WorldWideScience

Sample records for plant concept combining

  1. Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2014-07-01

    Full Text Available We present a thermo-economic analysis for a low-temperature Organic Rankine Cycle (ORC in a combined heat and power generation (CHP case. For the hybrid power plant, thermal energy input is provided by a geothermal resource coupled with the exhaust gases of a biogas engine. A comparison to alternative geothermal CHP concepts is performed by considering variable parameters like ORC working fluid, supply temperature of the heating network or geothermal water temperature. Second law efficiency as well as economic parameters show that hybrid power plants are more efficient compared to conventional CHP concepts or separate use of the energy sources.

  2. The future of integrated coal gasification combined cycle power plants

    International Nuclear Information System (INIS)

    Mueller, R.; Termuehlen, H.

    1991-01-01

    This paper examines the future of integrated coal gasification combined cycle (IGCC) power plants as affected by various technical, economical and environmental trends in power generation. The topics of the paper include a description of natural gas-fired combined cycle power plants, IGCC plants, coal gasifier concepts, integration of gasifiers into combined cycle power plants, efficiency, environmental impacts, co-products of IGCC power plants, economics of IGCC power plants, and a review of IGCC power plant projects

  3. Current fusion power plant design concepts

    International Nuclear Information System (INIS)

    Gore, B.F.; Murphy, E.S.

    1976-09-01

    Nine current U.S. designs for fusion power plants are described in this document. Summary tabulations include a tenth concept, for which the design document was unavailable during preparation of the descriptions. The information contained in the descriptions was used to define an envelope of fusion power plant characteristics which formed the basis for definition of reference first commercial fusion power plant design. A brief prose summary of primary plant features introduces each of the descriptions contained in the body of this document. In addition, summary tables are presented. These tables summarize in side-by-side fashion, plant parameters, processes, combinations of materials used, requirements for construction materials, requirements for replacement materials during operation, and production of wastes

  4. Maximisation of Combined Cycle Power Plant Efficiency

    Directory of Open Access Journals (Sweden)

    Janusz Kotowicz

    2015-12-01

    Full Text Available The paper presents concepts for increasing the efficiency of a modern combined cycle power plant. Improvement of gas turbine performance indicators as well as recovering heat from the air cooling the gas turbine’s flow system enable reaching gross electrical efficiencies of around 65%. Analyses for a wide range of compressor pressure ratios were performed. Operating characteristics were developed for the analysed combined cycle plant, for different types of open air cooling arrangements of the gas turbine’s expander: convective, transpiration and film.

  5. Optimised heat recovery steam generators for integrated solar combined cycle plants

    Science.gov (United States)

    Peterseim, Jürgen H.; Huschka, Karsten

    2017-06-01

    The cost of concentrating solar power (CSP) plants is decreasing but, due to the cost differences and the currently limited value of energy storage, implementation of new facilities is still slow compared to photovoltaic systems. One recognized option to lower cost instantly is the hybridization of CSP with other energy sources, such as natural gas or biomass. Various references exist for the combination of CSP with natural gas in combined cycle plants, also known as Integrated Solar Combined Cycle (ISCC) plants. One problem with current ISCC concepts is the so called ISCC crisis, which occurs when CSP is not contributing and cycle efficiency falls below efficiency levels of solely natural gas only fired combined cycle plants. This paper analyses current ISCC concepts and compares them with two optimised designs. The comparison is based on a Kuraymat type ISCC plant and shows that cycle optimization enables a net capacity increase of 1.4% and additional daily generation of up to 7.9%. The specific investment of the optimised Integrated Solar Combined Cycle plant results in a 0.4% cost increase, which is below the additional net capacity and daily generation increase.

  6. Smart grids : combination of 'Virtual Power Plant'-concept and 'smart network'-design

    NARCIS (Netherlands)

    El Bakari, K.; Kling, W.L.

    2010-01-01

    The concept of virtual power plant (VPP) offers a solution to control and manage higher level of dispersed generation in nowadays passive distribution network. Under certain conditions the VPP is able to displace power and energy which implies more control on the energy flow in the networks. To

  7. Light water ultra-safe plant concept

    International Nuclear Information System (INIS)

    Klevans, E.

    1989-01-01

    Since the accident at Three Mile Island (TMI), Penn State Nuclear Engineering Department Faculty and Staff have considered various methods to improve already safe reactor designs and public perception of the safety of Nuclear Power. During 1987 and 1988, the Department of Energy provided funds to the Nuclear Engineering Department at Penn State to investigate a plant reconfiguration originated by M.A. Schultz called ''The Light Water Ultra-Safe Plant Concept''. This report presents a final summary of the project with references to several masters' theses and addendum reports for further detail. The two year research effort included design verification with detailed computer simulation of: (a) normal operation characteristics of the unique pressurizing concept, (b) severe transients without loss of coolant, (c) combined primary and secondary system modeling, and (d) small break and large break loss of coolant accidents. Other studies included safety analysis, low power density core design, and control system design to greatly simplify the control room and required operator responses to plant upset conditions. The overall conclusion is that a reconfigured pressurized water reactor can achieve real and perceived safety improvements. Additionally, control system research to produce greatly simplified control rooms and operator requirements should be continued in future projects

  8. Concept of off-gas purification in reprocessing plants

    International Nuclear Information System (INIS)

    Henrich, E.; von Ammon, R.

    1986-01-01

    Concepts and individual processes for the off-gas purification in reprocessing plants are described which are suited to achieve a better retention of the gaseous and volatile radionuclides 129 I, 85 Kr, 14 C, and tritium. Improved and new process steps have been developed to the cold pilot plant scale. Essential individual process steps are an efficient iodine desorption from the dissolver solution, improved and new off-gas scrubs with nitric acid, a cryogenic as well as a selective absorption process for rare gas recovery plus the required prepurification steps and a process for the continuous and pressure-free fixation and storage of krypton in a metal matrix. Individual facilities have been selected and combined to investigate integrated dissolver off-gas systems. Advanced concepts based on a process using low flows and loads of all off-gas streams including the cell ventilation off-gas are briefly discussed

  9. Enhancing Elementary Pre-service Teachers' Plant Processes Conceptions

    Science.gov (United States)

    Thompson, Stephen L.; Lotter, Christine; Fann, Xumei; Taylor, Laurie

    2016-06-01

    Researchers examined how an inquiry-based instructional treatment emphasizing interrelated plant processes influenced 210 elementary pre-service teachers' (PTs) conceptions of three plant processes, photosynthesis, cellular respiration, and transpiration, and the interrelated nature of these processes. The instructional treatment required PTs to predict the fate of a healthy plant in a sealed terrarium (Plant-in-a-Jar), justify their predictions, observe the plant over a 5-week period, and complete guided inquiry activities centered on one of the targeted plant processes each week. Data sources included PTs' pre- and post-predictions with accompanying justifications, course artifacts such as weekly terrarium observations and science journal entries, and group models of the interrelated plant processes occurring within the sealed terraria. A subset of 33 volunteer PTs also completed interviews the week the Plant-in-a-Jar scenario was introduced and approximately 4 months after the instructional intervention ended. Pre- and post-predictions from all PTs as well as interview responses from the subgroup of PTs, were coded into categories based on key plant processes emphasized in the Next Generation Science Standards. Study findings revealed that PTs developed more accurate conceptions of plant processes and their interrelated nature as a result of the instructional intervention. Primary patterns of change in PTs' plant process conceptions included development of more accurate conceptions of how water is used by plants, more accurate conceptions of photosynthesis features, and more accurate conceptions of photosynthesis and cellular respiration as transformative processes.

  10. Evaluation of air cleaning system concepts for emergency use in LMFBR plants

    International Nuclear Information System (INIS)

    Hilliard, R.K.; McCormack, J.D.; Postma, A.K.

    1976-12-01

    Nineteen different air cleaning concepts are arranged into twenty-four systems and evaluated for use as accident mitigating systems in LMFBR plants. Both single, low-leakage containment plants and once-through operation applicable to containment/confinement plants are considered. Plant characteristics affecting air cleaning requirements are defined for 1000 MW(e) plants and a sodium and radiological release term is postulated. The accident conditions under which the emergency air cleaning system (EACS) must function is established by use of SOFIRE-II and HAA-3B computer codes. Criteria are developed for evaluating the various systems and for assigning comparative ratings. The numerical ratings are combined with information on cost and development potential to arrive at recommendations for the most promising systems. The conclusion is made that reliable and effective systems are feasible for use as engineered safety features for LMFBR plants, but that development effort is required for all the air cleaning concepts evaluated

  11. FANP concept for plant life management and recent experience

    International Nuclear Information System (INIS)

    Nopper, H.; Daeuwel, W.; Waas, U.

    2002-01-01

    The deregulation of the power generation industry has resulted in increased competitive pressure and is forcing operators to improve plant operating economy while maintaining high levels of plant safety. A key factor to meet this challenge is to apply a comprehensive plant life management (PLIM) approach. The PLIM strategy addresses all relevant ageing and degradation mechanisms, the safety concept and the plant component documentation. In addition, it affects the management of plant personnel, consumables, operations management systems and administrative control procedures. Framatome ANP GmbH has developed an integrated PLIM concept and associated software tools applicable for both new and operating plants. The concept includes procedures and strategies regarding mechanical, electrical and I and C components as well as civil structures. The majority of e.g. mechanical components in a well-kept power plant will experience a technical service life, which is far above the intended design life. In most cases, only a small percentage of mechanical components is subject to significant degradation which may effect the integrity or the function of the component. The intention of an effective PLIM concept is to select safety and availability relevant components, were relevant degradation can not be ruled out. The PLIM concept utilizes a combination of strategies to identify components in a power plant: which are relevant to life management. An integrated safety review identifies components essential to safety, providing a classification of the associated safety levels. Assessment concerning the availability relevance of components is conduced. Components identified to be important to safety and availability are subject to a screening process for further grouping with respect to degradation potential. The selection process provides reasonable prioritisation of ageing relevant components and ensures that efforts are devoted to elements, where ageing is a relevant concern

  12. Technical and economical analysis of concepts for using the heat of biogas plants in rural areas

    International Nuclear Information System (INIS)

    Kaths, Friederike Annette

    2012-08-01

    Since the implementation of the EEG in Germany the biogas production becomes an independent branch of industry in the agriculture. At this time more than 90 percent of the biogas plants work with co-generation plant for heat and power with a thermal engine efficiencies of more than 50 percent. Because of the location in the rural area heat costumers with a continuous demand of heat over the whole year are rare. This research had a closer look how to use the heat of biogas production efficiently and also generating profit. The aim of the study was to use heat over the whole year, a profitable heat concept without counting the KWK-bonus and an added value on the farm. During the study the following concepts were analyzed: asparagus production using soil heating, drying equipment for different products, the production of fish in aquaculture, the poultry production and the heated production of tomatoes. The results showed different concepts using heat of biogas plants as efficient for farmers. However with only one concept the aims - to use the heat over the whole year, generating a profitable heat concept without counting the KWK-bonus, add an value on the farm - mostly can not be achieved. The combination of different heat concepts is necessary. In this analysis the poultry production in combination with the dryer can be considered as the most efficient concept. Bearing in mind the benefit which can be generated with a heat concept as well as the higher income and the higher technical efficiency of biogas plants operators should implement an individual concept for their heat.

  13. Concept study for a combined reinforced concrete containment

    International Nuclear Information System (INIS)

    Liersch, G.; Peter, U.; Danisch, R.; Freiman, M.; Hummer, M.; Roettinger, H.; Hansen, H.

    1994-01-01

    A variety of different steel and concrete containment types had been designed and constructed in the past. Most of the concrete containments had been prestressed offering the advantage of small displacements and certain leak tightness of the concrete itself. However, considerable stresses in concrete as well as in the tendons have to be maintained during the whole lifetime of the plant in order to guarantee the required prestressing. The long-time behaviour and the ductility in case of beyond design load cases must be verified. In contrary to a prestressed containment a reinforced containment will only significantly be loaded during test conditions or when needed in case of accidents. It offers additional margins which can be used especially for dynamic loads like impacts or for beyond design considerations. The aim of this paper is to show the feasibility of a so-called combined containment which means capable to resist both - severe internal accidents and external hazards mainly the aircraft crash impact as considered in the design of nuclear power plants in Germany. The concept is a lined reinforced containment without prestressing. The mechanical resistance function is provided by the reinforced concrete and the leak tightness function will be taken by a so called composite liner made of non-metallic materials. Some results of tests performed at SIEMENS laboratories and at the University of Karlsruhe which show the capability of a composite liner to bridge over cracks at the concrete surface will be presented in the paper. The study shows that the combined reinforced concrete containment with a composite liner offers a robust concept with high flexibility with respect to load requirements, beyond design considerations and geometrical shaping (arrangement of openings, integration with adjacent structures). The concept may be further optimized by partial prestressing at areas of high concentration of stresses such as at transition zones or at disturbances around

  14. The utility of covariance of combining ability in plant breeding.

    Science.gov (United States)

    Arunachalam, V

    1976-11-01

    The definition of covariances of half- and full sibs, and hence that of variances of general and specific combining ability with regard to a quantitative character, is extended to take into account the respective covariances between a pair of characters. The interpretation of the dispersion and correlation matrices of general and specific combining ability is discussed by considering a set of single, three- and four-way crosses, made using diallel and line × tester mating systems in Pennisetum typhoides. The general implications of the concept of covariance of combining ability in plant breeding are discussed.

  15. Roles of Solar Power from Space for Europe - Space Exploration and Combinations with Terrestrial Solar Plant Concepts

    Science.gov (United States)

    Summerer, L.; Pipoli, T.; Galvez, A.; Ongaro, F.; Vasile, M.

    The paper presents the prospective roles of SPS concepts for Europe, shows the outcome of recent studies undertaken by ESA's Advanced Concepts Team (ACT) together with European industry and research centres and gives insight into planned activities. The main focus is on the assessment of the principal validity and economic viability of solar power from space concepts in the light of advances in alternative sustainable, clean and potentially abundant solar-based terrestrial concepts. The paper takes into account expected changes in the European energy system (e.g. gradual introduction of hydrogen as energy vector). Special emphasis is given to the possibilities of integrating space and terrestrial solar plants. The relative geographic proximity of areas in North Africa with high average solar irradiation to the European energy consumer market puts Europe in a special position regarding the integration of space and terrestrial solar power concepts. The paper presents a method to optimise such an integration, taking into account different possible orbital constellations, terrestrial locations, plant number and sizes as well as consumer profiles and extends the scope from the European-only to a multi continental approach including the fast growing Chinese electricity market. The work intends to contribute to the discussion on long-term options for the European commitment to worldwide CO2 emission reduction. Cleaner electricity generation and environmentally neutral transport fuels (e.g. solar generated hydrogen) might be two major tools in reaching this goal.

  16. The development and chemistry of high efficiency combined cycle plants

    International Nuclear Information System (INIS)

    Svoboda, Robert

    1999-01-01

    This paper presents a boiler concept based on the combination of a low-pressure drum-type boiler with high-pressure once-through boiler and the appropriate water/steam cycle. An all volatile treatment is used in the low-pressure boiler and oxygenated treatment for the once-through high pressure system. Impurity control is achieved by adapted system design and materials, high quality make-up, an appropriate cleanliness concept and clean-up procedures for a cold start. Cycle refreshing is realized by blowdown from the high-pressure water-separator. This concept utilizes simper and less equipment than traditional solutions, resulting in increased power plant reliability and less requirement on maintenance and on capital cost [it

  17. Framatome ANP GmbH concept of Plant Life Management (PLIM)

    International Nuclear Information System (INIS)

    Daeuwel, W.; Biemann, W.; Danisch, R.; Kastner, B.; Meyer, W.; Nopper, H.; Waas, U.; Warnken, L.

    2002-01-01

    The deregulation of the power generation industry has resulted in increased competitive pressure and is forcing operators to improve plant operating economy while maintaining high levels of plant safety. A key factor to meeting this challenge is to apply a comprehensive plant life management (PLIM) approach which addresses all relevant ageing and degradation mechanisms regarding the safety concept, plant component structures and documentation, plant personnel, consumables, operations management system and administrative controls. For this reason, Framatome ANP GmbH has developed an integrated PLIM concept applicable for both new and operating plants and focusing on the safety concept, plant component structures and documentation. (orig.)

  18. Blanket handling concepts for future fusion power plants

    International Nuclear Information System (INIS)

    Bogusch, E.; Gottfried, R.; Maisonnier, D.

    2003-01-01

    In the frame of the power plant conceptual studies (PPCS) launched by the European Commission, two main blanket handling concepts have been investigated with respect to engineering feasibility and the impact on the plant availability and on cost: the large module handling concept (LMHC) and the large sector handling concept (LSHC). The LMHC has been considered as the reference handling concept while the LSHC has been considered as an attractive alternative to the LMHC due to its potential of smaller replacement times and hence increasing the plant availability. Although no principle feasibility issue has been identified, a number of engineering issues have been highlighted for the LSHC that would require considerable efforts for their resolution. Since its availability of about 77% based on a replacement time for all the internals of about 4.2 months is slightly lower than for the LMHC, the LMHC remains the reference blanket replacement concept for a conceptual reactor

  19. The target plant concept-a history and brief overview

    Science.gov (United States)

    Thomas D. Landis

    2011-01-01

    The target plant concept originated with morphological classification of conifer nursery stock in the 1930s, and the concept was enhanced through physiological research and seedling testing towards the end of the century. Morphological grading standards such as shoot height, stem diameter, and root mass are the most common use of the target plant concept, and some...

  20. Concepts of plant health – reviewing and challenging the foundations of plant protection

    OpenAIRE

    Döring, Thomas; Pautasso, Marco; Finckh, Maria R.; Wolfe, Martin

    2012-01-01

    Plant health is a frequently used but ill-defined term. However, there is an extensive literature on general health definitions and health criteria in human medicine. Taking up ideas from these philosophical debates, concepts of plant health are reviewed and a framework developed to locate these concepts according to their position in several philosophical controversies. In particular, (i) the role of values in defining plant health in a naturalist versus a normativist approach; (ii) negative...

  1. The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration

    International Nuclear Information System (INIS)

    D’Alessandro, Bruno; D’Amico, Michele; Desideri, Umberto; Fantozzi, Francesco

    2013-01-01

    Highlights: ► IPRP technology development for distributed conversion of biomass and wastes. ► IPRP demonstrative unit combines a rotary kiln pyrolyzer to a 80 kWe microturbine. ► Main performances and critical issues are pointed out for different residual fuels. -- Abstract: The concept of integrated pyrolysis regenerated plant (IPRP) is based on a Gas Turbine (GT) fuelled by pyrogas produced in a rotary kiln slow pyrolysis reactor, where waste heat from GT is used to sustain the pyrolysis process. The IPRP plant provides a unique solution for microscale (below 250 kW) power plants, opening a new and competitive possibility for distributed biomass or wastes to energy conversion systems. The paper summarizes the state of art of the IPRP technology, from preliminary numerical simulation to pilot plant facility, including some new available data on pyrolysis gas from laboratory and pilot plants.

  2. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    International Nuclear Information System (INIS)

    1986-06-01

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant

  3. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-06-15

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant.

  4. Plant Control Concept for the Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Kim, S. O.

    2010-12-01

    A power plant is designed for incorporation into a utility's grid system and follows the load demand through the steam generator, intermediate heat exchanger(IHX), from the nuclear core. During the load-following transients, various plant parameters must be controlled to protect the reactor core and other components in the plant. The purpose of this report is to review design considerations to establish SFR plant control and to design plant control concepts. The governing equations and solution procedure of the computer code to calculate plant temperature conditions during the part-load operation was reviewed and 4 types of plant operation concepts were designed, and the results of the calculations were compared

  5. LNG plant combined with power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, I; Kikkawa, Y [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-06-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs.

  6. LNG plant combined with power plant

    International Nuclear Information System (INIS)

    Aoki, I.; Kikkawa, Y.

    1997-01-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs

  7. Improvement of operational efficiency based on fast startup plant concepts

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Harald; Meinecke, Gero; Ohresser, Sylvia; Pickard, Andreas

    2010-09-15

    One of the major global challenges of the present time is the reduction of CO2 emissions. Provisions for integration of a CO2 capture plant are already required today in new power plant construction projects in order to enable current plants to also benefit from the possibilities of carbon capture systems to be developed in the future. These provisions for integration should account for the fact that the scrubbing processes are still in the optimization phase. Requisite process parameters may still change in the future. In the development of a plant interface, the paper describes a concept developed by Siemens which ensures maximum flexibility with simultaneous optimization of the plant for the capture process. Emphasis was placed on the following points in the development of this interface and the associated connection concepts: Maximum plant efficiency before and after modification; Maximum flexibility with regard to future process parameters; Optimization of customer investment cash flow; and, Applicability also to existing plants. According to the paper, Siemens can offer a concept which enables future conversion in accordance with the specified criteria. This concept requires no compromises with regard to plant efficiency in process optimization for either current power plant operation without carbon capture or for future operation with carbon capture. The concept also enables retrofitting of existing plants which are not yet capture-ready. However, retrofitting of power plants which are not prepared for operation with carbon capture is considerably more elaborate in most cases, as corridors must frequently still be cleared for the connecting piping.

  8. Machine concept optimization for pumped-storage plants through combined dispatch simulation for wholesale and reserve markets

    International Nuclear Information System (INIS)

    Engels, Klaus; Harasta, Michaela; Braitsch, Werner; Moser, Albert; Schaefer, Andreas

    2012-01-01

    In Germany's energy markets of today, pumped-storage power plants offer excellent business opportunities due to their outstanding flexibility. However, the energy-economic simulation of pumped-storage plants, which is necessary to base the investment decision on a sound business case, is a highly complex matter since the plant's capacity must be optimized in a given plant portfolio and between two relevant markets: the scheduled wholesale and the reserve market. This mathematical optimization problem becomes even more complex when the question is raised as to which type of machine should be used for a pumped-storage new build option. For the first time, it has been proven possible to simulate the optimum dispatch of different pumped-storage machine concepts within two relevant markets - the scheduled wholesale and the reserve market - thereby greatly supporting the investment decision process. The methodology and findings of a cooperation study between E.ON and RWTH Aachen University in respect of the German pumped-storage extension project 'Waldeck 2+' are described, showing the latest development in dispatch simulation for generation portfolios. (authors)

  9. Modern combined cycle power plant utilizing the GT11N2

    International Nuclear Information System (INIS)

    Goodwin, J.C.

    1992-01-01

    The requirement imposed on modern power plants are increasingly demanding. The limits of: efficiency; environmental sensitivity; reliability and availability; are constantly being pushed. Today's state of the art combined cycle power plants are positioned well to meet these challenges. This paper reports that these objectives can be achieved through the selection of the proper gas turbine generator in an optimized cycle concept. A balanced approach to the plant design is required. It must not sacrifice any one of these requirements, in order to achieve the others. They achieve their fullest potential when firing a clean fuel, natural gas. However, fuel oil, both light (No. 2) and heavy (No. 6), can be utilized but some efficiency and environmental impact will have to be sacrificed

  10. CONCEPT-5 user's manual. [Power plant costs

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R. II

    1979-01-01

    The CONCEPT computer code package was developed to provide conceptual capital cost estimates for nuclear-fueled and fossil-fired power plants. Cost estimates can be made as a function of plant type, size, location, and date of initial operation. The output includes a detailed breakdown of the estimate into direct and indirect costs similar to the accounting system described in document NUS--531. Cost models are currently provided in CONCEPT 5 for single- and multiunit pressurized-water reactors, boiling-water reactors, and cost-fired plants with and without flue gas desulfurization equipment.

  11. The Swr 1000: a nuclear power plant concept with boiling water reactor for maximum safety and economy of operation

    International Nuclear Information System (INIS)

    Brettschuh, W.

    2001-01-01

    The SWR 1000 is a design concept for a light water reactor nuclear power plant that meets all requirements regarding plant safety, economic efficiency and environ-mental friendliness. As a result of the plant's safety concept, the occurrence of core damage can, for all practical intents and purposes, be ruled out. If a core melt accident should nevertheless occur, the molten core can be retained inside the RPV, thus ensuring that all consequences of such an accident remain restricted to the plant itself. The power generating costs of the SWR 1000 are lower than with those of coal-fired and combined-cycle power plants. Power generation using nuclear energy does not release carbon dioxide to the environment, thus meeting the need for sustainable protection of our global climate. (author)

  12. Advanced steam power plant concepts with optimized life-cycle costs: A new approach for maximum customer benefit

    Energy Technology Data Exchange (ETDEWEB)

    Seiter, C.

    1998-07-01

    The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination with shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.

  13. Overall plant concept for a tank-type fast reactor

    International Nuclear Information System (INIS)

    Yamaki, Hideo; Davies, S.M.; Goodman, L.

    1984-01-01

    Japanese nuclear industries are expressing interest in the merits of the tank-type FBR as a large plant (demonstration) after JOYO (experimental, in operation) and MONJU (prototype, under construction). In response to this growing interest in a tank-type FBR demonstration plant, Hitachi has initiated a conceptual study of a 1000 MWe tank plant concept in collaboration with GE and Bechtel. Key objectives of this study have been: to select reliable and competitive tank plant concepts, with emphases on a seismic-resistant and compact tank reactor system;to select reliable shutdown heat removal system;and to identify R and D items needed for early 1990s construction. Design goals were defined as follows: capital costs must be less than twice, and as close as practical to 1.5 those of equivalent LWR plants;earthquake resistant structures to meet stringent Japanese seismic conditions must be as simple and reliable as practical;safety must be maintained at LWR-equivalent risks;and R and D needs must be limited to minimum cost for the limited time allowed. This paper summarizes the overall plant concepts with some selected topics, whereas detailed descriptions of the reactor assembly and the layout design are found in separate papers

  14. Enhancing Elementary Pre-Service Teachers' Plant Processes Conceptions

    Science.gov (United States)

    Thompson, Stephen L.; Lotter, Christine; Fann, Xumei; Taylor, Laurie

    2016-01-01

    Researchers examined how an inquiry-based instructional treatment emphasizing interrelated plant processes influenced 210 elementary pre-service teachers' (PTs) conceptions of three plant processes, photosynthesis, cellular respiration, and transpiration, and the interrelated nature of these processes. The instructional treatment required PTs to…

  15. Study on plant concept for gas cooled fast reactor

    International Nuclear Information System (INIS)

    Moribe, Takeshi; Kubo, Shigenobu; Saigusa, Toshiie; Konomura, Mamoru

    2003-05-01

    In 'Feasibility Study on Commercialized Fast Reactor Cycle System', technological options including various coolant (sodium, heavy metal, gas, water, etc.), fuel type (MOX, metal, nitride) and output power are considered and classified, and commercialized FBR that have economical cost equal to LWR are pursued. In conceptual study on gas cooled FBR in FY 2002, to identify the prospect of the technical materialization of the helium cooled FBR using coated particle fuel which is an attractive concept extracted in the year of FY2001, the preliminary conceptual design of the core and entire plant was performed. This report summarizes the results of the plant design study in FY2002. The results of study is as follows. 1) For the passive core shutdown equipment, the curie point magnet type self-actuated device was selected and the device concept was set up. 2) For the reactor block, the concept of the core supporting structure, insulators and liners was set up. For the material of the heat resistant structure, SiC was selected as a candidate. 3) For the seismic design of the plant, it was identified that a design concept with three-dimensional base isolation could be feasible taking the severe seismic condition into account. 4) For the core catcher, an estimation of possible event sequences under severe core damage condition was made. A core catcher concept which may suit the estimation was proposed. 5) The construction cost was roughly estimated based on the amount of materials and its dependency on the plant output power was evaluated. The value for a small sized plant exceeds the target construction cost about 20%. (author)

  16. Combined heat and power plants with parallel tandem steam turbines; Smaaskalig kraftvaerme med parallellkopplade tandemturbiner

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, Pontus; Norstroem, Urban; Pettersson, Camilla; Oesterlin, Erik

    2004-12-01

    We investigate the technical and economical conditions for a concept with parallel coupled tandem turbines in small scale combined heat and power plants fired with bio-fuel and waste. Performance and heat production costs at varying electricity prices for the concept with two smaller tandem coupled steam turbines has been compared to the traditional concept with one single multi-staged turbine. Three different types of plants have been investigated: - Bio fuelled CHP plant with thermal capacity of 15 MW{sub th}; - Waste fired CHP plant with thermal capacity of 20 MW{sub th}; - Bio fuelled CHP plant with thermal capacity of 25 MW{sub th}. The simple steam turbines (Curtis turbines) used in the tandem arrangement has an isentropic efficiency of about 49 to 53% compared to the multi-staged steam turbines with isentropic efficiency in the range of 59% to 81%. The lower isentropic efficiency for the single staged turbines is to some extent compensated at partial load when one of the two turbines can be shut down leading to better operational conditions for the one still in operation. For concepts with saturated steam at partial load below 50% the tandem arrangements presents higher electricity efficiency than the conventional single turbine alternative. The difference in annual production of electricity is therefore less than the difference in isentropic efficiency for the two concepts. Production of electricity is between 2% and 42% lower for the tandem arrangements in this study. Investment costs for the turbine island has been calculated for the two turbine concepts and when the costs for turbines, generator, power transmission, condensing system, piping system, buildings, assembling, commissioning and engineering has been added the sum is about the same for the two concepts. For the bio-fuelled plant with thermal capacity of 15 MW{sub th} the turbine island amount to about 10-12 MSEK and about 13-15 MSEK for the waste fired plant with a thermal capacity of 20 MW

  17. Combined cycle power plant with integrated low temperature heat (LOTHECO)

    International Nuclear Information System (INIS)

    Kakaras, E.; Doukelis, A.; Leithner, R.; Aronis, N.

    2004-01-01

    The major driver to enhance the efficiency of the simple gas turbine cycle has been the increase in process conditions through advancements in materials and cooling methods. Thermodynamic cycle developments or cycle integration are among the possible ways to further enhance performance. The current paper presents the possibilities and advantages from the LOTHECO natural gas-fired combined cycle concept. In the LOTHECO cycle, low-temperature waste heat or solar heat is used for the evaporation of injected water droplets in the compressed air entering the gas turbine's combustion chamber. Following a description of this innovative cycle, its advantages are demonstrated by comparison between different gas turbine power generation systems for small and large-scale applications, including thermodynamic and economic analysis. A commercial gas turbine (ALSTOM GT10C) has been selected and computed with the heat mass balance program ENBIPRO. The results from the energy analysis are presented and the features of each concept are discussed. In addition, the exergy analysis provides information on the irreversibilities of each process and suggested improvements. Finally, the economic analysis reveals that the combined cycle plant with a heavy-duty gas turbine is the most efficient and economic way to produce electricity at base load. However, on a smaller scale, innovative designs, such as the LOTHECO concept, are required to reach the same level of performance at feasible costs

  18. Concept licensing procedure for an HTR-module nuclear power plant

    International Nuclear Information System (INIS)

    Brinkmann, G.; Will, M.

    1990-01-01

    In April 1987 the companies Siemens and Interatom applied in the West German state of Lower Saxony for a concept licensing procedure to be initiated for an HTR-Module nuclear power plant. In addition to a safety analysis report, numerous additional papers were submitted to the authorized experts. In April 1989 proceedings were suspended for political and legal reasons. By this time both the fire protection report and the plant security concept report had been completed. The safety concept review was continued by order of the Federal Minister for Research and Technology. The draft safety concept report was completed in July 1989. The final version was completed at the end of 1989. (orig.)

  19. Review of the safety concept for fusion reactor concepts and transferability of the nuclear fission regulation to potential fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Juergen; Weller, Arthur; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik (IPP), Garching (Germany); Jin, Xue Zhou; Boccaccini, Lorenzo V.; Stieglitz, Robert; Carloni, Dario [Karlsruher Institute fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Pistner, Christoph [Oeko-Institut e.V., Darmstadt (Germany); Herb, Joachim [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany)

    2016-01-15

    This paper summarizes the current state of the art in science and technology of the safety concept for future fusion power plants (FPPs) and examines the transferability of the current nuclear fission regulation to the concepts of future fusion power plants. At the moment there exist only conceptual designs of future fusion power plants. The most detailed concepts with regards to safety aspects were found in the European Power Plant Conceptual Study (PPCS). The plant concepts discussed in the PPCS are based on magnetic confinement of the plasma. The safety concept of fusion power plants, which has been developed during the last decades, is based on the safety concepts of installations with radioactive inventories, especially nuclear fission power plants. It applies the concept of defence in depth. However, there are specific differences between the implementations of the safety concepts due to the physical and technological characteristics of fusion and fission. It is analysed whether for fusion a safety concept is required comparable to the one of fission. For this the consequences of a purely hypothetical release of large amounts of the radioactive inventory of a fusion power plant and a fission power plant are compared. In such an event the evacuation criterion outside the plant is exceeded by several orders of magnitude for a fission power plant. For a fusion power plant the expected radiological consequences are of the order of the evacuation criterion. Therefore, a safety concept is also necessary for fusion to guarantee the confinement of the radioactive inventory. The comparison between the safety concepts for fusion and fission shows that the fundamental safety function ''confinement of the radioactive materials'' can be transferred directly in a methodical way. For a fusion power plant this fundamental safety function is based on both, physical barriers as well as on active retention functions. After the termination of the fusion

  20. Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study.

    Science.gov (United States)

    Prabhu, S Ashok; Ndlovu, Buyani; Engelbrecht, Juanita; van den Berg, Noëlani

    2017-01-01

    Avocado (Persea americana (Mill.)), an important commercial fruit, is severely affected by Phytophthora Root Rot in areas where the pathogen is prevalent. However, advances in molecular research are hindered by the lack of a high-throughput transient transformation system in this non-model plant. In this study, a proof-of-concept is demonstrated by the successful application of Agrobacterium rhizogenes-mediated plant transformation to produce composite avocado plants. Two ex vitro strategies were assessed on two avocado genotypes (Itzamna and A0.74): In the first approach, 8-week-old etiolated seedlings were scarred with a sterile hacksaw blade at the base of the shoot, and in the second, inch-long incisions were made at the base of the shoot (20-week-old non-etiolated plants) with a sterile blade to remove the cortical tissue. The scarred/wounded shoot surfaces were treated with A. rhizogenes strains (K599 or ARqua1) transformed with or without binary plant transformation vectors pRedRootII (DsRed1 marker), pBYR2e1-GFP (GFP- green fluorescence protein marker) or pBINUbiGUSint (GUS- beta-glucuronidase marker) with and without rooting hormone (Dip 'N' Grow) application. The treated shoot regions were air-layered with sterile moist cocopeat to induce root formation. Results showed that hormone application significantly increased root induction, while Agrobacterium-only treatments resulted in very few roots. Combination treatments of hormone+Agrobacterium (-/+ plasmids) showed no significant difference. Only the ARqua1(+plasmid):A0.74 combination resulted in root transformants, with hormone+ARqua1(+pBINUbiGUSint) being the most effective treatment with ~17 and 25% composite plants resulting from strategy-1 and strategy-2, respectively. GUS- and GFP-expressing roots accounted for less than 4 and ~11%, respectively, of the total roots/treatment/avocado genotype. The average number of transgenic roots on the composite plants was less than one per plant in all treatments

  1. Study on commercial FBR concepts by combining innovative technologies

    International Nuclear Information System (INIS)

    Miura, M.; Inagaki, T.; Kuroha, M.; Hida, T.

    1992-01-01

    A study was conducted on future prospects of FBR commercialization. Targets of further improving safety and economy were set to make commercial power plants that would be superior to future LWRs. Promising innovative technologies studied domestically and overseas were extracted by evaluating prospects for commercialization, effect, and plant applicability. Several commercial plants were conceptualized by introducing such technology to large-scale and oxide-fuel reactors. Estimates of construction cost, etc., proved that the targets could be achieved. A concept of long-term technological development was synthesized. (author)

  2. Three Ways to Link Merge with Hierarchical Concept-Combination

    Directory of Open Access Journals (Sweden)

    Chris Thornton

    2016-11-01

    Full Text Available In the Minimalist Program, language competence is seen to stem from a fundamental ability to construct hierarchical structure, an operation dubbed ‘Merge’. This raises the problem of how to view hierarchical concept-combination. This is a conceptual operation which also builds hierarchical structure. We can conceive of a garden that consists of a lawn and a flower-bed, for example, or a salad consisting of lettuce, fennel and rocket, or a crew consisting of a pilot and engineer. In such cases, concepts are put together in a way that makes one the accommodating element with respect to the others taken in combination. The accommodating element becomes the root of a hierarchical unit. Since this unit is itself a concept, the operation is inherently recursive. Does this mean the mind has two independent systems of hierarchical construction? Or is some form of integration more likely? Following a detailed examination of the operations involved, this paper shows there are three main ways in which Merge might be linked to hierarchical concept-combination. Also examined are the architectural implications that arise in each case.

  3. Fractionations of rare earth elements in plants and their conceptive model.

    Science.gov (United States)

    Ding, ShiMing; Liang, Tao; Yan, JunCai; Zhang, ZiLi; Huang, ZeChun; Xie, YaNing

    2007-02-01

    Fractionations of rare earth elements (REEs) and their mechanisms in soybean were studied through application of exogenous mixed REEs under hydroponic conditions. Significant enrichment of middle REEs (MREEs) and heavy REEs (HREEs) was observed in plant roots and leaves respectively, with slight fractionation between light REEs (LREEs) and HREEs in stems. Moreover, the tetrad effect was observed in these organs. Investigations into REE speciation in roots and in the xylem sap using X-ray absorption spectroscopy (XAS) and nanometer-sized TiO2 adsorption techniques, associated with other controlled experiments, demonstrated that REE fractionations should be dominated by fixation mechanism in roots caused by cell wall absorption and phosphate precipitation, and by the combined effects of fixation mechanism and transport mechanism in aboveground parts caused by solution complexation by intrinsic organic ligands. A conceptive model was established for REE fractionations in plants based on the above studies.

