WorldWideScience

Sample records for plant concrete structures

  1. Nuclear Power Plant Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Prabir [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  2. High-strength concrete and the design of power plant structures

    International Nuclear Information System (INIS)

    Puttonen, J.

    1991-01-01

    Based on the literature, the design of high-strength concrete structures and the suitability of high-strength concrete for the power plant structures have been studied. Concerning the behavior of structures, a basic difference between the high-strength concrete and the traditional one is that the ductility of the high-strength concrete is smaller. In the design, the non-linear stress-strain relationship of the high-strength concrete has to be taken into account. The use of the high-strength concrete is economical if the strength of the material can be utilized. In the long term, the good durability and wear resistance of the high-strength concrete increases the economy of the material. Because of the low permeability of the high-strength concrete, it is a potential material in the safety-related structures of nuclear power plants. The study discovered no particular power plant structure which would always be economical to design of high-strength concrete. However, the high-strength concrete was found to be a competitive material in general

  3. Aging of concrete containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.; Mori, Yasuhiro; Arndt, E.G.

    1992-01-01

    Concrete structures play a vital role in the safe operation of all light-water reactor plants in the US Pertinent concrete structures are described in terms of their importance design, considerations, and materials of construction. Degradation factors which can potentially impact the ability of these structures to meet their functional and performance requirements are identified. Current inservice inspection requirements for concrete containments are summarized. A review of the performance history of the concrete components in nuclear power plants is provided. A summary is presented. A summary is presented of the Structural Aging (SAG) Program being conducted at the Oak Ridge National Laboratory for the US Nuclear Regulatory Commission. The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved bases for their continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technologies, and quantitiative methodology for continued service conditions. Objectives and a summary of accomplishments under each of these tasks are presented

  4. Report on aging of nuclear power plant reinforced concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs

  5. Report on aging of nuclear power plant reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  6. Aircraft impact on nuclear power plants concrete structures

    International Nuclear Information System (INIS)

    Coombs, R.F.; Barbosa, L.C.B.; Santos, S.H.C.

    1980-01-01

    A summary about the procedures for the analysis of aircraft on concrete structures, aiming to emphasize the aspects related to the nuclear power plants safety, is presented. The impact force is determined by the Riera model. The effect of this impact force on the concrete structures is presented, showing the advantages to use nonlinear behaviour in the concrete submitted to short loads. The simplifications used are shown through a verification example of the nuclear reactor concrete shielding. (E.G.) [pt

  7. Application of concrete filled steel bearing wall to inner concrete structure fro PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sekimoto, Hisashi; Tanaka, Mamoru; Inoue, Kunio; Fukihara, Masaaki; Akiyama, Hiroshi.

    1992-01-01

    'Concrete filled steel bearing wall', applied to the inner concrete structure for PWR nuclear power plant, was developed for rationalization of construction procedure at site. It was concluded through preliminary studies that this new type of wall, where concrete is placed between steel plates, is best suited for the strength members of the above structure, due to the high strength and ductility of surface steel plates and the confinement effect of filled concrete. To verify the behavior from the elastic range to the inelastic range, the ultimate strength and the failure mechanism, and to clarify experimentally the structural integrity of the inner concrete structure, which was composed of a concrete filled steel bearing wall, against seismic lateral loads, horizontal loading tests using a 1/10th scale model of the inner concrete structure for PWR nuclear power plant were conducted. As a result of the tests, the inner concrete structure composed of a concrete filled steel bearing wall appeared to have a larger load carrying capacity and a higher ductility as compared with that composed of a reinforced concrete wall. (author)

  8. Plant life management of the ACR-1000 Concrete containment structure

    International Nuclear Information System (INIS)

    Abrishami, H.H.; Ricciuti, R.; Elgohary, M.

    2009-01-01

    The Ageing of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. For a new plant, a Plant Life Management (PLiM) program should start in the design process and then continues through the plant operation and decommissioning. Hence, PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of the ACR-10001 (Advanced CANDU Reactor) designed by AECL. The ACR-1000 is designed for a 100-year plant life including 60-year operating life and an additional 40-year decommissioning period. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) ageing management program. During the design phase, in addition to strength and serviceability, durability, throughout the service life and decommissioning phase of the ACR-1000 structure, is a major consideration. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental conditions. In addition to addressing the design methodology and material performance requirements, a systematic approach for the ageing management program for the concrete containment structure is presented. (authors)

  9. Plant Life Management of the EC6 Concrete Containment Structure

    Energy Technology Data Exchange (ETDEWEB)

    Abrishami, Homayoun; Ricciuti, Rick; Khan, Azhar [CANDU Energy Inc., Mississauga (Canada)

    2012-03-15

    Aging of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. Due to the complex nature of safety-related structures in nuclear power plants in comparison to other structures, they possess a number of characteristics that make them comparison to other structures, they possess a number of characteristics that make them unique. These characteristics are: thick concrete cross-sections, heavy reinforcement, often one-side access only, subjected to such ageing stresses as irradiation and elevated temperature, in addition to other typical ageing mechanisms (i. e., exposure to freeze/thaw cycles, aggressive chemicals, etc.) that typically affects other types of non-nuclear structures. For a new plant, the Plant Life Management Program (PLiM) should start in the design process and then continues through construction, plant operation and decommissioning. Hence PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and the design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of EC6 (Enhanced CANDU 6) Nuclear Power Plant designed by CANDU Energy Inc. The EC6 is designed for 100-year plant life including a 60-year operating life and an additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In addition to strength and serviceability, durability is a major consideration during the design phase, service life and up to the completion of decommissioning. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental

  10. Plant Life Management of the EC6 Concrete Containment Structure

    International Nuclear Information System (INIS)

    Abrishami, Homayoun; Ricciuti, Rick; Khan, Azhar

    2012-01-01

    Aging of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. Due to the complex nature of safety-related structures in nuclear power plants in comparison to other structures, they possess a number of characteristics that make them comparison to other structures, they possess a number of characteristics that make them unique. These characteristics are: thick concrete cross-sections, heavy reinforcement, often one-side access only, subjected to such ageing stresses as irradiation and elevated temperature, in addition to other typical ageing mechanisms (i. e., exposure to freeze/thaw cycles, aggressive chemicals, etc.) that typically affects other types of non-nuclear structures. For a new plant, the Plant Life Management Program (PLiM) should start in the design process and then continues through construction, plant operation and decommissioning. Hence PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and the design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of EC6 (Enhanced CANDU 6) Nuclear Power Plant designed by CANDU Energy Inc. The EC6 is designed for 100-year plant life including a 60-year operating life and an additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In addition to strength and serviceability, durability is a major consideration during the design phase, service life and up to the completion of decommissioning. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental

  11. Aging Evaluation of Nuclear Power Plant Concrete Structures

    International Nuclear Information System (INIS)

    Kitsutaka, Y.; Takesue, N.; Tsukagoshi, M.

    2012-01-01

    In this paper, method on the aging evaluation in nuclear power plant concrete structures was investigated. Problems on the durability evaluation of reinforced concrete structures were pointed out and an evaluation framework was considered. In view of the importance of evaluating the degree of deterioration of reinforced concrete structures, relationships should be formulated among the number of years elapsed, t, the amount of action of a deteriorative factor, F, the degree of material deterioration, D, and the performance of the structure, P. Evaluation by PDFt diagrams combining these relationships may be effective. A detailed procedure of durability evaluation for a reinforced concrete structure using PDFt concept is presented for the deterioration factors of thermal effect, irradiation, neutralization and penetration of salinity by referring to the recent papers. And the evaluation framework of the deteriorated material constitutive model which can be used for the numerical analysis of the integrity evaluation for the concrete structure was proposed. (author)

  12. Advanced concrete structures for thermal power plants

    International Nuclear Information System (INIS)

    Zerna, W.

    1982-01-01

    The author begins with an overview on the various types of power plants depending on the fuel used in them and then in particular deals with the reinforced concrete structures. Especially for reactor buildings and prestressed concrete pressure vessels concrete is the appropriate material. The methods of construction are described as a function of load and operation. Safety requirements brought new load types for such structures as e.g. airplane crash, internal pressure caused by pipe rupture. Dimensioning is done by means of nonlinear dynamical methods of calculation accounting for plasticizing. These methods are explained. Further the constructional principles of high natural-draft cooling towers are mentioned. (orig.) [de

  13. Online Monitoring of Concrete Structures in Nuclear Power Plants: Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The existing fleet of nuclear power plants in the United States have initial operating licenses of 40 years, and many of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code-based design margins of safety. Structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. The online monitoring of concrete structures project conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory is seeking to develop and demonstrate capabilities for concrete structures health monitoring. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses activities in this project during October-December, 2014. The most significant activity during this period was the organizing of a two-day workshop on research needs in online monitoring of concrete structures, hosted by Vanderbilt University in November 2014. Thirty invitees from academia, industry and government participated in the workshop. The presentations and discussions at the workshop surveyed current activities related to concrete structures deterioration modeling and monitoring, and identified the challenges, knowledge gaps, and opportunities for advancing the state of the art; these

  14. Activities at ORNL in support of continuing the service of nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.

    2012-01-01

    In general, nuclear power plant concrete structure's performance has been very good; however, aging of concrete structures occurs with the passage of time that can potentially result in degradation if its effects are not controlled. Safety-related nuclear power plant concrete structures are described. In-service inspection and testing requirements in the U.S. are summarized. The interaction of the license renewal process and concrete structures is noted. A summary of operating experience related to aging of nuclear power plant concrete structures is provided. Several candidate areas are identified where additional research would be beneficial for aging management of nuclear power plant concrete structures. Finally, an update on recent activities at Oak Ridge National Laboratory related to aging management of nuclear power plant concrete structures is provided. (author)

  15. Condition monitoring and maintenance of nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    Orr, R.; Prasad, N.

    1988-01-01

    Nuclear power plant concrete structures are potentially subject to deterioration due to several environmental conditions, including weather exposure, ground water exposure, and sustained high temperature and radiation levels. The nuclear power plant are generally licensed for a term of 40 years. In order to maximize the return from the existing plants, feasibility studies are in progress for continued operation of many of these plants beyond the original licensed life span. This paper describes a study that was performed with an objective to define appropriate condition monitoring and maintenance procedures. A timely implementation of a condition monitoring and maintenance program would provide a valuable database and would provide justification for extension of the plant's design life. The study included concrete structures such as the containment buildings, interior structures, basemats, intake structures and cooling towers. Age-related deterioration at several operating power plants was surveyed and the potential degradation mechanisms have been identified

  16. Aging management of safety-related concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Arndt, E.G.

    1990-01-01

    The Structural Aging Program has the overall objective of providing the US Nuclear Regulatory Commission with an improved basis for evaluating nuclear power plants for continued service. In meeting this objective, a materials property data base is being developed as well as an aging assessment methodology for concrete structures in nuclear power plants. Furthermore, studies are well under way to review and assess inservice inspection techniques for concrete structures and to develop a methodology which can be used for performing current as well as reliability-based future conditions assessments of these structures. 16 refs., 2 tabs

  17. Aging of concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Pland, C.B.; Arndt, E.G.

    1991-01-01

    The Structural Aging (SAG) Program, sponsored by the US Nuclear Regulatory Commission (USNRC) and conducted by the Oak Ridge National Laboratory (ORNL), had the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant structures for continued service. The program consists of three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued service determinations. Major accomplishments under the SAG Program during the first two years of its planned five-year duration have included: development of a Structural Materials Information Center and formulation of a Structural Aging Assessment Methodology for Concrete Structures in Nuclear Power Plants. 9 refs

  18. Structural design of nuclear power plant using stiffened steel plate concrete structure

    International Nuclear Information System (INIS)

    Moon, Ilhwan; Kim, Sungmin; Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang

    2009-01-01

    Nuclear power is an alternative energy source that is conducive to mitigate the environmental strains. The countries having nuclear power plants are encouraging research and development sector to find ways to construct safer and more economically feasible nuclear power plants. Modularization using Steel Plate Concrete(SC) structure has been proposed as a solution to these efforts. A study of structural modules using SC structure has been performed for shortening of construction period and enhancement of structural safety of NPP structures in Korea. As a result of the research, the design code and design techniques based on limit state design method has been developed. The design code has been developed through various structural tests and theoretical studies, and it has been modified by application design of SC structure for NPP buildings. The code consists of unstiffened SC wall design, stiffened SC wall design, Half-SC slab design, stud design, connection design and so on. The stiffened steel plate concrete(SSC) wall is SC structure whose steel plates with ribs are composed on both sides of the concrete wall, and this structure was developed for improved constructability and safety of SC structure. This paper explains a design application of SC structure for a sample building specially devised to reflect all of major structural properties of main buildings of APR1400. In addition, Stiffening effect of SSC structure is evaluated and structural efficiency of SSC structure is verified in comparison with that of unstiffened SC structure. (author)

  19. Towards assuring the continued performance of safety-related concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.; Mori, Y.; Arndt, E.G.

    1993-01-01

    The Structural Aging (SAG) Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved technical bases for their continued service. Pertinent concrete structures are described in terms of their importance, design considerations, and materials of construction. Degradation factors which can potentially impact the ability of these structures to meet their functional and performance requirements are identified. A review of the performance history of the concrete components in nuclear power plants is provided. Accomplishments of the SLAG Program are summarized, i.e., development of the structural materials information center, development of a structural aging assessment methodology, evaluation of models for predicting the remaining life of in-service concrete, review of in-service inspection methods, and development of a methodology for reliability-based condition assessment and life prediction of concrete structures. On-going activities are also described

  20. General requirements for concrete containment structures for CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1993-07-01

    This standard provides the general requirements used in the design, construction, testing, and commissioning of concrete containment structures for CANDU nuclear power plants designated as class containment and is directed to the owners, designers, manufacturers, fabricators, and constructors of the concrete components and parts

  1. Method on the aging evaluation in nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    Kitsutaka, Yoshinori; Tsukagoshi, Masayuki

    2014-01-01

    In this paper, method on the durability evaluation in nuclear power plant concrete structures was investigated. In view of the importance of evaluating the degree of deterioration of reinforced concrete structures, relationships should be formulated among the number of years elapsed, t, the amount of action of a deteriorative factor, F, the degree of material deterioration, D, and the performance of the structure, P. Evaluation by PDFt diagrams combining these relationships may be effective. A detailed procedure of durability evaluation for a reinforced concrete structure using PDFt concept is presented for the deterioration factors of thermal effect, irradiation, neutralization and penetration of salinity by referring to the recent papers

  2. Ageing management of nuclear power plant concrete structures - Overview and suggested research topics

    International Nuclear Information System (INIS)

    Naus, J.

    2009-01-01

    Nuclear power plant concrete structures are described and their operating experience noted. Primary considerations related to management of their ageing are noted and an indication of their status provided: degradation mechanisms, damage models, and material performance; assessment and remediation (i.e., component selection, in-service inspection, non-destructive examinations, and remedial actions); and estimation of performance at present or some future point in time (i.e., application of structural reliability theory to the design and optimisation of in-service inspection/maintenance strategies, and determination of the effects of degradation on plant risk). Several activities are identified that provide background information and data on areas of concern with respect to non-destructive examination of nuclear power plant concrete structures: inspection of thick-walled, heavily-reinforced sections; basemat; and inaccessible areas of the containment metallic pressure boundary. Topics are noted where additional research would be of benefit to ageing management of nuclear power plant concrete structures. (author)

  3. Studies on limestone concrete as a low-activation structural material for nuclear power plants

    International Nuclear Information System (INIS)

    Uematsu, Mikio; Nagano, Hiroshi; Naito, Yasuhiro

    2000-01-01

    Because of low content of Li, Co and Eu, the target nuclides of activation reaction, limestone concrete is considered to be effective in reducing the decommissioning cost of nuclear plants. Induced activity calculation and structural strength test were performed for limestone concrete and the results were compared with the data obtained for sandstone concrete, which is generally used in nuclear plants. Minor elements, which are important from the viewpoint of activation, were measured with elementary analysis for limestone samples from three different quarries in Japan. Induced activity in biological shield walls (BSW) of Boiling Water Reactor (BWR) plants was calculated with the isotope generation code ORIGEN-79 using neutron flux data obtained with the one-dimensional Sn transport code ANISN and MGCL 137-group activation cross section library based on JENDL-3. Estimated total radioactivity accumulated in limestone concrete BSW was 5 times lower than that in the sandstone concrete BSW. Structural strength were compared between limestone concrete and sandstone concrete, and limestone concrete was found to have enough compressive strength and tensile strength. (author)

  4. Overview of Activities in U.S. Related to Continued Service of Nuclear Power Plant Concrete Structures

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2011-01-01

    Safety-related nuclear power plant concrete structures are described and commentary on continued service assessments of these structures is provided. In-service inspection and testing requirements in the U.S. are summarized. The license renewal process in the U.S. is outlined and its current status noted. A summary of operating experience related to U.S. nuclear power plant concrete structures is presented. Several candidate areas are identified where additional research would be of benefit to aging management of NPP concrete structures. Finally current ORNL activities related to aging-management of concrete structures are outlined: development of operating experience database, application of structural reliability theory, and compilation of elevated temperature concrete material property data and information.

  5. Activities in Support of Continuing the Service of Nuclear Power Plant Safety-Related Concrete Structures

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2010-01-01

    Nuclear power plant concrete structures are described. In-service inspection and testing requirements in the U.S. are summarized. The license renewal process in the U.S. is outlined and its current status provided. Operating experience related to performance of the concrete structures is presented. Basic components of a program to manage aging of the concrete structures are identified and described: degradation mechanisms, damage models, and material performance; assessment and remediation (i.e., component selection, in-service inspection, non-destructive examinations, and remedial actions); and estimation of performance at present or some future point in time (i.e., application of structural reliability theory to the design and optimization of in-service inspection/maintenance strategies, and determination of the effects of degradation on plant risk). Finally, areas are noted where additional research would be of benefit to aging management of nuclear power plant concrete structures.

  6. Summary and conclusions of a program addressing aging of nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Hookham, C.J.; Graves, H.L. III

    1999-01-01

    Research has been conducted by the Oak Ridge National Laboratory to address aging management of nuclear power plant concrete structures. The purpose was to identify potential structural safety issues and acceptance criteria for use in continued service assessments. The focus of this program was on structural integrity rather than on leaktightness or pressure retention of concrete structures. Primary program accomplishments include formulation of a Structural Materials Information Center that contains data and information on the time variation of material properties under the influence of pertinent environmental stressors and aging factors for 144 materials, an aging assessment methodology to identify critical structures and degradation factors that can potentially impact their performance, guidelines and evaluation criteria for use in condition assessments of reinforced concrete structures, and a reliability-based methodology for current condition assessments and estimations of future performance of reinforced concrete nuclear power plant structures. In addition, in-depth evaluations were conducted of several nondestructive evaluation and repair-related technologies to develop guidance on their applicability. (orig.)

  7. Continuing the service of aging concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Arndt, E.G.

    1993-01-01

    Concrete structures play a vital role in the safe operation of all light-water reactor plants because they provide foundation, support, shielding and containment functions. History tells us that concrete is a durable material. However, a number of factors can compromise its performance, singly or in combination: (1) faulty design, (2) use of unsuitable materials, (3) improper workmanship, (4) exposure to aggressive environments, and (5) excessive structural loads. Furthermore, aging of nuclear power plant (NPP) concrete structures occurs with the passage of time and has the potential, if its effects are not controlled, to increase the risk to public health and safety. Although limited, incidences of degradation of concrete structures in NPPs indicate that there is a need for improved surveillance, inspection/testing, and maintenance to enhance the technical bases for assurance of continued safe operation of NPPs. Guidelines and criteria for use in evaluating the remaining structural margins (residual life) are required. Potential regulatory applications of this research include: improved predictions of long-term material and structural performance and available safety margins at future times; establishment of limits on exposure to environmental stressors; reduction in total reliance by licensing on inspection and surveillance through development of a methodology which will enable the integrity of structures to be assessed (either pre- or post-accident); and improvements in damage inspection methodology through potential incorporation of results into national standards which could be referenced by standard review plans

  8. Probabilistic methods for condition assessment and life prediction of concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.R.; Mori, Yasuhiro

    1993-01-01

    A probability-based methodology is being developed in support of the NRC Structural Aging Program to assist in evaluating the reliability of existing concrete structures in nuclear power plants under potential future operating loads and extreme evironmental and accidental events. The methodology includes models to predict structural deterioration due to environmental stressors, a database to support the use of these models, and methods for analyzing time-dependent reliability of concrete structural components subjected to stochastic loads. The methodology can be used to support a plant license extension application by providing evidence that safety-related concrete structures in their current (service) condition are able to withstand future extreme events with a level of reliability sufficient for public health and safety. (orig.)

  9. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2007-02-01

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adverse performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program.

  10. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2007-01-01

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adverse performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program

  11. Management of the aging of critical safety-related concrete structures in light-water reactor plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Arndt, E.G.

    1990-01-01

    The Structural Aging Program has the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant safety-related structures for continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued-service determinations. Objectives, accomplishments, and planned activities under each of these tasks are presented. Major program accomplishments include development of a materials property data base for structural materials as well as an aging assessment methodology for concrete structures in nuclear power plants. Furthermore, a review and assessment of inservice inspection techniques for concrete materials and structures has been complete, and work on development of a methodology which can be used for performing current as well as reliability-based future condition assessment of concrete structures is well under way. 43 refs., 3 tabs

  12. An improved basis for evaluating continued service of Category I concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.; Mori, Y.; Arndt, E.G.

    1992-01-01

    The Structural Aging (SAG) Program has the overall objective of preparing technical bases for regulatory criteria which will provide the NRC with potential structural safety issues and acceptance criteria for use in nuclear power plant evaluations for continued service. In meeting this objective three primary activities are underway: (1) development of a structural materials information center containing data and information on the variation of concrete and concrete-related material properties over time; (2) establishment of procedures to make quantitative evaluations of the presence, magnitude, and significance of environmental stressors or aging factors that can impact critical component performance, as well as techniques which can be used for repair of degraded concrete structures; and (3) formulation of a quantitative methodology for performing current condition assessments and making reliability-based life predictions of critical concrete structures in nuclear power plants. Accomplishments to date under each of these tasks are presented

  13. Developing a computerized aging management system for concrete structures in finnish nuclear power plants

    International Nuclear Information System (INIS)

    Al-Neshawy, F.; Piironen, J.; Sistonen, E.; Vesikari, E.; Tuomisto, M.; Hradil, P.; Ferreira, M.

    2013-01-01

    Finland has four nuclear reactors units in two power plants. The first unit started operation in 1977 and in the early 1980's all four units were in use. During the last few years the aging management of the Nuclear Power Plant's (NPP) concrete structures has grown an important issue because the existing structures are reaching the end of their licensed operating lifetime (about 40 years). Therefore the nuclear power companies are developing aging management systems to avoid premature degradation of NPP facilities and to be able to extend their operating lifetime. This paper is about the development of a computerized ageing management system for the nuclear power plants concrete structures. The computerized ageing management system is built upon central database and implementation applications. It will assist the personnel of power companies to implement the aging management activities at different phases of the lifetime of a power plant. It will provide systematic methods for planning, surveillance, inspection, monitoring, condition assessment, maintenance and repair of structures. (authors)

  14. Modeling and analysis of aging behavior of concrete structures in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, J.Y.R.; James, R.J.; Dunham, R.S. [ANATECH (United States)

    2011-07-01

    As nuclear power plants approach the end of their original design life and begin to transition to the life extension phase, consideration has to be given to the effects of structural aging when evaluating the extended operation of reinforced or pre-stressed concrete structures. The behavior of concrete is highly nonlinear, having low tensile strength, shear stiffness and strength that depend on crack widths, and a confinement-dependent compressive elasto-plasticity. A concrete material model is described having the appropriate capabilities required for evaluating structural aging. The model treats reinforced concrete as a three-phase composite: plain concrete material as a three-dimensional continuum phase, steel reinforcement (rebar) as a uni-directional phase, and a rebar-concrete interaction phase. Structural aging is defined as the combined effects of time dependent material properties degradation and service induced changes in loading and operational conditions. Three broad categories of structural aging, and the interaction between them, are considered: 1) Aging effects due to expected time dependent changes in material properties, 2) Aging effects due to unexpected time dependent material degradation, and 3) Aging effects due to operational environment and loading. Example analyses are presented which illustrate the value of using advanced modeling and simulation in evaluating expected and unusual structural behavior. This is particularly important for safety structures that are approaching the end of their design life and are facing the prospect of re-licensing for extended operation

  15. Damping characteristics of reinforced concrete structures

    International Nuclear Information System (INIS)

    Hisano, M.; Nagashima, I.; Kawamura, S.

    1987-01-01

    Reinforced concrete structures in a nuclear power plant are not permitted to go far into the inelasticity generally, even when subjected to strong ground motion. Therefore it is important to evaluate the damping appropriately in linear and after cracking stage before yielding in the dynamic response analysis. Next three dampings are considered of reinforced concrete structures. 1) Internal damping in linear range material damping of concrete without cracks;2) Hysteretic damping in inelastic range material hysteretic damping of concrete due to cracking and yielding;3) Damping due to the energy dissipation into the ground. Among these damping material damping affects dynamic response of a nuclear power plant on hard rock site where damping due to energy dissipation into the ground is scarcely expected. However material damping in linear and slightly nonlinear range have only been assumed without enough experimental data. In this paper such damping is investigated experimentally by the shaking table tests of reinforced concrete box-walls which modeled roughly the outer wall structure of a P.W.R. type nuclear power plant

  16. Report of the task group reviewing national and international activities in the area of ageing of nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    1996-01-01

    After a background information on the mandate of the task group and its organisation, the longevity of nuclear power plants is first addressed: the present status of nuclear power plants in the 25 OECD Member Countries is summarised and the importance of ensuring continued safe operation of nuclear power plants described. Safety-related concrete structures (primarily containments) for several reactor concepts are briefly described as well as their materials of construction. Primary mechanisms that can produce adverse ageing of the concrete structures are described (e.g., chemical attack and corrosion of steel reinforcement). The overall performance of nuclear power plant concrete structures is described and age-related degradation incidences that have occurred are noted (e.g., corrosion of steel in water intake structures and corrosion of metal liners). National ageing management programmes of OECD Member Countries are then described with the emphasis placed on nuclear power plant safety-related concrete structures. Although the majority of these programmes are addressing components such as the reactor pressure vessel and steam generator, several national programmes have sophisticated activities that address the concrete structures (e.g., Canada, France, Japan, Switzerland, United Kingdom, and the United States). International ageing management activities are then summarised, primarily addressed under the auspices of the International Atomic Energy Agency (IAEA) (ageing management activities for concrete containment buildings) and the Commission of European Communities (CEC) (assessment of the long-term durability of reinforced and prestressed concrete structures and buildings, and steel containments in nuclear power plants). General conclusions and recommendations are provided at the end of the report

  17. Proceedings of the NEA workshop on development priorities for NDE of concrete structures in nuclear plants

    International Nuclear Information System (INIS)

    1998-01-01

    The first session's objectives of this conference were to identify the perspectives of national regulators and plant operators on what is required of NDE. The second session objectives were to provide opportunity for NDE practitioners to share experience and views on the status of development of key NDE techniques: tomographic imaging for investigation of concrete structures, four examples of modern NDE techniques applied to the investigation of nuclear and non-nuclear concrete structures and a vision of future improvements, investigating concrete structures by 3D Radar imaging and imaging using mechanical impact, synopsis NDT of concrete using ultrasonics and radar. The third session objectives were to prioritise development of NDE techniques for safety related concrete structures in nuclear installations: key conclusions from earlier sessions, proposed priorities and next steps

  18. Continuing the service of safety-related concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Mori, Y.; Arndt, E.G.

    1993-01-01

    The Structural Aging (SAG) Program is addressing the aging management of safety-related concrete structures in nuclear power plants (NPPs) for the purpose of providing improved technical bases for their continued service. The program consists of three technical tasks: materials property data base, structural component assessment/repair technologies, and quantitative methodologies for continued service determinations. Recent accomplishments under each of these tasks are summarized

  19. Structural Materials: 95. Concrete

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2012-01-01

    Nuclear power plant concrete structures and their materials of construction are described, and their operating experience noted. Aging and environmental factors that can affect the durability of the concrete structures are identified. Basic components of a program to manage aging of these structures are identified and described. Application of structural reliability theory to devise uniform risk-based criteria by which existing facilities can be evaluated to achieve a desired performance level when subjected to uncertain demands and to quantify the effects of degradation is outlined. Finally, several areas are identified where additional research is desired.

  20. Evaluation of nuclear power plant concrete to maintain continued service

    International Nuclear Information System (INIS)

    McColm, E.J.; Mukherjee, P.K.; Sato, J.A.

    1997-01-01

    Nuclear power plant concrete structures in addition to satisfying structural requirements are a major part of the safety and containment systems. As a result, the structures are required to operate satisfactorily for the life of the plant and until well after decommissioning. Successful life management requires an understanding of potential degradation mechanisms that can impact on the performance of these structures, regular well planned inspection programs and the use of specialized repair and maintenance programs. These aspects of nuclear life management are discussed with an example of inspection and repair conducted at one of Ontario Hydro's nuclear generating stations. The example is discussed in terms of the performance requirements of the containment concrete. The plant referred to has been in operation for over 20 years, making it currently the oldest operating commercial nuclear power plant in Ontario, Canada. The information on the concrete containment structures included baseline construction data on the concrete material properties and the results of periodic scheduled and other interim specialized inspections. Also available were the results of laboratory testing of concrete cores obtained from the structures. The data from these inspections and laboratory testing were used to monitor the aging characteristics of the structures and to plan appropriate repair activities. (author)

  1. Reliability-based service life assessment of concrete structures in nuclear power plants: optimum inspection and repair

    International Nuclear Information System (INIS)

    Ellingwood, B.R.; Mori, Y.

    1995-01-01

    Research is being conducted to address aging management of safety-related reinforced concrete structures in nuclear power plants (NPPs). Documentation is being prepared to identify potential structural safety issues and to recommend criteria for use in evaluating reinforced concrete structures for continued service. Time-dependent reliability analysis provides the framework and quantitative tools for the condition assessment. The role of in-service inspection and repair in ensuring continued reliability in-service is examined. (author). 19 refs., 4 figs

  2. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    Science.gov (United States)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  3. Prediction of concrete strength in massive structures

    International Nuclear Information System (INIS)

    Sakamoto, T.; Makino, H.; Nakane, S.; Kawaguchi, T.; Ohike, T.

    1989-01-01

    Reinforced concrete structures of a nuclear power plant are mostly of mass concrete with cross-sectional dimensions larger than 1.0 m. The temperature of concrete inside after placement rises due to heat of hydration of cement. It is well known that concrete strengths of mass concrete structure subjected to such temperature hysteresis are generally not equal to strengths of cylinders subjected to standard curing. In order to construct a mass concrete structure of high reliability in which the specified concrete strength is satisfied by the specified age, it is necessary to have a thorough understanding of the strength gain property of concrete in the structure and its relationships with the water-cement ratio of the mix, strength of standard-cured cylinders and the internal temperature hysteresis. This report describes the result of studies on methods of controlling concrete strength in actual construction projects

  4. Impact of structural aging on seismic risk assessment of reinforced concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.; Song, J.

    1996-03-01

    The Structural Aging Program is addressing the potential for degradation of concrete structural components and systems in nuclear power plants over time due to aging and aggressive environmental stressors. Structures are passive under normal operating conditions but play a key role in mitigating design-basis events, particularly those arising from external challenges such as earthquakes, extreme winds, fires and floods. Structures are plant-specific and unique, often are difficult to inspect, and are virtually impossible to replace. The importance of structural failures in accident mitigation is amplified because such failures may lead to common-cause failures of other components. Structural condition assessment and service life prediction must focus on a few critical components and systems within the plant. Components and systems that are dominant contributors to risk and that require particular attention can be identified through the mathematical formalism of a probabilistic risk assessment, or PRA. To illustrate, the role of structural degradation due to aging on plant risk is examined through the framework of a Level 1 seismic PRA of a nuclear power plant. Plausible mechanisms of structural degradation are found to increase the core damage probability by approximately a factor of two

  5. Finite element analysis of degraded concrete structures - Workshop proceedings

    International Nuclear Information System (INIS)

    1999-09-01

    This workshop is related to the finite element analysis of degraded concrete structures. It is composed of three sessions. The first session (which title is: the use of finite element analysis in safety assessments) comprises six papers which titles are: Historical Development of Concrete Finite Element Modeling for Safety Evaluation of Accident-Challenged and Aging Concrete Structures; Experience with Finite Element Methods for Safety Assessments in Switzerland; Stress State Analysis of the Ignalina NPP Confinement System; Prestressed Containment: Behaviour when Concrete Cracking is Modelled; Application of FEA for Design and Support of NPP Containment in Russia; Verification Problems of Nuclear Installations Safety Software of Strength Analysis (NISS SA). The second session (title: concrete containment structures under accident loads) comprises seven papers which titles are: Two Application Examples of Concrete Containment Structures under Accident Load Conditions Using Finite Element Analysis; What Kind of Prediction for Leak rates for Nuclear Power Plant Containments in Accidental Conditions; Influence of Different Hypotheses Used in Numerical Models for Concrete At Elevated Temperatures on the Predicted Behaviour of NPP Core Catchers Under Severe Accident Conditions; Observations on the Constitutive Modeling of Concrete Under Multi-Axial States at Elevated Temperatures; Analyses of a Reinforced Concrete Containment with Liner Corrosion Damage; Program of Containment Concrete Control During Operation for the Temelin Nuclear Power Plant; Static Limit Load of a Deteriorated Hyperbolic Cooling Tower. The third session (concrete structures under extreme environmental load) comprised five papers which titles are: Shear Transfer Mechanism of RC Plates After Cracking; Seismic Back Calculation of an Auxiliary Building of the Nuclear Power Plant Muehleberg, Switzerland; Seismic Behaviour of Slightly Reinforced Shear Wall Structures; FE Analysis of Degraded Concrete

  6. Quality control of concrete structures in nuclear power plant, (4)

    International Nuclear Information System (INIS)

    Takahashi, Hisao; Kawaguchi, Tohru; Oike, Takeshi; Morimoto, Shoichi; Takeshita, Shigetoshi.

    1979-01-01

    This report describes the result of an investigation to clarify the effect of concrete temperature as mixed in the summer season on the strength gain characteristics of mass concrete such as used in construction of nuclear power plants. It is pointed out that the low strength gain of control cylinders in summer is caused by two main factors, viz., the absence of water modification in the mix design according to concrete temperature as mixed and high curing temperature after placing up to mold removal rather than concrete temperature itself as mixed. On the other hand, it has been clarified that high strength gain in mass concrete can be realized by lowering concrete temperature as mixed so as to lower the subsequent curing temperature at early age. Furthermore, it is explained that the larger the size of the member is, the more effect can be expected from lowering concrete temperature. The effect of concrete temperature as mixed on high strength concrete to be used in PCCV is discussed in the Appendix. (author)

  7. Vectors of Defects in Reinforced Concrete Structures in Onshore Oil and Gas Process Plants

    Directory of Open Access Journals (Sweden)

    Dabo Baba Hammad

    2018-01-01

    Full Text Available There is a global outcry over the speedy deterioration of structures in oil and gas facilities. While marine environment is considered the leading factor in the deterioration of offshore structures, there is no single factor considered as the main cause of the problem in onshore structures. Therefore, the aim of this paper is to present the result of global survey on the major factors causing the deterioration of concrete structures in onshore oil and gas facilities. To realize the objectives of the paper, an e-questionnaire was administered through two International LinkedIn groups with a membership mainly dominated by experts in onshore oil and gas facilities. 159 respondents completed the questionnaires, and the reliability of the responses was calculated to be 0.950 which is considered excellent. Relative importance index was used in ranking the factors, and it was observed that environmental factors ranked as the dominant factors causing the deterioration of concrete structures in onshore process plants. Another important finding in the study is the role that experience plays on the perception of experts on the causes of defects on concrete structures.

  8. STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS

    International Nuclear Information System (INIS)

    Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

    2001-01-01

    This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits

  9. Quality assurance requirements for installation, inspection, and testing of structural concrete and structural steel during the construction phase of nuclear power plants

    International Nuclear Information System (INIS)

    1975-04-01

    This guide describes a method acceptable to the NRC staff for complying with the Commission's regulations with regard to quality assurance requirements for installation, inspection, and testing of structural concrete and structural steel during the construction phase of nuclear power plants. This guide applies to all types of nuclear power plants. (U.S.)

  10. Concrete structures under projectile impact

    CERN Document Server

    Fang, Qin

    2017-01-01

    In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.

  11. Structural Aging Program to evaluate continued performance of safety-related concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1994-01-01

    This report discusses the Structural Aging (SAG) Program which is being conducted at the Oak Ridge National Laboratory (ORNL) for the United States Nuclear Regulatory commission (USNRC). The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved technical bases for their continued service. The program is organized into three technical tasks: Materials Property Data Base, Structural Component Assessment/Repair Technologies, and Quantitative Methodology for continued Service Determinations. Objectives and a summary of recent accomplishments under each of these tasks are presented

  12. Evaluation of aged concrete structures for continued service in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Marchbanks, M.F.; Arndt, E.G.

    1988-01-01

    Results are summarized of a study on concrete component aging and its significance relative to continued service of nuclear power plants (NPPs) beyond the initial period for which they were granted operating licenses. Progress is presented of a second study being conducted to identify and provide acceptance criteria for structural safety issues which the USNRC staff will need to address when applications are submitted for continued service of NPPs. Major activities under this program include: development of a materials property data base, establishment of structural component assessment and repair procedures, and development of a methodology for determination of structural reliability

  13. An approach regarding aging management program for concrete containment structure at the Gentilly-2 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chenier, J-O.; Komljenovic, D., E-mail: Chenier.jean-olivier@hydro.qc.ca [Nuclear Power Plant Gentilly-2, Becancour, Quebec (Canada); Gocevski, V. [Hydro-Quebec Equipment, Structural Dept., Quebec (Canada); Picard, S.; Chretien, G. [Nuclear Power Plant Gentilly-2, Becancour, Quebec (Canada)

    2012-07-01

    The current paper presents the approach used by the Gentilly-2 Nuclear Power Plant, Hydro-Quebec, in elaborating a specific Aging Management Program (AMP) for its concrete containment structure. It is developed as a part of preparation activities for the plant refurbishment project. The specificity of the AMP consists in addressing Alkali-Aggregate Reaction (AAR) degradation mechanism which is not well known in the nuclear power industry. HQ developed a numerical model based on finite elements for assessing the concrete containment structure behaviour under the impact of AAR and other relevant degradation mechanisms. Such predictions enable a better targeting of corrective and mitigating actions during the second cycle of the G-2 operation while required. (author)

  14. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin

    2013-01-01

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  15. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin [Daewoo E and C Co. Ltd., Suwon (Korea, Republic of)

    2013-10-15

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  16. Evaluation of aged concrete structures for continued service in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Marchbanks, M.F.; Arndt, E.G.

    1988-01-01

    Results are summarized of a study on concrete component aging and its significance relative to continued service of nuclear power plants (NPPs) beyond the initial period for which they were granted operating licenses. Progress is presented of a second study being conducted to identify and provide acceptance criteria for structural safety issues which the USNRC staff will need to address when applications are submitted for continued service of NPPs. Major activities under this program include: development of a materials property data base, establishment of structural component assessment and repair procedures, and development of a methodology for determination of structural reliability. 19 refs., 5 figs., 3 tabs

  17. Supplementary quality assurance requirements for installation, inspection, and testing of structural concrete and structural steel during the construction phase of nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    This standard sets forth the supplementary quality assurance requirements for installation, inspection, and testing of structural concrete and structural steel for nuclear power plant construction. The requirements may also be extended to other appropriate parts of nuclear power plants when specified in contract documents. This standard is intended to be used in conjunction with ANSI N45.2

  18. Horizontal loading test by whole model specimen simulating inner concrete structure of PWR type nuclear power plant

    International Nuclear Information System (INIS)

    Furuya, Noriyuki; Sekine, Masataka; Kimura, Kozo; Yamaguchi, Yoshihiro; Yamaguchi, Tsuneo; Takeda, Toshikazu

    1985-01-01

    The Nuclear Power Engineering Test Center has performed a horizontal loading test by a whole model specimen simulating the inner concrete structure of a PWR type nuclear power plant in order to investigate restoring force characteristics of reactor buildings. This report describes the results of examination of applicability to the test results of analysis methods based on elastic theory. The analysis results of elastic stiffness, concrete cracking load, rebar yielding loads and ultimate strength were compared with the test results. According to this examination, it is recognized that even these analysis methods based on elastic theory are comparatively effective for analysis of an inner concrete structure of fairly complex configuration, although there are limits of the scope of applicability. (author)

  19. Quality Control of Concrete Structure For APR1400 Construction

    International Nuclear Information System (INIS)

    Seo, Inseop; Song, Changhak; Kim, Duill

    2012-01-01

    Nuclear structure shall be constructed to protect internal facilities in the normal operation against external accidents such as the radiation shielding, earthquakes and to be leak-proof of radioactive substances to the external environment in case of loss of coolants. containment and auxiliary building of nuclear power plants are built in reinforced concrete structures to maintain these protection functions. Nuclear structures shall be designed to ensure soundness in operation since they are located on the waterfront where is easy do drain the cooling water and so deterioration and damage of concrete structures caused by seawater can occur. Durability is ensured for concrete structures of APR1400, a Korea standard NPP, in compliance with all safety requirements. In particular, owners perform quality control directly on the production and pouring of cast in place concrete for the concrete structure construction to make sure concrete structures established with quality homogeneity and durability. This report is to look into the quality control standard and management status of cast in place concrete for APR1400 construction

  20. Numerical Study on the Seismic Performance of a Steel–Concrete Hybrid Supporting Structure in Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2018-02-01

    Full Text Available This paper presents the numerical investigation on the seismic performance of a steel–concrete hybrid structure consisting of reinforced concrete (RC tubular columns and steel braced truss with A-shaped steel frames, which is a novel supporting structural system to house air-cooled condensers (ACC in large-capacity thermal power plants (TPPs. First, the finite element (FE modeling approach for this hybrid structure using the software ABAQUS was validated by a range of pseudo-dynamic tests (PDTs performed on a 1/8-scaled sub-structure. The failure process, lateral displacement responses, changing rules of dynamic characteristic parameters and lateral stiffness with increase of peak ground acceleration (PGA were presented here. Then, nonlinear time-history analysis of the prototype structure was carried out. The dynamic characteristics, base shear force, lateral deformation capacity, stiffness deterioration and damage characteristics were investigated. Despite the structural complexity and irregularity, both experimental and numerical results indicate that the overall seismic performance of this steel–concrete hybrid supporting structure meets the seismic design requirements with respect to the high-intensity earthquakes.

  1. Structural Precast Concrete Handbook

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly.......Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly....

  2. Considerations in the evaluation of concrete structures for continued service in aged Nuclear Power Plants (NPPs)

    International Nuclear Information System (INIS)

    Naus, D.; Marchbanks, M.; Oland, B.; Arndt, G.; Brown, T.

    1989-01-01

    Currently, there are /approximately/119 commercial nuclear power plants (NPPs) in the US either under construction, operating at low-to-full power, or awaiting an operating license. Together, these units have a net generating capacity of /approximately/110 GW(e). Assuming no life extension of present facilities, the operating licenses for these plants will start to expire in the middle of the next decade with Yankee Rowe being the first plant to attain this status. Where it is noted that with no life extension of facilities, a potential loss of electrical generating capacity in excess of 75 GW(e) could occur during the time period 2006 to 2020 when the operating licenses of 80 to 90 NPPs are scheduled to expire. A potential timely and cost-effective solution to meeting future electricity demand, which has worked well for non-nuclear generating plants, is to extend the service life (operating licenses) of existing NPPs. Since the concrete components in these plants provide a vital safety function, any continued service considerations must include an in-depth assessment of the safety-related concrete structures. 7 refs

  3. A study on the effects of seawater on the durable life of concrete structures(II)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan; Jang, Bong Suk; Jang, Seung Yeop; Jeon, Se Jin; Yu, Yeong; Park, Dae Gyun; Hyeong, Sang Soo [Seoul National Univ., Seoul (Korea, Republic of)

    1999-02-15

    Recently, large scale concrete structures such as nuclear power plants and offshore structures are actively being built in this country. These structures are subject to heavy attack due to seawater environment. A reasonable consideration for corrosion has not been paid to the structures in the past decades due to insufficient research data and guidelines. The durability is emerging as one of the most important factors. In the design and construction of concrete structures. The purpose of the present study is, therefore, to explore the corrosion mechanism and penetration mechanism of chloride ion, and to establish the evaluation procedure of durability life of concrete structures. In this study, the chloride ion concentration of seawater around our country have been analyzed and the deterioration mechanism of concrete structures have been also analyzed. The penetration mechanism of seawater into the concrete has been also studied. To this end, a comprehensive experimental program has been setup. The major test variables include the type of cement and the type of mineral admixture. The strength test as well as corrosion test have been conducted to explore the effects of chloride ion penetration on the properties of concrete. The corrosion mechanism and the penetration of chloride ion into concrete structures have been studied. These results will allow the estimation of durable life of concrete structures in nuclear power plants. The experimental results and the developed theory in the present study can be efficiently used to analyze the chloride ion penetration and to estimate the durability of concrete structures In nuclear power plants. The present study may also provide strong basis to evaluate the remaining service life of concrete structures in nuclear power plants.

  4. Development priorities for non-destructive examination of concrete structures in nuclear plant

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this report is to provide a basis for assessing development priorities for NDE of safety related concrete structures in nuclear plants, taking account of both the benefit and the cost of potential developments in NDE techniques. An OECD/NEA Workshop which considered the requirements for NDE of safety related concrete structures was held in the UK on 12 November 97. NDE techniques have the potential to satisfy at least some of the needs of the nuclear industry. NDE techniques have been used successfully on a variety of reinforced and post-tensioned concrete structures, notably highway and reservoir structures. However, there is limited experience of their use to evaluate typical nuclear safety related structures having thick sections, steel liners or access to one side only. There is a general lack of confidence in the techniques because there is very little independent advice on their applicability, capability, accuracy and reliability. The information obtained by techniques such as RADAR, ultrasonics, stress wave and radiography appears qualitative rather than quantitative and there is concern that NDE procedures lack the necessary qualification to permit their use on safety critical structures. There is no authoritative international guidance or standard for NDE of concrete structures. NDE of concrete structures is often based upon equipment developed for other materials and technologies, eg. examination of steel, evaluation of ground conditions. Other industries are developing equipment specifically for civil engineering applications and at the recent OECD workshop a number of relevant national and European programmes were identified. The nuclear industry maintain its awareness of developments and should seek to influence the development of equipment. The quantification of the capabilities of NDE techniques is seen as a priority area for development. The provision of authoritative documentation in the form of reports and Standards is desirable

  5. Assessment of degradation and aging of nuclear power plants concrete structures

    International Nuclear Information System (INIS)

    Busby, J.; Naus, D.; Graves, H.; Sheikh, A.; Le Pape, Y.; Rashid, J.; Saouma, V.; Wall, J.

    2015-01-01

    This paper summarizes the results of an expert-panel assessment of ageing degradation modes and mechanisms of concrete structures in NPPs, where, based on specific operating environments, degradation is likely to occur, or may have occurred; to define relevant aging and degradation modes and mechanisms; and to perform systematic assessment of the effects of these age-related degradation mechanisms on the future life of those materials and structures. The following 7 degradation modes and mechanisms have been identified as having the greatest potential impact on the ability of concrete structures to fulfill their safety related functions during long-term NPP operation. 1) Corrosion of conventional reinforcement is difficult to assess because of inaccessibility to inspection; 2) Creep of pre-stressed concrete containments continuously affects the internal stress state and adds to tendon relaxation and gradual loss of prestress; 3) Irradiation of concrete lacks sufficient data to for a clear evaluation of its effects on long-term operations; 4) Alkali-silica reaction potential consequences on the structural integrity of the containment; 5) Fracture/cracking, which is a well understood behavior characteristic of concrete structures and is accounted for in structural design, plays a unique role in post-tensioned containments during de-tensioning and re-tensioning operations which may be undertaken as part of life extension retrofit work, resulting in delamination, and may evolve with time as a creep-cracking interaction mechanism; 6) Boric acid attack of concrete in the spent fuel pool involves knowledge gaps related to the kinetics and the extent of the attack (role of the concrete mix design); 7) Corrosion of the inaccessible side of the spent fuel pool and containment liners and the stress corrosion cracking of the tendons are important degradation modes due to the absence of in-service inspection. The potential impact of these mechanisms may be mitigated by

  6. Concrete structures

    CERN Document Server

    Setareh, Mehdi

    2017-01-01

    This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are pro...

  7. Overview of ORNL/NRC programs addressing durability of concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1994-01-01

    The role of reinforced concrete relative to its applications as either safety-related structures in nuclear power or engineered barriers of low-level radioactive waste disposal facilities is described. Factors that can affect the long-term durability of reinforced concrete are identified. Overviews are presented of the Structural Aging Program, which is addressing the aging management of safety-related concrete structures in nuclear power plants, and the Permeability Test Methods and Data Program, which is identifying pertinent data and information for use in performance assessments of engineered barriers for low-level radioactive waste disposal

  8. Safety-related concrete structure design and construction of Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Morishita, Hideki; Munakata, Yoshinari; Togashi, Akihito

    2003-01-01

    The Rokkasho Reprocessing Plant of the Japan Nuclear Fuel Co. Ltd., is a facility to reprocess remained uranium without firing and newly formed plutonium contained in spent fuels used at the nuclear power stations, to produce fuels to be repeatedly used. Constructions in this facility has some characteristics shown as follows: 1) radiation shielding and seismic isolated functions like those at the nuclear power plants, 2) reduction of wall thickness based on partially using heavy concrete at walls required for radiation shielding, 3) protective design against fly-coming matters such as aircrafts, 4) construction period reduction based on winter construction and large scale block engineering. Here were described characteristics of designs on radiation shielding, seismic isolated and fly-coming matters protection construction engineering and quality control on concrete. (G.K.)

  9. Offshore concrete structures

    International Nuclear Information System (INIS)

    Lamas Pardo, M.; Carral Couce, L. M.

