem solving is the flattening of the daily resources requirement throughout the scheduling period. The automatic schedule generation module optimizes the initial schedule according to the formulatable portion of requirement description specified in a predicate-like language. A planning engineer refines the near-goal schedule through a knowledge-based interactive optimization process to obtain the goal schedule which fully covers the requirement description, with the interactive schedule revision module and schedule evaluation module. A scheduling system has been implemented on the basis of the proposed problem solving framework and experimentally applied to real-world sized scheduling problems for plant construction. With a result of the overall plant construction scheduling, a section schedule optimization process is described with the emphasis on the symbolic processing functions. (author)

  7. Quality during construction

    International Nuclear Information System (INIS)

    Rogers, C.B.

    1977-01-01

    This paper outlines the quality assurance program used by Bechtel Corp. in constructing Nuclear Power Plants. As a tool for scheduling and visualizing situations during construction, power plant scale models are used. The use of models, preplanning, detail scheduling, and early development of procedures and inspection plans, have all contributed to a lower cost integrated quality program. Quality control and quality assurance are built in, thus satisfying the regulatory requirements

  8. Developing a Planting Medium from Solid Waste Compost and Construction and Demolition Rubble for Use in Quarry Rehabilitation

    Science.gov (United States)

    Assaf, E. A.

    2015-12-01

    The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on Lebanon and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. This research aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots). The plant species used are Mathiolla crassifolia and Zea mays (Corn). Results have shown successful growth of both corn and Mathiolla seedlings in the mixes with higher amounts of construction rubble and compost i.e. Rubble: Soil: Compost Ratio of 2:1:1 and 1:0:1. However treatments with no compost and with less quantities of rubble demonstrated the inability of the soil used to sustain plant growth alone (1:1:1 and 1:1:0). Last but not least, the control consisting of soil only ended up being the weakest mix with yellow corn leaves and small Mathiolla seedlings fifty days after planting and fertilizing. Additionally, soil analysis, rubble and compost analysis were conducted. The samples were tested for heavy metals, nutrient availability and values of pH and EC. No contamination has been reported and an abundance of macronutrients and micronutrients was documented for the soil and compost. High alkalinity is due to the presence of concrete and the high percentage of Calcium Carbonate in Lebanese soils. Accordingly, the most adequate mixes for planting are treatments A (2:1:1) and B (1:0:1) and they should be pursued for a pilot scale study to test their potential use in quarry rehabilitation and

  9. Construction history and construction management

    International Nuclear Information System (INIS)

    Agh, S.

    1999-01-01

    The process of pre-design and design preparation of the Mochovce NPP as well as the construction history of the plant is highlighted, including the financing aspect and problems arising from changes in the technological and other conditions of start-up of the reactor units. The results of international audits performed to improve the level of nuclear safety and implementation of the measures suggested are also described. The milestones of the whole construction process and start-up process, the control and quality system, and the methods of control and management of the complex construction project are outlined. (author)

  10. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones.

    Science.gov (United States)

    Tarkowská, Danuše; Strnad, Miroslav

    2016-09-01

    The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.

  11. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-26

    This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

  12. Construction: first of St. Lucie unit 2 successes

    International Nuclear Information System (INIS)

    Conway, W.F.

    1989-01-01

    The Nuclear Regulatory Commission (NRC) granted a full power operating license for St. Lucie Unit 2 on June 10, 1983, just six years after construction began. The industry average for nuclear power plant construction during this time was approximately ten years. The rate of completion had a positive effect on the cost of the facility. The price of the unit was $1.42 billion as compared to the $2 billion to $5 billion range experienced by other utilities for nuclear plants. These accomplishments were not serendipitous but the results of management techniques and personnel attitudes involved in the construction of the unit. More importantly, many of these same techniques and attitudes have now become part of a quality improvement program at St Lucie and are reflected in its performance indicators. This paper analyzes the construction success of St Lucie Unit 2 and demonstrates that excellent performance in the construction phase can be carried over to the operation of a facility

  13. HITACHI construction CAE system

    International Nuclear Information System (INIS)

    Yoshida, M.

    1994-01-01

    Construction and maintenance of nuclear power plants have important problems such as shortening the construction period and reducing the construction cost. Recently, the problem of insufficient construction labor has arisen, and as drastic strategic development has become a necessary counter-measure. The following four principles are included in the measures to be taken for efficient execution of the construction work within the short construction period: (1) reduction of on-site work and expansion of module block making, (2)improvement of the accuracy of the on-site work process, adjustment and expansion of the work in parallel with the construction process, (3)improvement of efficiency of the on-site work and mechanization and automation of the work, (4)improvement of the accuracy of the management of the construction. A three dimensional simulation system plant construction plan CAE, comprising five modules has been developed. A project management system was also developed to improve the accuracy and efficiency of management work in the field

  14. Analysis and evaluation of status reports for quality assurance practice in nuclear power plant construction

    International Nuclear Information System (INIS)

    1984-01-01

    The study elaborates the structure and definitions of a general description of quality assurance systems with respect to planning and construction of nuclear power plants and indicates standards concerning the production and adaption of structural components. It is suggested to introduce in the licensing procedure the so-called comprehensive constructional report by an expert. For contractors, tasks and responsibilities of the major companies with regard to quality assurance are expressly stipulated. The study also suggests the inclusion of ARGEN, the elaboration of production and test sequence plans and the introduction of a control and evaluation system for the feedback of experience among companies involved and ARGEN. (DG) [de

  15. Delay consequencies in the construction time-schedule of nuclear power plants in relation to its safety and quality

    International Nuclear Information System (INIS)

    Recalde, J.A.

    1991-01-01

    An important delay in the construction time-schedule of a Nuclear Power Plant affects its safety and quality. This mainly occurs as a consequence of four reasons: discontinuity of the personnel working for the project; discontinuities of project suppliers; new safety and quality concepts; long-term storage. This work analyses each of the above reasons so as to foresee countermeasures to garantee the non deterioration of a Nuclear Power Plant. (author)

  16. Security during the Construction of New Nuclear Power Plants: Technical Basis for Access Authorization and Fitness-For-Duty Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Kristi M.; Baker, Kathryn A.

    2009-09-01

    A technical letter report to the NRC summarizing the findings of a benchmarking study, literature review, and workshop with experts on current industry standards and expert judgments about needs for security during the construction phase of critical infrastructure facilities in the post-September 11 U.S. context, with a special focus on the construction phase of nuclear power plants and personnel security measures.

  17. Computer Program Application Study for Newly Constructed Fossil Power Plant Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Park, Jong Jeng [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    The power plant is affected in its availability and economy significantly by the equipment degraded gradually as operation continues, which makes it quite important to evaluate the plant performance more accurately and analyze its effects to the plant economy quantitatively. The methodology thereof includes many calculation steps and requires huge man hours and efforts but would produce relatively less precise results than desired. The object of the project first aims to figure out a methodology which can analyze numerically the inherent effects of each equipment on the cycle performance as well as its performance evaluation and which further helps to determine more reasonable investment for the effective plant economy. Another aspect of the project results in the implementation of the methodology which is embodied in the sophisticated computer programs based on the conventional personal computer with the interactive graphic user interface facilities. (author). 44 refs., figs.

  18. Computer Program Application Study for Newly Constructed Fossil Power Plant Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Park, Jong Jeng [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The power plant is affected in its availability and economy significantly by the equipment degraded gradually as operation continues, which makes it quite important to evaluate the plant performance more accurately and analyze its effects to the plant economy quantitatively. The methodology thereof includes many calculation steps and requires huge man hours and efforts but would produce relatively less precise results than desired. The object of the project first aims to figure out a methodology which can analyze numerically the inherent effects of each equipment on the cycle performance as well as its performance evaluation and which further helps to determine more reasonable investment for the effective plant economy. Another aspect of the project results in the implementation of the methodology which is embodied in the sophisticated computer programs based on the conventional personal computer with the interactive graphic user interface facilities. (author). 44 refs., figs.

  19. Risks and challenges associated with the design and construction of a nuclear power plant; Control de riesgos y retos asociados al diseno y construccion de una central nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Liebana Martinez, B.; Armas Garcia, A.; Martinez Gozalo, I.

    2011-07-01

    The construction of a nuclear power plant project, considering the period prior to the operation of the plant, requires a very strict risk control to ensure compliance with a series of challenges. The present paper identifying the most important challenges facing the construct ability and license requirements of the process, identifying the interfaces and proposing a methodology of construction to meet the challenge of a construction process in 5 years.

  20. Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: Effect of C/N ratios.

    Science.gov (United States)

    Li, Ming; Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Kong, Qiang

    2017-09-01

    In order to design treatment wetlands with maximal nitrogen removal and minimal nitrous oxide (N 2 O) emission, the effect of influent C/N ratios on nitrogen removal and N 2 O emission in surface flow constructed wetlands (SF CWs) for sewage treatment plant effluent treatment was investigated in this study. The results showed that nitrogen removal and N 2 O emission in CWs were significantly affected by C/N ratio of influent. Much higher removal efficiency of NH 4 + -N (98%) and TN (90%) was obtained simultaneously in SF CWs at C/N ratios of 12:1, and low N 2 O emission (8.2mg/m 2 /d) and the percentage of N 2 O-N emission in TN removal (1.44%) were also observed. These results obtained in this study would be utilized to determine how N 2 O fluxes respond to variations in C/N ratios and to improve the sustainability of CWs for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Discussion on management of earth and rock balancing during the construction of Fuqing nuclear power plant

    International Nuclear Information System (INIS)

    Yan Yingdi; Gu Jian

    2013-01-01

    The main purpose of earth and stone work for Fuqing nuclear power plant is to solve problems of the main plant and the temporary accommodation site and also providing aggregate, marine stone and backfill as well. For a reasonable arrangement of stacking, using and spoiling, a dynamic balance management is performed in the project based on the initial design by the plant design institute. The design result would be used to conduct the construction arrangement, for avoiding the risk of earth and stone shortage, and enhancing the economic benefits. By discussing on problems existed in the balanced management of earth and stone, some suggestions are raised in this paper for optimizing earth and stone medium-and long-term management. (authors)

  2. [Construction of plant expression vectors with PMI gene as selection marker and their utilization in transformation of Salvia miltiorrhiza f. alba].

    Science.gov (United States)

    Tao, Ru; Zhang, You-Can; Fang, Qian; Shi, Ren-Jiu; Li, Yan-Ling; Huang, Lu-Qi; Hao, Gang-Ping

    2014-04-01

    To construct plant expression pCAMBIA1301-PMI by substituting PMI for hygromycin resistance gene in pCAMBIA1301 and obtain transgenic Salvia miltiorrhiza f. alba using PMI-mannose selection system. The 6-phosphomannose isomerase gene (PMI) of Escherichia coli was amplified by PCR. Sequence analysis showed that it shared 100% amino acids identities with the sequences of PMI genes isolates reported in the NCBI. Based on pCAMBIA1305, the plant expression pCAMBIA1305-PMI was constructed successfully by substituting PMI for hygromycin resistance gene in pCAMBIA1305. pCAMBIA1305-PMI was transformed into Agrobacterium tumefaciens LBA4404, and then the leaves of S. miltiorrhiza f. alba were inoculated in LBA4404 with pCAMBIA1305-PMI. Plant expression pCAMBIA1301-PMI was successfully constructed and the leaves of S. miltiorrhiza f. alba inoculated in LBA4404 with pCAMBIA1305-PMI were selected on medium supplemented with a combination of 20 g x L(-1) mannose and 10 g x L(-1) sucrose as a carbon source. The transformation efficiency rate was 23.7%. Genetic transformation was confirmed by PCR, indicating that a new method for obtaining transgenic S. miltiorrhiza f. alba plants was developed using PMI-mannose selection system.

  3. Quality control of concrete in construction of No.2 and No.5 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Yamashita, Toshio; Nukui, Yasushi; Nojiri, Takaharu.

    1990-01-01

    The construction site and its weather condition are outlined. In the Nuclear Power Station, No.1 plant and No.5 plant with 1100 MWe output each have been already in operation, and No.2 plant with 1100 MWe output is about to start the operation. In this report, the quality control of about 700,000 m 3 of concrete used for No.2 and No.5 plants construction from October, 1983 to November, 1989 is described. The features of the concrete used are shown. The facilities for producing the concrete, which were set up in the construction site, the mixing of the concrete and the quality control are reported. The system for carrying out the quality control of materials and concrete is shown with a flowchart. The material testing on cement, aggregate, water quality, fly ash and chemical additives was carried out. The slump, air quantity, temperature, strength and specific gravity of concrete were tested. (K.I.)

  4. First decade: TVA's first ten years of nuclear power plant design and construction experience

    International Nuclear Information System (INIS)

    Willis, W.F.

    1978-01-01

    This paper reviews the experience of the Tennessee Valley Authority's design and construction program for nuclear power plants in terms of schedule and capital costs in three separate phases. Phase one recapitulates the status of the nuclear power industry in 1966 and sets forth the assumptions used for estimating capital costs and projecting schedules for the first Tennessee Valley Authority units. Phase two describes what happened to the program in the hectic early 1970s in terms of expansion of scope (particularly for safety features), the dramatic increase in regulatory requirements, vendor problems, stretchout of project schedules, and unprecented inflation. Phase three addresses the assumptions used today in estimating schedules and plant costs for the next 10-year period. 7 figures, 7 tables

  5. Tank Operations Contract Construction Management Methodology. Utilizing The Agency Method Of Construction Management To Safely And Effectively Complete Nuclear Construction Work

    International Nuclear Information System (INIS)

    Leso, K.F.; Hamilton, H.M.; Farner, M.; Heath, T.