  4. Picket engineer concept in Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Steffen, W.

    1982-01-01

    Switzerland has four plants already in operation, three of the 300 MW Class and one of 1000 MW, with a further 1000 MW plant under construction. Nuclear energy is of vital importance to the country, in 1980 it accounted for almost 30% of the year's total electricity production. Great economic and political importance is attached to the safety and availability of the nuclear power plants. For safety reasons neither the plant owners nor the Authority were willing to dispense with having a qualified engineer in permanent attendance at the plant, particularly during incidents, accidents or emergencies. For this reason the concept of picket engineer was introduced in 1972, through the initiative of the plant owners and with the approval of the Authority

  5. Hurricane Resilient Wind Plant Concept Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dibra, Besart [Keystone Engineering Inc., Vonore, TN (United States); Finucane, Zachary [Keystone Engineering Inc., Vonore, TN (United States); Foley, Benjamin [Keystone Engineering Inc., Vonore, TN (United States); Hall, Rudy [Keystone Engineering Inc., Vonore, TN (United States); Damiani, Rick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parker, Zachary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wendt, Fabian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Andersen, Mads Boel Overgaard [Siemens Wind Power A/S, Brande (Denmark); Standish, Kevin [Siemens Wind Power A/S, Brande (Denmark); Lee, Ken [Wetzel Engineering Inc., Round Rock, TX (United States); Raina, Amool [Wetzel Engineering Inc., Round Rock, TX (United States); Wetzel, Kyle [Wetzel Engineering Inc., Round Rock, TX (United States); Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schreck, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Hurricanes occur over much of the U.S. Atlantic and Gulf coasts, from Long Island to the U.S.-Mexico border, encompassing much of the nation's primary offshore wind resource. Category 5 hurricanes have made landfall as far north as North Carolina, with Category 3 hurricanes reaching New York with some frequency. Along the US West coast, typhoons strike with similar frequency and severity. At present, offshore wind turbine design practices do not fully consider the severe operating conditions imposed by hurricanes. Although universally applied to most turbine designs, International Electrotechnical Commission (IEC) standards do not sufficiently address the duration, directionality, magnitude, or character of hurricanes. To assess advanced design features that could mitigate hurricane loading in various ways, this Hurricane-Resilient Wind Plant Concept Study considered a concept design study of a 500-megawatt (MW) wind power plant consisting of 10-MW wind turbines deployed in 25-meter (m) water depths in the Western Gulf of Mexico. This location was selected because hurricane frequency and severity provided a unique set of design challenges that would enable assessment of hurricane risk and projection of cost of energy (COE) changes, all in response to specific U.S. Department of Energy (DOE) objectives. Notably, the concept study pursued a holistic approach that incorporated multiple advanced system elements at the wind turbine and wind power plant levels to meet objectives for system performance and reduced COE. Principal turbine system elements included a 10-MW rotor with structurally efficient, low-solidity blades; a lightweight, permanent-magnet, direct-drive generator, and an innovative fixed substructure. At the wind power plant level, turbines were arrayed in a large-scale wind power plant in a manner aimed at balancing energy production against capital, installation, and operation and maintenance (O&M) costs to achieve significant overall reductions in

  6. New pressure control method of mixed gas in a combined cycle power plant of a steel mill

    Science.gov (United States)

    Xie, Yudong; Wang, Yong

    2017-08-01

    The enterprise production concept is changing with the development of society. A steel mill requires a combined-cycle power plant, which consists of both a gas turbine and steam turbine. It can recycle energy from the gases that are emitted from coke ovens and blast furnaces during steel production. This plant can decrease the overall energy consumption of the steel mill and reduce pollution to our living environment. To develop a combined-cycle power plant, the pressure in the mixed-gas transmission system must be controlled in the range of 2.30-2.40 MPa. The particularity of the combined-cycle power plant poses a challenge to conventional controllers. In this paper, a composite control method based on the Smith predictor and cascade control was proposed for the pressure control of the mixed gases. This method has a concise structure and can be easily implemented in actual industrial fields. The experiment has been conducted to validate the proposed control method. The experiment illustrates that the proposed method can suppress various disturbances in the gas transmission control system and sustain the pressure of the gas at the desired level, which helps to avoid abnormal shutdowns in the combined-cycle power plant.

  7. Meeting forest restoration challenges: Using the Target Plant Concept

    Science.gov (United States)

    Kas Dumroese; Thomas D. Landis; Jeremy Pinto; Diane L. Haase; Kim W. Wilkinson; Anthony S. Davis

    2016-01-01

    Meeting forest restoration challenges relies on successful establishment of plant materials (e.g., seeds, cuttings, rooted cuttings, or seedlings, etc.; hereafter simply "seedlings"). The Target Plant Concept (TPC) provides a flexible framework that nursery managers and their clients can use to improve the survival and growth of these seedlings. The...

  8. Small-Scale Combined Heat and Power Plants Using Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Salomon-Popa, Marianne [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    2002-11-01

    In this time period where energy supply and climate change are of special concern, biomass-based fuels have attracted much interest due to their plentiful supply and favorable environmental characteristics (if properly managed). The effective capture and continued sustainability of this renewable resource requires a new generation of biomass power plants with high fuel energy conversion. At the same time, deregulation of the electricity market offers new opportunities for small-scale power plants in a decentralized scheme. These two important factors have opened up possibilities for small-scale combined heat and power (CHP) plants based on biofuels. The objective of this pre-study is to assess the possibilities and technical limitations for increased efficiency and energy utilization of biofuels in small size plants (approximately 10 MWe or lower). Various energy conversion technologies are considered and proven concepts for large-scale fossil fuel plants are an especially important area. An analysis has been made to identify the problems, technical limitations and different possibilities as recognized in the literature. Beyond published results, a qualitative survey was conducted to gain first-hand, current knowledge from experts in the field. At best, the survey results together with the results of personal interviews and a workshop on the role of small-scale plants in distributed generation will serve a guideline for future project directions and ideas. Conventional and novel technologies are included in the survey such as Stirling engines, combustion engines, gas turbines, steam turbines, steam motors, fuel cells and other novel technologies/cycles for biofuels. State-of-the-art heat and power plants will be identified to clarify of the advantages and disadvantages as well as possible obstacles for their implementation.

  9. Combined raman spectrometer/laser-induced breakdown spectrometer design concept

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, Gregory; Ahlers, Berit; Boslooper, Erik; Rull-Perez, Fernando; Maurice, Sylvestre

    2017-11-01

    Amongst the different instruments that have been preselected to be on-board the Pasteur payload on ExoMars is the Raman/ Laser Induced Breakdown Spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman Spectrometer/ LIBS Elegant Bread-Board (EBB). The instrument is based on a specifically designed extremely compact spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and resources are the main drivers of the instrument's design concept. The proposed design concept, realization and testing programme for the combined Raman/ LIBS EBB is presented as well as background information on Raman and LIBS.

  10. Nuclear heat generating plants - technical concepts and market potentials. Chapter 8

    International Nuclear Information System (INIS)

    Thoene, E.

    1988-01-01

    To determine the advantages and disadvantages of different heat generating systems, a comparison is made between nuclear heat generating plants and competing heat generating systems. Nuclear heat generating plant concepts in practice have to compete with a wide range of existing and new fossil heat generating technologies of the most different capacities, ranging from combined heat and power generation to individual heating in one-family houses. Heat generation costs are calculated by means of a dynamic annuity method from an economic point of view. The development of real prices of fossil energy sources is based on two scenarios characterized as follows: scenario I - insignificant price increase by the year 2000, then stagnant; scenario II - moderate price increase by the year 2010, then stagnant. As a result of that systems comparison it can be stated that the considered nuclear heat generating plants may be an interesting competitive heat generation option, provided the assumptions on which the study is based can be implemented. This applies especially to investment costs. At the same time those plants contribute to a diversification of energy source options on the heat market. Their use leads to a reduction of fossil fuel imports, increasing at the same time short- and long-term supply guarantees. If nuclear heat generating plants substitute fossil heat generating plants, or render the construction of new ones superfluous, they contribute to avoiding chemical air pollutants. (orig./UA) [de

  11. Plant design and safety concept of the HTR-module

    International Nuclear Information System (INIS)

    Reutler, H.

    1987-01-01

    The new KWU/Interatom concept of a modular High Temperature Reactor is characterized by the fact that several standardized nuclear heat production units, each having a power output up to 200 MW(th), are connected into parallel to obtain a power plant of any desired output for the production of process steam and electricity for the application in district heating and for the direct application of process heat. The safety concept of the modular reactor is such that the reactor plant shall stay in a predictable state and shall not release an excessive amount of fission products into the environment even for hypothetical accidents. (author)

  12. Plant design and safety concept of the HTR-module

    International Nuclear Information System (INIS)

    Reutler, H.

    1988-01-01

    The new KWU/Interatom concept of a modular High Temperature Reactor is characterized by the fact that several standardized nuclear heat production units, each having a power output up to 200 MW(th), are connected into parallel to obtain a power plant of any desired output for the production of process steam and electricity for the application in district heating and for the direct application of process heat. The safety concept of the modular reactor is such that the reactor plant shall stay in a predictable state and shall not release an excessive amount of fission products into the environment even for hypothetical accidents. (orig.)

  13. Study on dual plant concept for the next generation boiling water reactors

    International Nuclear Information System (INIS)

    Sato, Takashi; Oikawa, Hirohide

    1999-01-01

    The paper presents the study results on the basic concept of dual BWRs. For the convenience, we call the concept here as Trial Study on BWR dual concept (TSBWR dual). The concept is general and applicable to all BWRs which have internal recirculation pumps (RIP). The TSBWR dual is a plant concept of dual BWRs contained in a same secondary containment building. The plant output is from 2 x l,350 MWe up to 2 x 1,700 MWe. This concept is mainly aiming at safety improvement and cost savings of the next generation BWRs. The TSBWR dual has two RPVs and two dry wells (DW). It has, however, only one wet well (WW) and only one R/B. The WW and the R/B are shared by the dual reactors. The operating floor is also shared by the two reactors. The TSBWR dual has both passive safety systems and active safety systems. They are also shared between the two reactors. A lot of sharing between the dual reactors enables significant cost savings accompanied by the power increase up to 3,400 MWe. Although the TSBWR dual consists of two reactors, the simplified cylindrical configuration of the key structures and reduction of the R/B height can minimize the plant construction period. The TSBWR dual provides a concept with which we can challenge to construct a dual BWR plant in the near future. (author)

  14. Concept for the Emergency Protection in the Vicinity of Nuclear Power Plants

    International Nuclear Information System (INIS)

    1998-03-01

    In 1991, the Swiss Federal Nuclear Safety Inspectorate (HSK) issued a concept of the regulations for the cloud phase 1 of an nuclear power plant accident in Switzerland valid at that time in co-operation with the Federal Commission for AC Protection (KOMAC) and the Swiss Federal Nuclear Safety Commission (KSA). This concept replaced the version of 1977, which then formed the basis for emergency preparedness in Switzerland. Legal changes, such as the civil protection legislation and the ordinance on the distribution of iodine tablets to the population, as well as experience gained from the emergency exercises necessitated a revision of the existing concept. The present concept is issued by the Federal Commission for AC Protection (KOMAC) and deals with all phases of an accident sequence in a Swiss nuclear power plant focussing on the pre- and cloud phase. It also gives an overview of responsibilities and alert procedures for accidents at foreign nuclear power plants and other nuclear installations, as well as of accidents in connection with transportation of radioactive materials. The concept is designed to help the federal and cantonal authorities in the vicinity of nuclear power plants in charge of emergency protection in preparing their emergency procedure specifications, and in the realisation of the readiness for emergencies. Furthermore, it shall serve the cantons as a guideline for the preparation of emergency specifications for the communities. The concept is based on the assumption that the executive bodies and emergency forces provided for the general civil protection are employed in case of an accident at a nuclear power plant. (authors)

  15. Light water ultra-safe plant concept: First annual report

    International Nuclear Information System (INIS)

    Klevans, E.

    1987-01-01

    Since the accident at Three Mile Island (TMI) Penn State Nuclear Engineering Department Faculty and Staff have considered various methods to improve already safe reactor designs and public perception of the safety of Nuclear Power. During the last year, the Department of Energy funded the study of a plant reconfiguration originally proposed by M.A. Shultz. This report presents the status of the project at the end of the first year. A broad set of specifications to improve safety and public perception were set forth and the realization of these goals is achieved in a plant design named, ''The Light Water Ultra-Safe Plant Concept.'' The most significant goals of the concept address the station black-out problem and simplification of required operator actions during abnormal situations. These goals are achieved in the Ultra-Safe Concept by addition of an in-containment atmospheric tank containing a large quantity of cool water, replacement of the conventional PWR pressurizer system with a pressurizing pump, internal emergency power generation, and arrangement of components to utilize natural circulation at shut-down. The first year effort included an evaluation of the normal operation characteristics of the primary system pressurizing concept, evaluating parameters and modeling for analysis of the shutdown scenario, design of a low power density core, design of a low-pressure waste handling system, arrangement of a drainage system for pipe break considerations, and failure modes and effects analysis

  16. Modeling of a combined cycle power plant

    International Nuclear Information System (INIS)

    Faridah Mohamad Idris

    2001-01-01

    The combined cycle power plant is a non-linear, closed loop system, which consists of high-pressure (HP) superheater, HP evaporator, HP economizer, low-pressure (LP) evaporator, HP drum, HP deaerator, condenser, HP and LP steam turbine and gas turbine. The two types of turbines in the plant for example the gas turbine and the HP and LP steam turbines operate concurrently to generate power to the plant. The exhaust gas which originate from the combustion chamber drives the gas turbine, after which it flows into the heat recovery steam generator (HRSG) to generate superheated steam to be used in driving the HP and LP steam turbines. In this thesis, the combined cycle power plant is modeled at component level using the physical method. Assuming that there is delay in transport, except for the gas turbine system, the mass and heat balances are applied on the components of the plant to derive the governing equations of the components. These time dependent equations, which are of first order differential types, are then solved for the mass and enthalpy of the components. The solutions were simulated using Matlab Simulink using measured plant data. Where necessary there is no plant data available, approximated data were used. The generalized regression neural networks are also used to generate extra sets of simulation data for the HRSG system. Comparisons of the simulation results with its corresponding plant data showed good agreements between the two and indicated that the models developed for the components could be used to represent the combined cycle power plant under study. (author)

  17. Concept of a HTR modular plant for generation of process heat in a chemical plant

    International Nuclear Information System (INIS)

    1991-07-01

    This final report summarizes the results of a preliminary study on behalf of Buna AG and Leunawerke AG. With regard to the individual situations the study investigated the conditions for modular HTR-2 reactors to cover on-site process heat and electric power demands. HTR-2 reactor erection and operation were analyzed for their economic efficiency compared with fossil-fuel power plants. Considering the prospective product lines, the technical and economic conditions were developed in close cooperation with Buna AG and Leunawerke AG. The study focused on the technical integration of modular HTR reactors into plants with regard to safety concepts, on planning, acceptance and erection concepts which largely exclude uncalculable scheduling and financial risks, and on comparative economic analyses with regard to fossil-fuel power plants. (orig.) [de

  18. Thermodynamic and economic analysis on geothermal integrated combined-cycle power plants

    International Nuclear Information System (INIS)

    Bettocchi, R.; Cantore, G.; Negri di Montenegro, G.; Gadda, E.

    1992-01-01

    This paper considers geothermal integrated power plants obtained matching a geothermal plant with, a two pressure level combined plant. The purpose of the paper is the evaluation of thermodynamic and economic aspects on geothermal integrated combined-cycle power plant and a comparison with conventional solutions. The results show that the integrated combined plant power is greater than the sum of combined cycle and geothermal plant powers considered separately and that the integrated plant can offer economic benefits reaching the 16% of the total capital required

  19. On the Use of the Guild Concept in Plant Ecology

    NARCIS (Netherlands)

    Kroon, Hans de; Olff, Han

    1995-01-01

    The original defmition of the guild is reiterated and the concept discussed and placed in the context of related concepts such as resources and competition. From this conceptual framework the current use of guilds in studies of plant community ecology is evaluated. We discuss the criteria with which

  20. CONCEPT-5, Cost and Economics Analysis for Nuclear Fuel or Fossil Fuel Power Plant

    International Nuclear Information System (INIS)

    Bowers, H.I.; Gratteau, J.E.; Zielsinki, T.J.

    1992-01-01

    1 - Description of problem or function: The CONCEPT computer code system was developed to provide conceptual capital cost estimates for nuclear and coal-fired power plants. Cost estimates can be made as a function of plant type, size, location, and date of initial operation. The output includes a detailed breakdown of the estimate into direct and indirect costs similar to the accounting system described in document NUS-531. Cost models are provided in CONCEPT5, the fifth generation in the development of the CONCEPT package, for single-unit coal-fired plants, pressurized-water reactors, boiling- water reactors, liquid-metal-cooled reactors, and multi-unit coal- fired plants based on today's average or best operating experience. Costs may be obtained for any of twenty U.S. cities, a hypothetical Middletown site, and two Canadian cities. CONCEPT5 models are updated models of those available in CONCEPT3 and, in addition, this edition contains historical factory equipment cost data for the generation of cost indices and escalation rates; indirect costs are calculated as a function of unit size rather than a function of direct costs; and an indirect cost account for owner's costs and an improved time-dependent escalation feature are included. The CONCEPT3 models and cost data are outdated; the package is being retained in the library since it is the only UNIVAC1108 machine version of CONCEPT available and could prove helpful in converting the latest IBM release. 2 - Method of solution: CONCEPT is based on the premise that any central station power plant involves approximately the same major cost components regardless of location or date of initial operation. The program has detailed cost models for each plant type at a reference condition. Through use of size, time, and location- dependent cost adjustments, a reference cost model is modified to produce a specific capital cost estimate. CONCEPT is supported by two auxiliary programs--CONTAC, which generates and maintains

  1. Containment/surveillance concepts for international safeguards in reprocessing plants

    International Nuclear Information System (INIS)

    Bleck, M.E.; Cameron, C.P.; Camp, A.L.

    1980-01-01

    This paper examines the potential role of advanced containment/surveillance instrumentation systems for international safeguards in reprocessing plants. Several conceptual systems for the surveillance of containment boundary penetrations in a reference reprocessing plant are described and evaluated. The results of the evaluation aid in understanding the potential capabilities and limitations of containment/surveillance as an international safeguards concept in this type of facility

  2. Concept and structure of instrumentation and control of the Atucha II nuclear power plant

    International Nuclear Information System (INIS)

    Garzon, D.; Roca, J.L.

    1987-01-01

    The general structure of instrumentation and control of Atucha II nuclear power plant as well as the technologies used, are described: concepts of functional decentralization and physical centralization; concept of functional group and functional complex; description of the technologies used (physical support) in the project of plant instrumentation and control; description of the different automation levels on the basis of concepts of control interface, automatism, regulation, group and subgroup controls; principles of signal conditioning; concept of announcement of alarms and state: supervisory computer, description of HAS (Hard wired Alarm System) and CAS (Computer Alarm System); application of the above mentioned structure to the project of another type of plants. (Author)

  3. Concept of underground nuclear power plant

    International Nuclear Information System (INIS)

    Onishi, Sotoaki

    1976-01-01

    The concept of constructing nuclear power plants on the sea or underground as the future sitting is based on moving the present power plants on the ground with actual results to the sea or underground without changing the design. The underground nuclear power plants have many similar points to underground hydro-electric power stations with many achievements in the construction viewpoint, though they have their proper difficult problems. Of course, it requires to excavate larger underground caves than the case of underground hydro-electric power plants. The maximum dimensions of the caves have been determined through experience in practice. Therefore the developments of design theory and construction technique are desirable in this field. In discussing underground construction, two evaluating methods are considered for the shielding effect of base rocks. The minimum vertical distance up to ground surface from the center of the cave differs depending upon the in-cave pressure, and the conditions of base rock, soil and underground water in case of the accident assumed in the design, and is approximately 60m, if the cave is assumed to be an indefinite cylindrical shape, by the safer side calculation in the above two evaluations. (Wakatsuki, Y.)

  4. A new design concept for offshore nuclear power plants with enhanced safety features

    International Nuclear Information System (INIS)

    Lee, Kihwan; Lee, Kang-Heon; Lee, Jeong Ik; Jeong, Yong Hoon; Lee, Phill-Seung

    2013-01-01

    Highlights: ► A new design concept for offshore nuclear power plants is proposed. ► The total general arrangement for the concept is suggested. ► A new emergency passive containment cooling system (EPCCS) is proposed. ► A new emergency passive reactor-vessel cooling system (EPRVCS) is proposed. ► Safety features against earthquakes, tsunamis, and storms are discussed. - Abstract: In this paper, we present a new concept for offshore nuclear power plants (ONPP) with enhanced safety features. The design concept of a nuclear power plant (NPP) mounted on gravity-based structures (GBSs), which are widely used offshore structures, is proposed first. To demonstrate the feasibility of the concept, a large-scale land-based nuclear power plant model APR1400, which is the most recent NPP model in the Republic of Korea, is mounted on a GBS while minimizing modification to the original features of APR1400. A new total general arrangement (GA) and basic design principles are proposed and can be directly applied to any existing land based large scale NPPs. The proposed concept will enhance the safety of a NPP due to several aspects. A new emergency passive containment cooling system (EPCCS) and emergency passive reactor-vessel cooling system (EPRVCS) are proposed; their features of using seawater as coolant and safety features against earthquakes, Tsunamis, storms, and marine collisions are also described. We believe that the proposed offshore nuclear power plant is more robust than conventional land-based nuclear power plants and it has strong potential to provide great opportunities in nuclear power industries by decoupling the site of construction and that of installation.

  5. Inertial Fusion Power Plant Concept of Operations and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Anklam, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knutson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunne, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kasper, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheehan, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lang, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mau, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  6. Combination of Plant Metabolic Modules Yields Synthetic Synergies

    Science.gov (United States)

    Rajabi, Fatemeh; Heene, Ernst; Maisch, Jan; Nick, Peter

    2017-01-01

    The great potential of pharmacologically active secondary plant metabolites is often limited by low yield and availability of the producing plant. Chemical synthesis of these complex compounds is often too expensive. Plant cell fermentation offers an alternative strategy to overcome these limitations. However, production in batch cell cultures remains often inefficient. One reason might be the fact that different cell types have to interact for metabolite maturation, which is poorly mimicked in suspension cell lines. Using alkaloid metabolism of tobacco, we explore an alternative strategy, where the metabolic interactions of different cell types in a plant tissue are technically mimicked based on different plant-cell based metabolic modules. In this study, we simulate the interaction found between the nicotine secreting cells of the root and the nicotine-converting cells of the senescent leaf, generating the target compound nornicotine in the model cell line tobacco BY-2. When the nicotine demethylase NtomCYP82E4 was overexpressed in tobacco BY-2 cells, nornicotine synthesis was triggered, but only to a minor extent. However, we show here that we can improve the production of nornicotine in this cell line by feeding the precursor, nicotine. Engineering of another cell line overexpressing the key enzyme NtabMPO1 allows to stimulate accumulation and secretion of this precursor. We show that the nornicotine production of NtomCYP82E4 cells can be significantly stimulated by feeding conditioned medium from NtabMPO1 overexpressors without any negative effect on the physiology of the cells. Co-cultivation of NtomCYP82E4 with NtabMPO1 stimulated nornicotine accumulation even further, demonstrating that the physical presence of cells was superior to just feeding the conditioned medium collected from the same cells. These results provide a proof of concept that combination of different metabolic modules can improve the productivity for target compounds in plant cell

  7. Diagnostic system for combine cycle power plant

    International Nuclear Information System (INIS)

    Shimizu, Yujiro; Nomura, Masumi; Tanaka, Satoshi; Ito, Ryoji; Kita, Yoshiyuki

    2000-01-01

    We developed the Diagnostic System for Combined Cycle Power Plant which enables inexperienced operators as well as experienced operators to cope with abnormal conditions of Combined Cycle Power Plant. The features of this system are the Estimate of Emergency Level for Operation and the Prediction of Subsequent Abnormality, adding to the Diagnosis of Cause and the Operation Guidance. Moreover in this system, Diagnosis of Cause was improved by using our original method and support screens can be displayed for educational means in normal condition as well. (Authors)

  8. Optimum gas turbine cycle for combined cycle power plant

    International Nuclear Information System (INIS)

    Polyzakis, A.L.; Koroneos, C.; Xydis, G.

    2008-01-01

    The gas turbine based power plant is characterized by its relatively low capital cost compared with the steam power plant. It has environmental advantages and short construction lead time. However, conventional industrial engines have lower efficiencies, especially at part load. One of the technologies adopted nowadays for efficiency improvement is the 'combined cycle'. The combined cycle technology is now well established and offers superior efficiency to any of the competing gas turbine based systems that are likely to be available in the medium term for large scale power generation applications. This paper has as objective the optimization of a combined cycle power plant describing and comparing four different gas turbine cycles: simple cycle, intercooled cycle, reheated cycle and intercooled and reheated cycle. The proposed combined cycle plant would produce 300 MW of power (200 MW from the gas turbine and 100 MW from the steam turbine). The results showed that the reheated gas turbine is the most desirable overall, mainly because of its high turbine exhaust gas temperature and resulting high thermal efficiency of the bottoming steam cycle. The optimal gas turbine (GT) cycle will lead to a more efficient combined cycle power plant (CCPP), and this will result in great savings. The initial approach adopted is to investigate independently the four theoretically possible configurations of the gas plant. On the basis of combining these with a single pressure Rankine cycle, the optimum gas scheme is found. Once the gas turbine is selected, the next step is to investigate the impact of the steam cycle design and parameters on the overall performance of the plant, in order to choose the combined cycle offering the best fit with the objectives of the work as depicted above. Each alterative cycle was studied, aiming to find the best option from the standpoint of overall efficiency, installation and operational costs, maintainability and reliability for a combined power

  9. Development project HTR-electricity-generating plant, concept design of an advanced high-temperature reactor steam cycle plant with spherical fuel elements (HTR-K)

    International Nuclear Information System (INIS)

    1978-07-01

    The report gives a survey of the principal work which was necessary to define the design criteria, to determine the main design data, and to design the principal reactor components for a large steam cycle plant. It is the objective of the development project to establish a concept design of an edvanced steam cycle plant with a pebble bed reactor to permit a comparison with the direct-cycle-plant and to reach a decision on the concept of a future high-temperature nuclear power plant. It is tried to establish a largerly uniform basic concept of the nuclear heat-generating systems for the electricity-generating and the process heat plant. (orig.) [de

  10. New model concepts for dynamic plant uptake and mass flux estimates in the soil-plant-air system

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2010-01-01

    in environmental systems at different scales. Feedback mechanisms between plants and hydrological systems can play an important role. However, they have received little attention to date. Here, a new model concept for dynamic plant uptake models applying analytical matrix solutions is presented, which can...

  11. CNSS plant concept, capital cost, and multi-unit station economics

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    United Engineers and Constructors (UE and C) and the Babcock and Wilcox Company (B and W) have performed several studies over the last eight years related to small integral pressurized water reactors. These reactors include the 365 MWt (100 MWe) Consolidated Nuclear Steam Generator (CNSG) and the 1200 MWt Consolidated Nuclear Steam System (CNSS). The studies, mostly performed under contract to the Oak Ridge National Laboratory, have led to a 1250 MWt (400 MWe) Consolidated Nuclear Steam System (CNSS) plant concept, with unique design and cost features. This report contains an update of earlier studies of the CNSS reactor and balance-of-plant concept design, capital costs, and multi-unit plant economics incorporating recent design developments, improvements, and post-TMI-2 upgrades. The economic evaluation compares the total system economic impact of a phased, three stage 400 MWe CNSS implementation program, i.e., a three-unit station, to the installation of a single 1200 MWe Pressurized Water Reactor (PWR) into a typical USA utility system.

  12. CNSS plant concept, capital cost, and multi-unit station economics

    International Nuclear Information System (INIS)

    1984-07-01

    United Engineers and Constructors (UE and C) and the Babcock and Wilcox Company (B and W) have performed several studies over the last eight years related to small integral pressurized water reactors. These reactors include the 365 MWt (100 MWe) Consolidated Nuclear Steam Generator (CNSG) and the 1200 MWt Consolidated Nuclear Steam System (CNSS). The studies, mostly performed under contract to the Oak Ridge National Laboratory, have led to a 1250 MWt (400 MWe) Consolidated Nuclear Steam System (CNSS) plant concept, with unique design and cost features. This report contains an update of earlier studies of the CNSS reactor and balance-of-plant concept design, capital costs, and multi-unit plant economics incorporating recent design developments, improvements, and post-TMI-2 upgrades. The economic evaluation compares the total system economic impact of a phased, three stage 400 MWe CNSS implementation program, i.e., a three-unit station, to the installation of a single 1200 MWe Pressurized Water Reactor (PWR) into a typical USA utility system

  13. Review of European regulatory and tariff experience with the sale of heat and electricity from combined heat and power plants

    International Nuclear Information System (INIS)

    Dyrelund, A.

    1991-12-01

    The Prince Edward Island Energy Corporation, Edmonton Power, Energy, Mines and Resources Canada and the Canadian Electrical Association commissioned a study to understand how electrical power and district heat from combined heat and power (CHP) plants is priced in Europe. Four northern European countries were investigated, Denmark, Germany, Sweden and Finland. These countries produce 45.8 TWh of power from combined heat and power plants, 7.1% of their annual consumption. In the case of Denmark, CHP accounts for 37.5% of its total power production. The energy situation in each country is reviewed using published statistics, and in particular the rapidly changing situation with regard to environmental and fuel taxes is examined. In order to obtain practical insights with regard to tariffs used by the various utilities, a series of generic examples were examined, supported by specific case studies. Technologies reviewed included: CHP from coal-fuelled extraction plant, CHP from coal-fuelled back pressure plant, waste heat from a municipal waste plant, and gas turbine with waste heat recovery. The benefits and risks associated with different tariff designs are discussed in detail including tariff formulae. This should enable interested parties to develop appropriate tariffs for combined heat and power plants in the context of current electrical utility policies. As a complement to the tariffs for combined heat and power plants, the design of district heating tariffs is also addressed. The typical concepts used in different countries are presented and discussed. 23 tabs

  14. Implication of the changing concept of genes on plant breeder’s work

    Directory of Open Access Journals (Sweden)

    Marco Aurélio D. Dias

    2011-01-01

    Full Text Available The recent genome sequencing of some species has accumulated evidence that for a large number of traits, thecontrol and action of genes are far more complex than previously thought. This article discusses possible implications of newinsights into the gene concept on the work of plant breeders. Apparently, the successful application of biotechnological techniques is not as simple as once assumed. The evident changes in the available concept of genes confirmed what the past experience had shown,i.e, selection should focus on the phenotype, under the same conditions as the plant is to be cultivated in. Advanced vocationaltraining of plant breeders must be continuously maintained, focusing on phenotype-based selection in as accurate as possibleexperiments.

  15. Design concept and its requirements of the integrated SMART nuclear desalination plant

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Kim, Young In; Chon, Bong Hyun; Lee, Doo Jung; Chang, Moon Hee

    2001-02-01

    The integrated SMART desalination plant consists of four(4) units of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. Each distillation unit has the production the capacity of 10,000 m3/day of distilled water per day at top brine temperature of 65 deg C using the seawater supplied at temperature of 33 deg C. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The MED-TVC unit is consisted of the steam supply system, vapor and condensate system, seawater supply system, brine system and chemical dosing system. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements

  16. Design concept and its requirements of the integrated SMART nuclear desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Kim, Young In; Chon, Bong Hyun; Lee, Doo Jung; Chang, Moon Hee

    2001-02-01

    The integrated SMART desalination plant consists of four(4) units of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. Each distillation unit has the production the capacity of 10,000 m3/day of distilled water per day at top brine temperature of 65 deg C using the seawater supplied at temperature of 33 deg C. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The MED-TVC unit is consisted of the steam supply system, vapor and condensate system, seawater supply system, brine system and chemical dosing system. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements.

  17. High Level Waste plant operation and maintenance concepts. Final report, March 27, 1995

    International Nuclear Information System (INIS)

    Janicek, G.P.

    1995-01-01

    The study reviews and evaluates worldwide High Level Waste (HLW) vitrification operating and maintenance (O ampersand M) philosophies, plant design concepts, and lessons learned with an aim towards developing O ampersand M recommendations for either, similar implementation or further consideration in a HLW vitrification facility at Hanford. The study includes a qualitative assessment of alternative concepts for a variety of plant and process systems and subsystems germane to HLW vitrification, such as, feed materials handling, melter configuration, glass form, canister handling, failed equipment handling, waste handling, and process control. Concept evaluations and recommendations consider impacts to Capital Cost, O ampersand M Cost, ALARA, Availability, and Reliability

  18. Issues of integrating high-tech concepts into nuclear power plant operation

    International Nuclear Information System (INIS)

    Kisner, R.A.; Carter, R.J.; Lindsay, R.W.

    1990-01-01

    The stockpile of new ideas continues to grow for monitoring nuclear power plant parameters, characteristics, and vital signs and for controlling systems, subsystems, and components. This wide selection of monitoring and control software increases the difficulty of designing an integrated control room. As plant control room operators increase their reliance on computerized systems, including real-time plant data and data base systems, the integration of monitoring, diagnostics, and control software into uniform and seamless environment becomes imperative. A systematic approach to evaluating the usefulness of such high-tech control concepts is needed. This paper concentrates on methods to evaluate control concepts by assessing factors that determine a system's potential effectiveness within the context of the overall environment, including both human and machine components. Although not an in-depth study, this paper serves to outline several measures of utility. 21 refs., 3 figs., 2 tabs

  19. A concept of a component based system to determine pot-plant shelf-life

    DEFF Research Database (Denmark)

    Körner, Oliver; Skou, Anne-Marie Thonning; Aaslyng, Jesper Peter Mazanti

    2006-01-01

    to calculate the expected keeping quality, or it will be able to apply the system as decision support during plant cultivation. In the latter case, the model-based system can be implemented in a greenhouse climate computer. The concept contains information on climate control strategies, controlled stress......, the keeping quality of a plant after removal from the greenhouse could be estimated. A concept of a system that describes a model based knowledge system aiming at determination of the last selling date for pot plants is presented. The core of the conceptual system is a tool that can either be used......, diseases, nutrient management and substrates....

  20. On the Use of the Guild Concept in Plant Ecology

    OpenAIRE

    Kroon, Hans de; Olff, Han

    1995-01-01

    The original defmition of the guild is reiterated and the concept discussed and placed in the context of related concepts such as resources and competition. From this conceptual framework the current use of guilds in studies of plant community ecology is evaluated. We discuss the criteria with which species are assigned to guilds, the association of guilds with specific communities, the resource classes on which guilds are based, and the competitive relationships between species of a guild. W...

  1. Russian conceptions of plant life management and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bugaenko, S.E.; Butorin, S.L.

    2000-01-01

    Plant life management (PLIM) of nuclear power plant is the concept and practice to provide profitability of safe operation of nuclear electricity-generating installations. Therefore, application of the PLIM technology is a unique possibility for the nuclear power not only to preserve its presence at the generated electricity market but also to enlarge it there at the first quarter of the third millennium. PLIM is considered as the concept and procedure covering the whole life cycle of NPP, consisting of three main phases: pre-operation, operation, post-operation. When considering the list of the main standard works for PLIM, one can notice that the structure of a full volume of works can be presented as the sum of two constituents: specific for a particular power unit and universal one. A specific constituent implies realising the PLIM process at a particular power unit, and universal one implies development scientific-methodological, technological and normative basis supporting PLIM process. The concept of decommissioning NPP power units was developed and adopted in 1991, and nowadays is renewed. Its main principles and provisions correspond to a general approach to decommissioning nuclear power plants which was adopted in international practice and recommended in the IAEA documents. Elimination of NPP power unit is adopted in it as the basic option

  2. Combined Effects of Medicinal Plants on Induced Upper ...

    African Journals Online (AJOL)

    Combined Effects of Medicinal Plants on Induced Upper Gastrointestinal Tract Injury ... treated in different doses of single and combined extracts of Allium sativum, ... was no visible sign of ulceration or perforation observed on the stomach and ...

  3. Technical and economical analysis of concepts for using the heat of biogas plants in rural areas; Technische und betriebswirtschaftliche Analyse von Konzepten zur ganzjaehrigen Nutzung der Abwaerme einer Biogasanlage im dezentralen laendlichen Raum

    Energy Technology Data Exchange (ETDEWEB)

    Kaths, Friederike Annette

    2012-08-15

    Since the implementation of the EEG in Germany the biogas production becomes an independent branch of industry in the agriculture. At this time more than 90 percent of the biogas plants work with co-generation plant for heat and power with a thermal engine efficiencies of more than 50 percent. Because of the location in the rural area heat costumers with a continuous demand of heat over the whole year are rare. This research had a closer look how to use the heat of biogas production efficiently and also generating profit. The aim of the study was to use heat over the whole year, a profitable heat concept without counting the KWK-bonus and an added value on the farm. During the study the following concepts were analyzed: asparagus production using soil heating, drying equipment for different products, the production of fish in aquaculture, the poultry production and the heated production of tomatoes. The results showed different concepts using heat of biogas plants as efficient for farmers. However with only one concept the aims - to use the heat over the whole year, generating a profitable heat concept without counting the KWK-bonus, add an value on the farm - mostly can not be achieved. The combination of different heat concepts is necessary. In this analysis the poultry production in combination with the dryer can be considered as the most efficient concept. Bearing in mind the benefit which can be generated with a heat concept as well as the higher income and the higher technical efficiency of biogas plants operators should implement an individual concept for their heat.

  4. Personnel planning and employment: Organizational concepts for safer power plant operation

    International Nuclear Information System (INIS)

    Mueller, K.H.

    1984-01-01

    Well thought out plant-specific organisation, proper staff selection, careful training, far-sighted management and an optimum man-machine relationship; this together guarantees problem-free operation of nuclear power plants. Organizational concepts must not be considered as statistical values. The management must maintain the capacity of re-thinking and, if necessary, leaving the beaten track of organizational routines. (orig./HSCH) [de

  5. Comparative numerical and experimental study of two combined wind and wave energy concepts

    Directory of Open Access Journals (Sweden)

    Zhen Gao

    2016-01-01

    Full Text Available With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years, there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines (WTs with wave energy converters (WECs. In the EU FP7 MARINA Platform project, three floating combined concepts, namely the spar torus combination (STC, the semi-submersible flap combination (SFC and the oscillating water column (OWC array with a wind turbine, were selected and studied in detail by numerical and experimental methods. This paper summarizes the numerical modeling and analysis of the two concepts: STC and SFC, the model tests at a 1:50 scale under simultaneous wave and wind excitation, as well as the comparison between the numerical and experimental results. Both operational and survival wind and wave conditions were considered. The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory (for SFC or simplified thrust force model (for STC for aerodynamics. Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off (PTO system for wave energy conversion by pneumatic damper or hydraulic rotary damper. In order to reduce the uncertainty due to scaling, the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison. The comparison shows that the current numerical model can well predict the responses (motions, PTO forces, power production of the combined concepts for most of the cases. However, the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the

  6. Optimization of the triple-pressure combined cycle power plant

    Directory of Open Access Journals (Sweden)

    Alus Muammer

    2012-01-01

    Full Text Available The aim of this work was to develop a new system for optimization of parameters for combined cycle power plants (CCGTs with triple-pressure heat recovery steam generator (HRSG. Thermodynamic and thermoeconomic optimizations were carried out. The objective of the thermodynamic optimization is to enhance the efficiency of the CCGTs and to maximize the power production in the steam cycle (steam turbine gross power. Improvement of the efficiency of the CCGT plants is achieved through optimization of the operating parameters: temperature difference between the gas and steam (pinch point P.P. and the steam pressure in the HRSG. The objective of the thermoeconomic optimization is to minimize the production costs per unit of the generated electricity. Defining the optimal P.P. was the first step in the optimization procedure. Then, through the developed optimization process, other optimal operating parameters (steam pressure and condenser pressure were identified. The developed system was demonstrated for the case of a 282 MW CCGT power plant with a typical design for commercial combined cycle power plants. The optimized combined cycle was compared with the regular CCGT plant.