    2011-01-01

    In the offshore industry there are two possible materials for the construction of the hull of a structure; the steel and concrete, with the first one widely used until now, as in the rest of the shiphuidling industry of merchant ships, warships, etc. Materials such as aluminum, GRP or timber areused in small units with lengths lower than 100 m, and in less adverse conditions than in the offshore industry. Nevertheless, some ships/barges have been built of concrete in the past, but have been rather isolated cases which have not changed the practice in the industry. In the First and Second World War were built by the scarcity of materials, while the series of barges by Alfred A. Yee was a rare exception. Other units were also made in concrete, but almost anecdotal. Still, the behaviour of these concrete structures, especially in terms of maintenance, has been excellent. Therefore, the fact that the concrete has not had an adequate reception so far in shipbuilding, does not mean that in will not be the material best suited for the offshore industry in the future. The extra displacement and associated fuel costs in concrete ships have been found prohibitive in the past. But the loss of mobility of a concrete hull in relation to a steel hull can be perfectly offset by the advantages offered by the concrete, as the shipping and offshore industry have very different priorities. One of the main differences in these priorities is in terms of maintenance and resistance to fatigue, precisely where the concrete performs better. ships can easily be dry docked for maintenance and repair, while in the offshore platforms these works have to be done in situ so maintenance and fatigue are crucial to them. Besides these, the concrete has other advantages according to findings of several studies. And although they are interested in the conclusions that the makes as they came from people in the concrete industry, the fact that in recent years concrete offshore unit shave been built

  10. Nondestructive Evaluation of Thick Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL

    2015-01-01

    Materials issues are a key concern for the existing nuclear reactor fleet in the United States as material degradation can lead to increased maintenance, increased downtime, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of both known and new forms of degradation. A multitude of concrete-based structures are typically part of a light water reactor plant to provide foundation, support, shielding, and containment functions. The size and complexity of nuclear power plant containment structures and the heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. This paper examines the benefits of using time-frequency analysis with Synthetic Aperture Focusing Technique (SAFT). By using wavelet packet decomposition, the original ultrasound signals are decomposed into various frequency bands that facilitates highly selective analysis of the signal’s frequency content and can be visualized using the familiar SAFT image reconstruction algorithm.

  11. Strategy for 100-year life of the ACR-1000 concrete containment structure

    International Nuclear Information System (INIS)

    Abrishami, H.; Elgohary, M.

    2006-01-01

    The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of the ACR-1000 (Advanced CANDU Reactor) designed by AECL. The ACR-1000 is designed for 100-year plant life including 60-year operating life and additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In the design phase, in addition to strength and serviceability, durability is a major requirement during the service life and decommissioning phase of the ACR structure. Parameters affecting durability design include: a) concrete performance, b) structural application, and c) environmental conditions. Due to the complex nature of the environmental effects acting on structures during the service life of project, it is considered that true improved performance during the service life can be achieved by improving the material characteristics. Many recent innovations in advanced concrete materials technology have made it possible to produce modern concrete such as high-performance concrete with exceptional performance characteristics. In this paper, the PLiM strategy for the ACR-1000 concrete containment is presented. In addition to addressing the design methodology and material performance areas, a systematic approach for ageing management program for the concrete containment structure is presented. (author)

  12. Dynamic performance of concrete undercut anchors for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahrenholtz, Christoph, E-mail: christoph@mahrenholtz.net; Eligehausen, Rolf

    2013-12-15

    Graphical abstract: - Highlights: • Behavior of undercut anchors under dynamic actions simulating earthquakes. • First high frequency load and crack cycling tests on installed concrete anchors ever. • Comprehensive review of anchor qualification for Nuclear Power Plants. - Abstract: Post-installed anchors are widely used for structural and nonstructural connections to concrete. In many countries, concrete anchors used for Nuclear Power Plants have to be qualified to ensure reliable behavior even under extreme conditions. The tests required for qualification of concrete anchors are carried out at quasi-static loading rates well below the rates to be expected for dynamic actions deriving from earthquakes, airplane impacts or explosions. To investigate potentially beneficial effects of high loading rates and cycling frequencies, performance tests on installed undercut anchors were conducted. After introductory notes on anchor technology and a comprehensive literature review, this paper discusses the qualification of anchors for Nuclear Power Plants and the testing carried out to quantify experimentally the effects of dynamic actions on the load–displacement behavior of undercut anchors.

  13. Monitoring of Concrete Structures Using Ofdr Technique

    Science.gov (United States)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  14. Reusing recycled aggregates in structural concrete

    Science.gov (United States)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  15. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bru Brea, Jose Maria [Idaho National Lab. (INL), Idaho Falls, ID (United States); Koester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  16. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review.

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2006-03-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  17. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2006-01-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  18. Local response of concrete structures to explosive loading

    International Nuclear Information System (INIS)

    Freund, H.U.; Krutzik, N.J.; Muller, K.

    1989-01-01

    This paper reports on the HDR safety program experiments performed concerning demolition of concrete structures and pipes by explosive charges. The precalculability of the local structure reaction as well as that of the global plant was checked. The effect on the bore hole wall by the detonating explosive and the local concrete behavior around the bore hole were investigated. The measured pressure-time history in and around the bore hole is compared with the calculated values. The calculated values seem to be near reality (as far as measurements are available), concerning pressure rise curve within the bore hole and the peak pressure. The analysis of the blow off contours performed with two variations of the material strength of the concrete plates is presented

  19. An Experimental Investigation On Minimum Compressive Strength Of Early Age Concrete To Prevent Frost Damage For Nuclear Power Plant Structures In Cold Climates

    International Nuclear Information System (INIS)

    Koh, Kyungtaek; Kim, Dogyeum; Park, Chunjin; Ryu, Gumsung; Park, Jungjun; Lee, Janghwa

    2013-01-01

    Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates

  20. An Experimental Investigation On Minimum Compressive Strength Of Early Age Concrete To Prevent Frost Damage For Nuclear Power Plant Structures In Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyungtaek; Kim, Dogyeum; Park, Chunjin; Ryu, Gumsung; Park, Jungjun; Lee, Janghwa [Korea Institute Construction Technology, Goyang (Korea, Republic of)

    2013-06-15

    Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates.

  1. Probabilistic design of fibre concrete structures

    Science.gov (United States)

    Pukl, R.; Novák, D.; Sajdlová, T.; Lehký, D.; Červenka, J.; Červenka, V.

    2017-09-01

    Advanced computer simulation is recently well-established methodology for evaluation of resistance of concrete engineering structures. The nonlinear finite element analysis enables to realistically predict structural damage, peak load, failure, post-peak response, development of cracks in concrete, yielding of reinforcement, concrete crushing or shear failure. The nonlinear material models can cover various types of concrete and reinforced concrete: ordinary concrete, plain or reinforced, without or with prestressing, fibre concrete, (ultra) high performance concrete, lightweight concrete, etc. Advanced material models taking into account fibre concrete properties such as shape of tensile softening branch, high toughness and ductility are described in the paper. Since the variability of the fibre concrete material properties is rather high, the probabilistic analysis seems to be the most appropriate format for structural design and evaluation of structural performance, reliability and safety. The presented combination of the nonlinear analysis with advanced probabilistic methods allows evaluation of structural safety characterized by failure probability or by reliability index respectively. Authors offer a methodology and computer tools for realistic safety assessment of concrete structures; the utilized approach is based on randomization of the nonlinear finite element analysis of the structural model. Uncertainty of the material properties or their randomness obtained from material tests are accounted in the random distribution. Furthermore, degradation of the reinforced concrete materials such as carbonation of concrete, corrosion of reinforcement, etc. can be accounted in order to analyze life-cycle structural performance and to enable prediction of the structural reliability and safety in time development. The results can serve as a rational basis for design of fibre concrete engineering structures based on advanced nonlinear computer analysis. The presented

  2. Modeling of fracture of protective concrete structures under impact loads

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, P. A., E-mail: radchenko@live.ru; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S. [Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation)

    2015-10-27

    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.

  3. Modeling of fracture of protective concrete structures under impact loads

    Science.gov (United States)

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.

    2015-10-01

    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.

  4. Stiffness of reinforced concrete walls resisting in-place shear -- Tier 2: Aging and durability of concrete used in nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Monteiro, P.J.M.; Moehle, J.P.

    1995-12-01

    Reinforced concrete walls are commonly used in power-plant construction to resist earthquake effects. Determination of wall stiffness is of particular importance for establishing design forces on attached equipment. Available experimental data indicate differences between the measured and calculated stiffness of walls in cases where concrete mechanical properties are well defined. Additional data indicate that in-situ concrete mechanical properties may differ significantly from those specified in design. The work summarized in this report was undertaken to investigate the mechanical properties of concrete considering aging and deterioration. Existing data on mechanical properties of concrete are evaluated, and new tests are carried out on concrete cylinders batched for nuclear power plants and stored under controlled conditions for up to twenty years. It is concluded that concretes batched for nuclear power plants commonly have 28-day strength that exceeds the design value by at least 1000 psi. Under curing conditions representative of those in the interior of thick concrete elements, strength gain with time can be estimated conservatively using the expression proposed by ACI Committee 209, with strengths at 25 years being approximately 1.3 times the 28-day strength. Young's modulus can be estimated using the expression given by ACI Committee 318. Variabilities in mechanical properties are identified. A review of concrete durability identified the main causes and results of concrete deterioration that are relevant for the class of concretes and structures commonly used in nuclear power plants. Prospects for identifying the occurrence and predicting the extent of deterioration are discussed

  5. Serviceability design load factors and reliability assessments for reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Han Bong Koo

    1998-01-01

    A reinforced concrete nuclear power plant containment structure is subjected to various random static and stochastic loads during its lifetime. Since these loads involve inherent randomness and other uncertainties, an appropriate probabilistic model for each load must be established in order to perform reliability analysis. The current ASME code for reinforced concrete containment structures are not based on probability concepts. The stochastic nature of natural hazard or accidental loads and the variations of material properties require a probabilistic approach for a rational assessment of structural safety and performance. The paper develops probability-based load factors for the limit state design of reinforced concrete containment structures. The purpose of constructing reinforced concrete containment structure is to protect against radioactive release, and so the use of a serviceability limit state against crack failure that can cause the emission of radioactive materials is suggested as a critical limit state for reinforced concrete containment structures. Load factors for the design of reinforced concrete containment structures are proposed and carried out the reliability assessments. (orig.)

  6. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1996-01-01

    Research is being conducted by Oak Ridge National Laboratory under US nuclear regulatory commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a structural materials information center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of non-destructive evaluation techniques, assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants. (orig.)

  7. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1994-01-01

    Research is being conducted by Oak Ridge National Laboratory under U.S. Nuclear Regulatory Commission sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the US-NRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques, assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants. (author). 29 refs., 2 figs

  8. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1994-01-01

    Research is being conducted by ORNL under US Nuclear Regulatory Commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques. assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants

  9. Development of laboratory acceleration test method for service life prediction of concrete structures

    International Nuclear Information System (INIS)

    Cho, M. S.; Song, Y. C.; Bang, K. S.; Lee, J. S.; Kim, D. K.

    1999-01-01

    Service life prediction of nuclear power plants depends on the application of history of structures, field inspection and test, the development of laboratory acceleration tests, their analysis method and predictive model. In this study, laboratory acceleration test method for service life prediction of concrete structures and application of experimental test results are introduced. This study is concerned with environmental condition of concrete structures and is to develop the acceleration test method for durability factors of concrete structures e.g. carbonation, sulfate attack, freeze-thaw cycles and shrinkage-expansion etc

  10. A Review of the Effects of Elevated Temperature on Concrete Materials and Structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Graves, H.L. III

    2006-01-01

    Concrete's properties are more complex than those of most materials because not only is concrete a composite material whose constituents have different properties, but its properties depend upon moisture and porosity. Exposure of concrete to elevated temperature affects its mechanical and physical properties. Elements could distort and displace, and, under certain conditions, the concrete surfaces could spall due to the buildup of steam pressure. Because thermally-induced dimensional changes, loss of structural integrity, and release of moisture and gases resulting from the migration of free water could adversely affect plant operations and safety, a complete understanding of the behavior of concrete under long-term elevated-temperature exposure as well as both during and after a thermal excursion resulting from a postulated design-basis accident condition is essential for reliable design evaluations and assessments of nuclear power plant structures. As the properties of concrete change with respect to time and the environment to which it is exposed, an assessment of the effects of concrete aging is also important in performing safety evaluations. The effects of elevated temperature on Portland cement concretes and constituent materials are summarized, design codes and standards identified, and considerations for elevated temperature service noted. (authors)

  11. Significance of Alkali-Silica reaction in nuclear safety-related concrete structures

    International Nuclear Information System (INIS)

    Le Pape, Y.; Field, K.G.; Mattus, C.H.; Naus, D.J.; Busby, J.T.; Saouma, V.; Ma, Z.J.; Cabage, J.V.; Guimaraes, M.

    2015-01-01

    Nuclear Power Plant license renewal up to 60 years and possible life extension beyond has established a renewed focus on long-term aging of nuclear generating stations materials, and particularly, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete components. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the U.S. Nuclear Regulatory Commission, the Academia and the Power Generation Industry, identified the need to develop a consistent knowledge base of alkali-silica reaction (ASR) within concrete as an urgent priority (Graves et al., 2014). ASR results in an expansion of Concrete produced by the reaction between alkali (generally from cement), reactive aggregate (like amorphous silica) and water absorption. ASR causes expansion, cracking and loss of mechanical properties. Considering that US commercial reactors in operation enter the age when ASR distress can be potentially observed and that numerous non-nuclear infrastructures (transportation, energy production) in a majority of the States have already experienced ASR-related concrete degradation, the susceptibility and significance of ASR for nuclear concrete structures must be addressed. This paper outlines an on-going research program including the investigation of the possibility of ASR in nuclear power plants, and the assessment of the residual shear bearing capacity of ASR-subjected nuclear structures. (authors)

  12. Periodic Safety Review of Tendon Pre-stress of Concrete Containment Building for a CA U-Type clear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Kwang Ho; Lim, Woo Sang [Korea Hydro and clear Power Co., Daejeon (Korea, Republic of)

    2009-10-15

    Generally, as the tendon pre-stress of concrete containment buildings at nuclear power plants decreases as time passes due to the concrete creep, concrete shrinkage and the relaxation of tendon strands, the tendon pre-stress must secure the structural integrity of these buildings by maintaining its value higher than that of the designed pre-stress during the overall service life of the nuclear power plants. Moreover, if necessary, the degree of tendon pre-stress must also guarantee the structural integrity of concrete containment buildings over their lifetimes. This paper evaluated the changes in the tendon pre-stress of a concrete containment building subject to time-limited aging as an item in a periodic safety review (PSR) of Wolsong unit 1, a CANDU-type nuclear power plant to ensure that the structural integrity can be maintained until the next PSR period after the designed lifetime.

  13. Concrete with onyx waste aggregate as aesthetically valued structural concrete

    Science.gov (United States)

    Setyowati E., W.; Soehardjono, A.; Wisnumurti

    2017-09-01

    The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.

  14. POROUS STRUCTURE OF ROAD CONCRETE

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available Having a great number of concrete structure classifications it is recommended to specify the following three principal types: microstructure – cement stone structure; mesostructure – structure of cement-sand mortar in concrete; macrostucture – two-component system that consists of mortar and coarse aggregate. Every mentioned-above structure has its own specific features which are related to the conditions of their formation. Thus, microstructure of cement stone can be characterized by such structural components as crystal intergrowth, tobermorite gel, incompletely hydrated cement grains and porous space. The most important technological factors that influence on formation of cement stone microstructure are chemical and mineralogical cement composition, its grinding fineness, water-cement ratio and curing condition. Specific cement stone microstructure is formed due to interrelation of these factors. Cement stone is a capillary-porous body that consists of various solid phases represented predominantly by sub-microcrystals of colloidal dispersion. The sub-microcrystals are able adsorptively, osmotically and structurally to withhold (to bind some amount of moisture. Protection of road concrete as a capillary-porous body is considered as one of the topical issues. The problem is solved with the help of primary and secondary protection methods. Methods of primary protection are used at the stage of designing, preparation and placing of concrete. Methods of secondary protection are applied at the operational stage of road concrete pavement. The paper considers structures of concrete solid phase and characteristics of its porous space. Causes of pore initiation, their shapes, dimensions and arrangement in the concrete are presented in the paper. The highest hazard for road concrete lies in penetration of aggressive liquid in it and moisture transfer in the cured concrete. Water permeability of concrete characterizes its filtration factor which

  15. A Study on the Properties and Chloride Resistance of Modified Sulfur Concrete for Nuclear Power Plant and Marine Structures

    International Nuclear Information System (INIS)

    Wang, Soon Myun; Chang, Hyun Young; Park, Heung Bae

    2015-01-01

    The mechanical, physical and chemical properties of concrete with modified sulfur have been compared and assessed against ordinary concrete. As its excellent chloride resistance and extended service life have been verified, the technology to apply modified sulfur to the construction of nuclear power plant and marine structures has been developed and secured. Recently, modified sulfur concrete has been applied for road pavement and repair works in more than 20 sites including highway and airport in Korea. Also, in the U.S., Federal Highway Administration and Virginia Department of Transportation are implementing tests to apply modified sulfur to bridge road pavement, and the modified sulfur concrete has been recognized for its good performance. Based on these cases, this study carried out tests on physical, mechanical and chemical properties of concrete after adding modified sulfur by building concrete specimens based on the concrete mix design employed to construct the Shin-Kori Units 3 and 4 containment building. Multiple tests were performed particularly for chemical resistance, a factor directly related to concrete service life. As a result, it has been verified that concrete with 5% modified sulfur content relative to cement weight has equal mechanical properties (compressive strength, tensile strength, etc.) and much better workability (slump change) and chemical resistance (resistance to chloride ion penetration, concrete carbonation) compared with ordinary concrete. Based on this, it has been concluded that an addition of modified sulfur can double the service life of concrete. In general, studies demonstrate that a significant amount of slag should be mixed into concrete to raise chemical resistance (but with decreasing mechanical properties). Considering this, this study is unparalleled

  16. A Study on the Properties and Chloride Resistance of Modified Sulfur Concrete for Nuclear Power Plant and Marine Structures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Soon Myun; Chang, Hyun Young; Park, Heung Bae [KEPCO EnC, Seongnam (Korea, Republic of)

    2015-05-15

    The mechanical, physical and chemical properties of concrete with modified sulfur have been compared and assessed against ordinary concrete. As its excellent chloride resistance and extended service life have been verified, the technology to apply modified sulfur to the construction of nuclear power plant and marine structures has been developed and secured. Recently, modified sulfur concrete has been applied for road pavement and repair works in more than 20 sites including highway and airport in Korea. Also, in the U.S., Federal Highway Administration and Virginia Department of Transportation are implementing tests to apply modified sulfur to bridge road pavement, and the modified sulfur concrete has been recognized for its good performance. Based on these cases, this study carried out tests on physical, mechanical and chemical properties of concrete after adding modified sulfur by building concrete specimens based on the concrete mix design employed to construct the Shin-Kori Units 3 and 4 containment building. Multiple tests were performed particularly for chemical resistance, a factor directly related to concrete service life. As a result, it has been verified that concrete with 5% modified sulfur content relative to cement weight has equal mechanical properties (compressive strength, tensile strength, etc.) and much better workability (slump change) and chemical resistance (resistance to chloride ion penetration, concrete carbonation) compared with ordinary concrete. Based on this, it has been concluded that an addition of modified sulfur can double the service life of concrete. In general, studies demonstrate that a significant amount of slag should be mixed into concrete to raise chemical resistance (but with decreasing mechanical properties). Considering this, this study is unparalleled.

  17. Sodium concrete reaction - Structural considerations

    International Nuclear Information System (INIS)

    Ferskakis, G.N.

    1984-01-01

    An overview of the sodium concrete reaction phenomenon, with emphasis on structural considerations, is presented. Available test results for limestone, basalt, and magnetite concrete with various test article configurations are reviewed. Generally, tests indicate reaction is self limiting before all sodium is used. Uncertainties, however, concerning the mechanism for penetration of sodium into concrete have resulted in different theories about a reaction model. Structural behavior may be significant in the progression of the reaction due to thermal-structuralchemical interactions involving tensile cracking, compressive crushing, or general deterioration of concrete and the exposure of fresh concrete surfaces to react with sodium. Structural behavior of test articles and potential factors that could enhance the progression of the reaction are discussed

  18. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2009-01-01

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  19. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2009-05-01

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  20. 'Concrete shell formwork' technology applied to the construction of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Fejes, A.

    1982-01-01

    The conventional formworking technology could not meet the unusual requirements needed in constructing the concrete walls of the nuclear power plant building. A new concrete shell formworking developed in the Soviet Union has been adapted to meet the criteria. Prefabricated concrete shells are mounted separately during construction on separated parts of the reinforcing structure. The steps of the construction process are described with the economic evaluation of this new construction technology. (R.P.)

  1. Durability of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard

    1996-01-01

    The planned research will indicate, whether fibre reinforced concrete has better or worse durability than normal concrete. Durability specimens will be measured on cracked as well as uncracked specimens. Also the pore structure in the concrete will be characterized.Keywords: Fibre reinforced...... concrete, durability, pore structure, mechanical load...

  2. Numerical simulation of deformation and fracture of space protective shell structures from concrete and fiber concrete under pulse loading

    International Nuclear Information System (INIS)

    Radchenko, P A; Batuev, S P; Radchenko, A V; Plevkov, V S

    2015-01-01

    This paper presents results of numerical simulation of interaction between aircraft Boeing 747-400 and protective shell of nuclear power plant. The shell is presented as complex multilayered cellular structure comprising layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was held three-dimensionally using the author's algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. The dynamics of stress-strain state and fracture of structure were studied. Destruction is described using two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of shell cellular structure—cells start to destruct in unloading wave, originating after output of compression wave to the free surfaces of cells. (paper)

  3. Concrete structures protection, repair and rehabilitation

    CERN Document Server

    Woodson, R Dodge

    2009-01-01

    The success of a repair or rehabilitation project depends on the specific plans designed for it. Concrete Structures: Protection, Repair and Rehabilitation provides guidance on evaluating the condition of the concrete in a structure, relating the condition of the concrete to the underlying cause or causes of that condition, selecting an appropriate repair material and method for any deficiency found, and using the selected materials and methods to repair or rehabilitate the structure. Guidance is also provided for engineers focused on maintaining concrete and preparing concrete investigation r

  4. Experimental collaboration for thick concrete structures with alkali-silica reaction

    Science.gov (United States)

    Ezell, N. Dianne Bull; Hayes, Nolan; Lenarduzzi, Roberto; Clayton, Dwight; Ma, Z. John; Le Pape, Sihem; Le Pape, Yann

    2018-04-01

    Alkali-Silica Reaction (ASR) is a reaction that occurs over time in concrete between alkaline cement paste and reactive, non-crystalline silica in aggregates. An expansive gel is formed within the aggregates which results in micro-cracks in aggregates and adjacent cement paste. The reaction requires the presence of water and has been predominantly detected in groundwater-impacted portions of below grade structures, with limited impact to exterior surfaces in above grade structures. ASR can potentially affect concrete properties and performance characteristics such as compressive strength, modulus of elasticity, shear strength, and tensile strength. Since ASR degradation often takes significant amounts of time, developing ASR detection techniques is important to the sustainability and extended operation lifetimes of nuclear power plants (NPPs). The University of Tennessee, Knoxville (UTK) in collaboration with Oak Ridge National Laboratory (ORNL) designed and built an experiment representative of typical NPP structures to study ASR in thick concrete structures.

  5. Detecting alkali-silica reaction in thick concrete structures using linear array ultrasound

    Science.gov (United States)

    Bull Ezell, N. Dianne; Albright, Austin; Clayton, Dwight; Santos-Villalobos, Hector

    2018-03-01

    Commercial nuclear power plants (NPPs) depend heavily on concrete structures, making the long-term performance of these structures crucial for safe operation, especially with license period extensions to 60 years and possibly beyond. Alkali-silica reaction (ASR) is a reaction that occurs over time in concrete between alkaline cement paste and reactive, noncrystalline silica (aggregates). In the presence of water, an expansive gel is formed within the aggregates, which results in microcracks in aggregates and adjacent cement paste. ASR can potentially affect concrete properties and performance characteristics such as compressive strength, modulus of elasticity, flexural stiffness, shear strength, and tensile strength. Currently, no nondestructive evaluation methods have proven effective in identifying ASR before surface cracks form. ASR is identified visibly or by petrographic analysis. Although ASR definitely impacts concrete material properties, the performance of concrete structures exhibiting ASR depends on whether or not the concrete is unconfined or confined with reinforcing bars. Confinement by reinforcing bars restrainsthe expansion of ASR-affected concrete, similar to prestressing, thus improving the performance of a structure. Additionally, there is no direct correlation between the mechanical properties of concrete sample cores and the in-situ properties of the concrete. The University of Tennessee-Knoxville, Oak Ridge National Laboratory, and a consortium of universities have developed an accelerated ASR experiment. Three large concrete specimens, representative of NPP infrastructure, were constructed containing both embedded and surface instruments. This paper presents preliminary analysis of these specimens using a frequency-banded synthetic aperture focusing technique.

  6. Structural optimization of reinforced concrete container for radioactive wastes

    International Nuclear Information System (INIS)

    Tamura, M.

    1984-01-01

    A structural optimization study of reinforced concrete container for transportation and disposal of the low level radioactive waste generated in Brazilian nuclear power plants. The code requires the structural integrity of these containers when subjected to fall from specified height, avoiding environmental contamination. The structural optimization allows material and transportation cost reduction by container wall thickness reduction. The structural analysis is performed by tridimensional mathematical model using finite element method. (Author) [pt

  7. Basic principles of concrete structures

    CERN Document Server

    Gu, Xianglin; Zhou, Yong

    2016-01-01

    Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compa...

  8. Structural modules in AP1000 plant design

    International Nuclear Information System (INIS)

    Prasad, N.; Tunon-Sanjur, L.

    2007-01-01

    Structural modules are extensively used in AP1000 plant design. The shop manufacturing of modules components improves the quality and reliability of plant structures. The application of modules has a positive impact on construction schedules, and results in substantial savings in the construction cost. This paper describes various types of structural modules used for AP1000 plant structures. CA structural wall modules are steel plate modules with concrete placed, on or within the module, after module installation. The layout and design of the largest CA wall modules, CA01 and CA20, is described in detail. General discussion of structural floor modules, such as the composite and finned floors, is also included. Steel form CB modules (liners) consist of plate reinforced with angle stiffeners and tee sections. The angles and the tee sections are on the concrete side of the plate. Design of CB20 has been included as an example of CB type modules. Design codes and structural concepts related to module designs are discussed. (authors)

  9. The study on the mechanical characteristics of concrete of nuclear reactor containment structure

    International Nuclear Information System (INIS)

    Jung, W. S.; Kwon, K. J.; Cho, M. S.; Song, Y. C.

    2000-01-01

    Reactor containment structure of nuclear power plant designed by prestressed concrete causes time-dependent prestress loss due to the mechanical characteristics of concrete. Prestress loss strongly affects to the safety factor of structure under the circumstances of designing, construction and inspection. Thus, this study is to investigate the mechanical characteristics of reactor containment concrete structure of Yonggwang No. 5 and 6. In this study, the compressive strength, modulus of elasticity, poisson's ratio and creep test followed by ASTM code are performed to investigate the mechanical characteristics of concrete made by V type cement. Additionally, since creep causes more time-dependent prestress loss than the other, the measurement value from the creep test is compared with the results from the creep prediction equations by KSCE, JSCE, Hansen, ACI and CEB-FIP model for the effective application. Hereafter, the results of this study may enable to assist the calculation effective stress considering time-dependent prestress loss of the prestressed concrete structures

  10. Analysis of crack propagation in concrete structures with structural information entropy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The propagation of cracks in concrete structures causes energy dissipation and release, and also causes energy redistribution in the structures. Entropy can characterize the energy redistribution. To investigate the relation between the propagation of cracks and the entropy in concrete structures, cracked concrete structures are treated as dissipative structures. Structural information entropy is defined for concrete structures. A compact tension test is conducted. Meanwhile, numerical simulations are also carried out. Both the test and numerical simulation results show that the structural information entropy in the structures can characterize the propagation of cracks in concrete structures.

  11. Outline of principle of design construction of demolished concrete from electric power plant

    International Nuclear Information System (INIS)

    Takahashi, Tomohiko; Sakagami, Takeharu; Inagaki, Hirokazu; Morozumi, Hironori; Muranaka, Kenji

    2005-01-01

    'The principle of design construction of recycled demolished concrete from electric power plant' (a plan) is going to be published by TSCE Concrete Committee in 2005. The abstract of the above principle is described. A large amount of demolished concrete is generated by decommissioning of atomic power plant. About 450,000 to 500,000t of concrete with small radiation level per an atomic power plant will be generated. This report included decommissioning of Tokai power plant, characteristics of subject of demolished concrete, the recycled demolished concrete, fresh conditions of the recycled demolished concrete, the strength, deformation properties, durability, alkali silica reactivity of them and control measurement. (S.Y.)

  12. The surrounding concrete structure of the containment as a safety component

    International Nuclear Information System (INIS)

    Alex, H.; Kuntze, W.M.

    1978-01-01

    This paper will briefly discuss the containments of the various types of reactors in the Federal Republic of Germany and will try to show the importance of the surrounding concrete structures with respect to safety. It will be seen that the surrounding concrete structures serve in any case - as protection against external events - as secondary shielding and must therefore be considered as a passive safety feature. The design requirements for the surrounding concrete structures with respect to protection against external events and to physical protection generally supplement each other. Reference will be made to possible alternatives, which might result from studies of underground siting of nuclear power plants. Whether or not this type of construction can lead to additional safety can only be judged when the results of all these studies - some of which are still under way - are evaluated. The concluding part of this paper will deal with the responsibilities of the civil engineering supervisory authorities and the nuclear licensing authorities with respect to the surrounding concrete structures. (orig.) [de

  13. Critical Study of Corrosion Damaged Concrete Structures

    OpenAIRE

    Sallehuddin Shah Ayop; John Cairns

    2013-01-01

    Corrosion of steel reinforcement in concrete is one of the major problems with respect to the durability of reinforced concrete structures. The degradation of the structure strength due to reinforcement corrosion decreases its design life. This paper presents the literature study on the influence of the corrosion on concrete structure starting from the mechanism of the corrosion until the deterioration stage and the structural effects of corrosion on concrete structures.

  14. The structural aging assessment program: ranking methodology for CANDU nuclear generating station concrete components

    International Nuclear Information System (INIS)

    Philipose, K.E.; Muhkerjee, P.K.; McColm, E.J.

    1997-01-01

    Most of the major structural components in CANDU nuclear generating stations are constructed of reinforced concrete. Although passive in nature, these structures perform many critical safety functions in the operation of each facility. Aging can affect the structural capacity and integrity of structures. The reduction in capacity due to aging is not addressed in design codes. Thus a program is warranted to monitor the aging of safety-related CANDU plant structures and to prioritize those that require maintenance and repairs. Prioritization of monitoring efforts is best accomplished by focusing on those structures judged to be the most critical to plant performance and safety. The safety significance of each sub-element and its degradation with time can be evaluated using a numerical rating system. This will simplify the utility's efforts, thereby saving maintenance costs while providing a higher degree of assurance that performance is maintained. This paper describes the development of a rating system (ranking procedure) as part of the Plant Life Management of CANDU generating station concrete structures and illustrates its application to an operating plant. (author)

  15. Structural behavior of reinforced concrete structures at high temperatures

    International Nuclear Information System (INIS)

    Yamazaki, N.; Yamazaki, M.; Mochida, T.; Mutoh, A.; Miyashita, T.; Ueda, M.; Hasegawa, T.; Sugiyama, K.; Hirakawa, K.; Kikuchi, R.; Hiramoto, M.; Saito, K.

    1995-01-01

    To establish a method to predict the behavior of reinforced concrete structures subjected simultaneously to high temperatures and external loads, this paper presents the results obtained in several series of tests carried out recently in Japan. This paper reports on the material properties of concrete and steel bars under high temperatures. It also considers the heat transfer properties of thick concrete walls under transient high temperatures, and the structural behavior of reinforced concrete beams subjected to high temperatures. In the tests, data up to 800 C were obtained for use in developing a computational method to estimate the non-linear behavior of reinforced concrete structures exposed to high temperatures. (orig.)

  16. Overview of the use of prestressed concrete in US nuclear power plants

    International Nuclear Information System (INIS)

    Ashar, H.; Naus, D.J.

    1983-01-01

    In the United States it is required that the condition and functional capability of the ungrouted post-tensioning systems of prestressed-concrete nuclear-power-plant containments be periodically assessed. This is accomplished, in part, systematically through an inservice tendon inspection program which must be developed and implemented for each containment. An overview of the essential elements of the inservice inspection requirements is presented, and the effectiveness of these requirements is demonstrated through presentation of some of the potential problem areas which have been identified through the periodic assessments of the structural integrity of containments. Also, a summary of general problems which have been encountered with prestressed-concrete construction at nuclear-power-plant containments in the United States is presented: that is, dome delamination, cracking of anchorheads, settlement of bearing plates, etc. The paper will conclude with an assessment of the overall effectiveness of the prestressed-concrete containments

  17. A study on the effects of seawater on the durable life of concrete structures(I)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan; Chang, Bong Seok; Chang, Seung Yeob; Cheon, Se Jin; Cheong, Sang Hwa; Yu, Yeong; Shin, Yong Seok; Shin, Myeong Su; Hyeong, Sang Su [Seoul Nationl Univ., Seoul (Korea, Republic of)

    1998-06-15

    Recently, large scale concrete structures such as Nuclear Power Plants and offshore structures are actively being built in this country. These structures are subject to heavy attack due to seawater environment. A reasonable consideration for corrosion has not been paid to the structures in the past decades due to insufficient research data and guidelines. The durability os emerging as one of the most important factors in the design and construction of concrete structures. The purpose of the present study is, therefore, to explore the corrosion mechanism and penetration mechanism of chloride ion, and to establish the evaluation procedure of durability life of concrete structures. A comprehensive experimental program has been set up and severe the types and amount of cement and mineral admixtures. The test results on the corrosion and strength characteristics of various concrete with be reported in the second-year report since the corrosion tests need long time. The results can be used in the design and construction of concrete structures in the future.

  18. Review on the Strength Development Required for the Concrete Structure of Nuclear Power Plant under Cold Weather Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyung Teak; Park, Chun Jin; Ryu, Gum Sung; Kim, Do Gyeum; Lee, Jang Hwa [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2011-10-15

    As a part of a Department of Energy-Nuclear According to the specifications for the construction execution for a nuclear power plant (NPP), the cold weather concrete should be facilitated that comply with the regulations of ACI-306R. Here, in terms of the standards applied to the cold weather concrete, such concrete should be applied in the case where the daily average temperature is 5 .deg. C or less. So, according to the analysis on the average temperature in winter over the last one year at each NPP construction area, it was found that such had lowered by about 0.5 - 2 .deg. C as compared to the temperature during the normal years (the last ten years) and the number of days applied to the cold weather concrete according to the ACI regulations was shown as 83, so as around 1/4 of year falls into the cold weather conditions and furthermore the recent weather is getting severe, it is necessary to perform the appropriate insulation curing for the cold weather concrete. On the other hand, according to the regulations with regards to the curing conditions for cold weather concrete, the insulation curing of such should be appropriately performed under an environment of 5 .deg. C or greater until the strength of 3.5 MPa (500 Psi) develops. Likewise, according to the regulations regarding the cold weather concrete in the domestic concrete specifications, the insulation curing should be performed until a strength development of 5 MPa (715 Psi) considering the safety factor indicated to the ACI regulation under the temperature of 5 .deg. C or greater. According to the above-mentioned regulations, the NPP structure is required to develop a minimum strength of 5 MPa or greater, and to maintain such important qualities, including strength development, early anti-freezing and duality under cold weather conditions. However, even though the early strength of 5 MPa or greater is secured under the recent abnormal weather conditions and cold weather conditions, if the structure is

  19. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

  20. Compressive strength of structural concrete made with locally available coarse aggregates

    International Nuclear Information System (INIS)

    Kumar, A.; Khaskheli, G.B.

    2009-01-01

    Quality of CA (Coarse Aggregate) is one of the prime factors to control the quality of concrete. But construction industry of Sindh is not very much bothered about the quality of CA in concrete manufacturing. In Sindh, Hyderabad vicinity is comparatively rich in production of CA. This research is to evaluate the compressive strength of structural concrete made with CA obtained from five different crush plants (Petaro, Parker, Palari, Ghulam Hyder Baloch and Ongar), available in the vicinity of Hyderabad. ln total 360 concrete cubes (150x150x150mm) were manufactured, 72 for each source of CA by keeping 1:2:4 and 1:1.5:3 material ratios. The cubes were manufactured with 0.45 w/c (water cement ratio), 0.5 and 0.55 w/c and tested for compressive strength after 3, 7, 14 and 28 days of curing. Results show that performance of CA obtained from all the five crush plants remained in agreement with BS and ACI Code recommendations. Concrete made with CA obtained from Petaro and Parker gave higher early strength than that of others while concrete made with CA obtained from Petaro, Parker together with Palari gave higher 28th day compressive strength. (author)

  1. Sustainability and durability analysis of reinforced concrete structures

    Science.gov (United States)

    Horáková, A.; Broukalová, I.; Kohoutková, A.; Vašková, J.

    2017-09-01

    The article describes an assessment of reinforced concrete structures in terms of durability and sustainable development. There is a short summary of findings from the literature on evaluation methods for environmental impacts and also about corrosive influences acting on the reinforced concrete structure, about factors influencing the durability of these structures and mathematical models describing the corrosion impacts. Variant design of reinforced concrete structure and assessment of these variants in terms of durability and sustainability was performed. The analysed structure was a concrete ceiling structure of a parking house for cars. The variants differ in strength class of concrete and thickness of concrete slab. It was found that in terms of durability and sustainable development it is significantly preferable to use higher class of concrete. There are significant differences in results of concrete structures durability for different mathematical models of corrosive influences.

  2. Behaviour of concrete structures in fire

    Directory of Open Access Journals (Sweden)

    Fletcher Ian A.

    2007-01-01

    Full Text Available This paper provides a "state-of-the-art" review of research into the effects of high temperature on concrete and concrete structures, extending to a range of forms of construction, including novel developments. The nature of concrete-based structures means that they generally perform very well in fire. However, concrete is fundamentally a complex material and its properties can change dramatically when exposed to high temperatures. The principal effects of fire on concrete are loss of compressive strength, and spalling - the forcible ejection of material from the surface of a member. Though a lot of information has been gathered on both phenomena, there remains a need for more systematic studies of the effects of thermal exposures. The response to realistic fires of whole concrete structures presents yet greater challenges due to the interactions of structural elements, the impact of complex small-scale phenomena at full scale, and the spatial and temporal variations in exposures, including the cooling phase of the fire. Progress has been made on modeling the thermomechanical behavior but the treatment of detailed behaviors, including hygral effects and spalling, remains a challenge. Furthermore, there is still a severe lack of data from real structures for validation, though some valuable insights may also be gained from study of the performance of concrete structures in real fires. .

  3. Evaluation of the suitability for concrete using fly ash in N.P.P. structures

    International Nuclear Information System (INIS)

    Cho, M. S.; Song, Y. C.; Kim, S. W.; Ko, K. T.

    2002-01-01

    The nuclear power plant structures constructed in Korea has been generally used type V cement(sulfate-resisting Portland cement), but according to the study results reported recently, it shows that type V cement is superior the resistance of sulfate attack, but the resistance of salt damage is weaker than type I cement. It is increased the demands on the use of mineral admixtures such as fly ash, ground granulated blast-furnace slag instead of type V cement in order to improve the durability of concrete structures. But the study on concrete mixed with fly ash in Korea has been mainly performed on rheology and strength properties of the concrete. Therefore, this study is to improve the durability of concrete structures of N.P.P. as using fly ash cement instead of type V cement. As a results, the concrete containing fly ash is improved the resistance to salt attack, sulfate attack and freezing-thawing and is deteriorated the carbonation. But if it is used the concrete with high strength or low water-powder ratio, the concrete have not problem on the durability

  4. Reinforced concrete containment structures in high seismic zones

    International Nuclear Information System (INIS)

    Aziz, T.S.

    1977-01-01

    A new structural concept for reinforced concrete containment structures at sites where earthquake ground motions in terms of the Safe Shutdown Earthquake (SSE) exceeds 0.3 g is presented. The structural concept is based on: (1) an inner steel-lined concrete shell which houses the reactor and provides shielding and containment in the event of loss of coolant accident; (2) an outer annular concrete shell structure which houses auxilary reactor equipment and safeguards systems. These shell structures are supported on a common foundation mat which is embeded in the subgrade. Under stipulated earthquake conditions the two shell structures interact to resist lateral inertia forces. Thus the annular structure which is not a pressure boundary acts as a lateral support for the inner containment shell. The concept is practical, economically feasible and new to practice. An integrated configuration which includes the interior shell, the annular structure and the subgrade is analyzed for several static and dynamic loading conditions. The analysis is done using a finite difference solution scheme for the static loading conditions. A semi-analytical three-dimensional finite element scheme combined with a Fast Fourier Transform (FFT) algorithm is used for the dynamic loading conditions. The effects of cracking of the containment structure due to pressurization in conjunction with earthquake loading are discussed. Analytical results for both the finite difference and the finite element schemes are presented and the sensitivity of the results to changes in the input parameters is studied. General recommendations are given for plant configurations where high seismic loading is a major design consideration

  5. Structural Concrete, Science into Practice

    NARCIS (Netherlands)

    Bruggeling, A.S.G.

    1987-01-01

    There is a need for a more rational and unified approach to all types of concrete structure, reinforced of prestressed. The first chapter explains in a historical review why the approach of reinforced concrete and that of prestressed concrete have hitherto been very different. In outlining the

  6. Procedure for getting safety classed concrete structures approved by Finnish Radiation and Nuclear Safety Authority

    International Nuclear Information System (INIS)

    Halme, Ville-Juhani

    2015-01-01

    Posiva is preparing geological final disposal in the Finnish bedrock in Olkiluoto, Eurajoki. The final disposal facility includes encapsulation plant and underground repository. Most of the main civil structures are concrete structures. STUK is the supervising authority in civil structures. The National Building Code of Finland and STUK's Regulatory Guide on nuclear safety (YVL) are the most important instructions when constructing concrete structures into nuclear installation. Posiva has classified concrete structures in two classes according STUK's YVL-guidance: EYT (non-nuclear) and Safety Class 3 (SC 3, nuclear safety significance). When building SC 3 concrete structures, specific protocol must be followed. Protocol includes planned routines for design, construction, supervision, quality control (QC) and quality assurance (QA) activities. Documents relating concrete structures must be approved by Posiva and STUK before construction work. After structures have been designed and actual building is ongoing, there are two main steps. Before concreting, readiness inspection for concreting must be arranged. Readiness inspection will be arranged according to a specific plan and the date must be informed to STUK. After establishing readiness for concreting, casting work can begin. Once concrete structures are done, inspected and approved, final documentation according to a quality control plan will be reviewed by Posiva. After Posiva's approval, final documentation will be sent for STUK's approval. In the end STUK will give the permission for commissioning of the concrete structures after approved commissioning inspection. The document is made up of an abstract and a poster

  7. Experimental study on the shrinkage properties and cracking potential of high strength concrete containing industrial by-products for nuclear power plant concrete

    International Nuclear Information System (INIS)

    KIm, Baek Joong; Yi, Chong Ku

    2017-01-01

    In Korea, attempts have been made to develop high strength concrete for the safety and design life improvement of nuclear power plants. In this study, the cracking potentials of nuclear power plant-high strength concretes (NPP-HSCs) containing industrial by-products with W/B 0.34 and W/B 0.28, which are being reviewed for their application in the construction of containment structures, were evaluated through autogenous shrinkage, unrestrained drying shrinkage, and restrained drying shrinkage experiments. The cracking potentials of the NPP-HSCs with W/B 0.34 and W/B 0.28 were in the order of 0.34FA25 > 0.34FA25BFS25 > 0.34BFS50 > 0.34BFS65SF5 and 0.28FA25SF5 >> 0.28BFS65SF5 > 0.28BFS45SF5 > 0.28 FA20BFS25SF5, respectively. The cracking potentials of the seven mix proportions excluding 0.28FA25SF5 were lower than that of the existing nuclear power plant concrete; thus, the durability of a nuclear power plant against shrinkage cracking could be improved by applying the seven mix proportions with low cracking potentials

  8. Experimental study on the shrinkage properties and cracking potential of high strength concrete containing industrial by-products for nuclear power plant concrete

    Energy Technology Data Exchange (ETDEWEB)

    KIm, Baek Joong; Yi, Chong Ku [School of Civil, Environmental and Architectural Engineering, Korea University, Seoul (Korea, Republic of)

    2017-02-15

    In Korea, attempts have been made to develop high strength concrete for the safety and design life improvement of nuclear power plants. In this study, the cracking potentials of nuclear power plant-high strength concretes (NPP-HSCs) containing industrial by-products with W/B 0.34 and W/B 0.28, which are being reviewed for their application in the construction of containment structures, were evaluated through autogenous shrinkage, unrestrained drying shrinkage, and restrained drying shrinkage experiments. The cracking potentials of the NPP-HSCs with W/B 0.34 and W/B 0.28 were in the order of 0.34FA25 > 0.34FA25BFS25 > 0.34BFS50 > 0.34BFS65SF5 and 0.28FA25SF5 >> 0.28BFS65SF5 > 0.28BFS45SF5 > 0.28 FA20BFS25SF5, respectively. The cracking potentials of the seven mix proportions excluding 0.28FA25SF5 were lower than that of the existing nuclear power plant concrete; thus, the durability of a nuclear power plant against shrinkage cracking could be improved by applying the seven mix proportions with low cracking potentials.

  9. Concrete containment vessels (CCV) for nuclear power plants, (1)

    International Nuclear Information System (INIS)

    Ibe, Yukimi; Kitajima, Masatake

    1977-01-01

    Containment vessels (CV) and the construction of concrete containment vessels (CCV) for nuclear power plants are described generally, and their use and techniques in foreign countries are illustrated, in connection with the introduction of CCV to Japanese nuclear power plants. The introduction deals with the construction plan of Japanese nuclear power plants, and with the difficulties in the steel CV for large scale construction. The investigations, tests and researches are not yet sufficient. The prompt establishment of safety supported by technical criteria, analytical methods and experiments is desired. The second part deals with the consideration for aseismatic design, construction, function and characteristics of CCV. The classification and currently employed CCV, which is mainly reinforced concrete containment vessels (RCCV), are described, and the typical CCV employed for BWR is illustrated. Further, the typical arrangement of reinforcing steels at the cylindrical portion and the dome portion of RCCV is illustrated. The third part deals with the present state of CCV abroad. A prestressed concrete containment vessel (PCCV) of Turkey Point power plant is illustrated as a typical example of CCV. The tests reported in the international meeting for the design, construction and operation of concrete pressure vessels and concrete containment vessels at York University in England in 1975 are reviewed. Typical examples of the design conditions, the size and form, and the construction procedure for PCCV and RCCV abroad are reviewed. (Iwakiri, K.)

  10. Recycled construction and demolition concrete waste as aggregate for structural concrete

    Directory of Open Access Journals (Sweden)

    Ashraf M. Wagih

    2013-12-01

    Full Text Available In major Egyptian cities there is a surge in construction and demolition waste (CDW quantities causing an adverse effect on the environment. The use of such waste as recycled aggregate in concrete can be useful for both environmental and economical aspects in the construction industry. This study discusses the possibility to replace natural coarse aggregate (NA with recycled concrete aggregate (RCA in structural concrete. An investigation into the properties of RCA is made using crushing and grading of concrete rubble collected from different demolition sites and landfill locations around Cairo. Aggregates used in the study were: natural sand, dolomite and crushed concretes obtained from different sources. A total of 50 concrete mixes forming eight groups were cast. Groups were designed to study the effect of recycled coarse aggregates quality/content, cement dosage, use of superplasticizer and silica fume. Tests were carried out for: compressive strength, splitting strength and elastic modulus. The results showed that the concrete rubble could be transformed into useful recycled aggregate and used in concrete production with properties suitable for most structural concrete applications in Egypt. A significant reduction in the properties of recycled aggregate concrete (RAC made of 100% RCA was seen when compared to natural aggregate concrete (NAC, while the properties of RAC made of a blend of 75% NA and 25% RCA showed no significant change in concrete properties.

  11. Quality of concrete plant wastewater for reuse

    Directory of Open Access Journals (Sweden)

    H. M. Paula

    Full Text Available Efficient water use is one of the most important requirements of cleaner production, and the use of the wastewater from concrete production can be an important means to this end. However, there are no Brazilian studies on the quality of concrete plant wastewater and the activities in which such water can be used. This paper aims to evaluate the quality of concrete plant wastewater and to propose guidelines for its treatment for non-potable applications. Wastewater samples were collected from three points in the studied treatment system, and tests were later performed in the laboratory to evaluate the water quality. The results obtained were compared with the limit values for the quality parameters that have been used for the analysis of the non-potable water supply in Brazil. The results indicate a need to at least add coagulation and pH correction processes to the treatment system.

  12. Preliminary research on time degradation of mechanical characteristics of concretes used in nuclear power plant buildings

    International Nuclear Information System (INIS)

    Ciornei, R.

    1991-01-01

    To provide severe safety rules governing the operation of nuclear power plants, reinforced and concrete elements and structures should preserve the quality and time-constant parameters throughout the life-time of the buildings. Some important design parameters are concrete strength and elasticity modulus. Preliminary research on concrete specimens made in laboratory whose strength and static and dynamic elasticity modulus have been determined after an ageing test, has aimed at nuclear power design and building. (author)

  13. Research requirements for improved design of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Holley, M.J. Jr.

    1978-01-01

    Reinforced concrete is a competitive material for the construction of nuclear power plant containment structures. However, the designer is constrained by limited data on the behavior of certain construction details which require him to use what may be excessive rebar quantities and lead to difficult and costly construction. This paper discusses several design situations where research is recommended to increase the designer's options, to facilitate construction, and to extend the applicability of reinforced concrete to such changing containment requirements as may be imposed by an evolving nuclear technology. (Auth.)