    2010-01-01

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business construction subcontractors while performing high hazard work in a safe and productive manner. Previous to the Washington River Protection Solutions, LLC contract, Construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper describes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method. This method was implemented in the first quarter of Fiscal Year (FY) 2009, where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are subcontracted directly by WRPS to small or disadvantaged contractors that are mentored and supported by DRS personnel. Each small

  6. TANK OPERATIONS CONTRACT CONSTRUCTION MANAGEMENT METHODOLOGY UTILIZING THE AGENCY METHOD OF CONSTRUCTION MANAGEMENT TO SAFELY AND EFFECTIVELY COMPLETE NUCLEAR CONSTRUCTION WORK

    Energy Technology Data Exchange (ETDEWEB)

    LESO KF; HAMILTON HM; FARNER M; HEATH T

    2010-01-14

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business construction subcontractors while performing high hazard work in a safe and productive manner. Previous to the Washington River Protection Solutions, LLC contract, Construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper describes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method. This method was implemented in the first quarter of Fiscal Year (FY) 2009, where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are subcontracted directly by WRPS to small or disadvantaged contractors that are mentored and supported by DRS personnel. Each small

  7. Shortening of construction period of nuclear power plant. Activities of construction industry on construction period shortening

    International Nuclear Information System (INIS)

    Kamata, Hirofumi

    2011-01-01

    Total construction period could be shorten by prefabricating structures efficiently in another yard and reducing working hours on site, which would reduce work at height or congestion work and also upgrade safety at work. Construction period shortening would surely reduce expenses during work and advance operation start of electric utilities. Construction of reactor building, turbine building, water intake and drainage canal was performed on a relatively large scale and a big share of whole schedule. This article summarized basic technologies to shorten construction period for reactor building/turbine building and water intake and drainage canal. Advanced methods of reactor building/turbine building; (1) modularization of equipment and skeleton, (2) utilization of concrete mold, reinforcing bar and steel frame, (3) precedent steel frame method and (4) steel plate reinforced concrete (SC) method, were outlined and their application examples were shown to reduce work on site and improve work efficiency. As for water intake and drainage canal construction, (1) precast concrete method, (2) SC method and (3) steel plate shell method were described with application examples. Construction procedures and problems using mega block method for water intake and drainage canal were also introduced. (T. Tanaka)

  8. A Systems Engineering Framework for Design, Construction and Operation of the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Edward J. Gorski; Charles V. Park; Finis H. Southworth

    2004-01-01

    Not since the International Space Station has a project of such wide participation been proposed for the United States. Ten countries, the European Union, universities, Department of Energy (DOE) laboratories, and industry will participate in the research and development, design, construction and/or operation of the fourth generation of nuclear power plants with a demonstration reactor to be built at a DOE site and operational by the middle of the next decade. This reactor will be like no other. The Next Generation Nuclear Plant (NGNP) will be passively safe, economical, highly efficient, modular, proliferation resistant, and sustainable. In addition to electrical generation, the NGNP will demonstrate efficient and cost effective generation of hydrogen to support the President's Hydrogen Initiative. To effectively manage this multi-organizational and technologically complex project, systems engineering techniques and processes will be used extensively to ensure delivery of the final product. The technological and organizational challenges are complex. Research and development activities are required, material standards require development, hydrogen production, storage and infrastructure requirements are not well developed, and the Nuclear Regulatory Commission may further define risk-informed/performance-based approach to licensing. Detailed design and development will be challenged by the vast cultural and institutional differences across the participants. Systems engineering processes must bring the technological and organizational complexity together to ensure successful product delivery. This paper will define the framework for application of systems engineering to this $1.5B - $1.9B project

  9. Implementation of lean construction techniques for minimizing the risks effect on project construction time

    Directory of Open Access Journals (Sweden)

    Usama Hamed Issa

    2013-12-01

    Full Text Available The construction projects involve various risk factors which have various impacts on time objective that may lead to time-overrun. This study suggests and applies a new technique for minimizing risk factors effect on time using lean construction principles. The lean construction is implemented in this study using the last planner system through execution of an industrial project in Egypt. Evaluating the effect of using the new tool is described in terms of two measurements: Percent Expected Time-overrun (PET and Percent Plan Completed (PPC. The most important risk factors are identified and assessed, while PET is quantified at the project start and during the project execution using a model for time-overrun quantification. The results showed that total project time is reduced by 15.57% due to decreasing PET values, while PPC values improved. This is due to minimizing and mitigating the effect of most of the risk factors in this project due to implementing lean construction techniques. The results proved that the quantification model is suitable for evaluating the effect of using lean construction techniques. In addition, the results showed that average value of PET due to factors affected by lean techniques represents 67% from PET values due to all minimized risk factors.

  10. 10 CFR Appendix N to Part 50 - Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FACILITIES Pt. 50, App.N Appendix N to Part 50—Standardization of Nuclear Power Plant Designs: Permits To...

  11. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community.

    Science.gov (United States)

    Hortal, S; Lozano, Y M; Bastida, F; Armas, C; Moreno, J L; Garcia, C; Pugnaire, F I

    2017-12-19

    Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.

  12. Characterisation of Liquefaction Effects for Beyond-Design Basis Safety Assessment of Nuclear Power Plants

    Science.gov (United States)

    Bán, Zoltán; Győri, Erzsébet; János Katona, Tamás; Tóth, László

    2015-04-01

    Preparedness of nuclear power plants to beyond design base external effects became high importance after 11th of March 2011 Great Tohoku Earthquakes. In case of some nuclear power plants constructed at the soft soil sites, liquefaction should be considered as a beyond design basis hazard. The consequences of liquefaction have to be analysed with the aim of definition of post-event plant condition, identification of plant vulnerabilities and planning the necessary measures for accident management. In the paper, the methodology of the analysis of liquefaction effects for nuclear power plants is outlined. The case of Nuclear Power Plant at Paks, Hungary is used as an example for demonstration of practical importance of the presented results and considerations. Contrary to the design, conservatism of the methodology for the evaluation of beyond design basis liquefaction effects for an operating plant has to be limited to a reasonable level. Consequently, applicability of all existing methods has to be considered for the best estimation. The adequacy and conclusiveness of the results is mainly limited by the epistemic uncertainty of the methods used for liquefaction hazard definition and definition of engineering parameters characterizing the consequences of liquefaction. The methods have to comply with controversial requirements. They have to be consistent and widely accepted and used in the practice. They have to be based on the comprehensive database. They have to provide basis for the evaluation of dominating engineering parameters that control the post-liquefaction response of the plant structures. Experience of Kashiwazaki-Kariwa plant hit by Niigata-ken Chuetsu-oki earthquake of 16 July 2007 and analysis of site conditions and plant layout at Paks plant have shown that the differential settlement is found to be the dominating effect in case considered. They have to be based on the probabilistic seismic hazard assessment and allow the integration into logic

  13. Finding the harvesting frequency to maximize nutrient removal in a constructed wetland dominated by submerged aquatic plants

    NARCIS (Netherlands)

    Verhofstad, M.J.J.M.; Poelen, M.D.M.; Van Kempen, M.M.L.; Bakker, E.S.; Smolders, A.J.P.

    2017-01-01

    Water quality is still poor in many freshwater ecosystems around the world as a result of anthropogenic nutrient loading. Constructed wetlands can be used to remove excess nutrients. In these wetlands, helophytes or free floating aquatic plants are traditionally used to absorb the nutrients. The

  14. Quality assurance in the planning and construction of components for nuclear power plants and large chemical plants

    International Nuclear Information System (INIS)

    Doerling

    1975-01-01

    High safety technical requirements must be demanded of the components of these plants to avoid economical hazards and to protect life and health. These requirements necessitate that each phase of the task completion, i.e. in planning, construction, fabrication and assembly, be carried out systematically and totally in order to produce a component with optimum quality. Quality assurance cannot then merely be a quality control in a conventional sense carried out during fabrication. It is much more an aimed procedure which is oriented to the functional requirements of the components - or rather to the function carrier. The concept presented on the quality assurance gives me the right as a constructor to treat this subject. (orig./LH) [de

  15. Revolution of Nuclear Power Plant Design Through Digital Technology

    International Nuclear Information System (INIS)

    Zhang, L.; Shi, J.; Chen, W.

    2015-01-01

    In the digital times, digital technology has penetrated into every industry. As the highest safety requirement standard, nuclear power industry needs digital technology more to breed high quality and efficiency. Digital power plant is derived from digital design and the digitisation of power plant transfer is an inevitable trend. This paper introduces the technical solutions and features of digital nuclear power plant construction by Shanghai Nuclear Engineering Research & Design Institute, points out the key points and technical difficulties that exist in the process of construction and can serve as references for further promoting construction of digital nuclear power plant. Digital technology is still flourishing. Although many problems will be encountered in construction, it is believed that digital technology will make nuclear power industry more safe, cost-effective and efficient. (author)

  16. AP1000{sup TM} plant modularization

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero L, C.; Demetri, K. J. [Westinghouse Electric Co., 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Quintero C, F. P., E-mail: cantarc@westinghouse.com [Westinghouse Electric Spain, Padilla 17, 28006 Madrid (Spain)

    2016-09-15

    The AP1000{sup TM} plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)

  17. AP1000"T"M plant modularization

    International Nuclear Information System (INIS)

    Cantarero L, C.; Demetri, K. J.; Quintero C, F. P.

    2016-09-01

    The AP1000"T"M plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)

  18. Shihoro irradiation plant for potato

    International Nuclear Information System (INIS)

    Kameyama, Kenji

    1985-01-01

    There have been rapid moves toward the commercialization of food irradiation around the world since November, 1980, when a joint FAO/IAEA/WHO expert committee made a recommendation on the wholesomeness of irradiated foods. The bold US move toward the commercialization has had a great impact. Ahead of these move around the world, Japan built a commercial irradiation plant in 1974, which has been operated for inhibiting the sprouting of potatoes. This plant was built in Shihoro, Hokkaido, and two thirds of the 400 million yen construction cost was provided by the Government and Hokkaido authorities for five agricultural cooperative associations of four local townships. Since then, the plant has been under the joint management of these cooperatives. The aim and circumstance of the plant construction are described. The mechanism of the plant with conveyors, a turntable and a Co-60 source of 300,000 Ci is shown. The plant processes 15 tons of potatoes per hour with the dose from 60 to 150 Gy. Potato bruise and irradiation effect, irradiation time and effect, and post-irradiation storage temperature and potato quality are reported. (Kako, I.)

  19. Ecological effects of feral biofuel crops in constructed oak ...

    Science.gov (United States)

    The effects of elevated temperatures and drought on constructed oak savannahs were studied to determine the interactive effects of potentially invasive feral biofuel species and climate change on native grassland communities. A total of 12 sunlit mesocosm were used. Each mesocosm held three tubs. One had six native plant species; one had five native species with the annual crop Sorghum bicolor and one had five native species along with the weedy perennial Sorghum halepense. The experimental treatments were ambient (control), elevated temperature, drought, or a combination of elevated temperature and drought. Total aboveground biomass of the community was greatest in the control and drought treatments, lowest with elevated temperature + drought, and intermediate in high temperature treatments (Pbacterial biomass. Active bacterial biomass was lowest in the drought and elevated temperature and drought treatments (P<0.05). Active soil fungal biomass was highest in the tubs containing S. bicolor. Percent total carbon in the soil increased between 2010 and 2011 (P=0.0054); it was lowest in the elevated temperature and drought mesocosms (P<0.05). Longer term studi

  20. Structural health monitoring and lifecycle-management for civil engineering constructions in power plants and industrial facilities; Zustandsueberwachung und Lebensdauermanagement von baulichen Einrichtungen in Kraftwerken und Industrieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lehnen, Dieter; Demmer, Martin; Pfister, Tobias [ZERNA Planen und Pruefen GmbH, Bochum (Germany)

    2013-09-01

    In contrast to other fields of engineering, structural health monitoring and lifecycle management for civil engineering constructions in power plants and industrial facilities have to be developed yet. The necessity of this development immediately arises from the building regulations law with its extensive set of regulations as well as from economic constraints. Approaches and methods of structural health monitoring and lifecycle management for civil engineering constructions in power plants and industrial facilities could be improved intensively during recent years. The paper focuses on practical examples that show the necessity of comprehensive and strategic structural health monitoring in conjunction with lifecycle management for civil engineering constructions in power plants and industrial facilities unambiguously und clear. (orig.)

  1. Environmental design of thermal and nuclear power plants. Its history and effects

    International Nuclear Information System (INIS)

    Yamamoto, Kimio

    1999-01-01

    In order to realize coexistence between electric power plants and local environment, a historical transition on scene and greenization, one of typical environmental coexistence method, and on design of environmental facility was arranged to elucidate a direction of future environmental coexistence. And, a draft of local scene creation type design possible to make it for a symbol at the area was investigated to quantitatively elucidate an effect of the scene design on local peoples by using some metrical psychological experiments. As a result, it was found from an evaluation value profile in each age that younger generation showed severer evaluation against the scene design. And, also found that scene image on the power plant is constructed by four axes of 'regularity', 'symbolicity', 'cleanliness', and traditionality', of which design method (color, shape design, and so forth) effect was clarified. (G.K.)

  2. Protection of third parties. The protection of third parties affected by building or plant construction permits under the public construction law, the emission control law, or the atomic energy law

    International Nuclear Information System (INIS)

    Koenig, S.

    1993-01-01

    Building construction permits just like plant construction permits under the Federal Emission Control Act or the Atomic Energy Act are typical cases representing the administrative order with a dual effect, or an effect on third parties: decisions supporting the interests of the project owner always affect third parties. Third party protection therefore is a major topic of public construction law or the environmental protection law to be applied to industrial installations. Although actions brought by third parties have become something ordinary for the administrative courts, substantive third party protection continues to pose specific problems. The book in hand develops and explains a way out of the dilemma created by third party protection. The solutions presented are founded on a sound dogmatic basis and take into account the Federal Constitutional Court's rulings in matters of civil rights. The starting point adopted by the authors is the third party rights warranting protection, with the objective protection provided for by the law in general gaining effect as subjective rights as far as the protection is based on the civil rights of the constitution. The scope of protection affordable depends on the individual case and the reconciliation of terests of all parties concerned. The problem solutions set forth very extensively rely on the jurisdiction in matters of third party protection and on approaches published in the relevant literature, so that the book also may serve as a guide to current practice and a helpful source of reference for readers looking for information about the issue of third party protection. (orig./HP) [de

  3. International comparison of the economy of constructing nuclear power plants by using the method of referred investment costs in Czechoslovakia and in the USA

    International Nuclear Information System (INIS)

    Majer, P.; Jelen, J.