  7. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Sarraf Borelli, Samuel Jose [Promon Engenharia Ltda., Av. Presidente Juscelino Kubitschek, 1830, Itaim, CEP:04543-900 Sao Paulo/SP (Brazil)], E-mail: sborelli@terra.com.br; Oliveira Junior, Silvio de [Environmental and Thermal Engineering Laboratory, Polytechnic School, University of Sao Paulo, Av. Prof. Luciano Gualberto, 1289, Cidade Universitaria, CEP:05508-900 Sao Paulo/SP (Brazil)], E-mail: silvio.oliveira@poli.usp.br

    2008-02-15

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any nx1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters.

  8. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Borelli, Samuel Jose Sarraf [Promon Engenharia Ltda., Av. Presidente Juscelino Kubitschek, 1830, Itaim, CEP:04543-900 Sao Paulo/SP (Brazil); De Oliveira Junior, Silvio [Environmental and Thermal Engineering Laboratory, Polytechnic School, University of Sao Paulo, Av. Prof. Luciano Gualberto, 1289, Cidade Universitaria, CEP:05508-900 Sao Paulo/SP (Brazil)

    2008-02-15

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any n x 1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters. (author)

  9. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    International Nuclear Information System (INIS)

    Sarraf Borelli, Samuel Jose; Oliveira Junior, Silvio de

    2008-01-01

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any nx1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters

  10. Steam producing plant concept of 4S for oil sand extraction

    International Nuclear Information System (INIS)

    Matsuyama, Shinichiro; Nishiguchi, Youhei; Sakashita, Yoshiaki; Kasuga, Shoji; Kawashima, Masatoshi

    2009-01-01

    Plant concept of small fast reactor '4S' applying to continuous steam production for recovery of crude oil from oil sands was investigated. Assuming typical steam assisted gravity drainage (SAGD) plant whose production scale is 120,000 barrels per day of a crude oil, concept of nuclear steam supply system consisting of eight reactor modules for steam production and three reactor modules for electric generation of the 4S with a thermal rating of 135 MWt was established without any essential or significant design change from the preceding 4S with a thermal rating of 30 MWt. The 4S, provided for an oil sand extraction, will reduce greenhouse gas emission significantly, and has not much burden for development and licensing and has economic competitiveness. (author)

  11. Large Combined Heat and Power Plants for Sustainable Energy System

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    . CHP (combined heat and power) plants in Denmark will change their role from base load production to balancing the fluctuation in renewable energy supply, such as wind power and at the same time they have to change to renewable energy sources. Some solutions are already being planned by utilities...... in Denmark; conversion of pulverised fuel plants from coal to wood pellets and a circulating fluidised bed (CFB) plant for wood chips. From scientific research projects another solution is suggested as the most feasible; the combined cycle gas turbine (CCGT) plant. In this study a four scenarios...

  12. The Re-injection Loop concept

    DEFF Research Database (Denmark)

    Holst Fischer, Christian; Malmgren-Hansen, Bjørn; Uellendahl, Hinrich

    per ton. Based on previous studies on using pretreatment for enhancing the biogas yield of these feedstocks, a new concept called Re-Injection Loop was developed by combining separation and recirculation of the digested fiber fraction with pretreatment of the recalcitrant lignocellulosic fiber...... fraction. The EU project BIOMAN is currently investigating different technologies for separation, mechanical pretreatment and enzymatic hydrolysis to establish an economically viable concept for manure-based biogas plants....

  13. Alternative ORC bottoming cycles FOR combined cycle power plants

    International Nuclear Information System (INIS)

    Chacartegui, R.; Sanchez, D.; Munoz, J.M.; Sanchez, T.

    2009-01-01

    In this work, low temperature Organic Rankine Cycles are studied as bottoming cycle in medium and large scale combined cycle power plants. The analysis aims to show the interest of using these alternative cycles with high efficiency heavy duty gas turbines, for example recuperative gas turbines with lower gas turbine exhaust temperatures than in conventional combined cycle gas turbines. The following organic fluids have been considered: R113, R245, isobutene, toluene, cyclohexane and isopentane. Competitive results have been obtained for toluene and cyclohexane ORC combined cycles, with reasonably high global efficiencies. The paper is structured in four main parts. A review of combined cycle and ORC cycle technologies is presented, followed by a thermodynamic analysis of combined cycles with commercial gas turbines and ORC low temperature bottoming cycles. Then, a parametric optimization of an ORC combined cycle plant is performed in order to achieve a better integration between these two technologies. Finally, some economic considerations related to the use of ORC in combined cycles are discussed.

  14. 'Living PRA' concept for plant risk: Reliability and availability tracking

    International Nuclear Information System (INIS)

    Sancaktar, S.; Sharp, D.R.

    1985-01-01

    The 'Living PRA' (Probabilistic Risk Assessment) is based on placing a PRA plant model on an interactive computer. This model consists of fault tree analyses for plant systems, event tree analyses for abnormal events and site specific consequence analysis for public and/or financial risks, for a nuclear power plant. A living PRA allows updates and sensitivity analyses by the plant owner throughout the lifetime of a plant. Recently, event and fault trees from two major PRAs were placed in a computerized format. The BYRON PRA study and the Living PRA and Economic Risk examples for Indian Point Unit-3 enabled analysts to gain experience and insight into the problems of plant operation. The above concept is well established for the Nuclear Power Plant evaluation. It has been also used for evaluation of processing facilities. In these studies, systems modeling was carried out by using the GRAFTER system for automated fault tree construction. Presently both the tools and the experience exists to set up useful and viable living PRA models for nuclear and chemical processing plants to enhance risk management by the plant owners through in-house use of micro computer based models

  15. Modern handling and monitoring concepts for nuclear power plants

    International Nuclear Information System (INIS)

    Hofmann, H.; Lochner, K.H.

    1989-01-01

    Advanced microprocessor technology offers new means and methods also to power plant operation to improve the man-machine interface by using VDU's for process control, thus enhancing plant safety and reliability. A future control-room concept involving operation and monitoring to be effected by means of VDU's exclusively, calls for a detailed knowledge of the requirements which are made by the process and the operator on the system, and for the application of a very powerful microprocessor technology. Visualization of operating and monitoring processes matched to the needs of operators should be possible at high functionality and display quality without substantial restrictions caused by the device technology used. (orig.) [de

  16. Concepts in production ecology for analysis and quantification of agricultural input-output combinations.

    NARCIS (Netherlands)

    Ittersum, van M.K.; Rabbinge, R.

    1997-01-01

    Definitions and concepts of production ecology are presented as a basis for development of alternative production technologies characterized by their input-output combinations. With these concepts the relative importance of several growth factors and inputs is investigated to explain actual yield

  17. International safeguards for a light-water reactor fuels reprocessing plant: containment and surveillance concepts

    International Nuclear Information System (INIS)

    Cameron, C.P.; Bleck, M.E.

    1980-12-01

    Concepts for containment/surveillance for reprocessing plants are described, conceptual designs are developed, and their effectiveness is evaluated. A technical approach to design of containment/surveillance systems is presented, and design considerations are discussed. This is the second in a series of reports. The first described the basis for the study of international safeguards for reprocessing plants. In this second report, only containment/surveillance is discussed. The third report will discuss the integration of concepts for containment/surveillance and material accountancy

  18. New fundamental evidence of non-classical structure in the combination of natural concepts.

    Science.gov (United States)

    Aerts, D; Sozzo, S; Veloz, T

    2016-01-13

    We recently performed cognitive experiments on conjunctions and negations of two concepts with the aim of investigating the combination problem of concepts. Our experiments confirmed the deviations (conceptual vagueness, underextension, overextension etc.) from the rules of classical (fuzzy) logic and probability theory observed by several scholars in concept theory, while our data were successfully modelled in a quantum-theoretic framework developed by ourselves. In this paper, we isolate a new, very stable and systematic pattern of violation of classicality that occurs in concept combinations. In addition, the strength and regularity of this non-classical effect leads us to believe that it occurs at a more fundamental level than the deviations observed up to now. It is our opinion that we have identified a deep non-classical mechanism determining not only how concepts are combined but, rather, how they are formed. We show that this effect can be faithfully modelled in a two-sector Fock space structure, and that it can be exactly explained by assuming that human thought is the superposition of two processes, a 'logical reasoning', guided by 'logic', and a 'conceptual reasoning', guided by 'emergence', and that the latter generally prevails over the former. All these findings provide new fundamental support to our quantum-theoretic approach to human cognition. © 2015 The Author(s).

  19. The marketing concept of nuclear power plant constructors

    International Nuclear Information System (INIS)

    Czakainski, M.

    1980-01-01

    The paper examines the largely non-investigated area of marketing theory and energy sciences. The author considers the structure of the nuclear power industry and of marketing, analyses the nuclear power station market and its factors of influence, and gives a market forecast. The marketing concept requires especially a typologization of the investment good nuclear power plant. Project-dependent and project-independent marketing activities are coordinated in a marketing programme, and are integrated into mixed marketing efforts. Problems result from insecurity related to the further development of political, social and economic factors of influence. Constructors of nuclear power plants in the Federal Republic of Germany have to adapt to this insecurity and to face risks presented by entrepreneurial activities and the environment by means of flexible planning. (HSCH) [de

  20. Verifying Identities of Plant-Based Multivitamins Using Phytochemical Fingerprinting in Combination with Multiple Bioassays.

    Science.gov (United States)

    Lim, Yeni; Ahn, Yoon Hee; Yoo, Jae Keun; Park, Kyoung Sik; Kwon, Oran

    2017-09-01

    Sales of multivitamins have been growing rapidly and the concept of natural multivitamin, plant-based multivitamin, or both has been introduced in the market, leading consumers to anticipate additional health benefits from phytochemicals that accompany the vitamins. However, the lack of labeling requirements might lead to fraudulent claims. Therefore, the objective of this study was to develop a strategy to verify identity of plant-based multivitamins. Phytochemical fingerprinting was used to discriminate identities. In addition, multiple bioassays were performed to determine total antioxidant capacity. A statistical computation model was then used to measure contributions of phytochemicals and vitamins to antioxidant activities. Fifteen multivitamins were purchased from the local markets in Seoul, Korea and classified into three groups according to the number of plant ingredients. Pearson correlation analysis among antioxidant capacities, amount phenols, and number of plant ingredients revealed that ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryhydrazyl (DPPH) assay results had the highest correlation with total phenol content. This suggests that FRAP and DPPH assays are useful for characterizing plant-derived multivitamins. Furthermore, net effect linear regression analysis confirmed that the contribution of phytochemicals to total antioxidant capacities was always relatively higher than that of vitamins. Taken together, the results suggest that phytochemical fingerprinting in combination with multiple bioassays could be used as a strategy to determine whether plant-derived multivitamins could provide additional health benefits beyond their nutritional value.

  1. Aging and lifetime management - A plant-wide concept and examples for realization

    International Nuclear Information System (INIS)

    Erve, M.

    1998-01-01

    planning of maintenance and backfitting activities; the reduction of maintenance costs. Moreover, many investments can be coupled with an improvement in efficiency, uprating, or a combination of these. The concept works on four levels of different amounts of service integration: parts of components, components, systems, or whole plants. It has been applied so far to individual components and systems in Siemens/KWU plants and in plants of other system suppliers. Examples are presented in the paper. (author)

  2. Power generation based on biomass by combined fermentation and gasification--a new concept derived from experiments and modelling.

    Science.gov (United States)

    Methling, Torsten; Armbrust, Nina; Haitz, Thilo; Speidel, Michael; Poboss, Norman; Braun-Unkhoff, Marina; Dieter, Heiko; Kempter-Regel, Brigitte; Kraaij, Gerard; Schliessmann, Ursula; Sterr, Yasemin; Wörner, Antje; Hirth, Thomas; Riedel, Uwe; Scheffknecht, Günter

    2014-10-01

    A new concept is proposed for combined fermentation (two-stage high-load fermenter) and gasification (two-stage fluidised bed gasifier with CO2 separation) of sewage sludge and wood, and the subsequent utilisation of the biogenic gases in a hybrid power plant, consisting of a solid oxide fuel cell and a gas turbine. The development and optimisation of the important processes of the new concept (fermentation, gasification, utilisation) are reported in detail. For the gas production, process parameters were experimentally and numerically investigated to achieve high conversion rates of biomass. For the product gas utilisation, important combustion properties (laminar flame speed, ignition delay time) were analysed numerically to evaluate machinery operation (reliability, emissions). Furthermore, the coupling of the processes was numerically analysed and optimised by means of integration of heat and mass flows. The high, simulated electrical efficiency of 42% including the conversion of raw biomass is promising for future power generation by biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. SWR 1000: The new boiling water reactor power plant concept

    International Nuclear Information System (INIS)

    Brettschuh, W.

    1999-01-01

    Siemens' Power Generation Group (KWU) is currently developing - on behalf of and in close co-operation with the German nuclear utilities and with support from various European partners - the boiling water reactor SWR 1000. This advanced design concept marks a new era in the successful tradition of boiling water reactor technology in Germany and is aimed, with an electric output of 1000 MW, at assuring competitive power generating costs compared to large-capacity nuclear power plants as well as coal-fired stations, while at the same time meeting the highest of safety standards, including control of a core melt accident. This objective is met by replacing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation on the basis of past operating experience. A short construction period, flexible fuel cycle lengths of between 12 and 24 months and a high fuel discharge burnup all contribute towards meeting this goal. The design concept fulfils international nuclear regulatory requirements and will reach commercial maturity by the year 2000. (author)

  4. An integral reactor design concept for a nuclear co-generation plant

    International Nuclear Information System (INIS)

    Lee, D.J.; Kim, J.I.; Kim, K.K.; Chang, M.H.; Moon, K.S.

    1997-01-01

    An integral reactor concept for nuclear cogeneration plant is being developed at KAERI as an attempt to expand the peaceful utilization of well established commercial nuclear technology, and related industrial infrastructure such as desalination technology in Korea. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway to evaluate the characteristics of various passive safety concepts and provide the proper technical data for the conceptual design. This paper describes the preliminary safety and design concepts of the advanced integral reactor. Salient features of the design are hexagonal core geometry, once-through helical steam generator, self-pressurizer, and seismic resistant fine control CEDMS, passive residual heat removal system, steam injector driven passive containment cooling system. (author)

  5. Combined cycle plant controls retrofit case history

    International Nuclear Information System (INIS)

    Tenney, D.; Pieszchala, T.

    1991-01-01

    The Comanche Power Station, Public Service of Oklahoma's combined cycle generating facility, underwent a controls and operator panel retrofit at the end of 1988. The plant consists of two gas turbines, two heat recovery boilers and a steam turbine along with three generators. This paper examines the extent to which the original goals and specifications were met. Costs, operating principles and modifications since the original installation are discussed. Operating procedures are compared with the original system. The future of the plant is discussed and the impact on the power system grid is analyzed

  6. The Implementation of Physics Problem Solving Strategy Combined with Concept Map in General Physics Course

    Science.gov (United States)

    Hidayati, H.; Ramli, R.

    2018-04-01

    This paper aims to provide a description of the implementation of Physic Problem Solving strategy combined with concept maps in General Physics learning at Department of Physics, Universitas Negeri Padang. Action research has been conducted in two cycles where each end of the cycle is reflected and improved for the next cycle. Implementation of Physics Problem Solving strategy combined with concept map can increase student activity in solving general physics problem with an average increase of 15% and can improve student learning outcomes from 42,7 in the cycle I become 62,7 in cycle II in general physics at the Universitas Negeri Padang. In the future, the implementation of Physic Problem Solving strategy combined with concept maps will need to be considered in Physics courses.

  7. Plant critical concept

    International Nuclear Information System (INIS)

    O'Regan, P.J.

    1996-01-01

    The objective of the effort summarized in this paper is to support O and M cost reduction efforts by focusing resources on components and processes critical to plant performance. This effort will identify where resources on nonplant critical components and processes can be reduced or eliminated. This method will use a functional assessment as the basis for component-specific evaluations and ranking. This effort consists of two stages conducted in series. The first stage is to deterministically identify that set of plant components that are relevant from a plant performance perspective (i.e., safety, economics, reliability). The second stage probabilistically ranks that set of plant components from an importance perspective, where importance pertains to the particular application and is probabilistically weighted. The results of a pilot study identified that only a relatively small set of components are truly critical from an integrated plant performance perspective. These results are consistent with work being conducted at other nuclear power plants, as well as other commercial facilities. Initial implementation of this effort is estimated to reduce O and M costs on the order of $1 million per year. Subsequent applications are anticipated to increase that savings to $4--$5 million per year

  8. Are combined cycle plants being driven to zero discharge?

    International Nuclear Information System (INIS)

    Sinha, P.K.; Narula, R.G.; Weidinger, G.F.

    1991-01-01

    This paper discusses the water-related environmental issues of siting combined cycle plants, including availability of plant makeup water and wastewater discharge. The need for water treatment equipment for waste minimization, recycle, and/or zero discharge is discussed. The key water-related permit issues and preliminary design commitments are demonstrated via case histories

  9. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress.

    Directory of Open Access Journals (Sweden)

    Nobuhiro Suzuki

    Full Text Available Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses.

  10. Sea water pumping-up power plant system combined with nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Tanaka, Masayuki.

    1991-01-01

    It is difficult to find a site suitable to construction for a sea water pumping-up power plant at a place relatively near the electric power consumption area. Then, a nuclear power plant is set at the sea bottom or the land portion of a sea shore near the power consumption area. A cavity is excavated underground or at the bottom of the sea in the vicinity of the power plant to form a lower pond, and the bottom of the sea, as an upper pond and the lower pond are connected by a water pressure pipe and a water discharge pipe. A pump water turbine is disposed therebetween, to which electric power generator is connected. In addition, an ordinary or emergency cooling facility in the nuclear power plant is constituted such that sea water in the cavity is supplied by a sea water pump. Accordingly, the sea water pumping-up plant system in combination with the nuclear power plant is constituted with no injuring from salts to animals and plants on land in the suburbs of a large city. The cost for facilities for supplying power from a remote power plant to large city areas and power loss are decreased and stable electric power can be supplied. (N.H.)

  11. Combined cycle power plants: technological prospects for improving the efficiency

    International Nuclear Information System (INIS)

    Lauri, R.

    2009-01-01

    The combined cycle power plants characteristics are better than one course open to a closed loop presenting an electrical efficiency close to 60% do not reach for gas turbine engines for power plants and conventional steam engines. [it

  12. Combined production of fish and plants in recirculating water

    Energy Technology Data Exchange (ETDEWEB)

    Naegel, L.C.A.

    1977-01-01

    A pilot plant of ca 2000 l of recirculating fresh water for intensive fish production was constructed in a controlled-environment greenhouse. The feasibility was examined of using nutrients from fish wastewater, mainly oxidized nitrogenous compounds, for plant production, combined with an activated sludge system for water purification. The reduction of nitrates, formed during the extended aeration process by nitrifying bacteria, was not sufficient by higher plants and unicellular algae alone to reduce the nitrate concentration in our system significantly. An additional microbial denitrification step had to be included to effect maximal decrease in nitrogenous compounds. For fish culture in the pilot plant Tilapia mossambica and Cyprinus carpio were chosen as experimental fishes. Both fish species showed significant weight increases during the course of the experiment. Ice-lettuce and tomatoes were tested both in recirculating water and in batch culture. The unicellular algae Scenedesmus spp. were grown in a non-sterile batch culture. All plants grew well in the wastewater without additional nutrients. Determination of the physical and chemical parameters for optimum water purification, the most suitable ratio of denitrification by plants and by microorganisms, and the most favourable fish and plant species for combined culture in recirculating water are important and of current interest in view of the increasing demand for clean, fresh water, and the pressing need to find new ways of producing protein for human nutrition under prevailing conditions of an exponentially expanding world population.

  13. Concept of a computer network architecture for complete automation of nuclear power plants

    International Nuclear Information System (INIS)

    Edwards, R.M.; Ray, A.

    1990-01-01

    The state of the art in automation of nuclear power plants has been largely limited to computerized data acquisition, monitoring, display, and recording of process signals. Complete automation of nuclear power plants, which would include plant operations, control, and management, fault diagnosis, and system reconfiguration with efficient and reliable man/machine interactions, has been projected as a realistic goal. This paper presents the concept of a computer network architecture that would use a high-speed optical data highway to integrate diverse, interacting, and spatially distributed functions that are essential for a fully automated nuclear power plant

  14. Plant critical concept

    International Nuclear Information System (INIS)

    O'Regan, P.J.

    1995-01-01

    The achievement of operation and maintenance (O ampersand M) cost reductions is a prime concern for plant operators. Initiatives by the nuclear industry to address this concern are under way and/or in development. These efforts include plant reliability studies, reliability-centered maintenance, risk ranking and testing philosophies, performance-based testing philosophies, graded quality assurance, and so forth. This paper presents the results of an effort to develop a methodology that integrates and applies the common data and analysis requirements for a number of risk-based and performance-based initiatives. This initial phase of the effort applied the methodology and its results to two initiatives. These were the procurement function and the preventive maintenance function. This effort integrated multiple programs and functions to identify those components that are truly critical from an integrated plant performance perspective. The paper describes the scope of the effort, the development of a methodology to identify plant critical components, and the application of these results to the maintenance rule compliance, preventive maintenance, and procurement functions at the candidate plant

  15. Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi.

    Science.gov (United States)

    Meyer, Susan L F; Roberts, Daniel P

    2002-03-01

    Numerous microbes are antagonistic to plant-parasitic nematodes and soilborne plant-pathogenic fungi, but few of these organisms are commercially available for management of these pathogens. Inconsistent performance of applied biocontrol agents has proven to be a primary obstacle to the development of successful commercial products. One of the strategies for overcoming inconsistent performance is to combine the disease-suppressive activity of two (or more) beneficial microbes in a biocontrol preparation. Such combinations have potential for more extensive colonization of the rhizosphere, more consistent expression of beneficial traits under a broad range of soil conditions, and antagonism to a larger number of plant pests or pathogens than strains applied individually. Conversely, microbes applied in combination also may have antagonistic interactions with each other. Increased, decreased, and unaltered suppression of the target pathogen or pest has been observed when biocontrol microbes have been applied in combination. Unfortunately, the ecological basis for increased or decreased suppression has not been determined in many cases and needs further consideration. The complexity of interactions involved in the application of multiple organisms for biological control has slowed progress toward development of successful formulations. However, this approach has potential for overcoming some of the efficacy problems that occur with application of individual biocontrol agents.

  16. Review of the Commission program for standardization of nuclear power plants and recommendations to improve standardization concepts

    International Nuclear Information System (INIS)

    1978-02-01

    This is a report of a staff study describing the need and utility of specific changes to the Commission's standardization program. The various matters considered in the study include: (1) A discussion of industry use to date of the standardization program. (2) A discussion of the experience to date with each of the standardization concepts. (3) A review of public comments on the standardization program and the staff response to each principal comment. (4) A review of the need for standardization considering the likely number of license applications to be submitted in the coming years. (5) A discussion of the reference system concept, including review of applicable experience and recommended changes to the concept. (6) A discussion of the duplicate plant concept, including review of applicable experience and recommended changes to the concept. (7) A discussion of the manufacturing license concept, including review of applicable experience and recommended changes to the concept. (8) A discussion of the replicate plant concept, including review of applicable experience and recommended changes to the concept. (9) A discussion of the effective periods for approved designs under all four standardization concepts. (10) A description of continuing staff activities related to the standardization program

  17. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  18. Integrated operation and management system for a 700MW combined cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shiroumaru, I. (Yanai Power Plant Construction Office, Chugoku Electric Power Co., Inc., 1575-5 Yanai-Miyamoto-Shiohama, Yanai-shi, Yamaguchi-ken (JP)); Iwamiya, T. (Omika Works, Hitachi, Ltd., 5-2-1 Omika-cho, Hitachi-shi, Ibaraki-ken (JP)); Fukai, M. (Hitachi Works, Hitachi, Ltd., 3-1-1 Saiwai-cho, Hitachi-shi, Ibaraki-ken (JP))

    1992-03-01

    Yanai Power Plant of the Chugoku Electric Power Co., Inc. (Yamaguchi Pref., Japan) is in the process of constructing a 1400MW state-of-the-art combined cycle power plant. The first phase, a 350MW power plant, started operation on a commercial basis in November, 1990. This power plant has achieved high efficiency and high operability, major features of a combined cycle power plant. The integrated operation and management system of the power plant takes care of operation, maintenance, control of general business, etc., and was built using the latest computer and digital control and communication technologies. This paper reports that it is expected that this system will enhance efficient operation and management for the power plant.

  19. Thermodynamic analysis of heat recovery steam generator in combined cycle power plant

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Naradasu

    2007-01-01

    Full Text Available Combined cycle power plants play an important role in the present energy sector. The main challenge in designing a combined cycle power plant is proper utilization of gas turbine exhaust heat in the steam cycle in order to achieve optimum steam turbine output. Most of the combined cycle developers focused on the gas turbine output and neglected the role of the heat recovery steam generator which strongly affects the overall performance of the combined cycle power plant. The present paper is aimed at optimal utilization of the flue gas recovery heat with different heat recovery steam generator configurations of single pressure and dual pressure. The combined cycle efficiency with different heat recovery steam generator configurations have been analyzed parametrically by using first law and second law of thermodynamics. It is observed that in the dual cycle high pressure steam turbine pressure must be high and low pressure steam turbine pressure must be low for better heat recovery from heat recovery steam generator.

  20. Antibacterial activity of combined medicinal plants extract against multiple drug resistant strains

    Directory of Open Access Journals (Sweden)

    Rafiqul Islam

    2015-06-01

    Full Text Available Objective: To find out the combined antibacterial efficacy of Aegle marmelos, Aphanamixis polystachya, Cuscuta reflexa and Aesclynomene indica against bacterial pathogens. Methods: Antibacterial potency of combined plant extracts has been tested against Bacillus subtilis IFO 3026, Sarcina lutea IFO 3232, Xanthomonas campestris IAM 1671, Escherichia coli IFO 3007, Klebsiella pneumoniae ATTC 10031, Proteus vulgaris MTCC 321 and Pseudomonas denitrificans KACC 32026 by disc diffusion assay. Commercially available standard antibiotic discs were also used to find out antibiotic resistance pattern of test organisms. Results: Among the test organisms, Escherichia coli, Proteus vulgaris, Klebsiella pneumoniae and Proteus denitrificans showed resistance against multiple commercially available antibiotics. On the other hand, these multiple drug resistant organisms showed susceptibility against combined plant extracts. Conclusions: These combined plants extracts showed synergistic antibacterial activity and could lead to new antibacterial drug designing.

  1. Biomass Supply Planning for Combined Heat and Power Plants using Stochastic Programming

    DEFF Research Database (Denmark)

    Guericke, Daniela; Blanco, Ignacio; Morales González, Juan Miguel

    method using stochastic optimization to support the biomass supply planning for combined heat and power plants. Our two-phase approach combines mid-term decisions about biomass supply contracts with the short-term decisions regarding the optimal market participation of the producer to ensure......During the last years, the consumption of biomass to produce power and heat has increased due to the new carbon neutral policies. Nowadays, many district heating systems operate their combined heat and power (CHP) plants using different types of biomass instead of fossil fuel, especially to produce......, and heat demand and electricity prices vary drastically during the planning period. Furthermore, the optimal operation of combined heat and power plants has to consider the existing synergies between the power and heating systems while always fulfilling the heat demand of the system. We propose a solution...

  2. The evolution of the break preclusion concept for nuclear power plants in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany)

    1997-04-01

    In the updating of the Guidelines for PWR`s of the {open_quotes}Reaktor-Sicherheitskommission{close_quotes} (RSK) in 1981 the requirements on the design have been changed with respect to the postulated leaks and breaks in the primary pressure boundary. The major change was a revision in the requirements for pipe whip protection. As a logical consequence of the {open_quotes}concept of basic safety{close_quotes} a guillotine type break or any other break type resulting in a large opening is not postulated any longer for the calculation of reaction and jet forces. As an upper limit for a leak an area of 0, 1 A (A = open cross section of the pipe) is postulated. This decision was based on a general assessment of the present PWR system design in Germany. Since then a number of piping systems have been requalified in the older nuclear power plants to comply with the break preclusion concept. Also a number of extensions of the concept have been developed to cover also leak-assumptions for branch pipes. Furthermore due considerations have been given to other aspects which could contribute to a leak development in the primary circuit, like vessel penetrations, manhole covers, flanges, etc. Now the break preclusion concept originally applied to the main piping has been developed into an integrated concept for the whole pressure boundary within the containment and will be applied also in the periodic safety review of present nuclear power plants.

  3. Nuclear heat generating plants - technical concepts and market potentials. Chapter 11

    International Nuclear Information System (INIS)

    Hasenkopf, O.; Erhard, W.D.; Nonnenmacher, A.; Hanselmann, M.

    1988-01-01

    Within the framework of a case study under the Federal Ministry of Research and Technology project 'Nuclear heat generating plants - technological concepts and market potentials', the possible applications of such plants were studied giving the district heat supply network of the Technische Werke der Stadt Stuttgart AG (Technical Works of the City of Stuttgart, Inc.) as an example. The use of district heating systems concentrated specifically on areas identified for economical supply because of their topographical position, existing heat density, distance from power plants, and a reasonable delimination from the available gas network. Based on the results of optimization calculations made by the Stuttgart Institute for Nuclear Technology and Energy Conversion, the required investment capital can be estimated as a function of the amount of fuel savings under the Stuttgart case study. (orig./UA) [de

  4. A new small HTGR power plant concept with inherently safe features--An engineering and economic challenge

    International Nuclear Information System (INIS)

    McDonald, C.F.; Sonn, D.L.

    1983-01-01

    This paper outlines a small nuclear plant concept which is not meant to replace the large nuclear power plants that will continue to be needed by the industrialized nations, but rather recognizes the needs of the smaller energy user, both for special applications in the US and for the developing nations. The small High-Temperature Gas-Cooled Reactor (HTGR), whose introduction will be very dependent on market forces, represents only one approach to meet these needs. The design of a small power plant that could be inherently safer and that might have costs less than those indicated by the traditional reverse-economy-of-scale effect is discussed. Topics considered include power plant economics, the small steam cycle HTGR thermodynamic cycle, the reactor nuclear heat source layout, the reactor heat removal system (main loop cooling, a vessel cooling system with reactor pressurized, vessel cooling system with reactor depressurized), safety considerations, investment risk protection, the technology base, and applications for the small HTGR plant concept

  5. Production costs: U.S. gas turbine ampersand combined-cycle power plants

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This fourth edition of UDI's gas turbine O ampersand M cost report gives 1991 operation and maintenance expenses for over 450 US gas turbine power plants. Modeled on UDI's popular series of O ampersand M cost reports for US steam-electric plants, this report shows operator and plant name, plant year-in-service, installed capacity, 1991 net generation, total fuel expenses, total non-fuel O ampersand M expenses, total production costs, and current plant capitalization. Coverage includes over 90 percent of the utility-owned gas/combustion turbine and combined-cycle plants installed in the country

  6. Improvement of environmental aspects of thermal power plant operation by advanced control concepts

    Directory of Open Access Journals (Sweden)

    Mikulandrić Robert

    2012-01-01

    Full Text Available The necessity of the reduction of greenhouse gas emissions, as formulated in the Kyoto Protocol, imposes the need for improving environmental aspects of existing thermal power plants operation. Improvements can be reached either by efficiency increment or by implementation of emission reduction measures. Investments in refurbishment of existing plant components or in plant upgrading by flue gas desulphurization, by primary and secondary measures of nitrogen oxides reduction, or by biomass co-firing, are usually accompanied by modernisation of thermal power plant instrumentation and control system including sensors, equipment diagnostics and advanced controls. Impact of advanced control solutions implementation depends on technical characteristics and status of existing instrumentation and control systems as well as on design characteristics and actual conditions of installed plant components. Evaluation of adequacy of implementation of advanced control concepts is especially important in Western Balkan region where thermal power plants portfolio is rather diversified in terms of size, type and commissioning year and where generally poor maintenance and lack of investments in power generation sector resulted in high greenhouse gases emissions and low efficiency of plants in operation. This paper is intended to present possibilities of implementation of advanced control concepts, and particularly those based on artificial intelligence, in selected thermal power plants in order to increase plant efficiency and to lower pollutants emissions and to comply with environmental quality standards prescribed in large combustion plant directive. [Acknowledgements. This paper has been created within WBalkICT - Supporting Common RTD actions in WBCs for developing Low Cost and Low Risk ICT based solutions for TPPs Energy Efficiency increasing, SEE-ERA.NET plus project in cooperation among partners from IPA SA - Romania, University of Zagreb - Croatia and Vinca

  7. Cost-benefit analysis for combined heat and power plant

    International Nuclear Information System (INIS)

    Sazdovski, Ace; Fushtikj, Vangel

    2004-01-01

    The paper presents a methodology and practical application of Cost-Benefit Analysis for Combined Heat and Power Plant (Cogeneration facility). Methodology include up-to-date and real data for cogeneration plant in accordance with the trends ill development of the CHP technology. As a case study a CHP plant that could be built-up in Republic of Macedonia is analyzed. The main economic parameters for project evaluation, such as NPV and IRR are calculated for a number of possible scenarios. The analyze present the economic outputs that could be used as a decision for CHP project acceptance for investment. (Author)

  8. CANDU combined cycles featuring gas-turbine engines

    International Nuclear Information System (INIS)

    Vecchiarelli, J.; Choy, E.; Peryoga, Y.; Aryono, N.A.

    1998-01-01

    In the present study, a power-plant analysis is conducted to evaluate the thermodynamic merit of various CANDU combined cycles in which continuously operating gas-turbine engines are employed as a source of class IV power restoration. It is proposed to utilize gas turbines in future CANDU power plants, for sites (such as Indonesia) where natural gas or other combustible fuels are abundant. The primary objective is to eliminate the standby diesel-generators (which serve as a backup supply of class III power) since they are nonproductive and expensive. In the proposed concept, the gas turbines would: (1) normally operate on a continuous basis and (2) serve as a reliable backup supply of class IV power (the Gentilly-2 nuclear power plant uses standby gas turbines for this purpose). The backup class IV power enables the plant to operate in poison-prevent mode until normal class IV power is restored. This feature is particularly beneficial to countries with relatively small and less stable grids. Thermodynamically, the advantage of the proposed concept is twofold. Firstly, the operation of the gas-turbine engines would directly increase the net (electrical) power output and the overall thermal efficiency of a CANDU power plant. Secondly, the hot exhaust gases from the gas turbines could be employed to heat water in the CANDU Balance Of Plant (BOP) and therefore improve the thermodynamic performance of the BOP. This may be accomplished via several different combined-cycle configurations, with no impact on the current CANDU Nuclear Steam Supply System (NSSS) full-power operating conditions when each gas turbine is at maximum power. For instance, the hot exhaust gases may be employed for feedwater preheating and steam reheating and/or superheating; heat exchange could be accomplished in a heat recovery steam generator, as in conventional gas-turbine combined-cycle plants. The commercially available GateCycle power plant analysis program was applied to conduct a

  9. Thermoeconomic optimization of a combined-cycle solar tower power plant

    International Nuclear Information System (INIS)

    Spelling, James; Favrat, Daniel; Martin, Andrew; Augsburger, Germain

    2012-01-01

    A dynamic model of a pure-solar combined-cycle power plant has been developed in order to allow determination of the thermodynamic and economic performance of the plant for a variety of operating conditions and superstructure layouts. The model was then used for multi-objective thermoeconomic optimization of both the power plant performance and cost, using a population-based evolutionary algorithm. In order to examine the trade-offs that must be made, two conflicting objectives will be considered, namely minimal investment costs and minimal levelized electricity costs. It was shown that efficiencies in the region of 18–24% can be achieved, and this for levelized electricity costs in the region of 12–24 UScts/kWh e , depending on the magnitude of the initial investment, making the system competitive with current solar thermal technology. -- Highlights: ► Pure-solar combined-cycle studied using thermoeconomic tools. ► Multi-objective optimization conducted to determine Pareto-optimal power plant designs. ► Levelised costs between 12 and 24 UScts/kWhe predicted. ► Efficiencies between 18 and 24% predicted.

  10. Some advanced concepts of mobile robotics for plant inspection and maintenance

    International Nuclear Information System (INIS)

    Halme, A.

    1994-01-01

    The paper introduces two concepts in robotics the feasibility of which are presently being studied for plant inspection/maintenance purposes. One of them is a walking machine platform which utilizes walking on discrete set of points making it possible to feed energy trough legs and/or grip on fixing points when needing strong support or climbing on walls. The other is a robot society concept in which the work is distributed among the member robots of the society. The society has an inner communication system trough which information is spread between the members. The control system of the society takes care of the task coordination and communication between the society and the user. As a special feature energy distribution within the society is considered. The concept is suggested for inspection and cleaning type of work in process equipment area and also inside processes in some cases. (author)

  11. Hybrid solar central receiver for combined cycle power plant

    Science.gov (United States)

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  12. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.

    Science.gov (United States)

    Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X

    2016-01-01

    PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.

  13. Concepts for operational period panel seal design at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hansen, F.D.; Lin, M.S.; Van Sambeek, L.L.

    1993-07-01

    Concepts for underground panel or drift seals at the Waste Isolation Pilot Plant are developed to satisfy sealing requirements of the operational period. The concepts are divided into two groups. In the ''NOW'' group, design concepts are considered in which a sleeve structure is installed in the panel access immediately after excavation and before waste is emplaced. In the ''LATER'' group, no special measures are taken during excavation or before waste emplacement; the seal is installed at a later date, perhaps up to 35 years after the drift is excavated. Three concepts are presented in both the NOW and LATER groups. A rigid sleeve, a yielding sleeve, and steel rings with inflatable tubes are proposed as NOW concepts. One steel ring concept and two concrete monoliths are proposed for seals emplaced in older drifts. Advantages and disadvantages are listed for each concept. Based on the available information, it appears most feasible to recommend a LATER concept using a concrete monolith as a preferred seal for the operational period. Each concept includes the potential of remedial grout and/or construction of a chamber that could be used for monitoring leakage from a closed panel during the operational period. Supporting in situ demonstrations of elements of the concepts are recommended

  14. Development of the job concept of a nuclear power plant operator

    International Nuclear Information System (INIS)

    Alpeev, A.S.; Bukrinskii, A.M.