  14. Structure formation control of foam concrete

    Science.gov (United States)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya; Syrkin, Oleg

    2017-01-01

    The process of predetermined foam concrete structure formation is considered to be a crucial issue from the point of process control and it is currently understudied thus defining the need for additional research. One of the effective ways of structure formation control in naturally hardening foam concrete is reinforcement with dispersed fibers or introduction of plasticizers. The paper aims at studying the patterns of influence of microreinforcing and plasticizing additives on the structure and performance properties of foam concrete. Preparation of foam concrete mix has been conducted using one-step technology. The structure of modified foam concrete has been studied by means of electron microscopy. The cellular structure of foam concrete samples with the additives is homogeneous; the pores are uniformly distributed over the total volume. It has been revealed that introduction of the Neolas 5.2 plasticizer and microreinforcing fibers in the foam concrete mixture in the amount of 0.4 - 0.1 % by weight of cement leads to reduction of the average pore diameter in the range of 45.3 to 30.2 microns and the standard deviation of the pore average diameter from 23.6 to 9.2 in comparison with the sample without additive. Introduction of modifying additives has stimulated formation of a large number of closed pores. Thus porosity of conditionally closed pores has increased from 16.06 % to 34.48 %, which has lead to increase of frost resistance brand of foam concrete from F15 to F50 and to reduction of its water absorption by weight by 20 %.

  15. Porous Structure of Road Concrete

    OpenAIRE

    Пшембаев, М. К.; Гиринский, В. В.; Ковалев, Я. Н.; Яглов, В. Н.; Будниченко, С. С.

    2016-01-01

    Having a great number of concrete structure classifications it is recommended to specify the following three principal types: microstructure – cement stone structure; mesostructure – structure of cement-sand mortar in concrete; macrostucture – two-component system that consists of mortar and coarse aggregate. Every mentioned-above structure has its own specific features which are related to the conditions of their formation. Thus, microstructure of cement stone can be characterized by such st...

  16. Nuclear Power Plant Prestressed Concrete Containment Vessel Structure Monitoring during Integrated Leakage Rate Testing Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Jinke Li

    2017-04-01

    Full Text Available As the last barrier of nuclear reactor, prestressed concrete containment vessels (PCCVs play an important role in nuclear power plants (NPPs. To test the mechanical property of PCCV during the integrated leakage rate testing (ILRT, a fiber Bragg grating (FBG sensor was used to monitor concrete strain. In addition, a finite element method (FEM model was built to simulate the progress of the ILRT. The results showed that the strain monitored by FBG had the same trend compared to the inner pressure variation. The calculation results showed a similar trend compared with the monitoring results and provided much information about the locations in which the strain sensors should be installed. Therefore, it is confirmed that FBG sensors and FEM simulation are very useful in PCCV structure monitoring.

  17. Biaxial failure criteria and stress-strain response for concrete of containment structure

    International Nuclear Information System (INIS)

    Lee, S. K.; Woo, S. K.; Song, Y. C.; Kweon, Y. K.; Cho, C. H.

    2001-01-01

    Biaxial failure criteria and stress-strain response for plain concrete of containment structure on nuclear power plants are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f 2 /f 1 =-1/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 5660 psi are provided, and the biaxial failure behaviors for three biaxial loading areas are plotted respectively. And, various analytical equations having the reliability are proposed for representations of the biaxial failure criteria and stress-strain response curves of concrete

  18. Electrochemical techniques to detect corrosion in concrete structures in nuclear installations - Technical note

    International Nuclear Information System (INIS)

    2002-01-01

    optimum time for repair. 3. Control of efficiency of repair technologies. All nuclear plants have concrete structures which need a correct performance and aging for assuring the necessary protection to the public. Metallic corrosion is recognized as the most important degradation mechanism that may affect concrete structures. Its early detection will help the nuclear installations to be maintained in the necessary margin of safe operation. The monitoring of feasibility of occurrence of this process has, therefore, to be one of the priorities in the overall plan of maintenance of nuclear plants and installations and an adequate periodicity should be established, linked to the particular environments and type of structure. Regarding the necessary strategy of inspection and maintenance, particular non-accessible parts of concrete structures in new plants could be instrumented by sensors in order to help their assessment. Attached sensors can be also installed in existing plants, in operation or in decommissioning, when their aging is in a risky or critical situation. However, while simple periodical inspection using non-permanent NDET will be the correct operation in those cases of good aging performance of the metal embedded in concrete

  19. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    Science.gov (United States)

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. MOBILE MORTAR CONCRETE PLANTS FOR BUILDING COMPLEX OF BELARUS: ADVANTAGES AND DISADVANTAGES

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2015-01-01

    Full Text Available The paper considers main advantages and disadvantages of mobile mortar concrete plants in comparison with stationary concrete mixing units. The main idea of the mobility is to provide quick movement. In its turn, this approach imposes some restrictions on dimensions and weights of concrete mixing equipment. However in the context of the concrete mixing equipment and construction site as whole the mobility concept is considered in the form of three components: minimum expenses on site preparation for assembly of a mortar concrete plant, transportability, reduction in installation and startand-adjustment periods. In this regard processing chain for production of concrete and mortar mixes is divided in separate complete operations. Then it is necessary to develop modules which are performing the required operations. Every module is developed in accordance with the size of a shipping container in order to make transportation convenient. Detachable connections are stipulated in the place of module linkages, electrical wiring, pipelines for supply water and chemical admixtures, pneumatics. Henceforth, these connections make it possible to reduce time for on-site assembly and disassembly of the equipment.The paper presents a mobile mortar concrete unit of block-module arrangement which has been developed within the framework of the State Scientific Research Programme at the BNTU. The unit has been manufactured using production capacities of JSC “Viprotekh” and it has been successfully introduced in production process. One of the promising directions is to use the mobile mortar concrete plants which are located and which are operating directly on construction sites. Their economic efficiency becomes higher with an increase of distance to the nearest stationary mortar concrete unit and scope of concreting works. Mobile mortar concrete plants are mainly intended for construction organizations which are realizing construction projects away from urban

  1. Dynamic analysis of steel-concrete structure of TVO power plant containment building

    International Nuclear Information System (INIS)

    Hakala, M.; Karjunen, T.

    1996-08-01

    The report presents results from a study concerning the ability of the containment to withstand the loads caused by steams explosions which are possible during a severe accident at TVO plant (BWR). In the first phase, the suitability of the engineering mechanics code (FLAC) for modelling the dynamic response of damaging steel-concrete structures was tested by post-calculating a small scale test. As a result, a new dynamic material model taking account the fracture orientation was developed. In containment calculations both the developed and the best generally accepted material model were used. The loads against the containment were obtained from a simple model for steam explosions, which allowed the impulse of the pressure load to be fixed by tuning a few parameters. The ability of the containment to withstand the pressure pulses was analysed with loads of 5, 1 0, 20, 40, 60, and 80 kPa s impulse. As a results, the area and magnitude of permanent damage together with time histories of displacement and stress at critical points are presented. The estimations on the consequences of the observed structural damages as far as the containment leak tightness and stability are concerned and presented as conclusions. (9 refs.)

  2. Nondestructive testing of concrete structures

    International Nuclear Information System (INIS)

    Rufino, Randy R.; Relunia, Estrella

    1999-01-01

    Nondestructive testing of concrete is highly inhomogeneous which makes it cumbersome to setup experimental procedures and analyze experimental data. However, recent research and development activities have discovered the different methods of NDT, like the electromagnetic method, ultrasonic pulse velocity test, pulse echo/impact echo test, infrared thermography, radar or short pulse radar techniques, neutron and gamma radiometry, radiography, carbonation test and half-cell potential method available for NDT of concrete structures. NDT of concrete is emerging as a useful tool for quality control and assurance. This papers also describes the more common NDT methods discussed during the two-week course on 'Nondestructive Testing of Concrete Structures', held at the Malaysian Institute for Nuclear Technology Research (MINT) in Malaysia, which was jointly organized by MINT and the International Atomic Energy Agency (IAEA)

  3. A study on the effect of crack in concrete structure in the point of radiation shielding

    International Nuclear Information System (INIS)

    Lee, Chang-Min; Lee, Yoon-Hee; Lee, Kun-Jai; Cho, Cheon-Hyung; Choi, Byung-Il; Lee, Heung-Young

    2005-01-01

    The saturation of South Korea's at-reactor (AR) spent fuel storage pools has created a necessity for additional spent fuel storage capacity. Because the South Korean government has a plan to increase the number of nuclear power plants to 27 units by 2016, the increase of spent nuclear fuel generation will be accelerated. Because there is no concrete plan for spent unclear fuel permanent disposal, the Korea hydraulic nuclear power company is planning to construct dry storage facility. Spent nuclear fuel from CANDU type nuclear power plant will be stored in MACSTOR-400 composed by reinforced concrete. Because it is new model, it has to be licensed. Life time estimation is needed for licensing. Deterioration of reinforced concrete structure is currently of great concern for life time estimation. The most significant form of deterioration is reinforcement corrosion that gives rise to crack the concrete structure. In this study, in order to estimate the life time of MACSTOR, the tendency of crack creation, propagation and the effect of crack in concrete structure against radiation shielding are investigated. Crack creation and propagation depends on concrete cover thickness and c/d ratio. The surface dose rate at the concrete shield in MACSTOR is simulated by MCNP code about several cases. Generally in the case of point source, surface dose rate depends on shape, width and length of crack. In the case of MACSTOR-400, It is estimated that crack is not dominant factor in the point of radiation shielding in less than 0.4mm of crack width. Above results will be helpful to estimate the life time of concrete structure as radiation shield

  4. Research on working property and early age mechanical property of self-compacting concrete used in steel-concrete structure

    International Nuclear Information System (INIS)

    Zhao Yongguang

    2013-01-01

    Background: Self-compacting concrete that has good working property is the prerequisite of steel-concrete structure. The early age mechanical property of self-compacting concrete is the important parameter when design steel-concrete structure. Purpose: This paper attempts to research the working property and early age mechanical property of self-compacting concrete. Methods: Test is used to research the working property and early age mechanical property of self-compacting concrete. Results: Self-compacting concrete that could meet the requirement of steel-concrete structure has been mixed and parameters of early age mechanical property of self-compacting concrete which is necessary for design of steel-concrete structure have been presented. Conclusions: Base on the results, this paper can guide the construction of self-compacting concrete in steel-concrete structure and the design and construction of steel-concrete structure. (author)

  5. Model techniques for testing heated concrete structures

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1983-01-01

    Experimental techniques are described which may be used in the laboratory to measure strains of model concrete structures representing to scale actual structures of any shape or geometry, operating at elevated temperatures, for which time-dependent creep and shrinkage strains are dominant. These strains could be used to assess the distribution of stress in the scaled structure and hence to predict the actual behaviour of concrete structures used in nuclear power stations. Similar techniques have been employed in an investigation to measure elastic, thermal, creep and shrinkage strains in heated concrete models representing to scale parts of prestressed concrete pressure vessels for nuclear reactors. (author)

  6. Comparative analysis of structural concrete quality assurance practices on nine nuclear power plant construction projects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

    1978-06-01

    The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on nine nuclear power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards.

  7. Comparative analysis of structural concrete quality assurance practices on nine nuclear power plant construction projects. Final report

    International Nuclear Information System (INIS)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

    1978-06-01

    The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on nine nuclear power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards

  8. Ultrasonic measurements of undamaged concrete layer thickness in a deteriorated concrete structure

    NARCIS (Netherlands)

    Demcenko, A.; Visser, Roy; Akkerman, Remko

    2016-01-01

    Ultrasonic wave propagation in deteriorated concrete structures was studied numerically and experimentally. Ultrasonic single-side access immersion pulse-echo and diffuse field measurements were performed in deteriorated concrete structures at 0.5 MHz center frequency. Numerically and experimentally

  9. Steel-concrete bond model for the simulation of reinforced concrete structures

    International Nuclear Information System (INIS)

    Mang, Chetra

    2015-01-01

    Reinforced concrete structure behavior can be extremely complex in the case of exceeding the cracking threshold. The composite characteristics of reinforced concrete structure should be finely presented especially in the distribution stress zone between steel-concrete at their interface. In order to compute the industrial structures, a perfect relation hypothesis between steel and concrete is supposed in which the complex phenomenon of the two-material relation is not taken into account. On the other hand, this perfect relation is unable to predict the significant disorders, the repartition, and the distribution of the cracks, which is directly linked to the steel. In literature, several numerical methods are proposed in order to finely study the concrete-steel bond behavior, but these methods give many difficulties in computing complex structures in 3D. With the results obtained in the thesis framework of Torre-Casanova (2012), the new concrete-steel bond model has been developed to improve performances (iteration numbers and computational time) and the representation (cyclic behavior) of the initial one. The new model has been verified with analytical solution of steel-concrete tie and validated with the experimental results. The new model is equally tested with the structural scale to compute the shear wall behavior in the French national project (CEOS.fr) under monotonic load. Because of the numerical difficulty in post-processing the crack opening in the complex crack formation, a new crack opening method is also developed. This method consists of using the discontinuity of relative displacement to detect the crack position or using the slip sign change between concrete-steel. The simulation-experiment comparison gives validation of not only the new concrete-steel bond model but also the new crack post-processing method. Finally, the cyclic behavior of the bond law with the non-reduced envelope is adopted and integrated in the new bond model in order to take

  10. Effect of elevated temperatures on heavy concrete structural strength in Qinshan phase 3 CANDU 6 reactor buildings

    International Nuclear Information System (INIS)

    Alikhan, S.; Khan, A.F.; Chen, S.

    2005-01-01

    Heavy concrete is commonly used inside the Qinshan Phase 3 CANDU 6 reactor buildings for radiation shielding functions in order to provide access to key areas during reactor operation. In some cases, the heavy concrete elements are also structural elements. Concerns have been raised about the functional performance of the heavy concrete structural elements, specifically the primary heat transport pump (PHTS) supporting slabs, surrounding the feeder cabinets when subjected to elevated temperatures between 42 degree C and 121 degree C and their corresponding temperature gradients on a long-term basis during the normal operation of the plant. This paper presents the results of a test investigation on the strength of heavy concrete under elevated temperature conditions being experienced by the heavy concrete structural elements around the feeder cabinet to confirm that these structural elements meet their functional requirements. The loading conditions consist subjecting the specimens to the elevated temperatures and temperature gradient noted during commissioning, including the effect of epoxy coating. The heavy concrete mix proportion and materials of the test samples (ilmenite aggregate and Portland cement) are identical to those used for heavy concrete structural elements surrounding the feeder cabinet. Subsequent to the confirmation of the functional requirements of the heavy concrete structural elements, alarm limits are recommended for these structural elements. (authors)

  11. DISPATCHING CONTROL SYSTEM OF THE CONCRETE BATCHING PLANTS

    Directory of Open Access Journals (Sweden)

    Andrey Vladimirovich Ostroukh

    2015-09-01

    Full Text Available This paper proposes an approach to the design of dispatching control system of the concrete batching plant, which is a set of hardware maintenance, information, mathematical and software for control of technological objects. The proposed system is scalable and can include a control subsystem of mobile concrete plant, laboratory, subsystems, access control, and personnel management jobs. The system provides optimum automating the collection and processing of information for generating control signals and transmitting them without loss and distortion to the actuators in order to achieve the most efficient operation of process control object as a whole.

  12. STRUCTURAL AND THERMOPHYSICAL PROPERTIES OF HARDENING CONCRETE

    Directory of Open Access Journals (Sweden)

    L. Krasulina

    2012-01-01

    Full Text Available Structural and thermophysical properties of thermally treated concrete have been studied in the paper. The paper demonstrates regularities of changes in structural and thermophysical properties of concrete during heat treatment process. It is established that stabilization of coefficient values for heat- and temperature conductivity of concrete corresponds to completion of the process pertaining to intensive formation of the material pore structure and indicates the possibility of transition from the stage of isothermal extraction to the stage of temperature decrease. The obtained results are confirmed by studies of strength growth kinetics of concrete samples.

  13. Non-Destructive Testing for Concrete Structure

    International Nuclear Information System (INIS)

    Tengku Sarah Tengku Amran; Noor Azreen Masenwat; Mohamad Pauzi Ismail

    2015-01-01

    Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. It is essential in the inspection of alteration, repair and new construction in the building industry. There are a number of non-destructive testing techniques that can be applied to determine the integrity of concrete in a completed structure. Each has its own advantages and limitations. For concrete, these problems relate to strength, cracking, dimensions, delamination, and inhomogeneities. NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development. This paper discussed the concrete inspection using combined methods of NDT. (author)

  14. Concrete laying laboratory

    International Nuclear Information System (INIS)

    Bastlova, K.

    1986-01-01

    The task of the concrete laying laboratory established within a special department for quality control and assurance at the Dukovany nuclear power plant, is to check the composition of concrete mixes produced by the central concrete production plant on the site, and the shipment, laying and processing of concrete. The composition is given of special barite and serpentinite concretes designed for biological shields. The system of checks and of filing the results is briefly described. Esperience is summed up from the operation of the concrete laying laboratory, and conclusions are formulated which should be observed on similar large construction sites. They include the precise definition of the designer's requirements for the quality of concrete, the surface finish of concrete surfaces, the method of concreting specific structures around bushings, increased density reinforcements and various technological elements, and requirements for shipment to poorly accessible or remote places. As for the equipment of the laboratory, it should be completed with an instrument for the analysis of fresh concrete mixes, a large capacity drying kiln, etc. (Z.M.)

  15. Concrete Technology program for nuclear power plants

    International Nuclear Information System (INIS)

    Hassazadeh, M.; Wrangensten, L.

    2009-01-01

    The nuclear power plants in Sweden and Finland were built during the seventies/eighties and it is planned to extend their service life and increase their production capacity. The challenges are now to assess the condition of the concrete structures; to verify whether or not the structures can withstand the prescribed loads and functions; and verify if the structures can be upgraded in order to fulfil the requirements regarding load bearing and functional capacity. A research program was launched whose priority is condition assessment of the reactor containment. The research includes condition of the pre-stressing reinforcement, reinforcement bars, lining, leakage etc. The conditions are assessed both by destructive and non-destructive test methods. The addressed properties are physical, mechanical, electro-chemical and geometrical. The paper presents the organisation of the program, the co-operating partners, the research program, and the content of the on-going and planned research projects

  16. Structural aging program to assess the adequacy of critical concrete components in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Marchbanks, M.F.; Oland, C.B.; Arndt, E.G.

    1989-01-01

    The Structural Aging (SAG) Program is carried out by the Oak Ridge National Laboratory (ORNL) under sponsorship of the United States Nuclear Regulatory Commission (USNRC). The Program has evolved from preliminary studies conducted to evaluate the long-term environmental challenges to light-water reactor safety-related concrete civil structures. An important conclusion of these studies was that a damage methodology, which can provide a quantitative measure of a concrete structure's durability with respect to potential future requirements, needs to be developed. Under the SAG Program, this issue is being addressed through: establishment of a structural materials information center, evaluation of structural component assessment and repair technologies, and development of a quantitative methodology for structural aging determinations. Progress to date of each of these activities is presented as well as future plans. 7 refs., 5 figs

  17. Irradiated Concrete in Nuclear Power Plants: Bridging the Gap in Operational Experience

    International Nuclear Information System (INIS)

    Hohmann, Brian P.; Esselman, Thomas C.; Wall, James J.

    2012-01-01

    The world's fleet of operating nuclear power plants (NPP) has been in-service for more than 20 years. In order to support the increasing demand for inexpensive power, many plants will be required to operate beyond 40 years, which was the original licensing period for existing NPPs. Improved knowledge of the performance of irradiated concrete is required to form a technical basis for long term operation (operation to 80+ years) of nuclear plants around the world. To date, operating experience (OE) of concrete subjected to irradiation has been acceptable, but there is an absence of data on this topic for extended periods of operation. The lack of empirical data has contributed to the difficulty of quantifying the long term behavior of concrete that is experiencing irradiation. Programs are in place that address other degradation mechanisms of concrete, but a clear and focused program is required on the effects of radiation. This paper presents a review of the available literature on the topic of the long-term irradiation effects on the mechanical properties of concrete, and provides a proposed methodology for the characterization of irradiated concrete removed from shut down or decommissioned commercial plants. (author)

  18. Sustainable monitoring of concrete structures : strength and durability performance of polymer-modified self-sensing concrete

    OpenAIRE

    Torgal, Fernando Pacheco; Gonzalez, J.; Jalali, Said

    2012-01-01

    Concrete structures all over the world are reaching the end of their service life sooner than expected. This is due to the fact that ordinary Portland cement-based concrete deteriorates under environmental actions and also that structural inspections and conservation actions are expensive. Besides, as they consume energy and non-renewable resources, they have negative environmental impacts. Self-sensing concrete provides an alternative way of monitoring concrete-reinforced structures...

  19. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete.

    Science.gov (United States)

    López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge

    2016-02-02

    This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors' knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  20. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete

    Directory of Open Access Journals (Sweden)

    Antonio López-Uceda

    2016-02-01

    Full Text Available This research aims to produce non-structural concrete with mixed recycled aggregates (MRA in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%, using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  1. Maintenance and Repair of Concrete Structures

    NARCIS (Netherlands)

    Bijen, J.M.J.M.

    1989-01-01

    In 1987 and 1988 a series of articles was published in the Dutchjournal "Cement" about maintenance and repair of concrete structures. The series was written to promote the transfer of know-how concerning maintenance and repair of concrete structures. Use has been made of know-how developed in the

  2. Maintenance and preservation of concrete structures. Report 3: Abrasion-erosion resistance of concrete

    Science.gov (United States)

    Liu, T. C.

    1980-07-01

    This report describes a laboratory test program on abrasion-erosion resistance of concrete, including the development of a new underwater abrasion-erosion test method. This program was designed to evaluate the relative abrasion-erosion resistance of various materials considered for use in the repair of erosion-damaged concrete structures. The test program encompassed three concrete types (conventional concrete, fiber-reinforced concrete, and polymer concrete); seven aggregate types (limestone, chert, trap rock, quartzite, granite, siliceous gravel, and slag); three principal water-cement rations (0.72, 0.54, and 0.40); and six types of surface treatment (vacuum, polyurethane coating, acrylic mortar coating, epoxy mortar coating, furan resin mortar coating, and iron aggregate topping). A total of 114 specimens made from 41 batches of concrete was tested. Based on the test data obtained, a comprehensive evaluation of the effects of various parameters on the abrasion-erosion resistance of concrete was presented. Materials suitable for use in the repair of erosion-damaged concrete structures were recommended. Additional work to correlate the reported findings with field performance was formulated.

  3. VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2016-06-01

    Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.

  4. Reinforced concrete structures under impact and impulsive loading: recent development, problems and trends

    International Nuclear Information System (INIS)

    Plauk, G.; Herter, J.

    1984-01-01

    Nuclear plant facilities and other reinforced concrete structures have to be regarded as to their safety in design and construction with respect to impact and impulsive loading in order to avoid serious damage to mankind and environment. The paper gives a survey on theoretical and experimental developments currently in progress, in particular regarding airplane crash. Some new results arising out of several research programs relevant to particular problems of impact loading have been reviewed and are presented. Experimental investigation for determination of material properties of plain concrete, reinforcing steel as well as steel-concrete bond under high strain-rates are treated in this paper including theoretical approaches for the respective material laws. An outline of soft missile impact tests performed on structural members, e.g. beams and plates, to determine the load deformation or fracture behaviour is given. Furthermore, numerical models and calculations to analyse structural components and structures under impact loading were discussed. (Author) [pt

  5. Studies on various characteristics of concrete structures using crushed sand

    International Nuclear Information System (INIS)

    Mimatsu, Makoto; Sugita, Hideaki; Yonemura, Masataka.

    1985-01-01

    With the recent advances of construction industry, the demands for concrete, hence for aggregate, are rising. The sand as such is in extreme shortage due to the exhaustion of river sand. Under the situation, the recent trends are for the use of crushed sand, i.e. the artificial sand obtained by crushing rocks, which have advantages of stabilized quality and adequate supplies. In building of nuclear power plants requiring large amounts of concrete, the usage of crushed sand is now unavoidable. The following are described : the situation of aggregate in Kyushu. production method of crushed sand and the quality standards, rocks used for crushed stone and sand and the properties, quality survey on crushed sand and the basic tests, characteristic tests of crushed-stone and -sand mixed concrete, the application of crushed sand in structures of the Sendai Nuclear Power Station. (Mori, K.)

  6. Comparative analysis of structural concrete Quality Assurance practices on nine nuclear and three fossil fuel power plant construction projects. Final summary report

    International Nuclear Information System (INIS)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.J. Jr.

    1978-12-01

    A summary of two reports, COO/4120-1 and COO/4120-2, is given. A comparative analysis was made of the Quality Assurance practices related to the structural concrete phase on nine nuclear and three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. For the nuclear projects the analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. For the fossil projects the analysis identified the response of each Quality Assurance program to criteria similar to those which were applicable in the nuclear situation. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects

  7. Prestressed and reinforced concrete containments. Analysis - design - construction

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1975-01-01

    Nuclear reactors performing in the German Federal Republic to date were supplied with steel containments. The first reinforced concrete and prestressed concrete containments, respectively, are going to be used for the nuclear power plants Kalkar and Gundremmingen (KRB II) as well as for the HTR plant. Because of their function and nature of loading these structures, similarly to the prestressed concrete reactor pressure vessels, belong to the special structures of civil engineering. Yet, they are substantially different from the prestressed concrete reactor pressure vessels. The problems connected with analysis, design, and construction of these structures are new as well. (orig.) [de

  8. Ultimate internal pressure capacity of concrete containment structures

    International Nuclear Information System (INIS)

    Krishnaswamy, C.N.; Namperumal, R.; Al-Dabbagh, A.

    1983-01-01

    Lesson learned from the accident at Three-Mile Island nuclear plant has necessitated the computation of the ultimate internal pressure capacity of containment structures as a licensing requirement in the U.S. In general, a containment structure is designed to be essentially elastic under design accident pressure. However, as the containment pressure builds up beyond the design value due to a more severe postulated accident, the containment response turns nonlinear as it sequentially passes through cracking of concrete, yielding of linear plate, yielding of rebar, and yielding of post-tensioning tendon (if the containment concrete is prestressed). This paper reports on the determination of the ultimate internal pressure capacity and nonlinear behavior of typical reinforced and prestressed concrete BWR containments. The probable modes of failure, the criteria for ultimate pressure capacity, and the most critical sections are described. Simple equations to hand-calculate the ultimate pressure capacity and the nonlinear behavior at membrane sections of the containment shell are presented. A nonlinear finite element analysis performed to determine the nonlinear behavior of the entire shell including nonmembrane sections is briefly discribed. The analysis model consisted of laminated axisymmetric shell finite elements with nonlinear stress-strain properties for each material. Results presented for typical BWR concrete containments include nonlinear response plots of internal pressure versus containment deflection and strains in the liner, rebar, and post-tensioning tendons at the most stressed section in the shell. Leak-tightness of the containment liner and the effect of thermal loads on the ultimate capacity are discussed. (orig.)

  9. The use of concrete-filled steel structures for modular construction of advanced reactors

    International Nuclear Information System (INIS)

    Braverman, J.; Morante, R.; Hofmayer, C.; Graves, H.

    1997-01-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. This paper presents the results of a research program which evaluated the use of modular construction for safety-related structures in advanced nuclear power plant designs. The research program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules

  10. CONCRETE MIX DESIGN FOR STRUCTURES SUBJECTED TO EXPOSURE CLASS XC1 DEPENDING ON CONCRETE COVER

    Directory of Open Access Journals (Sweden)

    O. Yu. Cherniakevich

    2016-01-01

    Full Text Available The reinforced steel corrosion which is the most important problem of reinforced concrete structures durability is generally stipulated for carbonization of concrete surrounding it. Concrete cover calculation at the design stage is predicated one because of the differences in manufacturing conditions and use of constructions. The applying of the probabilistic approaches to the carbonation process modeling allows to get predicated grade of the depth of carbonization of concrete and, thus, to settle minimum concrete cover thickness for a given projected service life of a construction. The procedures for concrete mix design for different strength classes of concrete are described in the article. Current recommendations on assignment of concrete strength class as well as concrete cover are presented. The European Standard EN 206:2013 defines the content requirements for the concrete structures operated in the exposure class XC1, including the minimum values of water-cement ratio, minimum cement content, and minimum strength class of concrete. Since the standard does not include any basis or explanations of the requirements, we made an effort to develop a scientific justification for the mentioned requirements. We developed the probabilistic models for the process of carbonation of concrete based on the concrete mix which was designed using the software VTK-Korroziya. The reinforced concrete structures with concrete cover 20–35 mm operated in the most unfavorable conditions within the exposure class XC1 were analyzed. The corresponding probabilistic calculations of the depth of carbonated concrete are described in the article. 

  11. Concrete works for Hamaoka No. 1 nuclear power plant

    International Nuclear Information System (INIS)

    Horiuchi, Minoru; Sugihara, Kazuo; Iwasawa, Jiro.

    1975-01-01

    Various aspects of concrete works performed for the reactor building of Hamaoka No.1 plant are reviewed. Control building and waste disposal building were all together combined with the reactor building in order to improve safety against earthquakes. Special consideration was given for the quality control of concrete works by establishing quality control committee, making quality control manual and by performing daily examination and monthly report. The quality and various materials of concrete used are described. The composition of concrete used for various parts of the building is also listed. Detailed description is made regarding the concrete placing for foundation mat, under a containment vessel, and the construction of air gaps and the placing of shielding concrete around the containment vessel. Curves representing the temperature history of concrete at various points are presented. As for testing, the items of test, methods of measurement, and the results of these test and measurement are presented in detail. (Aoki, K.)

  12. Examination and testing requirements for concrete containment structures for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    This Standard provides the examination and testing requirements that will apply to the work of any organization participating in the construction, installation, and fabrication of parts or components of concrete containment structures, or both, that are defined as class containment. 2 tabs.

  13. Examination and testing requirements for concrete containment structures for CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1993-07-01

    This Standard provides the examination and testing requirements that will apply to the work of any organization participating in the construction, installation, and fabrication of parts or components of concrete containment structures, or both, that are defined as class containment. 2 tabs

  14. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    NARCIS (Netherlands)

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation

  15. Quality control of concrete structures in nuclear power plant, (3)

    International Nuclear Information System (INIS)

    Takahashi, Hisao; Kawaguchi, Tohru; Oike, Takeshi; Morimoto, Shoichi; Takeshita, Shigetoshi.

    1979-01-01

    In general, concrete placed in the winter season has a tendency to have lower strength at the age of 4 weeks due to low curing temperature after placement. Therefore, under the Japanese code, the target mix Proportions in the winter season are modified adding an extra correction factor based on air temperature. Meanwhile, the quality control system for mass concrete to be placed in the winter system is indistinct at this stage. It is the aim of this report to present the results of investigations to clarify the following two subjects: (1) whether the correction factor due to temperature is needed or not for mass concrete in the winter season; (2) what kind of curing should be applied to control cylinders for estimating strength of mass concrete. (author)

  16. The Service Life Evaluation for Concrete Structure of NPP

    International Nuclear Information System (INIS)

    Lee, Choon Min; Kim, Seong Soo; Bae, Sung Hwan; Sik, Yoon Eui

    2014-01-01

    Prolonged exposure to the marine environment degrades the durability of concrete and shortens the service life of concrete due to degradation factors such as chloride, carbonation, freezing and thawing, sulfate. Therefore, many country's organizations like the Korea Concrete Institute (KCI), the American Concrete Institute (ACI), the International Federation for Structural Concrete (FIB), the American Society for Testing and Material (ASTM) which recognized the seriousness of this deterioration proposed equation models to evaluate the service life for the concrete structures. As a result, this paper is to especially consider the service life evaluation using these equation models for concrete structure of NPP in Korea compared with 60 years as a design service life. The concrete durability evaluation for Shin-Hanul NPP units 1 and 2 is carried out by using typically proposed assessment models in domestic and foreign standard. It is confirmed that the service life of concrete durability for each of deterioration factors is significantly higher than 60 years as a design service life. As a result, the study of combined deterioration for the concrete structures of NPP in future is positively necessary and maintenance control through regular monitoring should be conducted to secure safety margin basis

  17. A Demonstration of Concrete Structural Health Monitoring Framework for Degradation due to Alkali-Silica Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Peter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-04-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant that is subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification and prognosis. This report focuses on degradation caused by ASR (alkali-silica reaction). Controlled specimens were prepared to develop accelerated ASR degradation. Different monitoring techniques – thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) -- were used to detect the damage caused by ASR. Heterogeneous data from the multiple techniques was used for damage diagnosis and prognosis, and quantification of the associated uncertainty using a Bayesian network approach. Additionally, MapReduce technique has been demonstrated with synthetic data. This technique can be used in future to handle large amounts of observation data obtained from the online monitoring of realistic structures.

  18. Radiographic testing in concrete structures

    International Nuclear Information System (INIS)

    Oliveira, D. de

    1987-01-01

    The radiographic testing done in concrete structures is used to analyse the homogeneity, position and corrosion of armatures and to detect discontinuity in the concrete such as: gaps, cracks and segregations. This work develops a Image quality Indicator (IQI) with an adequated sensibility to detect discontinuites based on BS4408 norm. (E.G.) [pt

  19. Durability of thin-walled concrete structures

    International Nuclear Information System (INIS)

    Salomon, M.; Gallias, J.L.

    1991-01-01

    The aim of the present document is to draw up a survey of knowledge of the problems of ageing of reinforced concrete shell structure atmospheric coolers. The exposure conditions are particularly favourable to the induction and development of degradation which, because of the thinness of the reinforced concrete can compromise the stability and the durability of coolers. The study will be axed on the link between the specific characteristics of coolers from the point of view of operation, design and environment, also the durability of reinforced concrete. The set of factors exerting their influence on the reinforced concrete of the shell structure (condensates, rain water, temperature and humidity gradients, dynamic loads, weathering, etc.) is particularly complex. The principal degradation reactions involved are classified according to the chemical and physical action on concrete and on the reinforcement. Particular emphasis is placed on the analysis of degradation processes and the influence of the characteristics of the materials and of the medium. The aim is to determine the mechanisms which present the greatest risk for coolers. The interaction between the degradation to concrete and the change in mechanical characteristics is also studied [fr

  20. Aging of concrete components and its significance relative to life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.

    1987-01-01

    Nuclear power currently supplies about 16% of the US electricity requirements, with the percentage expected to rise to 20% by 1990. Despite the increasing role of nuclear power in energy production, cessation of orders for new nuclear plants in combination with expiration of operating licenses for several plants in the next 15 to 20 years results in a potential loss of electrical generating capacity of 50 to 60 gigawatts during the time period 2005 to 2020. A potential timely and cost-effective solution to the problem of meeting future energy demand is available through extension of the service life of existing nuclear plants. Any consideration of plant life extension, however, must consider the concrete components in these plants, since they play a vital safety role. Under the USNRC Nuclear Plant Aging Research (NPAR) Program, a study was conducted to review operating experience and to provide background that will lead to subsequent development of a methodology for assessing and predicting the effects of aging on the performance of concrete-based structures. The approach followed was in conformance with the NPAR strategy

  1. Injection technologies for the repair of damaged concrete structures

    CERN Document Server

    Panasyuk, V V; Sylovanyuk, V P

    2014-01-01

    This book analyzes the most important achievements in science and engineering practice concerning operational factors that cause damage to concrete and reinforced concrete structures. It includes methods for assessing their strength and service life, especially those that are based on modern concepts of the fracture mechanics of materials. It also includes basic approaches to the prediction of the remaining service life for long-term operational structures. Much attention is paid to injection technologies for restoring the serviceability of damaged concrete and reinforced concrete structures. In particular, technologies for remedying holes, cracks, corrosion damages etc. The books contains sample cases in which the above technologies have been used to restore structural integrity and extend the reliable service life of concrete and reinforced concrete constructions, especially NPPs, underground railways, bridges, seaports and historical relics.

  2. Lateral rigidity of cracked concrete structures

    International Nuclear Information System (INIS)

    Castellani, A.; Chesi, C.

    1979-01-01

    Numerical results are discussed on the lateral rigidity of reinforced concrete structures with a given crack distribution. They have been favourably checked with experimental results for cylindrical shells under the effect of a thermal gradient producing vertical cracking or vertical plus horizontal cracking. The main effects characterizing the concrete behaviour are: (1) The shear transfer across a crack; (2) The shear transfer degradation after cyclic loading; (3) The tension stiffening provided by the concrete between crack and crack, in the normal stress transfer; (4) The temperature effect on the elastic moduli of concrete, when cracks are of thermal origin. Only the 1st effect is discussed on an experimental basis. Two broad cathegories of reinforced concrete structures have been investigated in this respect: shear walls of buildings and cylindrical containment structures. The main conclusions so far reached are: (1) Vertical cracks are unlikely to decrease the lateral rigidity to less than 80% of the original one, and to less than 90% when they do not involve the entire thickness of the wall; (2) The appearence of horizontal cracks can reduce the lateral rigidity by some 30% or more; (3) A noticeable but not yet evaluated influence is shown by cyclic loading. (orig.)

  3. Durability of cracked fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1998-01-01

    structure are made on specimens drilled or sawed from beams after unloading (mechanical load). The pore structure of the concretes will be studied by microscopy, sorption and suction curves. The test programme involves three different concrete qualities (water-cement ratios). Both steel fibres (ZP...

  4. Inspection of Nuclear Power Plant Containment Structures

    Energy Technology Data Exchange (ETDEWEB)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  5. Precooling of concrete with flake ice

    International Nuclear Information System (INIS)

    Inoue, Katsuhiro; Shigenobu, Manabu; Soejima, Kenji; Noguchi, Hiroshi; Noda, Youichi; Sakaguchi, Tohru.

    1989-01-01

    The buildings in nuclear power stations are the reinforced concrete structures which are constructed with the massive members having much rein forcing bar quantity and relatively high strength due to the requirement of aseismatic capability, shielding and others. Also their scale is large, and in the case of a power station of one million kW class, concrete as much as 300,000 m 3 is used for one plant. Accordingly, at the time of construction, the case of stably supplying the concrete of high quality in large quantity by installing the facilities of manufacturing ready mixed concrete at construction sites is frequent. Moreover, electric power companies carry out thorough quality control to undergo the inspection before use by the Agency of Natural Resources and Energy from the aspects of materials, structures and strength. Since prestressed concrete containment vessels were adopted for No.3 and No.4 plants, the quality of concrete and the facilities for manufacturing ready mixed concrete were examined in detail. The precooling facilities for concrete and the effect of precooling are reported. (Kako, I.)

  6. Liquid concrete mixes for V-2 nuclear power plant at Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Valenta, D.; Oravec, J.

    1983-01-01

    The liquid concrete mixes consist of aggregates, cement, water and plastifiers. The main component of aggregates is redeposited dolomite from the Dolinka locality and sand. Cement of the SPC-325 type is used while mixing water is taken from the service water pump station for the V-1 nuclear power plant. All concretes used for the V-2 nuclear power plant construction are treated using plastifier Plastifikator S. In concrete mix development, care was primarily taken to select sand with sufficient amounts of grain of a size up to 0.25 mm. Granularity curves of the sands and the resulting curve of the aggregates granularity of the concrete mix are shown graphically. The method of manufacture and conveying of concrete mixes are briefly described. The mathematical statistical analysis of the quality of the concrete mixes produced showed that the proposed concrete mixes meet the requirements for homogeneity in the controlled parameters and that they can be manufactured in the situation of building production provided suitable components are selected, suitable aggregates are available and the quality of production is systematically checked. (J.P.)

  7. Evaluation of regulations and norms for concrete constructions in Swedish nuclear power plants; Utvaerdering av regler och normer foer betongkonstruktioner i svenska kaernkraftsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Jovall, Ola (Scanscot Technology AB, Lund (Sweden))

    2010-12-15

    In the SSM's regulations and recommendations, there are at present no specific requirements and adequate guidance on how concrete structures should be designed in case of new buildings or verification analyses of existing buildings. The result of the work presented in this report constitute the basis for SSM's ongoing regulatory project Investigation regarding requirements for construction, design, analysis and review of reactor containments and other safety-related building structures. The project includes the following: 1. Summary of the regulations and requirements that have been applied at the initial design and new construction of concrete structures at the Swedish nuclear power plants. 2. Comparison and evaluation of relevant regulations published by the European and North American authorities. 3. Comparison and evaluation of relevant codes, standards, guidelines etc. for load-bearing concrete structures in different countries. 4. Conclusions and recommendations to the regulatory framework for the design of load-bearing concrete structures at the Swedish nuclear power plants. Based on a comparison and evaluation of regulations from the U.S., Canada, France, the UK, Finland and Sweden, as well as guidelines established by the international organizations IAEA and EUR, the following general recommendations are provided as a regulatory framework for the design of load-bearing concrete structures at the Swedish nuclear power plants: 1. The Eurocodes will replace the BKR design rules of Swedish National Board of Housing, Building and Planning as the conventional building regulations on the construction of nuclear power plants. 2. A general review and updating of the existing industry standard Design rules for buildings at nuclear facilities DRB:2001 is implemented. Reference is made to the Eurocodes with regard to conditions of conventional design rules

  8. Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

    1980-12-01

    Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

  9. On the Degradation of Concrete in Marine Structures

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Hofman Frisch, P.; Freisleben, P.

    1985-01-01

    Concrete is a cheap and extremely handy material and as such used extensively also in marine structures. Everybody dealing with this material knows examples of concrete apparently of almost infinite durability but also examples where serious degradation started shortly after completion of the str......Concrete is a cheap and extremely handy material and as such used extensively also in marine structures. Everybody dealing with this material knows examples of concrete apparently of almost infinite durability but also examples where serious degradation started shortly after completion...

  10. Nonlinear finite element analysis of concrete structures

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1980-05-01

    This report deals with nonlinear finite element analysis of concrete structures loaded in the short-term up until failure. A profound discussion of constitutive modelling on concrete is performed; a model, applicable for general stress states, is described and its predictions are compared with experimental data. This model is implemented in the AXIPLANE-program applicable for axisymmetrick and plane structures. The theoretical basis for this program is given. Using the AXIPLANE-program various concrete structures are analysed up until failure and compared with experimental evidence. These analyses include panels pressure vessel, beams failing in shear and finally a specific pull-out test, the Lok-Test, is considered. In these analyses, the influence of different failure criteria, aggregate interlock, dowel action, secondary cracking, magnitude of compressive strenght, magnitude of tensile strenght and of different post-failure behaviours of the concrete are evaluated. Moreover, it is shown that a suitable analysis of the theoretical data results in a clear insight into the physical behaviour of the considered structures. Finally, it is demonstrated that the AXISPLANE-program for widely different structures exhibiting very delicate structural aspects gives predictions that are in close agreement with experimental evidence. (author)

  11. Effects of air blast on power plant structures and components

    International Nuclear Information System (INIS)

    Kot, C.A.; Valentin, R.A.; McLennan, D.A.; Turula, P.

    1978-10-01

    The effects of air blast from high explosives detonation on selected power plant structures and components are investigated analytically. Relying on a synthesis of state of the art methods estimates of structural response are obtained. Similarly blast loadings are determined from compilations of experimental data reported in the literature. Plastic-yield line analysis is employed to determine the response of both concrete and steel flat walls (plates) under impulsive loading. Linear elastic theory is used to investigate the spalling of concrete walls and mode analysis methods predict the deflection of piping. The specific problems considered are: the gross deformation of reinforced concrete shield and containment structures due to blast impulse, the spalling of concrete walls, the interaction or impact of concrete debris with steel containments and liners, and the response of exposed piping to blast impulse. It is found that for sufficiently close-in detonations and/or large explosive charge weights severe damage or destruction will result. This is particularly true for structures or components directly exposed to blast impulse

  12. Teaching concrete structures

    DEFF Research Database (Denmark)

    Goltermann, Per

    2014-01-01

    The teaching of concrete structures has been revised and a number of new approaches have been developed, implemented and evaluated. Inductive teaching, E-learning and “patches” have been found to be improvements and may be an inspiration and help for others development of the teaching and learning...

  13. Seismic soil–structure interaction analysis of a nuclear power plant building founded on soil and in degraded concrete stiffness condition

    International Nuclear Information System (INIS)

    Farahani, Reza V.; Dessalegn, Tewodros M.; Vaidya, Nishikant R.; Bazan-Zurita, Enrique

    2016-01-01

    Highlights: • Three dimensional finite element modeling of a Nuclear Power Plant (NPP) building founded on soil is described. • A simplified technique to consider degraded stiffness of concrete members in seismic analysis of NPP buildings is presented. • The effect of subsurface profiles on the seismic response of a NPP building is investigated. - Abstract: This study describes three-dimensional (3-D) finite element (FE) modeling and seismic Soil-Structure Interaction (SSI) analysis of a Nuclear Power Plant (NPP) Diesel Generator Building (DGB) that is founded on soil in degraded concrete stiffness condition. A new technique is presented that uses two horizontal and vertical FE models to consider the concrete stiffness reduction of NPP buildings subjected to orthogonal ground motion excitations, in which appropriate stiffness reduction factors, based on the input motion orientation, are applied. Seismic SSI analysis is performed for each model separately, and dynamic responses are calculated in the three global directions. The results of the analysis for the two FE models are then combined, using the square-root-of-the-sum-of-squares (SRSS) combination rule. A sensitivity analysis is also performed to investigate the subsurface profile effect on the In-Structure (acceleration) Response Spectra (ISRS) of the building when subjected to site-specific Foundation Input Response Spectra (FIRS) that exhibit high spectral amplifications in the high-frequency range. The sensitivity analysis considers three strain-compatible subsurface profiles that represent Lower-Bound (LB), Best-Estimate (BE), and Upper-Bound (UB) conditions at the DGB site. The sensitivity analysis results indicate that the seismic response of the DGB founded on soil highly depends on the subsurface profile; i.e., each of the LB, BE, and UB subsurface profiles can maximize building seismic response when subjected to FIRS that exhibit high spectral amplifications in the high-frequency range

  14. Proceedings of the OECD-NEA workshop on the evaluation of defects, repair criteria and methods of repair for concrete structures on nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    The Committee on the Safety of Nuclear Installations (CSNI) of the OECD-NEA co-ordinates the NEA activities concerning the technical aspects of design, construction and operation of nuclear installations insofar as they affect the safety of such installations. In 1994, the CSNI approved a proposal to set up a Task Group under its Principal Working Group 3 (recently re-named as the Working Group on Integrity of Components and Structures (IAGE)) to study the need for a programme of international activities in the area of concrete structural integrity and ageing and how such a programme could be organised. The task group reviewed national and international activities in the area of ageing of nuclear power plant concrete structures and the relevant activities of other international agencies. A proposal for a CSNI programme of workshops was developed to address specific technical issues which were prioritised by OECD-NEA task group into three levels of priority: First Priority: loss of prestressing force in tendons of post-tensioned concrete structures; in-service inspection techniques for reinforced concrete structures having thick sections and areas not directly accessible for inspection. Second Priority: viability of development of a performance based database; response of degraded structures (including finite element analysis techniques). Third Priority: instrumentation and monitoring; repair methods; criteria for condition assessment. The working group has progressively worked through the priority list developed during the preliminary study carried out by the Task Group. Currently almost all of the three levels of priority are effectively complete, although in doing so the committee has identified other specific items worthy of consideration. By working logically through the list of priorities the committee has maintained a clarity of purpose which has been important in maintaining efficiency and achieving its objectives. The performance of the group has been

  15. A realistic structural analysis of the integrity of the liner of reinforced and prestressed concrete containments

    International Nuclear Information System (INIS)

    Buchhardt, F.; Brandl, P.

    1979-01-01

    The BWR Gundremmingen II is the first German nuclear power plant with a concrete containment having a thin steel plate liner directly attached to the interior concrete surface to provide an air-tight seal. Due to this monolithic way of anchorage a bonded system of concrete and metal liner membrane is obtained so that the same deformations of the loading or strain conditions are induced to the very stiff concrete hull as well as to the liner. Because of the complex structural behaviour of the bonded system the evaluation is carried out by the finite element method. The overall system is decoupled in several steps. Due to its considerable stiffness the concrete structure can be regarded as the liner supporting basis. The liner system itself might be subdivided into perfect and imperfect sections discretized by plain or curved elements which are supported by point-wise spring elements representing the stud anchors. (orig.)

  16. Utilization of recycled concrete aggregates in structural concrete by applying a fraction partitioning model

    NARCIS (Netherlands)

    Wouw, van de P.M.F.; Doudart de la Grée, G.C.H.; Florea, M.V.A.; Brouwers, H.J.H.; Bilek, V.; Kersner, Z.

    2014-01-01

    The recycling of concrete waste into new structural concrete reduces the utilization of raw materials, decreases transport and production energy cost, and saves the use of limited landfill space. Currently, recycling involves the use of recycled concrete aggregates (RCA) as road base material or in

  17. Concrete component aging and its significance relative to life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.

    1986-09-01

    The objectives of this study are to (1) expand upon the work that was initiated in the first two Electric Power Research Institute studies relative to longevity and life extension considerations of safety-related concrete components in light-water reactor (LWR) facilities and (2) provide background that will logically lead to subsequent development of a methodology for assessing and predicting the effects of aging on the performance of concrete-based materials and components. These objectives are consistent with Nuclear Plant Aging Research (NPAR) Program goals: (1) to identify and characterize aging and service wear effects that, if unchecked, could cause degradation of structures, components, and systems and, thereby, impair plant safety; (2) to identify methods of inspection, surveillance, and monitoring or of evaluating residual life of structures, components, and systems that will ensure timely detection of significant aging effects before loss of safety function; and (3) to evaluate the effectiveness of storage, maintenance, repair, and replacement practices in mitigating the rate and extent of degradation caused by aging and service wear

  18. Seismic damage assessment of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Cho, HoHyun; Koh, Hyun-Moo; Hyun, Chang-Hun; Kim, Moon-Soo; Shin, Hyun Mock

    2003-01-01

    This paper presents a procedure for assessing seismic damage of concrete containment structures using the nonlinear time-history numerical analysis. For this purpose, two kinds of damage index are introduced at finite element and structural levels. Nonlinear finite element analysis for the containment structure applies PSC shell elements using a layered approach leading to damage indices at finite element and structural levels, which are then used to assess the seismic damage of the containment structure. As an example of such seismic damage assessment, seismic damages of the containment structure of Wolsong I nuclear power plant in Korea are evaluated against 30 artificial earthquakes generated with a wide range of PGA according to US NRC regulatory guide 1.60. Structural responses and corresponding damage index according to the level of PGA and nonlinearity are investigated. It is also shown that the containment structure behaves elastically for earthquakes corresponding to or lower than DBE. (author)

  19. Light Water Reactor Sustainability Program: Survey of Models for Concrete Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States). Energy and Environment Science and Technology

    2014-08-01

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have predictive tools to address concerns related to aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to review and document the main aging mechanisms of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.