    1989-01-01

    The method of referred investment costs was applied to a comparison of the economy of constructing the nuclear power plant at Temelin, Czechoslovakia, with that for the hypothetic nuclear power plant at Middletown, USA. For a reasonably adopted Czechoslovak crown/USD rate, the obtained costs for building the Temelin power plant are 50% higher than those for building the reference Middletown power plant. This compares rather favorably with the general level of investment costs in Czechoslovakia under the present economic conditions. The analysis performed shows that savings in investment costs should be sought in the fields of technological modernization of preparatory work and in all construction work, with the aim to reduce particularly live work. (P.A.). 12 tabs., 8 refs

  4. Medicinal Plants, Effective Plant Compounds (Compositions) and their Effects on Stomach Cancer.

    Science.gov (United States)

    Aleebrahim-Dehkordy, Elahe; Nasri, Hamid; Baradaran, Azar; Nasri, Parto; Tamadon, Mohammad Reza; Hedaiaty, Mahrang; Beigrezaei, Sara; Rafieian-Kopaei, Mahmoud

    2017-01-01

    Medicinal plants have special importance around the world. Further, they have been noticed for nutrition and illness treatment such as preparation of anticancer new drugs. Therefore, a wide range of studies have been done on different plants, and their anticancer effects have been investigated. Nowadays, cancer is the most important factor of death rate in the developed and developing countries. Among them, stomach cancer is one of the most common malignancies around the world. At present, it is recognized as the fourth common cancer and the second factor of death rate due to cancer. So far, there has been wide range of effort for cancer treatment; however, in most cases, the response to the treatment has been very weak and often accompanied improper subsidiary effects. The present problems as a consequence of chemical treatment and radiotherapy and many subsidiary problems created due to their use for patients, and also, the resistance to the current treatment has motivated researchers to apply new medicines with more effect and less toxicity. The secondary metabolisms existent in the plants have an important role in the treatment of several diseases such as cancer. This study was conducted to investigate and collect scientific results for stomach cancer and to clarify the role of medicinal plants and secondary plant compounds on its treatment.

  5. Environmental analysis for pipeline gas demonstration plants

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, L.H.

    1978-09-01

    The Department of Energy (DOE) has implemented programs for encouraging the development and commercialization of coal-related technologies, which include coal gasification demonstration-scale activities. In support of commercialization activities the Environmental Analysis for Pipeline Gas Demonstration Plants has been prepared as a reference document to be used in evaluating potential environmental and socioeconomic effects from construction and operation of site- and process-specific projects. Effluents and associated impacts are identified for six coal gasification processes at three contrasting settings. In general, impacts from construction of a high-Btu gas demonstration plant are similar to those caused by the construction of any chemical plant of similar size. The operation of a high-Btu gas demonstration plant, however, has several unique aspects that differentiate it from other chemical plants. Offsite development (surface mining) and disposal of large quantities of waste solids constitute important sources of potential impact. In addition, air emissions require monitoring for trace metals, polycyclic aromatic hydrocarbons, phenols, and other emissions. Potential biological impacts from long-term exposure to these emissions are unknown, and additional research and data analysis may be necessary to determine such effects. Possible effects of pollutants on vegetation and human populations are discussed. The occurrence of chemical contaminants in liquid effluents and the bioaccumulation of these contaminants in aquatic organisms may lead to adverse ecological impact. Socioeconomic impacts are similar to those from a chemical plant of equivalent size and are summarized and contrasted for the three surrogate sites.

  6. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  7. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal

  8. A probabilistic model for US nuclear power construction times

    International Nuclear Information System (INIS)

    Shash, A.A.H.

    1988-01-01

    Construction time for nuclear power plants is an important element in planning for resources to meet future load demands. Analysis of actual versus estimated construction times for past US nuclear power plants indicates that utilities have continuously underestimated their power plants' construction durations. The analysis also indicates that the actual average construction time has been increasing upward, and the actual durations of power plants permitted to construct in the same year varied substantially. This study presents two probabilistic models for nuclear power construction time for use by the nuclear industry as estimating tool. The study also presents a detailed explanation of the factors that are responsible for increasing and varying nuclear power construction times. Observations on 91 complete nuclear units were involved in three interdependent analyses in the process of explanation and derivation of the probabilistic models. The historical data was first utilized in the data envelopment analysis (DEA) for the purpose of obtaining frontier index measures for project management achievement in building nuclear power plants

  9. Assessing the effect of nuclear power installation construction and operation on the socio-economic sphere

    International Nuclear Information System (INIS)

    Uvirova, E.

    1984-01-01

    A demographic analysis is made of the area within 25 km from the Dukovany nuclear power plant. The problem is discussed of sources and requirements for manpower for the construction and operation of the power plant. It was found that the capacity of creches and nursery schools for children of power plant employees is inadequate, as are health care facilities for personnel. (E.S.)

  10. Stages in planning and construction of the Muelheim-Kaerlich nuclear power station

    International Nuclear Information System (INIS)

    Pracht, F.

    1975-01-01

    On October 23, 1972, RWE gave a letter of intent and on January 9, 1973 an order for the construction of a nuclear power plant on a turn-key basis to the consortium of BBC, BBR and Hochtief. The power plant in question was the Muelheim-Kaerlich nuclear power station with a pressurized-water reactor of a gross efficiency of 1,295 MWe. After considerable delay of the project, the first building permit was issued to the builder-owner on January 15, 1975, and the constructional work on the building site started immediately afterwards. As the planning and constructional work has so far been carried out according to schedule and the consortium intends to keep the effects of the belated license as small as possible, the start-off of the plant will probably be in summer 1979 if the constructional work is not interrupted. (orig./AK) [de

  11. Historical plant cost and annual production expenses for selected electric plants, 1982

    International Nuclear Information System (INIS)

    1984-01-01

    This publication is a composite of the two prior publications, Hydroelectric Plant Construction Cost and Annual Production Expenses and Thermal-Electric Plant Construction Cost and Annual Production Expenses. Beginning in 1979, Thermal-Electric Plant Construction Cost and Annual Production Expenses contained information on both steam-electric and gas-turbine electric plant construction cost and annual production expenses. The summarized historical plant cost described under Historical Plant Cost in this report is the net cumulative-to-date actual outlays or expenditures for land, structures, and equipment to the utility. Historical plant cost is the initial investment in plant (cumulative to the date of initial commercial operation) plus the costs of all additions to the plant, less the value of retirements. Thus, historical plant cost includes expenditures made over several years, as modifications are made to the plant. Power Production Expenses is the reporting year's plant operation and maintenance expenses, including fuel expenses. These expenses do not include annual fixed charges on plant cost (capital costs) such as interest on debt, depreciation or amortization expenses, and taxes. Consequently, total production expenses and the derived unit costs are not the total cost of producing electric power at the various plants. This publication contains data on installed generating capacity, net generation, net capability, historical plant cost, production expenses, fuel consumption, physical and operating plant characteristics, and other relevant statistical information for selected plants

  12. VHTR Construction Ripple Effect using Inter-Industry Analysis

    International Nuclear Information System (INIS)

    Lee, T. H.; Lee, K. Y.; Shin, Y. J.

    2015-01-01

    As a part of a VHTR economic analysis, we have studied the VHTR construction cost and operation and maintenance cost. However, it is somewhat difficult to expect the exact cost due to insufficient reference data and experience. As a result, we propose quantitative analysis techniques for ripple effects such as the production inducement effect, added value inducement effect, and employment inducement effect for VHTR 600MWt x 4 module construction and operation ripple effect based on NOAK. This paper presents a new method for the ripple effect and preliminary ripple effect consequence. We proposed a ripple effect analysis method using a time series and inter-industry table. As a result, we can predict that a 600MWth x 4 module VHTR reactor construction will bring about a 43771 employment effect, 24160 billion KRW production effect, and 4472 billion added value effect for 22 years. It is necessary to use the sub-account values of an inter-industry table to obtain a more precise effect result. However, the methodology can be applied with minor modification to another reactor type.

  13. VHTR Construction Ripple Effect using Inter-Industry Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. H.; Lee, K. Y.; Shin, Y. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As a part of a VHTR economic analysis, we have studied the VHTR construction cost and operation and maintenance cost. However, it is somewhat difficult to expect the exact cost due to insufficient reference data and experience. As a result, we propose quantitative analysis techniques for ripple effects such as the production inducement effect, added value inducement effect, and employment inducement effect for VHTR 600MWt x 4 module construction and operation ripple effect based on NOAK. This paper presents a new method for the ripple effect and preliminary ripple effect consequence. We proposed a ripple effect analysis method using a time series and inter-industry table. As a result, we can predict that a 600MWth x 4 module VHTR reactor construction will bring about a 43771 employment effect, 24160 billion KRW production effect, and 4472 billion added value effect for 22 years. It is necessary to use the sub-account values of an inter-industry table to obtain a more precise effect result. However, the methodology can be applied with minor modification to another reactor type.

  14. Deriving a Planting Medium from Solid Waste Compost and Construction, Demolition and Excavation Waste

    Science.gov (United States)

    Farajalla, Nadim; Assaf, Eleni; Bashour, Issam; Talhouk, Salma

    2014-05-01

    Lebanon's very high population density has been increasing since the end of the war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which were locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been followed by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste problem. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Matiolla, a native Lebanese plant and Zea mays, which is commonly known used as an indicator plant due to its sensitivity to environmental conditions. To ensure sustainability and environmental friendliness of the mix, its physical and chemical characteristics are monitored

  15. Concept of underground nuclear power plant

    International Nuclear Information System (INIS)

    Onishi, Sotoaki

    1976-01-01

    The concept of constructing nuclear power plants on the sea or underground as the future sitting is based on moving the present power plants on the ground with actual results to the sea or underground without changing the design. The underground nuclear power plants have many similar points to underground hydro-electric power stations with many achievements in the construction viewpoint, though they have their proper difficult problems. Of course, it requires to excavate larger underground caves than the case of underground hydro-electric power plants. The maximum dimensions of the caves have been determined through experience in practice. Therefore the developments of design theory and construction technique are desirable in this field. In discussing underground construction, two evaluating methods are considered for the shielding effect of base rocks. The minimum vertical distance up to ground surface from the center of the cave differs depending upon the in-cave pressure, and the conditions of base rock, soil and underground water in case of the accident assumed in the design, and is approximately 60m, if the cave is assumed to be an indefinite cylindrical shape, by the safer side calculation in the above two evaluations. (Wakatsuki, Y.)

  16. The construction and commissioning of MINT's latex irradiator

    International Nuclear Information System (INIS)

    Razali Hamzah; Muhd Khairi Muhd Said; Muhd Ariff Hamzah; Wan Manshol Wan Zin; Taiman Kadni

    1996-01-01

    The construction and installation of MINT's automatic continuous latex irradiator is described. MINT cooperated with NUKEM to design the plant. Construction was done by local building consultants and local contractor. The installation of the plant includes local fabrication components and imported components. The plant is automatically controlled by a computer system. Features of plant is described

  17. Identifying Issues in Applying Integrated Project Delivery to Domestic Nuclear Power Plant Construction Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Joo [Korean Nuclear Society, Daejeon (Korea, Republic of)

    2016-05-15

    Integrated Project Delivery (IPD) is defined as that people, systems, business structures, and practices of key stakeholders are incorporated into a single-team, with a single process, which executes a project in a way of optimizing the project's outcome, increasing values delivered to the end user, reducing waste, and maximizing efficiency throughout the phases of engineering to construction. The researcher had carried out literature review in terms of IPD to identify major characteristics of IPD which are presented in the following section and had compared such characteristics against peculiarities of nuclear power plant (NPP) construction projects in order to shed light on obstacles in possible application of IPD method to domestic NPP construction projects in the coming days. In this research, three (3) major characteristics of IPD were identified: 1) key stakeholders signing one balanced contract, forming de facto one body, sharing risk and reward 2) an integrated project team being formed in the early stage of a project and providing input to minimize time and cost loss from rework downstream 3) team members co-locating, having open and direct communication, making decisions on time, and pursuing the success of the project itself.

  18. technical guidelines for the design and construction of the next generation of nuclear power plants with pressurized water reactors

    International Nuclear Information System (INIS)

    2009-01-01

    These technical guidelines present the opinion of the French 'Groupe Permanent charge des Reacteurs nucleaires' (GPR) concerning the safety philosophy and approach as well as the general safety requirements to be applied for the design and construction of the next generation of nuclear power plants of the PWR (pressurized water reactor) type, assuming the construction of the first units of this generation would start at the beginning of the 21. century. These technical guidelines are based on common work of the French Institut de Protection et de Surete Nucleaire (IPSN) and of the German Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS). Moreover, these technical guidelines were extensively discussed with members of the German Reaktor Sicherheitskommission (RSK) until the end of 1998 and further with German experts. The context of these technical guidelines must be clearly understood. Faced with the current situation of nuclear energy in the world, the various nuclear steam supply system designers are developing new products, all of them claiming their intention of obtaining a higher safety level, by various ways. GPR believes that, for the operation of a new series of nuclear power plants at the beginning of the next century, the adequate way is to derive the design of these plants in an 'evolutionary' way from the design of existing plants, taking into account the operating experience and the in-depth studies conducted for such plants. Nevertheless, introduction of innovative features must also be considered in the frame of the design of the new generation of plants, especially in preventing and mitigating severe accidents. GPR underlines here that a significant improvement of the safety of the next generation of nuclear power plants at the design stage is necessary, compared to existing plants. If the search for improvement is a permanent concern in the field of safety, the necessity of a significant step at the design stage clearly derives from better

  19. Power plants and safety 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The papers of this volume deal with the whole range of safety issues from planning and construction to the operation of power plants, and discuss also issues like availability and safety of power plants, protective clothes and their incommodating effect, alternatives for rendering hot-water generators safe and the safety philosophy in steam turbine engineering. (HAG) [de

  20. Effects of power-line construction on wetland vegetation in Massachusetts, USA

    Science.gov (United States)

    Nickerson, Norton H.; Dobberteen, Ross A.; Jarman, Nancy M.

    1989-07-01

    Utility rights-of-way corridors through wetland areas generate long-term impacts from construction activities to these valuable ecosystems. Changes to and recovery of the vegetation communities of a cattail marsh, wooded swamp, and shrub/bog wetland were documented through measurements made each growing season for two years prior, five years following, and again on the tenth year after construction of a 345-kV transmission line. While both the cattail marsh and wooded swamp recovered within a few years, measures of plant community composition in the shrub/bog wetland were still lower, compared to controls, after ten years. Long-term investigations such as the one reported here help decrease uncertainty and provide valuable information for future decision making regarding construction of power utility lines through valuable and dwindling wetland resources.

  1. Investor's experience with keeping fixed costs during the construction of the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Cecil, P.

    1990-01-01

    The introduction of fixed costs in the construction of the Temelin nuclear power plant should secure stabilization of budget cost and prevent its increase. The differences between the fixed costs method and the procedure used so far are briefly described. The introduction of fixed costs was to be followed by the corresponding legal regulations; however, the legal adjustment has not been carried out in the desired completeness. The reason is the difference in understanding the notion of fixed costs by the investor, the contractor and the designer. Another problem is the difference in the level and the detail of the initial project design and of the Soviet implementation designs. The investor believes that the introduction of fixed costs has not yet met with the desired response by organizations participating in the construction. (J.P.)