    1994-01-01

    An important conclusion drawn in the aftermath of the 1979 accident at Three Mile Island 2 in the USA, in particular, in discussions, held in Stockholm in 1980 at the International Conference on Safety Problems, of the causes of this accident, was that the plant-operator concept employed at the time in western countries had to be changed. The concept presupposed that the operator's actions must be strictly limited by instructions which supposedly encompass all possible situations associated with the accidents. The principal problem facing the operator in this concept is to identify the situation in which the appropriate instruction can be selected for immediate execution. An error in identifying the situation could influence decisively the evolution of further events in the power block of the nuclear plant, and this is precisely what happened at Three Mile Island 2. For this reason, operator training was based mainly on identifying the initial events, which corresponded to a definite sequence of the further developments owing to the technical scheme and laws of thermophysical processes. Such operator training is based on an event tree which gives a graphical representation of the probable consequences of the development of events in an accident with a given initial event. It is believed that approximately 20 initial events (tree roots) form the basic collection of events, each of which has three to seven branches, i.e., an accident can evolve in several possible directions. Every branch point on each tree is identified by a definite collection of technological parameters, according to which the operator must be able to identify the situation. Under the present concept, when the situation is identified correctly, the search for the required control instruction and its execution is a secondary process

  15. The design of a modular pilot plant based on the adsorber loop concept

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    The main design criteria for a pilot plant producing about 100 t uranium per year from seawater are discussed. The application of the ''adsorber loop concept'' for the contact between seawater and the adsorber granulate enables the employment of high seawater velocities. The seawater flow is accomplished by active pumping and the plant is supposed to be operating far from shores. Besides some informations on the theoretical background the essential engineering considerations are presented. (orig.) [de

  16. Integrated gasification gas combined cycle plant with membrane reactors: Technological and economical analysis

    International Nuclear Information System (INIS)

    Amelio, Mario; Morrone, Pietropaolo; Gallucci, Fausto; Basile, Angelo

    2007-01-01

    In the present work, the capture and storage of carbon dioxide from the fossil fuel power plant have been considered. The main objective was to analyze the thermodynamic performances and the technological aspects of two integrated gasification gas combined cycle plants (IGCC), as well as to give a forecast of the investment costs for the plants and the resulting energy consumptions. The first plant considered is an IGCC* plant (integrated gasification gas combined cycle plant with traditional shift reactors) characterized by the traditional water gas shift reactors and a CO 2 physical adsorption system followed by the power section. The second one is an IGCC M plant (integrated gasification gas combined cycle plant with membrane reactor) where the coal thermal input is the same as the first one, but the traditional shift reactors and the physical adsorption unit are replaced by catalytic palladium membrane reactors (CMR). In the present work, a mono-dimensional computational model of the membrane reactor was proposed to simulate and evaluate the capability of the IGCC M plant to capture carbon dioxide. The energetic performances, efficiency and net power of the IGCC* and IGCC M plants were, thus, compared, assuming as standard a traditional IGCC plant without carbon dioxide capture. The economical aspects of the three plants were compared through an economical analysis. Since the IGCC* and IGCC M plants have additional costs related to the capture and disposal of the carbon dioxide, a Carbon Tax (adopted in some countries like Sweden) proportional to the number of kilograms of carbon dioxide released in the environment was assumed. According to the economical analysis, the IGCC M plant proved to be more convenient than the IGCC* one

  17. Performances of nuclear power plants for combined production of electricity and hot water for district heating

    International Nuclear Information System (INIS)

    Bronzen, S.

    The possibilities for using nuclear power plants for combined production of heat and power seem to be very good in the future. With the chosen 600 MWsub (e) BWR plant a heat output up to 1200 MW can be arranged. An alternative, consisting of steam extractions from the low-pressure turbine, offers a flexible solution for heat and power generation. With this alternative the combined plant can use components from normal condensing nuclear power plants. The flexible extraction design also offers a real possibility for using the combined plant in electric peak generation. However, urban siting requires long distance heat transmission and the pipe design for this transmission is a major problem when planning and optimizing the whole nuclear combined heat and power plant. (author)

  18. Technical concepts of further improvement of nuclear power plant safety

    International Nuclear Information System (INIS)

    Sochor, R.

    1983-01-01

    The following technical concepts are described which secure the integrity of the containment in case of an accident whose scale exceeds the so-called design basis accident: siting nuclear power plants underground which raises construction costs by 20 - 25%; completing the containment with equipment preventing the outflow of molten corium; completing the containment with emergency pressure space for discharging overpressure - this emergency space is filled with gravel which will trap approximately 50% of fission waste. (Ha)

  19. Preparation and concept of geodesy work on the Temelin nuclear power plant site

    International Nuclear Information System (INIS)

    Vincik, K.; Zdobinsky, J.

    1989-01-01

    Listed are the main partners in the Temelin nuclear power plant construction (investor, general designer, building and equipment parts suppliers), the main specifications of the power plant, the layout of buildings, the types of construction documentation, and the concept of geodesy work. A network was laid out comprising 9 points and a local coordinate system and an elevation system for design work were determined. Within the layout, a network of basic elevation points with depth stabilization and a starting 6-point level network were proposed. The updating is described of the layout network and of the organization of geodesy work during the construction of the Temelin nuclear power plant. (E.J.)

  20. Plant dynamics analyses of fast reactor concept: RAPID-A without any control rod

    International Nuclear Information System (INIS)

    Kambe, Mitsuru

    1996-01-01

    Plant dynamics analyses of a fast reactor concept RAPID-A without any control rod have been demonstrated in case of reactor startup and sudden change of the primary flow rate. RAIP-A concept involves Lithium Expansion Module (LEM) for inherent reactivity feedback, Lithium Injection Module (LIM) for inherent ultimate shutdown and Lithium Release Module (LRM) for automated reactor startup. LEM consists of Quick-LEM and Slow-LEM. Slow-LEM provides with moderate reactivity addition as decreasing temperature. Quick-LEM assures quick negative reactivity feedback as increasing temperature. Plant dynamics analyses revealed that reactor power is nearly proportional to the primary flow rate even if the flow rate increases suddenly. Fully automated reactor startup from the subcritical condition has been attempted by inserting reactivity at a constant rate by LRM. Allowable rate of reactivity addition has been obtained in respect to Quick-LEM reactivity worth. (author)

  1. Design concepts of nuclear desalination plants

    International Nuclear Information System (INIS)

    2002-11-01

    Interest in using nuclear energy for producing potable water has been growing worldwide in the past decade. This has been motivated by a variety of factors, including economic competitiveness of nuclear energy, the growing need for worldwide energy supply diversification, the need to conserve limited supplies of fossil fuels, protecting the environment from greenhouse gas emissions, and potentially advantageous spin-off effects of nuclear technology for industrial development. Various studies, and at least one demonstration project, have been considered by Member States with the aim of assessing the feasibility of using nuclear energy for desalination applications under specific conditions. In order to facilitate information exchange on the subject area, the IAEA has been active for a number of years in compiling related technical publications. In 1999, an inter regional technical co-operation project on Integrated Nuclear Power and desalination System Design was launched to facilitate international collaboration for the joint development by technology holders and potential end users of an integrated nuclear desalination system. This publication presents material on the current status of nuclear desalination activities and preliminary design concepts of nuclear desalination plants, as made available to the IAEA by various Member States. It is aimed at planners, designers and potential end-users in those Member States interested in further assessment of nuclear desalination. Interested readers are also referred to two related and recent IAEA publications, which contain useful information in this area: Introduction of Nuclear Desalination: A Guidebook, Technical Report Series No. 400 (2000) and Safety Aspects of Nuclear Plants Coupled with Seawater Desalination Units, IAEA-TECDOC-1235 (2001)

  2. Development of Advanced Concept for Shortening Construction Period of ABWR Plant

    International Nuclear Information System (INIS)

    Hiroshi Ijichi; Toshio Yamashita; Masahiro Tsutagawa; Hiroya Mori; Nobuaki Ooshima; Jun Miura; Minoru Kanechika; Nobuaki Miura

    2002-01-01

    Construction of a nuclear power plant (NPP) requires a very long period because of large amount of construction materials and many issues for negotiation among multiple sections. Shortening the construction period advances the date of return on an investment, and can also result in reduced construction cost. Therefore, the study of this subject has a very high priority for utilities. We achieved a construction period of 37 months from the first concrete work to fuel loading (F/L) (51.5 months from the inspection of the foundation (I/F) to the start of commercial operation (C/O)) at the Kashiwazaki-Kariwa NPPs No. 6 and 7 (KK-6/7), which are the first ABWR plants in the world. At TEPCO's next plant, we think that a construction period of less than 36 months (45 months from I/F to C/O) can be realized based on conventional methods such as early start of equipment installation and blocking of equipment to be brought in advance. Furthermore, we are studying the feasibility of a 21.5-month construction period (30 months from I/F to C/O) with advanced ideas and methods. The important concepts for a 21.5-month construction period are adoption of a new building structure that is the steel plate reinforced concrete (SC) structure and promotion of extensive modularization of equipment and building structure. With introducing these new concepts, we are planning the master schedule (M/S) and finding solutions to conflicts in the schedule of area release from building construction work to equipment installation work (schedule-conflicts.) In this report, we present the shortest construction period and an effective method to put it into practice for the conventional general arrangement (GA) of ABWR. In the future, we will continue the study on the improvement of building configuration and arrangements, and make clear of the concept for large composite modules of building structures and equipment. (authors)

  3. Design concepts to enhance nuclear power plant protection

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.; Varnado, G.B.

    1980-01-01

    Using a modern design for a nuclear power plant as a point of departure, this study examines the enhancement of protection which may be achieved by changes to the design. These changes include concepts such as complete physical separation of redundant trains of safety equipment, hardened enclosures for water storage tanks, and hardened shutdown heat removal systems. The degree of enhancement (value) is examined in terms such as the potential reduction in the number of vital areas and the increase in probability of adversary sequence interruption. The impacts considered include constraints imposed upon operations and maintenance personnel and increased capital and operating costs. The study concludes that structural design changes alone do not provide significant increases in protection

  4. Large-Scale Combined Heat and Power (CHP) Generation at Loviisa Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Bergroth, N.

    2010-01-01

    Fortum has applied for a Decision in Principle concerning the construction of a new nuclear power plant unit (Loviisa 3) ranging from 2800-4600 MWth at its site located at the southern coast of Finland. An attractive alternative investigated is a co-generation plant designed for large-scale district heat generation for the Helsinki metropolitan area that is located approximately 75 km west of the site. The starting point is that the district heat generation capacity of 3 unit would be around 1 000 MWth.The possibility of generating district heat for the metropolitan area by Loviisa's two existing nuclear power plant units was investigated back in the 1980s, but it proved unpractical at the time. With the growing concern of the climate change and the subsequent requirements on heat and power generation, the idea is much more attractive today, when recognising its potential to decrease Finland's carbon dioxide emissions significantly. Currently the district heat generation in metropolitan area is based on coal and natural gas, producing some five to seven million tonnes of carbon dioxide emissions annually. Large-scale combined heat and power (CHP) generation at the 3 unit could cut this figure by up to four million tonnes. This would decrease carbon dioxide emissions by as much as six percent. In addition, large-scale CHP generation would increase the overall efficiency of the new unit significantly and hence, reduce the environmental impact on the local marine environment by cutting heat discharges into the Gulf of Nuclear energy has been used for district heating in several countries both in dedicated nuclear heating plants and in CHP generation plants. However, the heat generation capacity is usually rather limited, maximum being around 250 MWth per unit. Set against this, the 3 CHP concept is much more ambitious, not only because of the much larger heat generation output envisaged, but also because the district heating water would have to be transported over a

  5. Food irradiation combined with refrigeration in food industrial plants

    International Nuclear Information System (INIS)

    Boisseau, P.

    1991-01-01

    Food irradiation and refrigeration are both physical treatments used for food preservation. The complementarity of their effects on food is the best reason for their combination. Irradiation is essentially used for disinfestation and refrigeration to protect food against non microbial degradations. Refrigeration and irradiation could be combined for shelf life extension of fresh fruits and vegetables or reduction of microflora in animal products, without loss of quality. Freezing must be combined with ionizing treatments if high doses are necessary as it is the case with destruction of pathogens in meat or food sterilization. Some examples of combination of refrigeration and irradiation are routinely applied in some industrial plants in France but it is expected that more and more combined treatments will be used thanks to research

  6. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    International Nuclear Information System (INIS)

    Conklin, Jim; Forsberg, Charles W.

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR

  7. Combined compressed air storage-low BTU coal gasification power plant

    Science.gov (United States)

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  8. Combined effects of arthropod herbivores and phytopathogens on plant performance

    DEFF Research Database (Denmark)

    Hauser, Thure Pavlo; Christensen, Stina; Heimes, Christine

    2013-01-01

    1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should...... be expected from the added impacts of herbivore and pathogen when they attack alone. 2. Previous studies have suggested synergistic and antagonistic impacts on plant performance from certain combinations of arthropods and pathogens, for example, synergistic impacts from necrotrophic pathogens together...... with wounding arthropods because of facilitated infection and antagonistic impacts from induction of pathogen resistance by sucking herbivores. 3. We compiled published studies on the impact of plant–herbivore–pathogen interactions on plant performance and used meta-analysis to search for consistent patterns...

  9. Combined inoculation of Pseudomonas fluorescens and Trichoderma harzianum for enhancing plant growth of vanilla (Vanilla planifolia).

    Science.gov (United States)

    Sandheep, A R; Asok, A K; Jisha, M S

    2013-06-15

    This study was conducted to evaluate the plant growth promoting efficiency of combined inoculation of rhizobacteria on Vanilla plants. Based on the in vitro performance of indigenous Trichoderma spp. and Pseudomonas spp., four effective antagonists were selected and screened under greenhouse experiment for their growth enhancement potential. The maximum percentage of growth enhancement were observed in the combination of Trichoderma harzianum with Pseudomonas fluorescens treatment followed by Pseudomonas fluorescens, Trichoderma harzianum, Pseudomonas putida and Trichoderma virens, respectively in decreasing order. Combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens registered the maximum length of vine (82.88 cm), highest number of leaves (26.67/plant), recorded the highest fresh weight of shoots (61.54 g plant(-1)), fresh weight of roots (4.46 g plant(-1)) and dry weight of shoot (4.56 g plant(-1)) where as the highest dry weight of roots (2.0806 g plant(-1)) were achieved with treatments of Pseudomonas fluorescens. Among the inoculated strains, combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens recorded the maximum nitrogen uptake (61.28 mg plant(-1)) followed by the combined inoculation of Trichoderma harzianum (std) and Pseudomonas fluorescens (std) (55.03 mg plant(-1)) and the highest phosphorus uptake (38.80 mg plant(-1)) was recorded in dual inoculation of Trichoderma harzianum and Pseudomonas fluorescens.

  10. Some economic considerations for a pilot plant based on the adsorber loop concept

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.; Jager, W.

    1984-01-01

    Some first order estimates about the production costs of seawater uranium are presented on the basis of a pilot plant with a capacity of about 100 t uranium per year. The plant is assumed to be operating at high seas using the ''adsorber loop concept'' for the contact between seawater and adsorber granulate. The effects of some process relevant components and parameters are discussed with regard to their contribution to the production costs and in order to analyse their cost-cutting potential. (orig.) [de

  11. High-resolution α-amylase assay combined with high-performance liquid chromatography−solid-phase extraction−nuclear magnetic resonance spectroscopy for expedited identification of α-amylase inhibitors – proof of concept and α-amylase inhibitor in cinnamon

    DEFF Research Database (Denmark)

    Okutan, Leyla; Kongstad, Kenneth Thermann; Jäger, Anna

    2014-01-01

    . In combination with HPLC–HRMS–SPE–NMR, this provides an analytical platform that allows simultaneous chemical and biological profiling of α-amylase inhibitors in plant extracts. Proof-of-concept with an artificial mixture of six compounds—of which three are known α-amylase inhibitors—showed that the high...

  12. Technical comparison between Integrated Gasification Combined Cycle (IGCC) and Natural Gas Combined Cycle (NGCC) power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Pablo Andres Silva; Venturini, Osvaldo Jose; Lora, Electo Eduardo Silva [Federal University of Itajuba - UNIFEI, MG (Brazil). Excellence Group in Thermal Power and Distributed Generation - NEST], e-mails: osvaldo@unifei.edu.br, electo@unifei.edu.br

    2010-07-01

    Among the emerging clean coal technologies for power generation, Integrated Gasification Combined Cycle (IGCC) and Natural Gas Combined Cycle (NGCC) systems are receiving considerable attention as a potentially attractive option to reduce the emissions of greenhouse gases (GHG). The main reason is because these systems has high efficiency and low emissions in comparison with traditional power generation plants. Currently in IGCC and NGCC systems at demonstration stage is been considered to implement CCS technology. CO{sub 2} emissions can be avoided in a gasification-based power plant because by transferring almost all carbon compounds to CO{sub 2} through the water gas shift (WGS) reaction, then removing the CO{sub 2} before it is diluted in the combustion stage. The aim of this study is to compare the technical performance of an IGCC system that uses Brazilian coal and petroleum coke as fuel with a NGCC system, with the same fixed output power of 450 MW. The first section of this paper presents the plant configurations of IGCC systems. The following section presents an analysis of NGCC technology. (author)

  13. Concept of voltage monitoring for a nuclear power plant emergency power supply system (PWR 1300 MWe)

    International Nuclear Information System (INIS)

    Andrade, R.B. de

    1988-01-01

    Voltage monitoring concept for a Nuclear Power Plant Emergency Power Supply Systems (PWR 1300 MWe) is described based on the phylosophy adopted for Angra 2 and 3 NPP's. Some suggested setpoints are only guidance values and can be modified during plant commissioning for a better performance of the whole protection system. (author) [pt

  14. Pressurized fluidized bed combustion combined cycle power plant with coal gasification: Second generation pilot plant

    International Nuclear Information System (INIS)

    Farina, G.L.; Bressan, L.

    1991-01-01

    This paper presents the technical and economical background of a research and development program of a novel power generation scheme, which is based on coal gasification, pressurized fluid bed combustion and combined cycles. The participants in this program are: Foster Wheeler (project leader), Westinghouse, IGT and the USA Dept. of Energy. The paper describes the characteristics of the plant, the research program in course of implementation, the components of the pilot plant and the first results obtained

  15. A logic flowgraph-based concept for decision support and management of nuclear plant operation

    International Nuclear Information System (INIS)

    Guarro, S.B.

    1988-01-01

    The architecture of an automated decision support system for nuclear plant operators is presented and discussed. The system is based on the use of 'logic flowgraph' process models and is designed in a hierarchical fashion. Its functionality spans from 'function oriented' plant status and alternative success path information displayed to the plant operators at its higher access levels to 'process oriented' diagnostic and recovery information deduced and displayed at its lowest. The design basis for this architecture is the 'defense in depth' plant safety concept. The decision support system goal is to provide plant operators, in the presence of an unforeseen transient, with the best and safest alternative between plant stabilization after shutdown and recovery of normal operation based on early diagnosis. Examples of the system capability to interpret and diagnose abnormal plant conditions and of the information that it can supply to the operators at its three access levels are presented and discussed. (author)

  16. Structural health monitoring of power plant components based on a local temperature measurement concept

    International Nuclear Information System (INIS)

    Rudolph, Juergen; Bergholz, S.; Hilpert, R.; Jouan, B.; Goetz, A.

    2012-01-01

    The fatigue assessment of power plant components based on fatigue monitoring approaches is an essential part of the integrity concept and modern lifetime management. It is comparable to structural health monitoring approaches in other engineering fields. The methods of fatigue evaluation of nuclear power plant components based on realistic thermal load data measured on the plant are addressed. In this context the Fast Fatigue Evaluation (FFE) and Detailed Fatigue Calculation (DFC) of nuclear power plant components are parts of the three staged approach to lifetime assessment and lifetime management of the AREVA Fatigue Concept (AFC). The three stages Simplified Fatigue Estimation (SFE), Fast Fatigue Evaluation (FFE) and Detailed Fatigue Calculation (DFC) are characterized by increasing calculation effort and decreasing degree of conservatism. Their application is case dependent. The quality of the fatigue lifetime assessment essentially depends on one hand on the fatigue model assumptions and on the other hand on the load data as the basic input. In the case of nuclear power plant components thermal transient loading is most fatigue relevant. Usual global fatigue monitoring approaches rely on measured data from plant instrumentation. As an extension, the application of a local fatigue monitoring strategy (to be described in detail within the scope of this paper) paves the way of delivering continuously (nowadays at a frequency of 1 Hz) realistic load data at the fatigue relevant locations. Methods of qualified processing of these data are discussed in detail. Particularly, the processing of arbitrary operational load sequences and the derivation of representative model transients is discussed. This approach related to realistic load-time histories is principally applicable for all fatigue relevant components and ensures a realistic fatigue evaluation. (orig.)

  17. Explaining academic progress via combining concepts of integration theory and rational choice theory

    NARCIS (Netherlands)

    Beekhoven, S.; Jong, U. de; Hout, J.F.M.J. van

    2002-01-01

    In this article, elements of rational choice theory and integration theory are compared on the basis of their explanatory power to explain variance in academic progress. It is argued that both theoretical concepts could be combined. Furthermore the distinction between social and academic integration

  18. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (1) Reactor concept and plant dynamics analyses

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2002-01-01

    The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for Lunar base power system. It is one of the variants of RAPID (Refueling by All Pins Integrated Design), fast reactor concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small size reactor core, 2700 fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor has no control rod, but involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B 4 C rods. In combination with LEMs, LIMs and LRMs, RAPID-L can be operated without operator. This is the first reactor concept ever established in the world. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, RAPID-L reactor concept and its transient characteristics are presented. (authors)

  19. Preliminary project concerning the straw-based combined power-heat plant at Glamsbjerg

    International Nuclear Information System (INIS)

    Gabriel, S.; Koch, T.

    1994-01-01

    The supplement to the main report on the planned dual-purpose power plant at Glamsbjerg contains documentation of the straw gasification and pyrolysis process, a detailed description of the power plant components, and the procedures of operation and maintenance of the combined systems. (EG)

  20. Stochastic Programming for Fuel Supply Planning of Combined Heat and Power Plants

    DEFF Research Database (Denmark)

    Guericke, Daniela; Blanco, Ignacio; Morales González, Juan Miguel

    The consumption of biomass to produce power and heat has increased due to the carbon neutral policies. Combined heat and power (CHP) plants often combine biomass with other fuels, e.g., natural gas. The negotiation process for supply contracts involves many uncertainties due to the long planning...... horizon. The demand for biomass is uncertain, and heat demand and electricity prices vary during the planning period. We propose a method using stochastic optimization to support the biomass and natural gas supply planning for CHP plants including short-term decisions for optimal market participation....

  1. Successful cleaning concept for Germany's biggest reverse osmosis plant; Ein erfolgreiches Reinigungskonzept fuer die groesste Umkehrosmoseanlage Deutschlands

    Energy Technology Data Exchange (ETDEWEB)

    Kempen, Hermann [Kurita Europe GmbH, Viersen (Germany); Zierau, Ronald [Zellstoff-Stendal GmbH, Arneburg (Germany)

    2012-07-01

    During the last years, new developments for membrane material and also for treatment chemicals have resulted in higher efficiency and reliability of reverse osmosis (RO) plants. Nevertheless, especially RO plants receiving raw water from surface waters with open intake or from waste water streams are facing problems with fouling on membranes during operation. In such cases, the efficient cleaning of membranes is mandatory to ensure long-term supply of permeate in high quality and sufficient quantity. New cleaning concepts with proprietary cleaning products are gaining in importance. The successful application of such a cleaning concept at Germany's biggest RO plant is described in this paper. (orig.)

  2. Studies for the layout and technical conception of a two-circuit HTR power plant of 600 MWsub(el) under public utilizer aspects

    International Nuclear Information System (INIS)

    Schuetten, R.

    1981-01-01

    In this study concerning conceptions for a nuclear power plant of 600 MWsub(el) with high-temperature reactor a conception for a HTR-nuclear power plant of 600 MWsub(el) to be built in the Federal Republic of Germany in future is developed on the basis of operating experience with the 15-MW-AVR-experimental nuclear power plant, the construction of the THTR-300 nuclear power plant and the gas-cooled reactors of English, French and American origin. This report gives a survey of the most important findings and the requirements on behalf of the public utilities for a nuclear power plant with high-temperature reactor with the dimensions of 600 MWsub(el). The examination of the utilities basic requirements for a power plant and the experience made during the licensing procedure led to this technical and safety conception for a HTR nuclear power plant with spherical fuel elements. In addition, the questions of the possibility of recurrent tests and of repairing safety components and also the future shut-down of the power plant, which are important for the public utilities, are examined. (orig./GL) [de

  3. Explaining Academic Progress via Combining Concepts of Integration Theory and Rational Choice Theory.

    Science.gov (United States)

    Beekhoven, S.; De Jong, U.; Van Hout, H.

    2002-01-01

    Compared elements of rational choice theory and integration theory on the basis of their power to explain variance in academic progress. Asserts that the concepts should be combined, and the distinction between social and academic integration abandoned. Empirical analysis showed that an extended model, comprising both integration and rational…

  4. Market conditions for cogeneration plants. Ensuring efficiency; Marktbedingungen fuer KWK-Anlagen. Wirtschaftlichkeit sicherstellen

    Energy Technology Data Exchange (ETDEWEB)

    Ottersbach, Joerg; Otto, Falk; Schrader, Knut [BET Buero fuer Energiewirtschaft und Technische Planung GmbH, Aachen (Germany)

    2013-07-15

    Due to declining wholesale prices for electricity, the profitability of base load power and heat generation plants decreases significantly. Therefore, concepts such as the increased use of electricity or natural plant flexibility have to be developed. The improved framework conditions by means of the amended Combined Heat and Power Act are helpful. When modernising plants, it is even possible under favorable conditions and with a good concept to fully refinance the investment on the CHP surcharges.

  5. The performance of a Solar Aided Power Generation plant with diverse “configuration-operation” combinations

    International Nuclear Information System (INIS)

    Qin, Jiyun; Hu, Eric; Nathan, Graham J.

    2016-01-01

    Highlights: • Four configurations of solar preheaters have been proposed. • Three typical operation strategies of solar preheaters have been identified. • 12 “configuration-operation” combinations has been proposed. • There are superior combinations to achieve the highest solar thermal performance. - Abstract: Solar Aided Power Generation is an efficient way to integrate solar thermal energy into a fossil fuel fired power plant for solar power generation purposes. In this particular power plant, the solar heat is used to displace the extraction steam to preheat the feedwater to the boiler. The heat exchanger, which facilitates the heat exchange between the solar heat carried by the heat transfer fluid and the feedwater, is termed a solar preheater. Four possible configurations of the solar preheater, namely Parallel 1, Parallel 2, Series 1 and Series 2, are proposed in this paper. In this type of plant, the extraction steam flow rates must be adjusted according to the solar input. The ways to control the extraction steam flow rates are termed solar preheater operation strategies. Three typical strategies: the Constant Temperature control, Variable Temperature control with high to low temperature feedwater heater displacement and Variable Temperature control with low to high temperature feedwater heater displacement have been identified. Each configuration can be operated with one of the three strategies, resulting in twelve “configuration-operation” combinations/scenarios (shown in Table 1). Previous assessments and modelling of such a plant have only been based on a single combination. In this paper, a Solar Aided Power Generation plant, modified from a typical 300 MW power plant, is used to understand the plant’s performance for all twelve of the available combinations. The results show that the instantaneous and annual technical performances of such a plant are dependent on the combinations used. The scenario 10 (Table 1) is superior to the

  6. Radioactive Waste Disposal Pilot Plant concept for a New Mexico site

    International Nuclear Information System (INIS)

    Weart, W.D.

    1976-01-01

    Twenty years of investigation have shown that disposal of nuclear wastes in deep salt formations is the surest means of isolating these wastes from the biosphere for the extremely long period of time required. A large scale demonstration of this capability will soon be provided by a Radioactive Waste Disposal Pilot Plant (RWDPP) to be developed in southeastern New Mexico. Initially, the pilot plant will accept only ERDA generated waste; high level waste from the commercial power reactor fuel cycle will eventually be accommodated in the pilot plant and the initial RWDPP design will be compatible with this waste form. Selection of a specific site and salt horizon will be completed in June 1976. Conceptual design of the RWDPP and assessment of its environmental impact will be completed by June 1977. Construction is expected to start in 1978 with first waste accepted in 1982. The present concept develops disposal areas for all nuclear waste types in a single salt horizon about 800 meters deep. This single level can accommodate all low level and high level waste generated in the United States through the year 2010. A major constraint on the RWDPP design is the ERDA requirement that all waste be ''readily'' retrievable during the duration of pilot plant operation

  7. Concept of a new method for fatigue monitoring of nuclear power plant components

    International Nuclear Information System (INIS)

    Zafosnik, M.; Cizelj, L.

    2007-01-01

    Fatigue is one of the well-understood aging mechanisms affecting mechanical components in many industrial facilities including nuclear power plants. Operational experience of nuclear power plants worldwide to date confirmed adequate design of safety related components against fatigue. In some cases however, for example when the plant life extension is envisioned, it may be very useful to monitor the remaining fatigue life of safety related components. Nuclear power plants components are classified into safety classes regarding their importance in mitigating the consequences of hypothetic accidents. Service life of components subjected to fatigue loading can be estimated with Usage Factor uk. A concept of the new method aiming both at monitoring the current state of the component and predicting its remaining lifetime in the life-extension conditions is presented. The method is based on determination of partial Usage Factor of components in which operating transients will be considered and compared to design transients. (author)

  8. Utilizing reliability concepts in the development of IEEE recommended good practices for nuclear plant maintenance

    International Nuclear Information System (INIS)

    Gradin, L.P.

    1986-01-01

    This paper presents information describing the concern for nuclear power plant electrical equipment maintenance and the IEEE Nuclear Power Engineering Committee's method to address that concern. That method includes the creation of Working Group 3.3, ''Maintenance Good Practices'' which is developing specific maintenance good practice documents, supporting technical information exchange, and providing a vehicle to promote practices which can reduce cost and enhance plant safety. The foundation for that effort is the utilization of Reliability concepts

  9. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    NARCIS (Netherlands)

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation

  10. In Vivo Antiplasmodial Potentials of the Combinations of Four Nigerian Antimalarial Plants

    Directory of Open Access Journals (Sweden)

    Adeleke Clement Adebajo

    2014-08-01

    Full Text Available Various combinations of Nauclea latifolia root, Artocarpus altilis stem bark, Murraya koenigii leaf and Enantia chlorantha stem bark used in African ethnomedicine as decoctions for malaria and fevers, and combinations with standard drugs, were investigated for antiplasmodial activities using Plasmodium berghei berghei-infected mice. The respective prophylactic and curative ED50 values of 189.4 and 174.5 mg/kg for N. latifolia and chemosuppressive ED50 value of 227.2 mg/kg for A. altilis showed that they were the best antimalarial herbal drugs. A 1.6-fold increase of the survival time given by the negative control was elicited by M. koenigii, thereby confirming its curative activity. Pyrimethamine with an ED50 of 0.5 ± 0.1 mg/kg for the prophylactic, and chloroquine with ED50 = 2.2 ± 0.1 and 2.2 ± 0.0 mg/kg for the chemosuppressive and curative tests, respectively, were significantly (p < 0.05 more active. Co-administrations of N. latifolia with the standard drugs significantly reduced their prophylactic, chemosuppressive and curative actions, possibly increasing the parasites’ resistance. Binary combinations of N. latifolia or M. koenigii with any of the other plants significantly increased the prophylactic and suppressive activities of their individual plants, respectively. Also, E. chlorantha with A. altilis or N. latifolia enhanced their respective prophylactic or curative activities, making these combinations most beneficial against malaria infections. Combinations of three and four extracts gave varied activities. Hence, the results justified the combinations of ethnomedicinal plants in antimalarial herbal remedies and showed the importance of the three in vivo models in establishing antimalarial activity.

  11. MODELING OF OPERATION MODES OF SHIP POWER PLANT OF COMBINED PROPULSION COMPLEX WITH CONTROL SYSTEM BASED ON ELECTRONIC CONTROLLERS

    Directory of Open Access Journals (Sweden)

    E. A. Yushkov

    2016-12-01

    creation of software package Ships_CPC, in Mat Lab/Simulink was developed under the state budget project «Concepts, technologies and ways of improving ship plants combined propulsion complexes» at the Department of Electromechanics and Electrical Engineering of National University «Odessa Maritime Academy» (State registration number 0114u000340.

  12. PIPEX - A model of a design concept for reprocessing plants with improved containment and surveillance features

    International Nuclear Information System (INIS)

    1979-03-01

    This paper explains that the PIPEX concept is essentially a reprocessing plant using the PUREX process but with in-built improved containment and surveillance features resulting in increased health protection and environmental safety as well as higher resistance to diversion of fissile material. The paper gives a general description of the design and operating philosophy of such a plant and goes on to examine the safeguards and safety principles and implications

  13. DEMO concepts and their roles within the fusion programme

    International Nuclear Information System (INIS)

    Tran, Minh Quang

    2007-01-01

    In the past years, the international fusion community has developed models of fusion power plants, which were extremely useful in showing the key advantages of fusion energy and pointing out he areas of development. The present view is that between ITER and such power plants (even of ''first of kind'' type), there is a need for one or two intermediate steps. The need to have a ''fast rack'' towards such a fusion reactor, suggested that the steps after ITER, which are usually considered to be a Demonstration power plant followed by a Prototypical one, could be combines into one known as a DEMO. DEMO would then be a device capable of producing electricity, paving the way towards fusion power plants which would be economically viable. This talk outlines the DEMO concepts as the necessary physics and technological extrapolation from the envisaged future steps (ITER, IFMIF) are discussed. It attempts to provide a coverage of the different concepts developed by various countries, The key issues, as foreseen today, and their implications for the programme are highlighted. (orig.)

  14. Integrated logistic support concept in the design of nuclear power plants

    International Nuclear Information System (INIS)

    Martin-Onraet, M.; Degrave, C.; Meuwisse, C.

    1996-01-01

    Considering its plant operating experience, the analysis of foreign practice and the development of new design approaches and tools, Electricite de France (EDF) is convinced that it is possible to improve new plant design, operation and maintenance without increasing too much investment costs. To remain competitive it is necessary to maintain the kWh production cost of the future unit at a level close to those of the latest unit under construction (N4 series), while raising the Safety level. To minimize the kWh cost EDF has decided to implement the CIDEM project (French acronym for Design Integrating Availability, Operating Experience and Maintenance), an analytic and systematic process for studying new projects, aiming at a design optimization including investment, maintenance, availability and radiation exposure objectives. This approach aims at a single goal: to minimize the kWh production cost incorporating investment operation and fuel cost, based on experience from French and foreign units. This process, already widely practiced in other industries or services (aerospace, defense, ...), uses concepts known by the acronyms RAM (Reliability, Availability, Maintainability) RCM (Reliability, Centered Maintenance) and ILS (Integrated Logistic Support). The first CIDEM application is centered on the future French nuclear unit construction program, known as the REP 2000 program but the approach could be applied to other Reactor type or fossil-fired units in particular for its methodological aspect. The purpose of this paper is to introduce the EDF ILS concept

  15. Technical and economic assessment of the integrated solar combined cycle power plants in Iran

    International Nuclear Information System (INIS)

    Soltani Hosseini, M.; Hosseini, R.; Valizadeh, G.H.

    2002-01-01

    Thermal efficiency, capacity factor, environmental considerations, investment cost, fuel and O and M costs are the main parameters for technical and economic assessment of solar power plants. This analysis has shown that the Integrated Solar Combined Cycle System with 67 MW e solar field(ISCCS-67) is the most suitable plan for the first solar power plant in Iran. The Levelized Energy Costs of combined cycle and ISCCS-67 power plants would be equal if 49 million dollars of ISCCS-67 capital cost supplied by the international environmental organizations such as Global Environmental Facilities and World Bank. This study shows that an ISCCS-67 saves 59 million dollars in fuel consumption and reduces about 2.4 million ton in CO 2 emission during 30 years operating period. Increasing of steam turbine capacity by 50%, and 4% improvement in overall efficiency are other advantages of iSCCS-67 power plant. The LEC of ISCCS-67 is 10% and so 33% lower than the combined cycle and gas turbine, respectively, at the same capacity factor with consideration of environmental costs

  16. Early Understanding of the Concept of Living Things: An Examination of Young Children's Drawings of Plant Life

    Science.gov (United States)

    Villarroel, José Domingo; Infante, Guillermo

    2014-01-01

    This paper looks at the drawings of a sample of 118 children aged between 4 and 7 years old on the topic of plant life and relates the content to their knowledge of the concept of living things. The research project uses two types of tests: a task to analyse the level of understanding of the concept of living things and a free drawing activity.…

  17. Remote sensing of potential and actual daily transpiration of plant canopies based on spectral reflectance and infrared thermal measurements: Concept with preliminary test

    International Nuclear Information System (INIS)

    Inoue, Y.; Moran, M.S.; Pinter, P.J.Jr.

    1994-01-01

    A new concept for estimating potential and actual values of daily transpiration rate of vegetation canopies is presented along with results of an initial test. The method is based on a physical foundation of spectral radiation balance for a vegetation canopy, the key inputs to the model being the remotely sensed spectral reflectance and the surface temperature of the plant canopy. The radiation interception or absorptance is estimated more directly from remotely sensed spectral data than it is from the leaf area index. The potential daily transpiration is defined as a linear function of the absorbed solar radiation, which can be estimated using a linear relationship between the fraction absorptance of solar radiation and the remotely sensed Soil Adjusted Vegetation Index for the canopy. The actual daily transpiration rate is estimated by combining this concept with the Jackson-Idso Crop Water Stress Index, which also can be calculated from remotely sensed plant leaf temperatures measured by infrared thermometry. An initial demonstration with data sets from an alfalfa crop and a rangeland suggests that the method may give reasonable estimates of potential and actual values of daily transpiration rate over diverse vegetation area based on simple remote sensing measurements and basic meteorological parameters

  18. Exchange of availability/performance data on base-load gas turbine and combined cycle plant

    Energy Technology Data Exchange (ETDEWEB)

    Jesuthasan, D.K.; Kaupang, B.M. (Tenaga Nasional Berhad (Malaysia))

    1992-09-01

    This paper describes the recommendations developed to facilitate the international exchange of availability performance data on base-load gas turbines and combined cycle plant. Standardized formats for the collection of plant availability statistics, recognizing the inherent characteristics of gas turbines in simple and combined cycle plants are presented. The formats also allow for a logical expansion of the data collection detail as that becomes desirable. To assist developing countries in particular, the approach includes basic formats for data collection needed for international reporting. In addition, the participating utilities will have a meaningful database for internal use. As experience is gained with this data colletion system, it is expected that additional detail may be accommodated to enable further in-depth performance analysis on the plant and on the utility level. 2 refs., 2 tabs., 11 apps.