  20. Aseismic safety analysis of a prestressed concrete containment vessel for CPR1000 nuclear power plant

    Science.gov (United States)

    Yi, Ping; Wang, Qingkang; Kong, Xianjing

    2017-01-01

    The containment vessel of a nuclear power plant is the last barrier to prevent nuclear reactor radiation. Aseismic safety analysis is the key to appropriate containment vessel design. A prestressed concrete containment vessel (PCCV) model with a semi-infinite elastic foundation and practical arrangement of tendons has been established to analyze the aseismic ability of the CPR1000 PCCV structure under seismic loads and internal pressure. A method to model the prestressing tendon and its interaction with concrete was proposed and the axial force of the prestressing tendons showed that the simulation was reasonable and accurate. The numerical results show that for the concrete structure, the location of the cylinder wall bottom around the equipment hatch and near the ring beam are critical locations with large principal stress. The concrete cracks occurred at the bottom of the PCCV cylinder wall under the peak earthquake motion of 0.50 g, however the PCCV was still basically in an elastic state. Furthermore, the concrete cracks occurred around the equipment hatch under the design internal pressure of 0.4MPa, but the steel liner was still in the elastic stage and its leak-proof function soundness was verified. The results provide the basis for analysis and design of containment vessels.

  1. Finite element analysis of ageing reinforced and prestressed concrete structures in nuclear plant - An international review of current capabilities and priorities for future developments

    International Nuclear Information System (INIS)

    2002-01-01

    Nuclear plants contain a variety of concrete structures whose structural performance is essential to the safety of the plant. There is a requirement to demonstrate the robustness of these structures during normal operating and extreme accident conditions, throughout their life. During this time, the concrete may degrade due to the effects of ageing. This degradation must be accounted for during the assessment of their performance. Finite Element Analysis (FEA) techniques have tremendous potential for providing valuable insight into the behaviour of these aged concrete structures under a range of different loading conditions. Advanced FEA techniques currently enjoy widespread use within the nuclear industry for the non-linear analysis of concrete. Many practitioners within the nuclear industry are at the forefront of the industrial application of these methods. However, in some areas, the programs that are commercially available lag behind the best information available from research. This document is an international review of current capabilities and priorities for future development relating to non-linear finite element analysis of reinforced and prestressed concrete in the nuclear industry in the various member states. Particular attention is paid to the analysis of degraded or ageing structures. This report: 1. Summarises the needs for FEA of aged concrete nuclear structures; 2. Details the existing capabilities, not just in terms of what the software is capable of, but also in terms of the current practices employed by those in industry; 3. Looks at how engineers, within the nuclear industry, working in this field would like to see methods improved, and identifies the factors that are limiting current practice; 4. Summarises ongoing research that may provide beneficial technological advances; 5. Assigns priorities to the different development requests; 6. Selects those developments that are felt to be of greatest benefit to industry and provides a qualitative

  2. Simulation analysis of impact tests of steel plate reinforced concrete and reinforced concrete slabs against aircraft impact and its validation with experimental results

    International Nuclear Information System (INIS)

    Sadiq, Muhammad; Xiu Yun, Zhu; Rong, Pan

    2014-01-01

    Highlights: • Simulation analysis is carried out with two constitutive concrete models. • Winfrith model can better simulate nonlinear response of concrete than CSCM model. • Performance of steel plate concrete is better than reinforced concrete. • Thickness of safety related structures can be reduced by adopting steel plates. • Analysis results, mainly concrete material models should be validated. - Abstract: The steel plate reinforced concrete and reinforced concrete structures are used in nuclear power plants for protection against impact of an aircraft. In order to compare the impact resistance performance of steel plate reinforced concrete and reinforced concrete slabs panels, simulation analysis of 1/7.5 scale model impact tests is carried out by using finite element code ANSYS/LS-DYNA. The damage modes of all finite element models, velocity time history curves of the aircraft engine and damage to aircraft model are compared with the impact test results of steel plate reinforced concrete and reinforced concrete slab panels. The results indicate that finite element simulation results correlate well with the experimental results especially for constitutive winfrith concrete model. Also, the impact resistance performance of steel plate reinforced concrete slab panels is better than reinforced concrete slab panels, particularly the rear face steel plate is very effective in preventing the perforation and scabbing of concrete than conventional reinforced concrete structures. In this way, the thickness of steel plate reinforced concrete structures can be reduced in important structures like nuclear power plants against impact of aircraft. It also demonstrates the methodology to validate the analysis procedure with experimental and analytical studies. It may be effectively employed to predict the precise response of safety related structures against aircraft impact

  3. Interim Report on Concrete Degradation Mechanisms and Online Monitoring Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The existing nuclear power plants in the United States have initial operating licenses of 40 years, though most of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. The research on online monitoring of concrete structures conducted under the Advanced Instrumentation, Information, and Control Systems Technologies Pathway of the Light Water Reactor Sustainability Program at Idaho National Laboratory will develop and demonstrate concrete structures health monitoring capabilities. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code margins of safety. Therefore, structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses available techniques and ongoing challenges in each of the four elements of the proposed framework with emphasis on degradation mechanisms and online monitoring techniques.

  4. Soft impact testing of a wall-floor-wall reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Vepsä, Ari, E-mail: ari.vepsa@vtt.fi; Calonius, Kim; Saarenheimo, Arja; Aatola, Seppo; Halonen, Matti

    2017-01-15

    Highlights: • A wall-floor-wall reinforced concrete structure was built. • The structure was subjected to three almost identical soft impact tests. • Response was measured with accelerometers, displacement sensors and strain gauges. • Modal tests was also carried out with the same structure in different conditions. • The results are meant to be used for validation of computational methods and models. - Abstract: Assessing the safety of the reactor building of a nuclear power plant against the crash of an airplane calls for valid computational tools such as finite element models and material constitutive models. Validation of such tools and models in turn calls for reliable and relevant experimental data. The problem is that such data is scarcely available. One of the aspects of such a crash is vibrations that are generated by the impact. These vibrations tend to propagate from the impact point to the internal parts of the building. If strong enough, these vibrations may cause malfunction of the safety-critical equipment inside the building. To enable validation of computational models for this type of behaviour, we have conducted a series of three tests with a wall-floor-wall reinforced concrete structure under soft impact loading. The response of the structure was measured with accelerometers, displacement sensors and strain gauges. In addition to impact tests, the structure was subjected to modal tests under different conditions. The tests yielded a wealth of useful data for validation of computational models and better understanding about shock induced vibration physics especially in reinforced concrete structures.

  5. Reinforced concrete containment structures in high seismic zones

    International Nuclear Information System (INIS)

    Aziz, T.S.

    1977-01-01

    A new structural concept for reinforced concrete containment structures at sites where earthquake ground motions in terms of the Safe Shutdown Earthquake (SSE) exceeds 0.3 g is presented. The structural concept is based on: (1) an inner steel-lined concrete shell which houses the reactor and provides shielding and containment in the event of loss of coolant accident; (2) an outer annular concrete shell structure which houses auxiliary reactor equipment and safeguards systems. These shell structures are supported on a common foundation mat which is embedded in the subgrade. Under stipulated earthquake conditions the two shell structures interact to resist lateral inertia forces. Thus the annular structure which is not a pressure boundary acts as a lateral support for the inner containment shell. The concept is practical, economically feasible and new to practice. (Auth.)

  6. Offshore concrete structures; Estructuras Offshore (mar adentro) de Hormigon

    Energy Technology Data Exchange (ETDEWEB)

    Lamas Pardo, M.; Carral Couce, L. M.

    2011-07-01

    In the offshore industry there are two possible materials for the construction of the hull of a structure; the steel and concrete, with the first one widely used until now, as in the rest of the shipbuilding industry of merchant ships, warships, etc. Materials such as aluminum, GRP or timber areused in small units with lengths lower than 100 m, and in less adverse conditions than in the offshore industry. Nevertheless, some ships/barges have been built of concrete in the past, but have been rather isolated cases which have not changed the practice in the industry. In the First and Second World War were built by the scarcity of materials, while the series of barges by Alfred A. Yee was a rare exception. Other units were also made in concrete, but almost anecdotal. Still, the behaviour of these concrete structures, especially in terms of maintenance, has been excellent. Therefore, the fact that the concrete has not had an adequate reception so far in shipbuilding, does not mean that in will not be the material best suited for the offshore industry in the future. The extra displacement and associated fuel costs in concrete ships have been found prohibitive in the past. But the loss of mobility of a concrete hull in relation to a steel hull can be perfectly offset by the advantages offered by the concrete, as the shipping and offshore industry have very different priorities. One of the main differences in these priorities is in terms of maintenance and resistance to fatigue, precisely where the concrete performs better. ships can easily be dry docked for maintenance and repair, while in the offshore platforms these works have to be done in situ so maintenance and fatigue are crucial to them. Besides these, the concrete has other advantages according to findings of several studies. And although they are interested in the conclusions that the makes as they came from people in the concrete industry, the fact that in recent years concrete offshore unit shave been built

  7. Evaluation of ternary blended cements for use in transportation concrete structures

    Science.gov (United States)

    Gilliland, Amanda Louise

    This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make

  8. Evaluation and rehabilitation of corrosion damaged reinforced concrete structures

    International Nuclear Information System (INIS)

    Paul, I.S.

    1999-01-01

    For the last two decades, rehabilitation of corrosion damaged concrete structures has been one of the most important challenges faced by the construction industry throughout the world. The extent of the damage is significant in cold climates and also in hot and humid climates. In both cases, the corrosion is invariably initiated by ingress of salts into the concrete either from de-icing salts used on roads, or from salt-laden air, soils or ground water. However, there is a contrast in sites of distress in the two climatic regions mentioned above. In cold climates, where de-icing salts are used, the damage is generally to superstructures and is therefore visible, but in hot, humid coastal regions damage is primarily in the substructures and may not be so clearly apparent. This paper presents the corrosion mechanism in concrete deterioration, the methods of evaluation of the damaged structures, and rehabilitation strategies. A case history of a concrete rehabilitation project is included together with some lessons learned in rehabilitation of corrosion damaged structures. Recommendations are made for maintenance of concrete structures and a warning is issued that salt run-off from roads in cold climates may cause distress in below ground concrete structures, similar to structures in hot and humid climates with saline groundwater and soils. (author)

  9. Mimicking Bone Healing Process to Self Repair Concrete Structure Novel Approach Using Porous Network Concrete

    NARCIS (Netherlands)

    Sangadji, S.; Schlangen, H.E.J.G.

    2013-01-01

    To repair concrete cracks in difficult or dangerous conditions such as underground structures or hazardous liquid containers, self healing mechanism is a promising alternative method. This research aims to imitate the bone self healing process by putting porous concrete internally in the concrete

  10. Overview of the use of prestressed concrete in U.S. nuclear power plants

    International Nuclear Information System (INIS)

    Ashar, H.; Naus, D.J.

    1983-01-01

    The extent of the use of prestressed concrete in nuclear power plants is outlined. Evolution of large size prestressing systems and corrosion inhibiting materials is described. A summary of major problems which have been encountered with prestressed concrete construction at nuclear power plant containments in the United States is presented; that is, dome delamination, cracking of anchorheads, settlement of bearing plates, etc. Guidelines for a tendon inservice inspection program are described as well as the effectiveness of these programs. The paper concludes with an assessment of the overall effectiveness of the prestressed concrete containments. (orig.)

  11. New rheological model for concrete structural analysis

    International Nuclear Information System (INIS)

    Chern, J.C.

    1984-01-01

    Long time deformation is of interest in estimating stresses of the prestressed concrete reactor vessel, in predicting cracking due to shrinkage or thermal dilatation, and in the design of leak-tight structures. Many interacting influences exist among creep, shrinkage and cracking for concrete. An interaction which researchers have long observed, is that at simultaneous drying and loading, the deformation of a concrete structure under the combined effect is larger than the sum of the shrinkage deformation of the structure at no load and the deformation of the sealed structure. The excess deformation due to the difference between observed test data and conventional analysis is regarded as the Pickett Effect. A constitutive relation explaining the Pickett Effect and other similar superposition problems, which includes creep, shrinkage (or thermal dilation), cracking, aging was developed with an efficient time-step numerical algorithm. The total deformation in the analysis is the sum of strain due to elastic deformation and creep, cracking and shrinkage with thermal dilatation. Instead of a sudden stress reduction to zero after the attainment of the strength limit, the gradual strain-softening of concrete (a gradual decline of stress at increasing strain) is considered

  12. Required performance to the concrete structure of the accelerator facilities

    International Nuclear Information System (INIS)

    Irie, Masaaki; Yoshioka, Masakazu; Miyahara, Masanobu

    2006-01-01

    As for the accelerator facility, there is many a thing which is constructed as underground concrete structure from viewpoint such as cover of radiation and stability of the structure. Required performance to the concrete structure of the accelerator facility is the same as the general social infrastructure, but it has been possessed the feature where target performance differs largely. As for the body sentence, expressing the difference of the performance which is required from the concrete structure of the social infrastructure and the accelerator facility, construction management of the concrete structure which it plans from order of the accelerator engineering works facility, reaches to the design, supervision and operation it is something which expresses the method of thinking. In addition, in the future of material structural analysis of the concrete which uses the neutron accelerator concerning view it showed. (author)

  13. Surface Chloride Levels in Colorado Structural Concrete

    Science.gov (United States)

    2018-01-01

    This project focused on the chloride-induced corrosion of reinforcing steel in structural concrete. The primary goal of this project is to analyze the surface chloride concentration level of the concrete bridge decks throughout Colorado. The study in...

  14. Incorporation of Savannah River Plant radioactive waste into concrete

    International Nuclear Information System (INIS)

    Stone, J.A.

    1975-01-01

    Results are reported of a laboratory-scale experimental program at the Savannah River Laboratory to gain information on the fixation of high-level radioactive wastes in concrete. Two concrete formulations, a High-Alumina Cement and a Portland Pozzalanic cement, were selected on the bases of leachability and compressive strength for the fixation of non-radioactive simulated wastes. Therefore, these two cements were selected for current studies for the fixation of actual Savannah River Plant high-level wastes. (U.S.)

  15. FEATURES OF ASH OF THERMAL POWER PLANTS AS AGGREGATE FOR CONCRETES

    Directory of Open Access Journals (Sweden)

    M. A. Storozhuk

    2017-10-01

    Full Text Available Purpose. The scientific work is dedicated to development of scientific-technical bases of production and application of concrete on the basis of ashes of thermal power plants (TPP. Methodology. The properties of TPP ash, as well as the peculiarities of its behavior in a concrete mix as a fine aggregate, have been studied. It is shown that the hydrolysis and hydration of cement occur in the active environment of ash, which has a huge specific surface area. This significantly affects the course of these processes and the quality of the concrete produced. A new technology of application of ash of TPP for preparation of concrete mixes is offered. Vibrated and vibrovacuumized concretes of optimum composition from slag and ash, as well as from granite crushed stone and ash, are tested. The chara-cteristics of ordinary concrete (from granite crushed stone and quartz sand are given to compare. Findings. The results of the tests showed the possibility of obtaining concretes of class C20/25…C25/30 on the basis of slag and ash of TPP at a limited consumption of cement. It is shown that the concrete with traditional aggregates has a lower strength than the concrete, which has ash as fine aggregate. This research results contribute to the increased use of ash in construction that solves the problem of aggregates as well as thermal power plants waste recycling. Originality. New method and technology of application of TPP ashes in concrete are developed. Ash concrete mix has rational flowability, which produces the greatest strength of ash vacuum concrete. This strength is twice or more as large as the strength of vibrated ash concrete mix with flowability S1. Practical value. The physico-chemical properties of TPP ash as aggregate for concrete are presented. Significant difference of ash from ordinary aggregates is shown. Chemical activity of the ash is justified. The special conditions of cement hardening in the case of using ash as aggregate for concrete

  16. Structural Aging Program approach to providing an improved basis for aging management of safety-related concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.

    1993-01-01

    The Structural Aging (SAG) Program is being conducted at the Oak Ridge National Laboratory (ORNL) for the United States Nuclear Regulatory Commission (USNRC). The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved technical bases for their continued service. The program is organized into four tasks: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technologies, and Quantitative Methodology for Continued Service Determinations. Objectives and a summary of recent accomplishments under each of these tasks are presented

  17. Superelastic SMA–FRP composite reinforcement for concrete structures

    International Nuclear Information System (INIS)

    Wierschem, Nicholas; Andrawes, Bassem

    2010-01-01

    For many years there has been interest in using fiber-reinforced polymers (FRPs) as reinforcement in concrete structures. Unfortunately, due to their linear elastic behavior, FRP reinforcing bars are never considered for structural damping or dynamic applications. With the aim of improving the ductility and damping capability of concrete structures reinforced with FRP reinforcement, this paper studies the application of SMA–FRP, a relatively novel type of composite reinforced with superelastic shape memory alloy (SMA) wires. The cyclic tensile behavior of SMA–FRP composites are studied experimentally and analytically. Tests of SMA–FRP composite coupons are conducted to determine their constitutive behavior. The experimental results are used to develop and calibrate a uniaxial SMA–FRP analytical model. Parametric and case studies are performed to determine the efficacy of the SMA–FRP reinforcement in concrete structures and the key factors governing its behavior. The results show significant potential for SMA–FRP reinforcement to improve the ductility and damping of concrete structures while still maintaining its elastic characteristic, typical of FRP reinforcement

  18. Radiation shielding structure for concrete structure

    International Nuclear Information System (INIS)

    Oya, Hiroshi

    1998-01-01

    Crack inducing members for inducing cracks in a predetermined manner are buried in a concrete structure. Namely, a crack-inducing member comprises integrally a shielding plate and extended plates situated at the center of a wall and inducing plates vertically disposed to the boundary portion between them with the inducing plates being disposed each in a direction perforating the wall. There are disposed integrally a pair of the inducing plate spaced at a predetermined horizontal distance on both sides of the shielding plate so as to form a substantially crank-shaped cross section and extended plates formed in the extending direction of the shielding plate, and the inducing plates are disposed each in a direction perforating the wall. Then, cracks generated when stresses are exerted can be controlled, and generation of cracks passing through the concrete structure can be prevented reliably. The reliability of a radiation shielding effect can be enhanced remarkably. (N.H.)

  19. Peculiarities of Thermal Treatment of Monolithic Reinforced Concrete Structures

    Science.gov (United States)

    Kuchin, V. N.; Shilonosova, N. V.

    2017-11-01

    A mathematical program has been developed that allows one to determine the parameters of heat treatment of monolithic structures. One of the quality indicators of monolithic reinforced concrete structures is the level of temperature stresses arising in the process of heat treatment and further operation of structures. In winter at heat treatment the distribution of temperatures along the cross-section of the structure is uneven. A favorable thermo-stressed state in a concrete massif occurs when using the preheating method, providing the concrete temperature in the center of the structure is greater than at the periphery. In this case, after the strength is set and the temperature is later equalized along the cross-section, the central part of the structure tends to decrease its dimensions more but the extreme zones prevent it. Therefore, the center is in a state of tension, and the extreme zones on the periphery are compressed. In compressed concrete there is a lesser chance of cracks or defects. The temperature gradient over the section of the structure, the stress in the concrete and its strength are determined. When calculating the temperature and strength fields, the stress level was determined - a value equal to the ratio of the tensile stresses in the section under consideration to the tensile strength of the concrete in this section at the same time. The nature of the change in stress level is determined by the massive structure and power of the formwork heaters. It is shown that under unfavorable conditions the stress level is close to the critical value. The greatest temperature gradient occurs in the outer layers adjacent to the heating formwork. A technology for concrete conditioning is proposed which makes it possible to reduce the temperature stresses along the cross-section of the structure. The time for concrete conditioning in the formwork is reduced. In its turn, it further reduces labor costs and the cost of concrete work along with the cost of

  20. Recycled Concrete as Aggregate for Structural Concrete Production

    Directory of Open Access Journals (Sweden)

    Mirjana Malešev

    2010-04-01

    Full Text Available A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate. Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.

  1. Analysis of time-dependent reliability of degenerated reinforced concrete structure

    Directory of Open Access Journals (Sweden)

    Zhang Hongping

    2016-07-01

    Full Text Available Durability deterioration of structure is a highly random process. The maintenance of degenerated structure involves the calculation of the reliability of time-dependent structure. This study introduced reinforced concrete structure resistance decrease model and related statistical parameters of uncertainty, analyzed resistance decrease rules of corroded bending element of reinforced concrete structure, and finally calculated timedependent reliability of the corroded bending element of reinforced concrete structure, aiming to provide a specific theoretical basis for the application of time-dependent reliability theory.

  2. Evaluation of microbially-influenced degradation of massive concrete structures

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Zolynski, M.; Veeh, R.

    1996-01-01

    Many low level waste disposal vaults, both above and below ground, are constructed of concrete. One potential contributing agent to the destruction of concrete structures is microbially-influenced degradation (MID). Three groups of bacteria are known to create conditions that are conducive to destroying concrete integrity. They are sulfur oxidizing bacteria, nitrifying bacteria, and heterotrophic bacteria. Research is being conducted at the Idaho National Engineering Laboratory to assess the extent of naturally occurring microbially influenced degradation (MID) and its contribution to the deterioration of massive concrete structures. The preliminary steps to understanding the extent of MID, require assessing the microbial communities present on degrading concrete surfaces. Ultimately such information can be used to develop guidelines for preventive or corrective treatments for MID and aid in formulation of new materials to resist corrosion. An environmental study was conducted to determine the presence and activity of potential MID bacteria on degrading concrete surfaces of massive concrete structures. Scanning electron microscopy detected bacteria on the surfaces of concrete structures such as bridges and dams, where corrosion was evident. Enumeration of sulfur oxidizing thiobacilli and nitrogen oxidizing Nitrosomonas sp. and Nitrobacter sp. from surface samples was conducted. Bacterial community composition varied between sampling locations, and generally the presence of either sulfur oxidizers or nitrifiers dominated, although instances of both types of bacteria occurring together were encountered. No clear correlation between bacterial numbers and degree of degradation was exhibited

  3. Corrosion initiation and service life of concrete structures

    International Nuclear Information System (INIS)

    Byung Hwan Oh; Bong Seok Jang

    2005-01-01

    The Corrosion of steel reinforcements in concrete is of great concern in the view of safety and durability of reinforced concrete structures. The reinforced concrete structures exposed to sea environments suffer from corrosion of steel bars due to chloride ingress. The chloride penetration into concrete is influenced by many parameters such as type of cement, mixture proportions and existence of rebars. The conventional diffusion analyses have neglected the existence of steel bar in concrete. The purpose of the present paper is, therefore, to explore the effects of reinforcement on the chloride diffusion in concrete structures by incorporating realistic diffusion models. To this end, the nonlinear binding isotherm which includes the effects of cement types and mixture proportion has been introduced in the chloride diffusion analysis. The effects of reinforcements on the chloride penetration have been analyzed through finite element analysis. The present study indicates that the chlorides are accumulated in front of a reinforcing bar and the accumulation of chlorides is much more pronounced for the case of larger-size bars. The higher accumulation of chlorides at bar location causes faster corrosion of reinforcing bars. The corrosion initiation time reduces by about 30-40 percent when the existence of rebar is considered in the chloride diffusion analysis. (authors)

  4. Numerical analysis of pipe impact on reinforced concrete structures

    International Nuclear Information System (INIS)

    Prinja, N.K.

    1990-01-01

    This paper presents the methodology and the results of numerical analyses carried out by using the computer code DYNA3D to analyse pipe impacts on a reinforced concrete slab, a floor beam and a column. Modelling techniques employed to represent various features of typical reinforced concrete (RC) structures and the details of a soil and crushable foam type of material model used to represent concrete material behaviour are described. The results show that a reasonable prediction of global behaviour of reinforced concrete structures under impact loading can be obtained by this numerical method. (author)

  5. Studies on irradiation resisting paints for concrete structures in nuclear power plant, 4

    International Nuclear Information System (INIS)

    Kita, Daizo; Sumino, Masahiro; Goto, Tomoaki.

    1978-01-01

    It is necessary for irradiation resisting paints to adhere tightly to concrete in order to exhibit superior effects. Adhesion of paints to concrete is greatly affected by moisture content and the form of moisture in concrete. Further, adhesion will probably be affected by differences in concrete surface conditions between floors, walls and ceilings. Therefore, experiments were conducted with concrete to make clear allowable moisture conditions and the influence of these concrete surfaces. The following results were obtained. (1) Adhesion of paint becomes stronger as pF-value increases, that is, as moisture content falls. (2) The allowable pF-values and moisture contents were respectively 5.5 over and 4.5% under at floor, 4.4 over and 4.9% under at wall, and 4.3 over and 5% under at ceiling. (3) Fractures of paint films under these allowable conditions occurred in paint-concrete composites, and the fractured concrete thickness than was 0.5-0.8 mm and measured adhesion strength was 33 kg/cm 2 . (auth.)

  6. Sensor Systems for Corrosion Monitoring in Concrete Structures

    Directory of Open Access Journals (Sweden)

    K.Kumar

    2006-05-01

    Full Text Available It is a need of permanently embedded corrosion monitoring devices to monitor the progress of corrosion problems on a new or existing reinforced concrete structures before embarking on repair or rehabilitation of the structures. Numerous devices are available for investigating corrosion problems, because no single technique exists which tells an engineer what he needs to know, namely how much damage there is on a structure now and how rapidly the damage will grow with time. In this investigation the studies on the sensors systems based on the measurements of half cell potential of rebars inside the concrete, resistivity of concrete, corrosion rate of rebars by eddy current measurements and sensing of chloride ions are reported. An integrated system consists of above sensors are fabricated and embedded into concrete. The response from each sensor was acquired and analyzed by NI hardware through LabVIEW software.

  7. Reliability analysis of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Jiang, J.; Zhao, Y.; Sun, J.

    1993-01-01

    The reliability analysis of prestressed concrete containment structures subjected to combinations of static and dynamic loads with consideration of uncertainties of structural and load parameters is presented. Limit state probabilities for given parameters are calculated using the procedure developed at BNL, while that with consideration of parameter uncertainties are calculated by a fast integration for time variant structural reliability. The limit state surface of the prestressed concrete containment is constructed directly incorporating the prestress. The sensitivities of the Choleskey decomposition matrix and the natural vibration character are calculated by simplified procedures. (author)

  8. Concrete structures for nuclear facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The detailed requirements for the design and fabrication of the concrete structures for nuclear facilities and for the documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are given in the guide. It also sets the requirements for the inspection of concrete structures during the construction and operation of facilities. The requirements of the guide primarily apply to new construction. As regards the repair and modification of nuclear facilities built before its publication, the guide is followed to the extent appropriate. The regulatory activities of the Finnish Centre for Radiation and Nuclear Safety during a nuclear facility's licence application review and during the construction and operation of the facility are summarised in the guide YVL 1.1

  9. Recycled Concrete as Aggregate for Structural Concrete Production

    OpenAIRE

    Mirjana Malešev; Vlastimir Radonjanin; Snežana Marinković

    2010-01-01

    A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC) as a control concrete and two types of concrete made with natural fine and recycle...

  10. Economic viability in concrete dams by multivariable regression tool for implantation of small hydroelectric plants

    International Nuclear Information System (INIS)

    Lima, Reginaldo Agapito de; Ribeiro Junior, Leopoldo Uberto

    2010-01-01

    For implantation of a SHP, the barrage is the main structure where its sizing represents from 30% - 50% of general cost of civil works. Considering this it is very important to have a fast, didactic and accurate tool for elaborating a budget, also allowing a quantitative analysis of inherent cost for civil building of barrages concrete made for small hydropower plants. In face of this, the multi changing regression tool is very important as it allows a fast and correct establishing of preliminary costs, even approximate, for estimates of barrages in concrete cost, enabling to ease the budget, guiding feasibility decisions for selecting or neglecting new alternatives of fall. (author)

  11. Study on Detailing Design of Precast Concrete Frame Structure

    Science.gov (United States)

    Lida, Tian; Liming, Li; Kang, Liu; Jiao, Geng; Ming, Li

    2018-03-01

    Taking a certain precast concrete frame structure as an example, this paper introduces the general procedures and key points in detailing design of emulative cast-in-place prefabricated structure from the aspects of structural scheme, precast element layout, shop drawing design and BIM 3D modelling. This paper gives a practical solution for the detailing design of precast concrete frame structure under structural design codes in China.

  12. Porous Network Concrete : A bio-inspired building component to make concrete structures self-healing

    NARCIS (Netherlands)

    Sangadji, S.

    2015-01-01

    The high energy consumption, its corresponding emission of CO2 and financial losses due to premature failure are the pressing sustainability issues which must be tackled by the concrete infrastructure industry. Enhancement of concrete materials and durability of structures (designing new

  13. Selected Aspects of Computer Modeling of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Szczecina M.

    2016-03-01

    Full Text Available The paper presents some important aspects concerning material constants of concrete and stages of modeling of reinforced concrete structures. The problems taken into account are: a choice of proper material model for concrete, establishing of compressive and tensile behavior of concrete and establishing the values of dilation angle, fracture energy and relaxation time for concrete. Proper values of material constants are fixed in simple compression and tension tests. The effectiveness and correctness of applied model is checked on the example of reinforced concrete frame corners under opening bending moment. Calculations are performed in Abaqus software using Concrete Damaged Plasticity model of concrete.

  14. Flexural strength of structural concrete repaired with HBPMM cement

    International Nuclear Information System (INIS)

    Memon, G.H.; Khaskheli, G.B.; Kumar, A.

    2009-01-01

    To repair damaged concrete structures, Dadabhoy Cement Factory in Sindh has launched a product known as HBPMM (Hi-Bond Polymer Modified Mortar) cement. HBPMM is used to repair various concrete structures in Pakistan but the experimental back up regarding the real performance of the product, as far as flexural strength of concrete is concerned, is not well known yet. This study is thus aimed to investigate the flexural strength of structural concrete repaired with HBPMM compared to that repaired with OPC (Ordinary Portland Cement). In total 32 concrete beams (6x6x18) having compressive strength of 3000 and 5000 psi were manufactured. To obtain flexural strength of the beams, these were splitted by using a UTM (Universal Testing Machine). Beams were then repaired with different applications of HBPMM and OPC. After 28 days of curing, the repaired beams were re-splitted to determine the flexural strength of repaired beams. Results show that both HBPMM and OPC are not very effective. However, the performance of HBPMM remained slightly better than that of OPC. Both OPC and HBPMM remained more efficient in case of 5000 psi concrete than that of 3000 psi concrete. Flexural strength of repaired beams could be increased by increasing application of the repairing material. (author)

  15. Alkali aggregate reactivity in concrete structures in western Canada

    International Nuclear Information System (INIS)

    Morgan, D.R.; Empey, D.

    1989-01-01

    In several regions of Canada, particularly parts of Ontario, Quebec and the Maritime Provinces, research, testing and evaluation of aged concrete structures in the field has shown that alkali aggregate reactivity can give rise to pronounced concrete deterioration, particularly in hydraulic structures subjected to saturation or alternate wetting and drying such as locks, dams, canals, etc. Concrete deterioration is mainly caused by alkali-silica reactions and alkali-carbonate reactions, but a third type of deterioration involves slow/late expanding alkali-silicate/silica reactivity. The alkalies NaOH and KOH in the concrete pore solutions are mainly responsible for attack on expansive rocks and minerals in concrete. Methods for evaluating alkali-aggregate reaction potential in aggregates, and field and laboratory methods for detecting deterioration are discussed. Examples of alkali-aggregate reactions in structures is western Canada are detailed, including a water reservoir at Canadian Forces Base Chilliwack in British Columbia, the Oldman River diversion and flume, the Lundbreck Falls Bridge, and the St Mary's Reservoir spillway, all in southern Alberta. Mitigative measures include avoidance of use of suspect aggregates, but if this cannot be avoided it is recommended to keep the total alkalies in the concrete as low as possible and minimize opportunities for saturation of concrete by moisture. 16 refs., 19 figs., 1 tab

  16. A research on the mechanical property, work efficiency and structural characteristics of heavyweight concrete

    International Nuclear Information System (INIS)

    Ishimura, Kikuo; Ooue, Minoru; Noda, Shizuo; Suzuki, Keiichi; Ishii, Takakazu; Nakazawa, Kouichi; Mitsugi, Shiro.

    1991-01-01

    Generally thickness is increased in walls and slabs to improve the shielding ability of normal concrete in the buildings in nuclear power plants. On the other hand, the decrease of thickness of members and the decrease of building size can be expected by the adoption of heavy weight concrete. But there are little principal members such as shear walls using heavy weight concrete. Therefore, the data related to the mechanical properties and the construction method are not sufficient. This study was carried out to examine the properties and the structural characteristics of heavy weight concrete, and to establish the construction method. The selection of aggregate, the properties of aggregate and the properties of heavy weight concrete are reported. Pumping test was carried out with two kinds of the mixing proportion, and its procedure and the results are shown. The heavy weight concrete was placed as wall specimens, and its procedure and the results are described. The static loading test on shear wall specimens was carried out, and its procedure and the results are reported. Magnetite and hematite ores adopted as the aggregate caused no problem. (K.I.)

  17. Factor Structure of the Piagetian Stage of Concrete Operations.

    Science.gov (United States)

    Klausmeier, Herbert J.; Sipple, Thomas S.

    1982-01-01

    The Piagetian developmental stage of concrete operational thought and the theoretical groupement structures underlying children's performance of 12 concrete operations tasks are discussed. Tasks were shown to develop in five related sets. Three factor structures were found in this longitudinal study. (Author/CM)

  18. Qualification of a truly distributed fiber optic technique for strain and temperature measurements in concrete structures

    Science.gov (United States)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-04-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μ strain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades, either embedded in the concrete or attached to the surface of the structure. They must ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Based on the European guide FD CEN/TR 14748 "Non-destructive testing - Methodology for qualification of non-destructive tests", a qualification method was developed. Tests were carried out using various sensing cables embedded in the volume or fixed to the surface of plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument, while mechanical solicitations were imposed to the concrete element. Preliminary experiments seem very promising since measurements performed with distributed sensing systems are found comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  19. Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures

    Science.gov (United States)

    Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.

    2018-03-01

    Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.

  20. Topology Optimization for Conceptual Design of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Amir, Oded; Bogomolny, Michael

    2011-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its dierent strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures, based on topology...... must be consid- ered. Optimized distribution of material is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure....

  1. Durability and safety of concrete structures in the nuclear context. The case of the containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Torrenti, J.M. [Universite Paris Est, LCPC (France); Nahas, G. [IRSN/DSR (France)

    2011-07-01

    The durability of structures, because of its economic and environmental implications, is one of the actual hot topics in civil engineering. In the field of nuclear energy, we are facing very challenging problems like: how could we prolong the service life of actual nuclear containments and how can we assure the durability of a radioactive storage on the very long term (several centuries)? These already difficult questions in a classical civil engineering view are even more complicated in the field of nuclear energy where the structures are massive and the safety of the installations has to be considered. For the containment of nuclear power plants, these stakes will be lit with some examples of research concerning the mechanical behaviour of concrete and concrete structures (at early age, in service on long scales of time and in the event of an accident), the durability of the concrete structures (leaching, swelling due to delayed ettringite formation - DEF -) and the couplings between mechanics and durability. Finally, the importance of probabilistic aspects and the inherent difficulties will be shown. (authors)

  2. Durability and safety of concrete structures in the nuclear context. The case of the containment vessel

    International Nuclear Information System (INIS)

    Torrenti, J.M.; Nahas, G.

    2011-01-01

    The durability of structures, because of its economic and environmental implications, is one of the actual hot topics in civil engineering. In the field of nuclear energy, we are facing very challenging problems like: how could we prolong the service life of actual nuclear containments and how can we assure the durability of a radioactive storage on the very long term (several centuries)? These already difficult questions in a classical civil engineering view are even more complicated in the field of nuclear energy where the structures are massive and the safety of the installations has to be considered. For the containment of nuclear power plants, these stakes will be lit with some examples of research concerning the mechanical behaviour of concrete and concrete structures (at early age, in service on long scales of time and in the event of an accident), the durability of the concrete structures (leaching, swelling due to delayed ettringite formation - DEF -) and the couplings between mechanics and durability. Finally, the importance of probabilistic aspects and the inherent difficulties will be shown. (authors)

  3. Comparison on Heat of Hydration between Current Concrete for NPP and High Fluidity Concrete including Pozzolan Powders

    International Nuclear Information System (INIS)

    Noh, Jea Myoung; Cho, Myung Sug

    2010-01-01

    Nuclear power plant (NPP) concrete structures are exposed to many construction factors that lower the quality of concrete due to densely packed reinforcements and heat of hydration since they are mostly constructed with mass concrete. The concrete currently being used in Korean NPPs is mixed with Type I cement and fly ash. However, there is a demand to improve the performance of concrete with reduced heat of hydration and superior constructability. Many advantages such as improving workability and durability of concrete and decreasing heat of hydration are introduced by replacing cement with pozzolan binders. Therefore, the manufacturing possibility of high fluidity concrete should be investigated through applying multi-component powders blended with pozzolan binders to the concrete structure of NPPs, while the researches on properties, characteristic of hydration, durability and long-term behavior of high fluidity concrete using multi-component cement should be carried out. High fluidity concrete which is made using portland cement and pozzlonan powders such as fly ash and blast furnace slag has better properties on heat of hydration than the concrete currently in use for NPPs

  4. Probabilistic Analysis of Structural Member from Recycled Aggregate Concrete

    Science.gov (United States)

    Broukalová, I.; Šeps, K.

    2017-09-01

    The paper aims at the topic of sustainable building concerning recycling of waste rubble concrete from demolition. Considering demands of maximising recycled aggregate use and minimising of cement consumption, composite from recycled concrete aggregate was proposed. The objective of the presented investigations was to verify feasibility of the recycled aggregate cement based fibre reinforced composite in a structural member. Reliability of wall from recycled aggregate fibre reinforced composite was assessed in a probabilistic analysis of a load-bearing capacity of the wall. The applicability of recycled aggregate fibre reinforced concrete in structural applications was demonstrated. The outcomes refer to issue of high scatter of material parameters of recycled aggregate concretes.

  5. A study on the water permeability of concrete structures

    International Nuclear Information System (INIS)

    Loadsman, R.V.C.; Acres, D.H.; Stokes, C.J.; Wadeson, L.

    1988-03-01

    This report forms part of the DoE's research programme on the disposal of nuclear waste. The information available on the permeability of concrete and the effects of various factors on this value are reviewed. The effect of defects on the overall permeability of concrete structures is examined and the recorded performance of a range of existing concrete structures is considered with identification of some of the factors that are significant in practice. Deficiencies in the information available on this subject are identified and recommendations for further work are made including a list of structures suitable for future monitoring. (author)

  6. Determining the in situ concrete strength of existing structures for assessing their structural safety

    NARCIS (Netherlands)

    Steenbergen, R.D.J.M.; Vervuurt, A.H.J.M.

    2012-01-01

    EN 13791 applies when assessing the in situ compressive strength of structures and precast concrete components. According to the code itself, it may be adopted when doubt arises about the compressive strength of a concrete. For assessing the structural safety of existing structures, however, the

  7. Post-installed concrete anchors in nuclear power plants: Performance and qualification

    International Nuclear Information System (INIS)

    Mahrenholtz, Philipp; Eligehausen, Rolf

    2015-01-01

    Graphical abstract: - Highlights: • Review of qualification and design regulations for anchors in nuclear power plants. • First complete set of nuclear anchor load–displacement data and its evaluation ever. • Demonstration of robust test behavior of a qualified post-installed anchor product. - Abstract: In nuclear power plants (NPPs), post-installed anchors are widely used for structural and non-structural connections to concrete. In many countries, anchor products employed for safety relevant applications have to be approved by the authorities. For the high safety standards in force for NPPs, special requirements have to be met to allow for extreme design situations. This paper presents an experimental test program conducted to evaluate the performance of anchors according to the German Guideline for Anchorages in Nuclear Power Plants and Nuclear Technology Installations (DIBt KKW Leitfaden, 2010). After a brief introduction to anchor behavior and the regulative context, the results of tension and shear tests carried out on undercut anchors are discussed. Robust load capacities and relatively small displacements determined for demanding load and crack cycling tests demonstrated the suitability of anchors qualified according to a state-of-the-art qualification guideline

  8. Microstructural Analysis on the NPP Concrete under Initial Frost Damage

    International Nuclear Information System (INIS)

    Koh, Kyung Teak; Park, Chun Jin; Kim, Si Hwan; Ryu, Gum Sung

    2012-01-01

    The concrete should secure the quality over certain standard regardless of construction location and period. Especially, because the fly ash (FA) is used in nuclear power plant concrete as a concrete substitute by 20%, the concrete using FA is hugely influenced according to temperature and humidity in terms of constructability, strength and durability due to the material properties. Accordingly, when building the nuclear power plant under various environmental conditions, it's important to secure the concrete quality equally through applying an appropriate curing method to control temperature and humidity. Although various according to concrete materials and mixture, the concrete-freezing temperature is usually known as about -0.5∼-3.0 .deg. C. In case the concrete is frozen early under the condition that the strength has not been sufficiently developed yet, because the volume expansion caused by the frozen free moisture inside concrete results in the relaxation and destruction of structure, the strength, watertightness and durability of the concrete get lower drastically even after being hardened. Accordingly, this study tried to review the quality of nuclear power plant concrete under early freezing through measuring strength, SEM and XRD after making the concrete frozen over certain standard in the early curing with targeting the nuclear power plant (NPP) concrete replaced with FA 20%

  9. Nonlinear analysis of reinforced concrete structures using software package abaqus

    OpenAIRE

    Marković Nemanja; Stojić Dragoslav; Cvetković Radovan

    2014-01-01

    Reinforced concrete (AB) is characterized by huge inhomogeneity resulting from the material characteristics of the concrete, then, quasi-brittle behavior during failure. These and other phenomena require the introduction of material nonlinearity in the modeling of reinforced concrete structures. This paper presents the modeling reinforced concrete in the software package ABAQUS. A brief theoretical overview is presented of methods such as: Concrete Damage Plasticity (CDP), Smeared Concrete Cr...

  10. Technological parameters influence on the non-autoclaved foam concrete characteristics

    Science.gov (United States)

    Bartenjeva, Ekaterina; Mashkin, Nikolay

    2017-01-01

    Foam concretes are used as effective heat-insulating materials. The porous structure of foam concrete provides good insulating and strength properties that make them possible to be used as heat-insulating structural materials. Optimal structure of non-autoclaved foam concrete depends on both technological factors and properties of technical foam. In this connection, the possibility to manufacture heat-insulation structural foam concrete on a high-speed cavity plant with the usage of protein and synthetic foamers was estimated. This experiment was carried out using mathematical planning method, and in this case mathematical models were developed that demonstrated the dependence of operating performance of foam concrete on foaming and rotation speed of laboratory plant. The following material properties were selected for the investigation: average density, compressive strength, bending strength and thermal conductivity. The influence of laboratory equipment technological parameters on technical foam strength and foam stability coefficient in the cement paste was investigated, physical and mechanical properties of non-autoclaved foam concrete were defined based on investigated foam. As a result of investigation, foam concrete samples were developed with performance parameters ensuring their use in production. The mathematical data gathered demonstrated the dependence of foam concrete performance on the technological regime.

  11. Performance of Hydrophobisation Techniques in Case of Reinforced Concrete Structures

    Science.gov (United States)

    Błaszczyński, Tomasz; Osesek, Mateusz; Gwozdowski, Błażej; Ilski, Mirosław

    2017-10-01

    Concrete is, unchangeably, one of the most frequently applied building materials, also in the case of bridges, overpasses or viaducts. Along with the aging of such structures, the degradation of concrete, which may accelerate the corrosion of reinforcing steel and drastically decrease the load-bearing capacity of the structure, becomes an important issue. The paper analyzes the possibilities of using deep hydrophobisation in repairing reinforced concrete engineering structures. The benefits of properly securing reinforced concrete structures from the damaging effects of UV radiation, the influence of harmful gases, or progression of chlorine induced corrosion have been presented, especially in regards to bridge structures. The need to calculate the costs of carrying out investments along with the expected costs of maintaining such structures, as well as the high share of costs connected with logistics, has also been indicated in the total costs of repair works.

  12. THE STUDY ON THE DURABILITY OF SUBMERGED STRUCTURE DISPLACEMENT DUE TO CONCRETE FAILURE

    Directory of Open Access Journals (Sweden)

    M. Mohd

    2016-09-01

    Full Text Available Concrete structures that exposed to marine environments are subjected to multiple deterioration mechanisms. An overview of the existing technology for submerged concrete, pressure resistant, concrete structures which related such as cracks, debonds, and delamination are discussed. Basic knowledge related to drowning durability such as submerged concrete structures in the maritime environment are the durability of a concrete and the ability to resist to weathering, chemical attack, abrasion or other deterioration processes. The measuring techniques and instrumentation for geometrical monitoring of submerged structural displacements have traditionally been categorized into two groups according to the two main groups, namely as geodetic surveying and geotechnical structural measurements of local displacements. This paper aims to study the durability of submerged concrete displacement and harmful effects of submerged concrete structures.

  13. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    Science.gov (United States)

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Design of the containment structure in prestressed concrete for the Embalse-Cordoba Nuclear Power Plant

    International Nuclear Information System (INIS)

    Godoy, A.R.; Marinelli, C.A.; Gruenbaum, C.E.

    1978-01-01

    The design of a typical prestressed concrete containment structure for a 600 MW Candu - PHW Reactor, presently under construction at Embalse - Cordoba, Argentina is briefly described. The structural behaviour , adcpted prestressing system and tendon pattern are described. Afterwards the evaluation of the prestressing forces as well as the losses assessment and the prestressing sequence are discussed. Finally, some conclusions are drawn in the light of the experience gained at different stages of the construction. (Author)

  15. Seismic fragility of reinforced concrete structures and components for application to nuclear facilities

    International Nuclear Information System (INIS)

    Gergely, P.

    1984-09-01

    The failure and fragility analyses of reinforced concrete structures and elements in nuclear reactor facilities within the Seismic Safety Margins Research Program (SSMRP) at the Lawrence Livermore National Laboratory are evaluated. Uncertainties in material modeling, behavior of low shear walls, and seismic risk assessment for nonlinear response receive special attention. Problems with ductility-based spectral deamplification and prediction of the stiffness of reinforced concrete walls at low stress levels are examined. It is recommended to use relatively low damping values in connection with ductility-based response reductions. The study of static nonlinear force-deflection curves is advocated for better nonlinear dynamic response predictions. Several details of the seismic risk analysis of the Zion plant are also evaluated. 73 references

  16. Pre-operational proof and leakage rate testing requirements for concrete containment structures for CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1994-02-01

    This Standard provides the requirements for pre-operational proof tests and leakage rate tests of concrete containment structures of a containment system designed as Class Containment components. 1 fig

  17. Towards a more common use of Ultra-High Performance Concrete (UHPC) – development of UHPC for ready-mix and prefabrication concrete plants

    NARCIS (Netherlands)

    Spiesz, P.R.; Hunger, M.; Justnes, Harald; Braarud, Henny

    2017-01-01

    This study addresses the development of ultra-high performance concrete (UHPC) suitable for a mass production in conventional ready-mix and prefabrication concrete plants. In order to facilitate the production process, curing regime and to minimize the costs, no additional treatments (e.g. thermal

  18. Mathematical Model to Predict the Permeability of Water Transport in Concrete Structure

    OpenAIRE

    Solomon Ndubuisi Eluozo

    2013-01-01

    Mathematical model to predict the permeability of water transport in concrete has been established, the model is to monitor the rate of water transport in concrete structure. The process of this water transport is based on the constituent in the mixture of concrete. Permeability established a relation on the influence of the micropores on the constituent that made of concrete, the method of concrete placement determine the rate of permeability deposition in concrete structure, permeability es...

  19. Assessing the performance of reinforced concrete structures under impact loads

    International Nuclear Information System (INIS)

    Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Ozbolt, Josko; Hofmann, J.

    2011-01-01

    Reinforced concrete (RC) structures housing nuclear facilities must qualify against much stringent requirements of operating and accidental loads than conventional structures. One such accidental load that must be considered while assessing the performance of safety related RC structures is impact load. It is known that the behavior of concrete/reinforced concrete structures is strongly influenced by the loading rate. The RC structural members subjected to impact loads behave quite differently as compared to the same subjected to quasi-static loading due to the strain-rate influence on strength, stiffness, and ductility as well as to the activation of inertia forces. Moreover, for concrete structures, which exhibit damage and fracture phenomena, the failure mode and cracking pattern depend significantly on loading rate. In general, there is a tendency that with the increase of loading rate the failure mode changes from mode-I to mixed mode. In order to assess the performance of existing structures against impact loads that may be generated mainly due to man-made accidental conditions, it is important to have models that can realistically predict the impact behavior of concrete structures. The present paper focuses on a relatively new approach for 3D finite element analysis of RC structures under impact loads. The approach uses rate sensitive micro-plane model as constitutive law for concrete, while the strain-rate influence is captured by the activation energy. Inertia forces are implicitly accounted for through dynamic finite element analysis. It is shown with the help of different examples that the approach can very well simulate the behavior of RC structural elements under high rate loading. (author)

  20. Effect of temperature on structural quality of the cement paste and high-strength concrete with silica fume

    International Nuclear Information System (INIS)

    Janotka, Ivan; Nuernbergerova, Terezia

    2005-01-01

    Experimental investigation conducted to study the thermo-mechanical properties of concrete at Temelin (Czech Republic), Mochovce (Slovakia), and Penly (France) nuclear power plants reveals structural integrity degradation between 100 and 200 deg C due to both a loss of water bound in hydrated cement minerals and subsequently air void formation. Test results indicate changes in strength, average pore radius and calculated permeability coefficients for Mochovce specimens exposed to temperatures up to 400 deg C. It demonstrates that the permeability coefficient measured on the basis of pore sizes using mercury intrusion porosimetry is suitable technique for the evaluation of concrete quality. It confirms that strength and permeability coefficient are equivalent structural quality variables of concrete. At 400 deg C gel-like hydration products are decomposed, at 600 deg C Ca(OH) 2 is dehydroxylated, and CaCO 3 dissociation to CaO and CO 2 accompanied with the re-crystallisation of non-binding phases from hydrated cement under re-combustion are dominant processes between 600 and 800 deg C. This stage of concrete is characterised by the collapse of its structural integrity, revealing residual compressive strength. This paper reports high-strength concrete behaviour subjected to temperatures up to 200 deg C. In accordance with previous results, research studies of structure-property relation show the changes in strength, dynamic modulus of elasticity, strain-stress behaviour, and shrinkage-induced deformations influenced by a hydrate phase decomposition. Volume reduction of the hydrate phase due to the loss of bound water mass is the cause of air void formation, and pore structure coarsening. The main attention is herein devoted to the evaluation of utility property decrease of high-strength concrete and microstructure degradation of the cement paste with the same composition than that in concrete when attacked by elevated temperatures

  1. Delayed behaviour of concrete in nuclear power plant containment: analysis and modelling

    International Nuclear Information System (INIS)

    Granger, L.