  2. Design and construction of the defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.

    1986-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility

  3. Anchorage of equipment - requirements and verification methods with emphasis on equipment of existing and constructed VVER-type nuclear power plants

    International Nuclear Information System (INIS)

    Masopust, R.

    1999-01-01

    Criteria and verification methods which are recommended for use in the capacity evaluation of anchorage of safety-related equipment at WWER-type nuclear power plants are presented. Developed in compliance with the relevant basic standards documents specifically for anchorage of WWER-type equipment components, the criteria and methods cover different types of anchor bolts and other anchorage elements which are typical of existing, constructed, or reconstructed WWER-type nuclear power plants

  4. Quality assurance requirements for installation, inspection, and testing of structural concrete and structural steel during the construction phase of nuclear power plants

    International Nuclear Information System (INIS)

    1975-04-01

    This guide describes a method acceptable to the NRC staff for complying with the Commission's regulations with regard to quality assurance requirements for installation, inspection, and testing of structural concrete and structural steel during the construction phase of nuclear power plants. This guide applies to all types of nuclear power plants. (U.S.)

  5. Construction work management for nuclear power stations

    International Nuclear Information System (INIS)

    Yoshikawa, Yuichiro

    1982-01-01

    Nuclear power generation is positioned as the nucleus of petroleum substitution. In the Kansai Electric Power Co., efforts have been made constantly to operate its nuclear power plants in high stability and safety. At present, Kansai Electric Power Co. is constructing Units 3 and 4 in the Takahama Nuclear Power Station in Fukui Prefecture. Under the application of the management of construction works described here, both the nuclear power plants will start operation in 1985. The activities of Kansai Electric Power Co. in the area of this management are described: an outline of the construction works for nuclear power stations, the management of the construction works in nuclear power stations (the stages of design, manufacturing, installation and test operation, respectively), quality assurance activities for the construction works of nuclear power plants, important points in the construction work management (including the aspects of quality control). (J.P.N.)

  6. Effectiveness of Practicing Supply Chain Management in Construction Site

    Directory of Open Access Journals (Sweden)

    Mamter S.

    2014-01-01

    Full Text Available Construction Supply chain management comprised of the network of organization involved in the different processes and activities which produce the material, components and services that come together to design, procurement and deliver a building. It also consists of different organizations involved in the construction process including client/owner, designer, contractor, subcontractor and suppliers. This paper shall present on the implementation of supply chain management in construction and the effectiveness of practicing SCM in construction site. A field study is done from the viewpoint of contractor and consultant then analysed by using average index methods and presented in a statistical analysis. From the analysis, it reveals that effectiveness of practicing the SCM give a lot of good performances and granted benefits to contractor. The statistical analysis produced first ranking effectiveness of SCM is can minimize waste of material and labor for construction project.

  7. BOT (Build-Operate-Transfer) models in plant construction; BOT-Modelle im Anlagenbau. Ein neues strategisches Instrument oder nur Akquisitionsunterstuetzung?

    Energy Technology Data Exchange (ETDEWEB)

    Bohlmann, B. [Kienbaum Management Consultants GmbH, Duesseldorf (Germany). Bereich Stahl und Anlagenbau; Roeben, K.W. [Fachhochschule Hamburg (Germany). Fachgebiet Thermodynamik und Verfahrenstechnik

    1998-05-01

    So as to survive in the tight situation on the world market for plant construction, new concepts are required. In addition to technical innovation, there are an increasing number of additional services that occupy the midpoint of plant business. The article discusses the prospects and risks, which arise from the involvement of the plant designer in a BOT project. (orig.) [Deutsch] Um sich in der angespannten Situation am Weltmarkt des Anlagenbaus behaupten zu koennen, bedarf es neuer Konzepte. Neben der technischen Innovation stehen immer mehr flankierende Dienstleistungen im Mittelpunkt des Anlagengeschaeftes. Der Beitrag eroertert die Chancen und Risiken, die sich aus einem Engagement des Anlagenbauers in einem BOT-Projekt ergeben. (orig.)

  8. Stainless steel pool constructing technology and management of Fangjiashan Nuclear Power Company

    International Nuclear Information System (INIS)

    Wei Lianfeng; Wang Qun

    2013-01-01

    The construction of Fangjiashan nuclear power plant stainless steel cladding has been taken much attention. Based on the careful analysis of stainless steel cladding welding and construction main issues; Many measures have been taken such as welding technology, construction process, the stress control of welding deformation, the cleanliness control of construction process, install precision control, improvements of Non-destructive testing, product protection, etc. And installation methods and techniques have been improved and innovative, the installation quality of stainless steel cladding has been enhanced. At the same time, as owners of the plants, we explored the methods of quality supervision and control, together with the relevant units; and sense of quality management has been unified effectively, made stainless steel cladding quality getting better and better. Fangjiashan nuclear power stainless steel cladding construction quality and management experience has been highly recognized by every company. (authors)

  9. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    Science.gov (United States)

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Plant Density Effect in Different Planting Dates on Growth Indices, Yield and

    Directory of Open Access Journals (Sweden)

    F Azizi

    2013-04-01

    Full Text Available In order to determine the appropriate plant density in different planting dates for sweet corn cultivar KSC403su, an experiment was conducted using a randomized complete block design in split plot lay out with three replications at Seed and Plant Improvement Institute in Karaj in 2006. Three planting dates (22 May, 5 June and 22 June were assigned as main plots and three plant densities (65000, 75000 and 85000 plants per hectare were considered as sub plots. Effect of planting date on row/ear, 1000 kernels weight, biological yield and harvest index was significant at 1% probability level and it was significant at 5% probability level for kernels/ear row and grain yield. All traits decreased with postponement of planting date to 5 June except for row/ear, kernels/row and grain yield. More delay in planting from 22 May to 22 June caused that grain yield was decreased significantly about 32.5% (from 14.45 to 9.78 ton/ha. Effect of plant density was significant at 1% probability level for all the traits. All of the traits decreased significantly with increasing plant density except for biological yield. The highest grain yield was resulted from 65000 plants per hectare density (14.20 ton/ha. Interaction effect of planting date and plant density was significant at 5% probability level for biological yield and harvest index but it wasn’t significant for the other traits. Growth indices decreased with delay in planting date and increasing plant density. Only leaf area index increased in more plant densities. From the results of this experiment it might be resulted that appropriate planting date to produce the highest grain yield is 22 May to 5 June for sweet corn cultivar KSC403su and also the highest grain yield can obtain from 65000 plants per hectare density.

  11. A Study on UAE Cultural Effects on Nuclear Power Plant (NPP) Operation

    International Nuclear Information System (INIS)

    Jang, In Seok; Seong, Poong Hyun; Kang, Hyun Gook

    2012-01-01

    Several initiatives have recently been taken to provide international cooperation in technology transfer and supplying human factors resources to the nuclear industry worldwide. The aim of promoting international cooperation is for the safe operation of the nuclear power industry. In terms of international cooperation of the nuclear industry, nuclear power plants are now under construction in Braka, UAE. However, with technology transfer and international cooperation, there needs to consider several potential problems due to the differences between two culture of the countries such as language, technical culture and expectation. Also, there is an evidence of remarkably wide effects of cultural interpretation of human-system interface even between what have been thought of as relatively homogeneous. Hence, the purpose of this research is to draw attention to the degree to which culture, organizational, and even ergonomic differences have to overcome, if such transfer of knowledge and behavioral technology is to be successful. Of particular interest is the UAE's cultural effect on operating nuclear power plants

  12. A Study on UAE Cultural Effects on Nuclear Power Plant (NPP) Operation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, In Seok; Seong, Poong Hyun; Kang, Hyun Gook [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    Several initiatives have recently been taken to provide international cooperation in technology transfer and supplying human factors resources to the nuclear industry worldwide. The aim of promoting international cooperation is for the safe operation of the nuclear power industry. In terms of international cooperation of the nuclear industry, nuclear power plants are now under construction in Braka, UAE. However, with technology transfer and international cooperation, there needs to consider several potential problems due to the differences between two culture of the countries such as language, technical culture and expectation. Also, there is an evidence of remarkably wide effects of cultural interpretation of human-system interface even between what have been thought of as relatively homogeneous. Hence, the purpose of this research is to draw attention to the degree to which culture, organizational, and even ergonomic differences have to overcome, if such transfer of knowledge and behavioral technology is to be successful. Of particular interest is the UAE's cultural effect on operating nuclear power plants

  13. Effects of the Use of Ornamental Plants and Different Substrates in the Removal of Wastewater Pollutants through Microcosms of Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Luis Carlos Sandoval-Herazo

    2018-05-01

    Full Text Available The high costs involved in treating wastewater are problems that developing countries confront, mainly in rural areas. Therefore, Constructed Wetlands (CWs, which are composed of substrate, vegetation, and microorganisms, are an economically and ecologically viable option for wastewater treatment in these places. There is a wide variety of possibilities for substrates and ornamental plants that have not yet been evaluated to be implemented in future CW designs. The goal of this study was to evaluate the process of adaptation and removal of wastewater pollutants in CW microcosms using different terrestrial ornamental plants (Lavandula sp., Spathiphyllum wallisii, and Zantedeschia aethiopica. Those plants were sown in two types of substrate: red volcanic gravel (RVG and polyethylene terephthalate (PET. CWs with vegetation reduced 5-day biochemical oxygen demand (BOD5 by 68% with RVG substrate and 63% with PET substrate, nitrates 50% in RVG substrate and 35% in PET substrate, phosphates 38% in RVG substrate and 35% in PET substrate, and fecal coliforms 64% in RVG and 59% in PET substrate. In control microcosms without vegetation, reductions were significantly lower than those in the presence of plants, with reduction of BOD5 by 61% in RVG substrate and 55% in PET substrate, nitrates 26% in RVG substrate and 22% in PET substrate, phosphates 27% in RVG substrate and 25% in PET substrate. Concerning fecal coliforms 62% were removed in RVG substrate and 59% in PET substrate. Regarding the production of flowers, Lavandula sp. did not manage to adapt and died 45 days after sowing and did not produce flowers. Spathiphyllum wallisii produced 12 flowers in RVG and nine flowers in PET, while Zantedeschia aethiopica produced 10 in RVG and 7 in PET. These results showed that the use of substrates made of RVG and PET is a viable alternative to be implemented in CWs. In addition, the reuse of PET is an option that decreases pollution by garbage. The plants

  14. Construction and start-up of a 250 kW natural gas fueled MCFC demonstration power plant

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, R.A.; Carter, J.; Rivera, R.; Otahal, J. [San Diego Gas & Electric, CA (United States)] [and others

    1996-12-31

    San Diego Gas & Electric (SDG&E) is participating with M-C Power in the development and commercialization program of their internally manifolded heat exchanger (IMHEX{reg_sign}) carbonate fuel cell technology. Development of the IMHEX technology base on the UNOCAL test facility resulted in the demonstration of a 250 kW thermally integrated power plant located at the Naval Air Station at Miramar, California. The members of the commercialization team lead by M-C Power (MCP) include Bechtel Corporation, Stewart & Stevenson Services, Inc., and Ishikawajima-Harima Heavy Industries (IHI). MCP produced the fuel cell stack, Bechtel was responsible for the process engineering including the control system, Stewart & Stevenson was responsible for packaging the process equipment in a skid (pumps, desulfurizer, gas heater, turbo, heat exchanger and stem generator), IHI produced a compact flat plate catalytic reformer operating on natural gas, and SDG&E assumed responsibility for plant construction, start-up and operation of the plant.

  15. Plant upgrading and backfitting in France

    International Nuclear Information System (INIS)

    Moxley, Nigel; Raimondo, Emile

    1992-01-01

    The service life of a nuclear power plant is linked to good operating and maintenance practices and effective management which should begin when the plant starts operating. In France the construction of two series of virtually identical reactors has enabled Framatome to use feedback from early units to modify and improve later ones. The intention is to keep the plants safe and to extend life as far into the next century as is feasible. Remedial measures that can be applied include improvements to plant operation itself, plant modifications and the implementation of effective preventive and corrective maintenance operations which may cover planned provision for the replacement of obsolete or susceptible components. (author)

  16. Noise emissions upon the construction of power plants. Appropriate assessment, or is the German AVV Baulaerm contemporary?; Geraeuschimissionen bei der Errichtung von Kraftwerken. Die sachgerechte Beurteilung bzw. ist die AVV Baulaerm noch zeitgemaess?

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Joachim [Mueller-BBM GmbH, Planegg (Germany)

    2013-06-01

    Within the scope of licensing procedures also the noise caused during plant construction is more and more discussed between project proponents and neighbours affected by the project. An essential point of criticism in this context is the fact that the regulation for the assessment of construction noise - the General Administrative Regulation on the Protection against Construction Noise (AVV Baulaerm) became effective already in 1970, and, naturally, the regulations are being debated today. A profound examination of the regulations of AVV Baulaerm shows that the requirements can be met when taking into account further standards. Thus, suitable methods exist to predict construction noise in an appropriate way. (orig.)

  17. Tritium as tracer of flow in constructed wetlands

    International Nuclear Information System (INIS)

    Wachniew, P.; Czuprynski, P.; Maloszewski, P.

    2005-01-01

    Constructed wetlands technology is a cost-effective and environmentally friendly method used world-wide to treat waste waters of different origins. The soluble pollutants are transformed and removed mainly through the processes that occur at surfaces of plants, plant debris or filtering media. The efficiency of soluble pollutants removal is thus primarily related to the extent of contact between waste waters and the reactive surfaces. Residence time distributions function (RTD)is basic characteristic of wetland hydraulic properties and can be obtained by combined use of tracer technique and mathematical modelling. Tritium was used as to obtain RTD's of three parallel cells of a sub-surface flow constructed wetland overgrown with Pharagmites australis in Nowa Slupia. Tritium as a part of water molecule, is an ideal tracer of flow in the highly reactive environment of constructed wetlands. Results of the tracer test interpreted by the assumed model (Multi Flow Dispersion Model) of conservative solute transport revealed a complex structure of flow through the wetland. (author)

  18. Plant Respiration and Climate Change Effects

    International Nuclear Information System (INIS)

    Bruhn, D.

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO 2 on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO 2 from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO 2 on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO 2 . These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO 2 . The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO 2 exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO 2 release. (au)

  19. Plant Respiration and Climate Change Effects

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, D

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO{sub 2} on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO{sub 2} from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO{sub 2} on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO{sub 2}. These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO{sub 2}. The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO{sub 2} exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO{sub 2} release. (au)

  20. Theoretical and methodological aspects of assessing economic effectiveness of nuclear power plant construction using cost-benefit analysis

    International Nuclear Information System (INIS)

    Moravcik, A.