  19. Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory.

    Science.gov (United States)

    Kozai, Toyoki

    2013-01-01

    Extensive research has recently been conducted on plant factory with artificial light, which is one type of closed plant production system (CPPS) consisting of a thermally insulated and airtight structure, a multi-tier system with lighting devices, air conditioners and fans, a CO2 supply unit, a nutrient solution supply unit, and an environment control unit. One of the research outcomes is the concept of resource use efficiency (RUE) of CPPS.This paper reviews the characteristics of the CPPS compared with those of the greenhouse, mainly from the viewpoint of RUE, which is defined as the ratio of the amount of the resource fixed or held in plants to the amount of the resource supplied to the CPPS.It is shown that the use efficiencies of water, CO2 and light energy are considerably higher in the CPPS than those in the greenhouse. On the other hand, there is much more room for improving the light and electric energy use efficiencies of CPPS. Challenging issues for CPPS and RUE are also discussed.

  20. Dynamic simulation of combined cycle power plant cycling in the electricity market

    International Nuclear Information System (INIS)

    Benato, A.; Bracco, S.; Stoppato, A.; Mirandola, A.

    2016-01-01

    Highlights: • The flexibility of traditional power plants have become of primary importance. • Three dynamic models of the same single pressure HRSG are built. • The plant dynamic behaviour is predicted. • A lifetime calculation procedure is proposed and tested. • The drum lifetime reduction is estimated. - Abstract: The energy markets deregulation coupled with the rapid spread of unpredictable energy sources power units are stressing the necessity of improving traditional power plants flexibility. Cyclic operation guarantees high profits in the short term but, in the medium-long time, cause a lifetime reduction due to thermo-mechanical fatigue, creep and corrosion. In this context, Combined Cycle Power Plants are the most concerned in flexible operation problems. For this reason, two research groups from two Italian universities have developed a procedure to estimate the devices lifetime reduction with a particular focus on steam drums and superheaters/reheaters. To assess the lifetime reduction, it is essential to predict the thermodynamic variables trend in order to describe the plant behaviour. Therefore, the core of the procedure is the power plant dynamic model. At this purpose, in this paper, three different dynamic models of the same single pressure Combined Cycle Gas Turbine are presented. The models have been built using three different approaches and are used to simulate plant behaviour under real operating conditions. Despite these differences, the thermodynamic parameters time profiles are in good accordance as presented in the paper. At last, an evaluation of the drum lifetime reduction is performed.

  1. Combined Thermal Management and Power Generation Concept for the Spent Fuel Dry Storage Cask

    International Nuclear Information System (INIS)

    Kim, In Guk; Bang, In Cheol

    2017-01-01

    The management of the spent nuclear fuel generated by nuclear power plants is a major issue in Korea due to insufficient capacity of the wet storage pools. Therefore, it is considered that dry storage system is the one possible solution for storing spent fuel. A dual-purpose metal cask (transportation and storage) is currently developing in Korea. This cask has 21 of fuel assemblies and 16.8 kW of maximum decay heat. To evaluate the critical safety in normal/off normal and accident conditions, critical stabilities were conducted by using CSAS 6.0. The experimental investigation of heat removal of a concrete storage cask was also conducted under normal, off normal and accident conditions. The results of the evaluation showed a good safety of the dry storage cask. The results showed the enhanced thermal performance according to modification of flow rate. To verify combined thermal management and power generation concept, a new type of test facility for dry storage cask was designed in 1/10 scale of concrete dry storage cask. The experimental study involved the cooling methods that are an integrated system on the top of the dry cask and air flow path on the canister wall. The results showed the temperature distribution of the wall and inside of the dry cask at the normal condition. The influence of the change of the heat load and cooling system were investigated. The heat removal by the integrated system is approximately 20% of the total heat removal of the dry cask with reduced wall temperature. In these tests, economic analysis is conducted by applying the concept of the cost and efficiency. Under different decay power cases, the energy efficiency of the heat pipe and Stirling engine are determined and compared based on experimental results. The average efficiencies of the Stirling engine were the range of 2.375 to 3.247% under the power range of 35– 65W. These results showed that advanced dry storage concept had a better cooling performance in comparison with

  2. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    A survey of the main questions of decommissioning of nuclear power plants will be given in the sight of German utilities (VDEW-Working group 'Stillegung'). The main topics are: 1) Definitions of decommissioning, entombment, removal and combinations of such alternatives; 2) Radioactive inventory (build up and decay); 3) Experience up to now; 4) Possibilities to dismantle are given by possibility to repair nuclear power plants; 5) Estimated costs, waste, occupational radiation dose; 6) German concept of decommissioning. (orig./HK) [de

  3. Combining mechanical-biological residual waste treatment plants with the carbonisation-combustion process; Kombination MBA mit dem Schwel-Brenn-Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Diekmann, J.; Wiehn, G. [Siemens AG Unternehmensbereich KWU, Erlangen (Germany). Bereich Energieerzeugung

    1998-09-01

    The disposal market for household waste is strongly influenced by the legal framework governing it. A further factor that makes it difficult for the authorities responsible for disposal to decide on residual waste disposal by means of thermal or mechanical-biological treatment plants is the downward pressure on disposal prices from inexpensive, underused landfills. This makes it all the more important for a future-oriented waste management to develop a both economically and ecologically optimised waste disposal concept. In this situation there is much in favour of adopting a concept consisting of a combination of mechanical, mechanical-biological, and thermal treatment which takes due account of waste disposal concepts at the regional and supraregional scale. [Deutsch] Der Entsorgungsmarkt fuer Siedlungsabfaelle wird stark durch die Entwicklung der rechtlichen Rahmenbedingungen beeinflusst. Hinzu kommt, dass der Entscheidungsprozess der oeffentlichen Entsorgungstraeger zur Restabfallentsorgung mittels thermischer oder mechanisch-biologischer Anlagen durch den Druck auf die Entsorgungspreise aufgrund der kostenguenstigen, nicht ausgelasteten Deponien erschwert wird. Umso mehr muss das Ziel einer zukunftsorientierten Abfallwirtschaft sein, unter oekonomischen und oekologischen Gesichtspunkten ein optimiertes Abfallkonzept aufzubauen. Hier kann es sehr hilfreich sein, sich eines Konzeptes, bestehend aus der Kombination von mechanischer, mechanisch-biologischer und thermischer Behandlung unter Beruecksichtigung des regionalen und ueberregionalen Abfallkonzeptes zu bedienen. (orig./SR)

  4. Concept of voltage and frequency monitoring for a nuclear power plant normal power supply system - PWR 1300 MWe

    International Nuclear Information System (INIS)

    Andrade, R.B. de

    1990-01-01

    Voltage and frequency monitoring concept for a Nuclear Power Plant Normal Power Supply System (PWR 1300 MWe) is described based on the phylosophy adopted for Angra 2 and e NPP's. Some suggested setpoints are only guidance values and can be modified during plant commissioning for a better performance of the whole protection system. (author) [pt

  5. New small HTGR power plant concept with inherently safe features - an engineering and economic challenge

    International Nuclear Information System (INIS)

    McDonald, C.F.; Sonn, D.L.

    1983-01-01

    Studies are in a very early design stage to establish a modular concept High-Temperature Gas-Cooled Reactor (HTGR) plant of about 100-MW(e) size to meet the special needs of small energy users in the industrialized and developing nations. The basic approach is to design a small system in which, even under the extreme conditions of loss of reactor pressure and loss of forced core cooling, the temperature would remain low enough so that the fuel would retain essentially all the fission products and the owner's investment would not be jeopardized. To realize economic goals, the designer faces the challenge of providing a standardized nuclear heat source, relying on a high percentage of factory fabrication to reduce site construction time, and keeping the system simple. While the proposed nuclear plant concept embodies new features, there is a large technology base to draw upon for the design of a small HTGR

  6. Combining ability for maturity and plant height in brassica rapa (l.) ssp. dichotoma (roxb.) hanelt

    International Nuclear Information System (INIS)

    Nasim, A.; Farhatullah, A.; Khan, N.U.; Azam, S.M.; Nasim, Z.

    2014-01-01

    A 5 * 5 F1 diallel cross hybrids of Brassica rapa (L.) ssp. dichotoma (Roxb.) Hanelt along with parents were evaluated through combining ability for days to flowering (initiation and completion), days to maturity and plant height. Highly significant differences were recorded for all the traits. Mean squares due to general, specific and reciprocal combining ability were significant for all the traits except plant height for which the latter two components were non-significant. Prevalence of additive (plant height), non-additive (days to flowering completion; days to maturity) and reciprocal effects (days to flowering initiation) were detected. Parental line G-403 was best general combiner for all the traits. The F1 hybrids G-902 * G-265 (days to flowering initiation), G-902 * G-403 (days to flowering completion), G-265 * G-1500 (days to maturity) and G-909 * G-265 (plant height) were superior and may be exploited for future breeding programs. (author)

  7. NN-Es Fault Diagnosis Method in Nuclear Power Equipment Based on Concept Lattice

    International Nuclear Information System (INIS)

    Liu Yongkuo; Xie Chunli; Xia Hong

    2010-01-01

    In order to improve the fault diagnosis accuracy of nuclear power plant,neural network and expert systems were combined to give full play to their advantages. In this paper, the concept lattice was applied to get the object properties, extracting the core attributes, dispensable attributes and relative necessary attributes from a large number raw data of fault symptoms.Based on these attributes, neural networks with different levels of importance were designed to improve the learning speed and diagnosis accuracy, and the diagnosis results of the neural networks were verified by using rule-based reasoning expert system. To verify the accuracy of this method, some simulation experiments about the typical faults of nuclear power plant were conducted. And the simulation results show that it is feasible to diagnose nuclear power plant faults with the confederation diagnosis methods combined the neural networks based on the concept lattice theory and expert system, with the distinctive features such as the efficiency of neural network learning, less calculation and reliability of diagnosis results and so on. (authors)

  8. Models of intracellular mechanisms of plant bioelectrical potentials caused by combined stimulation

    Directory of Open Access Journals (Sweden)

    D. V. Chernetchenko

    2014-10-01

    Full Text Available This paper deals with bioelectrical potentials of the plants recorded during different types of stimuli and combined stimulus as well. All registrations were observed on the leaves of the corn. We used different stimuli, such as cold, heat, photo- and electrical stimulation, and certain combination of this stimuli. Hardware and software system for automated recording of bioelectrical potentials has been successfully used in this work. We proposed the universal pattern of bioelectrical potentials’ recording which allowed to detect the response of the biological object to different stimuli and various combinations of these stimuli. This pattern can be used for the deeper understanding of biological mechanisms of electrical potentials’ generation in cells and discovering of processes of accommodation of whole organisms to these stimuli. Integrated system of recording and biometrical processing was used for analysis of corn leaves electrical responses to the thermal stimuli. The dynamics of these potentials was studied, with the quantitative analysis of the potential level stabilization.We calculated the ratio of amplitude of response potentials to the first response amplitude. Mathematical models of the plant cell were used for studying of intracellular mechanisms of biopotentials gereration. As a result of modeling, we revealed that electrical response of the cells was based on selectiveconductivity of cell membrane for Н+ and Ca2+ ions. Therefore, we showed the biophysical relation of plant potentials to underlying intracellular biophysical mechanisms during thermal and combined stimulation.

  9. Combined effect of gamma irradiation and plant oils on the potato tuber moth, Phthorimaea operculella (Z)

    International Nuclear Information System (INIS)

    HASSAN, A.I.A.

    2012-01-01

    1- Susceptibility of Phthorimaea operculella to plant oil and gamma- irradiation. 2- Susceptibility of Phthorimaea operculella to powder of some plants and gamma irradiation.-selection of the suitable concentration of plant oils. - effect on male fertility. -effect on female fecundity. -effect on adult survival. 3- Separate and combined effects of radiation and plant oil on the male mating competitiveness using the sterile dose. 4- Separate and combined effects of radiation and plant oil on the male mating competitiveness using the sub sterile dose. 5- The effects of gamma- irradiation and plant oil on the pest when the potato tubers store for different periods. 6- Some biochemical studies. o Determine the adult total protein content of treated pupae. Determine the effect of plant oils and gamma- irradiation on the activity of some enzymes as proteinase, ATPase, keitenase cholinesterase.

  10. Feasibility study on combining anaerobic digestion and biomass gasification to increase the production of biomethane

    International Nuclear Information System (INIS)

    Li, Hailong; Larsson, Eva; Thorin, Eva; Dahlquist, Erik; Yu, Xinhai

    2015-01-01

    Highlights: • Anaerobic digestion and biomass gasification are integrated. • The novel concept can produce much more biomethane. • The novel concept can improve the exergy efficiency. • The novel concept demonstrates a big potential of income increase. - Abstract: There is a rapid growing interest in using biomethane as fuel for transport applications. A new concept is proposed to combine anaerobic digestion and biomass gasification to produce biomethane. H 2 is separated from the syngas generated by biomass gasification in a membrane system, and then is used to upgrade raw biogas from anaerobic digestion. Simulations have been conducted based on the real operation data of one full scale biogas plant and one full scale biomass gasification plant in order to investigate the feasibility of the new concept. Results show that although less power and heat are generated compared to the gasification plant, which results in a lower overall efficiency, much more biomethane can be produced than the biogas plant; and the new concept can achieve a higher exergy efficiency. Due to the increasing price of biomethane, the novel concept demonstrates a big potential of income increase. For example, at a biomethane price of 12.74SEK/kg, the annual income can be increased by 5.3% compared to the total income of the biogas and gasification plant

  11. Availability of thermal power plants 1981-1990

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1991-01-01

    The present volume covers the period of 1981 to 1990 and contains availability data of power plants in Germany and abroad. Data are presented on fossil-fuelled units, units with a combined gas/steam cycle, nuclear power plants and gas turbines. The fossil-fuelled units are broken down by unit size, years of operation, fuel, type of combustion (dry, melt) and type (mono, duo units, subcritical and supercritical systems). Nuclear power stations are arranged by type of reactor (PWR, BWR), unit size and years of operation. Combined cycle power plants are listed separately due to their different technical concepts. Apart from availability and utilisation values of gas turbines there are data on reliability and the number of successful and unsuccessful starts. In general the data are first given for all plants and then for the German plants in particular. Performance values are gross values measured at generator terminals and, as the number of plants, they are end-of-the-year figures [de

  12. Valuing flexibility: The case of an Integrated Gasification Combined Cycle power plant

    International Nuclear Information System (INIS)

    Abadie, Luis M.; Chamorro, Jose M.

    2008-01-01

    In this paper we analyze the choice between two technologies for producing electricity. In particular, the firm has to decide whether and when to invest either in a Natural Gas Combined Cycle (NGCC) power plant or in an Integrated Gasification Combined Cycle (IGCC) power plant, which may burn either coal or natural gas. Instead of assuming that fuel prices follow standard geometric Brownian motions, here they are assumed to show mean reversion, specifically to follow an inhomogeneous geometric Brownian motion. First we consider the opportunity to invest in a NGCC power plant. We derive the optimal investment rule as a function of natural gas price and the remaining life of the right to invest. In addition, the analytical solution for a perpetual option to invest is obtained. Then we turn to the IGCC power plant. We analyse the valuation of an operating plant when there are switching costs between modes of operation, and the choice of the best operation mode. This serves as an input to evaluate the option to invest in this plant. Finally we derive the value of an opportunity to invest either in a NGCC or IGCC power plant, i.e. to choose between an inflexible and a flexible technology, respectively. Depending on the opportunity's time to maturity, we derive the pairs of coal and gas prices for which it is optimal to invest in NGCC, in IGCC, or simply not to invest. Numerical computations involve the use of one- and two-dimensional binomial lattices that support a mean-reverting process for coal and gas prices. Basic parameter values are taken from an actual IGCC power plant currently in operation. Sensitivity of some results with respect to the underlying stochastic process for fuel price is also checked

  13. The Target Plant Concept [Chapter 2

    Science.gov (United States)

    Thomas D. Landis

    2009-01-01

    The first native plant nurseries in North America were gardens of plants transplanted from the wild by indigenous people. Specific plants were irrigated and otherwise cultured in these gardens to produce seeds, leaves, roots, or other desirable products. As native people collected seeds from the largest or most productive plants, they were making the first genetic...

  14. Optimization of operation for combined heat and power plants - CHP plants - with heat accumulators using a MILP formulation

    Energy Technology Data Exchange (ETDEWEB)

    Grue, Jeppe; Bach, Inger [Aalborg Univ. (Denmark). Inst. of Energy Technology]. E-mails: jeg@iet.auc.dk; ib@iet.auc.dk

    2000-07-01

    The power generation system in Denmark is extensively based on small combined heat and power plants (CHP plants), producing both electricity and district heating. This project deals with smaller plants spread throughout the country. Often a heat accumulator is used to enable electricity production, even when the heat demand is low. This system forms a very complex problem, both for sizing, designing and operation of CHP plants. The objective of the work is the development of a tool for optimisation of the operation of CHP plants, and to even considering the design of the plant. The problem is formulated as a MILP-problem. An actual case is being tested, involving CHP producing units to cover the demand. The results from this project show that it is of major importance to consider the operation of the plant in detail already in the design phase. It is of major importance to consider the optimisation of the plant operation, even at the design stage, as it may cause the contribution margin to rise significantly, if the plant is designed on the basis of a de-tailed knowledge of the expected operation. (author)

  15. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  16. Concept for Sustained Plant Production on ISS Using VEGGIE Capillary Mat Rooting System

    Science.gov (United States)

    Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.

    2011-01-01

    Plant growth in microgravity presents unique challenges associated with maintaining appropriate conditions for seed germination, seedling establishment, maturation and harvest. They include maintaining appropriate soil moisture content, nutrient balance, atmospheric mixing and containment. Sustained production imposes additional challenges of harvesting, replanting, and safety. The VEGGIE is a deployable (collapsible) plant growth chamber developed as part of a NASA SBIR Phase II by Orbitec, Madison, WI. The intent of VEGGIE is to provide a low-resource system to produce fresh vegetables for the crew on long duration missions. The VEGGIE uses and LED array for lighting, an expandable bellows for containment, and a capillary matting system for nutrient and water delivery. The project evaluated a number of approaches to achieve sustained production, and repeated plantings, using the capillary rooting system. A number of different root media, seed containment, and nutrient delivery systems were evaluated and effects on seed germination and growth were evaluated. A number of issues limiting sustained production, such as accumulation of nutrients, uniform water, elevated vapor pressure deficit, and media containment were identified. A concept using pre-planted rooting packs shown to effectively address a number of those issues and is a promising approach for future development as a planting system for microgravity conditions.

  17. Mycorrhizal responses under elevated CO2 : combining fungal and plant perspectives

    NARCIS (Netherlands)

    Alberton, O.

    2008-01-01

    The rising level of atmospheric carbon dioxide (CO2) combined with increased nutrient (especially nitrogen) availability are predicted to have substantial impacts on plant growth and the functioning of ecosystems. Soil micro-organisms, especially mycorrhizal fungi that form mutualistic associations

  18. Vestas Power Plant Solutions Integrating Wind, Solar PV and Energy Storage

    DEFF Research Database (Denmark)

    Petersen, Lennart; Hesselbæk, Bo; Martinez, Antonio

    2018-01-01

    This paper addresses a value proposition and feasible system topologies for hybrid power plant solutions integrating wind, solar PV and energy storage and moreover provides insights into Vestas hybrid power plant projects. Seen from the perspective of a wind power plant developer, these hybrid...... solutions provide a number of benefits that could potentially reduce the Levelized Cost of Energy and enable entrance to new markets for wind power and facilitate the transition to a more sustainable energy mix. First, various system topologies are described in order to distinguish the generic concepts...... for the electrical infrastructure of hybrid power plants. Subsequently, the benefits of combining wind and solar PV power as well as the advantages of combining variable renewable energy sources with energy storage are elaborated. Finally, the world’s first utility-scale hybrid power plant combining wind, solar PV...

  19. Engineering and innovative erection concept for the containment liner for a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Goehring, Rainer [Babcock Noell GmbH, Wuerzburg (Germany). Abt. Nukleare Projekte; Anders, Nils; Nagelstutz, Franz [Babcock Noell GmbH, Wuerzburg (Germany). Abt. Berechnung

    2010-04-15

    The determination of the optimal design of the containment liner considering amount of material, manufacturing and erection was the challenge for the engineering team of Babcock Noell GmbH. Several load cases for normal operation and accidental conditions as well as severe accidents have been analysed. The special load cases in the vicinity of penetrations and anchor plates have been calculated. The results of theses analyses have been considered in the actual design of the liner. The construction costs of a Nuclear Power Plant are also impacted by the erection time of components. Therefore, it is necessary to optimize the erection times and consequently essentially to shorten. One possibility has been demonstrated by Babcock Noell GmbH with the erection concept of a containment liner. The liner is preassembled on the pre-assembly place in rings of up to 12 meter height, with the nominal diameter of 47 meter and a weight of approximately up to 200 tonnes. These rings, as well as the containment cup and the dome, are lifted with a heavy load crane into the reactor building. With this concept, the construction activities on the inner containment wall are only five times disrupted by the welding and coating of the circumferential weld (approx. 25 calendar days). In comparison with the common known erection concept of welding of liner shells in situ, at least 20 weeks are saved on the schedule. An integrated concept from planning, manufacturing and erection of this large component has been implemented. It could be demonstrated that within the given time frame, with the required quality and within the required tolerances the containment liner for the Nuclear Power Plant can be delivered to the Client. (orig.)

  20. Engineering and innovative erection concept for the containment liner for a nuclear power plant

    International Nuclear Information System (INIS)

    Goehring, Rainer; Anders, Nils; Nagelstutz, Franz

    2010-01-01

    The determination of the optimal design of the containment liner considering amount of material, manufacturing and erection was the challenge for the engineering team of Babcock Noell GmbH. Several load cases for normal operation and accidental conditions as well as severe accidents have been analysed. The special load cases in the vicinity of penetrations and anchor plates have been calculated. The results of theses analyses have been considered in the actual design of the liner. The construction costs of a Nuclear Power Plant are also impacted by the erection time of components. Therefore, it is necessary to optimize the erection times and consequently essentially to shorten. One possibility has been demonstrated by Babcock Noell GmbH with the erection concept of a containment liner. The liner is preassembled on the pre-assembly place in rings of up to 12 meter height, with the nominal diameter of 47 meter and a weight of approximately up to 200 tonnes. These rings, as well as the containment cup and the dome, are lifted with a heavy load crane into the reactor building. With this concept, the construction activities on the inner containment wall are only five times disrupted by the welding and coating of the circumferential weld (approx. 25 calendar days). In comparison with the common known erection concept of welding of liner shells in situ, at least 20 weeks are saved on the schedule. An integrated concept from planning, manufacturing and erection of this large component has been implemented. It could be demonstrated that within the given time frame, with the required quality and within the required tolerances the containment liner for the Nuclear Power Plant can be delivered to the Client. (orig.)

  1. HEPA filter leaching concept validation trials at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Chakravartty, A.C.

    1995-04-01

    The enclosed report documents six New Waste Calcining Facility (NWCF) HEPA filter leaching trials conducted at the Idaho Chemical Processing Plant using a filter leaching system to validate the filter leaching treatment concept. The test results show that a modified filter leaching system will be able to successfully remove both hazardous and radiological constituents to RCRA disposal levels. Based on the success of the filter leach trials, the existing leaching system will be modified to provide a safe, simple, effective, and operationally flexible filter leaching system

  2. A combined energetic and economic approach for the sustainable design of geothermal plants

    International Nuclear Information System (INIS)

    Franco, Alessandro; Vaccaro, Maurizio

    2014-01-01

    Highlights: • Exploitation of medium to low temperature geothermal sources: ORC power plants. • Integrated energetic and economic approach for the analysis of geothermal power plants. • A brief overview of the cost items of geothermal power plants. • Analysis of specific cost of geothermal power plants based on the method proposed. • Analysis of sustainability of geothermal energy systems based on resource durability. - Abstract: The perspectives of future development of geothermal power plants, mainly of small size for the exploitation of medium–low temperature reservoirs, are discussed and analyzed in the present paper. Even if there is a general interest in new power plants and investments in this sector are recognized, the new installations are reduced; the apparent advantage of null cost of the energy source is negatively balanced by the high drilling and installation costs. A key element for the design of a geothermal plant for medium temperature geothermal source is the definition of the power of the plant (size): this is important in order to define not only the economic plan but also the durability of the reservoir. Considering that it is not possible that the development of geothermal industry could be driven only by an economic perspective, the authors propose a method for joining energetic and economic approaches. The result of the combined energetic and economic analysis is interesting particularly in case of Organic Rankine Cycle (ORC) power plants in order to define a suitable and optimal size and to maximize the resource durability. The method is illustrated with reference to some particular case studies, showing that the sustainability of small size geothermal plants will be approached only if the research for more economic solutions will be combined with efforts in direction of efficiency increase

  3. An evaluation of the performance of an integrated solar combined cycle plant provided with air-linear parabolic collectors

    International Nuclear Information System (INIS)

    Amelio, Mario; Ferraro, Vittorio; Marinelli, Valerio; Summaria, Antonio

    2014-01-01

    An evaluation of the performance of an innovative solar system integrated in a combined cycle plant is presented, in which the heat transfer fluid flowing in linear parabolic collectors is the same oxidant air that is introduced into the combustion chamber of the plant. This peculiarity allows a great simplification of the plant. There is a 22% saving of fossil fuel results in design conditions and 15.5% on an annual basis, when the plant works at nominal volumetric flow rate in the daily hours. The net average year efficiency is 60.9% against the value of 51.4% of a reference combined cycle plant without solar integration. Moreover, an economic evaluation of the plant is carried out, which shows that the extra-cost of the solar part is recovered in about 5 years. - Highlights: • A model to calculate an innovative ISCCS (Integrated solar Combined Cycle Systems) solar plant is presented. • The plant uses air as heat transfer fluid as well as oxidant in the combustor. • The plant presents a very high thermodynamic efficiency. • The plant is very simple in comparison with existing ISCCS

  4. Research progress in plant mutation by combining ion beam irradiations and tissue culture

    International Nuclear Information System (INIS)

    Zhou Linbin; Li Wenjian; Qu Ying; Li Ping

    2007-01-01

    About a new mutation breeding method which combines plant tissue culture technique with heavy ion beam irradiations were discussed in this paper with the principles, operation steps, molecular mechanisms, etc. The mutation method developed a few advantages coming from plant tissue culture, which can produce offspring by asexual ways. Meanwhile, using this method, the study of biological effects of high energy particles with different linear energy transfer values on plant tissues or cells can be explored and optimized in theory or practice. (authors)

  5. Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification

    International Nuclear Information System (INIS)

    Ziębik, Andrzej; Malik, Tomasz; Liszka, Marcin

    2015-01-01

    Integration of a CHP steam plant with an installation of coal gasification and gas turbine leads to an IGCC-CHP (integrated gasification combined cycle-combined heat and power). Two installations of coal gasification have been analyzed, i.e. pressurized entrained flow gasifier – case 1 and pressurized fluidized bed gasifier with CO_2 recirculation – case 2. Basing on the results of mathematical modelling of an IGCC-CHP plant, the algorithms of calculating typical energy indices have been derived. The following energy indices are considered, i.e. coefficient of heat performance and relative savings of chemical energy of fuels. The results of coefficients of heat performance are contained between 1.87 and 2.37. Values exceeding 1 are thermodynamically justified because the idea of cogeneration of heat and electricity based on combining cycles of the heat engine and heat pump the efficiency of which exceeds 1. Higher values concerning waste heat replace more thermodynamically effective sources of heat in CHP plants. Relative savings of the chemical energy of fuels are similar in both cases of IGCC-CHP plants and are contained between the lower value of the CHP (combined heat and power) plants fuelled with coal and higher value of CHP plants fired with natural gas. - Highlights: • Energy savings of fuel is an adequate measure of cogeneration. • Relative energy savings of IGCC-CHP is near the result of a gas and steam CHP. • COHP (coefficient of heat performance) can help to divide fuel between heat fluxes. • Higher values of COHP in the case of waste heat recovery result from the lower thermal parameters.

  6. Combined photogrammetry and 3-D CAD for plant documentation and planning of refits

    International Nuclear Information System (INIS)

    Fraas, K.C.; Giese, U.; Kamsties, K.D.

    1991-01-01

    Meticulous advance planning and erection studies using a three-dimensional computer-aided design model of the plant area concerned can reduce the problem that unexpected events during a plant refit will prolong the required inspection period. This presupposes that a 3-D CAD scale model of the running plant has been generated. A method is described with which the as-built condition of the plant area is converted into a 3-D CAD model by combining photogrammetry with 3-D CAD. The minimum amount of time required for in-plant surveying and the completeness and clarity of results are the special advantages of this method in comparison with other measurement techniques. Selected applications are presented. (orig.) [de

  7. Estimating the power efficiency of the thermal power plant modernization by using combined-cycle technologies

    International Nuclear Information System (INIS)

    Hovhannisyan, L.S.; Harutyunyan, N.R.

    2013-01-01

    The power efficiency of the thermal power plant (TPP) modernization by using combined-cycle technologies is introduced. It is shown that it is possible to achieve the greatest decrease in the specific fuel consumption at modernizing the TPP at the expense of introducing progressive 'know-how' of the electric power generation: for TPP on gas, it is combined-cycle, gas-turbine superstructures of steam-power plants and gas-turbines with heat utilization

  8. Comparison of seismic isolation concepts for FBR

    International Nuclear Information System (INIS)

    Shiojiri, H.; Mazda, T.; Kasai, H.; Kanda, J.N.; Kubo, T.; Madokoro, M.; Shimomura, T.; Nojima, O.

    1989-01-01

    This paper seeks to verify the reliability and effectiveness of seismic isolation for FBR. Some results of the preliminary study of the program are described. Seismic isolation concepts and corresponding seismic isolation devices were selected. Three kinds of seismically-isolated FBR plant concepts were developed by applying promising seismic isolation concepts to the non-isolated FBR plant, and by developing plant component layout plans and building structural designs. Each plant was subjected to seismic response analysis and reduction in the amount of material of components and buildings were estimated for each seismic isolation concepts. Research and development items were evaluated

  9. An update technology for integrated biomass gasification combined cycle power plant

    International Nuclear Information System (INIS)

    Bhattacharya, P.; Dey, S.

    2014-01-01

    A discussion is presented on the technical analysis of a 6.4 M W_e integrated biomass gasification combined cycle (IBGCC) plant. It features three numbers of downdraft biomass gasifier systems with suitable gas clean-up trains, three numbers of internal combustion (IC) producer gas engines for producing 5.85 MW electrical power in open cycle and 550 kW power in a bottoming cycle using waste heat. Comparing with IC gas engine single cycle systems, this technology route increases overall system efficiency of the power plant, which in turn improves plant economics. Estimated generation cost of electricity indicates that mega-watt scale IBGCC power plants can contribute to good economies of scale in India. This paper also highlight's the possibility of activated carbon generation from the char, a byproduct of gasification process, and use of engine's jacket water heat to generate chilled water through VAM for gas conditioning. (author)

  10. Concept of a utility scale dispatch able solar thermal electricity plant with an indirect particle receiver in a single tower layout

    Science.gov (United States)

    Schwaiger, Karl; Haider, Markus; Haemmerle, Martin; Steiner, Peter; Obermaier, Michael-Dario

    2016-05-01

    Flexible dispatch able solar thermal electricity plants applying state of the art power cycles have the potential of playing a vital role in modern electricity systems and even participating in the ancillary market. By replacing molten salt via particles, operation temperatures can be increased and plant efficiencies of over 45 % can be reached. In this work the concept for a utility scale plant using corundum as storage/heat transfer material is thermodynamically modeled and its key performance data are cited. A novel indirect fluidized bed particle receiver concept is presented, profiting from a near black body behavior being able to heat up large particle flows by realizing temperature cycles over 500°C. Specialized fluidized bed steam-generators are applied with negligible auxiliary power demand. The performance of the key components is discussed and a rough sketch of the plant is provided.

  11. Combined cycle versus one thousand diesel power plants: pollutant emissions, ecological efficiency and economic analysis

    International Nuclear Information System (INIS)

    Silveira, Jose Luz; de Carvalho, Joao Andrade; de Castro Villela, Iraides Aparecida

    2007-01-01

    The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO 2 ), carbon dioxide (CO 2 ) and nitrogen oxides (NO x ). (author)

  12. Overall performance assessment of a combined cycle power plant: An exergo-economic analysis

    International Nuclear Information System (INIS)

    Sahin, Ahmet Z.; Al-Sharafi, Abdullah; Yilbas, Bekir S.; Khaliq, Abdul

    2016-01-01

    Highlights: • An exergo-economic analysis is carried out for a combined cycle power plant. • An overall performance index (OPI) is defined to analyze the power plant. • Four performance indicators and three scenarios are considered in the analysis. • The optimum configuration of the power plant differs for each scenarios considered. - Abstract: An exergo-economic analysis is carried out for a combined cycle power plant using the first law and the second law of thermodynamics, and the economic principles while incorporating GT PRO/PEACE Software Packages. An overall performance index (OPI) is defined to assess and analyze the optimum operational and design configurations of the power plant. Four performance indicators are considered for the analysis; namely, energy efficiency (ENE), exergy efficiency (EXE), levelized cost of electricity (COE), and the total investment (TI) cost. Three possible scenarios are considered in which different weight factor is assigned to the performance indicators when assessing the performance. These scenarios are: (i) the conventional case in which the levelized cost of electricity is given a high priority, (ii) environmental conscious case in which the exergy efficiency is given a high priority, and (iii) the economical case in which the total cost of investment is given a high priority. It is shown that the optimum size and the configuration of the power plant differ for each scenarios considered. The selection and optimization of the size and configuration of the power plant are found to be depending on the user priorities and the weight factors assigned to the performance indicators.

  13. Progress in Development of I2S-LWR Concept

    International Nuclear Information System (INIS)

    Petrovic, Bojan

    2014-01-01

    The paper will present the progress in developing the Integral Inherently Safe Light Water Reactor (12S-LWR) concept. This new concept aims to combine the competitive economics of a large nuclear power plant, with enhanced safety achieved by the integral primary circuit configuration (previously considered only for PWRs with power levels not exceeding several hundred MWc), and with enhanced accident tolerance (to address concerns after the Fukushima Dai-lchi accidents). Several new technologies are being developed to enable this concept, including novel silicide fuel and micro-channel primary heat exchangers. This project is performed by a multi-disciplinary multi-organization team led by Georgia Tech, including academia, a national laboratory, nuclear industry, and a power utility, wit expected participation of the University of Zagreb. (author)

  14. Performance Evaluation of the Concept of Hybrid Heat Pipe as Passive In-core Cooling Systems for Advanced Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Kim, Kyung Mo; Kim, In Guk; Bang, In Cheol

    2015-01-01

    As an arising issue for inherent safety of nuclear power plant, the concept of hybrid heat pipe as passive in-core cooling systems was introduced. Hybrid heat pipe has unique features that it is inserted in core directly to remove decay heat from nuclear fuel without any changes of structures of existing facilities of nuclear power plant, substituting conventional control rod. Hybrid heat pipe consists of metal cladding, working fluid, wick structure, and neutron absorber. Same with working principle of the heat pipe, heat is transported by phase change of working fluid inside metal cask. Figure 1 shows the systematic design of the hybrid heat pipe cooling system. In this study, the concept of a hybrid heat pipe was introduced as a Passive IN-core Cooling Systems (PINCs) and demonstrated for internal design features of heat pipe containing neutron absorber. Using a commercial CFD code, single hybrid heat pipe model was analyzed to evaluate thermal performance in designated operating condition. Also, 1-dimensional reactor transient analysis was done by calculating temperature change of the coolant inside reactor pressure vessel using MATLAB. As a passive decay heat removal device, hybrid heat pipe was suggested with a concept of combination of heat pipe and control rod. Hybrid heat pipe has distinct feature that it can be a unique solution to cool the reactor when depressurization process is impossible so that refueling water cannot be injected into RPV by conventional ECCS. It contains neutron absorber material inside heat pipe, so it can stop the reactor and at the same time, remove decay heat in core. For evaluating the concept of hybrid heat pipe, its thermal performance was analyzed using CFD and one-dimensional transient analysis. From single hybrid heat pipe simulation, the hybrid heat pipe can transport heat from the core inside to outside about 18.20 kW, and total thermal resistance of hybrid heat pipe is 0.015 .deg. C/W. Due to unique features of long heat

  15. Probability problems in seismic risk analysis and load combinations for nuclear power plants

    International Nuclear Information System (INIS)

    George, L.L.

    1983-01-01

    This workshop describes some probability problems in power plant reliability and maintenance analysis. The problems are seismic risk analysis, loss of load probability, load combinations, and load sharing. The seismic risk problem is to compute power plant reliability given an earthquake and the resulting risk. Component survival occurs if its peak random response to the earthquake does not exceed its strength. Power plant survival is a complicated Boolean function of component failures and survivals. The responses and strengths of components are dependent random processes, and the peak responses are maxima of random processes. The resulting risk is the expected cost of power plant failure

  16. Optimization of fog inlet air cooling system for combined cycle power plants using genetic algorithm

    International Nuclear Information System (INIS)

    Ehyaei, Mehdi A.; Tahani, Mojtaba; Ahmadi, Pouria; Esfandiari, Mohammad

    2015-01-01

    In this research paper, a comprehensive thermodynamic modeling of a combined cycle power plant is first conducted and the effects of gas turbine inlet fogging system on the first and second law efficiencies and net power outputs of combined cycle power plants are investigated. The combined cycle power plant (CCPP) considered for this study consist of a double pressure heat recovery steam generator (HRSG) to utilize the energy of exhaust leaving the gas turbine and produce superheated steam to generate electricity in the Rankine cycle. In order to enhance understanding of this research and come up with optimum performance assessment of the plant, a complete optimization is using a genetic algorithm conducted. In order to achieve this goal, a new objective function is defined for the system optimization including social cost of air pollution for the power generation systems. The objective function is based on the first law efficiency, energy cost and the external social cost of air pollution for an operational system. It is concluded that using inlet air cooling system for the CCPP system and its optimization results in an increase in the average output power, first and second law efficiencies by 17.24%, 3.6% and 3.5%, respectively, for three warm months of year. - Highlights: • To model the combined cycle power plant equipped with fog inlet air cooling method. • To conduct both exergy and economic analyses for better understanding. • To conduct a complete optimization using a genetic algorithm to determine the optimal design parameters of the system

  17. Modelling and optimization of combined cycle power plant based on exergoeconomic and environmental analyses

    International Nuclear Information System (INIS)

    Ganjehkaviri, A.; Mohd Jaafar, M.N.; Ahmadi, P.; Barzegaravval, H.