    1995-02-01

    The containment of French nuclear power plant of the 1300 and 1400 MWe PWR type are made of prestressed concrete and their delayed behaviour is systematically monitored by a very complete instrumentation. In an accidental phase, the tightness of the 1.2 m thick structure, dimensioned to withstand an internal absolute pressure of 0.5 MPa depends mainly on the residual prestress of concrete. But surveillance devices reveal substantial differences from one site to another, from which the regulation calculation models cannot make satisfactory allowance. For the purpose of improving the management of the population of power stations, EDF in 1992 initiated a large study aimed at predicting the true creep behaviour of the containments already built. This study, more material oriented, includes numerous shrinkage and creep tests on reconstructed concrete in laboratory as well as on cement paste and aggregate. The main results are presented in part one. In the second part, we consider the different delayed strains of concrete one by one. A precise analysis of the physico-chemical phenomena at the origin of the delayed behaviours, leads us to propose a practical modelling of concrete in an overall equivalent continuous material approach. Secondly, the few parameters of the model are determined on the experimental results. In order to do so, two particular finite element programs in CESAR-LCPC have been developed. The first one permits to take into account the non linear diffusion of humidity in concrete as a function of temperature. The diffusion coefficient D(C) (C = water content) is fitted on the loss of weight tests as a function of time. The second step is a creep calculation; first, the program reads back the temperature and humidity results of the previous computations and then calculates the different delayed strains in time. For basic creep, we have chosen a viscoelastic model function of temperature and humidity. The numerical scheme uses the principle of

  2. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete

    Directory of Open Access Journals (Sweden)

    Manu S. Nadesan

    2017-12-01

    Full Text Available Concrete is one of the most widely used construction materials and has the ability to consume industrial wastes in high volume. As the demand for concrete is increasing, one of the effective ways to reduce the undesirable environmental impact of the concrete is by the use of waste and by-product materials as cement and aggregate substitutes in concrete. One such waste material is fly ash, which is produced in large quantities from thermal power plants as a by-product. A substantial amount of fly ash is left unused posing environmental and storage problems. The production of sintered lightweight aggregate with fly ash is an effective method to dispose of fly ash in large quantities. Due to lack of a proper mix design procedure, the production and application of lightweight aggregate in structural concrete are not much entertained. The absorption characteristic of lightweight aggregate is a major concern, while developing the mix proportioning of lightweight concretes. The present study is an attempt to establish a new mix design procedure for the development of sintered fly ash lightweight aggregate concretes, which is simple and more reliable than the existing procedures. Also, the proposed methodology has been validated by developing a spectrum of concretes having water cement ratios varying from 0.25 to 0.75. From the study, it is obvious that the development of 70 MPa concrete is possible by using cement alone without any additives. Also, it is ensured that all the concretes have densities less than 2000 kg/m3.

  3. Processing disaster debris liberating aggregates for structural concrete

    NARCIS (Netherlands)

    van de Wouw, P.M.F.; Florea, M.V.A.; Brouwers, H.J.H.; Schmidt, W.; Msinjili, N.S.

    2016-01-01

    Worldwide, the removal of debris and reconstruction is requested when natural disasters and conflicts cause damaged or collapsed buildings. The on-site recycling of concrete waste into new structural concrete decreases transport and production energy costs, reduces the utilization of raw materials,

  4. Effect of high temperature on integrity of concrete containment structures

    International Nuclear Information System (INIS)

    Bhat, P.D.

    1986-01-01

    The effect of high temperature on concrete material properties and structural behavior are studied in order to relate these effects to the performance of concrete containment structures. Salient data obtained from a test program undertaken to study the behavior of a restrained concrete structure under thermal gradient loads up to its ultimate limit are described. The preliminary results indicate that concrete material properties can be considered to remain unaltered up to temperatures of 100 0 C. The presence of thermal gradients did not significantly affect the structures ultimate mechanical load capacity. Relaxation of restraint forces due to creep was found to be an important factor. The test findings are compared with the observations made in available literature. The effect of test findings on the integrity analysis of a containment structure are discussed. The problem is studied from the viewpoint of a CANDU heavy water reactor containment

  5. Structural Effects of Reinforced Concrete Beam Due to Corrosion

    Science.gov (United States)

    Noh, Hamidun Mohd; Idris, Nur'ain; Noor, Nurazuwa Md; Sarpin, Norliana; Zainal, Rozlin; Kasim, Narimah

    2018-03-01

    Corrosion of steel in reinforced concrete is one of the main issues among construction stakeholders. The main consequences of steel corrosion include loss of cross section of steel area, generation of expansive pressure which caused cracking of concrete, spalling and delaminating of the concrete cover. Thus, it reduces the bond strength between the steel reinforcing bar and concrete, and deteriorating the strength of the structure. The objective of this study is to investigate the structural effects of corrosion damage on the performance of reinforced concrete beam. A series of corroded reinforced concrete beam with a corrosion rate of 0%, 20% and 40% of rebar corrosion is used in parametric study to assess the influence of different level of corrosion rate to the structural performance. As a result, the used of interface element in the finite element modelling predicted the worst case of corrosion analysis since cracks is induced and generate at this surface. On the other hand, a positive linear relationship was sketched between the increase of expansive pressure and the corrosion rate. Meanwhile, the gradient of the graph is decreased with the increase of steel bar diameter. Furthermore, the analysis shows that there is a significant effect on the load bearing capacity of the structure where the higher corrosion rate generates a higher stress concentration at the mid span of the beam. This study could predict the residual strength of reinforced concrete beam under the corrosion using the finite element analysis. The experimental validation is needed on the next stage to investigate the quantitative relation between the corrosion rate and its influence on the mechanical properties.

  6. Prevention of shrinkage cracking in tight concrete structures

    International Nuclear Information System (INIS)

    Alvaredo, A.M.; Wittmann, F.H.

    1995-01-01

    It is shown that crack formation and propagation in concrete members subjected to restrained shrinkage can be realistically predicted by means of a comprehensive approach including a diffusion analysis and fracture mechanics considerations. The conditions for stable crack propagation regarding dimensions of the concrete member, degree of restraint to the imposed deformation and material properties are discussed. Guidelines on the prevention of shrinkage cracking of concrete structures are given. (author). 10 refs., 5 figs

  7. Structural-functional integrated concrete with macro-encapsulated inorganic PCM

    Science.gov (United States)

    Mohseni, Ehsan; Tang, Waiching; Wang, Zhiyu

    2017-09-01

    Over the last few years the application of thermal energy storage system incorporating phase change materials (PCMs) to foster productivity and efficiency of buildings energy has grown rapidly. In this study, a structural-functional integrated concrete was developed using macro-encapsulated PCM-lightweight aggregate (LWA) as partial replacement (25 and 50% by volume) of coarse aggregate in control concrete. The PCM-LWA was prepared by incorporation of an inorganic PCM into porous LWAs through vacuum impregnation. The mechanical and thermal performance of PCM-LWA concrete were studied. The test results revealed that though the compressive strength of concrete with PCM-LWA was lower than the control concrete, but ranged from 22.02 MPa to 42.88 MPa which above the minimum strength requirement for structural application. The thermal performance test indicated that macro-encapsulated PCM-LWA has underwent the phase change transition reducing the indoor temperature.

  8. Concrete storage cask for interim storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nabemoto, Toyonobu; Fujiwara, Hiroaki; Kobayashi, Shunji; Shionaga, Ryosuke

    2004-01-01

    Experiments and analytical evaluation of the fabrication, non-destructive inspection and structural integrity of reinforced concrete body for storage casks were carried out to demonstrate the concrete storage cask for spent fuel generated from nuclear power plants. Analytical survey on the type of concrete material and fabrication method of the storage cask was performed and the most suitable fabrication method for the concrete body was identified to reduce concrete cracking. The structural integrity of the concrete body of the storage cask under load conditions during storage was confirmed and the long term integrity of concrete body against degradation dependent on environmental factors was evaluated. (author)

  9. Containers, particularly prestressed concrete pressure vessels for nuclear reactor plants

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.; Mitterbacher, P.

    1986-01-01

    Pressure and temperature changes act on the liner, which cause differential expansion between the liner and the prestressed concrete. So that there will be no overload or damage to the liner, its anchoring or the concrete structure, cutouts are provided in the concrete at deflection positions of the steel cladding, connections and penetrations. These cut-outs are filled with inserts made of elastic or plastic material. (DG) [de

  10. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  11. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  12. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  13. Numerical Limit Analysis of Precast Concrete Structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen

    Precast concrete elements are widely used in the construction industry as they provide a number of advantages over the conventional in-situ cast concrete structures. Joints cast on the construction site are needed to connect the precast elements, which poses several challenges. Moreover, the curr...... problems are solved efficiently using state-of-the-art solvers. It is concluded that the framework and developed joint models have the potential to enable efficient design of precast concrete structures in the near future......., the current practice is to design the joints as the weakest part of the structure, which makes analysis of the ultimate limit state behaviour by general purpose software difficult and inaccurate. Manual methods of analysis based on limit analysis have been used for several decades. The methods provide...... of the ultimate limit state behaviour. This thesis introduces a framework based on finite element limit analysis, a numerical method based on the same extremum principles as the manual limit analysis. The framework allows for efficient analysis and design in a rigorous manner by use of mathematical optimisation...

  14. The effect of alkali-aggregate reaction on concrete bridge structures

    Directory of Open Access Journals (Sweden)

    Grković Slobodan

    2016-01-01

    Full Text Available This paper shows contemporary issues related to unfavorable effects of concrete alkali-aggregate reaction (AAR on concrete bridge structures (CBS. Although AAR unfavorable effects on CBS were identified in 1930s, it was much later that AAR was acknowledged as one of the most pronounced deterioration processes in concrete that results in damages to concrete structures. There are two basic forms of AAR: alkali-silica reaction (ASR and alkali-carbonate reaction (ACR. Compared to ACR, ASR is more prominent, especially in certain geographic parts of the world. Damages to concrete caused by the ASR have negative effect primarily on usability and durability of CBS, what is followed by the decrease in load bearing capacity of structural components and reliability of the whole structure, shortening of service life (SL and costly repairs. For CBS, simultaneous occurrence of ASR and other degradation processes in concrete, such as those caused by the presence of moisture, water, temperature variations and use of deicing salt during winter, are especially damaging. Based on review of the most relevant literature, this paper is focused on mechanisms and mechanisms factors of the ASR, related contemporary research and reliability design guidelines for CBS that are based on prevention of the initiation and development of ASR.

  15. Constitutive relation of concrete containing meso-structural characteristics

    Directory of Open Access Journals (Sweden)

    Li Guo

    Full Text Available A constitutive model of concrete is proposed based on the mixture theory of porous media within thermodynamic framework. By treating concrete as a multi-phase multi-component mixture, we constructed the constitutive functions for elastic, interfacial, and plastic strain energy respectively. A constitutive law of concrete accommodating internal micro-cracks and interfacial boundaries was established. The peak stress predicted with the developed model depends primarily on the volume ratio of aggregate, and the results explain very well reported experimental phenomena. The strain-stress curve under uniaxial loading was found in a good agreement with experimental data for concrete with three different mixing proportions. Keywords: Constitutive model of concrete, Mixture theory of porous media, Meso-structure, Interfacial energy

  16. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Winkel, B.V.

    1995-01-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in 2 mix and a 4.5 kip/in 2 mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in 2 . In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F

  17. ADVANCEMENTS IN CONCRETE TECHNOLOGY

    OpenAIRE

    Shri Purvansh B. Shah; Shri Prakash D. Gohil; Shri Hiren J. Chavda; Shri Tejas D. Khediya

    2015-01-01

    Developing and maintaining world’s infrastructure to meet the future needs of industrialized and developing countries is necessary to economically grow and improve the quality of life. The quality and performance of concrete plays a key role for most of infrastructure including commercial, industrial, residential and military structures, dams, power plants. Concrete is the single largest manufactured material in the world and accounts for more than 6 billion metric tons of materials annual...

  18. Effects of temperature, mechanical loading and of their interactions on the permeability of structural concrete

    International Nuclear Information System (INIS)

    Choinska, M.

    2006-11-01

    Concrete permeability may influence the durability of structures indirectly by controlling the penetration rate of aggressive agents, but also directly if the structure has a confinement role, like containment vessels of nuclear power plants for instance. In the industrial background on the safety of these structures, the objective of this study is to characterize the evolution of concrete permeability under the effects of temperature and mechanical loading. The permeability tests are performed on hollow concrete cylinders, subjected to temperature up to 150 C and compressive loading up to failure. Experimental results reveal that the effects of temperature and damage may be decoupled for the estimation of permeability and enable us to propose a relation between permeability, damage and temperature. However, this relation may only be applied in the pre-peak phase as concrete remains micro-cracked. In order to overcome this limit to be able to model also permeability increase in the post-peak phase, another parameter, which is crack opening, is introduced in the relation between permeability and damage. This problem, investigated by modelling, is exploited according to two approaches. The first one is based on the definition of a matching law between existing relations of permeability evolution with damage and with crack opening. With this approach the tendencies are similar to the observed ones on the experimental results. The second approach consists in linking from a mechanical point of view damage with crack opening in order to apply the Poiseuille's law for permeability determination. Experimental validation of this approach, emerging towards a continuous model capable to reproduce permeability variations of a concrete structure, constitutes a major perspective of this work. (author)

  19. Internal inspection of reinforced concrete for nuclear structures using shear wave tomography

    International Nuclear Information System (INIS)

    Scott, David B.

    2013-01-01

    Highlights: • Aging of reinforced concrete used for worldwide nuclear structures is increasing and necessitating evaluation. • Nondestructive evaluation is a tool for assessing the condition of reinforced concrete of nuclear structures. • Ultrasonic shear wave tomography as a stress wave technique has begun to be utilized for investigation of concrete material. • A study using ultrasonic shear wave tomography indicates anomalies vital to the long-term operation of the structure. • The use of this technique has shown to successfully evaluate the internal state of reinforced concrete members. - Abstract: Reinforced concrete is important for nuclear related structures. Therefore, the integrity of structural members consisting of reinforced concrete is germane to the safe operation and longevity of these facilities. Many issues that reduce the likelihood of safe operation and longevity are not visible on the surface of reinforced concrete material. Therefore, an investigation of reinforced concrete material should include techniques which will allow peering into the concrete member and determining its internal state. The performance of nondestructive evaluations is pursuant to this goal. Some of the categories of nondestructive evaluations are electrochemical, magnetism, ground penetrating radar, and ultrasonic testing. A specific ultrasonic testing technique, namely ultrasonic shear wave tomography, is used to determine presence and extent of voids, honeycombs, cracks perpendicular to the surface, and/or delamination. This technique, and others similar to it, has been utilized in the nuclear industry to determine structural conditions

  20. Modelling of the Deterioration of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Stochastic modelling of the deterioration of reinforced concrete structures is addressed in this paper on basis of a detailed modelling of corrosion initiation and corrosion cracking. It is proposed that modelling of the deterioration of concrete should be based on a sound understanding...... of the physical and chemical properties of the concrete. The relationship between rebar corrosion and crack width is investigated. A new service life definition based on evolution of the corrosion crack width is proposed....

  1. Stress-based topology optimization of concrete structures with prestressing reinforcements

    Science.gov (United States)

    Luo, Yangjun; Wang, Michael Yu; Deng, Zichen

    2013-11-01

    Following the extended two-material density penalization scheme, a stress-based topology optimization method for the layout design of prestressed concrete structures is proposed. The Drucker-Prager yield criterion is used to predict the asymmetrical strength failure of concrete. The prestress is considered by making a reasonable assumption on the prestressing orientation in each element and adding an additional load vector to the structural equilibrium function. The proposed optimization model is thus formulated as to minimize the reinforcement material volume under Drucker-Prager yield constraints on elemental concrete local stresses. In order to give a reasonable definition of concrete local stress and prevent the stress singularity phenomenon, the local stress interpolation function and the ɛ -relaxation technique are adopted. The topology optimization problem is solved using the method of moving asymptotes combined with an active set strategy. Numerical examples are given to show the efficiency of the proposed optimization method in the layout design of prestressed concrete structures.

  2. Improving Thermal Insulation Properties for Prefabricated Wall Components Made Of Lightweight Aggregate Concrete with Open Structure

    Science.gov (United States)

    Abramski, Marcin

    2017-10-01

    Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the

  3. Potential applications of steel fibre reinforced concrete to improve seismic response of frame structures

    International Nuclear Information System (INIS)

    Adhikari, S.; Patnaik, A.

    2012-01-01

    Fibre reinforced concrete has gained acceptance in several civil engineering applications. The proclivity of new generation of engineers to use steel fibre reinforced concrete can be attributed to some distinct functional and structural benefits that it can provide compared to conventional reinforced concrete. Fibre reinforced concrete has been found to increase the post-cracking tensile strength of concrete thus facilitating pseudo-plastic response, improved energy absorption, and better energy dissipation capabilities that lead to better structural response under cyclic loading. These factors suggest benefits in considering the use of steel fibre reinforced concrete to enhance the structural response of reinforced concrete structures under earthquake loading. This paper summarizes useful background on steel fibre reinforced concrete, the benefits over conventional reinforced concrete, and its response to cyclic excitation. The authors believe that steel fibre reinforced concrete is a suitable ductile high performance material that is gaining acceptance for applications in frame structures and is particularly suitable for enhancing seismic response. (author)

  4. Economic effects of full corrosion surveys for aging concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Raupach, M.; Reichling, K.

    2013-01-01

    This paper investigates the economic effects of full corrosion surveys of concrete structures. The background is that the existing concrete infrastructure is aging, while being exposed to aggressive influences, which increases the occurrence of corrosion and related concrete damage over time. The

  5. Conservation of concrete structures according to fib Model Code 2010

    NARCIS (Netherlands)

    Matthews, S.; Bigaj-Van Vliet, A.; Ueda, T.

    2013-01-01

    Conservation of concrete structures forms an essential part of the fib Model Code for Concrete Structures 2010 (fib Model Code 2010). In particular, Chapter 9 of fib Model Code 2010 addresses issues concerning conservation strategies and tactics, conservation management, condition surveys, condition

  6. Pressure test behaviour of embalse nuclear power plant containment structure

    International Nuclear Information System (INIS)

    Bruschi, S.; Marinelli, C.

    1984-01-01

    It's described the structural behaviour of the containment structure during the pressure test of the Embalse plant (CANDU type, 600MW), made of prestressed concrete with an epoxi liner. Displacement, strain, temperature, and pressure measurements of the containment structure of the Embalse Nuclear Power Plant are presented. The instrumentation set up and measurement specifications are described for all variables of interest before, during and after the pressure test. The analytical models to simulate the heat transfer due to sun heating and air convenction and to predict the associated thermal strains and displacements are presented. (E.G.) [pt

  7. Characteristics of Structural Breakdown in Plastic Concrete and ...

    African Journals Online (AJOL)

    Characteristics of Structural Breakdown in Plastic Concrete and Their Potentials for Quality Control. ... A typical trace has four such significant features which characterise the mix. The significance of these features are analysed in relation to the functional requirements of plastic concrete in practice. Finally, the potentials of ...

  8. Study on Seismic Behavior of Recycled Concrete Energy-efficient Homes Structure Wall

    Directory of Open Access Journals (Sweden)

    Dong Lan

    2016-01-01

    Full Text Available The main point is to study the seismic behavior of the lattice type recycled concrete energy saving wall under low-cyclic loading,to provide the basis for the seismic performance of application of recycled concrete lattice wall in energy-saving residential structure. Design two walls with the same structure measures, include Lattice type recycled concrete wall and natural concrete wall, they are tested under low-cycle repetitive loading, compared failure mode and seismic performance in different reinforcement conditions of side column. The bearing capacity and ductility of recycled aggregate concrete are better than natural aggregate concrete, The stiffness degradation curves and the skeleton curves of the walls are basically the same, both of them have better seismic energy dissipation capacity. Lattice type concrete wall is good at seismic performance, recycled aggregate concrete is good at plastic deformation ability, it is advantageous to seismic energy dissipation of wall, it can be applied in energy efficient residential structure wall.

  9. A study of explosive demolition techniques for heavy reinforced and prestressed concrete structures

    International Nuclear Information System (INIS)

    Fleischer, C.C.

    1984-10-01

    This report presents the results from a research programme aimed at advancing explosive demolition techniques from the present 'rule of thumb art' to a more scientifically based set of procedures to achieve the degree of control which will be essential in a nuclear power station decommissioning. The research is directed mainly at the biological shields of early Magnox reactors and the prestressed concrete pressure vessels (PCPVs) of later Magnox and Advanced Gas-cooled reactors. Relevant structures of other commercial nuclear power plants in the European Community, in particular the PCPVs of French Gas Graphite reactors and the biological shields of Light Water reactors are also considered. The bulk of the programme has been based on experiments with an extensive usage of scaled models. The programme investigated the use of buried explosive charges in cratering concrete and the use of shaped charges in stripping surface cover and drilling holes. After an initial parametric study the programme considered concrete layer stripping using multiple charges and culminated in the stripping off of an equivalent thickness of concrete, for radiation protection, from the inside walls of a complete cylindrical model of a biological shield. (author)

  10. A study of explosive demolition techniques for heavy reinforced and prestressed concrete structures

    International Nuclear Information System (INIS)

    Fleischer, C.C.

    1985-01-01

    This report presents the results from a research programme aimed at advancing explosive demolition techniques from the present ''rule of thumb art'' to a more scientifically based set of procedures to achieve the degree of control which will be essential in a nuclear power station decommissioning. The research is directed mainly at the biological shields of early Magnox reactors and the prestressed concrete pressure vessels (PCPVs) of later Magnox and advanced gas-cooled reactors. Relevant structures of other commercial nuclear power plants in the European Community, in particular the PCPVs of French gas graphite reactors and the biological shields of light water reactors are also considered. The bulk of the programme has been based on experiments with an extensive usage of scaled models. The programme investigated the use of buried explosive charges in cratering concrete and the use of shaped charges in stripping surface cover and drilling holes. After an initial parametric study the programme considered concrete layer stripping using multiple charges and culminated in the stripping off of an equivalent thickness of concrete, for radiation protection, from the inside walls of a complete cylindrical model of a biological shield

  11. A corrosion monitoring system for existing reinforced concrete structures.

    Science.gov (United States)

    2015-05-01

    This study evaluated a multi-parameter corrosion monitoring system for existing reinforced concrete structures in chloride-laden service environments. The system was fabricated based on a prototype concrete corrosion measurement system that : had bee...

  12. Review of Carbon Fiber Reinforced Polymer Reinforced Material in Concrete Structure

    Directory of Open Access Journals (Sweden)

    Ayuddin Ayuddin

    2016-05-01

    Full Text Available Carbon Fiber Reinforced Polymer (FRP is a material that is lightweight, strong, anti-magnetic and corrosion resistant. This material can be used as an option to replace the steel material in concrete construction or as material to improve the strength of existing construction. CFRP is quite easy to be attached to the concrete structure and proved economically used as a material for repairing damaged structures and increase the resilience of structural beams, columns, bridges and other parts of the structure against earthquakes. CFRP materials can be shaped sheet to be attached to the concrete surface. Another reason is due to the use of CFRP has a higher ultimate strength and lower weight compared to steel reinforcement so that the handling is significantly easier. Through this paper suggests that CFRP materials can be applied to concrete structures, especially on concrete columns. Through the results of experiments conducted proved that the concrete columns externally wrapped with CFRP materials can increase the strength. This treatment is obtained after testing experiments on 130 mm diameter column with a height of 700 mm with concentric loading method to collapse. The experimental results indicate that a column is wrapped externally with CFRP materials can achieve a load capacity of 250 kN compared to the concrete columns externally without CFRP material which only reached 150 kN. If the column is given internally reinforcing steel and given externally CFRP materials can reach 270 kN. It shows that CFRP materials can be used for concrete structures can even replace reinforcing steel that has been widely used in building construction in Indonesia.

  13. Doubling the Life of Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, Batric [Univ. of Idaho, Moscow, ID (United States); Raja, Krishnan [Univ. of Idaho, Moscow, ID (United States); Xi, Yumping [Univ. of Colorado, Boulder, CO (United States); Jun, Jiheon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-24

    Overall objective of the project was to study the fundamental properties of concrete (with and without steel reinforcement) with respect to chemical and physical parameters that can influence its structural integrity.

  14. Doubling the Life of Concrete Structures

    International Nuclear Information System (INIS)

    Pesic, Batric; Raja, Krishnan; Xi, Yumping; Jun, Jiheon

    2017-01-01

    Overall objective of the project was to study the fundamental properties of concrete (with and without steel reinforcement) with respect to chemical and physical parameters that can influence its structural integrity.

  15. Modeling of delayed strains of concrete under biaxial loadings. Application to the reactor containment of nuclear power plants

    International Nuclear Information System (INIS)

    Benboudjema, F.

    2002-12-01

    The prediction of delayed strains is of crucial importance for durability and long-term serviceability of concrete structures (bridges, containment vessels of nuclear power plants, etc.). Indeed, creep and shrinkage cause cracking, losses of pre-stress and redistribution of stresses, and also, rarely, the ruin of the structure. The objective of this work is to develop numerical tools, able to predict the long-term behavior of concrete structures. Thus, a new hydro mechanical model is developed, including the description of drying, shrinkage, creep and cracking phenomena for concrete as a non-saturated porous medium. The modeling of drying shrinkage is based on an unified approach of creep and shrinkage. Basic and drying creep models are based on relevant chemo-physical mechanisms, which occur at different scales of the cement paste. The basic creep is explicitly related to the micro-diffusion of the adsorbed water between inter-hydrates and intra-hydrates and the capillary pores, and the sliding of the C-S-H gel at the nano-porosity level. The drying creep is induced by the micro-diffusion of the adsorbed water at different scales of the porosity, under the simultaneous effects of drying and mechanical loadings. Drying shrinkage is, therefore, assumed to result from the elastic and delayed response of the solid skeleton, submitted to both capillary and disjoining pressures. Furthermore, the cracking behavior of concrete is described by an orthotropic elastoplastic damage model. The coupling between all these phenomena is performed by using effective stresses which account for both external applied stresses and pore pressures. This model has been incorporated into a finite element code. The analysis of the long-term behavior is also performed on concrete specimens and prestressed concrete structures submitted to simultaneous drying and mechanical loadings. (author)

  16. Light Water Reactor Sustainability Program: survey of models for concrete degradation

    International Nuclear Information System (INIS)

    2014-01-01

    Concrete has been used in the construction of nuclear facilities because of two primary properties: its structural strength and its ability to shield radiation. Concrete structures have been known to last for hundreds of years, but they are also known to deteriorate in very short periods of time under adverse conditions. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. The goal of this report is to review and document the main aging mechanisms of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.

  17. Nonlinear analysis of reinforced concrete structures using software package abaqus

    Directory of Open Access Journals (Sweden)

    Marković Nemanja

    2014-01-01

    Full Text Available Reinforced concrete (AB is characterized by huge inhomogeneity resulting from the material characteristics of the concrete, then, quasi-brittle behavior during failure. These and other phenomena require the introduction of material nonlinearity in the modeling of reinforced concrete structures. This paper presents the modeling reinforced concrete in the software package ABAQUS. A brief theoretical overview is presented of methods such as: Concrete Damage Plasticity (CDP, Smeared Concrete Cracking (CSC, Cap Plasticity (CP and Drucker-Prager model (DPM. We performed a nonlinear analysis of two-storey reinforced concrete frame by applying CDP method for modeling material nonlinearity of concrete. We have analyzed damage zones, crack propagation and loading-deflection ratio.

  18. Study of the early age cracking of concrete massive structures: effect of the temperature decrease rate, steel reinforcement and construction joints

    International Nuclear Information System (INIS)

    Briffaut, M.

    2010-01-01

    At early-age, massive concrete structures (ex. nuclear power plant) are submitted to strains due to the hydration reaction. If they are restrained, crossing cracks can occurs. This cracking may increase significantly the concrete wall permeability. The objectives of this work was to characterize the early age concrete behavior (thermal and endogenous shrinkage, basic and thermal transient creep, mechanical characteristic evolution) as well as develop a new device to study the early age cracking of a concrete structure submitted to restrained shrinkage. The experimental campaign achieved with this new device (called thermal active ring test) and the numerical analysis of the test thanks to finite element simulations allows us to evaluate the coupling between creep and damage, to identify the tensile strength decrease due to construction joints and to quantify the effect of reinforcement on the concrete behaviour. Moreover, with this device, permeability measurements have been performed on a cracked specimen. Finally, numerical simulations of massive structures highlight the influence of boundary conditions for restrained shrinkage and the influence of the coupling between creep and damage on the damage pattern. (author)

  19. Dam safety review using non-destructive methods for reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, Alain; Saint-Pierre, Francois; Turcotte, Bernard [Le Groupe S.M. International Inc., Sherbrooke, (Canada)

    2010-07-01

    Dams built at the beginning of the twentieth century include concrete structures that were put in under rehabilitation works. In some cases, the details of the structures are not well documented. In other cases, concrete damage can be hidden under new layers of undamaged material. This requires that the dam safety review in a real investigation gather the information necessary for carrying out the hydraulic and stability studies required by the Dam Safety Act. This paper presented the process of dam safety review using non-destructive methods for reinforced concrete structures. Two reinforced concrete dams built in the 1900's, the Eustic dam on the Coaticook River and the Frontenac dam on the Magog River near Sherbrooke, were evaluated by S.M. International using non-destructive methods such as sonic and ground penetrating radar methods. The studies allowed mapping of concrete damage and provided geometric information on some non visible structure elements that were part of previous reinforcement operations.

  20. Data on optimum recycle aggregate content in production of new structural concrete.

    Science.gov (United States)

    Paul, Suvash Chandra

    2017-12-01

    This data presented herein are the research summary of "mechanical behavior and durability performance of concrete containing recycled concrete aggregate" (Paul, 2011) [1]. The results reported in this article relate to an important parameter of optimum content of recycle concrete aggregate (RCA) in production of new concrete for both structural and non-structural applications. For the purpose of the research various types of physical, mechanical and durability tests are performed for concrete made with different percentages of RCA. Therefore, this data set can be a great help of the readers to understand the mechanism of RCA in relates to the concrete properties.

  1. Factors and mechanisms affecting corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Dehqanian, Ch.

    1986-01-01

    Atomic power plants possess reinforced concrete structures which are exposed to sea water or sea atmosphere. Sea water or its surrounding environment contain very corrosive species which cause corrosion of metal in concrete. It should be mentioned that corrosion of steel in concrete is a complex problem that is not completely understood. Some of the factors which influence the corrosion mechanism and can be related to the pore solution composition is discussed. Chloride ion caused problems are the main source of the corrosion damage seen on the reinforced concrete structures. Corrosion rate in concrete varies and depends on the way chloride ion diffuses into concrete. In addition, the associated cations can influence diffusion of chloride into concrete. The type of portland cement and also the concrete mix design all affect the corrosion behaviour of steel in concrete

  2. Acoustic Emission Analysis of Prestressed Concrete Structures

    Science.gov (United States)

    Elfergani, H. A.; Pullin, R.; Holford, K. M.

    2011-07-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  3. Acoustic Emission Analysis of Prestressed Concrete Structures

    International Nuclear Information System (INIS)

    Elfergani, H A; Pullin, R; Holford, K M

    2011-01-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  4. Design of fire resistant concrete structures, using validated Fem models

    NARCIS (Netherlands)

    Erich, S.J.F.; Overbeek, van A.B.M.; Heijden, van der G.H.A.; Pel, L.; Huinink, H.P.; Vervuurt, A.H.J.M.; Schlangen, E.; Schlutter, de G.

    2008-01-01

    Fire safety of buildings and structures is an important issue, and has a great impact on human life and economy. One of the processes negatively affecting the strength of a concrete building or structure during fire is spalling. Many examples exists in which spalling of concrete during fire has

  5. Leakage of pressurized gases through unlined concrete containment structures

    International Nuclear Information System (INIS)

    Rizkalla, S.H.; Simmonds, S.H.

    1983-01-01

    Eight reinforced concrete specimens were fabricated and subjected to tensile membrane forces and air pressure to study the air leakage characteristics in cracked reinforced concrete members. A mathematical expression for the rate of pressurized air flowing through an idealized crack is presented. The mathematical expression is refined by using the experimental data to describe the air flow rate through any given crack pattern. Graphical charts are also presented for the calculation of the air leakage rate through concrete cracks. The concept of equivalent crack width for a given crack pattern is introduced. The mathematical expression and graphical charts are modified to include this equivalent crack width concept. The proposed technique is applicable for the prediction of the leakage from concrete containment structures or any similar structures due to high internal pressure sufficient to initiate cracking. (orig.)

  6. Quality control of fireproof coatings for reinforced concrete structures

    Science.gov (United States)

    Gravit, Marina; Dmitriev, Ivan; Ishkov, Alexander

    2017-10-01

    The article analyzes methods of quality inspection of fireproof coatings (work flow, measuring, laboratory, etc.). In modern construction there is a problem of lack of distinct monitoring for the fire protection testing. There is a description of this testing for reinforced concrete structures. The article shows the results of calculation quality control of hatches as an example of fireproof coating for reinforced concrete structures.

  7. Ageing management of CANDUtm concrete containment buildings

    International Nuclear Information System (INIS)

    Philipose, K.E.; Gregor, F.E.

    2009-01-01

    The containment system in a Nuclear Power Plant (NPP) provides the final physical barrier against release of radioactive materials to the external environment. Even though there are different physical configurations to meet this fundamental safety function in various reactor types, a common feature is the use of a thick-walled concrete structure as part of the containment system commonly referred to as 'Concrete Containment Building'. In order for the concrete containment buildings to continue to provide the required safety function, it has to maintain its structural integrity. As well, its leak rates under test pressures must be maintained below acceptable limits. As some of the containment buildings of the CANDU nuclear power plants are approaching their fourth decade of successful operation, questions regarding the impact of ageing on their ultimate useful service life emerge. Ageing Management has become the tool for addressing those questions. In this paper, the ageing and ageing management of the CANDU concrete containments are discussed, including the specific programs being implemented to monitor and trend the ageing conditions. Specifically, the usefulness of the embedded strain gauges as a tool for the assessment of the condition of the containment concrete structure is discussed. Some of the operational and test data accumulated over the last 30 years have been evaluated and trended to provide some results and conclusions regarding the satisfactory long-term behaviour of the concrete containment buildings. (authors)

  8. Three dimensional finite element linear analysis of reinforced concrete structures

    International Nuclear Information System (INIS)

    Inbasakaran, M.; Pandarinathan, V.G.; Krishnamoorthy, C.S.

    1979-01-01

    A twenty noded isoparametric reinforced concrete solid element for the three dimensional linear elastic stress analysis of reinforced concrete structures is presented. The reinforcement is directly included as an integral part of the element thus facilitating discretization of the structure independent of the orientation of reinforcement. Concrete stiffness is evaluated by taking 3 x 3 x 3 Gauss integration rule and steel stiffness is evaluated numerically by considering three Gaussian points along the length of reinforcement. The numerical integration for steel stiffness necessiates the conversion of global coordiantes of the Gaussian points to nondimensional local coordinates and this is done by Newton Raphson iterative method. Subroutines for the above formulation have been developed and added to SAP and STAP routines for solving the examples. The validity of the reinforced concrete element is verified by comparison of results from finite element analysis and analytical results. It is concluded that this finite element model provides a valuable analytical tool for the three dimensional elastic stress analysis of concrete structures like beams curved in plan and nuclear containment vessels. (orig.)

  9. Concrete containments in Swedish nuclear power plants. A review of construction and material

    International Nuclear Information System (INIS)

    Roth, Thomas; Silfwerbrand, Johan; Sundquist, Haakan

    2002-12-01

    The purpose of project is the long-term accumulation of knowledge related to the status of existing structures in order to facilitate answers to questions that may arise in the future. We have visited all the power stations in Sweden and in conjunction with these visits we have gone through all the relevant documents relating to the constructional concrete. An assessment of the structural integrity, related to the question of cracking and hence seepage, has been conducted. Currently, the work has only been done on a random sampling basis as in many cases important information is still missing. Generally, it can be said that the relevant constructions are, from a structural integrity point-of-view, correctly designed and detailed and have very high safety margins for the load cases which constitute the functional demands placed upon the installation. Each containment structure (vessel) appears to have been designed and built using the best available knowledge at the time of construction. It may be of interest to note that when these structures were built there was a very high level of competence and experience of how to design, detail, and construct large concrete structures. The cement used for the majority of these large concrete structures forming nuclear power stations, namely a slowly hardening cement (LH cement), had very good properties, perhaps even better than those available today. Later structures were built with other cements and concrete mixes, although this has been partly compensated for by a choice of a higher nominal quality. The environment is favourable regarding potential degradation of the concrete, the reinforcement steel and the steel liner. Questions remain regarding the uncertainties of the methods used for continuous inspection of the cement injected prestressing steel. This is even the case for possibly insufficient injection around grouting mounting parts for manholes and other openings. Assessment of prestressing losses may also require

  10. Structural analysis of reinforced concrete structures under monotonous and cyclic loadings: numerical aspects

    International Nuclear Information System (INIS)

    Lepretre, C.; Millard, A.; Nahas, G.

    1989-01-01

    The structural analysis of reinforced concrete structures is usually performed either by means of simplified methods of strength of materials type i.e. global methods, or by means of detailed methods of continuum mechanics type, i.e. local methods. For this second type, some constitutive models are available for concrete and rebars in a certain number of finite element systems. These models are often validated on simple homogeneous tests. Therefore, it is important to appraise the validity of the results when applying them to the analysis of a reinforced concrete structure, in order to be able to make correct predictions of the actual behaviour, under normal and faulty conditions. For this purpose, some tests have been performed at I.N.S.A. de Lyon on reinforced concrete beams, subjected to monotonous and cyclic loadings, in order to generate reference solutions to be compared with the numerical predictions given by two finite element systems: - CASTEM, developed by C.E.A./.D.E.M.T. - ELEFINI, developed by I.N.S.A. de Lyon

  11. Production of iron-serpentinite concrete and mortar for Jaslovske Bohunice V-2 nuclear power plant

    International Nuclear Information System (INIS)

    Valenta, D.; Oravec, J.

    1982-01-01

    The ideas behind the research and the results of the research of serpentinite concrete with a discontinuous granulometric curve are given. Concrete mixes were experimentally tested; a formula is given for the manufacture of 1 m 3 of fresh concrete. Serpentinite concrete of a density of 2,240 kg/m 3 is satisfactory as shielding material. Time dependence of workability was also tested. It was found that the concrete was well workable as late as 2 hours after manufacture. Serpentinite concrete and mortar were made and used for the biological shielding construction in the shaft of Unit I of the V-2 nuclear power plant. (J.P.)

  12. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2010-05-01

    Full Text Available During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  13. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use. PMID:22399929

  14. A reusable PZT transducer for monitoring initial hydration and structural health of concrete.

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  15. Recovery and residual stress of SMA wires and applications for concrete structures

    International Nuclear Information System (INIS)

    Choi, Eunsoo; Cho, Sung-Chul; Park, Taehyo; Hu, Jong Wan; Chung, Young-Soo

    2010-01-01

    In general, NiTi shape memory alloys are used for applications in civil structures. NiTi SMAs show good superelasticity and shape memory effect properties. However, for application of the shape memory effect, it is desirable for SMAs to show a wide temperature hysteresis, especially for civil structures which are exposed to severe environmental conditions. NiTiNb SMAs, in general, show a wider temperature hysteresis than NiTi SMAs and are more applicable for civil structures. This study examines the temperature hysteresis of NiTiNb and NiTi SMAs, and their recovery and residual stress are investigated. In addition, the tensile behaviors of SMA wires under residual stress are evaluated. This study explains the possible applications for concrete structures with the shape memory effect and illustrates two experimental results of concrete cylinders and reinforced concrete columns. For both tests, SMA wires of NiTiNb and NiTi are used to confine concrete using residual stress. The SMA wire jackets on the concrete cylinders increase the peak strength and the ductility compared to the plain concrete cylinders. In addition, the SMA wire jackets on reinforced concrete columns increase the ductility greatly without flexural strength degradation

  16. Structural Behaviors of Reinforced Concrete Piers Rehabilitated with FRP Wraps

    Directory of Open Access Journals (Sweden)

    Junsuk Kang

    2017-01-01

    Full Text Available The use of fiber-reinforced polymer (FRP wraps to retrofit and strengthen existing structures such as reinforced concrete piers is becoming popular due to the higher tensile strength, durability, and flexibility gained and the method’s ease of handling and low installation and maintenance costs. As yet, however, few guidelines have been developed for determining the optimum thicknesses of the FRP wraps applied to external surfaces of concrete or masonry structures. In this study, nonlinear pushover finite element analyses were utilized to analyze the complex structural behaviors of FRP-wrapped reinforced rectangular piers. Design parameters such as pier section sizes, pier heights, pier cap lengths, compressive strengths of concrete, and the thicknesses of the FRP wraps used were thoroughly tested under incremental lateral and vertical loads. The results provide useful guidelines for analyzing and designing appropriate FRP wraps for existing concrete piers.

  17. Ultimate load capacity assessment of reinforced concrete shell structures

    International Nuclear Information System (INIS)

    Gupta, Amita; Singh, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1993-01-01

    The objective of this study is to develop capability for prediction of ultimate load capacity of reinforced concrete shell structures. The present finite element code ULCA (Ultimate Load Capacity Assessment) adopts a degenerate concept of formulating general isoparametric shell element with a layered approach in the thickness direction. Different failure modes such as crushing, tensile cracking and reinforcement yielding are recognised for various problems. The structure fails by crushing of concrete when the concrete strain/stress reaches the ultimate stress or strain of concrete. Material nonlinearities as a result of tension cracking, tension stiffening between reinforcement and concrete in cracked region and yielding of reinforcement are considered along with geometric nonlinearity. Thus with this code it is possible to predict the pressure at which the first cracking, first through thickness cracking, first yielding of reinforcement occurs. After validating the code with few bench mark problems for different failure modes a reinforced concrete nuclear containment is analysed for its ultimate capacity and the results are matched with the published results. Further the ultimate load capacity of outer containment wall of Narora Atomic Power Station is predicted. It is observed that containment fails in membrane region and has a sufficient margin against design pressure. (author). 9 refs., 56 figs., 3 tabs., 1 appendix with 4 tabs

  18. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures.

    Science.gov (United States)

    Glinicki, Michał A; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-02

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement-ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  19. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    Directory of Open Access Journals (Sweden)

    Michał A. Glinicki

    2016-01-01

    Full Text Available The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  20. PARCS - A pre-stressed and reinforced concrete shell element for analysis of containment structures

    International Nuclear Information System (INIS)

    Buragohain, D.N.; Mukherjee, A.

    1993-01-01

    Containment structures are designed as pressure vessels against a huge internal pressure build up in the event of a postulated LOCA. In such situations the containment structures experience predominantly in-plane stress in tension. Therefore, pre-stressed concrete has been very frequently used for the construction of containment. For larger plants a dual containment with a pre-stressed concrete inner containment and a reinforced concrete outer containment has been adopted. These structures are required to perform within very stringent safety requirements under extremely severe loading. Naturally, their design has attracted a lot of investigators and a huge volume of literature has been published in previous SMiRT conferences. However, it seems that the structural modeling of the containment has not developed accordingly. It is a common practice to consider the concrete section only in the model and the effects of pre-stress and reinforcements are usually neglected. This is due to the difficulty in including these effects without generating an unduly large model. To include these effects using the existing software, the concrete can be modeled with 3D elements. The reinforcements can be included in the model as bar or cable elements. However, that would require a nodal line along every reinforcement. Therefore, this method would generate a huge model unmanageable even with modern computing facilities. Alternatively, the reinforcements can be assumed to be smeared uniformly within the structure and an average property can be included. This model is acceptable when the reinforcements are very closely spaced. However, for sparsely spaced reinforcements it would result in loss of accuracy, especially in important areas like the vicinity of large openings. In this paper a shell element for the analysis of pre-stressed and reinforced concrete structures has been proposed which alleviates this difficulty. This element can accommodate the reinforcing bars or cables anywhere

  1. Evaluation of the environmental, material, and structural performance of recycled aggregate concrete

    Science.gov (United States)

    Michaud, Katherine Sarah

    Concrete is the most commonly used building material in the construction industry, and contributes to 52% of construction and demolition waste in Canada. Recycled concrete aggregate (RCA) is one way to reduce this impact. To evaluate the performance of coarse and granular (fine and coarse) RCA in structural concrete applications, four studies were performed: an environmental assessment, a material testing program, a shear performance study, and a flexural performance study. To determine the environmental benefits of recycled aggregate concrete (RAC), three case studies were investigated using different populations and proximities to city centres. Environmental modelling suggested that RCA replacement could result in energy savings and greenhouse gas emission reductions, especially in remote areas. Tests were performed to determine if the volumetric replacement of up to 30% coarse RCA and 20% granular RCA is suitable for structural concrete applications in Canada. Fresh, hardened, and durability properties were evaluated. All five (5) of the RCA mixes showed equivalent material performance to the control mixes and met the requirements for a structural concrete mix. The five (5) RAC mixes were also used in structural testing. One-way reinforced concrete slab specimens were tested to failure to evaluate the shear and flexural performance of the RAC members. Peak capacities of and crack formation within each member were analyzed to evaluate the performance of RAC compared to conventional concrete. The shear capacity of specimens made from four (4) of the five (5) RAC mixtures was higher or equivalent to the control specimens. Specimens of the concrete mixture containing the highest content of recycled aggregate, 20% volumetric replacement of granular RCA, had shear capacities 14.1% lower, and exhibited cracking at lower loads than the control. The average flexural capacities of all RAC specimens were within 3.7% of the control specimens. Results from this research

  2. Cathodic protection of reinforced concrete structures in the Netherlands - Experience and developments: Cathodic protection of concrete - 10 years experience

    NARCIS (Netherlands)

    Polder, R.B.

    1998-01-01

    Cathodic protection (CP) of reinforcing steel in concrete structures has been used successfully for over 20 years. CP is able to stop corrosion in a reliable and economical way where chloride contamination has caused reinforcement corrosion and subsequent concrete damage. To new structures where

  3. Bi-directional evolutionary structural optimization for strut-and-tie modelling of three-dimensional structural concrete

    Science.gov (United States)

    Shobeiri, Vahid; Ahmadi-Nedushan, Behrouz

    2017-12-01

    This article presents a method for the automatic generation of optimal strut-and-tie models in reinforced concrete structures using a bi-directional evolutionary structural optimization method. The methodology presented is developed for compliance minimization relying on the Abaqus finite element software package. The proposed approach deals with the generation of truss-like designs in a three-dimensional environment, addressing the design of corbels and joints as well as bridge piers and pile caps. Several three-dimensional examples are provided to show the capabilities of the proposed framework in finding optimal strut-and-tie models in reinforced concrete structures and verifying its efficiency to cope with torsional actions. Several issues relating to the use of the topology optimization for strut-and-tie modelling of structural concrete, such as chequerboard patterns, mesh-dependency and multiple load cases, are studied. In the last example, a design procedure for detailing and dimensioning of the strut-and-tie models is given according to the American Concrete Institute (ACI) 318-08 provisions.

  4. Analysis of seismic effects on reinforced concrete structures

    International Nuclear Information System (INIS)

    Tai, A.A.

    1981-12-01

    An important bibliographical research was undertaken in order to make the best possible analysis of the dynamic behaviour of materials and of structural components. This research work was completed by the study of the structures tested on a seismic table. The results obtained from this preliminary study, particularly those concerning the modification in the rigidity of reinforced concrete structures under alternate and seismic loading, enabled a calculation method (called ''equivalent static'') to be drawn up for analyzing the behaviour of reinforced concrete structures in earthquakes. This method takes into account the non-linearity of the behaviour of materials, in particular. The earthquake responses that were obtained by this method on gantries tested on a vibrating table, tally very satisfactorily with the test figures [fr

  5. Digital Image Correlation of Concrete Slab at University of Tennessee, Knoxville

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pham, Binh T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kyle, Neal [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Some degradation mechanisms of concrete manifest themselves via swelling or by other shape deformation of the concrete. Specifically, degradation of concrete structure damaged by ASR is viewed as one of the dominant factors impacting the structural integrity of aging nuclear power plants. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. Number of nondestructive examination techniques (i.e., thermography, digital image correlation, mechanical deformation measurements, nonlinear impact resonance (DIC) acoustic spectroscopy, and vibro-acoustic modulation) is used to detect the damage caused by ASR. DIC techniques have been increasing in popularity, especially in micro- and nano-scale mechanical testing applications due to its relative ease of implementation and use. Advances in computer technology and digital cameras help this method moving forward. To ensure the best outcome of the DIC system, important factors in the experiment are identified. They include standoff distance, speckle size, speckle pattern, and durable paint. These optimal experimental options are selected basing on a thorough investigation. The resulting DIC deformation map indicates that this technique can be used to generate data related to degradation assessment of concrete structure damaged by the impact of ASR.