    1984-01-01

    The cost benefit of investments is devided into social and economic benefits. The postulates are discussed for the assessment of the cost benefit of capital costs of nuclear power plants. The relations are given for total cost benefit of capital costs expressed by the total profit rate of capital costs, and the absolute effectiveness exoressed by the socio-economic benefit of capital costs. The absolute cost benefit of capital costs is characterized by several complex indexes. Comparable capital cost benefit is used for assessing the effectiveness of interchangeable variants of solution. The minimum calculated costs serve as the criterion for selecting the optimal variant. (E.S.)

  1. Vertical flow constructed wetlands for domestic wastewater treatment on tropical conditions: effect of several design parameters

    DEFF Research Database (Denmark)

    Bohorquez, Eliana; Paredes, Diego; Arias, Carlos Alberto

    Vertical flow constructed wetlands (VFWC) design and operation takes into account several variables which affect performance its performance. These aspects had been evaluated and documented among others in countries like USA, Denmark, Austria. In contrast, VFCW had not been studied in tropical...... countries and, specifically in Colombia, design and operation parameters are not defined yet. The objective of this study was evaluate the effects of filter medium, the feeding frequency and Heliconia psittacorum presence, a typical local plant, on the domestic wastewater treatment in tropical conditions....

  2. Supplement to Final Environmental Statement related to construction and operation of Clinch River Breeder Reactor Plant, Docket No. 50-537

    International Nuclear Information System (INIS)

    1982-10-01

    In February 1977, the Office of Nuclear Reactor Regulation issued a Final Environmental Statement (FES) (NUREG-0139) related to the construction and operation of the proposed Clinch River Breeder Reactor Plant (CRBRP). Since the FES was issued, additional data relative to the site and its environs have been collected, several modifications have been made to the CRBRP design, and its fuel cycle, and the timing of the plant construction and operation has been affected in accordance with deferments under the DOE Liquid Metal Fast Breeder Reactor (LMFBR) program. These changes are summarized and their environmental significance is assessed in this document. The reader should note that this document generally does not repeat the substantial amount of information in the FES which is still current; hence, the FES should be consulted for a comprehensive understanding of the staff's environmental review of the CRBRP project

  3. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Cotton is a world’s leading crop important to the world’s textile and energy industries, and a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction and extensive analysis of a binary bacterial artificial chromosome (BI...

  4. Impact of modules on the ACR construction schedule

    International Nuclear Information System (INIS)

    Choy, Ed; Elgohary, Medhat; Fairclough, Neville; Yu, Stephen; Murayama, Kouichi; Miura, Jun; Kawahata, Junichi

    2003-01-01

    The ACR (Advanced CANDU Reactor), developed by Atomic Energy of Canada Ltd. (AECL), is designed with constructability considerations as a major requirement during all project phases from the concept design stage to the detail design stage. For ACR-700, a project schedule of 48 months has been developed for the nth replicated unit with a 36 month construction period duration from First Concrete to Fuel Load. AECL, recognizing the immense benefit of collective experience, is partnering with Hitachi Ltd in the development of the ACR power plant design. AECL has gained valuable experience in implementing new construction methods at the Qinshan (Phase III) twin unit CANDU 6 plant in China, and Hitachi likewise has enjoyed success in modular construction of ABWRs in Japan. Utilizing these experiences, AECL is developing the ACR nuclear steam plant (NSP) and Hitachi is developing the Turbine Building. An overall construction strategy, which builds on the success of these construction methods from the nuclear power plant developments in China and Japan, has been developed for the ACR. The overall construction strategy comprises the 'Open Top' construction technique using a Very Heavy Lift crane, parallel construction activities, with extensive modularization and prefabrication. Modules and prefabrications are major features of the ACR design, resulting in an excess of 80% of Reactor Building internal work being completed as modules or as very streamlined traditional construction. This paper reviews the ACR construction strategy and provides examples of modules and how they impact on the ACR construction schedule. In conclusion, the ACR-700 is designed using the latest, proven construction methods to achieve a 36 month construction period for the nth replicated unit. (author)

  5. Construction Improvement for the Korean Nuclear Program

    International Nuclear Information System (INIS)

    Yang, T. E.

    1992-01-01

    Construction of the nine Nuclear plants requires an enormous financial investment. The decision to build a nuclear unit is based on both economic and resource requirements. Korea has few natural resources to use for power generation so the use of diversified fuel sources is a part of the planning process. Nuclear has historically had economic advantages over the fossil fueled plant, however, this advantage has been reduced. This is mainly due to increasing decommissioning and waste disposal costs plus the financial outlays associated with gaining public acceptance of new nuclear units. One of the principal means to recover the economic advantage of a nuclear plant is to shorten the time needed for construction. Every extra day of construction costs large sums of money in interest and escalation expenses alone. The challenge is to shorten the construction period to the minimum feasible time and thereby reduce the financing costs. The methods that have to be employed to achieve this goal require the total commitment from the management of all entities involved in the program. Through the application of advanced management and construction techniques a new era in the construction of nuclear plants in Korea will occur. This will include changes to the methods used for managing, planning, licensing, designing and constructing the new plants. The ability to meet the aggressive plan for the construction of new nuclear power plants in Korea rests in the hands of the managers of all the parties involved. These men set all the rules by which the new plants will be constructed. It is their responsibility to tackle the current problems and develop the solutions to enable the plan to be realized. The changes suggested within this paper are major, but the potential benefits will allow the Korean Nuclear Industry to advance into the twenty first Century as a leader. The number of fully trained specialists needed to make this happen will not appear overnight. They will have to be

  6. Peat as Substrate for Small-Scale Constructed Wetlands Polishing Secondary Effluents from Municipal Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Meng Jin

    2017-11-01

    Full Text Available With the recent development of constructed wetland technology, it has become a mainstream treatment technology for the mitigation of a variety of wastewaters. This study reports on the treatment performance and pH attenuation capacity of three different configurations of small-scale on-site surface flow constructed wetlands (SFCW: T1 (Peat + Typha latifolia, T2 (T. latifolia alone, and T3 (Peat alone treating secondary effluent from the Amherstview Water Pollution Control Plant (WPCP for two treatment periods (start-up period and operational period. The aim of this study was to compare the nutrients removal efficiencies between the different treatments, as well as to evaluate the effects of substrate and vegetation on the wetland system. For a hydraulic retention time of 2.5 days, the results showed that all treatment systems could attenuate the pH level during both the start-up and operational periods, while significant nutrient removal performance could only be observed during the operational period. Peat was noted to be a better SFCW substrate in promoting the removal of nitrate (NO3-N, total nitrogen (TN, and phosphorus. The addition of T. latifolia further enhanced NO3-N and TN removal efficiencies, but employing T. latifolia alone did not yield effluents that could meet the regulatory discharge limit (1.0 mg/L for phosphorus.

  7. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    Science.gov (United States)

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  8. Construction of scales to measure leadership behavior at nuclear power plants. 2

    Energy Technology Data Exchange (ETDEWEB)

    Misumi, Jyuji; Yamada, Akira [Institute of Nuclear Safety System Inc., Kyoto (Japan); Shinohara, Shinobu [and others

    1994-05-01

    We tried to construct the PM leadership behavior measuring scales at nuclear power plants. In our factor analysis of leadership types of shift supervisors, maintenance and repair subsection chiefs and sub contractors` field leaders, three factors respectively were found. In the leadership scales for shift supervisors, the first factor was named the factor of group maintenance, the second factor was named the factor of directive-order for goal achievement and the third factor was named the factor of specialty for goal achievement. For maintenance and repair subsection chiefs, the first factor was named the factor of directive-order for goal achievement, and second factor was named the factor of group maintenance and the third factor was named the factor of rigidity-pressure for goal achievement. For subcontractors` leaders, the first factor was named the factor of directive-specialty for goal achievement, the second factor named the factor of group maintenance and the third factor was named the factor of rigidity-pressure for achievement. We constructed PM leadership measuring scales for each advisory position and verified its validity by using workplace `morale`-(satisfaction, etc.) as a subordinate variable. Also, in regard to the distribution of scales, we verified the validity of distance scales by examining it by Quantification III. (author)

  9. Tentative to use wastes from thermal power plants for construction building materials

    Science.gov (United States)

    Bui, Quoc-Bao; Phan, To-Anh-Vu; Tran, Minh-Tung; Le, Duc-Hien

    2018-04-01

    Thermal power plants (TPP) generates wastes (bottom and fly ashes) which become a serious environmental problem in Vietnam. Indeed, although in several countries fly ash can be used for cement industry, fly ash from actual TPP in Vietnam does not have enough good quality for cement production, because the fly ash treatment phase has not yet included in the generations of existing Vietnamese TPP. That is why bottom ash and fly ash purely become wastes and their evacuation is an urgent demand of the society. This paper presents an investigation using fly and bottom ashes in the manufacturing of construction materials. The main aims of this study is to reduce environmental impacts of fly and bottom ashes, and to test another non-conventional binder to replace cement in the manufacture of unburnt bricks. Several proportions of fly ash, bottom ash, cement, gravel, sand and water were tested to manufacture concretes. Then, geopolymer was prepared from the fly ash and an activator. Specimens were tested in uniaxial compressions. Results showed that the cement concrete tested had the compressive strengths which could be used for low rise constructions and the material using geopolymer could be used for non-load-bearing materials (unburnt bricks).

  10. Construction of scales to measure leadership behavior at nuclear power plants. 2

    International Nuclear Information System (INIS)

    Misumi, Jyuji; Yamada, Akira; Shinohara, Shinobu

    1994-01-01

    We tried to construct the PM leadership behavior measuring scales at nuclear power plants. In our factor analysis of leadership types of shift supervisors, maintenance and repair subsection chiefs and sub contractors' field leaders, three factors respectively were found. In the leadership scales for shift supervisors, the first factor was named the factor of group maintenance, the second factor was named the factor of directive-order for goal achievement and the third factor was named the factor of specialty for goal achievement. For maintenance and repair subsection chiefs, the first factor was named the factor of directive-order for goal achievement, and second factor was named the factor of group maintenance and the third factor was named the factor of rigidity-pressure for goal achievement. For subcontractors' leaders, the first factor was named the factor of directive-specialty for goal achievement, the second factor named the factor of group maintenance and the third factor was named the factor of rigidity-pressure for achievement. We constructed PM leadership measuring scales for each advisory position and verified its validity by using workplace 'morale'-(satisfaction, etc.) as a subordinate variable. Also, in regard to the distribution of scales, we verified the validity of distance scales by examining it by Quantification III. (author)

  11. Innovation in civil construction system of nuclear power plant

    International Nuclear Information System (INIS)

    Takami, Masahiro

    1996-01-01

    Nowadays, the computer-aided production systems have been already introduced to almost all kinds of industries. The construction industry, which has been said to be conservative for the modernization of production system, now expects the CIC (Computer Integrated Construction) as the means to innovate the construction production process. Shimizu Corporation has developed the new computer-aided production system, 'SIPS: Shimizu Integrated Production System', and has used it in the actual construction projects. In the system, the computer supports every phase of construction projects like market researching, design, material purchase, construction work, and maintenance. The project of Kashiwazaki-kariwa Nuclear Power Station Unit No.7 is one of the model cases. Here we applied following three concepts, (1) the full use and integration of 3D-CAD data-base through all phases of construction, (2) the setting-up of the information network system among the site office, the head office, and the mechanical and electrical manufacturer, (3) the introduction of advanced construction technologies such as large block prefabrication method. (author)

  12. Draft environmental statement related to construction of Erie Nuclear Plant, Units 1 and 2: (Docket Nos. STN 50-580 and STN 50-581)

    International Nuclear Information System (INIS)

    1977-11-01

    The proposed action is the issuance of construction permits to the Ohio Edison Company, acting on behalf of itself, the Cleveland Electric Illuminating Company, Duquesne Light Company, Pennsylvania Power Company, and the Toledo Edison Company, for the construction of the Erie Nuclear Plant Units 1 and 2, located in Erie County, Ohio. A total of 704 hectares (ha) (1740 acres) will be used for the Erie plant site. Construction-related activities on the primary site will disturb about 223 ha (551 acres). Approximately 641 ha (1584 acres) will be required for transmission line rights-of-way. The 3.86-km (2.4-mile) intake and discharge pipeline land corridor will involve alteration of approximately 13 ha (32 acres) of corridor and 1 ha (2.5 acres) for shore facilities. Also, 3.9 ha (9.6 acres) of lake bottom will be disturbed to provide 15-m-wide (50-ft-wide) trenches and an additional 15-m-wide (50-ft-wide) area for storage of excavated material for subsequent backfill for the 701-m (2300-ft) intake and 579-m (1900-ft) discharge lines. Plant construction will involve some community impacts. No residents will be displaced from the site property. Traffic on local roads will increase due to construction and commuting activities. The influx of construction workers' families (a peak work force of about 2700) is expected to cause no major housing or school problems. It is assumed that aquatic organisms entrained in the circulating water system will be killed due to thermal and mechanical shock. The maximum impact based on the population densities of phytoplankton and zooplankton organisms in the adjacent lake area will be the destruction of 0.1% of the entrainable organisms from the lake water. The entrainment of fish larvae will not constitute a significant impact on the lake fishery. 62 figs., 32 tabs

  13. Projections of cost and on-site manual-labor requirements for constructing electric-generating plants, 1980-1990

    International Nuclear Information System (INIS)

    1982-02-01

    This report represents part of a continuing effort by the Federal Government to forecast the capital and labor required for constructing electric generating capacity additions necessary to accommodate projected economic and population growth in the US and its regions. Information is included on anticipated additions to electric generating capacity, labor requirements for these additions, capital cost requirements, and forecasting models. Coal-fired, nuclear, hydro, and pumped storage power plants are considered in these forecasts

  14. Safety aspects of the FMPP (Fuel Manufacturing Pilot Plant) setup constructed by INVAP in the Arabic Republic of Egypt

    International Nuclear Information System (INIS)

    Cinat, Enrique; Boero, Norma L.