    2014-01-01

    This research paper presents a study on a comprehensive thermodynamic modelling of a combined cycle power plant (CCPP). The effects of economic strategies and design parameters on the plant optimization are also studied. Exergoeconomic analysis is conducted in order to determine the cost of electricity and cost of exergy destruction. In addition, a comprehensive optimization study is performed to determine the optimal design parameters of the power plant. Next, the effects of economic parameters variations on the sustainability, carbon dioxide emission and fuel consumption of the plant are investigated and are presented for a typical combined cycle power plant. Therefore, the changes in economic parameters caused the balance between cash flows and fix costs of the plant changes at optimum point. Moreover, economic strategies greatly limited the maximum reasonable carbon emission and fuel consumption reduction. The results showed that by using the optimum values, the exergy efficiency increases for about 6%, while CO 2 emission decreases by 5.63%. However, the variation in the cost was less than 1% due to the fact that a cost constraint was implemented. In addition, the sensitivity analysis for the optimization study was curtailed to be carried out; therefore, the optimization process and results to two important parameters are presented and discussed.

  18. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  19. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured 235 U) startup fuels, first-recycle and equilibrium (denatured 233 U) thorium--uranium LWR fuels, and to recover the plutonium generated in the 238 U denaturant as well. 12 figures, 3 tables

  20. Concept of electric power output control system for atomic power generation plant utilizing cool energy of stored snow

    International Nuclear Information System (INIS)

    Kamimura, Seiji; Toita, Takayuki

    2003-01-01

    A concept of the SEAGUL system (Snow Enhancing Atomic-power Generation UtiLity) is proposed in this paper. Lowering the temperature of sea water for cooling of atomic-power plant will make a efficiency of power generation better and bring several ten MW additional electric power for 1356 MW class plant. The system concept stands an idea to use huge amount of seasonal storage snow for cooling water temperature control. In a case study for the Kashiwazaki-Kariwa Nuclear Power Station, it is estimated to cool down the sea water of 29degC to 20degC by 80 kt snow for 3 hours in a day would brought 60 MWh electric power per a day. Annually 38.4 Mt of stored snow will bring 1800 MWh electric power. (author)

  1. Safety concept of nuclear power plants in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schnurer, H.L.; Seipel, H.G.

    1983-01-01

    The safety philosophy of the Federal Republic of Germany (FRG) pertaining to nuclear power plants is presented. Its general approach makes much use of research and experience in other countries, especially the United States, but the FRG has also evolved approaches and aspects unique to itself. The article discusses the institutional interrelationships of the entities affecting German nuclear power plant safety and presents the resulting German safety philosophy. This philosophy is based, as in the United States, on multilevel defenses but with greater reliance on a number of accident-prevention and/or -mitigation concepts, including: (1) automated responses to off-normal conditions, (2) an operating-limit system that acts before initiation of protective actions by the reactor protection system, (3) multistrand independent safety trains, and (4) long-term self-contained safety under accident conditions without operator intervention. The practical realization of this philosophy in the design and operation of the chief reactor systems is described

  2. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  3. Thermo-economic analysis of combined power plants with changing economic parameters

    International Nuclear Information System (INIS)

    Bidini, G.; Desideri, U.; Facchini, B.

    1991-01-01

    A method of thermo-economic analysis for the choice of optimal thermodynamic parameters of steam bottoming cycles in combined cycle power plants is presented. By keeping the thermodynamic aspects separated from the economic aspects, this method allows designers to easily perform a sensitivity analysis of the change in the economic parameters

  4. An innovative concept for handling and operation of the wastewater treatment plant of Cottbus

    International Nuclear Information System (INIS)

    Spiller, K.; Schmitt, J.

    1994-01-01

    A new concept for handling and operating the wastewater treatment plant of Cottbus, with computerized modelling and an expert system as integral parts of process analysis and decision-making, is developed. Optimized plant operation and process stability is to be achieved by conrolling process-dependent dosage of wastewater coming from sludge treatment and from faecal wastewater. With the treatment plant still being built, a thorough analysis of the influent and the resulting process conditions is done, using the computerized model. Results and consequences for process optimization are presented in this article. Special attention has to be given to load smoothing and optimization of denitrification, influencing process stability and quality. Thereby not only the legal requirements can be fulfilled but improvement of effluent quality also could be achieved, reducing total nitrogen in the effluent by as much as 50%, lowering wastewater treatment costs by allowing lower control levels and fees to be payed. (orig.) [de

  5. Conventional and advanced exergetic analyses applied to a combined cycle power plant

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina; Tsatsaronis, George; Morosuk, Tatiana; Carassai, Anna

    2012-01-01

    Conventional exergy-based methods pinpoint components and processes with high irreversibilities. However, they lack certain insight. For a given advanced technological state, there is a minimum level of exergy destruction related to technological and/or economic constraints that is unavoidable. Furthermore, in any thermodynamic system, exergy destruction stems from both component interactions (exogenous) and component inefficiencies (endogenous). To overcome the limitations of the conventional analyses and to increase our knowledge about a plant, advanced exergy-based analyses have been developed. In this paper, a combined cycle power plant is analyzed using both conventional and advanced exergetic analyses. Except for the expander of the gas turbine system and the high-pressure steam turbine, most of the exergy destruction in the plant components is unavoidable. This unavoidable part is constrained by internal technological limitations, i.e. each component’s endogenous exergy destruction. High levels of endogenous exergy destruction show that component interactions do not contribute significantly to the thermodynamic inefficiencies. In addition, these inefficiencies are unavoidable to a large extent. With the advanced analysis, new improvement strategies are revealed that could not otherwise be found. -- Highlights: ► This is the first application of a complete advanced exergetic analysis to a complex power plant. ► In the three-pressure-level combined cycle power plant studied here, the improvement potential of the majority of the components is low, since most of the exergy destruction is unavoidable. ► Component interactions are generally of lower importance for the considered plant. ► Splitting the exogenous exergy destruction reveals one-to-one component interactions and improvement strategies. ► The advanced exergetic analysis is a necessary supplement to the conventional analysis in improving a complex system.

  6. Hybrid combined cycle power plant

    International Nuclear Information System (INIS)

    Veszely, K.

    2002-01-01

    In case of re-powering the existing pressurised water nuclear power plants by the proposed HCCPP solution, we can increase the electricity output and efficiency significantly. If we convert a traditional nuclear power plant unit to a HCCPP solution, we can achieve a 3.2-5.5 times increase in electricity output and the achievable gross efficiency falls between 46.8-52% and above, depending on the applied solution. These figures emphasise that we should rethink our power plant technologies and we have to explore a great variety of HCCPP solutions. This may give a new direction in the development of nuclear reactors and power plants as well.(author)

  7. A compact, inherently safe liquid metal reactor plant concept for terrestrial defense power applications

    International Nuclear Information System (INIS)

    Magee, P.M.; Dubberley, A.E.; Lutz, D.E.; Palmer, R.S.

    1987-01-01

    A compact, inherently safe, liquid metal reactor concept based on the GE PRISM innovative LMR design has been developed for terrestrial defense power applications in the 2-50 MWe range. The concept uses a small, sodium-cooled, U-5%Zr metal fueled reactor contained within two redundant steel vessels. The core is designed to operate at a low power density and temperature (925 F) and can operate 30 years without refueling. One two primary coolant loops, depending upon the plant size, transport heat from the core to sodium-to-air, double-wall heat exchangers. Power is produced by a gas turbine operated in a closed ''bottoming'' cycle that employs intercoolers between the compressor stages and a recuperator. Inherent safety is provided by passive means only; operator action is not required to ensure plant safety even for events normally considered Beyond Design Basis Accidents. In addition to normal shutdown heat removal via the sodium-to-air heat exchangers, the design utilizes an inherently passive radiant vessel auxiliary cooling system similar to that designed for PRISM. The use of an air cycle gas turbine eliminates the cost and complexity of the sodium-water reactor pressure relief system required for a steam cycle sodium-cooled reactor

  8. The ARIES-ST study: Assessment of the spherical tokamak concept as fusion power plants

    International Nuclear Information System (INIS)

    Najmabadi, F.; Tillack, M.; Miller, R.; Mau, T.K.; Jardin, S.; Stambaugh, R.; Steiner, D.; Waganer, L.

    2001-01-01

    Recent experimental achievements and theoretical studies have generated substantial interest in the spherical tokamak concept. The ARIES-ST study was undertaken as a national U.S. effort to investigate the potential of the spherical tokamak concept as a fusion power plant and as a vehicle for fusion development. The 1000-MWe ARIES-ST power plant has an aspect ratio of 1.6, a major radius of 3.2 m, a plasma elongation (at 95% flux surface) of 3.4 and triangularity of 0.64. This configuration attains a β of 54% (which is 90% of the maximum theoretical β). While the plasma current is 31 MA, the almost perfect alignment of bootstrap and equilibrium current density profiles results in a current-drive power of only 31 MW. The on-axis toroidal field is 2.1 T and the peak field at the TF coil is 7.6 T, which leads to 288 MW of Joule losses in the normal-conducting TF system. The ARIES-ST study has highlighted many areas where tradeoffs among physics and engineering systems are critical in determining the optimum regime of operation for spherical tokamaks. Many critical issues also have been identified which must be resolved in R and D programs. (author)

  9. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach.

    Science.gov (United States)

    Martín-Gamboa, Mario; Iribarren, Diego; Dufour, Javier

    2018-02-15

    The energy sector is still dominated by the use of fossil resources. In particular, natural gas represents the third most consumed resource, being a significant source of electricity in many countries. Since electricity production in natural gas combined cycle (NGCC) plants provides some benefits with respect to other non-renewable technologies, it is often seen as a transitional solution towards a future low‑carbon power generation system. However, given the environmental profile and operational variability of NGCC power plants, their eco-efficiency assessment is required. In this respect, this article uses a novel combined Life Cycle Assessment (LCA) and dynamic Data Envelopment Analysis (DEA) approach in order to estimate -over the period 2010-2015- the environmental impact efficiencies of 20 NGCC power plants located in Spain. A three-step LCA+DEA method is applied, which involves data acquisition, calculation of environmental impacts through LCA, and the novel estimation of environmental impact efficiency (overall- and term-efficiency scores) through dynamic DEA. Although only 1 out of 20 NGCC power plants is found to be environmentally efficient, all plants show a relatively good environmental performance with overall eco-efficiency scores above 60%. Regarding individual periods, 2011 was -on average- the year with the highest environmental impact efficiency (95%), accounting for 5 efficient NGCC plants. In this respect, a link between high number of operating hours and high environmental impact efficiency is observed. Finally, preliminary environmental benchmarks are presented as an additional outcome in order to further support decision-makers in the path towards eco-efficiency in NGCC power plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  11. CONCEPT-5 user's manual

    International Nuclear Information System (INIS)

    Hudson, C.R. II.

    1979-01-01

    The CONCEPT computer code package was developed to provide conceptual capital cost estimates for nuclear-fueled and fossil-fired power plants. Cost estimates can be made as a function of plant type, size, location, and date of initial operation. The output includes a detailed breakdown of the estimate into direct and indirect costs similar to the accounting system described in document NUS--531. Cost models are currently provided in CONCEPT 5 for single- and multiunit pressurized-water reactors, boiling-water reactors, and cost-fired plants with and without flue gas desulfurization equipment

  12. Estimate for interstage water injection in air compressor incorporated into gas-turbine cycles and combined power plants cycles

    Science.gov (United States)

    Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.

    2017-05-01

    The objects of study are the gas turbine (GT) plant and combined cycle power plant (CCPP) with opportunity for injection between the stages of air compressor. The objective of this paper is technical and economy optimization calculations for these classes of plants with water interstage injection. The integrated development environment "System of machine building program" was a tool for creating the mathematic models for these classes of power plants. Optimization calculations with the criterion of minimum for specific capital investment as a function of the unit efficiency have been carried out. For a gas-turbine plant, the economic gain from water injection exists for entire range of power efficiency. For the combined cycle plant, the economic benefit was observed only for a certain range of plant's power efficiency.

  13. Some Contributions for a Pedagogical Treatment of Alternative Conceptions in Biology: An Example from Plant Nutrition.

    Science.gov (United States)

    Vaz, Adelaine Neto; And Others

    This paper reports on a study that investigated the alternative conceptions of students in a biology and geology teacher education course regarding plant nutrition. Data were collected from first year and final year students using a questionnaire that had both multiple choice and descriptive items. Findings indicate common features related to the…

  14. Future concepts of pyrometallurgical operations at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gray, L.W.; Orth, D.A.; Augsburger, S.T.

    1986-01-01

    For more than three decades, the Savannah River Plant has used the principles of extractive metallurgy for the winning of plutonium from irradiated reactor targets, reactor fuels, and unirradiated scrap and residues. Realizing that at some time in the future the aging facilities at SRP will come to the end of their useful life, the Savannah River Laboratory is assessing the permutations of the various hydro-, pyro-, and electrometallurgy unit operations that could be combined to yield a complete process. Preliminary evaluation suggests that a combination of cation exchange, oxalate precipitation, calcination, hydrofluorination, and calcium reduction would be a reasonable combination of unit operations for Savannah River to use. Several different combinations of process steps offer about the same space requirements when all recycle loops for a complete process are included; each of these unit operations has an adequate technical basis. No single process route appears to offer unique opportunities for technological improvements that can reduce capital and operating costs below those of the suggested route. A group of other alternatives might be promoted to the favored group following sufficient technical development. Research plans are being formulated to determine which, if any, of the alternatives should be promoted to the favored group

  15. Solar fired combined RO/MED desalination plant integrated with electrical power grid

    International Nuclear Information System (INIS)

    Alrobaei, H.

    2006-01-01

    Currently, there is a strong demand for efficient seawater desalination plants, which can meet the tougher environment regulation and energy saving requirements. From this standpoint the present work was undertaken to include proposed scheme (solar Fired Combined Reverse Osmosis (ROY Multi-Effect Distillation (MED) Seawater desalination Plant (SCDP) integrated with electrical power grid (EPG)) for repowering and modification of the conventional grid connected RO desalination plants. The model of SCDP during sunny periods may be applied to the following modes operation: *Full solar desalination (i.e. solar thermal and electrical power generation in solar plant is elivered to the desalination process and the surplus electricity is fed into EPG). *Hybrid solar desalination (I.e. a small share of the electrical power consumption for desalination process compensated by EPG). During cloudly periods and at night the SCDP operates as a conventional RO desalination plant. To establish the range, in which solar energy for seawater desalination would be competitive to fossil energy and investigates the potential effect of the proposed scheme on the repowering effectiveness, mathematical model has been developed. The repowered effectiveness, mathematical model has been developed.The repowered effectiveness in optaimizing model was characterized by the condition of attaining maximum fuel saving in the EPG. The study result shows the effectiveness of proposed scheme for modification and repowering the RO plant. For the case study. (SCDP with maual share of solar electrical power generation 67.4%) the economical effect amount 138.9 ton fuel/year for each MW design thermal energy of parabolic solar collectors array and the corresponding decrease in exhaust gases emission (Nitrogen oxides (NO x ) 0.55 ton/year.MW, carbon dioxides (CO2) 434.9 ton/year.MW). Moreover, implementation of combined RO/MED design for repowering and modification of conventional grid connected RO plant will

  16. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  17. Plant-soil feedbacks: role of plant functional group and plant traits

    NARCIS (Netherlands)

    Cortois, R.; Schröder-Georgi, T.; Weigelt, A.; van der Putten, W.H.; De Deyn, G.B.

    2016-01-01

    Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew

  18. The Direct Internal Recycling concept to simplify the fuel cycle of a fusion power plant

    International Nuclear Information System (INIS)

    Day, Christian; Giegerich, Thomas

    2013-01-01

    Highlights: • The fusion fuel cycle is presented and its functions are discussed. • Tritium inventories are estimated for an early DEMO configuration. • The Direct Internal Recycling concept to reduce tritium inventories is described. • Concepts for its technical implementation are developed. -- Abstract: A new concept, the Direct Internal Recycling (DIR) concept, is proposed, which minimizes fuel cycle inventory by adding an additional short-cut between the pumped torus exhaust gas and the fuelling systems. The paper highlights quantitative modelling results derived from a simple fuel cycle spreadsheet which underline the potential benefits that can be achieved by implementation of the DIR concept into a fusion power plant. DIR requires a novel set-up of the torus exhaust pumping system, which replaces the batch-wise and cyclic operated cryogenic pumps by a continuous pumping solution and which offers at the same time an additional integral gas separation function. By that, hydrogen can be removed close to the divertor from all other gases and the main load to the fuel clean-up systems is a smaller, helium-rich gas stream. Candidate DIR relevant pump technology based on liquid metals (vapour diffusion and liquid ring pumps) and metal foils is discussed

  19. Availability of thermal power plants 1980-1989

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1990-01-01

    The evaluation submitted here is the 19th annual evaluation since 1970. It covers the period from 1980 to 1989 and contains availability data of 324 power stations (domestic and international) with roundabout 94000 MW and 3800 plant years. Data relate to fossil-fuelled cogeneration plants, combined cycle plants (gas-steam combined process), nuclear power stations and gas turbines. The fossil-fuelled blocks are broken down by size, time of operation, fuel, type of combustion (dry, melt) and type mono-, duoblocks, subcritical and supercritical systems, nuclear power stations are organised by type of reactor heavy-water/pressurized water reactor and type of operation. Combined cycle power plants are listed separately due to their different technical concept. Gas turbines are sub-divided by type of operation (time). Apart from availability and utilisation values of gas turbines there are data on reliability and the number of successful and unsuccessful starts. In general the values are first given for all plants of one particular type and then for the German plants in particular. Performance values are gross values measured at generator and like the number of plants they are end-of-the-year figures. In order to increase the usefulness of the VGB-availability studies various items in the recording and evaluation were improved and extended as of 1987. (orig./HS) [de

  20. Plant species and functional group combinations affect green roof ecosystem functions.

    Science.gov (United States)

    Lundholm, Jeremy; Macivor, J Scott; Macdougall, Zachary; Ranalli, Melissa

    2010-03-12

    Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green

  1. Revised concept for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Dennis, A.W.; Milloy, J.A.; Scully, L.W.; Shefelbine, H.C.; Stinebaugh, R.E.; Wowak, W.E.

    1978-07-01

    The quantities of remotely handled wastes that must be handled at the Waste Isolation Pilot Plant have been reduced from 250 x 10 3 ft 3 /y to 10 x 10 3 ft 3 /y; the capital cost of the facility will be reduced from 534 to 428 million dollars. Changes in the facility design due to the reduction in the amount of remote-handled waste are discussed. If DOE should exercise its option to construct a high-level waste repository concurrently with the construction of the revised design, with both facilities receiving waste in 1985, the combined cost would be about 580 million dollars. However, it is unlikely that significant quantities of high-level waste in a form suitable for geologic disposal would be available until after 1990. (13 figures, 5 tables)

  2. Detection of regulated herbs and plants in plant food supplements and traditional medicines using infrared spectroscopy.

    Science.gov (United States)

    Deconinck, E; Djiogo, C A Sokeng; Bothy, J L; Courselle, P

    2017-08-05

    The identification of a specific toxic or regulated plant in herbal preparations or plant food supplements is a real challenge, since they are often powdered, mixed with other herbal or synthetic powders and compressed into tablets or capsules. The classical identification approaches based on micro- and macroscopy are therefore not possible anymore. In this paper infrared spectroscopy, combined with attenuated total reflectance was evaluated for the screening of plant based preparations for nine specific plants (five regulated and four common plants for herbal supplements). IR and NIR spectra were recorded for a series of self-made triturations of the targeted plants. After pretreatment of the spectral data chemometric classification techniques were applied to both data sets (IR and NIR) separately and the combination of both. The results show that the screening of herbal preparations or plant food supplements for specific plants, using infrared spectroscopy, is feasible. The best model was obtained with the Mid-IR data, using SIMCA as modelling technique. During validation of the model, using an external test set, 21 of 25 were correctly classified and six of the nine targeted plants showed no misclassifications for the selected test set. For the other three a success rate of 50% was obtained. Mid-IR combined with SIMCA can therefore be applied as a first step in the screening of unknown samples, before applying more sophisticated fingerprint approaches or identification tests described in several national and international pharmacopoeia. As a proof of concept five real suspicious samples were successfully screened for the targeted regulated plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Design of nuclear desalination concentrate plant by using zero discharge desalination concept for Bangka Island

    International Nuclear Information System (INIS)

    Erlan Dewita, Siti Alimah

    2015-01-01

    Nuclear desalination is a process to separate salt of seawater by using nuclear energy. Desalination concentrate is a problem in nuclear desalination. Desalination concentrate is sometimes discharged directly into the seawater, therefore it can affects the water quality of beach and rise negative effects on the biota in the vicinity of the output. ZDD (Zero Discharge Desalination) concept can be applied to minimized environment impact. This study is conducted by using PWR type NPP as nuclear heat source and using ZDD concept to process desalination waste. ZDD is a concept for processing of desalination concentrate into salt and chemical products which have economic values. Objectives of this study is to design nuclear desalination concentrate processing plant in Bangka Island. The methodology is literature assessment and calculation with excel programme. The results of this study shows that the main the products are NaCl (pharmaceutical salt) and cakes BaSO4, Mg(OH)2BaCO3 as by products. (author)

  4. Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics

    Science.gov (United States)

    Kevin Weitemier; Shannon C.K. Straub; Richard C. Cronn; Mark Fishbein; Roswitha Schmickl; Angela McDonnell; Aaron. Liston

    2014-01-01

    • Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. • Methods and Results: Genome and transcriptome assemblies for milkweed ( Asclepias syriaca ) were used to design enrichment probes for 3385...

  5. Strandby Harbour on solar cooling. Demonstration of 8.000 m{sup 2} solar collectors combined with flue gas cooling with a absorption cooling system; Combined heat and power plant (CHP); Strandby havn paa solkoeling. Demonstration af 8.000 m{sup 2} solfangere kombineret med roeggaskoeling med absorptionskoeleanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Flemming (Strandby Varmevaerk, Strandby (Denmark)); Soerensen, Per Alex (PlanEnergi, Skoerping (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Sloth, H. (Houe and Olsen, Thisted (Denmark))

    2010-04-15

    The aim of the project was to demonstrate 1) high solar heating ratio (18% annually) at a decentralized natural gas combined heat and power plant; 2) increased efficiency (5% of the heat consumption) in a natural gas CHP by using an extra flue gas cooler and an absorption heat pump; 3) a double tank system where a new tank during winter is used for cooling/ heat storage for the absorption heat pump and during summer for solar heat storage in serial operation with the old tank. The concept of combining solar power, absorption cooling and natural gas-fired small-scale CHP in Strandby met expectations and could be replicated in other CHP plants. However, it is important to note that if major construction modifications in the flue gas condensation system in the boiler or engine are required, the operating hours must not be reduced significantly in the amortisation period for the conversion. (ln)

  6. Preliminary concept design of the divertor remote handling system for DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, D., E-mail: dario.carfora@gmail.com [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); ENEA/CREATE/University of Naples Federico II, 80125 Naples (Italy); Di Gironimo, G. [ENEA/CREATE/University of Naples Federico II, 80125 Naples (Italy); Järvenpää, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland)

    2014-11-15

    Highlights: • Concept design of the RH system for the DEMO fusion power plant. • Divertor Mover: Hydraulic telescopic boom concept design. An alternative solution to ITER rack and pinion divertor mover (CMM). • Divertor cassettes end effector studies. • Transportation cask conceptual studies and logistic. - Abstract: This paper is based on the remote maintenance system project (WPRM) for the demonstration fusion power reactor (DEMO). Following ITER, DEMO aims to confirm the capability of generating several hundred of MW of net electricity by 2050. The main objective of these activities is to develop an efficient and reliable remote handling (RH) system for replacing the divertor cassettes. This paper presents the preliminary results of the concept design of the divertor RH system. The proposed divertor mover is a hydraulic telescopic boom driven from the transportation cask through the maintenance tunnel of the reactor. The boom is divided in three sections of 4 m each, and it is driving an end-effector in order to perform the scheduled operations of maintenance inside the vacuum vessel. Two alternative design of the end effector to grip and manipulate the divertor cassette are also presented in this work. Both the concepts are hydraulically actuated, basing on the ITER previous studies. The divertor cassette end-effector consists of a lifting arm linked to the divertor mover, a tilting plate, a cantilever arm and a hook-plate. The main objective of this paper is to illustrate the feasibility of DEMO divertor remote maintenance operations.

  7. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    International Nuclear Information System (INIS)

    Kannan, R.; Leong, K.C.; Osman, Ramli; Ho, H.K.; Tso, C.P.

    2005-01-01

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established

  8. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  9. Availability of thermal power plants

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1981-01-01

    Availability data based on unique uniform, and clearly defined concepts and methods of acquisition have been compiled by the VGB since 1970. The data are published in anual reports. These reports contain availability data of fossil-fuelled units, combined gas/steam units, nuclear power plants, and gas turbine plants in Germany and abroad, listed by unit size fuel type, time of operation, and application. For the purpose of comparison, the data for the years since 1970 are presented as well as data averaged for the whole period under report. The main results for the year 1980 are presented now that the greater part of the plants has been evaluated. The complete evaluation will be published towards the end of 1981. (orig.) [de

  10. Conceptual benefits of passive nuclear power plants and their effect on component design

    International Nuclear Information System (INIS)

    DeVine, J.C. Jr.

    1996-01-01

    Today, nearly ten years after the advanced light water reactor (ALWR) Program was conceived by US utility leaders, and a decade and a half since a new nuclear power plant was ordered in the US, the ALWR passive plant is coming into its own. This design concept, a midsized simplified light water reactor, features extremely reliable passive systems for accident prevention and mitigation and combines proven experience with state-of-the-art engineering and human factors. It is now emerging as the front runner to become the next generation reactor in the US and perhaps around the world. Although simple and straightforward in concept, the passive plant is in many respects a significant departure from previous trends in reactor engineering. Successful implementation of this concept presents numerous challenges to the designers of passive plant systems and components. This paper provides a brief history of the ALWR program, it outlines the ALWR passive plant design objectives and principles, and it summarizes with examples their implications on component design. (orig.)

  11. Introduction: contexts and concepts of adaptability and plasticity in 20th-century plant science.

    Science.gov (United States)

    Baranski, Marci; Peirson, B R Erick

    2015-04-01

    Nowhere is the problem of understanding the complex linkages between organisms and their environments more apparent than in the science of plants. Today, efforts by scientists to predict and manage the biological consequences of shifting global and regional climates depend on understanding how organisms respond morphologically, physiologically, and behaviorally to changes in their environments. Investigating organismal "adaptability" (or "plasticity") is rarely straightforward, prompting controversy and discourse among and between ecologists and agricultural scientists. Concepts like agro-climatic adaptation, phenotypic plasticity, and genotype-environment interaction (GxE) are key to those debates, and their complex histories have imbued them with assumptions and meanings that are consequential but often opaque. This special section explores the diverse ways in which organismal adaptability has been conceptualized and investigated in the second half of the 20th century, and the multifarious political, economic, environmental, and intellectual contexts in which those conceptions have emerged and evolved. The papers in this section bring together perspectives from the histories of agriculture, population ecology, evolutionary theory, and plant physiology, cutting across Asian, North American, and British contexts. As a whole, this section highlights not only the diversity of meanings of "adaptability" and "plasticity," but also the complex linkages between those meanings, the scientific practices and technologies in which they are embedded, and the ends toward which those practices and technologies are employed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. CONCEPTION OF THE TRACK SYSTEM FOR „DĘBIEŃSKO 1” MINING PLANT

    Directory of Open Access Journals (Sweden)

    Ryszard MIELIMĄKA

    2016-07-01

    Full Text Available This article presents two concepts of site development for the „Dębieńsko 1” mining plant including plans for the track system. The first plan was created in 2013 year and mainly assumed the renovation of railway infrastructure, without changing its shape and configuration. In 2014 year it was resigned from realization of the first conception and there was proposed the second plan. It included changes in the existing track system and project of the new system of excavated raw material haulage. This system is successfully using in the USA and provides the better work productivity of a shunting locomotive. In this article also were indicated the advantages and the disadvantages of solutions proposed in the two projects of site development plans. It was denoted the project that has ultimately been chosen with the justification of choice.

  13. Design and application of the HTR-100 industrial nuclear power plant

    International Nuclear Information System (INIS)

    Brandes, S.; Kohl, W.

    1988-01-01

    The small HTR-100 high temperature reactor combines the reactor concept of the AVR reactor, which has been proven for 20 years, with the latest component technology of the THTR power plant which has been in operation since 1985. The nuclear heat supply system is conceived so as to be applicable for the generation of electric power, district heat and process steam according to the customer's demand. The HTR-100 reactor has a thermal power of 258 MW and offers steam parameters of 190 bar/530 0 C. To cover a higher power demand HTR-100 reactors can be combined forming a larger power plant. Economic analyses have shown competitiveness with fossil power plants. (orig.)

  14. The PRISM concept for a safe, economic and testable liquid metal fast reactor plant

    International Nuclear Information System (INIS)

    Berglund, R.C.; Salerno, L.N.; Tippets, F.E.

    1987-01-01

    The PRISM project is underway at General Electric as part of an advanced reactor conceptual design program sponsored by the US Department of Energy. The PRISM concept emphasizes inherent safety, modular construction, and factory fabrication. These features are intended to improve the basis for public acceptance, reduce cost,improve licensability, and reduce the risk of schedule delays and cost increases during construction. A PRISM power plant comprises a number of reactor modules. The relatively small size of the reactor module facilitates the use of passive, inherent self-shutdown and shutdown heat removal features for safe accommodation of accidents. These inherent safety features permit simplification and reduction of conventional safety-related systems in the plant. Testing of a full-size prototype reactor module is planned in the late 1990's to demonstrate these inherent safety characteristics. It is intended that the results of the test be used to obtain certification of the design by the US Nuclear Regulatory Commission preparatory to use of reactor modules built to this standard design in licensed commercial plants

  15. Methods for planning and operating decentralized combined heat and power plants

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, H.

    2000-02-01

    In recent years, the number of decentralized combined heat and power (DCHP) plants, which are typically located in small communities, has grown rapidly. These relatively small plants are based on Danish energy resources, mainly natural gas, and constitute an increasing part of the total energy production in Denmark. The topic of this thesis is the analysis of DCHP plants, with the purpose to optimize the operation of such plants. This involves the modelling of district heating systems, which are frequently connected to DCHP plants, as well as the use of heat storage for balancing between heat and power production. Furthermore, the accumulated effect from increasing number of DCHP plants on the total power production is considered. Methods for calculating dynamic temperature response in district heating (DH) pipes have been reviewed and analyzed numerically. Furthermore, it has been shown that a tree-structured DH network consisting of about one thousand pipes can be reduced to a simple chain structure of ten equivalent pipes without loosing much accuracy when temperature dynamics are calculated. A computationally efficient optimization method based on stochastic dynamic programming has been designed to find an optimum start-stop strategy for a DCHP plant with a heat storage. The method focuses on how to utilize heat storage in connection with CHP production. A model for the total power production in Eastern Denmark has been applied to the accumulated DCHP production. Probability production simulations have been extended from the traditional power-only analysis to include one or several heat supply areas. (au)

  16. Evaluation of the energy efficiency of combined cycle gas turbine. Case study of Tashkent thermal power plant, Uzbekistan

    International Nuclear Information System (INIS)

    Aminov, Zarif; Nakagoshi, Nobukazu; Xuan, Tran Dang; Higashi, Osamu; Alikulov, Khusniddin

    2016-01-01

    Highlights: • The combined cycle power plant (CCPP) has a steam turbine and a gas turbine. • Fossil fuel savings and reduction of the CCGT of was evaluated. • The performance of a three pressure CCGT is modelled under different modes. • Energy efficiency of the combined cycle was 58.28%. • An annual reduction of 1760.18 tNO_x/annum and 981.25 ktCO_2/annum can be achieved. - Abstract: The power generation of Tashkent Thermal Power Plant (TPP) is based on conventional power units. Moreover, the facility suffers from limited efficiency in electricity generation. The plant was constructed during the Soviet era. Furthermore, the power plant is being used for inter-hour power generation regulation. As a result, the efficiency can be reduced by increasing specific fuel consumption. This research focuses on the evaluation of the energy efficiency of the combined cycle gas turbine (CCGT) for the Tashkent TPP. Specifically, the objective is an evaluation of fossil fuel savings and reduction of CO_2 and NO_x emissions with the using CCGT technology at conventional power plant. The proposed combined cycle power plant (CCPP) includes an existing steam turbine (ST) with 160 MW capacity, heat recovery steam generator (HRSG), and gas turbine (GT) technology with 300 MW capacity. The performance of a three pressure CCGT is modelled under different modes. As a result, the efficiency of the combined cycle was evaluated at 58.28%, while the conventional cycle had an efficiency of 34.5%. We can achieve an annual reduction of 1760.18 tNO_x/annum and 981.25 ktCO_2/annum.

  17. Development and optimization of power plant concepts for local wet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, M.O.; Gronfors, T.H.A. [Fortum Energy Solutions, Fortum (Finland); Haukka, P. [Tampere University of Technology (Finland)

    2003-01-01

    Many changes in business drivers are now affecting power-producing companies. The power market has been opened up and the number of locally operating companies has increased. At the same time the need to utilize locally produced biofuels is increasing because of environmental benefits and regulations. In this situation, power-producing companies have on focus their in-house skills for generating a competitive edge over their rivals, such as the skills needed for developing the most economical energy investments for the best-paying customer for the local biomass producers. This paper explores the role of optimization in the development of small-sized energy investments. The paper provides an overview on a new design process for power companies for improved use of in-house technical and business expertise. As an example, illustrative design and optimization of local wet peat-based power investment is presented. Three concept alternatives are generated. Only power plant production capacity and peat moisture content are optimized for all alternatives. Long commercial experience of using peat as a power plant fuel in Finland can be transferred to bioenergy investments. In this paper, it is shown that conventional technology can be feasible for bioenergy production even in quite small size (below 10 MW). It is important to optimize simultaneously both the technology and the two businesses, power production and fuel production. Further, such high moisture content biomass as sludge, seaweed, grass, etc. can be economical fuels, if advanced drying systems are adopted in a power plant. (author)

  18. Economic competitiveness of small modular reactors versus coal and combined cycle plants

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Bilbao, Sama; Valle, Edmundo del

    2016-01-01

    Small modular reactors (SMRs) may be an option to cover the electricity needs of isolated regions, distributed generation grids and countries with small electrical grids. Previous analyses show that the overnight capital cost for SMRs is between 4500 US$/kW and 5350 US$/kW, which is between a 6% and a 26% higher than the average cost of a current large nuclear reactor. This study analyzes the economic competitiveness of small modular reactors against thermal plants using coal and natural gas combined cycle plants. To assess the economic competitiveness of SMRs, three overnight capital costs are considered 4500 US$/kW, 5000 US$/kW and 5350 US$/kW along with three discount rates for each overnight cost considered, these are 3, 7, and 10%. To compare with natural gas combined cycle (CC) units, four different gas prices are considered, these are 4.74 US$/GJ (5 US$/mmBTU), 9.48 US$/GJ (10 US$/mmBTU), 14.22 US$/GJ (15 US$/mmBTU), and 18.96 US$/GJ (20 US$/mmBTU). To compare against coal, two different coal prices are considered 80 and 120 US$/ton of coal. The carbon tax considered, for both CC and coal, is 30 US$/ton CO_2. The results show what scenarios make SMRs competitive against coal and/or combined cycle plants. In addition, because the price of electricity is a key component to guarantee the feasibility of a new project, this analysis calculates the price of electricity for the economically viable deployment of SMRs in all the above scenarios. In particular, this study shows that a minimum price of electricity of 175 US$/MWh is needed to guarantee the feasibility of a new SMR, if its overnight capital cost is 5350 US$/kWe and the discount rate is 10%. Another result is that when the price of electricity is around 100 US$/MWh then the discount rate must be around 7% or less to provide appropriate financial conditions to make SMRs economically feasible. - Highlights: • Small modular reactor (SMR) are economically assessed. • SMR are compared against gas and coal

  19. Research report for fiscal 1998. Basic research for promoting joint implementation, etc. (conversion of old coal-fired thermoelectric power plants in Poland into combined cycle plants); 1998 nendo chosa hokokusho. Poland sekitan karyoku hatsudensho (kyushiki) combined cycle eno tenkan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A project is discussed for modernization for energy efficiency enhancement and greenhouse gas reduction. The most effective way to reduce greenhouse gas in Poland is to totally replace the existing coal-fired power plants with natural gas combined cycle plants. Under this project, however, natural gas-fired power generation and integrated coal/brown coal gasification combined cycle power generation are both subjected to study. This is because the power plant modernization project is closely related to the fate of coal/brown coal industries which constitute the important industrial department of Poland. As for the earning rate of the project in case of natural gas-fired combined cycle power generation, the rate will be 13.2% even at the Kaweczyn station which is the highest in earning rate, and this fails to satisfy the project conditions. If integrated coal/brown gasification combined cycle power generation is chosen, the rate will be still lower. When the cost for greenhouse gas reduction is taken up, the Konin station exhibits the lowest of 9 dollars/tCO2, and the others 15-17 dollars/tCO2. When coal gas combined cycle is employed, the cost will be 3-4 times higher. (NEDO)

  20. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud; Larsen, Ulrik

    2013-01-01

    into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells e organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations......A 100 kWe hybrid plant consisting of gasification system, solid oxide fuel cells and organic Rankine cycle is presented. The nominal power is selected based on cultivation area requirement. For the considered output a land of around 0.5 km2 needs to be utilized. Woodchips are introduced...... achieved by simple and double stage organic Rankine cycle plants and around the same efficiency of a combined gasification, solid oxide fuel cells and micro gas turbine plant. © 2013 Elsevier Ltd. All rights reserved....