  6. Digital Image Correlation of Concrete Slab at University of Tennessee, Knoxville

    International Nuclear Information System (INIS)

    Mahadevan, Sankaran; Agarwal, Vivek; Pham, Binh T.; Kyle, Neal

    2016-01-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Some degradation mechanisms of concrete manifest themselves via swelling or by other shape deformation of the concrete. Specifically, degradation of concrete structure damaged by ASR is viewed as one of the dominant factors impacting the structural integrity of aging nuclear power plants. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. Number of nondestructive examination techniques (i.e., thermography, digital image correlation, mechanical deformation measurements, nonlinear impact resonance (DIC) acoustic spectroscopy, and vibro-acoustic modulation) is used to detect the damage caused by ASR. DIC techniques have been increasing in popularity, especially in micro- and nano-scale mechanical testing applications due to its relative ease of implementation and use. Advances in computer technology and digital cameras help this method moving forward. To ensure the best outcome of the DIC system, important factors in the experiment are identified. They include standoff distance, speckle size, speckle pattern, and durable paint. These optimal experimental options are selected basing on a thorough investigation. The resulting DIC deformation map indicates that this technique can be used to generate data related to degradation assessment of concrete structure damaged by the impact of ASR.

  7. Durability evaluation method on rebar corrosion of reinforced concrete

    International Nuclear Information System (INIS)

    Kitsutaka, Yoshinori

    2013-01-01

    In this paper, method on the durability evaluation in nuclear power plant concrete structures was investigated. In view of the importance of evaluating the degree of deterioration of reinforced concrete structures, relationships should be formulated among the number of years elapsed, t, the amount of action of a deteriorative factor, F, the degree of material deterioration, D, and the performance of the structure, P. Evaluation by PDFt diagrams combining these relationships may be effective. A detailed procedure of durability evaluation for a reinforced concrete structure using PDFt concept is presented for the deterioration of rebar corrosion caused by neutralization and penetration of salinity by referring to the recent papers. (author)

  8. Embedded micro-sensor for monitoring pH in concrete structures

    Science.gov (United States)

    Srinivasan, Rengaswamy; Phillips, Terry E.; Bargeron, C. Brent; Carlson, Micah A.; Schemm, Elizabeth R.; Saffarian, Hassan M.

    2000-04-01

    Three major causes of corrosion of steel in concrete are chloride ions (Cl-), temperature (T) and acidity (pH). Under normal operating temperatures and with pH above 13, steel does not undergo pitting corrosion. In presence of Cl-, if the pH decreases below 12, the probability of pitting increases. Acid rain and atmospheric carbon dioxide cause the pH to drop in concrete, often leading to corrosion of the structure with the concomitant cost of repair or replacement. Currently, the pH level in concrete is estimated through destructive testing of the structures. Glass ISFET, and other pH sensors that need maintenance and calibration cannot be embedded in concrete. In this paper, we describe an inexpensive solid state pH sensor that can be embedded in concrete, to detect pH changes at the early stages. It employs a chemical reagent, trinitrobenzenesulfonic acid (TNBS) that exhibits changes in optical properties in the 12 - 14 pH range, and is held in a film of a sol-gel/TNBS composite on an optically transparent surface. A simple LED/filter/photodiode transducer monitors pH-induced changes in TNBS. Such a device needs no periodic calibration or maintenance. The optical window, the light-source and sensor can be easily housed and encapsulated in a chemically inert structure, and embedded in concrete.

  9. Concrete structures. Contribution to the safety assessment of existing structures

    Directory of Open Access Journals (Sweden)

    D. COUTO

    Full Text Available The safety evaluation of an existing concrete structure differs from the design of new structures. The partial safety factors for actions and resistances adopted in the design phase consider uncertainties and inaccuracies related to the building processes of structures, variability of materials strength and numerical approximations of the calculation and design processes. However, when analyzing a finished structure, a large number of unknown factors during the design stage are already defined and can be measured, which justifies a change in the increasing factors of the actions or reduction factors of resistances. Therefore, it is understood that safety assessment in existing structures is more complex than introducing security when designing a new structure, because it requires inspection, testing, analysis and careful diagnose. Strong knowledge and security concepts in structural engineering are needed, as well as knowledge about the materials of construction employed, in order to identify, control and properly consider the variability of actions and resistances in the structure. With the intention of discussing this topic considered complex and diffuse, this paper presents an introduction to the safety of concrete structures, a synthesis of the recommended procedures by Brazilian standards and another codes, associated with the topic, as well a realistic example of the safety assessment of an existing structure.

  10. Deterioration of Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Chloride ingress is a common cause of deterioration of reinforced concrete bridges. Concrete may be exposed to chloride by seawater or de-icing salts. The chloride initiates corrosion of the reinforcement, which through expansion disrupts the concrete. In addition, the corrosion reduces the cross...

  11. Numerical Limit Analysis of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Larsen, Kasper Paaske

    For more than half a century, limit state analysis based on the extremum principles have been used to assess the load bearing capacity of reinforced concrete structures. Extensi- ve research within the field has lead to several techniques for performing such analysis manually. While these manual...... methods provide engineers with valuable tools for limit sta- te analysis, their application becomes difficult with increased structural complexity. The main challenge is to solve the optimization problem posed by the extremum principles. This thesis is a study of how numerical methods can be used to solve...... limit state analysis problems. The work focuses on determination of the load bearing capacity of reinforced concrete structures by employing the lower bound theorem and a finite element method using equilibrium elements is developed. The recent year’s development within the field of convex optimization...

  12. Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements

    Science.gov (United States)

    Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei

    2016-01-01

    This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention. PMID:28773517

  13. Ceramic ware waste as coarse aggregate for structural concrete production.

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  14. Study of risk of developing a delayed ettringite formation and its consequences in concrete of nuclear structures

    International Nuclear Information System (INIS)

    Al Shamaa, M.

    2012-01-01

    Delayed ettringite formation (DEF) in concrete structures is a pathology that can develop when special conditions on the concrete composition, the thermal conditions at the young age and the environment are met. This phenomenon provokes swelling of the material and cracking in the structure. It affects two types of concrete: the concrete heat-treated and the concrete cast in place in massive parts. Although many studies were done before in order to better understand this pathology, the DEF is still not well known. This is due to its complex mechanism, the influential parameters and its consequences on microscopic and structural scales. For that purpose, the thesis work was designed in order to better understand this pathology. Experimental studies were done to evaluate the impact of certain factors during the reaction, by focusing on nuclear application. An important part of this study was dedicated to assess the risk of DEF development in a nuclear power plant, and to understand how this pathology affects the mechanical characteristics and transfer properties of the concrete. Then, we have studied the impact of the hygrometry on the development of DEF. This has lead to identify a relation between environmental humidity and swelling. We have also examined the role of alkali leaching. A follow up study of the transfer properties was also done and was confronted to the observed swelling. Finally, we were interested in the characterization of the aggregates effect on the kinetics and the amplitude of DEF swelling. So, we have examined the parameters related to the size and the volume fraction of granular inclusions. Furthermore, an application of a mesoscopic numerical modeling of swelling is proposed. (author)

  15. The effect of crack width on the service life of reinforced concrete structures

    Science.gov (United States)

    Van Hung, Nguyen; Viet Hung, Vu; Viet, Tran Bao

    2018-04-01

    Reinforced concrete has become a widely used construction material around the world. Nowadays, the assessment of deterioration and life expectancy of reinforced concrete structure is very important and necessary as concrete is a complex material with brittle failure. Under the effect of load and over time, cracks occur in the structure, significantly reducing its performance and durability. Therefore, a number of models for predicting the penetration of chloride ions into the concrete were proposed to assess the durability of the structure. In the study performed by T B Viet (2016) [1], the author proposed a new theoretical model, especially considering the effects of macro and micro cracking on the diffusion coefficient of chloride ion in the cracked concrete. The following experimental results, in term of electrical indication of concrete’s ability to resist chloride ion penetration, are used to calculate the lifespan of a reinforced concrete structure according to Dura Crete approach [8] with different crack widths to evaluate the accuracy and reliability of the above model in the range of concrete compressive strength of 30-70MPa.

  16. Standardization principles of radiographic investigation of concrete structures

    International Nuclear Information System (INIS)

    Runkiewicz, L.

    1979-01-01

    The PN-78/B-06264 Polish Standard concerning the radiographic methods of concrete structure control is discussed. It concerns the inner structure of the building elements, dimensions and position of honeycombs and reinforcement. (author)

  17. Long-term properties of concrete in nuclear containment structures

    International Nuclear Information System (INIS)

    Field, S.N.; Bamforth, P.B.

    1991-01-01

    Over the last thirty years a large volume of testing has been carried out on concretes used in prestressed concrete pressure vessels and similar structures. The main aim of the work has been to provide the designers with a prediction method for elastic moduli and creep deformation which takes into account temperature and age at loading. This paper summarises and reviews the results from the six concretes tested by Taywood Engineering Ltd (T.E.L.), comparing mixes with and without PFA. (author)

  18. Study on polyurethane foamed concrete for use in structural applications

    Directory of Open Access Journals (Sweden)

    Iman Kattoof Harith

    2018-06-01

    Full Text Available Recently, foamed concrete is being widely used in civil construction and building, because of its high fluidity and settlement, low self-weight and low thermal conductivity. However, it has some major setbacks such as low strength and increased shrinkage at later ages. The strength gain of concrete depends upon several variables; one of these is the curing conditions. This work aims to study the potential production of foamed concrete as a sustainable structural material by varying the curing methods. For this purpose, sample cubes, cylinders and prisms were prepared to find the compressive strength, modulus of elasticity and drying shrinkage at different ages. Samples of the polyurethane foamed concrete cured under four different curing regimes (water, moisture, sealing by membrane-forming curing compound and air curing. At the end of the study, polyurethane foamed concrete used for this study has shown the potential for use in structural applications. Also, the results show that the samples cured by moisture have the highest compressive strength at all ages. Keywords: Polyurethane foamed concrete, Curing conditions, Fly ash, Compressive strength, Static modulus of elasticity drying shrinkage

  19. Static reliability of concrete structures under extreme temperature, radiation, moisture and force loading

    International Nuclear Information System (INIS)

    Stepanek, P.; Stastnik, S.; Salajka, V.; Hradil, P.; Skolar, J.; Chlanda, V.

    2003-01-01

    The contribution presents some aspects of the static reliability of concrete structures under temperature effects and under mechanical loading. The mathematical model of a load-bearing concrete structure was performed using the FEM method. The temperature field and static stress that generated states of stress were taken into account. A brief description of some aspects of evaluation of the reliability within the primary circuit concrete structures is stated. The knowledge of actual physical and mechanical characteristics and chemical composition of concrete were necessary for obtaining correct results of numerical analysis. (author)

  20. Methodology for assessing the probability of corrosion in concrete structures on the basis of half-cell potential and concrete resistivity measurements.

    Science.gov (United States)

    Sadowski, Lukasz

    2013-01-01

    In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpose. However, it is generally accepted that it should be supplemented with other techniques. Hence, a methodology for assessing the probability of corrosion in concrete slabs by means of a combination of two methods, that is, the half-cell potential method and the concrete resistivity method, is proposed. An assessment of the probability of corrosion in reinforced concrete structures carried out using the proposed methodology is presented. 200 mm thick 750 mm  ×  750 mm reinforced concrete slab specimens were investigated. Potential E corr and concrete resistivity ρ in each point of the applied grid were measured. The experimental results indicate that the proposed methodology can be successfully used to assess the probability of corrosion in concrete structures.

  1. Methodology for Assessing the Probability of Corrosion in Concrete Structures on the Basis of Half-Cell Potential and Concrete Resistivity Measurements

    Directory of Open Access Journals (Sweden)

    Lukasz Sadowski

    2013-01-01

    Full Text Available In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpose. However, it is generally accepted that it should be supplemented with other techniques. Hence, a methodology for assessing the probability of corrosion in concrete slabs by means of a combination of two methods, that is, the half-cell potential method and the concrete resistivity method, is proposed. An assessment of the probability of corrosion in reinforced concrete structures carried out using the proposed methodology is presented. 200 mm thick 750 mm  ×  750 mm reinforced concrete slab specimens were investigated. Potential Ecorr and concrete resistivity ρ in each point of the applied grid were measured. The experimental results indicate that the proposed methodology can be successfully used to assess the probability of corrosion in concrete structures.

  2. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.

    Science.gov (United States)

    Lee, H K; Kim, H K; Hwang, E A

    2010-02-01

    Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.

  3. A process for separating aggregate from concrete waste during the dismantlement of nuclear power plants

    International Nuclear Information System (INIS)

    Koga, Yasuo; Inoue, Toshikatsu; Tateyashiki, Hisashi; Sukekiyo, Mitsuaki; Okamoto, Masamichi; Asano, Touichi.

    1997-01-01

    The decommissioning and dismantling of nuclear power plants will produce a large quantity of non-active waste concrete. From the viewpoint of recycling of this waste concrete the recovery of aggregate contained in concrete at 80% and reuse of it into a new plant construction are envisioned. For these purposes we have studied the recovery process of aggregate from concrete composed of a heating step followed by a milling step onto waste concrete blocks. We have found that higher operation temperature brings a better effect for the separation of aggregate from a concrete body, however too high temperature may reversely degrade a quality of recovered aggregate itself. The most effective heating temperature which is considered not to give the damage to a quality of aggregate stays between 200-500degC. The effect of a duration at such temperature zone is relatively small. As a conclusion we have found that 300degC of heating temperature and 30-120 minutes of a duration in a rod mill with high efficiency of rubbing work for getting coarse aggregate and an agitate mill for fine aggregate might be proper operating conditions under which we can recover both coarse and fine aggregate with the quality within JASS 5N standard. (author)

  4. Early-age behaviour of concrete in massive structures, experimentation and modelling

    International Nuclear Information System (INIS)

    Zreiki, J.; Bouchelaghem, F.; Chaouche, M.

    2010-01-01

    This study is focused on the behaviour of concrete at early-age in massive structures, in relation with the prediction of both cracking risk and residual stresses, which is still a challenging task. In this paper, a 3D thermo-chemo-mechanical model has been developed, on the basis of complete material characterization experiments, in order to predict the early-age development of strains and residual stresses, and in order to assess the risk of cracking in massive concrete structures. The parameters of the proposed model were identified on two different concretes, High Performance Concrete and Fibrous Self-Compacted Concrete - from simple experiments in the laboratory: uniaxial tension and compression tests, dynamic Young's modulus measurements, free and autogenous shrinkages, semi-adiabatic calorimetry. The proposed model has been implemented in a Finite Element code, and the numerical simulations of the laboratory tests have proved the model consistency. Furthermore, early-age experiments conducted on massive structures have also been simulated, in order to investigate the predictive capability of the model, and to assess the model performance in practical situations where varying temperatures are involved.

  5. Development of a low activation concrete shielding wall by multi-layered structure for a fusion reactor

    International Nuclear Information System (INIS)

    Sato, Satoshi; Maegawa, Toshio; Yoshimatsu, Kenji; Sato, Koichi; Nonaka, Akira; Takakura, Kosuke; Ochiai, Kentaro; Konno, Chikara

    2011-01-01

    A multi-layered concrete structure has been developed to reduce induced activity in the shielding for neutron generating facilities such as a fusion reactor. The multi-layered concrete structure is composed of: (1) an inner low activation concrete, (2) a boron-doped low activation concrete as the second layer, and (3) ordinary concrete as the outer layer of the neutron shield. With the multi-layered concrete structure the volume of boron is drastically decreased compared to a monolithic boron-doped concrete. A 14 MeV neutron shielding experiment with multi-layered concrete structure mockups was performed at FNS and several reaction rates and induced activity in the mockups were measured. This demonstrated that the multi-layered concrete effectively reduced low energy neutrons and induced activity.

  6. Ultrasonic imaging in concrete

    International Nuclear Information System (INIS)

    Ribay, G.; Paris, O.; Rambach, J.M.

    2009-01-01

    The third and final protection barrier confining nuclear reactors is usually a concrete containment structure. Monitoring the structural integrity of these barriers is critical in ensuring the safety of nuclear power plants. The Institute for Radiological Protection and Nuclear Safety (IRSN) in France in collaboration with the French Atomic commission (CEA/LIST) has developed an ultrasonic phased-array technique capable of inspecting thick concrete walls. The non-destructive method is dedicated to detect cracks and bulk defects. Given the thickness of the structure (1.2 m) undergoing inspection and the heterogeneity of the concrete, the optimal frequency lies in the 50-300 kHz range. At these frequencies, the ultrasonic beam profiles are widespread (non-directive) with poor signal-to-noise ratio. Previous studies have shown the potential of using phased-array techniques (i.e., beam focusing and beam steering) in order to improve detection resolution and sizing accuracy. In this paper we present experimental studies performed with array up to 16 transducers working at 200 kHz. Experiments are carried out on representative concrete blocks containing artificial defects. One is a reinforced mock-up representative of the first reinforcing mesh of wall containment. Experimental results show that in spite of the reinforcement, artificial defects deep as half a meter can be detected. Reconstructed images resulting from phased array acquisitions on an artificial crack embedded in a concrete block are also presented and discussed. The presented method allows detecting oriented defects in concrete with improved signal to noise ratio and sensibility. A simulation model of the interaction of ultrasound with a heterogeneous medium like concrete is briefly commented. (authors)

  7. Civil engineering: calculations of pre-stressed concrete structures using CodeAster

    International Nuclear Information System (INIS)

    Gerard, B.; Ulm, F.

    1997-11-01

    This document presents an analysis of the different calculation methods for pre-stressed concrete structure which can be performed by using finite element methods. Two methods of calculating the pre-stressing of concrete structures with finite elements have been determined. The equivalent method which consists of replacing the action of pre-stressing the concrete by equivalent forces. These method is well suited to dimensioning and studying the overall stability of a structure. It is not an easy matter to take into account the coupled or time-varying phenomena. This approach ignores the evolution of the interaction between the pre-stressing and the concrete. The explicit method which consists of including the mechanical resolution of the pre-stressed cables in that of a concrete structure. Not only does this allow a local study of the pre-stressed to be made, it also allows the coupling which developed over time to be determined, e.g. slip, deferred deformation and coupling between the steel and concrete behaviours. This method enables non-linear phenomena with varying degrees of complexity, such as fracture or yielding of the steels, drying out of the concrete, creep, etc to be described. The two methods are complementary. This document presents the mathematical and computer developments relating to each of this method. In the case of the explicit method, certain of the Code-Aster functions already make it possible to meet several EDF application requirements. Several couplings can be taken into account, such as thermomechanical, shrinkage in drying, creep, relaxation and injection of the cables. Three immediate developments of Code-Aster are proposed for the following applications: - a procedure for calculating the pre-stress losses along the pre-stressing cables; - a command to allocate these forces in the form of an initial force field in the bar elements associated with the cables; - a procedure for linking elements whose nodes do not coincide with each other

  8. Durability of fibre reinforced concrete structures exposed to combined mechanical and environmental load

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard

    1999-01-01

    The main conclusions from a research project on durability of cracked fibre reinforced concrete structures exposed to chlorides, water or freeze-thaw are presented. The effect of fibres and cracks on the durability of concrete is studied.......The main conclusions from a research project on durability of cracked fibre reinforced concrete structures exposed to chlorides, water or freeze-thaw are presented. The effect of fibres and cracks on the durability of concrete is studied....

  9. High performance repairing of reinforced concrete structures

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.; Holschemacher, K.; Mueller, T.

    2013-01-01

    Highlights: ► Steel fibered high strength concrete is effective for repairing concrete elements. ► Changing fibers’ content, required ductility of the repaired element is achieved. ► Experiments prove previously developed design concepts for two layer beams. -- Abstract: Steel fibered high strength concrete (SFHSC) is an effective material that can be used for repairing concrete elements. Design of normal strength concrete (NSC) elements that should be repaired using SFHSC can be based on general concepts for design of two-layer beams, consisting of SFHSC in the compressed zone and NSC without fibers in the tensile zone. It was previously reported that such elements are effective when their section carries rather large bending moments. Steel fibers, added to high strength concrete, increase its ultimate deformations due to the additional energy dissipation potential contributed by fibers. When changing the fibers’ content, a required ductility level of the repaired element can be achieved. Providing proper ductility is important for design of structures to dynamic loadings. The current study discusses experimental results that form a basis for finding optimal fiber content, yielding the highest Poisson coefficient and ductility of the repaired elements’ sections. Some technological issues as well as distribution of fibers in the cross section of two-layer bending elements are investigated. The experimental results, obtained in the frame of this study, form a basis for general technological provisions, related to repairing of NSC beams and slabs, using SFHSC.

  10. Prevention of concrete structures from collapsing

    Directory of Open Access Journals (Sweden)

    Cechmanek R.

    2018-01-01

    Full Text Available At the end of the 20th century requirements on using electrical properties of building materials emerged for application in heating of trafficable surfaces, grounding of electrostatic charges in floors, shielding of electro-magnetic fields and diagnosis of concrete structure state in the course of time. For this reason, it was necessary to design special fibre-cement elements able to transfer any mechanical impulse to an electricallymeasured signal detected as a change in electrical resistance with computer outputs. Regarding previous research studies, it was concluded that special fibre-cement composites are able to conduct electric current under specific conditions. This property is ensured by using of various kinds of carbon materials. Though carbon fibres are less conductive than metal fibres, composites with carbon fibres were evaluated as better current conductors than the composites with metal fibres. By means of various kinds of carbon particles and fibres it is possible to design cement composites with an ability to monitor changes in electrical conductivity of concretes. The designed composites are assembled with conductive wires and connected with a special electronic equipment for monitoring of changes in alternate voltage passing through the tensometer within mechanical loading of a concrete element in which the composite is integrated. The tensometers are placed preferably into parts of the concrete elements subjected to compression, such as simple reinforced columns or upper parts of longitudinal beams. Several tests of repeated loading and simultaneous monitoring of vertical as well as horizontal prefabricated concrete elements were carried out and evaluated.

  11. Early stage beneficial effects of cathodic protection in concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Neeft, E.A.C.; Stoop, B.T.J.

    2010-01-01

    Over the last 25 years, cathodic protection (CP) of reinforced concrete structures suffering from chloride induced reinforcement corrosion has shown to be successful and durable. CP current causes steel polarisation, electrochemical reactions and ion transport in the concrete. CP systems are

  12. Evaluation of concrete as a matrix for solidification of Savannah River Plant waste

    International Nuclear Information System (INIS)

    Stone, J.A.

    1977-06-01

    The properties of concrete as a matrix for solidification of Savannah River Plant (SRP) high-level radioactive wastes were studied. In an experimental, laboratory-scale program, concrete specimens were prepared and evaluated with both simulated and actual SRP waste sludges. Properties of concrete were found adequate for fixation of SRP wastes. Procedures were developed for preparation of simulated sludges and concrete-sludge castings. Effects of cement type, simulated sludge type, sludge loading, and water content on concrete formulations were tested in a factorial experiment. Compressive strength, leachability of strontium and plutonium, thermal stability, and radiation stability were measured for each formulation. From these studies, high-alumina cement and a portland-pozzolanic cement were selected for additional tests. Incorporation of cesium-loaded zeolite into cement-sludge mixtures had no adverse effects on mechanical or chemical properties of waste forms. Effects of heating concrete-sludge castings were investigated; thermal conductivity and DTA-TGA-EGA data are reported. Formulations of actual SRP waste sludges in concrete were prepared and tested for compressive strength; for leachability of 90 Sr, 137 Cs, and alpha emitters; and for long-term thermal stability. The radioactive sludges were generally similar in behavior to simulated sludges in concrete. 37 tables, 34 figures

  13. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee

    2013-01-01

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%

  14. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%.

  15. 77 FR 69508 - Inservice Inspection of Prestressed Concrete Containment Structures With Grouted Tendons

    Science.gov (United States)

    2012-11-19

    ... Containment Structures With Grouted Tendons AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide... (RG) 1.90, ``Inservice Inspection of Prestressed Concrete Containment Structures with Grouted Tendons... appropriate surveillance program for prestressed concrete containment structures with grouted tendons...

  16. Research on Deterioration Mechanism of Concrete Materials in an Actual Structure

    Directory of Open Access Journals (Sweden)

    Shiping Zhang

    2014-01-01

    Full Text Available The cause for deterioration of the concrete structure located in severe environment has been explored both in field and in laboratory. Serious cracking and spalling appeared upon surface of the concrete structure soon after the structure was put into service. Both alkali-aggregate reaction and freeze-thaw cycles may result in similar macro visible cracking and spalling. The possibility of alkali-aggregate reaction was excluded by both field survey and lab examination such as chemical analysis, petrographic analysis, and determination of alkali reactivity of aggregates. According to results of freeze-thaw cycles, impermeability testing, and microstructure analysis, it is deduced that the severe environmental conditions plus the relatively inferior frost resistance cause the deterioration of concrete. Usage of air entraining admixture can improve frost resistance and impermeability. Furthermore, new approaches to mitigate the deterioration of concrete used in severe environmental condition are discussed.

  17. Control blasting of reinforced concrete

    International Nuclear Information System (INIS)

    Nagase, Tetsuo

    1981-01-01

    With the need of decommissioning nuclear power plants, it is urgently required to establish its methods and standards. In Shimizu Construction Co., Ltd., experimental feasibility studies have been made on explosive demolition method i.e. the controlled blasting for the massive concrete structures peculiar to nuclear power plants, considering low radiation exposure, safety and high efficiency. As such, four techniques of line drilling, cushion blasting, pre-splitting and guide hole blasting, respectively, are described with photographs. Assuming the selective demolition of activated concrete structures, the series of experiments showed the good results of clear-cut surfaces and the effect of blasting was confined properly. Moreover, the scattering of debris in blasting was able to be entirely prevented by the use of rubber belts. The generation of gas and dust was also little due to the small amount of the charge used. (J.P.N.)

  18. Volume changes in unrestrained structural lightweight concrete.

    Science.gov (United States)

    1964-08-01

    In this study a comparator-type measuring system was developed to accurately determine volume change characteristics of one structural lightweight concrete. The specific properties studied were the coefficient of linear thermal expansion and unrestra...

  19. Strain measurements of temperatures up to 3000C in a concrete structure

    International Nuclear Information System (INIS)

    Schittenhelm, Ch.

    1975-10-01

    Strain measurements in a concrete structure representing a cylindrical section of a Prestressed Concrete Reactor Vessel with hot liner, were made. In order to interpret these values in terms of strain and stress in a three dimensional structure, the gauge characteristics as well as the material date of the concrete have to be known in great detail. The paper deals with the performance of different gauges embedded in small concrete blocks and others of the same type embedded in the test ring. Temperature resistance, long-time performance, electrical drift and hysteresis of the gauges were investigated. (author)

  20. Strength Gain Properties up to five-year age of high-strength mass concrete

    International Nuclear Information System (INIS)

    Mitarai, Y.; Shigenobu, M.; Hiramine, T.; Inoue, K.; Nakane, S.; Ohike, T.

    1991-01-01

    Genkai No.3 plant of Kyushu Electric Power Co., Inc. presently under construction is a PWR type nuclear power plant with 1180 MW power output, and a prestressed concrete containment vessel (PCCV) was adopted for the reactor. The concrete used for the construction of the PCCV is the mass concrete with the wall thickness of 1.3 m in the general parts of the cylinder, and about 2 m at buttresses. It is the high strength concrete of the specified strength 420 kgf/cm 2 . As the preliminary study for the construction using such high strength mass concrete, the examination was carried out on the strength gain property of structural concrete using full scale simulated members. The various problems in the quality control were contemplated based on the results of the examination, and were reflected to actual construction, designating 13 weeks as the age for strength control, in order to build the concrete structures with high reliability. In this report, the outline of the study on the strength gain up to 5 year age carried out in the preliminary study is discussed. The experimental method, the method of evaluating structural strength, the mixing proportion of concrete and the results are reported. (K.I.)

  1. Stainless steel reinforcement for durability in concrete structures

    International Nuclear Information System (INIS)

    Cochrane, D.J.

    1998-01-01

    Stainless steels and concrete are materials which the nuclear industry, more than any other, has given special attention to over the years. It is the intention of this paper to inform congress about developments outside the nuclear industry, in the use of stainless steel as reinforcement (rebar) in concrete structures. It is left to individual engineers within the industry to assess the implications of this information to applications with which they will be familiar. (author)

  2. Recycling of concrete generated from Nuclear Power Plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nawa, Toyoharu; Ishikura, Takeshi; Tanaka, Hiroaki

    2013-01-01

    Reactor decommissioning required various technologies such as dismantling of facilities, decontamination, radioactivity measurement and recycling of dismantling wastes. This article discussed recycling of demolished concrete wastes. Dismantling of reactor building of large one unit of nuclear power plants would generate about 500 K tons of concrete wastes, about 98% of which was non-radioactive and could be used as base course material or backfill material after crushed to specified particle size. Since later part of 1990s, high quality recycled aggregate with specified limit of bone-dry density, water absorptivity and amount of fine aggregate had been developed from demolished concrete with 'Heat and rubbing method', 'Eccentric rotor method' and 'Screw grinding method' so as to separate cements attached to aggregate. Recycled aggregates were made from concrete debris with 'Jaw crusher' to particle size less than 40 mm and then particle size control or grinded by various grinding machines. Recycled fine aggregates made from crushing would have fragile site with cracks, air voids and bubbles. The author proposed quality improvement method to selectively separate fragile defects from recycled aggregates using weak grinding force, leaving attached pastes much and preventing fine particle generation as byproducts. This article outlined experiments to improve quality of recycled fine aggregates and their experimental results confirmed improvement of flow ability and compressive strength of mortal using recycled fine aggregates using 'Particle size selector' and 'Ball mill' so as to remove their fragile parts less than 2%. Mortal made from recycled fine aggregate could also prevent permeation of chloride ion. Recycled aggregate could be used for concrete instead of natural aggregate. (T. Tanaka)

  3. X-ray-induced acoustic computed tomography of concrete infrastructure

    Science.gov (United States)

    Tang, Shanshan; Ramseyer, Chris; Samant, Pratik; Xiang, Liangzhong

    2018-02-01

    X-ray-induced Acoustic Computed Tomography (XACT) takes advantage of both X-ray absorption contrast and high ultrasonic resolution in a single imaging modality by making use of the thermoacoustic effect. In XACT, X-ray absorption by defects and other structures in concrete create thermally induced pressure jumps that launch ultrasonic waves, which are then received by acoustic detectors to form images. In this research, XACT imaging was used to non-destructively test and identify defects in concrete. For concrete structures, we conclude that XACT imaging allows multiscale imaging at depths ranging from centimeters to meters, with spatial resolutions from sub-millimeter to centimeters. XACT imaging also holds promise for single-side testing of concrete infrastructure and provides an optimal solution for nondestructive inspection of existing bridges, pavement, nuclear power plants, and other concrete infrastructure.

  4. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete

    OpenAIRE

    Manu S. Nadesan; P. Dinakar

    2017-01-01

    Concrete is one of the most widely used construction materials and has the ability to consume industrial wastes in high volume. As the demand for concrete is increasing, one of the effective ways to reduce the undesirable environmental impact of the concrete is by the use of waste and by-product materials as cement and aggregate substitutes in concrete. One such waste material is fly ash, which is produced in large quantities from thermal power plants as a by-product. A substantial amount of ...

  5. Hysteretic evaluation of seismic performance of normal and fiber reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Choun, Young Sun; Hahm, Dae Gi

    2012-01-01

    The use of fibers in concrete or cement composites can enhance the performance of structural elements. Fibers have been used for a cement mixture to increase the toughness and tensile strength, and to improve the cracking and deformation characteristics. The addition of fibers into concrete can improve the ductility and increase the seismic resistance of concrete structures. The application of fibers to earthquake-resistant concrete structures has a major research topic. A recent study shows that an excellent seismic performance can be obtained in shear critical members constructed with high performance fiber reinforced cement composites. To increase the seismic performance of safety related concrete structures in nuclear power plants, fibers can be used. This study investigated the effect of fibers on the hysteretic behavior of a reinforced concrete (RC) shear wall by cyclic tests

  6. Hysteretic evaluation of seismic performance of normal and fiber reinforced concrete shear walls

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Hahm, Dae Gi [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The use of fibers in concrete or cement composites can enhance the performance of structural elements. Fibers have been used for a cement mixture to increase the toughness and tensile strength, and to improve the cracking and deformation characteristics. The addition of fibers into concrete can improve the ductility and increase the seismic resistance of concrete structures. The application of fibers to earthquake-resistant concrete structures has a major research topic. A recent study shows that an excellent seismic performance can be obtained in shear critical members constructed with high performance fiber reinforced cement composites. To increase the seismic performance of safety related concrete structures in nuclear power plants, fibers can be used. This study investigated the effect of fibers on the hysteretic behavior of a reinforced concrete (RC) shear wall by cyclic tests.

  7. Recent advances in seismic non-destructive testing of concrete plate like structures

    International Nuclear Information System (INIS)

    Ryden, N.; Kristensen, A.; Jovall, O.

    2009-01-01

    This paper describes recent advances in seismic/acoustic non-destructive testing of concrete containment walls. The presented technique is focused on the characterization of the mean stiffness (seismic velocities) and thickness of the containment wall. The Impact Echo (IE) method is a well-established technique to measure the thickness of concrete plates or to locate defects in concrete plate like structures. The method relies on a good estimate of the mean velocity through the thickness of the plate and a precisely measured thickness resonant frequency. Recently the underlying theory of the IE method has been redefined and improved based on Lamb waves in a free plate. Based on this theory we have developed a new data processing technique where both propagating and standing Lamb waves are analysed in a combined manner using multichannel data. With this approach the mean velocity through the plate thickness is evaluated by using the fundamental mode Lamb wave dispersion curves. The accuracy and detection ability of the measured resonant frequency is improved by utilizing both amplitude and phase information from the multichannel record. The method has been tested on several nuclear power plants in Sweden and Finland and proved to be more robust compared to conventional IE and surface wave measurements

  8. The characteristics of the prestressed concrete reactor vessel of the HHT demonstration plant

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.

    1979-01-01

    The paper concentrates on the design studies of the HTGR prestressed concrete reactor vessel (PCRV) for the HHT Demonstration Plant. The multi-cavity reactor pressure vessel accommodates all components carrying primary gas, including heat exchangers and gas turbine. For reasons of economics and availability of the reactor plant, generic requirements are made for the PCRV. A short description of the power plant is also presented

  9. Multi-axial model of anisotropic damage: numerical management of failure and application to the ruin of reinforced concrete structures under impact

    International Nuclear Information System (INIS)

    Leroux, A.

    2012-01-01

    The objective of this research thesis is to develop the most precise possible numeric modelling of reinforced concrete behaviour with application to the design of structures of protection of nuclear plants against violent dynamic loadings (explosions, impacts). After a discussion of existing models, of their benefits and weaknesses, a multi-axial model of anisotropic damage is proposed and implemented with the finite element method. A new procedure of failure management is also proposed which allows the induced anisotropic damage to be taken into account. Impact tests on concrete beams and concrete cubes with longitudinal steel have been performed in order to validate the model [fr

  10. A compression and shear loading test of concrete filled steel bearing wall

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Sekimoto, Hisashi; Fukihara, Masaaki; Nakanishi, Kazuo; Hara, Kiyoshi.

    1991-01-01

    Concrete-filled steel bearing walls called SC structure which are the composite structure of concrete and steel plates have larger load-carrying capacity and higher ductility as compared with conventional RC structures, and their construction method enables the rationalization of construction procedures at sites and the shortening of construction period. Accordingly, the SC structures have become to be applied to the inner concrete structures of PWR nuclear power plants, and subsequently, it is planned to apply them to the auxiliary buildings of nuclear power plants. The purpose of this study is to establish a rational design method for the SC structures which can be applied to the auxiliary buildings of nuclear power plants. In this study, the buckling strength of surface plates and the ultimate strength of the SC structure were evaluated with the results of the compression and shear tests which have been carried out. The outline of the study and the tests, the results of the compression test and the shear test and their evaluation are reported. Stud bolts were effective for preventing the buckling of surface plates. The occurrence of buckling can be predicted analytically. (K.I.)

  11. Design optimization of embedded ultrasonic transducers for concrete structures assessment.

    Science.gov (United States)

    Dumoulin, Cédric; Deraemaeker, Arnaud

    2017-08-01

    In the last decades, the field of structural health monitoring and damage detection has been intensively explored. Active vibration techniques allow to excite structures at high frequency vibrations which are sensitive to small damage. Piezoelectric PZT transducers are perfect candidates for such testing due to their small size, low cost and large bandwidth. Current ultrasonic systems are based on external piezoelectric transducers which need to be placed on two faces of the concrete specimen. The limited accessibility of in-service structures makes such an arrangement often impractical. An alternative is to embed permanently low-cost transducers inside the structure. Such types of transducers have been applied successfully for the in-situ estimation of the P-wave velocity in fresh concrete, and for crack monitoring. Up to now, the design of such transducers was essentially based on trial and error, or in a few cases, on the limitation of the acoustic impedance mismatch between the PZT and concrete. In the present study, we explore the working principles of embedded piezoelectric transducers which are found to be significantly different from external transducers. One of the major challenges concerning embedded transducers is to produce very low cost transducers. We show that a practical way to achieve this imperative is to consider the radial mode of actuation of bulk PZT elements. This is done by developing a simple finite element model of a piezoelectric transducer embedded in an infinite medium. The model is coupled with a multi-objective genetic algorithm which is used to design specific ultrasonic embedded transducers both for hard and fresh concrete monitoring. The results show the efficiency of the approach and a few designs are proposed which are optimal for hard concrete, fresh concrete, or both, in a given frequency band of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Constitutive Models for Design of Sustainable Concrete Structures

    Science.gov (United States)

    Brozovsky, J.; Cajka, R.; Koktan, J.

    2018-04-01

    The paper deals with numerical models of reinforced concrete which are expected to be useful to enhance design of sustainable reinforced concrete structures. That is, the models which can deliver higher precision of results than the linear elastic models but which are still feasible for engineering practice. Such models can be based on an elastic-plastic material. The paper discusses properties of such models. A material model based of the Chen criteria and the Ohtani hardening model for concrete was selected for further development. There is also given a comparison of behaviour of such model with behaviour of a more complex smeared crack model which is based on principles of fracture mechanics.

  13. Nuclear power plant prestressed concrete containment vessel structure monitoring during integrated leakage rate test using three kinds of fiber optic sensors

    Science.gov (United States)

    Liao, Kaixing; Li, Jinke; Kong, Xianglong; Sun, Changsen; Zhao, Xuefeng

    2017-04-01

    After years of operation, the safety of the prestressed concrete containment vessel (PCCV) structure of Nuclear Power Plant (NPP) is an important aspect. In order to detect the strength degradation and the structure deformation, several sensors such as vibrating wire strain gauge, invar wires and pendulums were installed in PCCV. However, the amounts of sensors above are limited due to the cost. Due to the well durability of fiber optic sensors, three kinds of fiber optic sensors were chosen to install on the surface of PCCV to monitor the deformation during Integrated Leakage Rate Test (ILRT). The three kinds of fiber optic sensors which had their own advantages and disadvantages are Fiber Bragg Grating (FBG), white light interferometry (WLI) and Brillouin Optical Time Domain Analysis (BOTDA). According to the measuring data, the three fiber optic sensors worked well during the ILRT. After the ILRT, the monitoring strain was recoverable thus the PCCV was still in the elastic stage. If these three kinds of fiber optic sensors are widely used in the PCCV, the unusual deformations are easier to detect. As a consequence, the three fiber optic sensors have good potential in the structure health monitoring of PCCV.

  14. The use of acoustic monitoring to manage concrete structures in the nuclear industry

    International Nuclear Information System (INIS)

    Paulson, P.O.; Tozser, O.; Wit, M. de

    2003-01-01

    Concrete and steel are widely used in containment vessels within the nuclear industry. Both are excellent acoustic transmitters. In many structures tensioned wire elements are used within containment structures. However, tensioned wire can be vulnerable to corrosion. To reduce the probability of corrosion sophisticated protection systems are used. To confirm that the design strength is available through time, extensive inspection and maintenance regimes are implemented. These regimes include tests to confirm the condition of the post-tensioning, and pressure tests (leak tests) to verify the performance of vessel. This paper presents an acoustic monitoring technology which uses widely distributed sensors to detect and locate wire failures using the energy released at failure. The technology has been used on a range of structures including post-tensioned concrete bridges, suspension bridges, buildings, pre-cast concrete cylinder pipelines (PCCP) and prestressed concrete containment vessels (PCCV), where it has increased confidence in structures and reduced maintenance costs. Where the level of ambient noise is low then SoundPrint acoustic monitoring can detect concrete cracking. This has been shown in PCCP pipelines, on laboratory test structures and also in nuclear structures. The programme has shown that distributed sensors can locate internal cracking well before there is any external evidence. Several projects have been completed on nuclear vessels. The first has been completed on an Electricite de France (EDF) concrete test pressure vessel at Civaux in France. The second at the Sandia PCCV Test Vessel in Albuquerque, New Mexico, USA, which involved the testing of a steel lined concrete vessel. The third was on a PCCV in Maryland, USA. Acoustic monitoring is also able to monitor the deterioration of post-tensioned concrete structures as a result of seismic activity. Summary details of a case history are presented. (author)

  15. Early-age behaviour of concrete in massive structures, experimentation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Zreiki, J., E-mail: zreiki@lmt.ens-cachan.f [ENS Cachan/CNRS UMR8535/UPMC/PRES UniverSud Paris, Cachan (France); Bouchelaghem, F. [ENS Cachan/CNRS UMR8535/UPMC/PRES UniverSud Paris, Cachan (France); UPMC Univ Paris 06 (France); Chaouche, M. [ENS Cachan/CNRS UMR8535/UPMC/PRES UniverSud Paris, Cachan (France)

    2010-10-15

    This study is focused on the behaviour of concrete at early-age in massive structures, in relation with the prediction of both cracking risk and residual stresses, which is still a challenging task. In this paper, a 3D thermo-chemo-mechanical model has been developed, on the basis of complete material characterization experiments, in order to predict the early-age development of strains and residual stresses, and in order to assess the risk of cracking in massive concrete structures. The parameters of the proposed model were identified on two different concretes, High Performance Concrete and Fibrous Self-Compacted Concrete - from simple experiments in the laboratory: uniaxial tension and compression tests, dynamic Young's modulus measurements, free and autogenous shrinkages, semi-adiabatic calorimetry. The proposed model has been implemented in a Finite Element code, and the numerical simulations of the laboratory tests have proved the model consistency. Furthermore, early-age experiments conducted on massive structures have also been simulated, in order to investigate the predictive capability of the model, and to assess the model performance in practical situations where varying temperatures are involved.

  16. Sulfate and Chloride Resistance of High Fluidity Concrete including Fly Ash and GGBS for NPP

    International Nuclear Information System (INIS)

    Noh, Jea Myoung; Cho, Myung Sug

    2010-01-01

    Fly ash mixed concrete has been used for NPP concrete structures in Korea in order to prevent aging and improve durability since the Shin.Kori no.1,2 in 2005. Concentrated efforts to develop technology for the streamlining of construction work and to affect labor savings have been conducted in construction. The application of high fluidity concrete for nuclear power plants has been the research subject with the aim of further rationalization of construction works. Since high fluidity concrete can have the characteristics of high density and high strength without compaction. However, high fluidity concrete can cause thermal cracking by heat of hydration. For this reason, the amount of pozzolan binder should be increased in high fluidity concrete for nuclear power plants. In this study, the resistance of high fluidity concrete on sulfate and chloride was compared with that of the concrete currently using for nuclear power plants

  17. Dynamic behavior of reinforced concrete beam subjected to impact load

    International Nuclear Information System (INIS)

    Ito, Chihiro; Ohnuma, Hiroshi; Sato, Koichi; Takano, Hiroshi

    1984-01-01

    The purpose of this report is to find out the impact behavior of reinforced concrete beams by means of experiment. The reinforced concrete is widely used for such an important structure as the building facilities of the nuclear power plant, and so the impact behavior of the reinforced concrete structures must be examined to estimate the resistance of concrete containment against impact load and to develope the reasonable and reliable design procedure. The impact test on reinforced concrete beam which is one of the most basic elements in the structure was conducted. Main results are summarized as follows. 1) Bending failure occured on static test. On the other hand, shear failure occured in the case of high impact velocity on impact test. 2) Penetration depth and residual deflection are approximately proportional to V 2 (V: velocity at impact). 3) Flexural wave propagates about at the speed of 2000 m/s. 4) The resistance of reinforced concrete beam against the impact load is fairly good. (author)

  18. A thermal active restrained shrinkage ring test to study the early age concrete behaviour of massive structures

    International Nuclear Information System (INIS)

    Briffaut, M.; Benboudjema, F.; Torrenti, J.M.; Nahas, G.

    2011-01-01

    In massive concrete structures, cracking may occur during hardening, especially if autogenous and thermal strains are restrained. The concrete permeability due to this cracking may rise significantly and thus increase leakage (in tank, nuclear containment...) and reduce the durability. The restrained shrinkage ring test is used to study the early age concrete behaviour (delayed strains evolution and cracking). This test shows, at 20 o C and without drying, for a concrete mix which is representative of a French nuclear power plant containment vessel (w/c ratio equal to 0.57), that the amplitude of autogenous shrinkage (about 40 μm/m for the studied concrete mix) is not high enough to cause cracking. Indeed, in this configuration, thermal shrinkage is not significant, whereas this is a major concern for massive structures. Therefore, an active test has been developed to study cracking due to restrained thermal shrinkage. This test is an evolution of the classical restrained shrinkage ring test. It allows to take into account both autogenous and thermal shrinkages. Its principle is to create the thermal strain effects by increasing the temperature of the brass ring (by a fluid circulation) in order to expand it. With this test, the early age cracking due to restrained shrinkage, the influence of reinforcement and construction joints have been experimentally studied. It shows that, as expected, reinforcement leads to an increase of the number of cracks but a decrease of crack widths. Moreover, cracking occurs preferentially at the construction joint.

  19. Development of a process for the removal of radioactively contaminated coatings from concrete and steel structures, when shutting down nuclear plant

    International Nuclear Information System (INIS)

    Klopfer, H.; Engelfried, R.; Ricken, D.; Schmidt, R.

    1986-02-01

    Considerable cooling (removal of heat) of materials leads to contractions and embrittlement. This permits a commutation of substances to be achieved. Through the application of very cold media on coated surfaces of concrete, screed, plaster and steel, such a considerable amount of heat is to be removed, that the arising inherent stresses lead to a separation of substrate in the coating. A carryout of radioactively contaminated components through arising primary and secondary waste must not occur here. Test specimens were produced with practical system structures, from substrate and coating. Using a specially constructed experimental plant, liquid nitrogen was applied to the coating surfaces. Under certain circumstances, it is possible to separate clods of coating from the substrate. Fine dusts or thaw water, which could cause a carryout of the radioactivity, were not observed. Application on an item, must be preceded by clarification of various influence, e.g. diffusion of stress in the compound system during nitrogen application, coating structure optimisation. (orig./HP) With 5 refs., 10 tabs., 25 figs [de

  20. Concrete structural analysis tools and properties for Hanford site waste tank evaluation

    International Nuclear Information System (INIS)

    Moore, C.J.; Peterson, W.S.; Winkel, B.V.; Weiner, E.O.

    1995-09-01

    As Hanford Site Contractors address maintenance and future structural demands on nuclear waste tanks built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice has building codes for reinforced concrete design guidelines, the tanks were not constructed to today's building codes and future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current practice. The Hanford Site engineering staff has embraced nonlinear finite-element modeling of concrete in an effort to obtain a more accurate understanding of the actual tank margins. This document brings together and integrates past Hanford Site nonlinear reinforced concrete analysis methods, past Hanford Site concrete testing, public domain research testing, and current concrete research directions. This document, including future revisions, provides the structural engineering overview (or survey) for a consistent, accurate approach to nonlinear finite-element modeling of reinforced concrete for Hanford Site waste storage tanks. This report addresses concrete strength and modulus degradation with temperature, creep, shrinkage, long-term sustained loads, and temperature degradation of rebar and concrete bonds. Recommendations are given for parameter studies and evaluation techniques for review of nonlinear finite-element analysis of concrete

  1. Improvement of impact-resistance of a nuclear containment building using fiber reinforced concrete

    International Nuclear Information System (INIS)

    Jeon, Se-Jin; Jin, Byeong-Moo

    2016-01-01

    Highlights: • Impact-resistance of a structure can be improved by fiber reinforced concrete (FRC). • Material modeling of FRC is incorporated into finite element analysis of a structure. • A new index for impact-resistance is proposed based on plastic dissipation energy. • A nuclear power plant made of FRC shows improved resistance against aircraft crashes. - Abstract: Since the act of terrorism that occurred in the USA on September 11, 2001, the protection of nuclear power plants against large commercial aircraft crashes has been an emerging issue. Besides the verification of the safety of nuclear power plants in operation or in design, efficient methods for improving the impact-resistance of these structures have been investigated. Fiber reinforced concrete (FRC) has been generally accepted as an effective material for this purpose. In particular, FRC has been developed to improve the tensile behavior of concrete such as tensile strength, ductility and toughness. One of the main fields of application of FRC can be found in blast-protective or blast-resistant concrete structures. It is expected, therefore, that safety-related structures in a nuclear power plant can also be effectively protected from external blast, aircraft crash, etc. by applying FRC. In order to analytically verify the effect on structural behavior of applying FRC, the particular material properties of FRC should be incorporated into the material modeling of a structural analysis program. This study investigates the mathematical modeling of FRC, which represents various aspects of material behavior. Two numerical examples are provided to show the improved impact-resistance of a nuclear containment building that is expected when applying FRC in comparison with ordinary concrete. The analysis results show that the displacement decreases by 43–67% while the impact-resistance increases by 40–82%, depending on a fiber type.