    1999-01-01

    The FMPP is a fuel plates manufacturing plant for test reactors. This facility was designed, constructed in El Cairo and turned-key handled by INVAP SE to the Arabian Republic of Egypt. In this project, CNEA participated in the transference of technology, elaboration of documents, training of Egyptian personnel and technical services during the setup of the facility in El Cairo. These tasks were undertaken by UPMP (Uranium Powder Manufacturing Plant) and ECRI (Research Reactors Fuel Elements Plant) personnel. Both plants in CNEA served as a FMPP design basis. During the setup of the facility a fuel element with natural uranium was firstly manufactured and then another one using uranium with 20% enrichment. In this paper the responses of the system regarding safety, after finishing the first two stages of manufacturing, are analyzed and evaluated. (author)

  15. French codes and standards for design, construction and in-service inspection of nuclear power plants

    International Nuclear Information System (INIS)

    Hugot, G.; Grandemange, J. M.

    1995-01-01

    In 1970, France decided that its future power plants would be of the Pressurized Water Reactor type. This choice proved to be successful since it resulted in more than 60 PWR units in operation or under construction in France and abroad. At the beginning of such a program, the French engineering and manufacturing industry, the national electrical utility and the Safety Authorities had to face the many challenges imposed by the implementation of an imported technology. The government reorganised the licensing process. FRAMATOME, the NSSS vendor, and EDF (Electricite de France), the national utility, decided to create 'AFCEN', the French Association for Design and Construction Rules for Nuclear Island Components. These rules, the RCC's (Regles de Construction et de conception), which are approved by French Safety Authorities deal with mechanical and electrical equipment as well as with nuclear fuel and civil works. They are now being supplemented by in service inspection rules, the RSE's (Regles d'inspection en Service). The paper presents these Codes and their main updating following experience of application, technical progress and evolution of standards. Status of discussion concerning reference to European standardisation and developments of rules applicable to the EPR project will also be discussed

  16. Evaluation of residual life of material of power plant construction elements after long-term operation

    International Nuclear Information System (INIS)

    Osasyuk, V.V.

    1989-01-01

    Existing methods are analyzed for estimation of residual resource of elements of constructions, working in creep conditions. A suggested and experimentally verified new method of residual durability forecasting is described permitting the value of the supplementary resource to be specified according to the real state of the material after preoperation. Evaluation results are given for residual life of steam lines received by different methods and advantages of the technique proposed are shown. Reliability of the new technique is confirmed by steam line operation at thermal power plants

  17. Radiation conditions is the region of Rovenskaya nuclear power plant construction

    International Nuclear Information System (INIS)

    Konstantinov, Yu.O.; Teplykh, A.A.; Kataev, V.T.; Dikaya, E.Ya.; Lisachenko, Eh.P.; Ponikarov, V.I.

    1978-01-01

    With a view to optimizing the monitoring of radiation conditions in the vicinity of NPP, an area extending 15-20 km around the construction site of the Rovenskaya atomic energy plant was surveyed. The level of natural gamma-radiation, contents of 90 Sr and 137 Cs in environmental objects, and doses of radiation received by the population from incorporated 137 Cs was studied. It was found that while the average natural gamma-radiation background was relatively low, local levels of the gamma background varied strongly with the type of soil and the pattern of housing systems in the human settlements concerned. The contents of 90 Sr and 137 Cs were also found to fluctuate considerably with the sampling site. 137 Cs was relatively high in cow's milk and in members of the community. The results obtained will be taken into account in the radiation monitoring program

  18. Report on construction of thermal power plants for industrial use in China in FY 1997; 1997 nendo chosa hokokusho (Chugoku ni okeru kogyoyo karyoku hatsuden setsubi secchi)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Steam supply and power generating plants in China can be classified into systems for district heating and power generation and systems for steam supply and power generation for industrial use. Steam supply and power generating plants for district heating in winter season are diffused due to the introduction of Russian technology. There are steam supply and power generating plants for supplying steam to manufacturing equipment in works and generating power for industrial use. Both of these are called heat and power stations. This survey was conducted for the latter thermal power generation plants for industrial use. China has heat and power stations with a total capacity of 22,000 MW, and a half of them are used for district heating. Although the thermal efficiency of usual thermal power generation plants is between 30 and 40%, that of heat and power stations is between 60 and 70%. Latent demand of such power generation plants for industrial use is large. Problems for the diffusion were extracted. It was considered that steam supply and combined power generating plants using natural gas are effective when constructed in large cities, in the vicinity of large cities, or in technological universities. 22 figs., 15 tabs.

  19. Reports on 1977 result of research. Investigation for selecting site location of pilot plant for 7,000Nm{sup 3}/day class high calorie gasification; 1977 nendo sunshine keikaku ni kakawaru plant kenkyu kaihatsu seika hokoku. 7,000Nm{sup 3}/nichi kyu kokarori gas ka pilot plant yochi no ricchi sentei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-20

    A report was made on the result of investigation for selecting a suitable site for a coal gasification pilot plant. The high calorie gasification plant under the Sunshine Project is scheduled to have a parallel operation of two methods. It could be decided on one only method depending on the future studies. One is the 'water gasification method' using coal only as the raw material, with hydrogen gas added to contrive methanization. The other is the 'hybrid gasification method' using mixed slurry of powdered coal and heavy oil as the raw material, with oxygen supplied to it to form a clean gas. The sites proposed for the pilot plant are the cities of Yubari, Iwaki, Kita-Ibaraki, Tagawa, Iizuka and Imari. The items for assessment of cost effectiveness are the expenses of development of a site, road construction, removal of existing obstacles, plant construction, power receiving equipment construction, irrigation supply facilities construction, wastewater treatment system construction, ash discharging system construction, transportation, and supply/processing-related maintenance. As a result of the assessment, Iwaki city was picked up as the area almost free from drawbacks to cost effectiveness. (NEDO)

  20. Reports on 1977 result of research. Investigation for selecting site location of pilot plant for 7,000Nm{sup 3}/day class high calorie gasification; 1977 nendo sunshine keikaku ni kakawaru plant kenkyu kaihatsu seika hokoku. 7,000Nm{sup 3}/nichi kyu kokarori gas ka pilot plant yochi no ricchi sentei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-20

    A report was made on the result of investigation for selecting a suitable site for a coal gasification pilot plant. The high calorie gasification plant under the Sunshine Project is scheduled to have a parallel operation of two methods. It could be decided on one only method depending on the future studies. One is the 'water gasification method' using coal only as the raw material, with hydrogen gas added to contrive methanization. The other is the 'hybrid gasification method' using mixed slurry of powdered coal and heavy oil as the raw material, with oxygen supplied to it to form a clean gas. The sites proposed for the pilot plant are the cities of Yubari, Iwaki, Kita-Ibaraki, Tagawa, Iizuka and Imari. The items for assessment of cost effectiveness are the expenses of development of a site, road construction, removal of existing obstacles, plant construction, power receiving equipment construction, irrigation supply facilities construction, wastewater treatment system construction, ash discharging system construction, transportation, and supply/processing-related maintenance. As a result of the assessment, Iwaki city was picked up as the area almost free from drawbacks to cost effectiveness. (NEDO)

  1. Supplementary quality assurance requirements for installation, inspection, and testing of structural concrete and structural steel during the construction phase of nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    This standard sets forth the supplementary quality assurance requirements for installation, inspection, and testing of structural concrete and structural steel for nuclear power plant construction. The requirements may also be extended to other appropriate parts of nuclear power plants when specified in contract documents. This standard is intended to be used in conjunction with ANSI N45.2

  2. An introduction to constructed wetlands (reed beds) sustainable low cost wastewater treatment plants

    International Nuclear Information System (INIS)

    Ahmad, M.I.

    2005-01-01

    The use of 'conventional' wastewater treatment technology (trickling filters and activated sludge) in developing countries has often been unsuccessful due to high cost, complex operating requirements and expensive maintenance procedures. Typical examples of such projects are wastewater plants in Islamabad and Karachi. Actually the conventional systems, such as trickling filters and activated sludge plants were developed to address the concerns about organic pollution of natural water bodies in western temperate climates, rather than the reduction of organic matter as well as pathogens which is often a priority in developing countries. Pakistan, being a developing country cannot and should not follow the western technology blindly but needs the use of a ppropriate technology . Appropriate technology is defined as a treatment system which meets the following criteria: Affordable: Total amount costs, including capital, operation, maintenance and depreciation are within the user's ability to pay. Operable: Operation of the system is possible with locally available labor and support. Reliable: Effluent quality requirements can be met consistently. Currently there are a limited number of appropriate technologies for small communities, which should be considered by a community and their designers. These include conventional and non-conventional systems such as stabilization ponds or lagoons, slow sand filters, land treatment systems, and wetlands (natural or constructed). The non-conventional systems often utilize 'ecological' treatment mechanism (such as aquatic systems or wetlands) and do not have the mechanical parts or energy requirements of conventional systems. Waste Stabilization Ponds are one such solution but sometimes are constrained by land availability, topography, and are not environment friendly. In such locations, natural or constructed wetlands (Reed Beds) could provide an alternative technology. It is what we call a LOW technology, rather than HI TECH

  3. ITER Construction--Plant System Integration

    International Nuclear Information System (INIS)

    Tada, E.; Matsuda, S.

    2009-01-01

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  4. Powerplant construction: the 20-year outlook

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    A summary of a report on Capital costs of projected power plants in the USA is provided. 125,000 MW of plant is under construction representing 100 billion dollars of investment. Twenty-seven large nuclear plants account for most of the investment and 34% (24 plants) are coal-fired. The capital costs of the power plants are surveyed

  5. Safety-Evaluation Report related to the construction of the Clinch River Breeder Reactor Plant. Docket No. 50-537

    International Nuclear Information System (INIS)

    1983-03-01

    The Safety-Evaluation Report for the application by the United States Department of Energy, Tennessee Valley Authority, and the Project Management Corporation, as applicants and owners, for a license to construct the Clinch River Breeder Reactor Plant (docket No. 50-537) has been prepared by the Office of Nuclear Reactor Regulation of the United States Nuclear Regulatory Commission. The facility will be located on the Clinch River approximately 12 miles southwest of downtown Oak Ridge and 25 miles west of Knoxville, Tennessee. Subject to resolution of the items discussed in this report, the staff concludes that the construction permit requested by the applicants should be issued

  6. Environmental effect of constructed wetland as biofuel production system

    Science.gov (United States)

    Liu, Dong

    2017-04-01

    Being as a renewable energy, biofuel has attracted worldwide attention. Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Biofuel may offer a promising alternative to fossil fuels, but serious concerns arise about the adverse greenhouse gas consequences from using nitrogen fertilizers. Waste-nitrogen recycling is an attractive idea. Here we advocate a win-win approach to biofuel production which takes advantage of excessive nitrogen in domestic wastewater treated via constructed wetland (CW) in China. This study will carry on environmental effect analysis of CW as a biomass generation system through field surveys and controllable simulated experiments. This study intends to evaluate net energy balance, net greenhouse effect potential and ecosystem service of CW as biomass generation system, and make comparation with traditional wastewater treatment plant and other biofuel production systems. This study can provide a innovation mode in order to solve the dilemma between energy crops competed crops on production land and excessive nitrogen fertilizer of our traditional energy plant production. Data both from our experimental CWs in China and other researches on comparable CWs worldwide showed that the biomass energy yield of CWs can reach 182.3 GJ ha-1 yr-1, which was two to eight times higher than current biofuel-production systems. Energy output from CW was ˜137% greater than energy input for biofuel production. If CWs are designed with specific goal of biofuel production, biofuel production can be greatly enhanced through the optimization of N supply, hydraulic structures, and species selection in CWs. Assuming that 2.0 Tg (1 Tg = 1012 g) waste nitrogen contained in domestic wastewater is treated by CWs, biofuel production can account for 1.2% of national gasoline consumption in China. The proportion would increase to 6.7% if extra nitrogen (9.5 Tg) from industrial wastewater and agricultural runoff was included

  7. Summary of experience from a large number of construction inspections; Wind power plant projects; Erfarenhetsaaterfoering fraan entreprenadbesiktningar

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bertil; Holmberg, Rikard

    2010-08-15

    This report presents a summary of experience from a large number of construction inspections of wind power projects. The working method is based on the collection of construction experience in form of questionnaires. The questionnaires were supplemented by a number of in-depth interviews to understand more in detail what is perceived to be a problem and if there were suggestions for improvements. The results in this report is based on inspection protocols from 174 wind turbines, which corresponds to about one-third of the power plants built in the time period. In total the questionnaires included 4683 inspection remarks as well as about one hundred free text comments. 52 of the 174 inspected power stations were rejected, corresponding to 30%. It has not been possible to identify any over represented type of remark as a main cause of rejection, but the rejection is usually based on a total number of remarks that is too large. The average number of remarks for a power plant is 27. Most power stations have between 20 and 35 remarks. The most common remarks concern shortcomings in marking and documentation. These are easily adjusted, and may be regarded as less serious. There are, however, a number of remarks which are recurrent and quite serious, mainly regarding gearbox, education and lightning protection. Usually these are also easily adjusted, but the consequences if not corrected can be very large. The consequences may be either shortened life of expensive components, e.g. oil problems in gear boxes, or increased probability of serious accidents, e.g. maladjusted lightning protection. In the report, comparison between power stations with various construction period, size, supplier, geography and topography is also presented. The general conclusion is that the differences are small. The results of the evaluation of questionnaires correspond well with the result of the in-depth interviews with clients. The problem that clients agreed upon as the greatest is the lack

  8. Effect of Pre-Construction on Construction Schedule and Client Loyalty

    OpenAIRE

    Jong Hoon Kim; Hyun-Soo Lee; Moonseo Park; Min Jeong; Inbeom Lee

    2016-01-01

    Pre-construction is essential in achieving the success of a construction project. Due to the early involvement of project participants in the construction phase, project managers are able to plan ahead and solve issues well in advance leading to the success of the project and the satisfaction of the client. This research utilizes quantitative data derived from construction management projects in order to identify the relationship between pre-construction, construction schedule, and client sat...

  9. Effect of increased regulation on capital costs and manual labor requirements of nuclear power plants

    International Nuclear Information System (INIS)

    Paik, S.; Schriver, W.R.

    1981-01-01

    An attempt is made to explain the impact of increasing governmental regulation on capital costs and labor requirements for constructing light water reactor (LWR) electric power plants. The principal factors contributing to these increases are: (1) market conditions and (2) increased regulation. General market conditions include additional costs attributable to price inflation of equipment, material, labor, and the increased cost of money. The central objective of this work is to estimate the impact of increasing regulation on plant costs and, conversely, on output. To do this it is necessary to isolate two opposing sets of forces which have been in operation during the period of major regulatory expansion: learning based upon plant design experience and economies of scale with increasing size (generating capacity) of newer plants. Conceptual models are specified to capture the independent effects of increasing regulation, learning, and economies of scale. Empirical results were obtained by estimating the models on data collected from industry experience during the 1967-1980 period. 23 refs

  10. Effects of planting date and plant density on crop growth of cut chrysanthemum

    NARCIS (Netherlands)

    Lee, J.H.; Heuvelink, E.; Challa, H.