  1. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    Science.gov (United States)

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  2. A concept of safety indicator system for nuclear power plants

    International Nuclear Information System (INIS)

    Lehtinen, E.

    1995-12-01

    The fundamental principle in the safety technology of nuclear power is embodied in the strategy of defence in depth. The defence lines of the strategy, completed with a PSA logic model and structure, are considered to provide an appropriate framework for identification and structuring of the operational safety performance areas for nuclear power plants. Once these areas are identified the safety indicators can be defined. Based on this approach a concept of safety indicator system was outlined. About one hundred indicator specifications have been collected, refined and related to the performance areas. The specifications enable the utilities and authorities to check the coverage of their indicators set from the operational safety point of view and select or refine indicators for testing and routine use. Finally various statistical approaches and methods for using indicators in performance evaluation are presented. (orig.) (16 refs., 2 figs., 2 tabs.)

  3. Online operations optimization of waste incineration plants. Phase 3: Control concept and demonstration; Online driftsoptimering af affaldsfyrede anlaeg. Fase 3: Reguleringskoncept og demonstration. Hovedrapport ver. C

    Energy Technology Data Exchange (ETDEWEB)

    Boecher Poulsen, K.; Rassing Stoltze, K.; Solberg, B.; Hansen, Lars Henrik (DONG Energy (Denmark)); Cramer, J.; Andreasen, L.B. (FORCE Technology (Denmark)); Nymann Thomsen, S.; West, F. (Babcock and Wilcox Voelund (Denmark)); Clausen, S.; Fateev, A. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2010-06-15

    have been considered, partly to assess the measuring campaign method and partly to find good MIMO models which can be used for more advanced control design, eg MPC. The dynamic characteristics form the basis of the control strategy design, and as valuable knowledge of the key parameters from two widely different plants is available, it is certain that the optimisation work is generic. A waste density soft sensor has been implemented and tested via radar measurement at Haderslev CHP Plant. The density soft sensor is used to adjust the pusher speed, thus reducing compressibility interruptions considerably. By doing so the control process does not have to wait for the modulus to increase or O{sub 2} and steam flow to be affected before a waste flow deviation can be detected. Based on measuring data it is obvious that the density control stabilises the waste flow to the furnace. A modulus control concept has been developed for coordination of several incineration zones, among other things by simulation. Three concepts have been selected, implemented and commissioned at Haderslev CHP Plant. One concept has been selected, and measuring data show that the modulus is considerably stabilised on activation. The concept combines the advantages with monitoring of the feed grate for overloading and at the same time maintenance of the incineration zone. However, in periods the concept is in conflict with steam flow and O{sub 2} which require manual operator intervention. Unfortunately, it was not possible to finalise and commission the overall control concept within the financial scope of the phase 3 project, because the maturation of the NIR cameras and the work with identification of the vast amount of data from the Reno-Nord tests exceeded the budget. Parts of the control concept have been commissioned and tested, but not the overall control concept as a whole. At the end of the project, it was decided to emphasise data processing and the theoretical mapping of the furnace

  4. Corrosion behavior of Haynes registered 230 registered nickel-based super-alloys for integrated coal gasification combined cycle syngas plants. A plant exposure study

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Lee, Jieun; Kang, Suk-Hwan; Lee, Seung-Jong; Yun, Yongseung; Kim, Min Jung

    2015-01-01

    The corrosion behavior of commercially available Haynes registered 230 registered nickel-based alloy samples was investigated by exposure to coal-gasifying integrated coal gasification combined cycle pilot plant facilities affiliated with the Institute for Advanced Engineering (2.005 MPa and 160-300 C). The morphological and microstructural analyses of the exposed samples were conducted using scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis on the external surface of the recovered corrosion test samples to obtain information of the corrosion scale. These analyses based on the pre- and post-exposure corrosion test samples combined with thermodynamic Ellingham-Pourbaix stability diagrams provided preliminary insight into the mechanism of the observed corrosion behavior prevailing in the piping materials that connected the particulate removal unit and water scrubber of the integrated coal gasification combined cycle pilot plant. Uniform material wastage was observed after 46 hours of operation, and a preliminary corrosion mechanism was suggested: the observed material waste and corrosion behavior of the Haynes registered 230 registered nickel-based alloy samples cut off from the coal syngas integrated coal gasification combined cycle plant were explained by the formation of discontinuous (complex) oxide phases and subsequent chlorine-induced active oxidation under the predominantly reducing environment encountered. This contribution continues the already published studies of the Fe-Ni-Cr-Co alloy Haynes registered 556 registered .

  5. District heating concept Hirtenwiesen II; Nahwaermekonzept Hirtenwiesen II

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Josef [Stadtwerke Crailsheim GmbH, Crailsheim (Germany)

    2009-07-01

    Hirtenwiesen II is a new urban development project on an abandoned industrial site west of Crailsheim, Germany. It will house a population of about 2,000 and provide a comprehensive infrastructure including kindergarten, schools, sports centers and shopping centers. Modern amenities will be combined with environment-friendly energy concepts based on solar energy. A school building - Lise-Meitner-Gymnasium - and a sports hall - Hirtenwiesenhalle - will be supplied with solar power as well. Solar energy will provide more than 50 % of the energy required, which is more than average. Also, the solar power plant will have a collector surface of 10,000 m{sup 3} and a capacity of 7 MW{sub th}, which will make it Germany's biggest individual thermal solar power plant. (orig./AKB)

  6. Refining the Concept of Combining Hyperspectral and Multi-Angle Sensors for Land Surface Applications

    Science.gov (United States)

    Simic, Anita

    Assessment of leaf and canopy chlorophyll content provides information on plant physiological status; it is related to nitrogen content and hence, photosynthesis process, net primary productivity and carbon budget. In this study, a method is developed for the retrieval of total chlorophyll content (Chlorophyll a+b) per unit leaf and per unit ground area based on improved vegetation structural parameters which are derived using multispectral multi-angle remote sensing data. Structural characteristics such as clumping and gaps within a canopy affect its solar radiation absorption and distribution and impact its reflected radiance acquired by a sensor. One of the main challenges for the remote sensing community is to accurately estimate vegetation structural parameters, which inevitably influence the retrieval of leaf chlorophyll content. Multi-angle optical measurements provide a means to characterize the anisotropy of surface reflectance, which has been shown to contain information on vegetation structural characteristics. Hyperspectral optical measurements, on the other hand, provide a fine spectral resolution at the red-edge, a narrow spectral range between the red and near infra-red spectra, which is particularly useful for retrieving chlorophyll content. This study explores a new refined measurement concept of combining multi-angle and hyperspectral remote sensing that employs hyperspectral signals only in the vertical (nadir) direction and multispectral measurements in two additional (off-nadir) directions within two spectral bands, red and near infra-red (NIR). The refinement has been proposed in order to reduce the redundancy of hyperspectral data at more than one angle and to better retrieve the three-dimensional vegetation structural information by choosing the two most useful angles of measurements. To illustrate that hyperspectral data acquired at multiple angles exhibit redundancy, a radiative transfer model was used to generate off-nadir hyperspectral

  7. New reactor concepts

    International Nuclear Information System (INIS)

    Meskens, G.; Govaerts, P.; Baugnet, J.-M.; Delbrassine, A.

    1998-11-01

    The document gives a summary of new nuclear reactor concepts from a technological point of view. Belgium supports the development of the European Pressurized-Water Reactor, which is an evolutionary concept based on the European experience in Pressurized-Water Reactors. A reorientation of the Belgian choice for this evolutionary concept may be required in case that a decision is taken to burn plutonium, when the need for flexible nuclear power plants arises or when new reactor concepts can demonstrate proved benefits in terms of safety and cost

  8. Analysis of the combined effects of lanthanum and acid rain, and their mechanisms, on nitrate reductase transcription in plants.

    Science.gov (United States)

    Xia, Binxin; Sun, Zhaoguo; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2017-04-01

    Rare earth element (REE) pollution and acid rain are major global environmental concerns, and their spatial distributions overlap. Thus, both forms of pollution combine to act on plants. Nitrogen is important for plant growth, and nitrate reductase (NR) is a key plant enzyme that catalyzes nitrogen assimilation. Studying the combined effects of REEs and acid rain on plant nitrogen-based nutrients has important environmental significance. Here, soybean (Glycine max) plants, commonly used for toxicological studies, were exposed to lanthanum (La), a REE, and acid rain to study the NR activities and NR transcriptional levels in the roots. To explain how the pollution affected the NR transcriptional level, we simultaneously observed the contents of intracellular La and nutrient elements, protoplast morphology, membrane lipid peroxidation and intracellular pH. A combined treatment of 0.08mmol/L La and pH 4.5 acid rain increased the NR activity, decreased the NR transcriptional level, increased the intracellular nutrient elements' contents and caused deformations in membrane structures. Other combined treatments significantly decreased the aforementioned parameters and caused serious damage to the membrane structures. The variation in the amplitudes of combined treatments was greater than those of individual treatments. Compared with the control and individual treatments, combined treatments increased membrane permeability, the malondialdehyde content, and intracellular H + and La contents, and with an increasing La concentration or acid strength, the change in amplitude increased. Thus, the combined effects on NR gene transcription in soybean seedling roots were related to the intracellular nutrient elements' contents, protoplast morphology, membranous lipid peroxidation, intracellular pH and La content. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E; Maile, K; Jovanovic, A [MPA Stuttgart (Germany)

    1999-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  10. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Maile, K.; Jovanovic, A. [MPA Stuttgart (Germany)

    1998-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  11. The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses

    Directory of Open Access Journals (Sweden)

    Yuling Bai

    2018-06-01

    Full Text Available In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.

  12. Satellite combined heat and power plants and their legal autonomy

    International Nuclear Information System (INIS)

    Loibl, Helmut

    2014-01-01

    Since the landmark decision by the German Court of Justice concerning the term ''plant'' in the context of biogas plants it should be clear beyond doubt that satellite combined heat and power plants (CHPs) are legally autonomous plants pursuant to Para. 3 No. 1 of the Renewable Energy Law (EEG). What has yet to be finally resolved are the conditions under which satellite CHPs are to be regarded as autonomous. This will be a question of distance on the one hand and of operation autonomy on the other. In the individual case both these factors will have to be assessed from the perspective of an average objective, informed citizen. To the extent that its heat and electricity are being utilised in a meaningful manner, the plant's autonomy will be beyond doubt, at least in operational terms. Regarding the remuneration to be paid for satellite CHPs the only case requiring special consideration is when a CHP falls under the EEG of 2012. In this case Para. 1 Section 1 Sentence 2 EEG provides that the remuneration for the CHP in question is to be calculated as if there was a single overall plant. To the extent that none of the CHPs fall under the EEG of 2012, the ruling remains that there is a separate entitlement to remuneration for each satellite CHP. This also holds in cases where satellite CHPs that were commissioned after 1 January 2012 are relocated. When a satellite CHP is replaced by a new one, the rate and duration of remuneration remain unchanged. However, when a new satellite CHP is added to an existing satellite CHP via a gas collector line it is to be treated according to the decisions of the Federal Court of Justice concerning biogas plant extensions: It falls under the law that applies to the existing CHP and has an entitlement to a new minimum remuneration period, albeit subject to the degression rate provided by the EEG version in question.

  13. Building concept of cooling towers for WWER-1000 nuclear power plants

    International Nuclear Information System (INIS)

    Bucha, V.; David, M.

    1984-01-01

    A project is described of cooling towers with natural draught for the Temelin nuclear power plant. The concept proceeds from the classical design of the so-called Itterson type, i.e., the outer cladding of the draught stack is made of a monolithic reinforced concrete unit in the shape of a hyperboloid of revolution supported by a system of oblique supports mounted along the edge of the cooled water tank. The procedure is explained of the thermal calculation for the given operating conditions. The basic alternatives are considered of the choice of material and design of the cooling system. Questions are discussed relating to the design of the eliminator, the windwart wall and the shape of the shell of the draught stack and its loading by wind and seismic effects. (E.S.)

  14. The STAR concept, systems to assist the operator during abnormal events

    International Nuclear Information System (INIS)

    Felkel, L.

    1984-01-01

    Man-machine-communication in electrical power plants is increasingly based on the capabilities of minicomputers. Rather than just displaying raw process data more complex processing is done to aid operators by improving information quality. Advanced operator aids for nuclear power plants are e.g. alarm reduction, disturbance analysis and expert systems. Operator aids use complex combinations and computations of plant signals, which have to be described in a formal and homogeneous way. The design of such computer-based information systems requires extensive software and engineering efforts. The STAR software concept described in this paper, however, reduces the software effort to a minimum by providing an advanced program package which facilitates specification and implementation of engineering know-how necessary for sophisticated operator aids. (orig.)

  15. A CSP plant combined with biomass CHP using ORC-technology in Bronderslev Denmark

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Yuan, Guofeng

    2017-01-01

    A new CSP plant combined with biomass CHP, using ORC technology, will be built and taken into operation in Bronderslev, Denmark during spring 2017. The price for Biomass is expected to increase with more and more use of this very limited energy source and then CSP will be cost effective in the long...... run, also in the Danish climate. Oil is used as heat transfer fluid instead of steam giving several advantages in this application for district heating at high latitudes. Total efficiencies and costs, competitive to PV plants. are expected....

  16. Adaptive control for a PWR using a self-tuning reference model concept

    International Nuclear Information System (INIS)

    Miley, G.H.; Park, G.T.; Kim, B.S.

    1992-01-01

    Possible applications of an adaptive control method to a pressurized-water reactor nuclear power plant are investigated. The self-tuning technique with a reference model concept is employed. This control algorithm is developed by combining the self-tuning controller with the model reference adaptive control. This approach overcomes the difficulties in choosing the appropriate weighting polynomials in the cost function of the self-tuning control

  17. A novel respiratory motion compensation strategy combining gated beam delivery and mean target position concept - A compromise between small safety margins and long duty cycles

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Kavanagh, Anthony; Webb, Steve; Brada, Michael

    2011-01-01

    Purpose: To evaluate a novel respiratory motion compensation strategy combining gated beam delivery with the mean target position (MTP) concept for pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Four motion compensation strategies were compared for 10 targets with motion amplitudes between 6 mm and 31 mm: the internal target volume concept (plan ITV ); the MTP concept where safety margins were adapted based on 4D dose accumulation (plan MTP ); gated beam delivery without margins for motion compensation (plan gated ); a novel approach combining gating and the MTP concept (plan gated and MTP ). Results: For 5/10 targets with an average motion amplitude of 9 mm, the differences in the mean lung dose (MLD) between plan gated and plan MTP were gated and MTP . Despite significantly shorter duty cycles, plan gated reduced the MLD by gated and MTP . The MLD was increased by 18% in plan MTP compared to that of plan gated and MTP . Conclusions: For pulmonary targets with motion amplitudes >10-15 mm, the combination of gating and the MTP concept allowed small safety margins with simultaneous long duty cycles.

  18. A Low Cost Concept for Data Acquisition Systems Applied to Decentralized Renewable Energy Plants

    Directory of Open Access Journals (Sweden)

    Fábio T. Brito

    2011-01-01

    Full Text Available The present paper describes experiences of the use of monitoring and data acquisition systems (DAS and proposes a new concept of a low cost DAS applied to decentralized renewable energy (RE plants with an USB interface. The use of such systems contributes to disseminate these plants, recognizing in real time local energy resources, monitoring energy conversion efficiency and sending information concerning failures. These aspects are important, mainly for developing countries, where decentralized power plants based on renewable sources are in some cases the best option for supplying electricity to rural areas. Nevertheless, the cost of commercial DAS is still a barrier for a greater dissemination of such systems in developing countries. The proposed USB based DAS presents a new dual clock operation philosophy, in which the acquisition system contains two clock sources for parallel information processing from different communication protocols. To ensure the low cost of the DAS and to promote the dissemination of this technology in developing countries, the proposed data acquisition firmware and the software for USB microcontrollers programming is a free and open source software, executable in the Linux and Windows® operating systems.

  19. HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1980-04-01

    The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation

  20. Combined effects of soil moisture and carbaryl to earthworms and plants: Simulation of flood and drought scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Maria P.R.; Soares, Amadeu M.V.M. [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal); Loureiro, Susana, E-mail: sloureiro@ua.pt [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal)

    2011-07-15

    Studying tolerance limits in organisms exposed to climatic variations is key to understanding effects on behaviour and physiology. The presence of pollutants may influence these tolerance limits, by altering the toxicity or bioavailability of the chemical. In this work, the plant species Brassica rapa and Triticum aestivum and the earthworm Eisenia andrei were exposed to different levels of soil moisture and carbaryl, as natural and chemical stressors, respectively. Both stress factors were tested individually, as well as in combination. Acute and chronic tests were performed and results were discussed in order to evaluate the responses of organisms to the combination of stressors. When possible, data was fitted to widely employed models for describing chemical mixture responses. Synergistic interactions were observed in earthworms exposed to carbaryl and drought conditions, while antagonistic interactions were more representative for plants, especially in relation to biomass loss under flood-simulation conditions. - Highlights: > Climate variations may cause changes on chemicals' toxicity or bioavailability. > Earthworms and plants are exposed simultaneously to carbaryl and flood and drought conditions. > The IA model and possible deviations were used to evaluate combination exposures. > Synergism was observed for earthworms exposed to carbaryl and drought conditions. > Antagonistic interactions were observed for plants, in flood conditions and carbaryl. - Soil moisture can play an important role in carbaryl toxicity towards plants and earthworms.

  1. Combined effects of soil moisture and carbaryl to earthworms and plants: Simulation of flood and drought scenarios

    International Nuclear Information System (INIS)

    Lima, Maria P.R.; Soares, Amadeu M.V.M.; Loureiro, Susana

    2011-01-01

    Studying tolerance limits in organisms exposed to climatic variations is key to understanding effects on behaviour and physiology. The presence of pollutants may influence these tolerance limits, by altering the toxicity or bioavailability of the chemical. In this work, the plant species Brassica rapa and Triticum aestivum and the earthworm Eisenia andrei were exposed to different levels of soil moisture and carbaryl, as natural and chemical stressors, respectively. Both stress factors were tested individually, as well as in combination. Acute and chronic tests were performed and results were discussed in order to evaluate the responses of organisms to the combination of stressors. When possible, data was fitted to widely employed models for describing chemical mixture responses. Synergistic interactions were observed in earthworms exposed to carbaryl and drought conditions, while antagonistic interactions were more representative for plants, especially in relation to biomass loss under flood-simulation conditions. - Highlights: → Climate variations may cause changes on chemicals' toxicity or bioavailability. → Earthworms and plants are exposed simultaneously to carbaryl and flood and drought conditions. → The IA model and possible deviations were used to evaluate combination exposures. → Synergism was observed for earthworms exposed to carbaryl and drought conditions. → Antagonistic interactions were observed for plants, in flood conditions and carbaryl. - Soil moisture can play an important role in carbaryl toxicity towards plants and earthworms.

  2. Numerical simulation of the integrated solar/North Benghazi combined power plant

    International Nuclear Information System (INIS)

    Aldali, Y.; Morad, K.

    2016-01-01

    Highlights: • The thermodynamic and economic evaluation of power plant have been studied. • Saving and boosting modes are considered as the same solar field area. • Two modes of operation have been used and simulated on Libyan climate conditions. • The benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode. • Fuel saving mode is more economical than power boosting mode. - Abstract: The aim of this paper is to study the thermodynamic performance of a proposed integrated solar/North Benghazi combined power plant under Libyan climatic conditions. The parabolic trough collector field with direct steam generation was considered as solar system. Two modes of operations with the same solar field area are considered: fuel saving mode in which the generated solar steam was used to preheat the combustion air in the gas turbine unit and power boosting mode in which the generated solar steam was added into the steam turbine for boosting the electrical power generated from steam turbine unit. Moreover, the economic impact of solar energy is assessed in the form of benefit/cost ratio to justify the substitution potential of such clean energy. This study shows that, for fuel saving mode: the annual saving of natural gas consumption and CO_2 emission are approximately 3001.56 and 7972.25 tons, respectively, in comparison with the conventional North Benghazi combined cycle power plant. For power boosting mode: the annual solar share of electrical energy is approximately 93.33 GW h. The economic analysis of solar supported plant has indicated that the benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode, therefore, then fuel saving mode is more economical than power boosting mode for the same solar field area, moreover, it reduces the greenhouse CO_2 emission in order to avoid a collapse of the word climate.

  3. General Analysis of System Efficiency in Application of Combined Power Plants for Gas-Distribution Station

    Directory of Open Access Journals (Sweden)

    A. D. Kachan

    2004-01-01

    Full Text Available The paper proposes utilization of discharged heat of gas-piston engine (GPE or contact steam-gas plants (SGP with the purpose to heat up gas at gas-distribution stations (GDS of combined power plants with turbine and gas-expansion units. Calculations prove significant economic efficiency of the proposed variant in comparison with the application of ordinary gas- turbine units. Technical and economic calculation is used to determine gas-piston engine or contact steam-gas plant power for specific operational conditions of gas-distribution stations and utilization rate of discharged heat.

  4. Engineering and training simulators: A combined approach for nuclear plant construction projects

    International Nuclear Information System (INIS)

    Harnois, Olivier; Gain, Pascal; Bartak, Jan; Gathmann, Ralf

    2007-01-01

    Full text: Simulation technologies have always been widely used on nuclear applications, but with a clear division between engineering application, using highly validated code run in batch mode, and training purpose where real time computation is a mandatory requirement. Thanks to the flexibility of modern simulation technology and the increased performance of computers, it becomes now possible to develop Nuclear Power plant simulators that can be used both for engineering and training purposes. In the last years, the revival of nuclear industry raised a number of new construction or plant finishing projects in which the application of this combined approach would result in decisive improvement on plant construction lead times, better project control and cost optimizations. The simulator development is to be executed in a step-wise approach, scheduled in parallel with the plant design and construction phases. During a first step, the simulator will model the plant nuclear island systems plus the corresponding instrumentation and control, specific malfunctions and local commands. It can then be used for engineering activities defining and validating the plant operating strategies in case of incidents or accidents. The Simulator executive Station and Operator Station will be in prototype version with an interface imagery enabling monitoring and control of the simulator. Availability of such simulation platform leads to a significant increase in efficiency of the engineering works, the possibility to validate basic design hypotheses and detect defects and conflicts early. The second phase will consist in the fully detailed simulation of Main Control Room plant supervision and control MMI, taking into account I and C control loops detailed design improvement, while having sufficient fidelity in order to be suitable for the future operator training. Its use will enable the engineering units not only to specify and validate normal, incident and accident detailed plant

  5. Advanced modeling and simulation of integrated gasification combined cycle power plants with CO2-capture

    International Nuclear Information System (INIS)

    Rieger, Mathias

    2014-01-01

    The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.

  6. Cogeneration based on gasified biomass - a comparison of concepts

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Fredrik

    1999-01-01

    In this report, integration of drying and gasification of biomass into cogeneration power plants, comprising gas turbines, is investigated. The thermodynamic cycles considered are the combined cycle and the humid air turbine cycle. These are combined with either pressurised or near atmospheric gasification, and steam or exhaust gas dryer, in a number of combinations. An effort is made to facilitate a comparison of the different concepts by using, and presenting, similar assumptions and input data for all studied systems. The resulting systems are modelled using the software package ASPEN PLUS{sup TM}, and for each system both the electrical efficiency and the fuel utilisation are calculated. The investigation of integrated gasification combined cycles (IGCC), reveals that systems with pressurised gasification have a potential for electrical efficiencies approaching 45% (LHV). That is 4 - 5 percentage points higher than the corresponding systems with near atmospheric gasification. The type of dryer in the system mainly influences the fuel utilisation, with an advantage of approximately 8 percentage points (LHV) for the steam dryer. The resulting values of fuel utilisation for the IGCC systems are in the range of 78 - 94% (LHV). The results for the integrated gasification humid air turbine systems (IGHAT) indicate that electrical efficiencies close to the IGCC are achievable, provided combustion of the fuel gas in highly humidified air is feasible. Reaching a high fuel utilisation is more difficult for this concept, unless the temperature levels in the district heating network are low. For comparison a conventional cogeneration plant, based on a CFB boiler and a steam turbine (Rankine cycle), is also modelled in ASPEN PLUS{sup TM}. The IGCC and IGHAT show electrical efficiencies in the range of 37 - 45% (LHV), compared with a calculated value of 31% (LHV) for the Rankine cycle cogeneration plant. Apart from the electrical efficiency, also a high value of fuel

  7. Actant model of an extraction plant

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Helle

    1999-05-01

    Facing a growing complexity of industrial plants, we recognise the need for qualitative modelling methods capturing functional and causal complexity in a human-centred way. The present paper presents actant modelling as a functional modelling method rooted in linguistics and semiotics. Actant modelling combines actant models from linguistics with multilevel flow modelling (MFM). Thus the semantics of MFM functions is developed further and given an interpretation in terms of actant functions. The present challenge is to provide coherence between seemingly different categories of knowledge. Yet the gap between functional and causal modelling methods can be bridged. Actant modelling provides an open and provisional, but in no way exhaustive or final answer as to how teleological concepts like goals and functions relate to causal concepts. As the main focus of the paper an actant model of an extraction plant is presented. It is shown how the actant model merges functional and causal knowledge in a natural way.

  8. Actant model of an extraction plant

    International Nuclear Information System (INIS)

    Poulsen, Helle

    1999-01-01

    Facing a growing complexity of industrial plants, we recognise the need for qualitative modelling methods capturing functional and causal complexity in a human-centred way. The present paper presents actant modelling as a functional modelling method rooted in linguistics and semiotics. Actant modelling combines actant models from linguistics with multilevel flow modelling (MFM). Thus the semantics of MFM functions is developed further and given an interpretation in terms of actant functions. The present challenge is to provide coherence between seemingly different categories of knowledge. Yet the gap between functional and causal modelling methods can be bridged. Actant modelling provides an open and provisional, but in no way exhaustive or final answer as to how teleological concepts like goals and functions relate to causal concepts. As the main focus of the paper an actant model of an extraction plant is presented. It is shown how the actant model merges functional and causal knowledge in a natural way

  9. The design of a modular pilot plant based on the adsorber loop concept

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    The main design criteria for a pilot plant producing about 100 t uranium per year from seawater are discussed. The application of the adsorber loop concept for the contact between seawater and the adsorber granulate enables the employment of considerably higher seawater velocities in the adsorber bed in comparison with a fluidized bed thus reducing the necessary bed area. The seawater flow is accomplished by active pumping and the plant is supposed to be operating far from shores on high seas in tropical or subtropical waters. For this range of operation an ordinary ships hull is preferred for the basic structure to some new more sophisticated but unproven design. Depending on the effective flow rate in the adsorption units one or a few ships with standard dimensions (i.e. large container ships of about 50000 BRT; 290 m length; 40 m width) are able to produce the intended amount of 100 tU per year. Besides some information on the theoretical background the essential engineering considerations are presented. (author)

  10. Power contracting between two different partners. Biogas combined heat and power plants; Energie-Contracting zweier unterschiedlicher Partner. Biogas-Blockheizkraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Lennartz, Marc Wilhelm

    2013-06-15

    An agricultural consortium in the Eifel (Federal Republic of Germany) has adopted a comprehensive supply of a 7,000 m{sup 2} comprising hotel complex with combined heat and power. The old oil-fired central heating plant has been replaced by a biogas-powered combined heat and power plant (CHP). The hotel was directly connected to the CHP plant by means of a new, approximately 300 m long local heating network including buffer storage. Overall, the hotel operator saves approximately 300,000 L of heating oil annually. The energy demand of the hotel operator will be covered by more than 90 % by means of CHP plants. Thus 20 % of the heating costs is saved.

  11. The role of passive and inherent safety properties in Siemens/KWU nuclear power plants

    International Nuclear Information System (INIS)

    Gremm, O.

    1990-01-01

    In Siemens/KWU Nuclear Power Plants the applied safety concept consist of a well balanced combination of active, passive use well is inherent safety measures. In principle it is not possible to realise a safety concept exclusively with inherent and/or passive safety properties. The respective measures and arguments will be explained in detail in the presentation. In addition the Siemens/KWU safety concept with examples of the role of inherent and passive safety measures will be illustrated. (author). 9 refs, 9 figs

  12. Improvement of performance operation and cycle efficiency of Al Anbar combined power plant

    International Nuclear Information System (INIS)

    Jabbar, Mohammed Q.

    2014-01-01

    The present work will be focusing on available solution which can serve to increase total efficiency of Al Anbar combined cycle power plant - CCPP, and thus to improve the operation performance as much as possible in order to decrease hydrocarbon, CO2, NOx emissions to environment.The simulation and calculations were performed by program software cycle-tempo software. The results were compared with basic design of Alanbar power plant after making modernization with solar tower receiver system-STRS, which represented a heat source in preheat process for a compressor air. Key Words: CCPP, STRS, Solar potential energy, fuel consumption, hydrocarbon emission

  13. Changing concepts in plant management

    International Nuclear Information System (INIS)

    Ramler, K.

    1997-01-01

    Rising competitive pressure caused by deregulation, and overcapacities in the German market, require further potentials for rationalization to be exploited in the electricity generation sector. Competitive pressure affects the economics of electricity generation from uranium not only because of the special political burden to be shouldered by nuclear power, but also because of the change in funding the German hard coal mining industry. Especially those electricity utilities which used to ensure stable prices by generating baseload electricity from nuclear power at cost effective prices now are forced to meet the changed political and economic boundary conditions at short notice. It is already becoming evident that record achievements in availability and annual output, which used to be successful characteristics of German nuclear power plant operation, will no longer be sufficient as the only factors ensuring success in a competitive electricity market. In addition to safety and availability of plants, it is increasingly economic performance which is becoming important. On the road to cost-optimized structures and processes, it is absolutely essential that thinking be changed both on the higher, strategic and on the operative levels. In plant operation, potentials for cost reduction must be exploited chiefly in the field of maintenance. Here, the underlying philosophy must be changed from engineering-orientedness to cost optimization. The road to success leads through more or less drastic strategic and planning changes. Important areas on the way are planning and control of maintenance and revision. (orig.) [de

  14. STAR-concept: method for the definition and generation of computer-based systems to support the operator during normal and disturbed plant situations

    International Nuclear Information System (INIS)

    Felkel, L.; Roggenbauer, H.

    1983-01-01

    The paper describes a variety of functions to improve man-machine communication in nuclear power plants by advanced use of process computers. Special functions of interest here are: computerized operational manual; post trip analysis; alarm reduction; disturbance analysis and surveillance; and improved plant information processing, retrieval and display. All these functions use complex combinations of plant signals. The combinations (discrete process models) have to be described in a homogenous and formal way. The methodology used as well as the functions and examples are given. Experience from a pilot application in a nuclear power plant is also reported

  15. Fire and Water combined: Understanding the Relevance of Working Life Studies through a Concept of Practical Activity

    Directory of Open Access Journals (Sweden)

    Keijo Räsänen

    2015-11-01

    Full Text Available When I presented the basic ideas of this paper at a conference, a Swedish colleague commented: ‘you manage to combine water and fire.’ I understood his kind comment to mean that he used water and fire as metaphors for practice and theory. The comment puzzled me for a while. Water and fire obviously destroy each other, or at least radically transform each other. Then I realized that humans have actually managed to combine water and fire in several ways. One solution is the kettle. It makes possible to use fire in a controlled way for the human purpose of boiling water. Thus, this paper can be taken as an attempt at offering a kettle-like vehicle for bringing together practicetheoretical concepts and vocational practice. My kettle is a concept of practical activity. I am trying to boil up an answer to the following question: in what senses a study of work can be practically relevant to those who are doing the work being studied?

  16. Optimal integration of energy at the Combined Energy Plant in Norrkoeping -Integration of steam, hot water and district heat to biogas plants; Optimal integrering av energianvaendningen vid energikombinatet i Norrkoeping -Integrering av aanga, hetvatten och fjaerrvaerme till biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Benjaminsson, Johan; Goldschmidt, Barbara; Uddgren, Roger

    2010-09-15

    The background of this report is to investigate and highlight the benefits of establishing a biogas plant nearby a combined energy plant where steam and district heat is available. By using heat from the combined energy plant, more biogas can be produced as vehicle fuel instead of being used as fuel to heat the digester, the biogas upgrading plant or the dryer. The project's objective is to analyze where it is interesting with integration of heat to the biogas plant and to compare alternative technologies and possible integration options. The stakeholders of the study are industries with access to organic matter for biogas production and heat producers who can deliver thermal energy into biogas plants. The project was implemented by collection of information from the Haendeloe combined energy plant outside Norrkoeping where there is a cogeneration plant, an ethanol plant and a biogas plant. Case studies for the study have been carried out with proposals regarding how heat flows from the power plant and ethanol plant can be further integrated with the biogas plant. As case studies, both the current design of the biogas plant, as well as a fictional case in which half of all distillery residues was digested, have been evaluated. The case studies show that in today's biogas plant it is not economical to replace the existing biogas upgrading unit with water absorption to chemical absorption. The upgrading cost with water absorption at today's smaller facility is 0.11 kr/kWh and in order to obtain the same total cost of chemical absorption a steam price of 0.15 kr/kWh is required. For large gas flows, chemical absorption is an advantage since the technology is more suitable for upscaling in comparison with water absorption that must be delivered in multiple lines. Nevertheless, a possibility to recover waste heat from chemical absorption is necessary if the technology shall be competitive. If waste heat from both water absorption and chemical absorption

  17. Combined effect of gamma radiation and some plant extracts on spodoptera littoralis

    International Nuclear Information System (INIS)

    Ibrahim, R.S.H.

    2012-01-01

    The present investigation was carried out to study the effects of exposure of male full-grown pupae of the cotton leaf worm Spodoptera littoralis to sub sterilizing doses of gamma radiation (100,150 or 300 Gy), treating larval diet with different concentrations of Terminalia arjuna , Erythrine caffra, Taxodium distichum or Melaleuca cajuputi plant extracts on certain biological aspects of the parental (P 1 ),F 1 generation and combined effect of Taxodium distichum(1.25 ethanol , 2.5% water extracts) and 100 Gy of gamma radiation on also, the certain biological aspects of the parental (P 1 ) and first filial (F 1 ) generations. The biological aspects included the effect on fecundity, egg hatchability, mating ability, and malformation, beside larval survival until adult emergence and sex ratio of the produced adult at different mating crosses between treated and untreated or treated other sex. Special attention was given to inherited sterility of treated male. In addition, the studies also explained the effect of gamma radiation and different concentration of plant extracts of Taxodium disticum and combined effect of both on three tested enzymes (TOC,TAC and Cytochrom p 450 ) . In addition the effect of them on the free testosterone .Using radiation in combination with Taxodium disticum gave synergistic effect by decreasing the activity of these enzymes among F 1 adult male.This means that these treatments also interfered in the functions of these enzymes and hormone.

  18. Response of Silybum marianum plant to irrigation intervals combined with fertilization

    Directory of Open Access Journals (Sweden)

    SABER F. HENDAWY

    2013-05-01

    Full Text Available Hendawy SF, Hussein MS, Youssef AA, El-Mergawi RA. 2013. Response of Silybum marianum plant to irrigation intervals combined with fertilization. Nusantara Bioscience 5: 21-28. This study was investigated to evaluate the influence of different kinds of organic and bio fertilization under different irrigation intervals on the growth, production and chemical constituents of Sylibium marianum plant. Data indicated that all studied growth and yield characters were significantly affected by the duration of irrigation intervals. Fertilizer treatments had a primitive effect on growth and yield characters. The interaction between irrigation intervals and fertilizer treatments has a clear considerable effect on growth and yield characters. The obtained results indicated the favorable effect of organic and bio fertilizers which reduce the harmful effect of water stress. Different treatments had a pronounced effect on silymarin content.

  19. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  20. Organic plant breeding and propagation : concepts and strategies

    NARCIS (Netherlands)

    Lammerts van Bueren, E.T.

    2002-01-01

    Key-words : crop ideotype, genetic diversity, integrity of plants, intrinsic value, isophenic line mixture varieties, organic plant breeding, organic farming, organic propagation, participatory plant breeding, variety characteristics,

  1. Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants

    International Nuclear Information System (INIS)

    Zare, V.; Hasanzadeh, M.

    2016-01-01

    Highlights: • A novel combined cycle is proposed for solar power tower plants. • The effects of solar subsystem and power cycle parameters are examined. • The proposed combined cycle yields exergy efficiencies of higher than 70%. • For the overall power plant exergy efficiencies of higher than 30% is achievable. - Abstract: Concentrating Solar Power (CSP) technology offers an interesting potential for future power generation and research on CSP systems of all types, particularly those with central receiver system (CRS) has been attracting a lot of attention recently. Today, these power plants cannot compete with the conventional power generation systems in terms of Levelized Cost of Electricity (LCOE) and if a competitive LCOE is to be reached, employing an efficient thermodynamic power cycle is deemed essential. In the present work, a novel combined cycle is proposed for power generation from solar power towers. The proposed system consists of a closed Brayton cycle, which uses helium as the working fluid, and two organic Rankine cycles which are employed to recover the waste heat of the Brayton cycle. The system is thermodynamically assessed from both the first and second law viewpoints. A parametric study is conducted to examine the effects of key operating parameters (including solar subsystem and power cycle parameters) on the overall power plant performance. The results indicate that exergy efficiencies of higher than 30% are achieved for the overall power plant. Also, according to the results, the power cycle proposed in this work has a better performance than the other investigated Rankine and supercritical CO_2 systems operating under similar conditions, for these types of solar power plants.

  2. New concept of siting in the 21st century

    International Nuclear Information System (INIS)

    Nakayama, Katsuma; Otsubo, Fumiharu; Kumagai, Shigeru

    1995-01-01

    The New Concept of Siting in the 21st Century -- the theme of this paper -- is the concept of a new siting technology which combines the application of man - made islands (offshore), underground (steep mountains along the sea), and quaternary ground with the symbiosis with local communities. It is intended not only for promotion of the construction of nuclear power plants but also for the development of a 'new community', including the inducement of enterprises to the construction site and the promotion of new industries at the site. In studying the new concept, it is necessary to select model areas, discuss design and construction methods, and make a rough calculation of construction cost. In addition, we plan to estimate economic effects of the new concept on the construction site area. During 1993, we discussed appropriate physical conditions (topographic feature, geological structure, etc.) and geographical conditions (population density, national parks, fishing right, etc.) for the application of the siting technology giving consideration to the concept symbiosis with local communities. At present, the estimations of construction cost and future effects of new siting technology on local communities are carried on to study the new concept of siting in the 21st century. (author)

  3. Environmental externalities: Applying the concept to Asian coal-based power generation

    International Nuclear Information System (INIS)

    Szpunar, C.B.; Gillette, J.L.