  2. Improvement of impact-resistance of a nuclear containment building using fiber reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Se-Jin, E-mail: conc@ajou.ac.kr [Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499 (Korea, Republic of); Jin, Byeong-Moo [DAEWOO E& C, Institute of Construction Technology, 20, Suil-ro 123beon-gil, Jangan-gu, Suwon-si, Gyeonggi-do 16297 (Korea, Republic of)

    2016-08-01

    Highlights: • Impact-resistance of a structure can be improved by fiber reinforced concrete (FRC). • Material modeling of FRC is incorporated into finite element analysis of a structure. • A new index for impact-resistance is proposed based on plastic dissipation energy. • A nuclear power plant made of FRC shows improved resistance against aircraft crashes. - Abstract: Since the act of terrorism that occurred in the USA on September 11, 2001, the protection of nuclear power plants against large commercial aircraft crashes has been an emerging issue. Besides the verification of the safety of nuclear power plants in operation or in design, efficient methods for improving the impact-resistance of these structures have been investigated. Fiber reinforced concrete (FRC) has been generally accepted as an effective material for this purpose. In particular, FRC has been developed to improve the tensile behavior of concrete such as tensile strength, ductility and toughness. One of the main fields of application of FRC can be found in blast-protective or blast-resistant concrete structures. It is expected, therefore, that safety-related structures in a nuclear power plant can also be effectively protected from external blast, aircraft crash, etc. by applying FRC. In order to analytically verify the effect on structural behavior of applying FRC, the particular material properties of FRC should be incorporated into the material modeling of a structural analysis program. This study investigates the mathematical modeling of FRC, which represents various aspects of material behavior. Two numerical examples are provided to show the improved impact-resistance of a nuclear containment building that is expected when applying FRC in comparison with ordinary concrete. The analysis results show that the displacement decreases by 43–67% while the impact-resistance increases by 40–82%, depending on a fiber type.

  3. Evaluation of calculational and material models for concrete containment structures

    International Nuclear Information System (INIS)

    Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.

    1984-01-01

    A computer code utilizing an appropriate finite element, material and constitutive model has been under development as a part of a comprehensive effort by the Electric Power Research Institute (EPRI) to develop and validate a realistic methodology for the ultimate load analysis of concrete containment structures. A preliminary evaluation of the reinforced and prestressed concrete modeling capabilities recently implemented in the ABAQUS-EPGEN code has been completed. This effort focuses on using a state-of-the-art calculational model to predict the behavior of large-scale reinforced concrete slabs tested under uniaxial and biaxial tension to simulate the wall of a typical concrete containment structure under internal pressure. This paper gives comparisons between calculations and experimental measurements for a uniaxially-loaded specimen. The calculated strains compare well with the measured strains in the reinforcing steel; however, the calculations gave diffused cracking patterns that do not agree with the discrete cracking observed in the experiments. Recommendations for improvement of the calculational models are given. (orig.)

  4. Service-life prediction of reinforced concrete structures in subsurface environment

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ki Jung; Jung, Hae Ryong; Park, Joo Wan [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-03-15

    This paper focuses on the estimation of durability and service-life of reinforced concrete structures in Wolsong Low- and intermediate-level wastes Disposal Center (WLDC) in Korea. There are six disposal silos located in the saturated environment. The silo concrete is degraded due to reactions with groundwater and chemical attacks, and finally it will lose its properties as a transport barrier. The infiltration of sulfate and magnesium, leaching of potassium hydroxide, and chlorine induced corrosion are the most significant factors for degradation of reinforced concrete structure in underground environment. From the result of evaluation of the degradation time for each factor, the degradation rate of the reinforced concrete due to sulfate and magnesium is 1.308×10{sup -3} cm/yr, and it is estimated to take 48,000 years for full degradation while potassium hydroxide is leached in depth of less than 1.5 cm at 1,000 years after the initiation of degradation. In case of chlorine induced corrosion, it takes 1,648 years to initiate corrosion in the main reinforced bar and 2,288 years to reach the lifetime limit of the structural integrity, and thus it is evaluated as the most significant factor.

  5. Limit load analysis of thick-walled concrete structures

    International Nuclear Information System (INIS)

    Argyris, J.H.; Faust, G.; Willam, K.J.

    1975-01-01

    The paper illustrates the interaction of constitutive modeling and finite element solution techniques for limit load prediction of concrete structures. On the constitutive side, an engineering model of concrete fracture is developed in which the Mohr-Coulomb criterion is augmented by tension cut-off to describe incipient failure. Upon intersection with the stress path the failure surface collapses for brittle behaviour according to one of three softening rules, no-tension, no-cohesion, and no-friction. The stress transfer accompanying the energy dissipation during local failure is modelled by several fracture rules which are examined with regard to ultimate load prediction. On the numerical side the effect of finite element idealization is studied first as far as ultimate load convergence is concerned. Subsequently, incremental tangential and initial load techniques are compared together with the effect of step size. Limit load analyses of a thick-walled concrete ring and a lined concrete reactor closure conclude the paper with examples from practical engineering. (orig.) [de

  6. Structural performance evaluation on aging underground reinforced concrete structures. Part 5

    International Nuclear Information System (INIS)

    Matsumura, Takuro; Matsuo, Toyofumi; Miyagawa, Yoshinori

    2009-01-01

    When we evaluate the soundness of reinforced concrete structures, it is important to assess the chloride induced deterioration. We conducted the reinforcing steel corrosion tests of reinforced concrete specimens under simulated tidal environment of sea. Parameters of the tests were water cement ratio, cement type and crack width of concrete. Periods of the tests were eighty month. The obtained results were summarized at follows: (a) The chloride ion concentration at the initiation of reinforcing steel corrosion was about 3.0 kg/m 3 in case of reinforcing steel in non-crack concrete used ordinary cement. (b) The corrosion rate of reinforcing steels was almost constant at any cement type specimens after causing crack by reinforcing steel corrosion. (c) The corrosion rate of reinforcing steels in specimens, which caused cracks by bending load, increased as crack width. In the same type specimens, the corrosion rate of reinforcing steels in fly ash cement specimens was larger than that of ordinary cement specimens. In this case, the corrosion rate of reinforcing steels was evaluated about 0.18 mm/year. (author)

  7. Nondestructive evaluation of dissipative behavior of reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Luong, M.P. [Ecole Polytechnique, LMS, CNRS, 91 - Palaiseau (France)

    2001-07-01

    Current technological developments tend toward increased exploitation of materials strengths and toward tackling extreme loads and environmental actions such as offshore structures subject to wind and wave loading, or buildings in seismic area. Concrete is widely used as a construction material because of its high strength-cost ratio in many applications. Experience of earthquakes and laboratory tests has shown that well designed and detailed reinforced concrete is suitable for earthquake resistant structures. The most severe likely earthquake can be survived if the members are sufficiently ductile to absorb and dissipate seismic energy by inelastic deformation. This requires a designer to assess realistically the acceptable levels of strength and to ensure adequate dissipation. This paper proposes the use of infrared thermography as a nondestructive, noncontact and real-time technique to examine diverse mechanisms of dissipation and to illustrate the onset of damage process, stress concentration and heat dissipation localization in loaded zone. In addition, this technique can be used as a nondestructive method for evaluating the fatigue limit of concrete structure subject to repeated loading.

  8. Nondestructive evaluation of dissipative behavior of reinforced concrete structure

    International Nuclear Information System (INIS)

    Luong, M.P.

    2001-01-01

    Current technological developments tend toward increased exploitation of materials strengths and toward tackling extreme loads and environmental actions such as offshore structures subject to wind and wave loading, or buildings in seismic area. Concrete is widely used as a construction material because of its high strength-cost ratio in many applications. Experience of earthquakes and laboratory tests has shown that well designed and detailed reinforced concrete is suitable for earthquake resistant structures. The most severe likely earthquake can be survived if the members are sufficiently ductile to absorb and dissipate seismic energy by inelastic deformation. This requires a designer to assess realistically the acceptable levels of strength and to ensure adequate dissipation. This paper proposes the use of infrared thermography as a nondestructive, noncontact and real-time technique to examine diverse mechanisms of dissipation and to illustrate the onset of damage process, stress concentration and heat dissipation localization in loaded zone. In addition, this technique can be used as a nondestructive method for evaluating the fatigue limit of concrete structure subject to repeated loading

  9. Structural evaluations of existing underground reinforced concrete tanks for radioactive waste storage

    International Nuclear Information System (INIS)

    Vollert, F.R.

    1979-10-01

    Structural integrity evaluations are being conducted for underground, steel-lined reinforced concrete tanks for storing radioactive wastes. The tanks sustain large soil overburden loads and elevated temperatures from the waste for long time periods. The evaluations include laboratory experiments to determine the long-term effects of elevated temperatures on the elastic properties of concrete, and to estimate the effect of the waste chemicals on concrete durability. Available concrete samples from the tanks were also tested to determine the quality of the concrete in the tanks and for comparison with the laboratory data. Finite element, nonlinear, time-dependent analyses are performed to show the thermal creep, cracking, and stresses occurring in the concrete tanks due to the service conditions. Ultimate load analyses are made to assess the safety margin in the tanks. Finally, seismic analyses of a tank in the stressed condition due to the soil and thermal loadings were conducted to determine that the structure has sufficient reserve capacity to withstand 0.25 g earthquake accelerations

  10. Efficiency of fiber reinforced concrete application in structures subjected to dynamic effects

    Directory of Open Access Journals (Sweden)

    Morozov Valeriy Ivanovich

    2014-03-01

    Full Text Available Fiber reinforced concretes possess high strength under dynamic loadings, which include impact loads, thanks to their high structural viscosity. This is the reason for using them in difficult operating conditions, where increasing the performance characteristics and the structure durability is of prime importance, and the issues of the cost become less significant. Applying methods of disperse reinforcement is most challenging in case of subtle high-porous materials on mineral binders, for example foamed concrete. At the same time, the experiments conducted in Russia and abroad show, that also in other cases the concrete strength resistance several times increases as a result of disperse reinforcement. This doesn't depend on average density of the concrete and type of fiber used. In the article the fibre reinforced concrete impact resistance is analysed. Recommendations are given in regard to fibre concrete application in manufacture of monolithic floor units for industrial buildings and precast piles.

  11. Energy use in repairs by cover concrete replacement or silane treatment for extending service life of chloride-exposed concrete structures

    Science.gov (United States)

    Petcherdchoo, A.

    2018-05-01

    In this study, the service life of repaired concrete structures under chloride environment is predicted. This prediction is performed by considering the mechanism of chloride ion diffusion using the partial differential equation (PDE) of the Fick’s second law. The one-dimensional PDE cannot simply be solved, when concrete structures are cyclically repaired with cover concrete replacement or silane treatment. The difficulty is encountered in solving position-dependent chloride profile and diffusion coefficient after repairs. In order to remedy the difficulty, the finite difference method is used. By virtue of numerical computation, the position-dependent chloride profile can be treated position by position. And, based on the Crank-Nicolson scheme, a proper formulation embedded with position-dependent diffusion coefficient can be derived. By using the aforementioned idea, position- and time-dependent chloride ion concentration profiles for concrete structures with repairs can be calculated and shown, and their service life can be predicted. Moreover, the use of energy in different repair actions is also considered for comparison. From the study, it is found that repairs can control rebar corrosion and/or concrete cracking depending on repair actions.

  12. New Trends for Reinforced Concrete Structures: Some Results of Exploratory Studies

    Directory of Open Access Journals (Sweden)

    Ricardo N. F. Carmo

    2017-10-01

    Full Text Available Today, the concrete sector is being pushed to innovate in order to better address current challenges with higher competitiveness and more sustainable solutions. Different research studies have been conducted all over the world in which novel approaches and paths were proposed. It is important to spread information to define new strategies for the future of this industry. The enhancement of concrete properties and the impact of these changes in structural design are some of the topics analysed in those studies. This paper presents four experimental studies conducted by the authors where different types of concrete and structural members were tested. The common goal of these studies was to develop innovative solutions with high performance and low environmental impact. The scope of the first study was the structural behaviour of members produced with lightweight aggregate concrete (LWAC. Results of several beams, ties, and slabs are herein presented and analysed. The advantage of using glass fibre–reinforced polymer (GFRP rebars was addressed in a second study, and main results obtained with this type of rebar are also herein presented. Recent advances in nanotechnology led to the development of concretes incorporating nanoparticles into the binder matrix. Typically, these nanoparticles have a diameter of 10–300 nanometers and are added to the mixture to reduce the porosity and increase the density of the binder matrix, improving the mechanical properties and durability. To analyse their influence on steel-to-concrete bonding and on the shear and flexural behaviour of the beams was the main goal of the third study herein described. Finally, a new concept to produce reinforced concrete members with high durability using a special concrete cover, which was the goal of the fourth study, is also herein presented.

  13. Stiffness analysis of glued connection of the timber-concrete structure

    Science.gov (United States)

    Daňková, Jana; Mec, Pavel; Majstríková, Tereza

    2016-01-01

    This paper presents results of experimental and mathematical analysis of stiffness characteristics of a composite timber-concrete structure. The composite timberconcrete structure presented herein is non-typical compared to similar types of building structures. The interaction between the timber and concrete part of the composite cross-section is not based on metal connecting elements, but it is ensured by a glued-in perforated mesh made of plywood. The paper presents results of experimental and mathematical analysis for material alternatives of the solution of the glued joint. The slip modulus values were determined experimentally. Data obtained from the experiment evaluated by means of regression analysis. Test results were also used as input data for the compilation of a 3D model of a composite structure by means of the 3D finite element model. On the basis of result evaluation, it can be stated that the stress-deformation behaviour at shear loading of this specific timber-concrete composite structure can be affected by the type of glue used. Parameters of the 3D model of both alternative of the structure represent well the behaviour of the composite structure and the model can be used for predicting design parameters of a building structure.

  14. Method for the construction of a nuclear reactor with a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.

    1981-01-01

    Method for the construction of nuclear reactors with prestressed concrete pressure vessel, providing during the initial stage of construction of the prestressed concrete pressure vessel a support structure around the liner. This enables an early mounting of core components in clean conditions as well as load reductions for final concreting in layers of the prestressed concrete pressure vessel. By applying the support structure, the overall assembly time of these nuclear power plant is considerably reduced without extra cost. (orig.) [de

  15. Scale modeling of reinforced concrete structures subjected to seismic loading

    International Nuclear Information System (INIS)

    Dove, R.C.

    1983-01-01

    Reinforced concrete, Category I structures are so large that the possibility of seismicly testing the prototype structures under controlled conditions is essentially nonexistent. However, experimental data, from which important structural properties can be determined and existing and new methods of seismic analysis benchmarked, are badly needed. As a result, seismic experiments on scaled models are of considerable interest. In this paper, the scaling laws are developed in some detail so that assumptions and choices based on judgement can be clearly recognized and their effects discussed. The scaling laws developed are then used to design a reinforced concrete model of a Category I structure. Finally, how scaling is effected by various types of damping (viscous, structural, and Coulomb) is discussed

  16. Conceptual Design Tool for Concrete Shell Structures

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2011-01-01

    This paper focuses on conceptual tools for concrete shell structures when working within the span of performance-based design and computational morphogenesis. The designer, referred to as the Architect-Engineer, works through several iterations parallel with aesthetic, functional and technical re...

  17. Residual strength evaluation of concrete structural components ...

    Indian Academy of Sciences (India)

    This paper presents methodologies for residual strength evaluation of concrete structural components using linear elastic and nonlinear fracture mechanics principles. The effect of cohesive forces due to aggregate bridging has been represented mathematically by employing tension softening models. Various tension ...

  18. Assessment of modular construction for safety-related structures at advanced nuclear power plants

    International Nuclear Information System (INIS)

    Braverman, J.; Morante, R.; Hofmayer, C.

    1997-03-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. The objective in utilizing modular construction is to reduce the construction schedule, reduce construction costs, and improve the quality of construction. This report documents the results of a program which evaluated the proposed use of modular construction for safety-related structures in advanced nuclear power plant designs. The program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules. The program was conducted in three phases. The objective of the first phase was to identify the technical issues and the need for further study in order to support NRC licensing review activities. The two key findings were the need for supplementary review criteria to augment the Standard Review Plan and the need for verified design/analysis methodology for unique types of modules, such as the concrete-filled steel module. In the second phase of this program, Modular Construction Review Criteria were developed to provide guidance for licensing reviews. In the third phase, an analysis effort was conducted to determine if currently available finite element analysis techniques can be used to predict the response of concrete-filled steel modules

  19. ANALYSIS OF SUFFICIENCY OF THE BEARING CAPACITY OF BUILDING STRUCTURES OF OPERATING SITES OF MAIN BUILDINGS OF THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Alekseeva Ekaterina Leonidovna

    2012-10-01

    Full Text Available Upon examination of eleven main buildings of power plants, analysis of defects and damages of building structures was performed. Thereafter, the damageability of principal bearing structures of main buildings of thermal plants was analyzed. It was identified that the fastest growing defects and damages were concentrated in the structures of operating sites. The research of the rate of development of the most frequent damages and defects made it possible to conclude that internal corrosion of the reinforcing steel was the most dangerous defect, as far as the reinforced concrete elements of operating sites were concerned. Methods of mathematical statistics were applied to identify the reinforcing steel development pattern inside reinforced concrete elements of floors of operating sites. It was identified that the probability of corrosion of reinforced concrete elements of operating sites was distributed in accordance with the demonstrative law. Based on these data, calculation of strength of reinforced concrete slabs and metal beams was performed in terms of their regular sections, given the natural loads and the realistic condition of structures. As a result, dependence between the bearing capacity reserve ratio and the corrosion development pattern was identified for reinforced concrete slabs and metal beams of operating sites. In order to analyze the sufficiency of the bearing capacity of building structures of operating sites in relation to their time in commission, equations were derived to identify the nature of dependence between the sufficiency of the bearing capacity of reinforced concrete slabs and metal beams of the operating sites and their time in commission.

  20. Structural Response to Blast Loading: The Effects of Corrosion on Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Hakan Yalciner

    2014-01-01

    Full Text Available Structural blast design has become a necessary part of the design with increasing terrorist attacks. Terrorist attacks are not the one to make the structures important against blast loading where other explosions such as high gas explosions also take an important place in structural safety. The main objective of this study was to verify the structural performance levels under the impact of different blast loading scenarios. The blast loads were represented by using triangular pulse for single degree of freedom system. The effect of blast load on both corroded and uncorroded reinforced concrete buildings was examined for different explosion distances. Modified plastic hinge properties were used to ensure the effects of corrosion. The results indicated that explosion distance and concrete strength were key parameters to define the performance of the structures against blast loading.

  1. Effect of heat curing methods on the temperature history and strength development of slab concrete for nuclear power plant structures in cold climates

    International Nuclear Information System (INIS)

    Lee, Gun Cheol; Han, Min Cheol; Baek, Dae Hyun; Koh, Kyung Taek

    2012-01-01

    The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to -10 degrees Celsius. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of 1200, 600, 200 mm and a design strength of 27 MPa were fabricated and cured at -10 degrees Celsius for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below 0 degrees Celsius within 40 h after exposure to -10 degrees Celsius, and then, the temperature dropped to -10 degrees Celsius and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around 5 degrees Celsius for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around 10 degrees Celsius for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after

  2. Application of global elements to a reinforced concrete structure

    International Nuclear Information System (INIS)

    Morand, O.

    1994-01-01

    The dimensioning of nuclear facilities requires to take into account the possible risk of earthquakes. However such installations are generally complex structures with reinforced concrete poles, walls, beams and porches. In this study, a seismic analysis of such a structure is proposed. The use of the Castem 2000 global element code was attempted to dynamically simulate the behaviour of the reinforced concrete elements. However, no suitable modeling has been found for the storeys, the functioning of which being dominated by carrying walls. Concerning the porch-type storeys, monotonous static loads were simulated and provided information on the local and global behaviour of these structures. Thus, representative global elements could be realized for these structures. Results obtained are satisfactory for these storeys which essentially undergo a bending deformation. (J.S.)

  3. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale. In view of the final demolition of the building, foreseen to start in the middle of 2008, a clearance methodology for the concrete from the cells into the Eurochemic building has been developed. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radionuclides. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  4. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. Pt. 1

    International Nuclear Information System (INIS)

    Sugano, T.; Tsubota, H.; Kasai, Y.; Koshika, N.; Ohnuma, H.; Von Riesemann, W.A.; Bickel, D.C.; Parks, M.B.

    1993-01-01

    Structural damage induced by an aircraft crashing into a reinforced concrete structure includes local damage caused by the deformable engines, and global damage caused by the entire aircraft. Local damage to the target may consist of spalling of concrete from its front face together with missile penetration into it, scabbing of concrete from its rear face, and perforation of missile through it. Until now, local damage to concrete structures has been mainly evaluated by rigid missile impact tests. Past research work regarding local damage caused by impact of deformable missiles has been limited. This paper presents the results of a series of impact tests of small-, intermediate-, and full-scale engine models into reinforced concrete panels. The purpose of the tests was to determine the local damage to a reinforced concrete structure caused by the impact of a deformable aircraft engine. (orig.)

  5. The Effect of Different Shape and Perforated rHDPE in Concrete Structures on Flexural Strength

    Science.gov (United States)

    Yuhazri, MY; Hafiz, KM; Myia, YZA; Jia, CP; Sihombing, H.; Sapuan, SM; Badarulzaman, NA

    2017-10-01

    This research was carried out to develop a reinforcing structure from recycled HDPE plastic lubricant containers to be embedded in concrete structure. Different forms and shapes of recycled HDPE plastic are designed as reinforcement incorporate with cement. In this study, the reinforcing structure was prepared by washing, cutting, dimensioning and joining of the waste HDPE containers (direct technique without treatment on plastic surface). Then, the rHDPE reinforced concrete was produced by casting based on standard of procedure in civil engineering technique. Eight different shapes of rHDPE in concrete structure were used to determine the concrete’s ability in terms of flexural strength. Embedded round shape in solid and perforated of rHDPE in concrete system drastically improved flexural strength at 17.78 % and 13.79 %. The result would seem that the concrete with reinforcing rHDPE structure exhibits a more gradual or flexible properties than concrete beams without reinforcement that has the properties of fragile.

  6. The effects of pressure dependent constitutive model to simulate concrete structures failure under impact loads

    Science.gov (United States)

    Mokhatar, S. N.; Sonoda, Y.; Kamarudin, A. F.; Noh, M. S. Md; Tokumaru, S.

    2018-04-01

    The main objective of this paper is to explore the effect of confining pressure in the compression and tension zone by simulating the behaviour of reinforced concrete/mortar structures subjected to the impact load. The analysis comprises the numerical simulation of the influences of high mass low speed impact weight dropping on concrete structures, where the analyses are incorporated with meshless method namely as Smoothed Particle Hydrodynamics (SPH) method. The derivation of the plastic stiffness matrix of Drucker-Prager (DP) that extended from Von-Mises (VM) yield criteria to simulate the concrete behaviour were presented in this paper. In which, the displacements for concrete/mortar structures are assumed to be infinitesimal. Furthermore, the influence of the different material model of DP and VM that used numerically for concrete and mortar structures are also discussed. Validation upon existing experimental test results is carried out to investigate the effect of confining pressure, it is found that VM criterion causes unreal impact failure (flexural cracking) of concrete structures.

  7. Description of Euro codes for concrete constructions; Beskrivning av Eurokoder foer betongkonstruktioner

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Bo (Bo Westerberg Konsult AB, Stockholm (Sweden))

    2010-12-15

    Eurocodes, which are common European standards for design of structures for buildings and facilities, prepared by the European Standardisation Committee (CEN) and is published in Sweden by the Swedish Institute for Standards (SIS). Sweden, like the other CEN-member countries, is in the process of replacing their national dimensioning rules with Eurocodes. In an ongoing investigative work on requirements for design, analysis and control of concrete structures with a focus on reactor containment SSM wants to clarify what is needed to ensure mechanical integrity of these structures. The study will form the basis for the development of draft rules for concrete structures. The project aimed to provide SSM factual basis for his valuation of the Eurocode applicability of the Swedish nuclear power plants. The report describes the Eurocodes relating to design of concrete structures. These are: EN 1990: Basis of structural design; EN 1991: Actions on structures; EN 1992: Design of concrete structures; EN 1993: Design of steel structures; EN 1994: Design of composite steel and concrete structures; and, EN 1998: Design of structures for earthquake resistance

  8. Structural recycled concrete: utilization of recycled aggregate from construction and demolition wastes

    International Nuclear Information System (INIS)

    Alaejos Gutierrez, P.; Sanchez de Juan, M.

    2015-01-01

    This paper aims to present the main results of CEDEX research works concerning the use of recycled aggregates for structural concretes. By way of conclusion, recommendations on the requirements of the recycled aggregates have been established, providing information about the influence of these aggregates on the properties of structural concrete. (Author)

  9. Innovating a classic course in concrete structures

    DEFF Research Database (Denmark)

    Goltermann, Per

    2016-01-01

    A large number of changes, new activities and approaches have been tested at DTU in the teaching of concrete structures: Use of mandatory assignments, handing out solutions before or after exercises, detailed or summary solutions, brush-up teaching materials, strengthened consistency in solutions...

  10. Health monitoring and rehabilitation of a concrete structure using intelligent materials

    Science.gov (United States)

    Song, G.; Mo, Y. L.; Otero, K.; Gu, H.

    2006-04-01

    This paper presents the concept of an intelligent reinforced concrete structure (IRCS) and its application in structural health monitoring and rehabilitation. The IRCS has multiple functions which include self-rehabilitation, self-vibration damping, and self-structural health monitoring. These functions are enabled by two types of intelligent (smart) materials: shape memory alloys (SMAs) and piezoceramics. In this research, Nitinol type SMA and PZT (lead zirconate titanate) type piezoceramics are used. The proposed concrete structure is reinforced by martensite Nitinol cables using the method of post-tensioning. The martensite SMA significantly increases the concrete's damping property and its ability to handle large impact. In the presence of cracks due to explosions or earthquakes, by electrically heating the SMA cables, the SMA cables contract and close up the cracks. In this research, PZT patches are embedded in the concrete structure to detect possible cracks inside the concrete structure. The wavelet packet analysis method is then applied as a signal-processing tool to analyze the sensor signals. A damage index is defined to describe the damage severity for health monitoring purposes. In addition, by monitoring the electric resistance change of the SMA cables, the crack width can be estimated. To demonstrate this concept, a concrete beam specimen with reinforced SMA cables and with embedded PZT patches is fabricated. Experiments demonstrate that the IRC has the ability of self-sensing and self-rehabilitation. Three-point bending tests were conducted. During the loading process, a crack opens up to 0.47 inches. Upon removal of the load and heating the SMA cables, the crack closes up. The damage index formed by wavelet packet analysis of the PZT sensor data predicts and confirms the onset and severity of the crack during the loading. Also during the loading, the electrical resistance value of the SMA cable changes by up to 27% and this phenomenon is used to

  11. Modification of cement concrete by multilayer carbon nano-tubes

    International Nuclear Information System (INIS)

    Yakovlev, G.I.; Pervushin, G.N.; Pudov, I.A.; Korzhenko, A.

    2012-01-01

    The compact structure of protective concrete-conservative on the basis of Portland cement modified by carbon nano-dispersed systems has been studied. Multilayer carbon nano-tubes Graphistrength TM by 'Arkema' dispersed in hydrodynamic plant in the solution of surfactant Polyplast SP-1 have been used as modifying additives. The bending strength of fine grain concrete has been observed to increase by 45.1% and compression strength - by 96.8%. The concrete strength increase is related to morphological changes of crystalline hydrate new formations providing the formation of less defective structure of cement matrix of high density, preventing the migration of radionuclides into the environment in the process of radioactive waste conservation

  12. Development of structural health monitoring and early warning system for reinforced concrete system

    International Nuclear Information System (INIS)

    Iranata, Data; Wahyuni, Endah; Murtiadi, Suryawan; Widodo, Amien; Riksakomara, Edwin; Sani, Nisfu Asrul

    2015-01-01

    Many buildings have been damaged due to earthquakes that occurred recently in Indonesia. The main cause of the damage is the large deformation of the building structural component cannot accommodate properly. Therefore, it is necessary to develop the Structural Health Monitoring System (SHMS) to measure precisely the deformation of the building structural component in the real time conditions. This paper presents the development of SHMS for reinforced concrete structural system. This monitoring system is based on deformation component such as strain of reinforcement bar, concrete strain, and displacement of reinforced concrete component. Since the deformation component has exceeded the limit value, the warning message can be sent to the building occupies. This warning message has also can be performed as early warning system of the reinforced concrete structural system. The warning message can also be sent via Short Message Service (SMS) through the Global System for Mobile Communications (GSM) network. Hence, the SHMS should be integrated with internet modem to connect with GSM network. Additionally, the SHMS program is verified with experimental study of simply supported reinforced concrete beam. Verification results show that the SHMS has good agreement with experimental results

  13. Contributions to reinforced concrete structures numerical simulations

    International Nuclear Information System (INIS)

    Badel, P.B.

    2001-07-01

    In order to be able to carry out simulations of reinforced concrete structures, it is necessary to know two aspects: the behaviour laws have to reflect the complex behaviour of concrete and a numerical environment has to be developed in order to avoid to the user difficulties due to the softening nature of the behaviour. This work deals with these two subjects. After an accurate estimation of two behaviour models (micro-plan and mesoscopic models), two damage models (the first one using a scalar variable, the other one a tensorial damage of the 2 order) are proposed. These two models belong to the framework of generalized standard materials, which renders their numerical integration easy and efficient. A method of load control is developed in order to make easier the convergence of the calculations. At last, simulations of industrial structures illustrate the efficiency of the method. (O.M.)

  14. Development of a Skewed Pipe Shear Connector for Precast Concrete Structures.

    Science.gov (United States)

    Kim, Sang-Hyo; Choi, Jae-Gu; Park, Sejun; Lee, Hyunmin; Heo, And Won-Ho

    2017-05-13

    Joint connection methods, such as shear key and loop bar, improve the structural performance of precast concrete structures; consequently, there is usually decreased workability or constructional efficiency. This paper proposes a high-efficiency skewed pipe shear connector. To resist shear and pull-out forces, the proposed connectors are placed diagonally between precast concrete segments and a cast-in-place concrete joint part on a girder. Design variables (such as the pipe diameter, length, and insertion angle) have been examined to investigate the connection performance of the proposed connector. The results of our testing indicate that the skewed pipe shear connectors have 50% higher ductility and a 15% higher ratio of maximum load to yield strength as compared to the corresponding parameters of the loop bar. Finite element analysis was used for validation. The resulting validation indicates that, compared to the loop bar, the skewed pipe shear connector has a higher ultimate shear and pull-out resistance. These results indicate that the skewed pipe shear connector demonstrates more idealized behavior than the loop bar in precast concrete structures.

  15. Rigidity of reinforced concrete structures in the presence of different cracks

    Directory of Open Access Journals (Sweden)

    Iakovenko Igor

    2017-01-01

    Full Text Available It is proposed a method for rigidity calculating of reinforced concrete structures in the presence of cracks, suitable for rod and flat-strained concrete composite structures. It is based on the operating conditions and includes a new, more complete classification of the various cracks, models of a special crack, the calculation of the two-console model; a special cantilever model to determine the parameters of the joint between the concrete; calculation model of the block with the working section at the beginning and end of the crack to determine the horizontal (vertical projections of various cracks with the involvement of analytical relationships. They are based on the extremum of a function of many variables and Lagrange multipliers, as well as attracting level model of multi-level development of the various cracks, which allow to find the distance between the cracks and width of their disclosure, with considering the effect of discontinuities. This effect can greatly simplify the process of determining the rigidity of reinforced concrete structures (including composite ones, despite the complexity and diversity of the crack pattern.

  16. Diffusion under water-saturated conditions in PFA/OPC-based structural concrete

    International Nuclear Information System (INIS)

    Harris, A.W.; Nickerson, A.K.

    1990-05-01

    A substantial proportion of the volume of the UK radioactive waste repository is likely to be composed of materials based on hydraulic cements. This includes the structural components, which are likely to be manufactured from concrete. The mass transport characteristics of dissolved species for a typical structural concrete, based on a mixture of pulverised fuel ash and ordinary Portland cement, have been measured in a water-saturated condition. Both the water permeability and the diffusion parameters (for caesium, strontium and iodide ion and tritiated water diffusion) are low compared to values obtained for other structural concretes. The intrinsic diffusion coefficients for iodide and caesium ions are in the range 2-5x10 -14 m 2 s -1 . There is no evidence of significant sorption of any of the diffusants studied. (author)

  17. Prediction of Chloride Diffusion in Concrete Structure Using Meshless Methods

    Directory of Open Access Journals (Sweden)

    Ling Yao

    2016-01-01

    Full Text Available Degradation of RC structures due to chloride penetration followed by reinforcement corrosion is a serious problem in civil engineering. The numerical simulation methods at present mainly involve finite element methods (FEM, which are based on mesh generation. In this study, element-free Galerkin (EFG and meshless weighted least squares (MWLS methods are used to solve the problem of simulation of chloride diffusion in concrete. The range of a scaling parameter is presented using numerical examples based on meshless methods. One- and two-dimensional numerical examples validated the effectiveness and accuracy of the two meshless methods by comparing results obtained by MWLS with results computed by EFG and FEM and results calculated by an analytical method. A good agreement is obtained among MWLS and EFG numerical simulations and the experimental data obtained from an existing marine concrete structure. These results indicate that MWLS and EFG are reliable meshless methods that can be used for the prediction of chloride ingress in concrete structures.

  18. Reliability algorithms applied to reinforced concrete structures durability assessment

    Directory of Open Access Journals (Sweden)

    C. G. Nogueira

    Full Text Available This paper addresses the analysis of probabilistic corrosion time initiation in reinforced concrete structures exposed to ions chloride penetration. Structural durability is an important criterion which must be evaluated in every type of structure, especially when these structures are constructed in aggressive atmospheres. Considering reinforced concrete members, chloride diffusion process is widely used to evaluate the durability. Therefore, at modelling this phenomenon, corrosion of reinforcements can be better estimated and prevented. These processes begin when a threshold level of chlorides concentration is reached at the steel bars of reinforcements. Despite the robustness of several models proposed in the literature, deterministic approaches fail to predict accurately the corrosion time initiation due to the inherently randomness observed in this process. In this regard, the durability can be more realistically represented using probabilistic approaches. A probabilistic analysis of ions chloride penetration is presented in this paper. The ions chloride penetration is simulated using the Fick's second law of diffusion. This law represents the chloride diffusion process, considering time dependent effects. The probability of failure is calculated using Monte Carlo simulation and the First Order Reliability Method (FORM with a direct coupling approach. Some examples are considered in order to study these phenomena and a simplified method is proposed to determine optimal values for concrete cover.

  19. Performance and working life of cathodic protection systems for concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Worm, D.; Courage, W.; Leegwater, G.

    2012-01-01

    Corrosion of reinforcing steel in concrete structures causes concrete cracking and steel diameter reduction, eventually resulting in loss of safety. Conventional repair means heavy, labour intensive and costly work and the required quality level is under economic pressure. Consequently, conventional

  20. Topology optimization of reinforced concrete structures considering control of shrinkage and strength failure

    DEFF Research Database (Denmark)

    Luo, Yangjun; Wang, Michael Yu; Zhou, Mingdong

    2015-01-01

    To take into account the shrinkage effect in the early stage of Reinforced Concrete (RC) design, an effective continuum topology optimization method is presented in this paper. Based on the power-law interpolation, shrinkage of concrete is numerically simulated by introducing an additional design......-dependent force. Under multi-axial stress conditions, the concrete failure surface is well fitted by two Drucker-Prager yield functions. The optimization problem aims at minimizing the cost function under yield strength constraints on concrete elements and a structural shrinkage volume constraint. In conjunction...... to ensure the structural safety under the combined action of external loads and shrinkage....

  1. Overview of the age-related degradation of nuclear power plant structures

    International Nuclear Information System (INIS)

    Deng, Daniel

    2004-01-01

    License renewal of nuclear power plants is an issue of increasing interest to the U.S. nuclear industry and the U.S. NRC. This paper presents and evaluates the plausible age-related degradation mechanisms that may affect the concrete and steel containment structures and other Class I structures to continue to perform their safety functions. Preventive and/or mitigative options are outlined for managing degradation mechanisms that could significantly affect plant performance during the license renewal period. The provided technical information and the degradation management options may be used as references for comparison with plant specific conditions to ensure that age-related degradation is controlled during the license renewal term. Plausible degradation mechanisms described and analyzed as they may affect the concrete, reinforcing steel, containment steel shell, prestressed-tendon, steel liner and other structural components typically used in Class I structures. The significance of these age-related degradation mechanisms to the structural components are evaluated, giving consideration to the design basis and quality of construction; typical service conditions; operating and maintenance history; and current test, inspection and refurbishment practices for containment and Class I structures. Degradation mechanisms which cannot be generically dispositioned on the basis of the two-step approach: (1) they will not cause significant degradation, or (2) any potential degradation will be bounded by current test, inspection, analytical evaluation, and/or refurbishment programs are identified. Aging degradation management measures are recommended to address the remaining age-related degradation mechanisms. A three-phase approach for the management of the containment and Class I structures is introduced. Various techniques, testing tools and the acceptable criteria for each step of the evaluation of the structures status are provided. The preventive and mitigative

  2. Hybrid Bridge Structures Made of Frp Composite and Concrete

    Science.gov (United States)

    Rajchel, Mateusz; Siwowski, Tomasz

    2017-09-01

    Despite many advantages over the conventional construction materials, the contemporary development of FRP composites in bridge engineering is limited due to high initial cost, low stiffness (in case of glass fibers) and sudden composite failure mode. In order to reduce the given limitations, mixed (hybrid) solutions connecting the FRP composites and conventional construction materials, including concrete, have been tested in many countries for 20 years. Shaping the hybrid structures based on the attributes of particular materials, aims to increase stiffness and reduce cost without losing the carrying capacity, lightness and easiness of bridges that includes such hybrid girders, and to avoid the sudden dangerous failure mode. In the following article, the authors described examples of hybrid road bridges made of FRP composite and concrete within the time of 20 years and presented the first Polish hybrid FRP-concrete road bridge. Also, the directions of further research, necessary to spread these innovative, advanced and sustainable bridge structures were indicated.

  3. Determining prestressing forces for inspection of prestressed concrete containments

    International Nuclear Information System (INIS)

    1990-07-01

    General Design Criterion 53, ''Provisions for Containment Testing and Inspection,'' of Appendix A, ''General Design Criteria for Nuclear Power Plants,'' to 10 CFR Part 50, ''Domestic Licensing of Production and Utilization Facilities,'' requires, in part, that the reactor containment be designed to permit (1) periodic inspection of all important areas and (2) an appropriate surveillance program. Regulatory Guide 1.35, ''Inservice Inspection of Ungrouted Tendons in Prestressed Concrete Containment Structures,'' describes a basis acceptable to the NRC staff for developing an appropriate inservice inspection and surveillance program for ungrouted tendons in prestressed concrete containment structures of light-water-cooled reactors. This guide expands and clarifies the NRC staff position on determining prestressing forces to be used for inservice inspections of prestressed concrete containment structures

  4. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs

  5. Viscoelastic and thermal behavior of structural concrete with reference to containment vessels

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1981-01-01

    A method of numerical viscoelastic stress analysis is described suitable for concrete structures operating at elevated temperatures. The paper describes how approximate numerical methods of elastic analysis of the finite element type can be extended to incorporate the viscoelastic behavior of structural concrete of the quasi-static type. A new eight parameter viscoelastic model is proposed to represent concrete behavior in the loaded and unloaded stage. The deformational expressions for the proposed viscoelastic analogue are also developed. Finally, as a result of courve-fitting procedures, the evaluation of the creep law coefficients are obtained for creep laws appropriate to a test regime. The proposed method is of general application providing that the properties of concrete are assessed reasonably well. The analytical predictions are compared with experimental results obtained on concrete model specimens loaded for 3 1/2 months, at a temperature of 80 0 C. (author)

  6. PKI solar thermal plant evaluation at Capitol Concrete Products, Topeka, Kansas

    Science.gov (United States)

    Hauger, J. S.; Borton, D. N.

    1982-07-01

    A system feasibility test to determine the technical and operational feasibility of using a solar collector to provide industrial process heat is discussed. The test is of a solar collector system in an industrial test bed plant at Capitol Concrete Products in Topeka, Kansas, with an experiment control at Sandia National Laboratories, Albuquerque. Plant evaluation will occur during a year-long period of industrial utilization. It will include performance testing, operability testing, and system failure analysis. Performance data will be recorded by a data acquisition system. User, community, and environmental inputs will be recorded in logs, journals, and files. Plant installation, start-up, and evaluation, are anticipated for late November, 1981.

  7. Quality control of concrete in construction of No.2 and No.5 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Yamashita, Toshio; Nukui, Yasushi; Nojiri, Takaharu.

    1990-01-01

    The construction site and its weather condition are outlined. In the Nuclear Power Station, No.1 plant and No.5 plant with 1100 MWe output each have been already in operation, and No.2 plant with 1100 MWe output is about to start the operation. In this report, the quality control of about 700,000 m 3 of concrete used for No.2 and No.5 plants construction from October, 1983 to November, 1989 is described. The features of the concrete used are shown. The facilities for producing the concrete, which were set up in the construction site, the mixing of the concrete and the quality control are reported. The system for carrying out the quality control of materials and concrete is shown with a flowchart. The material testing on cement, aggregate, water quality, fly ash and chemical additives was carried out. The slump, air quantity, temperature, strength and specific gravity of concrete were tested. (K.I.)

  8. Concrete and criticality

    International Nuclear Information System (INIS)

    Carter, R.D.

    1978-01-01

    Concrete is a widely used structural material which occurs frequently in systems requiring criticality analyses. Ordinarily, we give little thought to what its actual composition is (as compared to reference compositions), yet in criticality safety, differences in composition can cause large changes in k-effective and it may not be easy to predict in which direction the change will occur. Concrete composition is quite variable with differences in the aggregate used in the concrete in various parts of the country providing relative large differences in k-effective. The water content of concrete can also strongly affect the reactivity of a system in which it acts as a reflector or is interspersed between fissile units. Because concrete is so common and is often (but not always) a better reflector than water, one must know the concrete compositions or be prepared to use a ''worst case'' composition. It may be a problem, however, to determine just what is the worst case. At the Hanford Plant, the aggregate normally used is basalt, which gives a composition very low in carbon as opposed to those areas (e.g., Oak Ridge) where the use of limestone aggregate will result in concrete with a high carbon content. The data presented show some of the effects found in situations using ''Hanford'' concrete, but similar effects might be found with other compositions. In some cases, the use of concrete may be incidental to the effects shown. While the numbers shown are those for actual systems, the primary intent is to alert the reader that these effects can occur. In applying this information, the analyst should use material specific to the systems being analyzed

  9. Evaluation on Compression Properties of Different Shape and Perforated rHDPE in Concrete Structures

    Science.gov (United States)

    Yuhazri, M. Y.; Hafiz, K. M.; Myia, Y. Z. A.; Jia, C. P.; Sihombing, H.; Sapuan, S. M.; Badarulzaman, N. A.

    2017-10-01

    The purpose of this study was to develop a concrete structure by incorporating waste HDPE plastic as the main reinforcement material and cement as the matrix via standard casting technique. There are eight different shapes of rHDPE reinforcing structure were used to investigate the compression properties of produced concrete composites. Experimental result shown that the highest shape in compressive strength of rHDPE reinforcing structure were the concrete with the addition of X-perforated beam (18.22 MPa), followed by X-beam (17.7 MPa), square perforated tube (17.54 MPa), round tube (17.42 MPa) and round perforated tube (16.69 MPa). In terms of their compressive behavior, the average concrete containing rHDPE reinforcement was successfully improved by 6 % of the mechanical characteristic compared to control concrete. It is shown that the addition of waste plastic as reinforcement structure can provide better compressive strength based on their shape and pattern respectively.

  10. Effect of mineral additives on structure and properties of concrete for pavements

    Science.gov (United States)

    Sobol, Khrystyna; Markiv, Taras; Hunyak, Oleksii

    2017-12-01

    Concrete pavements is an attractive alternative to asphalt pavements because of its lower cost and higher durability. Major contribution to sustainable development can be made by partial replacement of cement in concrete pavement with supplementary cementitious materials of different nature and origin. In this paper, the effect of natural zeolite and perlite additives in complex with chemical admixtures on the structure and properties of concrete for pavement was studied. Compressive and flexural strength test was used to study the mechanical behavior of designed concrete under load. Generally, the compressive strength of both control concrete and concrete containing mineral additives levels at the later ages of hardening. The microstructure analysis of concrete with mineral additives of different nature activity showed the formation of additional amount of hydration products such as tobermorite type calcium hydrosilicate which provide self-reinforcement of hardening concrete system.

  11. Applications of high-strength concrete to the development of the prestressed concrete reactor vessel (PCRV) design for an HTGR-SC/C plant

    International Nuclear Information System (INIS)

    Naus, D.J.

    1984-01-01

    The PCRV research and development program at ORNL consists of generic studies to provide technical support for ongoing PCRV-related studies, to contribute to the technological data base, and to provide independent review and evaluation of the relevant technology. Recent activities under this program have concentrated on the development of high-strength concrete mix designs for the PCRV of a 2240 MW(t) HTGR-SC/C plant, and the testing of models to both evaluate the behavior of high-strength concretes (plain and fibrous) and to develop model testing techniques. A test program to develop and evaluate high-strength (greater than or equal to 63.4 MPa) concretes utilizing materials from four sources which are in close proximity to potential sites for an HTGR plant is currently under way. The program consists of three phases. Phase I involves an evaluation of the cement, fly ash, admixtures and aggregate materials relative to their capability to produce concretes having the desired strength properties. Phase II is concerned with the evaluation of the effects of elevated temperatures (less than or equal to 316 0 C) on the strength properties of mixes selected for detailed evaluation. Phase III involves a determination of the creep characteristics and thermal properties of the selected mixes. An overview of each of these phases is presented as well as results obtained to date under Phase I which is approximately 75% completed

  12. Towards practical multiscale approach for analysis of reinforced concrete structures

    Science.gov (United States)

    Moyeda, Arturo; Fish, Jacob

    2017-12-01

    We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.

  13. Structural and seismic analyses of waste facility reinforced concrete storage vaults

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1995-01-01

    Facility 317 of Argonne National Laboratory consists of several reinforced concrete waste storage vaults designed and constructed in the late 1940's through the early 1960's. In this paper, structural analyses of these concrete vaults subjected to various natural hazards are described, emphasizing the northwest shallow vault. The natural phenomenon hazards considered include both earthquakes and tornados. Because these vaults are deeply embedded in the soil, the SASSI (System Analysis of Soil-Structure Interaction) code was utilized for the seismic calculations. The ultimate strength method was used to analyze the reinforced concrete structures. In all studies, moment and shear strengths at critical locations of the storage vaults were evaluated. Results of the structural analyses show that almost all the waste storage vaults meet the code requirements according to ACI 349--85. These vaults also satisfy the performance goal such that confinement of hazardous materials is maintained and functioning of the facility is not interrupted

  14. Impact of soil-structure interaction on the probabilistic frequency variation of concrete structures

    International Nuclear Information System (INIS)

    Hadjian, A.H.; Hamilton, C.W.

    1975-01-01

    Earthquake response of equipment in nuclear power plants is characterized by floor response spectra. Since these spectra peak at the natural frequencies of the structure, it is important, both from safety and cost standpoints, to determine the degree of the expected variability of the calculated structural frequencies. A previous work is extended on the variability of the natural frequencies of structures due to the variations of concrete properties and a rigorous approach is presented to evaluate frequency variations based on the probability distributions of both the structural and soil parameters and jointly determine the distributions of the natural frequencies. It is assumed that the soil-structure interaction coefficients are normally distributed. With the proper choice of coordinates, the simultaneous random variations of both the structural properties and the interaction coefficients can be incorporated in the eigenvalue problem. The key methodology problem is to obtain the probability distribution of eigenvalues of matrices with random variable elements. Since no analytic relation exists between the eigenvalues and the elements, a numerical procedure had to be designed. It was found that the desired accuracy can be best achieved by splitting the joint variation into two parts: the marginal distribution of soil variations and the conditional distribution of structural variations at specific soil fractiles. Then after calculating the actual eigenvalues at judiciously selected paired values of soil and structure parameters, this information is recombined to obtain the desired cumulative distribution of natural frequencies

  15. Durability performance of submerged concrete structures - phase 2.

    Science.gov (United States)

    2015-09-01

    This project determined that severe corrosion of steel can occur in the submerged : portions of reinforced concrete structures in marine environments. Field studies of decommissioned : pilings from Florida bridges revealed multiple instances of stron...

  16. Destructive vibration test of a concrete structure

    International Nuclear Information System (INIS)

    Chen, C.K.; Czarnecki, R.M.; Scholl, R.E.

    1977-01-01

    Two identical full-scale 4-story reinforced concrete structures were built in 1965-1966 at the Nevada Test Site to investigate their dynamic response behavior to underground nuclear explosions. For eight years following their construction, the structures were the subject of a continuing program of vibration testing, and substantial data has been collected on the elastic response of these structures. In 1974 it was decided to conduct a high-amplitude vibration test that would cause the south structure (free of partitions) to deform beyond its elastic limit and cause major structural damage. Results of the 1974 testing program are summarized

  17. Structural Applications of Fibre Reinforced Concrete in the Czech Republic

    Science.gov (United States)

    Kohoutková, A.; Broukalová, I.

    2017-09-01

    The paper presents improvement of function and performance of the precast structural members by using fibre reinforced concrete (FRC) instead of ordinary reinforced concrete and attempts to transfer innovative technologies from laboratory in academic sphere into real industrial production which is cost-effective and brings about savings of labour and material. Three examples of successful technology transfer are shown - application of FRC in an element without common rebar reinforcement, in the element with steel rebar reinforcement and SFRC pre-tensioned structural element. Benefits of FRC utilization are discussed.

  18. Elasto-viscoplastic finite element model for prestressed concrete structures

    International Nuclear Information System (INIS)

    Prates Junior, N.P.; Silva, C.S.B.; Campos Filho, A.; Gastal, F.P.S.L.