    2002-01-01

    The effects of planting date (season) and plant density (32, 48 or 64 plants m-2) on growth of cut chrysanthemum (Chrysanthemum (Indicum group)) were investigated in six greenhouse experiments, applying the expolinear growth equation. Final plant fresh and dry mass and number of flowers per plant

  11. Measuring the effects of using ICT/BIM in construction projects

    DEFF Research Database (Denmark)

    Lambrecht, Jan Fuglsig; Vestergaard, Flemming; Karlshøj, Jan

    2016-01-01

    This paper focuses on presenting part of the findings from a research project completed in the period of 2009-2013.The research project was funded by the Danish Building & Property Agency with the primary aim to identify and measure the economic effects of using ICT/BIM in construction projects....... Firstly, this paper presents a conceptual evaluation method developed in order to define and describe how case studies focusing on use of ICT/BIM in construction projects could be completed in order to measure (both quantitatively and qualitatively) the effects achieved from using ICT/BIM in construction...... projects. In this context effects are defined both as tangible and intangible effects (both economically and non-economically) directly and/or indirectly as a consequence of using ICT/BIM in a construction project. Secondly, the paper presents and analyses findings achieved from completing four case...

  12. Offshore atomic power plants

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Various merits of offshore atomic power plants are illustrated, and their systems are assessed. The planning of the offshore atomic power plants in USA is reviewed, and the construction costs of the offshore plant in Japan were estimated. Air pollution problem may be solved by the offshore atomic power plants remarkably. Deep water at low temperature may be advantageously used as cooling water for condensers. Marine resources may be bred by building artificial habitats and by providing spring-up equipments. In the case of floating plants, the plant design can be standardized so that the construction costs may be reduced. The offshore plants can be classified into three systems, namely artificial island system, floating system and sea bottom-based system. The island system may be realized with the present level of civil engineering, but requires the development of technology for the resistance of base against earthquake and its calculation means. The floating system may be constructed with conventional power plant engineering and shipbuilding engineering, but the aseismatic stability of breakwater may be a problem to be solved. Deep water floating system and deep water submerging system are conceivable, but its realization may be difficult. The sea bottom-based system with large caissons can be realized by the present civil engineering, but the construction of the caissons, stability against earthquake and resistance to waves may be problems to be solved. The technical prediction and assessment of new plant sites for nuclear power plants have been reported by Science and Technology Agency in 1974. The construction costs of an offshore plant has been estimated by the Ministry of International Trade and Industry to be yen71,026/kW as of 1985. (Iwakiri, K.)

  13. Swine wastewater treatment using vertical subsurface flow constructed wetland planted with Napier grass

    Directory of Open Access Journals (Sweden)

    Pantip Klomjek

    2016-09-01

    Full Text Available This research aims to investigate the pollutant removal efficiencies in swine wastewater using a vertical subsurface flow constructed wetland (VSF CW planted with two species of Napier grass. The grass productivities were also cultivated and compared in order to provide information for species selection. Twelve treatment units were set up with the VSF CWs planted with Giant Napier grass (Pennisetum purpureum cv. King grass and Dwarf Napier grass (Pennisetum purpureum cv. Mott. with 2 and 5 cm d−1 of hydraulic loading rates (HLR. Comparisons of removal efficiency and grass productivity were analyzed using Duncan's Multiple Range Test and t-test at the significant level 0.05. Both species of Napier grass performed more than 70% of removal efficiency of BOD and TKN. The VSF CW planted with Giant Napier grass at 5 cm d−1 HLR performed the highest BOD removal efficiency of 94 ± 1%, while the 2 cm d−1 HLR removed COD with efficiency of 64 ± 6%. The results also showed the effluent from all treatment units contained averages of BOD, COD, TSS, TKN and pH that followed Thailand's swine wastewater quality standard. Average fresh yields and dry yields were between 4.6 ± 0.4 to 15.2 ± 1.2 and 0.5 ± 0.1 to 2.2 ± 0.1 kg m−2, respectively. The dry yields obtained from four cutting cycles in five months of CW system operation were higher than the ones planted with a traditional method, but declined continuously after each cutting cycle. Both species of Napier grass indicated their suitability to be used in the VSF CW for swine wastewater treatment.

  14. Fire protection requirements of the insurance industry and their impact on nuclear power plant design and construction

    International Nuclear Information System (INIS)

    Deitchman, J.V.; King, W.T. Jr.; Nashman, T.A.

    1976-01-01

    The insurance industry, with its wealth of knowledge and experience in the fire protection area and with preservation of its funds at stake, has always been heavily involved in the fire protection programs of nuclear power plants. Since it was concerned with property preservation in addition to nuclear safety, the insurance industry placed more detailed emphasis on fire protection requirements than did the nuclear regulatory bodies. Since the Browns Ferry fire, however, the insurance industry, the Nuclear Regulatory Commission, the Advisory Committee on Reactor Safeguards and the utilities themselves have re-examined their approaches to fire protection. A more coordinated approach seems to have emerged, which is based largely upon insurance industry specifications and guidelines. The paper briefly summarizes the fire protection requirements of the insurance industry as they apply to nuclear power plants. Some of the ways these requirements affect project planning, plant design, and construction timing are reviewed, as well as some of the more controversial fire protection areas

  15. Environmental effects of thermal power plants

    International Nuclear Information System (INIS)

    Gerlitzky, M.; Friedrich, R.; Unger, H.

    1986-02-01

    Reviewing critically the present literature, the effects of thermal power plants on the environment are studied. At first, the loads of the different power plant types are compiled. With regard to the effects of emission reduction proceedings the pollutant emissions are quantified. The second chapter shows the effects on the ecological factors, which could be caused by the most important emission components of thermal power plants. Where it is possible, relations between immissions respectively depositions and their effects on climate, man, flora, fauna and materials will be given. This shows that many effects depend strongly on the local landscape, climate and use of natural resources. Therefore, it appears efficient to ascertain different load limits. The last chapter gives a suggestion for an ecological compatibility test (ECT) of thermal power plants. In modular form the ECT deals with the emission fields, waste heat, pollution burden of air and water, noise, loss of area and aesthetical aspects. Limits depending on local conditions and use of area will be discussed. (orig.) [de

  16. Radiation dose to construction workers at operating nuclear power plant sites. Volume 2. Appendices A--F. Final report, September 1975--September 1978

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Shipler, D.B.

    1978-12-01

    These appendices contain the dosimetry procedures and details of the personnel and environmental dosimeters used for the Radiation Dose to Construction Workers at Operating Nuclear Power Plant Sites Study. A printout of the computer codes used to analyze dosimeter data is included along with all the raw data obtained. Appendices C through F contain computer output and log-normal plots of dosimetry data for environmental location and construction worker groups

  17. Optimization planning for the construction of the U.S. EPR

    International Nuclear Information System (INIS)

    Phillips, M. K.

    2008-01-01

    As utilities and project developers in the United States embark on a new nuclear plant construction endeavor, the industry must have the confidence and support of all stakeholders. To gain this confidence and support, cost and schedule certainty must be established. Therein lies the challenge. The owner will insist that constructors and suppliers deliver new plants on time and within project budgets. This will be a significant effort given the limited number of qualified equipment and commodity suppliers, and a shortage of experienced craft and supervision. In an effort to manage construction risk and ensure cost and schedule certainty, the AREVA Construction Management Team has lead the development of a construction strategy that includes advanced construction methods and technologies such as 3-D modeling, detailed planning and scheduling, open-top construction, state-of-the-art fabrication practices, specialty transportation and lifting methods, and pre-assembly and modularization, otherwise referred to as construction optimization. Unlike off-shore platforms, industrial process plants, and ships where piping and components can be integrated into the steel building structure, optimized construction of nuclear plants must consider reinforced concrete walls and slabs that serve as the building structure, and provide radiation shielding and containment of nuclear systems. These differences in design and construction require a significantly different analysis approach that is focused on rooms of a building rather than the whole building or plant. This paper will focus on the process developed and currently being implemented by the U.S. EPR (Evolutionary Power Reactor) Construction Team to identify opportunities for optimization and then to evaluate and select the rooms or areas of the plant where pre-assembly or modularization will provide the greatest benefit to construction cost and schedule certainty. Key measures for comparison and selection are critical path

  18. Intelligent method of plant dynamics behavior estimation by effectively applying similar cases

    International Nuclear Information System (INIS)

    Gofuku, Akio; Numoto, Atsushi; Yoshikawa, Hidekazu

    1994-01-01

    In order to accomplish efficient execution of a dynamic simulation of engineering systems, it is important to construct suitable mathematical models for the simulation. In the construction of the mathematical models, it is necessary to estimate the system's behavior to suppose the phenomena which are needed to be modeled. The case-based reasoning is considered to be a powerful tool to estimate the outline of system's behavior because we often estimate it from the similar cases which are stored as our experience or in literature. In this study, the technique based on similar cases is investigated to estimate the outline of time-responses of several important variables of pressurized water reactor (PWR) plants at a small break loss of coolant accident (SBLOCA). The registered cases in case base are gathered from various reports and the authors' numerical simulations related with SBLOCA of PWR plants. The functions to use in the case retrieval are formed from the characteristic features of SBLOCA of PWR plants. On the other hand, the rules to use in the case refinement are obtained from the qualitative and quantitative consideration of plants' behaviors of the cases in the case base. The applicability of the technique is discussed by two simple estimation trials of plant behavior. (author)

  19. Improvements in the construction of nuclear power plant

    International Nuclear Information System (INIS)

    1990-01-01

    This paper outlines activities to minimize the amount of work at a construction site by employing installation method with large size blocks and shop-assembled units, improvement in facilities such as mechanization of welding and huge roof cover which enables work in all weather conditions, and administration systems using computer for the work activity control as well as quality and progress control for construction work. These improvements are only achieved when supported by related system improvements at the design and fabrication stage, and these improvements contributed a great deal to the quality assurance and the shorter construction period. (author)

  20. The Spillover Effects on Employees’ Life of Construction Enterprises’ Safety Climate

    Directory of Open Access Journals (Sweden)

    Xiang Wu

    2017-11-01

    Full Text Available Organizational safety climate will produce spillover effects and thus affect the individuals’ performance in their family life. As a mainstay industry in many countries, the construction industry has a considerable number of employees and the research on the spillover effects from the safety climate of construction enterprises has important theoretical and practical significance to improve the safety behavior of construction employees in their family life. In this study, we thoroughly reviewed the literature to identify the dimensions of the safety climate spillover, obtain empirical data of the construction employees through a questionnaire survey, and use the data analysis method to study the spillover effects of the safety climate of the construction enterprises from the perspective of work–family integration, and reveal its influence mechanism. This study developed a questionnaire to measure the safety climate spillover of the construction enterprises including two dimensions, namely values and behaviors, with nine measured items. Management commitment and safety attitude in the safety climate were positively related to the spillover, and management commitment had the greatest impact on the spillover, while the other components were not significantly related to the spillover. The two forms of spillover, values and behaviors, were mutually influential, and the safety climate had a more significant impact on the values. This paper contributes to the current safety research by developing a factor structure of spillover effects of the safety climate on the lives of construction employees, thus providing a more profound interpretation of this crucial construct in the safety research domain. The spillover effects of the safety climate’s measurement questionnaire serve as an important tool for spillover among construction enterprises. Findings can facilitate improvement in both theories and practices related to the spillover effects of the

  1. Effects of invasive plants on arthropods.

    Science.gov (United States)

    Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L

    2014-12-01

    Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to

  2. Design and construction of nuclear power plants

    CERN Document Server

    Schnell, Jürgen; Meiswinkel, Rüdiger; Bergmeister, Konrad; Fingerloos, Frank; Wörner, Johann-Dietrich

    2013-01-01

    Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply.Building structures required for nuclear installations whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overv

  3. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management.

    Science.gov (United States)

    Luo, Pei; Liu, Feng; Zhang, Shunan; Li, Hongfang; Yao, Ran; Jiang, Qianwen; Xiao, Runlin; Wu, Jinshui

    2018-06-01

    A series of three-stage pilot-scale surface flow constructed wetlands (CWs) planted with Myriophyllum aquaticum were fed with three strengths of lagoon-pretreated swine wastewater to study nitrogen (N) removal and recovery under sustainable plant harvesting management. The CWs had mean removal efficiency of 87.7-97.9% for NH 4 + -N and 85.4-96.1% for total N (TN). The recovered TN mass via multiple harvests of M. aquaticum was greatest (120-222 g N m -2  yr -1 ) when TN concentrations were 21.8-282 mg L -1 . The harvested TN mass accounted for 0.85-100% of the total removal in the different CW units. Based on mass balance estimation, plant uptake, sediment storage, and microbial removal accounted for 13.0-55.0%, 4.9-8.0%, and 33.0-67.5% of TN loading mass, respectively. The results of this study confirm that M. aquaticum is appropriate for the removal and recovery of nutrients in CW systems designed for treating swine wastewater in conjunction with sustainable plant harvesting strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Cost effective decommissioning and dismantling of nuclear power plants; Kosteneffizienz bei Stilllegung und Rueckbau von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Wasinger, Karl [AREVA NP GmbH, Offenbach (Germany)

    2012-10-15

    As for any large and complex project, the basis for cost effective decommissioning and dismantling of nuclear power plants is established with the development of the project. Just as its construction, dismantling of a nuclear power plant is similarly demanding. Daily changing situations due to the progress of construction - in the present case progress of dismantling - result in significant logistical challenges for project managers and site supervisors. This will be aggravated by the fact that a considerable amount of the removed parts are contaminated or even activated. Hence, not only occupational health, safety and environmental protection is to be assured, employees, public and environment are to be adequately protected against the adverse effect of radioactive radiation as well. Work progress and not least expenses involved with the undertaking depend on adherence to the planned course of actions. Probably the most frequent cause of deviation from originally planned durations and costs of a project are disruptions in the flow of work. For being enabled to counteract in a timely and efficient manner, all required activities are to be comprehensively captured with the initial planning. The effect initial activities may have on subsequent works until completion must particularly be investigated. This is the more important the larger and more complex the project actually are. Comprehensive knowledge of all the matters which may affect the progress of the works is required in order to set up a suitable work break-down structure; such work break-down structure being indispensable for successful control and monitoring of the project. In building the related organizational structure of the project, all such stakeholders not being direct part of the project team but which may potentially affect the progress of the project are to be considered as well. Cost effective and lost time injury free dismantling of decommissioned nuclear power plants is based on implementing

  5. Biological effect of radionuclides on plants

    International Nuclear Information System (INIS)

    Prister, B.S.; Khal'chenko, V.A.; Polyakova, V.Y.; Shevchenko, V.A.; Shejn, G.P.; Aleksakhin, R.M.

    1979-01-01

    Stated are dosimetry principles and given is an analysis of biological radionuclide effect on plants in aerial and root intakes. A comparative barley radiosensitivity characteristic depending on plant development phases during irradiation is given using LD 50 criteria. Considered is a possibility for using generalized bioinformation parameters as sensitive indications for estimating biological effects due to the influence of low radiation doses. On the grounds of data obtained generalization are forecasted probable losses of crops when getting radionuclides into plants during various vegetation periods

  6. Measuring wage effects of plant size

    DEFF Research Database (Denmark)

    Albæk, Karsten; Arai, Mahmood; Asplund, Rita

    1998-01-01

    There are large plant size–wage effects in the Nordic countries after taking into account individual and job characteristics as well as systematical sorting of the workers into various plant-sizes. The plant size–wage elasticities we obtain are, in contrast to other dimensions of the wage distrib......–wage elasticity. Our results indicate that using size–class midpoints yields essentially the same results as using exact measures of plant size...

  7. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species.

    Science.gov (United States)

    Nakadai, Ryosuke; Murakami, Masashi; Hirao, Toshihide

    2014-08-01

    Historical, niche-based, and stochastic processes have been proposed as the mechanisms that drive community assembly. In plant-herbivore systems, these processes can correspond to phylogeny, leaf traits, and the distribution of host plants, respectively. Although patterns of herbivore assemblages among plant species have been repeatedly examined, the effects of these factors among co-occurring congeneric host plant species have rarely been studied. Our aim was to reveal the process of community assembly for herbivores by investigating the effects of phylogeny, leaf traits, and the altitudinal distribution of closely related host plants of the genus Acer. We sampled leaf functional traits for 30 Acer species in Japan. Using a newly constructed phylogeny, we determined that three of the six measured leaf traits (leaf thickness, C/N ratio, and condensed tannin content) showed a phylogenetic signal. In a field study, we sampled herbivore communities on 14 Acer species within an elevation gradient and examined relationships between herbivore assemblages and host plants. We found that herbivore assemblages were significantly correlated with phylogeny, leaf traits, phylogenetic signals, and the altitudinal distribution of host plants. Our results indicate that the interaction between historical and current ecological processes shapes herbivore community assemblages.

  8. The design, construction, commissioning and operation of a plant at Dounreay to dispose of sodium from KNKII

    International Nuclear Information System (INIS)

    Bowser, R.; Farquhar, J.; Currie, R.

    1997-01-01

    In a competitive bidding exercise, AEA Technology at Dounreay won a contract to dispose of 88 tonnes of fast reactor sodium from the KNKII reactor at KarIsruhe, Germany. This sodium comprises of 36 tonnes of 'primary' sodium containing traces of caesium-137 and sodium-22 and 52 tonnes of lightly tritiated 'secondary' sodium. The sodium has been transported solid to Dounreay in 200 litre drums. To fulfil this contract a sodium disposal plant has been designed, constructed, commissioned and put into operation. Following an option study, an aqueous reaction plant design was selected. In this process, sodium is reacted with aqueous caustic soda, producing hydrogen gas and more caustic soda. The hydrogen is diluted with air and vented to atmosphere, and the caustic is neutralised with hydrochloric acid before discharge to the site low-active drain. All effluents - gaseous or liquid - are filtered and treated to remove as much radioactivity as possible before discharge. The main reasons for choosing this design option were that the process was well proven, the reaction is easily controlled by controlling the supply of sodium into the reaction vessel, reaction temperatures are relatively low and the effluent can be easily prepared for discharge. It was also felt that an aqueous reaction plant could be designed to be operated remotely by one operator. The sodium in the drums is melted in a sodium melting station and then drained to a sodium buffer tank, prior to being injected into the reaction vessel. By collecting sodium in the buffer tank, sodium melting can proceed in parallel with sodium disposal allowing a high throughput to be achieved. This plant has been designed to dispose of 100 kg of sodium per hour, requiring a small operating team, suitably shielded from the radiological hazard. The design also ensures that the rate of reaction is controlled and that the effluent discharged to the low-active drain has been properly neutralised. The construction was performed

  9. Remote operation and maintenance support services for nuclear power plants

    International Nuclear Information System (INIS)

    Yamamoto, Hiroki; Higuma, Koji; Shimizu, Shunichi; Sakuma, Masatake; Sonoda, Yukio; Kanemoto, Shigeru

    2004-01-01

    Toshiba Corporation constructed e-Toshiba Operating Plant Service (e-TOPS TM ) system and began remote operation and maintenance support service for nuclear power plants. The service put into practice remote operation and maintenance by harmony of information technologies such as internet and mobile, and nuclear power measurement/diagnostic technologies and security techniques. Outline of e-TOPS TM , remote-control service, -inspection system, -diagnostic service and technologies support service are explained. Construction, objects and application effects of e-TOPS TM , remote diagnostic system using image treatment techniques, construction of device record card control system are illustrated. (S.Y.)

  10. ABB.-Combustion Engineering's Experience in Nuclear Power Plant Engineering and Construction in Korea

    International Nuclear Information System (INIS)

    Veris, James W.

    1992-01-01

    The Yonggwang Nuclear Project is a milestone project for the Korean Nuclear Industry. The Project has the two objectives of obtaining self-reliance in all aspects of nuclear technology and of constructing two modern nuclear power plants under the leadership of Korean companies acting as prime contractors. ABB.-Combustion Engineering 1000 MW System 80+ TM was chosen in 1987 as the NSLS design to meet these two objectives. This paper summarizers the significant experiences and lessons learned through the first four years of the Project as well as identifying implications for such future projects. The unique challenges of the project are identified and an evaluation of the experiences in the technology, self-reliance program and in the design and manufacturing processes will be made

  11. The American nuclear construction craftsmen: Will we be ready to build again?

    International Nuclear Information System (INIS)

    Bravo, R.

    1990-01-01

    The present state of nuclear plant maintenance and operations support reflects sexual, ethnic, and radical integration; continued educational advances; some computer literacy; mixed trades in maintenance; detailed training for maintenance and operations work in the operating plant; plant safety awareness and respect; need for top-quality, take the time to do it right mentality; and planning. With no new nuclear construction, what will be the specific talents, focus, and contributions that the craftsmen can be expected to bring to the project? To be prepared to successfully manage the next generation of nuclear plant construction, the industry must be acutely aware of the needs of the labor pool. To be aware of the needs requires an intimate knowledge of the present state of the craft talent, the changed expectations of their contributions, and the effects of new technologies, materials, methods, and individuals that will be used to design and build

  12. Materials availability for fusion power plant construction

    International Nuclear Information System (INIS)

    Hartley, J.N.; Erickson, L.E.; Engel, R.L.; Foley, T.J.

    1976-09-01

    A preliminary assessment was made of the estimated total U.S. material usage with and without fusion power plants as well as the U.S. and foreign reserves and resources, and U.S. production capacity. The potential environmental impacts of fusion power plant material procurement were also reviewed including land alteration and resultant chemical releases. To provide a general measure for the impact of material procurement for fusion reactors, land requirements were estimated for mining and disposing of waste from mining

  13. Preliminary ripple effect analysis for HTR 350MWt 4 modules construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. H.; Lee, K. Y.; Shin, Y. J. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    We propose quantitative analysis techniques for ripple effects such as the production inducement effect and employment inducement effect for HTR 350MWt x 4 module construction and operation ripple effect based on NOAK. It is known that APR1400 reactors export ripple effect is about 8,500 billion KRW. As a result, HTR construction has more effective effect than that of APR1400.

  14. Evaluation method of radon preventing effect in underground construction

    International Nuclear Information System (INIS)

    Luo Shaodong; Deng Yuequan; Dong Faqin; Qu Ruixue; Xie Zhonglei

    2014-01-01

    Background: It's difficult to evaluate the radon prevention effect because of the short operating time of measuring instrument under the circumstances of high humidity in underground construction. Purpose: A new rapid method to evaluate the radon prevention efficiency of underground construction was introduced. Methods: The radon concentrations before and after shielding operation were determined, and according to the regularity of radon decay, the shielding rate can be calculated. Results: The results showed that radon shielding rate in underground construction remains generally stable with variation of time, and the actual relatively standard deviation was 3.95%. So the rapid determination and evaluation of radon preventing effect under special conditions in underground construction can be realized by taking shielding rate in a short time for the final shielding rate. Compared with those by the local static method in ground lab, the results were similar. Conclusion: This paper provided a prompt, accurate and practicable way for the evaluation of radon prevention in underground construction, having a certain reference value. (authors)

  15. Evaluation of the feasibility, economic impact, and effectiveness of underground nuclear power plants. Final technical report

    International Nuclear Information System (INIS)

    1978-05-01

    Information on underground nuclear power plants is presented concerning underground nuclear power plant concepts; public health impacts; technical feasibility of underground concepts; economic impacts of underground construction; and evaluation of related issues

  16. Optimizing Local Plant Products in Building Construction:Effects of ...

    African Journals Online (AJOL)

    ... and on bamboo reinforced concrete beams reveal that indeed truss configuration has marked effect on the stiffness and ultimate strength of trusses, where vertically aligned members as found in queen-post and Howe trusses are seen to be more effective than inclined members in load transfer and ultimate resistance.

  17. Seismic stress of plants and equipment in nuclear power station construction

    International Nuclear Information System (INIS)

    Hampe, E.; Schwarz, J.

    1984-01-01

    The applicability of floor spectra for designing components of nuclear power plants taking into account seismic effects is discussed. Methods for the determination of seismic floor excitation and various kinds of floor spectra are presented. As an example the floor spectra method is applied to containment buildings

  18. Constructibility assessment of APR1400

    International Nuclear Information System (INIS)

    Cho, Sung Jae; Kang, Yong Chul; Lee, Jae Gon; Lim, Woo Sang

    2003-01-01

    APR1400 (formerly KNGR) development is one of national G-7 projects sponsored by government and KHNP (Korea Hydro and Nuclear Power Co., LTD). It is an evolutionary standard reactor with the thermal output of 4000MWt and has been adopted for Shin-Kori Unit 3 and 4. The government organizations, research institutes, universities and industries have participated in the project since 1992 along with KHNP, and the standard design certification program was issued in May 2002. The project set up the top-tier requirements about the safety, economy, operability and maintainability, and constructibility in the early design stage. The requirements have been evaluated periodically during the design process, and the results were reflected to the design. This paper describes the methods for constructibility enhancement and the results of schedule analysis to assure meeting construction duration target, which is set to 48 months from the first concrete pouring to the commercial operation on the condition that learning effects are maximized at Nth plant. To meet the target schedule, the design characteristics and constructibility studies such as new construction methods and construction schedule analysis were performed. The new construction methods presented here are over the top method for NSSS components, deck plate and steel from for concrete wall and slab, automatic welding for large bore piping, and modularization of components and structure, etc. (author)

  19. Myriophyllum aquaticum Constructed Wetland Effectively Removes Nitrogen in Swine Wastewater

    Directory of Open Access Journals (Sweden)

    Haishu Sun

    2017-10-01

    Full Text Available Removal of nitrogen (N is a critical aspect in the functioning of constructed wetlands (CWs, and the N treatment in CWs depends largely on the presence and activity of macrophytes and microorganisms. However, the effects of plants on microorganisms responsible for N removal are poorly understood. In this study, a three-stage surface flow CW was constructed in a pilot-scale within monospecies stands of Myriophyllum aquaticum to treat swine wastewater. Steady-state conditions were achieved throughout the 600-day operating period, and a high (98.3% average ammonia removal efficiency under a N loading rate of 9 kg ha-1 d-1 was observed. To determine whether this high efficiency was associated with the performance of active microbes, the abundance, structure, and interactions of microbial community were compared in the unvegetated and vegetated samples. Real-time quantitative polymerase chain reactions showed the abundances of nitrifying genes (archaeal and bacterial amoA and denitrifying genes (nirS, nirK, and nosZ were increased significantly by M. aquaticum in the sediments, and the strongest effects were observed for the archaeal amoA (218-fold and nirS genes (4620-fold. High-throughput sequencing of microbial 16S rRNA gene amplicons showed that M. aquaticum greatly changed the microbial community, and ammonium oxidizers (Nitrosospira and Nitrososphaera, nitrite-oxidizing bacteria (Nitrospira, and abundant denitrifiers including Rhodoplanes, Bradyrhizobium, and Hyphomicrobium, were enriched significantly in the sediments. The results of a canonical correspondence analysis and Mantle tests indicated that M. aquaticum may shift the sediment microbial community by changing the sediment chemical properties. The enriched nitrifiers and denitrifiers were distributed widely in the vegetated sediments, showing positive ecological associations among themselves and other bacteria based on phylogenetic molecular ecological networks.

  20. Purification of fuel and nitrate contaminated ground water using a free water surface constructed wetland plant

    Energy Technology Data Exchange (ETDEWEB)

    Machate, T.; Heuermann, E.; Schramm, K.W.; Kettrup, A.

    1999-10-01

    Contaminated ground water from a former coke plant site was purified in a free water surface (FWS) constructed wetland plant during a 3-mo short-term experiment. The pilot plant (total surface area 27 m{sup 2}) was filled with a 1 m thick lava-gravel substrate planted with cattail (Typha spp.) and bulrush (Scirpus lacustrls). Major contaminants were low to moderate concentrations of polycyclic aromatic hydrocarbons, BTEX, nitrate, and nitrite. The wetland was dosed at hydraulic loading rates of q{sub A} = 4.8 and 9.6 cm d{sup {minus}1} with a hydraulic residence time (HRT) of 13.7 and 6.8 d. The surface removal rates of PAH were between 98.8 and 1914 mg m{sup {minus}2} d{sup {minus}1}. Efficiency was always {gt}99%. Extraction of lava gravel showed that approx. 0.4% of the applied PAH were retained on the substratum. The ratio of {Sigma}2,3-ring PAH and {Sigma}4,5,6-ring PAH showed a shift from 1:0.11 in water to 1:2.5 in lava. The removal of BTEX was {gt}99%, but might be in part due to volatilization. The efficiency in the removal of nitrate was 91% and of nitrite was 97%. Purification performance was not influenced by hydraulic loading rates or after die-back of the macrophytes.