    1995-01-01

    This paper presents a computational model, based on the finite element method, for the study of reinforced and prestressed concrete structures under plane stress states. It comprehends short and long-term loading situations, where creep and shrinkage in concrete and steel relaxation are considered. Elasto-viscoplastic constitutive models are used to describe the behavior of the materials. The model includes prestressing and no prestressing reinforcement, on situation with pre- and post-tension with and without bond. A set of prestressed concrete slab elements were tested under instantaneous and long-term loading. The experimental data for deflections, deformations and ultimate strength are used to compare and validate the results obtained through the proposed model. (author). 11 refs., 5 figs

  19. A study on physical properties of concrete and reinforcement at elevated temperatures

    International Nuclear Information System (INIS)

    Kanazu, Tsutomu

    2002-01-01

    Reinforced concrete structures such as a containment vessel, a support of the reactor, piping systems and facilities for storing high level radioactive waste in a nuclear power plant are exposed to a high temperature condition. Changes of physical properties of concrete and reinforcement caused by high temperature influence on mechanical behavior of these structures and internal stresses are induced by difference of thermal coefficients between concrete and reinforcement that was reported in the previous paper by the author. These are the special features in high temperature conditions. Temperature dependence of physical properties of concrete and reinforcement are summarized in the paper based on the experimental results. (author)

  20. Determination of the neutralization depth of concrete under the aggressive environment influence

    Science.gov (United States)

    Morzhukhina, Anastasia; Nikitin, Stanislav; Akimova, Elena

    2018-03-01

    Aggressive environments have a significant impact on destruction of many reinforced concrete structures, such as high-rise constructions or chemical plants. For example, some high-rise constructions are equipped with a swimming pool, so they are exposed to chloride ions in the air. Penetration of aggressive chemical substances into the body of concrete contributes to acceleration of reinforced concrete structure corrosion that in turn leads to load bearing capacity loss and destruction of the building. The article considers and analyzes the main technologies for calculating penetration depth of various aggressive substances into the body of concrete. The calculation of corrosion depth was made for 50-year service life.

  1. Development of high-performance concrete having high resistance to chloride penetration

    International Nuclear Information System (INIS)

    Oh, Byung Hwan; Cha, Soo Won; Jang, Bong Seok; Jang, Seung Yup

    2002-01-01

    The resistance to chloride penetration is one of the simplest measures to determine the durability of concrete, e.g. resistance to freezing and thawing, corrosion of steel in concrete and other chemical attacks. Thus, high-performance concrete may be defined as the concrete having high resistance to chloride penetration as well as high strength. The purpose of this paper is to investigate the resistance to chloride penetration of different types of concrete and to develop high-performance concrete that has very high resistance to chloride penetration, and thus, can guarantee high durability. A large number of concrete specimens have been tested by the rapid chloride permeability test method as designated in AASHTO T 277 and ASTM C 1202. The major test variables include water-to-binder ratios, type of cement, type and amount of mineral admixtures (silica fume, fly ash and blast-furnace slag), maximum size of aggregates and air-entrainment. Test results show that concrete containing optimal amount of silica fume shows very high resistance to chloride penetration, and high-performance concrete developed in this study can be efficiently employed to enhance the durability of concrete structures in severe environments such as nuclear power plants, water-retaining structures and other offshore structures

  2. Pore Structure Characterization in Concrete Prepared with Carbonated Fly Ash

    Science.gov (United States)

    Sahoo, Sanjukta

    2018-03-01

    Carbon dioxide capture and storage (CCS) is a technique to address the global concern of continuously rising CO2 level in the atmosphere. Fly ash is considered as a suitable medium for CCS due to presence of metal oxides. The fly ash which has already sequestered carbon dioxide is referred to as carbonated fly ash. Recent research reveals better durability of concretes using carbonated fly ash as part replacement of cement. In the present research pore structure characterization of the carbonated fly ash concrete has been carried out. Mercury Intrusion porosimetry test has been conducted on control concrete and concrete specimens using fly ash and carbonated fly ash at replacement levels of 25% and 40%. The specimens have been water cured for 28 days and 90 days. It is observed that porosity reduction rate is more pronounced in carbonated fly ash concrete compared to control concrete at higher water curing age. Correlation analysis is also carried out which indicates moderately linear relationship between porosity % and pore distribution with particle size and water curing.

  3. Recycling of concrete waste generated from nuclear power plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nagase, Takahiro; Tanaka, Hiroaki; Nawa, Toyoharu

    2012-01-01

    Non-radioactive concrete waste generated from dismantling of a standard large nuclear power plant is estimated to be about 500,000 tons in weight. Using such waste as recycled aggregate within the enclosure of the plant requires a new manufacturing technology that generates a minimal amount of by-product powder. Recycled aggregate has brittle parts with defects such as cracks, pores, and voids in residual paste from original concrete. This study presents a method of selectively removing the defective parts during manufacture to improve the quality of the recycled fine aggregate. With this selective removal method used, the amount of by-product powder can be reduced by half as compared to that by a conventional method. The influences of the characteristics of the recycled fine aggregate on the flowability and strength of the mortar using recycled fine aggregate were evaluated by multiple linear regression analysis. The results clearly showed that the flowability was primarily affected by the filling fraction of recycled fine aggregate, while the compressive strength of mortar was primarily affected by the fraction of defects in the aggregate. It was also found that grains produced by a granulator have more irregularities in the surfaces than those produced by a ball mill, providing an increased mortar strength. Using these findings from this study, efforts are also being made to develop a mechanical technology that enables simultaneous processing of decontamination and recycling. The granulator under consideration is capable of grinding the surfaces of irregularly shaped particles and may be used successfully, under optimal conditions, for the surface decontamination of concrete waste contaminated with radioactive materials. (author)

  4. Analysis of FRP bars used as reinforcement in concrete structures

    Directory of Open Access Journals (Sweden)

    Kinga Brózda

    2016-09-01

    Full Text Available In the design and construction of building and engineering structures, it is of utmost importance to provide their reliability and safety. The use of FRP (Fiber Reinforced Polymers bars as reinforcement of structural concrete elements could help reducing the typical defects of reinforced concrete and increase its strength parameters. In the paper the selected FRP bar characteristic properties are presented and advantages derived therefrom are specified. Furthermore, the most commonly used in construction types of FRP bars, depending on the raw material used during the production process are listed. In addition, the possibility of recycling of elements reinforced with FRP bars is presented and compared with traditional reinforced concrete (reinforced with steel bars. The production method of FRP bars (pultrusion is shown. Moreover, the advantages and disadvantages of using this method are discussed.

  5. Mechanical and structural modules in a nuclear power plant advantages of the innovative approach

    International Nuclear Information System (INIS)

    Orlandi, S.; De Angelis, F.; Marconi, M.

    2010-01-01

    The modular layout design of a Nuclear Power Plant like the Westinghouse AP600/AP1000 has been developed basically to gain advantages in erection time schedule as well as in minimizing commissioning and start up test to be performed in the field. It is the first time for a Nuclear Power Plant to have a layout configuration fully designed as structured integrated mechanical Modules; this approach has been studied and implemented also to consider already in design phase decommissioning requirements which are mandatory to be able to perform dismantling at the end of the Plant Operation Life. Nevertheless it is the first time the possibility has been investigated to erect the civil structures as structural prefabricated modules: it means to have developed special composite structures which cannot be considered traditional reinforced concrete structures as well as structural beams frames. An approach like the above promotes impressive advantages in terms of extensive prefabrication in the workshops both for mechanical and structural modules, arranging in the workshops also factory acceptance tests as well as specific pre-acceptance commissioning activities. It means also that specific requirements have to be implemented in order to promote the implementation of this technology. Construction and adjustments flexibility in the field during NPP erection is heavily decreased due to modular prefabricated assemblies as well as it is mandatory to complete all the lay out plant design before entering the prefabrication phase in the workshops. Also structural design codes have to be qualified or properly readjusted to manage structural problems in composite structural frames which are innovative for organization, structural behaviour and which have different working ways starting from prefabrication, transportation, lifting up to the installation in the field and concrete pouring. (authors)

  6. Application of smart BFRP bars with distributed fiber optic sensors into concrete structures

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Zhao, Lihua; Song, Shiwei

    2010-04-01

    In this paper, the self-sensing and mechanical properties of concrete structures strengthened with a novel type of smart basalt fiber reinforced polymer (BFRP) bars were experimentally studied, wherein the sensing element is Brillouin scattering-based distributed optical fiber sensing technique. First, one of the smart bars was applied to strengthen a 2m concrete beam under a 4-points static loading manner in the laboratory. During the experiment, the bar can measure the inner strain changes and monitor the randomly distributed cracks well. With the distributed strain information along the bar, the distributed deformation of the beam can be calculated, and the structural health can be monitored and evaluated as well. Then, two smart bars with a length of about 70m were embedded into a concrete airfield pavement reinforced by long BFRP bars. In the field test, all the optical fiber sensors in the smart bars survived the whole concrete casting process and worked well. From the measured data, the concrete cracks along the pavement length can be easily monitored. The experimental results also confirmed that the bars can strengthen the structures especially after the yielding of steel bars. All the results confirm that this new type of smart BFRP bars show not only good sensing performance but also mechanical performance in the concrete structures.

  7. Containment nuclear plant structures evaluation by non destructive testing: strategy and results

    OpenAIRE

    GARNIER, Vincent; HENAULT, Jean-Marie; HAFID, Hamid; VERDIER, Jérôme; CHAIX, Jean François; ABRAHAM, Odile; SBARTAÏ, Zoubir Medhi; BALAYSSAC, Jean Pierre; PIWAKOWSKI, Bogdan; VILLAIN, Géraldine; DEROBERT, Xavier; PAYAN, Cédric; RAKOTONARIVO, Sandrine; LAROSE, Eric; SOGBOSSI, Hognon

    2016-01-01

    Containment nuclear plants structures are an ultimate barrier in the event of an accident. Mechanical resistance and tightness are the two functions that they are expected to provide. To evaluate their capacity to perform them, destructive testing cannot be used to characterize the material. Non-Destructive Tests then represent a relevant solution to test concrete and the struc- ture. The article positions NDT within the context of containment structures supervision and maintenance, and prese...

  8. Hybrid structure in civil engineering construction. Composite types of steel and concrete; Doboku bun`ya ni okeru fukugo kozo. Kozai to concrete no ittai keishiki

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T. [JR Railway Technical Research Inst. Tokyo (Japan)

    1995-03-30

    In connection with hybrid structures in civil engineering construction, classification and application of composite types of steel and concrete are discussed. H steel embedded beam is a composite beam in which the H shape steel of the main beam is connected to rolled or welded H shape steel using cross beams. Composite structure columns are grouped into the composite column and the steel pipe concrete column. SRC piers are often adopted from the viewpoints of constraints for execution of works and vibration proof. Steel and concrete hybrid structure is a kind of structural system in which various kinds of materials such as steel, RC, or PC members are connected. The cable stayed bridge utilizes characteristics of steel and concrete effectively. For the piers of municipal expressway viaducts, there are executed cases of mixed structures which have RC, SRC columns for T shape piers and S structure for the bridges. SRC structure and composite columns are adopted often for structures of subway stations. 7 refs., 7 figs.

  9. Monitoring device for reinforced concrete

    International Nuclear Information System (INIS)

    Matsuzaki, Tetsuo; Saito, Koichi; Furukawa, Hideyasu.

    1994-01-01

    A reactor container made of reinforced concretes is monitored for the temperature at each of portions upon placing concretes under construction of a plant, upon pressure-proof test and during plant operation. That is, optical fibers are uniformly laid spirally throughout the inside of the concretes. Pulses are injected from one end of the optical fibers, and the temperature at a reflection point can be measured by measuring specific rays (Raman scattering rays) among lights reflected after a predetermined period of time. According to the present invention, measurement for an optional position within a range where one fiber cable is laid can be conducted. Accordingly, it is possible to conduct temperature control upon concrete placing and apply temperature compensation for the measurement for stresses of the concretes and the reinforcing steels upon container pressure-proof. Further, during plant operation, if the temperature of the concretes rises due to thermal conduction of the temperature in the container, integrity of the concretes can be ensured by a countermeasures such as air conditioning. (I.S.)

  10. Characterization of Radiation Fields for Assessing Concrete Degradation in Biological Shields of NPPs

    Science.gov (United States)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Pape, Yann Le

    2017-09-01

    Life extensions of nuclear power plants (NPPs) to 60 years of operation and the possibility of subsequent license renewal to 80 years have renewed interest in long-term material degradation in NPPs. Large irreplaceable sections of most nuclear generating stations are constructed from concrete, including safety-related structures such as biological shields and containment buildings; therefore, concrete degradation is being considered with particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the currently available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database is desirable to ensure reliable risk assessment for extended operation of nuclear power plants.

  11. Duracrete: Service life design for concrete structures

    NARCIS (Netherlands)

    Siemes, A.J.M.; Edvardsen, C.

    1999-01-01

    In the past decades much effort has been put into the improvement of the durability of concrete structures. This has resulted in a reasonable understanding of the main degradation processes or in experience with measures to prevent degradation. The results of this effort can be found in the present

  12. Study of the ruining behaviour of a structure with reinforced concrete carrying walls

    International Nuclear Information System (INIS)

    Manas, B.

    1998-06-01

    Nuclear facility buildings must be constructed with the respect of para-seismic rules. These rules are defined according to the most probable seismic risk estimated for the sites. This study concerns the ruining behaviour of a structure made of reinforced concrete walls. In a first part, a preliminary study on reinforced concrete is performed with the Castem 2000 finite elements code. This study emphasizes the non-linear phenomena that take place inside the material, such as the cracking of concrete and the plasticization of steels. In a second part, predictive calculations were performed on a U-shape structure. This structure was submitted to earthquakes of various magnitudes and the response of the structure was analyzed and interpreted. (J.S.)

  13. A method for the realization of complex concrete gridshell structures in pre-cast concrete

    DEFF Research Database (Denmark)

    Larsen, Niels Martin; Egholm Pedersen, Ole; Pigram, Dave

    2012-01-01

    concrete casting techniques, complex funicular structures can be constructed using prefabricated elements in a practical, affordable and materially efficient manner. A recent case study is examined, in which the methodology has been used to construct a pavilion. Custom written dynamic relaxation software...

  14. Effect of mineral additives on structure and properties of concrete for pavements

    Directory of Open Access Journals (Sweden)

    Sobol Khrystyna

    2017-12-01

    Full Text Available Concrete pavements is an attractive alternative to asphalt pavements because of its lower cost and higher durability. Major contribution to sustainable development can be made by partial replacement of cement in concrete pavement with supplementary cementitious materials of different nature and origin. In this paper, the effect of natural zeolite and perlite additives in complex with chemical admixtures on the structure and properties of concrete for pavement was studied. Compressive and flexural strength test was used to study the mechanical behavior of designed concrete under load. Generally, the compressive strength of both control concrete and concrete containing mineral additives levels at the later ages of hardening. The microstructure analysis of concrete with mineral additives of different nature activity showed the formation of additional amount of hydration products such as tobermorite type calcium hydrosilicate which provide self-reinforcement of hardening concrete system.

  15. Radiolytic gas production from concrete containing Savannah River Plant waste

    International Nuclear Information System (INIS)

    Bibler, N.E.

    1978-01-01

    To determine the extent of gas production from radiolysis of concrete containing radioactive Savannah River Plant waste, samples of concrete and simulated waste were irradiated by 60 Co gamma rays and 244 Cm alpha particles. Gamma radiolysis simulated radiolysis by beta particles from fission products in the waste. Alpha radiolysis indicated the effect of alpha particles from transuranic isotopes in the waste. With gamma radiolysis, hydrogen was the only significant product; hydrogen reached a steady-state pressure that increased with increasing radiation intensity. Hydrogen was produced faster, and a higher steady-state pressure resulted when an organic set retarder was present. Oxygen that was sealed with the wastes was depleted. Gamma radiolysis also produced nitrous oxide gas when nitrate or nitrite was present in the concrete. With alpha radiolysis, hydrogen and oxygen were produced. Hydrogen did not reach a steady-state pressure at 137 Cs and 90 Sr), hydrogen will reach a steady-state pressure of 8 to 28 psi, and oxygen will be partially consumed. These predictions were confirmed by measurement of gas produced over a short time in a container of concrete and actual SRP waste. The tests with simulated waste also indicated that nitrous oxide may form, but because of the low nitrate or nitrite content of the waste, the maximum pressure of nitrous oxide after 300 years will be 238 Pu and 239 Pu will predominate; the hydrogen and oxygen pressures will increase to >200 psi

  16. Usage of Crushed Concrete Fines in Decorative Concrete

    Science.gov (United States)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of

  17. Survey results of corroding problems at biological treatment plants, Stage II Protection of concrete - State of the Art

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Ylva (CBI, Boraas (Sweden)); Henriksson, Gunilla (SP, Boraas (Sweden))

    2011-07-01

    A pilot study on the degradation and corrosion of concrete in biological treatment plants was conducted in 2009/2010 in a Waste Refinery Project WR-27 'Survey results of corroding problems at biological treatment plants'. The results showed that the concrete does not have sufficient resistance in the current aggressive plant environment. Furthermore, it is stated that some form of surface protection system is needed to ensure the good performance of concrete constructions, and that the system must withstand the aggressive environment and the traffic that occurs on site. Consequently, a new study was proposed in order to develop specifications for surface protection of concrete in aggressive food waste environments. Results from that study are presented in this report. The report includes various types of waterproofing/protection coating for concrete in biological treatment plants. A number of proposals from the industry are presented in the light of results from project WR-27, i.e., the materials must, among other things, withstand the aggressive leachate from waste food at temperatures up to 70 deg C, and some degree of wear. Some systems are compared in terms of technical material properties as reported by the manufacturer. It turns out that different testing methods were used, and the test results are thus generally not directly comparable. A proposal for a test program has been developed, focusing on chemical resistance and wear resistance. A test solution corresponding to leachate is specified. Laboratory tests for verification of the proposed methodology and future requirements are proposed, as well as test sites and follow-up in the field

  18. Analysis of the connection of the timber-fiber concrete composite structure

    Science.gov (United States)

    Holý, Milan; Vráblík, Lukáš; Petřík, Vojtěch

    2017-09-01

    This paper deals with an implementation of the material parameters of the connection to complex models for analysis of the timber-fiber concrete composite structures. The aim of this article is to present a possible way of idealization of the continuous contact model that approximates the actual behavior of timber-fiber reinforced concrete structures. The presented model of the connection was derived from push-out shear tests. It was approved by use of the nonlinear numerical analysis, that it can be achieved a very good compliance between results of numerical simulations and results of the experiments by a suitable choice of the material parameters of the continuous contact. Finally, an application for an analytical calculation of timber-fiber concrete composite structures is developed for the practical use in engineering praxis. The input material parameters for the analytical model was received using data from experiments.

  19. Nondestructive test for estimating strength of concrete in structure

    International Nuclear Information System (INIS)

    Nozaki, Yoshitsugu; Soshiroda, Tomozo

    1997-01-01

    Evaluation of the quality of concrete in structures, especially strength estimation is said to be one of the most important problem and needed to establish test method especial tv for non-destructive method in situ. The paper describes the nondestructive test to estimate strength of concrete. From experimental study using full scale model wall, strength estimating equations are proposed by ultra-sonic pulse velocity, rebound hardness of Schmidt hammer and combined with two methods. From statistical study of the results of experiments, errors of estimated strength by the proposed equations are suggested. The validity of the equations are verified by investigation for existing reinforced concrete buildings aged 20 - 50 years. And it was found from the statistical study that the strength estimating equations need to be corrected in applying to tons aged concrete, and correction factor to those squat ions were suggested. Furthermore the corrected proposed equations were verified by applying to buildings investigated the other case.

  20. Maintenance Planning for Chloride Initiated Corrosion in Concrete Structures

    DEFF Research Database (Denmark)

    Engelund, S.; Sørensen, John Dalsgaard

    1998-01-01

    Corrosion of the reinforcement in concrete structures can be initiated when the chloride concentration around the reinforcement exceeds a threshold value. In order to prevent the corrosion from reaching a stage where the load-bearing capacity of a given structure suffers a substantial decrease...

  1. Failure/leakage predictions of concrete structures containing cracks

    International Nuclear Information System (INIS)

    Pan, Y.C.; Marchertas, A.H.; Kennedy, J.M.

    1984-06-01

    An approach is presented for studying the cracking and radioactive release of a reactor containment during severe accidents and extreme environments. The cracking of concrete is modeled as the blunt crack. The initiation and propagation of a crack are determined by using the maximum strength and the J-integral criteria. Furthermore, the extent of cracking is related to the leakage calculation by using a model developed by Rizkalla, Lau and Simmonds. Numerical examples are given for a three-point bending problem and a hypothetical case of a concrete containment structure subjected to high internal pressure during an accident

  2. Final report on characterization of time dependent deformations in concrete grades used in nuclear power plants

    International Nuclear Information System (INIS)

    Ramaswamy, Ananth; Chandra Kishen, J.M.

    2009-09-01

    Time dependent deformations in concrete, both creep and shrinkage, play a critical role in prestressed concrete structures, such as bridge girders, nuclear containment vessels, etc. These strains result in losses, through release of prestress, and thereby influence the safety of these structures. The present study comprises of an experimental and analytical program to assess the levels of creep and shrinkage in normal and heavy density concrete. The experimental program includes tests on creep using standard cylinder specimen, while shrinkage studies have been conducted using prism specimen, both under controlled environmental conditions. The experimental results suggest that creep and shrinkage strains are higher in heavy density concrete than in normal concrete. This may be attributed to the relatively smaller pore structure of heavy density concrete that results in larger availability of free water and a relatively slower hydration process in comparison to normal concrete. While there is some scatter in the results, creep strains decrease with age of loading and both creep and shrinkage strains are smaller when the relative humidity is higher. Statistical model reported in the literature for normal concrete is able to predict the test results for both normal and heavy density concrete quite well. Long term predictions of creep and shrinkage using this model, accounting for uncertainties, is also projected and shown to predict some long term measured results not used in the model calibration. The long term predictions are sensitive to the initial data used in model calibration. (author)

  3. Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Amir, Oded

    2012-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its different strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures on the basis...... response must be considered. Optimized distribution of materials is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure. Copyright © 2012 John Wiley & Sons, Ltd....

  4. Process control system for fresh concrete preparation

    International Nuclear Information System (INIS)

    Bachvarov, N.; Pavlov, P.; Shukov, H.

    1983-01-01

    The paper discusses the principles, structure and organization of a modular microprocessor based control system, designed to be used in fresh concrete fabrication plants. The system is based on the measurement of the aggregate moisture by means of a neutron moisture meter. (author)

  5. A survey of the mechanical properties of concrete for structural purposes prepared on construction sites

    Directory of Open Access Journals (Sweden)

    R. R. J. RIBEIRO

    Full Text Available Abstract This paper aims to study the concrete dosage conditions for structural purposes in construction sitesl, and the impacts of non-compliance of structural concrete for structural safety, having as study case the city of Angicos / RN. Were analyzed the dynamic elasticity modulus, static elasticity modulus and the compressive strength of concrete samples. Was conducted to collect the survey data, a field research aiming to gather information about dosage of concrete used in the works, as well as the collection of cylindrical specimens of 150 mm diameter by 300 mm of height, prepared according to practice of those professionals. The study indicated a clear necessity to reflection on the subject, since there is no concern, or even, a lack of knowledge by the interviewed professionals regarding the care and procedures necessary for the production of concrete with satisfactory quality, once at least 50% of evaluated construction sites presented compressive strength lower than 20 MPa, minimal strength to structural concrete, as recommended by ABNT-NBR 6118:2014.

  6. Experimental Study on Temperature Behavior of SSC (Stiffened Steel Plate Concrete) Structures

    International Nuclear Information System (INIS)

    Lee, K. J.; Ham, K. W.; Park, D. S.; Kwon, K. J.

    2008-01-01

    SSC(Stiffened Steel plate Concrete) module method uses steel plate instead of reinforcing bar and mold in existing RC structure. Steel plate modules are fabricated in advance, installed and poured with concrete in construction field, so construction period is remarkably shortened by SC module technique. In case of existence of temperature gap between internal and external structure surface such as containment building, thermal stress is taken place and as a result of it, structural strength is deteriorated. In this study, we designed two test specimens and several tests with temperature heating were conducted to evaluate temperature behavior of SSC structures and RC structure

  7. Influence of cellulose fibers on structure and properties of fiber reinforced foam concrete

    Directory of Open Access Journals (Sweden)

    Fedorov Valeriy

    2018-01-01

    Full Text Available One of the promising means of foamed concrete quality improvement is micro-reinforcement by adding synthetic and mineral fibers to the base mix. This research is the first to investigate peculiarities of using recycled cellulose fiber extracted from waste paper for obtaining fiber reinforced foam concrete. The paper presents results of experimental research on the influence of cellulose fibers on structure and properties of fiber reinforced foam concrete by using methods of chemical analysis and scanning electron microscopy. The research determines peculiarities of new formations appearance and densification of binder hydration products in the contact zone between fiber and cement matrix, which boost mechanical strength of fiber reinforced foam concrete. Physico-mechanical properties of fiber reinforced foam concrete were defined depending on the amount of recycled cellulose fiber added to the base mix. It was found that the use of recycled cellulose fibers allows obtaining structural thermal insulating fiber reinforced foam concretes of non-autoclaved hardening of brand D600 with regard to mean density with the following improved properties: compressive strength increased by 35% compared to basic samples, higher stability of foamed concrete mix and decreased shrinkage deformation.

  8. Nonlocal Peridynamic Modeling and Simulation on Crack Propagation in Concrete Structures

    Directory of Open Access Journals (Sweden)

    Dan Huang

    2015-01-01

    Full Text Available An extended peridynamic approach for crack propagation analysis in concrete structures was proposed. In the peridynamic constitutive model, concrete material was described as a series of interacting particles, and the short-range repulsive force and anisotropic behavior of concrete were taken into account in the expression of the interactive bonding force, which was given in terms of classical elastic constants and peridynamic horizon. The damage of material was defined locally at the level of pairwise bond, and the critical stretch of material bond was described as a function of fracture strength in the classical concrete failure theory. The efficiency and accuracy of the proposed model and algorithms were validated by simulating the propagation of mode I and I-II mixed mode cracks in concrete slabs. Furthermore, crack propagation in a double-edge notched concrete beam subjected to four-point load was simulated, in which the experimental observations are captured naturally as a consequence of the solution.

  9. LMFBR plant design features for sodium spill and fire protection

    International Nuclear Information System (INIS)

    Palm, R.E.

    1982-01-01

    Design features have been developed for an LMFBR plant to protect the concrete structures from potential liquid spills and fires and prevent sodium-concrete reactions. The inclusion of these features in the plant design reduces the severity of design basis accident conditions imposed on containment and other critical plant structures. Steel liners are provided in cells containing radioactive sodium systems, and catch pans are located in non-radioactive sodium system cells. The design requirements and descriptions of each of these protective features are presented. The loading conditions, analytical approach and numerical results are also included. Design of concrete cell structures that are subject to high temperature effects from sodium spills is discussed. The structural design considers the influence of high temperature on design properties of concrete and carbon steel materials based on results of a comprehensive test program. The development of these design features and high temperature design considerations for the Clinch River Breeder Reactor Plant (CRBRP) are presented in this paper

  10. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Baumann, S.; Teunckens, L.; Walthery, R.; Lewandowski, P.; Millen, D.

    2002-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale and will continue till the end of 2005. In view of the final demolition of the building, a clearance methodology has to be proposed. Application of the methodology applied for the storage buildings of the pilot project is complicated for several reasons. Although this methodology is not rejected as such, an alternative has been studied thoroughly. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radioactivity. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  11. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  12. Concrete

    DEFF Research Database (Denmark)

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities. Through tangible experiments the project...... specific for this to happen. And the knowledge and intention behind the drawing becomes specialised through the understanding of the fabrication processes and their affect on the materials.The structure Concrete is a result of a multi-angled kerf series in ash wood and a concrete base. The ash wood is cut...... using a 5-axis CNC router with a thin saw blade attached. The programming of the machining results in variations of kerfs that lets the ash wood twist into unique shapes.The shapes of the revolving ash ribbons continue into the concrete creating a cohesive shape. The form for the concrete itself is made...

  13. Seismic Response Analysis of Concrete Lining Structure in Large Underground Powerhouse

    Directory of Open Access Journals (Sweden)

    Xiaowei Wang

    2017-01-01

    Full Text Available Based on the dynamic damage constitutive model of concrete material and seismic rock-lining structure interaction analysis method, the seismic response of lining structure in large underground powerhouse is studied in this paper. In order to describe strain rate dependence and fatigue damage of concrete material under cyclic loading, a dynamic constitutive model for concrete lining considering tension and shear anisotropic damage is presented, and the evolution equations of damage variables are derived. The proposed model is of simple form and can be programmed into finite element procedure easily. In order to describe seismic interaction characteristics of the surrounding rock and lining, an explicit dynamic contact analysis method considering bond and damage characteristics of contact face between the surrounding rock and lining is proposed, and this method can integrate directly without iteration. The proposed method is applied to seismic stability calculation of Yingxiuwan Underground Powerhouse, results reveal that the amplitude and duration of input seismic wave determine the damage degree of lining structure, the damage zone of lining structure is mainly distributed in its arch, and the contact face damage has great influence on the stability of the lining structure.

  14. Experiment Observations of the Effects of Fiber Types on the Post-peak Behaviors of Steel Fiber Reinforced Concretes under Tension

    International Nuclear Information System (INIS)

    Cho, Hyun Woo; Moon, Jae Heum; Lee, Jang Hwa; Kang, Su Tae

    2012-01-01

    Concrete is one of the major construction materials that are used to form the containing structures with the function as a radiation barrier for nuclear power plants. While current (steel reinforced) concrete structures for nuclear power plants provide reliable serviceability regarding the requirements of design codes, further safety requirement has been issued with the considerations of the impact of a large, commercial aircraft. U.S. NRC (Nuclear Regulatory Commission) announced the new regulatory code, 10CFR50.150 related to an aircraft impact assessment (AIA). The goal of AIA is to enhance the safety and robustness of new reactor designs at the design stage. To enhance the safety against aircraft impact, two approaches can be simply suggested, increase of barrier wall thickness and/or application of double containment structures. However, these two approaches expect much higher construction costs and much longer building period. Even also, when the thickness of concrete structure is increased, special cares will be expected during the process of concrete placement because of the cracking behavior of mass concrete due to hydration heat. To avoid the pre-described problems and difficulties, strengthening of the concrete properties could be an alternative and the increase of fracture toughness of concrete itself will be the practical approach to enhance the impact resistivity. With this consideration, this research observed the effects of steel fiber reinforcement on the enhancement of fracture toughness for possible future application to nuclear power plant structures

  15. Experiment Observations of the Effects of Fiber Types on the Post-peak Behaviors of Steel Fiber Reinforced Concretes under Tension

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyun Woo; Moon, Jae Heum; Lee, Jang Hwa [Korea Institute of Construction Technology, Goyang (Korea, Republic of); Kang, Su Tae [Daegu University, Gyeongsan (Korea, Republic of)

    2012-05-15

    Concrete is one of the major construction materials that are used to form the containing structures with the function as a radiation barrier for nuclear power plants. While current (steel reinforced) concrete structures for nuclear power plants provide reliable serviceability regarding the requirements of design codes, further safety requirement has been issued with the considerations of the impact of a large, commercial aircraft. U.S. NRC (Nuclear Regulatory Commission) announced the new regulatory code, 10CFR50.150 related to an aircraft impact assessment (AIA). The goal of AIA is to enhance the safety and robustness of new reactor designs at the design stage. To enhance the safety against aircraft impact, two approaches can be simply suggested, increase of barrier wall thickness and/or application of double containment structures. However, these two approaches expect much higher construction costs and much longer building period. Even also, when the thickness of concrete structure is increased, special cares will be expected during the process of concrete placement because of the cracking behavior of mass concrete due to hydration heat. To avoid the pre-described problems and difficulties, strengthening of the concrete properties could be an alternative and the increase of fracture toughness of concrete itself will be the practical approach to enhance the impact resistivity. With this consideration, this research observed the effects of steel fiber reinforcement on the enhancement of fracture toughness for possible future application to nuclear power plant structures

  16. Advanced Numerical Model for Irradiated Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, Alain B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    are unknown, a sensitivity analysis must be carried out to provide lower and upper bounds of the material behaviour. Finally, the model can be used as a basis to formulate a macroscopic material model for concrete subject to irradiation, which later can be used in structural analyses to estimate the structural impact of irradiation on nuclear power plants.

  17. A new concept for the targeted cutting of concrete structures

    International Nuclear Information System (INIS)

    Reinhardt, Steffen; Gentes, Sascha; Weidemann, Roman; Geimer, Marcus

    2011-01-01

    The decontamination and crushing of reinforced concrete is a main part during deconstruction of nuclear facilities. The selective treatment of contaminated or activated material is of special interest, since the non-contaminated material can be transferred into the normal reprocessing cycle. In the frame of a project concerning the innovative cutting of massive reinforced concrete structures an all-purpose system for spatially restricted and defined cutting of strongly reinforced concrete including packaging suitable for final disposal was developed. Due to the remote handling of the machine the dose rate for personnel can be reduced significantly. Main part of the system is the tool that can cut highly reinforced concrete without system or component replacement. The authors describe preliminary tests of these tools, further experiments and process optimization are necessary before the tools can be integrated into the new system.

  18. Structural behaviour of concrete poles used in electric's power distribution network

    Directory of Open Access Journals (Sweden)

    Mehran Zeynalian

    2017-12-01

    Full Text Available Based on a preliminary study on regional electric companies, it is shown that there is no precise structural design on the concrete poles. This leads to uneconomical and overestimated networks’ components. Therefore, this study was aimed to investigate the lateral performance of the concrete poles which are employed in electric’s power distribution network. This paper presents a numerical study on structural performance of 12 m concrete poles used in electric’s power distribution network using Abaqus software. A sensitivity study for mesh size is carried out and concrete damaged plasticity has been employed. The results show that relatively coarse mesh (average in damaged concrete method gives more reliable result. Some experimental tests based on the Iranian standards were performed in order to make a bench mark for numerical output. Comparison between numerical and experimental results indicates a good agreement between the results. The outcomes also suggest that while the applied lateral load is less than around 400 kg which is assumed as the nominal resistance of the pole, no transverse crack occurs. Based on both experimental and numerical results, one or two transverse cracks are reported when the applied force reaches up to 600 kg. The rate of cracks is amplified by increasing the applied force; and finally, the pole would lose its capacity when the load rises much more than 1200 kg. The study also shows that the poles are very weak when the load direction changes. Also, it can be concluded that the final strength of the pole is higher than what the standards recommend. Finally, seismic behavior factor of the poles around both main axes are evaluated. The estimated seismic resistance factor for the concrete poles indicates that the prescribed R factor for such structure is relatively low; and can be improved at least 20%.

  19. Tensile strength of structural concrete repaired with hi-bond polymer modified mortar

    International Nuclear Information System (INIS)

    Khaskheli, G.B.

    2009-01-01

    Repair of cracks in concrete is often required to save the concrete structures. Appearance of crack in concrete is bound with the tensile strength of concrete. Recently a cement factory in Sindh has launched a HBPMM (Hi-Bond Polymer Modified Mortar) that can be used as a concrete repairing material instead of normal OPC (Ordinary Portland Cement). It is needed to investigate its performance compared to that of OPC. In total 144 concrete cylinders (150x300mm) having strength of 3000 and 5000 psi were manufactured. These cylinders were then splitted by using a UTM (Universal Testing Machine) and their actual tensile strength was obtained. The concrete cylinders were then repaired with different applications of HBPMM and arc. The repaired samples were again splitted at different curing ages (3, 7 and 28 days) and their tensile strength after repair was obtained. The results show that the concrete cylinders repaired with HBPMM could give better tensile strength than that repaired with arc, the tensile strength of concrete cylinders after repair could increase with increase in the application of repairing material i.e. HBPMM or OPC and with curing time, and HBPMM could remain more effective in case of rich mix concrete than that of normal mix concrete. (author)

  20. Investigation of Mechanism of Action of Modifying Admixtures Based on Products of Petrochemical Synthesis on Concrete Structure

    Science.gov (United States)

    Tukhareli, V. D.; Tukhareli, A. V.; Cherednichenko, T. F.

    2017-11-01

    The creation of composite materials for generating structural elements with the desired properties has always been and still remains relevant. The basis of a modern concrete technology is the creation of a high-quality artificial stone characterized by low defectiveness and structure stability. Improving the quality of concrete compositions can be achieved by using chemical admixtures from local raw materials which is a very promising task of modern materials’ science for creation of a new generation of concretes. The new generation concretes are high-tech, high-quality, multicomponent concrete mixes and compositions with admixtures that preserve the required properties in service under all operating conditions. The growing complexity of concrete caused by systemic effects that allow you to control the structure formation at all stages of the technology ensures the obtaining of composites with "directional" quality, compositions, structure and properties. The possibility to use the organic fraction of oil refining as a multifunctional hydrophobic-plasticizing admixture in the effective cement concrete is examined.

  1. LEO 1.0. An assistant software for maintenance of corroded reinforced concrete structures

    International Nuclear Information System (INIS)

    Gerard, B.; Petre-Lazar, I.

    1998-04-01

    The reinforced concrete structures capacity to fulfill the users requirements decreases in time and a constant preoccupation for the maintenance is required at EDF. In order to ease up the site investigations, a computer program - LEO - is developed. Its general layout is proposed in this document. LEO 1.0 is developed to be applied to corroded reinforced concrete structures. A simplified model based on the main mechanisms of the steel corrosion in concrete has been developed. It can quantify the influence of the reinforcement corrosion on the structure performances. A probabilistic calculus which takes into account the variability of the input data (material properties, environment, etc.) was also performed using PROBAN computer code. This type of analysis quantifies the time evolution of the structure (incubation, initiation, propagation, collapse). (author)

  2. New Surface-Treatment Technique of Concrete Structures Using Crack Repair Stick with Healing Ingredients.

    Science.gov (United States)

    Ahn, Tae-Ho; Kim, Hong-Gi; Ryou, Jae-Suk

    2016-08-04

    This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C 12 A₇), a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test) were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM) analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency.

  3. Experimental investigation on the threshold chloride concentration for corrosion initiation in reinforced concrete structures

    International Nuclear Information System (INIS)

    Byung Hwan Oh; Seung Yup Jang

    2005-01-01

    The corrosion of steel reinforcements in concrete is of great importance in the view of safety and durability of reinforced concrete structures. This study is focused on the corrosion behavior of steel bars induced by internal chlorides in concrete. The main objective of this study is to determine the threshold chloride concentration causing depassivation and active corrosion of steel reinforcement in concrete. To examine the threshold concentration of chloride ion, the half-cell potential, the chemical composition of extracted pore solutions of concrete and the extent of corroded area of the specimens were measured. Major test variables include the added amount of chlorides in concrete, type of binder, and water-to-binder ratios. From the present comprehensive test results, the factors influencing threshold chloride concentration are investigated, and the rational ranges of threshold chloride concentration causing active corrosion of steels are proposed. The present study provides the realistic chloride limit for corrosion initiation of reinforced concrete structures, which can be used efficiently in the future technical specification. (authors)

  4. Storage of unirradiated fuel in borated concrete at the Savannah River Plant

    International Nuclear Information System (INIS)

    Honkonen, D.L.

    1979-06-01

    At the Savannah River Plant (SRP), more than 3000 enriched uranium fuel elements can be stored in horizontal holes in borated concrete racks. This method of storage was selected. This paper describes the largest of these racks and the reactivity calculations and measurements which confirmed that SRP fuel may be safely stored in them

  5. CONCRETE STRUCTURES' QUALITY CONTROL IN PRACTICE

    OpenAIRE

    Dolaček-Alduk, Zlata; Blanda, Miroslav

    2011-01-01

    The Croatian civil engineering is characterized by a lack of systematic approach to planning, control and quality assurance in all phases of project realization. The results obtained in establishing the quality management system in some segments of civil engineering production represent initial trends in solving this problem. Benefits are of two types: the achievement of quality for the contractor and obtaining that quaity is being achieved for clients. Execution of concrete structures is a c...

  6. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Jun Hee [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

  7. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    International Nuclear Information System (INIS)

    Choun, Young Sun; Park, Jun Hee

    2015-01-01

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers

  8. Material model for non-linear finite element analyses of large concrete structures

    NARCIS (Netherlands)

    Engen, Morten; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik; Beushausen, H.

    2016-01-01

    A fully triaxial material model for concrete was implemented in a commercial finite element code. The only required input parameter was the cylinder compressive strength. The material model was suitable for non-linear finite element analyses of large concrete structures. The importance of including

  9. Application of the self-diagnosis composite into concrete structure

    Science.gov (United States)

    Matsubara, Hideaki; Shin, Soon-Gi; Okuhara, Yoshiki; Nomura, Hiroshi; Yanagida, Hiroaki

    2001-04-01

    The function and performance of the self-diagnosis composites embedded in mortar/concrete blocks and concrete piles were investigated by bending tests and electrical resistance measurements. Carbon powder (CP) and carbon fiber (CF) were introduced in glass fiber reinforced plastics composites to obtain electrical conductivity. The CP composite has commonly good performances in various bending tests of block and pile specimens, comparing to the CF composite. The electrical resistance of the CP composite increases in a small strain to response remarkably micro-crack formation at about 200 (mu) strain and to detect well to smaller deformations before the crack formation. The CP composite possesses a continuous resistance change up to a large strain level near the final fracture of concrete structures reinforced by steel bars. The cyclic bending tests showed that the micro crack closed at unloading state was able to be evaluated from the measurement of residual resistance. It has been concluded that the self- diagnosis composite is fairly useful for the measurement of damage and fracture in concrete blocks and piles.

  10. Loading functions generated by solid explosive detonations inside concrete containment structures

    International Nuclear Information System (INIS)

    Freund, H.W.; Schumann, S.; Rischbieter, F.; Schmitz, C.

    1989-01-01

    Partial dismantling of concrete structures by controlled blasting is being considered for nuclear power reactor decommissioning /1,2/. Quantitative prediction of both the desired destructive effects and the side effects caused by the dynamic load is based on knowledge of the time dependent forces acting on the structure, availability of data abut the dynamic material properties, realistic structural models. This work describes investigations performed to obtain time dependent forces for the case where solid explosive charges embedded into concrete are being detonated. The resulting multi component loading function is shown to constitute a set of input data for pre-test safety calculations of the building vibrational response

  11. Applications of fiber optic sensors in concrete structural health monitoring

    Science.gov (United States)

    Dai, Jingyun; Zhang, Wentao; Sun, Baochen; Du, Yanliang

    2007-11-01

    The research of fiber optic extrinsic Fabry-Perot interferometer (EFPI) sensors and their applications in concrete structural health monitoring are presented in this paper. Different types of fiber optic EFPI sensors are designed and fabricated. Experiments are carried out to test the performance of the sensors. The results show that the sensors have good linearity and stability. The applications of the fiber optic EFPI sensors in concrete structural health monitoring are also introduced. Ten fiber optic sensors are embedded into one section of the Liaohe Bridge in Qinghuangdao-Shenyang Railway. Field test demonstrates that the results of fiber optic sensors agree well with conventional strain gauges.

  12. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures.

    Science.gov (United States)

    Zhan, Yijian; Meschke, Günther

    2017-07-08

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.

  13. Condition Indicators for Inspection Planning of Concrete Structures

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Sørensen, John Dalsgaard

    2002-01-01

    Based on previous work by the authors a Bayesian formulation of condition indicators is developed further whereby in conjunction with a systems modelling of concrete structures the experience and expertise of the inspection personnel may be fully utilized. It is shown how the predicted evolution ...

  14. Measurement of reinforcement corrosion in concrete structures. Betonirakenteiden raudoituksen korroosion tutkiminen

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, A

    1992-03-01

    Ageing and aggressive enviromental conditions of concrete structures will result in deterioration of concrete and corrosion of steel in concrete. Corrosion of steel will in time result in the end of the service life or expensive renovations, unless corrosion of steel is noticed and renovated in time. Corrosion of steel in concrete can be found out by the present corrosion measurement methods, so that renovation can be started in right time. The report presents mainly on the basis of the literature references the following corrosion measurement methods: polarisation resistance, AC-impedance, electrical resistance probe, electrochemical noice and half-cell potential mapping. The half-cell potential mapping will be presented more precisely than the other corrosion measurement methods, for the potential mapping is the most used method. Concrete and Soils Laboratory of Imatran Voima Oy uses in the measurement of reinforcement corrosion the English, eight channel potential measuring equipment.

  15. Measurement of reinforcement corrosion in concrete structures; Betonirakenteiden raudoituksen korroosion tutkiminen

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, A

    1992-03-01

    Ageing and aggressive enviromental conditions of concrete structures will result in deterioration of concrete and corrosion of steel in concrete. Corrosion of steel will in time result in the end of the service life or expensive renovations, unless corrosion of steel is noticed and renovated in time. Corrosion of steel in concrete can be found out by the present corrosion measurement methods, so that renovation can be started in right time. The report presents mainly on the basis of the literature references the following corrosion measurement methods: polarisation resistance, AC-impedance, electrical resistance probe, electrochemical noice and half-cell potential mapping. The half-cell potential mapping will be presented more precisely than the other corrosion measurement methods, for the potential mapping is the most used method. Concrete and Soils Laboratory of Imatran Voima Oy uses in the measurement of reinforcement corrosion the English, eight channel potential measuring equipment.

  16. Structural integrity analysis of an Ignalina nuclear power plant building subjected to an airplane crash

    International Nuclear Information System (INIS)

    Dundulis, Gintautas; Kulak, Ronald F.; Marchertas, Algirdas; Uspuras, Eugenijus

    2007-01-01

    Recent terrorist attacks using commandeered commercial airliners on civil structures have raised the issue of the ability of nuclear power plants to survive the consequences of an airliner crash. The structural integrity analysis due to the effects of an aircraft crash on an Ignalina nuclear power plant (INPP) accident localization system (ALS) building is the subject of this paper. A combination of the finite element method and empirical relationships were used for the analysis. A global structural integrity analysis was performed for a portion of the ALS building using the dynamic loading from an aircraft crash impact model. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula. The results from the crash analysis of a twin engine commercial aircraft show that the impacted reinforced concrete wall of the ALS building will not have through-the-wall concrete failure, and the reinforcement will not fail. Strain-rate effects were found to delay the onset of cracking. Therefore, the structural integrity of the impacted wall of the INPP ALS building will be maintained during the crash event studied

  17. Structural integrity analysis of an Ignalina nuclear power plant building subjected to an airplane crash

    Energy Technology Data Exchange (ETDEWEB)

    Dundulis, Gintautas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, 3 Breslaujos, 44403 Kaunas-35 (Lithuania)]. E-mail: gintas@isag.lei.lt; Kulak, Ronald F. [RFK Engineering Mechanics Consultants (United States); Marchertas, Algirdas [Northern Illinois University (United States); Uspuras, Eugenijus [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, 3 Breslaujos, 44403 Kaunas-35 (Lithuania)

    2007-08-15

    Recent terrorist attacks using commandeered commercial airliners on civil structures have raised the issue of the ability of nuclear power plants to survive the consequences of an airliner crash. The structural integrity analysis due to the effects of an aircraft crash on an Ignalina nuclear power plant (INPP) accident localization system (ALS) building is the subject of this paper. A combination of the finite element method and empirical relationships were used for the analysis. A global structural integrity analysis was performed for a portion of the ALS building using the dynamic loading from an aircraft crash impact model. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula. The results from the crash analysis of a twin engine commercial aircraft show that the impacted reinforced concrete wall of the ALS building will not have through-the-wall concrete failure, and the reinforcement will not fail. Strain-rate effects were found to delay the onset of cracking. Therefore, the structural integrity of the impacted wall of the INPP ALS building will be maintained during the crash event studied.

  18. Rational and Safe Design of Concrete Transportation Structures for Size Effect and Multi-Decade Sustainability

    Science.gov (United States)

    2012-10-01

    The overall goal of this project was to improve the safety and sustainability in the design of large : prestressed concrete bridges and other transportation structures. The safety of large concrete : structures, including bridges, has been insufficie...

  19. Reliability-based inspection of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Pandey, M.D.

    1996-03-01

    A study was undertaken to develop a reliability-based approach to the planning of inspection programs for prestressed concrete containment structures. The main function of the prestressing system is to ensure the leak integrity of the containment by maintaining a compressive state of stress under the tensile forces which arise in a hypothesized loss of coolant accident. Prestressing force losses (due to creep and shrinkage, stress relaxation or tendon corrosion) can lead to tensile stresses under accident pressure, resulting in loss of containment leak integrity due to concrete cracking and tensile yielding of the non-prestressed reinforcement. Therefore, the evaluation of prestressing inspection programs was based on their effectiveness in maintaining an acceptable reliability level with respect to a limit state representing yeilding of non-prestressed reinforcement. An annual target reliability of 10 -4 was used for this limit state. As specified in CSA-N287.7, the evaluation of prestressing systems for containment structures is based on the results of lift-off tests to determine the prestressing force. For unbonded systems the tests are carried out on a randomly selected sample from each tendon group in the structure. For bonded systems, the test is carried out on an unbonded test beam that matches the section geometry and material properties of the containment structure. It was found that flexural testing is useful in updating the probability of concrete cracking under accident pressure. For unbonded systems, the analysis indicated that the sample size recommended by the CSA Standard (4% of the tendon population) is adequate. The CSA recommendation for a five year inspection interval is conservative unless severe degradation of the prestressing system, characterized by a high prestressing loss rate (>3%) and a large coefficient of variation of the measured prestressing force (>15%), is observed

  20. Application of expert systems in damage assessment of reinforced concrete structures

    International Nuclear Information System (INIS)

    Fazel Zarandi, M. H.; Sobhani, J.

    2003-01-01

    Expert systems are receiving great attentions in construction industry to support decision making processes in diagnostics, design, repair and rehabilitation of the structures. Although several expert systems have been examined in engineering since the 1970's, their applications in construction industry are rate. This was largely due to the lack of expert system tools available to represent the domain knowledge. Lack of flexibility, applicability, and robustness of the classical models, have forced the scientists to discover the ability of the expert systems in problem solving of civil engineering. This paper present an expert system for diagnosis the deterioration of concrete structures. This expert system emphasizes on cracking distress in reinforced concrete elements. A case study has been presented to examine and evaluate the proposed expert system. The system demonstrates a straightforward method for diagnosing the cause of reinforced concrete elements cracking