    1993-03-01

    This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies

  4. Environmental externalities: Applying the concept to Asian coal-based power generation

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1993-03-01

    This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies.

  5. The material concept in German light water reactors. Contribution to plant safety economic efficiency and failure provision; Das Werkstoffkonzept in deutschen Leichtwasserreaktoren. Beitrag zur Anlagensicherheit, Wirtschaftlichkeit und Schadensvorsorge

    Energy Technology Data Exchange (ETDEWEB)

    Ilg, Ulf [EnBW Kernkraft GmbH (Germany). Kernkraftwerk Philippsburg; Koenig, Guenter [EnBW Kernkraft GmbH (Germany). Kernkraftwerk Neckarwestheim; Erve, Manfred [AREVA NP GmbH, Erlangen (Germany)

    2008-07-01

    In the design and construction stage of nuclear power plants relevant decisions may affect the service life of a component, and thus influence safety and availability of the plant. The German ''basic safety concept'' has an important effect on the quality of the BOL (begin of life) status. Materials selection and qualification are of significant importance for the component lifetime and the profitability of the plant. Examples for the implementation of this concept are demonstrated for the steam generator tubing material Incoloy 800, the inside-plated ferritic compound tubes as control rod drive mechanism nozzle through the RPV head of BWR plants that are not susceptible for corrosion enhanced cracking that was observed for Inconel 600 tubing. A fundamental failure analysis of crack formation in Ti stabilized austenitic pipes of BWR plants found since 1993 were definitely identified as intergranular stress corrosion caused by a local sensitization of the welding process induced overheated structured in the heat affected zone. This allowed target-oriented mitigation measures. The safety culture implemented in German nuclear plants in connection with the break preclusion or integrity concept, respectively, including a continuous actualization with respect to the state-of-the art are the technical prerequisites for damage precaution and possible life time extension.

  6. Research program for seismic qualification of nuclear plant electrical and mechanical equipment. Task 4. Use of fragility in seismic design of nuclear plant equipment. Volume 4

    International Nuclear Information System (INIS)

    Kana, D.D.; Pomerening, D.J.

    1984-08-01

    The Research Program for Seismic Qualification of Nuclear Plant Electrical and Mechanical Equipment has spanned a period of three years and resulted in seven technical summary reports, each of which have covered in detail the findings of different tasks and subtasks, and have been combined into five NUREG/CR volumes. Volume 4 presents study of the use of fragility concepts in the design of nuclear plant equipment and compares the results of state-of-the-art proof testing with fragility testing

  7. Corrosion behavior of Haynes {sup registered} 230 {sup registered} nickel-based super-alloys for integrated coal gasification combined cycle syngas plants. A plant exposure study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungkyu; Lee, Jieun; Kang, Suk-Hwan; Lee, Seung-Jong; Yun, Yongseung [Institute for Advanced Engineering (IAE), Gyeonggi-do (Korea, Republic of). Plant Engineering Center; Kim, Min Jung [Sungkyunkwan Univ, Gyeonggi-do (Korea, Republic of). Advanced Materials Technology Research Center

    2015-07-01

    The corrosion behavior of commercially available Haynes {sup registered} 230 {sup registered} nickel-based alloy samples was investigated by exposure to coal-gasifying integrated coal gasification combined cycle pilot plant facilities affiliated with the Institute for Advanced Engineering (2.005 MPa and 160-300 C). The morphological and microstructural analyses of the exposed samples were conducted using scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis on the external surface of the recovered corrosion test samples to obtain information of the corrosion scale. These analyses based on the pre- and post-exposure corrosion test samples combined with thermodynamic Ellingham-Pourbaix stability diagrams provided preliminary insight into the mechanism of the observed corrosion behavior prevailing in the piping materials that connected the particulate removal unit and water scrubber of the integrated coal gasification combined cycle pilot plant. Uniform material wastage was observed after 46 hours of operation, and a preliminary corrosion mechanism was suggested: the observed material waste and corrosion behavior of the Haynes {sup registered} 230 {sup registered} nickel-based alloy samples cut off from the coal syngas integrated coal gasification combined cycle plant were explained by the formation of discontinuous (complex) oxide phases and subsequent chlorine-induced active oxidation under the predominantly reducing environment encountered. This contribution continues the already published studies of the Fe-Ni-Cr-Co alloy Haynes {sup registered} 556 {sup registered}.

  8. Exergic, economic and environmental impacts of natural gas and diesel in operation of combined cycle power plants

    International Nuclear Information System (INIS)

    Mohammadi Khoshkar Vandani, Amin; Joda, Fatemeh; Bozorgmehry Boozarjomehry, Ramin

    2016-01-01

    Highlights: • Investigating the effect of natural gas and diesel on the power plant performance. • Exergy, economic and environmental evaluation of a combined cycle power plant. • Using life cycle assessment (LCA) to perform the environmental evaluation. • Optimizing the power plant in terms of exergy and economic. • Better performance of natural gas with respect to diesel. - Abstract: Combined cycle power plants (CCPPs) play an important role in electricity production throughout the world. Their energy efficiency is relatively high and their production rates of greenhouse gases are considerably low. In a country like Iran with huge oil and gas resources, most CCPP’s use natural gas as primary fuel and diesel as secondary fuel. In this study, effect of using diesel instead of natural gas for a selected power plant will be investigated in terms of exergy, economic and environmental impacts. The environmental evaluation is performed using life cycle assessment (LCA). In the second step, the operation of the plant will be optimized using exergy and economic objective functions. The results show that the exergy efficiency of the plant with natural gas as fuel is equal to 43.11%, while this efficiency with diesel will be 42.03%. Furthermore, the annual cost of plant using diesel is twice as that of plant using natural gas. Finally, diesel utilization leads to more contaminants production. Thus, environmental effects of diesel are much higher than that of natural gas. The optimization results demonstrate that in case of natural gas, exergy efficiency and annual cost of the power plant improve 2.34% and 4.99%, respectively. While these improvements for diesel are 2.36% and 1.97%.

  9. Innovative nuclear power plant building arragement in consideration of decommissioning

    International Nuclear Information System (INIS)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed

  10. Innovative nuclear power plant building arragement in consideration of decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak [Dept. of Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2017-04-15

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  11. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    Directory of Open Access Journals (Sweden)

    Won-Jun Choi

    2017-04-01

    Full Text Available A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1 early site restoration; and (2 radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  12. Dynamic performance of a combined gas turbine and air bottoming cycle plant for off-shore applications

    DEFF Research Database (Denmark)

    Benato, Alberto; Pierobon, Leonardo; Haglind, Fredrik

    2014-01-01

    and a combined gas turbine coupled with an air bottoming cycle plant. The case study is the Draugen off-shore oil and gas platform, located in the North Sea, Norway. The normal electricity demand is 19 MW, currently covered by two gas turbines generating each 50% of the power demand, while the third turbine......When the Norwegian government introduced the CO2 tax for hydrocarbon fuels, the challenge became to improve the performance of off-shore power systems. An oil and gas platform typically operates on an island (stand-alone system) and the power demand is covered by two or more gas turbines. In order...... to improve the plant performance, a bottoming cycle unit can be added to the gas turbine topping module, thus constituting a combined cycle plant. This paper aims at developing and testing the numerical model simulating the part-load and dynamic behavior of a novel power system, composed of two gas turbines...

  13. Concept of Lunar Energy Park

    Science.gov (United States)

    Niino, Masayuki; Kisara, Katsuto; Chen, Lidong

    1993-10-01

    This paper presents a new concept of energy supply system named Lunar Energy Park (LEP) as one of the next-generation clean energy sources. In this concept, electricity is generated by nuclear power plants built on the moon and then transmitted to receiving stations on the earth by laser beam through transporting systems situated in geostationary orbit. The lunar nuclear power plants use a high-efficiency composite energy conversion system consisting of thermionic and thermoelectric generators to change nuclear thermal energy into electricity directly. The nuclear resources are considered to be available from the moon, and nuclear fuel transport from earth to moon is not necessary. Because direct energy conversion systems are employed, the lunar nuclear plants can be operated and controlled by robots and are maintenance-free, and so will cause no pollution to humans. The key technologies for LEP include improvements of conversion efficiency of both thermionic and thermoelectric converters, and developments of laser-beam power transmission technology as well. The details, including the construction of lunar nuclear plants, energy conversion and energy transmission systems, as well as the research plan strategies for this concept are reviewed.

  14. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power Plant...

  15. Availability of thermal power plants 1985-1994. 24. ed.

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1995-01-01

    The survey in hand is the 24th statistical report in the series commenced in 1970. It covers the ten-year period from 1985 through 1994 and presents availability data of 349 power plants in Germany and abroad, representing approx. 99.000 MW and a total of 3.500 years of operating experience. Data are presented on fossil-fuel units, units with a combined gas/steam cycle, nuclear power plants, and gas turbines. The fossil-fuel units are broken down by unit size, years of operation, fuel, type of combustion (dry, melt), and design type (monoblock and duoblock, subcritical and supercritical systems). Nuclear power plants are arranged by type of reactor (PWR, BWR), unit size, and years of operation. Combined-cycle power plants are listed separately due to their various technical design concepts. The gas turbine data are arranged by years of operation. Apart from availability and utilisation data of gas turbines, there are data on event reliability and the number of successful or unsuccessful starts. In general, data for all plants and systems included are given first whenever appropriate, the data for the German plants following in second place. Performance data are gross values measured at generator terminals and, just as the number of plants, are end-of-the-year figures. (orig./GL) [de

  16. Tunisia- British gas intends to participate to the building of a combined cycle electric power plant

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Here is described the project to build a combined-cycle power plant in Tunisia, project in which the British Gas is interested. The transport, distribution, import and export of electricity should be controlled by the Tunisian society of electricity and gas. In the context of an agreement with Gec-Alsthom, the british company hopes to offer to build, and exploit the future power plant. (N.C.)

  17. Concept of a cognitive-numeric plant and process modelizer

    International Nuclear Information System (INIS)

    Vetterkind, D.

    1990-01-01

    To achieve automatic modeling of plant distrubances and failure limitation procedures, first the system's hardware and the present media (water, steam, coolant fluid) are formalized into fully computable matrices, called topographies. Secondly a microscopic cellular automation model, using lattice gases and state transition rules, is combined with a semi - microscopic cellular process model and with a macroscopic model, too. In doing this, at semi-microscopic level there are acting a cellular data compressor, a feature detection device and the Intelligent Physical Element's process dynamics. At macroscopic level the Walking Process Elements, a process evolving module, a test-and-manage device and abstracting process net are involved. Additionally, a diagnosis-coordinating and a counter measurements coordinating device are used. In order to automatically get process insights, object transformations, elementary process functions and associative methods are used. Developments of optoelectronic hardware language components are under consideration

  18. Modelling the low-tar BIG gasification concept[Biomass Integrated gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Lars; Elmegaard, B.; Qvale, B.; Henriksen, Ulrrik [Technical univ. of Denmark (Denmark); Bentzen, J.D.; Hummelshoej, R. [COWI A/S (Denmark)

    2007-07-01

    A low-tar, high-efficient biomass gasification concept for medium- to large-scale power plants has been designed. The concept is named 'Low-Tar BIG' (BIG = Biomass Integrated Gasification). The concept is based on separate pyrolysis and gasification units. The volatile gases from the pyrolysis (containing tar) are partially oxidised in a separate chamber, and hereby the tar content is dramatically reduced. Thus, the investment, and running cost of a gas cleaning system can be reduced, and the reliability can be increased. Both pyrolysis and gasification chamber are bubbling fluid beds, fluidised with steam. For moist fuels, the gasifier can be integrated with a steam drying process, where the produced steam is used in the pyrolysis/gasification chamber. In this paper, mathematical models and results from initial tests of a laboratory Low-Tar BIG gasifier are presented. Two types of models are presented: 1. The gasifier-dryer applied in different power plant systems: Gas engine, Simple cycle gas turbine, Recuperated gas turbine and Integrated Gasification and Combined Cycle (IGCC). The paper determines the differences in efficiency of these systems and shows that the gasifier will be applicable for very different fuels with different moisture contents, depending on the system. 2. A thermodynamic Low-Tar BIG model. This model is based on mass and heat balance between four reactors: Pyrolysis, partial oxidation, gasification, gas-solid mixer. The paper describes the results from this study and compares the results to actual laboratory tests. The study shows, that the Low-Tar BIG process can use very wet fuels (up to 65-70% moist) and still produce heat and power with a remarkable high electric efficiency. Hereby the process offers the unique combination of large scale gasification and low-cost gas cleaning and use of low-cost fuels which very likely is the necessary combination that will lead to a breakthrough of gasification technology. (au)

  19. Advanced modeling and simulation of integrated gasification combined cycle power plants with CO{sub 2}-capture

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, Mathias

    2014-04-17

    The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.

  20. Combined-cycle plants

    International Nuclear Information System (INIS)

    Valenti, M.

    1991-01-01

    This paper reports that as tougher emissions standards take hold throughout the industrialized world, manufacturers such as GE, Siemens, Foster Wheeler, and Asea Brown Boveri are designing advanced combined-cycle equipment that offers improved environmental performance without sacrificing power efficiency

  1. Research on method of nuclear power plant operation fault diagnosis based on a combined artificial neural network

    International Nuclear Information System (INIS)

    Liu Feng; Yu Ren; Li Fengyu; Zhang Meng

    2007-01-01

    To solve the online real-time diagnosis problem of the nuclear power plant in operating condition, a method based on a combined artificial neural network is put forward in the paper. Its main principle is: using the BP neural network for the fast group diagnosis, and then using the RBF neural network for distinguishing and verifying the diagnostic result. The accuracy of the method is verified using the simulation values of the key parameters in normal status and malfunction status of a nuclear power plant. The results show that the method combining the advantages of the two neural networks can not only diagnose the learned faults in similar power level of the nuclear power plant quickly and accurately, but also can identify the faults in different power status, as well as the unlearned faults. The outputs of the diagnosis system are in form of the reliability of the faults, and are changing with the lasting of the operation time of the plant. This makes the diagnosis results be more acceptable to operators. (authors)

  2. The impact of whole-plant instruction of preservice teachers' understanding of plant science principles

    Science.gov (United States)

    Hypolite, Christine Collins

    The purpose of this research was to determine how an inquiry-based, whole-plant instructional strategy would affect preservice elementary teachers' understanding of plant science principles. This study probed: what preservice teachers know about plant biology concepts before and after instruction, their views of the interrelatedness of plant parts and the environment, how growing a plant affects preservice teachers' understanding, and which types of activity-rich plant themes studies, if any, affect preservice elementary teachers' understandings. The participants in the study were enrolled in two elementary science methods class sections at a state university. Each group was administered a preinstructional test at the beginning of the study. The treatment group participated in inquiry-based activities related to the Principles of Plant Biology (American Society of Plant Biologists, 2001), while the comparison group studied those same concepts through traditional instructional methods. A focus group was formed from the treatment group to participate in co-concept mapping sessions. The participants' understandings were assessed through artifacts from activities, a comparison of pre- and postinstructional tests, and the concept maps generated by the focus group. Results of the research indicated that the whole-plant, inquiry-based instructional strategy can be applied to teach preservice elementary teachers plant biology while modeling the human constructivist approach. The results further indicated that this approach enhanced their understanding of plant science content knowledge, as well as pedagogical knowledge. The results also showed that a whole-plant approach to teaching plant science concepts is an instructional strategy that is feasible for the elementary school. The theoretical framework for this study was Human Constructivist learning theory (Mintzes & Wandersee, 1998). The content knowledge and instructional strategy was informed by the Principles of Plant

  3. Optimization of controlled processes in combined-cycle plant (new developments and researches)

    Science.gov (United States)

    Tverskoy, Yu S.; Muravev, I. K.

    2017-11-01

    All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.

  4. Strategy-oriented display concept to assist severe accident management

    International Nuclear Information System (INIS)

    Jeong, Kwangsub; Ha, Jaejoo

    2000-01-01

    The Critical Function Monitoring System (CFMS) is a typical Safety Parameter Display System (SPDS) to assist the operation of Korean Standard Nuclear Power Plants during normal and emergency operation, and SPDS for severe accident is being developed in Korea. When the existing CFMS is used under a severe accident situation, some problems are expected from: (1) different design basis, i.e. prevention of core melt vs. protection of radiation release to environment, (2) different parameters for decision-making, and (3) different domain and depth of information to restore the plant. To resolve the above problems, a concept, 'Strategy-Oriented Information Display' concept, for displaying information for severe accident management is developed in this paper. Whereas the existing SPDS structure is based on the critical safety function, the developed concept is based on the severe accident management strategy. The display for each strategy includes the plant parameters to check the status of plant and component with the logical or graphical views necessary for executing the strategy. As the application of the proposed concept, KAERI is developing a display system, the prototype severe accident SPDS, Severe Accident Management Display System (SAMDIS), to assist plant personnel for executing Korean Severe Accident Management Guidelines. CFMS is developed for a general display suitable to all situations with various displays. On the contrary, SAMDIS provides all the relevant information on one screen based on the proposed concept. The SAMDIS screen shows more extensive area than CFMS and thus plant personnel can recognize the overall plant status at a glance. This concept is quite effective when used with severe accident management guidelines because of the relatively macroscopic characteristics of a severe accident management strategy. (author)

  5. Study on large scale knowledge base with real time operation for autonomous nuclear power plant. 1. Basic concept and expecting performance

    International Nuclear Information System (INIS)

    Ozaki, Yoshihiko; Suda, Kazunori; Yoshikawa, Shinji; Ozawa, Kenji

    1996-04-01

    Since it is desired to enhance availability and safety of nuclear power plants operation and maintenance by removing human factor, there are many researches and developments for intelligent operation or diagnosis using artificial intelligence (AI) technique. We have been developing an autonomous operation and maintenance system for nuclear power plants by substituting AI's and intelligent robots. It is indispensable to use various and large scale knowledge relative to plant design, operation, and maintenance, that is, whole life cycle data of the plant for the autonomous nuclear power plant. These knowledge must be given to AI system or intelligent robots adequately and opportunely. Moreover, it is necessary to insure real time operation using the large scale knowledge base for plant control and diagnosis performance. We have been studying on the large scale and real time knowledge base system for autonomous plant. In the report, we would like to present the basic concept and expecting performance of the knowledge base for autonomous plant, especially, autonomous control and diagnosis system. (author)

  6. Preliminary project concerning the straw-fueled combined power-heat plant to be constructed at Glamsbjerg

    International Nuclear Information System (INIS)

    Gabriel, S.; Koch, T.

    1994-06-01

    Power and heat generation based on biomass gasification is of great importance due to its beneficial environmental effects and good economy. This report concerns a preliminary project on feasibility and problems of implementing a dual-purpose power plant, supplying both power and district heating to several schools, swimming pools and other public facilities at Glamsbjerg (Funen). The plant is to be based on thermal gasification (pyrolysis) of straw and use of the gas in a diesel engine. The diesels operate the power generator, and their waste heat should be utilized in the local district heating network. In order to establish a stable and flexible straw supply to the plant an evaluation of resources in the area has been carried out. Apart from straw-derived fuel the plant is planned to use natural gas for start and maintenance of the process. The prices of the combined plant and of the fuel processing are estimated in the report. (EG)

  7. The technological conception

    International Nuclear Information System (INIS)

    Parrochia, D.

    1998-01-01

    The 'technological conception' examines how a project can be concretized or how it is possible to 'conceive', i.e. to produce operative ideas that can be directly use. The first part of this book, called 'concepts and methods', analyzes the logics of conceiving and its philosophy in the construction of its objects and in the management of its programs or projects. The second part is devoted to some exemplary technologies: roads, tunnels, bridges, dams, nuclear power plants, aerospace constructions, and analyzes different concrete logics of technological conception. Finally, the author shows how todays conception faces the risks and complexity increase of systems and considers the possibility of an entirely automated manufacturing shop in the future. (J.S.)

  8. Integral fast reactor concept

    International Nuclear Information System (INIS)

    Chang, Y.I.; Marchaterre, J.F.; Sevy, R.H.

    1984-01-01

    Key features of the IFR consist of a pool-type plant arrangement, a metal fuel-based core design, and an integral fuel cycle with colocated fuel cycle facility. Both the basic concept and the technology base have been demonstrated through actual integral cycle operation in EBR-II. This paper discusses the inherent safety characteristics of the IFR concept

  9. COMBINING THE CONCEPTS OF BENCHMARKING AND MATRIX GAME IN MARKETING (REPOSITIONING OF SEAPORTS

    Directory of Open Access Journals (Sweden)

    Senka Sekularac-Ivošević

    2013-10-01

    Full Text Available This paper considers the effects of combination of two different approaches in developing seaports positioning strategy. The first one is based on comparing the most important quantitative and qualitative seaports choice criteria by benchmarking method. Benchmarking has been used in creating the appropriate model for efficient marketing positioning of Aegean, Adriatic and Black Sea seaports. The criteria that describe the degree of these seaports competitiveness are chosen upon the investigation of ports customers’ preferences. The second employed approach based on matrix game concept has been used for the purpose of optimal repositioning of the ports. Though, nine selected ports’ functions are treated in a way that they are divided into two sets: one composed of the functions which are to be developed, and the other consisted of the functions for which it is expected to be suppressed in the future. According to the numerically obtained results the ports are repositioned, and corresponding explanations are given in the marketing manner. The mixture of these two concepts should contribute to the review of the state of these business systems and their images at the market, as well as to open prospective toward finding out the ways of creating and maintaining their competitive advantages.

  10. Analysis of the options - rationale for servomanipulator maintenance in future reprocessing plants

    International Nuclear Information System (INIS)

    Herndon, J.N.; Hamel, W.R.

    1984-04-01

    The currently available maintenance systems which can be applied, in various combinations, to large-volume in-cell maintenance operations are: (1) contact, (2) overhead cranes, (3) power manipulators, (4) mechanical master/slave manipulators, and (5) servomanipulators. The requirements for reprocessing plant maintenance are reviewed, and the capabilities of remote maintenance systems are described. A basic trade-off analysis of these remote maintenance systems considering reprocessing plant requirements is given. Justification is given for selecting the overhead crane/servomanipulator-based maintenance concept as the option most desirable for future large reprocessing plant maintenance. 23 references, 6 tables

  11. Experiences with using a concept of organ-dose combination as a basis for practical measures in radiation protection

    International Nuclear Information System (INIS)

    Wernli, C.

    1977-01-01

    The concept of organ-dose combination is presented and its practical consequences for working-place and personnel monitoring and for the improvement of working methods are shown. Two years of practical experience have demonstrated the applicability and usefullness of the concept and have resulted in a better concentration and economization of the monitoring and protection efforts. The values for external total body dose and skin dose, in special cases also those for hand dose and internal contamination, are combined to form a criterion for the total radiation detriment which is easy to use and interpret: each measured external or internal exposure is registered as a fraction of the appropriate maximum permissible annual limit (expressed as dose for external exposures and as activity for incorporations). This fraction is called 'exposure index'. Over one year the sum of all registered 'exposure index' values for an employee must not exceed one. This 'total exposure index' values can also be expressed as an 'effective dose' if its value is multiplied by five rem. While the external body exposures clearly dominate in most departments of EIR, the 'effective doses' in the isotope production department are combinations of different organ doses. 'Low' and 'high risk' groups of employee differ by the relative importance of the four 'effective dose' components: 'low risk group' (effective dose 2 rem): (hand dose, total body dose, incorporation, skin dose). The total value of the 'effective dose' and the relative importance of its components determine the practical radiation protection measures and the appropriate combination and frequency of personnel monitoring for each employee

  12. The use of LBB concept in French fast reactors: Application to SPX plant

    International Nuclear Information System (INIS)

    Turbat, A.; Deschanels, H.; Sperandio, M.

    1997-01-01

    The leak before break (LBB) concept was not used at the design level for SUPERPHENIX (SPX), but different studies have been performed or are in progress concerning different components : Main Vessel (MV), pipings. These studies were undertaken to improve the defense in depth, an approach used in all French reactors. In a first study, the LBB approach has been applied to the MV of SPX plant to verify the absence of risk as regards the core supporting function and to help in the definition of in-service inspection (ISI) program. Defining a reference semi-elliptic defect located in the welds of the structure, it is verified that the crack growth is limited and that the end-of-life defect is smaller than the critical one. Then it is shown that the hoop welds (those which are the most important for safety) located between the roof and the triple point verify the leak-before-break criteria. However, generally speaking, the low level of membrane primary stresses which is favorable for the integrity of the vessel makes the application of the leak-before-break concept more difficult due to small crack opening areas. Finally, the extension of the methodology to the secondary pipings of SPX incorporating recent European works of DCRC is briefly presented

  13. The use of LBB concept in French fast reactors: Application to SPX plant

    Energy Technology Data Exchange (ETDEWEB)

    Turbat, A.; Deschanels, H.; Sperandio, M. [and others

    1997-04-01

    The leak before break (LBB) concept was not used at the design level for SUPERPHENIX (SPX), but different studies have been performed or are in progress concerning different components : Main Vessel (MV), pipings. These studies were undertaken to improve the defense in depth, an approach used in all French reactors. In a first study, the LBB approach has been applied to the MV of SPX plant to verify the absence of risk as regards the core supporting function and to help in the definition of in-service inspection (ISI) program. Defining a reference semi-elliptic defect located in the welds of the structure, it is verified that the crack growth is limited and that the end-of-life defect is smaller than the critical one. Then it is shown that the hoop welds (those which are the most important for safety) located between the roof and the triple point verify the leak-before-break criteria. However, generally speaking, the low level of membrane primary stresses which is favorable for the integrity of the vessel makes the application of the leak-before-break concept more difficult due to small crack opening areas. Finally, the extension of the methodology to the secondary pipings of SPX incorporating recent European works of DCRC is briefly presented.

  14. New Pathogenic Concepts and Therapeutic Approaches to Oxidative Stress in Chronic Kidney Disease

    DEFF Research Database (Denmark)

    Pedraza-Chaverri, José; Sánchez-Lozada, Laura G; Osorio-Alonso, Horacio

    2016-01-01

    In chronic kidney disease inflammatory processes and stimulation of immune cells result in overproduction of free radicals. In combination with a reduced antioxidant capacity this causes oxidative stress. This review focuses on current pathogenic concepts of oxidative stress for the decline...... and pharmacologic therapies for hyperuricemia are discussed. Finally, we review some new therapy options in diabetic nephropathy including antidiabetic agents (noninsulin dependent), plant antioxidants, and food components as alternative antioxidant therapies....

  15. German emergency management concept

    International Nuclear Information System (INIS)

    Burkart, K.

    1993-01-01

    The advantages and disadvantages of the margin and start-up value concepts (according to ICRP 40 and EU-ordinances) are explained, and it is demonstrated that the two concepts are combinable. The combined concept has the advantage of immediately providing, if required, intervention levels for the various measures to be taken, and of obliging those persons concerned with emergency protection to study and quantify, already at the planning stage, the influence of a range of accident conditions on the decision on measures. In this context, the use of computerized decision support systems which are currently being developed is indispensable. (orig./DG) [de

  16. Design of comprehensive plant information system considering maintenance indicators in nuclear power plant

    International Nuclear Information System (INIS)

    Takata, Takashi; Yamaguchi, Akira; Yamamoto, Akio

    2013-01-01

    A safety of a nuclear power plant must be ensured and maintained through its entire plant life. For this plant life cycle safety (PLCS), a comprehensive plant information system, in which an each maintenance record of the plant is taken into consideration, is of importance. In this paper, a development of a plant chart, which is a part of the information system, has been developed based on a defense-in-depth concept that is one of the most important concept to ensure the plant safety. In the chart, an updated probability of loss of a component or function is used as a maintenance indicator and a probabilistic risk assessment (PRA) method is applied to quantify the plant status in the chart. (author)

  17. Combined hydrogen and carbon isotopes of plant waxes as an indicator of drought impacts on ancient Maya agriculture

    Science.gov (United States)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2012-12-01

    There is increasing evidence suggesting that a series of droughts in the Yucatan Peninsula coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax δD, δ13C, and Δ14C analyses in two lake sediment cores from southeastern Mexico and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change. Plant-wax specific Δ14C ages indicate a large input of pre-aged plant waxes into lake sediment. Comparison of plant-wax δD records with other regional hydroclimate proxy records suggest that plant-wax ages are evenly distributed around plant-wax radiocarbon ages, and that applying an age model based on plant-wax radiocarbon ages is appropriate for these lake sediments. We evaluate how differences in plant-wax age distributions influence stable isotope records to assess the age uncertainty associated with records of climate and vegetation change derived from plant-wax stable isotopes. In this low-elevation tropical environment plant-wax δ13C is largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δ13C would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analysis of plant-wax δD and δ13C from both lakes indicates increasingly divergent trends following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend to correspond with low plant-wax δ13C values and vice versa. This pattern is consistent with

  18. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses

    Directory of Open Access Journals (Sweden)

    Hironobu Yanagisawa

    2016-03-01

    Full Text Available The presence of high molecular weight double-stranded RNA (dsRNA within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV, a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as “DECS-C,” is a powerful method for detecting novel plant viruses.

  19. The concept of underground nuclear heat and power plants (UNHPP) of upgraded safety, developed on the basis of ship-building technologies

    International Nuclear Information System (INIS)

    Pashin, V.M.; Petrov, Eh.L.; Shalik, G.P.; Khazov, B.S.; Malyshev, S.P.

    1996-01-01

    A concept of underground nuclear heat and power plants (UNHPP) of upgraded safety on the basis of ship-building technologies is considered, in which the priority is set to population security and environmental protection. Ways of realization of ziro radiation risk for the population residing in a close vicinity of UNHPP are substantiated. basic principles of the concept are formulated which envisage the use of ship propulsion reactor facilities that have been multiply tested in operation. The sources of economic competitiveness of UNHPPs, as compared with the existing NPPs, are shown

  20. Nonstructural carbon dynamics are best predicted by the combination of photosynthesis and plant hydraulics during both bark beetle induced mortality and herbaceous plant response to drought

    Science.gov (United States)

    Ewers, B. E.; Mackay, D. S.; Guadagno, C.; Peckham, S. D.; Pendall, E.; Borkhuu, B.; Aston, T.; Frank, J. M.; Massman, W. J.; Reed, D. E.; Yarkhunova, Y.; Weinig, C.

    2012-12-01

    Recent work has shown that nonstructural carbon (NSC) provides both a signal and consequence of water stress in plants. The dynamics of NSC are likely not solely a result of the balance of photosynthesis and respiration (carbon starvation hypothesis) but also the availability of NSC for plant functions due to hydraulic condition. Further, plant hydraulics regulates photosynthesis both directly through stomatal conductance and indirectly through leaf water status control over leaf biochemistry. To test these hypotheses concerning NSC in response to a wide variety of plant perturbations, we used a model that combines leaf biochemical controls over photosynthesis (Farquhar model) with dynamic plant hydraulic conductance (Sperry model). This model (Terrestrial Regional Ecosystem Exchange Simulator; TREES) simulates the dynamics of NSC through a carbon budget approach that responds to plant hydraulic status. We tested TREES on two dramatically different datasets. The first dataset is from lodgepole pine and Engelmann spruce trees dying from bark beetles that carry blue-stain fungi which block xylem and cause hydraulic failure. The second data set is from Brassica rapa, a small herbaceous plant whose accessions are used in a variety of crops. The Brassica rapa plants include two parents whose circadian clock periods are different; NSC is known to provide inputs to the circadian clock likely modified by drought. Thus, drought may interact with clock control to constrain how NSC changes over the day. The Brassica rapa plants were grown in growth chamber conditions where drought was precisely controlled. The connection between these datasets is that both provide rigorous tests of our understanding of plant NSC dynamics and use similar leaf and whole plant gas exchange and NSC laboratory methods. Our results show that NSC decline (water stress. The model is able to capture this relatively small decline in NSC by limiting NSC utilization through loss of plant hydraulic

  1. Hazards and hazard combinations relevant for the safety of nuclear power plants

    Science.gov (United States)

    Decker, Kurt; Brinkman, Hans; Raimond, Emmanuel

    2017-04-01

    The potential of the contemporaneous impact of different, yet causally related, hazardous events and event cascades on nuclear power plants is a major contributor to the overall risk of nuclear installations. In the aftermath of the Fukushima accident, which was caused by a combination of severe ground shaking by an earthquake, an earthquake-triggered tsunami and the disruption of the plants from the electrical grid by a seismically induced landslide, hazard combinations and hazard cascades moved into the focus of nuclear safety research. We therefore developed an exhaustive list of external hazards and hazard combinations which pose potential threats to nuclear installations in the framework of the European project ASAMPSAE (Advanced Safety Assessment: Extended PSA). The project gathers 31 partners from Europe, North Amerika and Japan. The list comprises of exhaustive lists of natural hazards, external man-made hazards, and a cross-correlation matrix of these hazards. The hazard list is regarded comprehensive by including all types of hazards that were previously cited in documents by IAEA, the Western European Nuclear Regulators Association (WENRA), and others. 73 natural hazards and 24 man-made external hazards are included. Natural hazards are grouped into seismotectonic hazards, flooding and hydrological hazards, extreme values of meteorological phenomena, rare meteorological phenomena, biological hazards / infestation, geological hazards, and forest fire / wild fire. The list of external man-made hazards includes industry accidents, military accidents, transportation accidents, pipeline accidents and other man-made external events. The large number of different hazards results in the extremely large number of 5.151 theoretically possible hazard combinations (not considering hazard cascades). In principle all of these combinations are possible to occur by random coincidence except for 82 hazard combinations that - depending on the time scale - are mutually

  2. Plant designer's view of the operator's role in nuclear plant safety

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Cross, M.T.; Porter, N.J.

    1981-01-01

    The nuclear plant operator's role supports the design assumptions and equipment with four functional tasks. He must set up th plant for predictable response to disturbances, operate the plant so as to minimize the likelihood and severity of event initiators, assist in accomplishing the safety functions, and feed back operating experiences to reinforce or redefine the safety analyses' assumptions. The latter role enhances the operator effectiveness in the former three roles. The Safety Level Concept offers a different perspective that enables the operator to view his roles in nuclear plant safety. This paper outlines the operator's role in nuclear safety and classifies his tasks using the Safety Level Concept

  3. Modular Stellarator Fusion Reactor (MSR) concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1981-01-01

    A preliminary conceptual study has been made of the Modulator Stellarator Reactor (MSR) as a stedy-state, ignited, DT-fueled, magnetic fusion reactor. The MSR concept combines the physics of classic stellarator confinement with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4.8-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. Neither an economic analysis nor a detailed conceptual engineering design is presented here, as the primary intent of this scoping study is the elucidation of key physics tradeoffs, constraints, and uncertainties for the ultimate power-reactor embodiment

  4. The combined use of Pochonia chlamydosporia and plant defence activators - a potential sustainable control strategy for Meloidogyne chitwoodi

    Directory of Open Access Journals (Sweden)

    Maria Clara VIEIRA DOS SANTOS

    2014-05-01

    Full Text Available Sustainable strategies are required for control of the root-knot nematode Meloidogyne chitwoodi to reduce dependence on toxic chemical pesticides. The efficacy of the nematophagous fungus Pochonia chlamydosporia in biocontrol could be enhanced by integration with control measures that reduce initial nematode infestations. The use of foliar sprays with plant defence activators can reduce the susceptibility of potato plants to M. chitwoodi. This study assessed effects of combined soil application of P. chlamydosporia with foliar sprays of benzothiadiazole (BTH or cis-jasmone on infection of potatoes by M. chitwoodi. Solanum tuberosum, cv. Désirée plants were grown in soil mixed with 5000 chlamydospores g-1 of soil, sprayed twice with BTH or cis-jasmone and inoculated with 300 M. chitwoodi second-stage juveniles. Forty-five days after inoculation, nematode reproduction, numbers of colony-forming units of the fungus g-1 of soil and g-1 of root, and egg parasitism were assessed by standard techniques. Foliar sprays of BTH or cis-jasmone combined with the fungus reduced nematode reproduction (P<0.05, LSD. The presence of the fungus slightly increased the efficacy of cis-jasmone, as the number of eggs per egg mass was less in plants treated both with cis-jasmone and the fungus than in the plants treated only with the defence activator. The proportion of parasitized eggs was greater in the cis-jasmone treatment where rhizosphere colonisation was less, suggesting that P. chlamydosporia became a poorer rhizosphere coloniser but a more efficient nematode parasite. The addition of P. chlamydosporia to soil in combination with application of inducers of plant defence could be an alternative control strategy to be used against M. chitwoodi in potato.

  5. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  6. The FALCON Concept: Multi-Object Spectroscopy Combined with MCAO in Near-IR

    Science.gov (United States)

    Hammer, François; Sayède, Frédéric; Gendron, Eric; Fusco, Thierry; Burgarella, Denis; Cayatte, Véronique; Conan, Jean-Marc; Courbin, Frédéric; Flores, Hector; Guinouard, Isabelle; Jocou, Laurent; Lançon, Ariane; Monnet, Guy; Mouhcine, Mustapha; Rigaud, François; Rouan, Daniel; Rousset, Gérard; Buat, Véronique; Zamkotsian, Frédéric

    A large fraction of the present-day stellar mass was formed between z=0.5 and z˜ 3 and our understanding of the formation mechanisms at work at these epochs requires both high spatial and high spectral resolution: one shall simultaneously obtain images of objects with typical sizes as small as 1-2 kpc (˜ 0".1), while achieving 20-50 km/s (R≥ 5000) spectral resolution. In addition, the redshift range to be considered implies that most important spectral features are redshifted in the near-infrared. The obvious instrumental solution to adopt in order to tackle the science goal is therefore a combination of multi-object 3D spectrograph with multi-conjugate adaptive optics in large fields. A very promising way to achieve such a technically challenging goal is to relax the conditions of the traditional full adaptive optics correction. A partial, but still competitive correction shall be prefered, over a much wider field of view. This can be done by estimating the turbulent volume from sets of natural guide stars, by optimizing the correction to several and discrete small areas of few arcsec 2 selected in a large field (Nasmyth field of 25 arcmin) and by correcting up to the 6th, and eventually, up to the 60 th Zernike modes. Simulations on real extragalactic fields, show that for most sources (> 80%), the recovered resolution could reach 0".15-0".25 in the J and H bands. Detection of point-like objects is improved by factors from 3 to ≥10, when compared with an instrument without adaptive correction. The proposed instrument concept, FALCON, is equipped with deployable mini-integral field units (IFUs), achieving spectral resolutions between R=5000 and 20000. Its multiplex capability, combined with high spatial and spectral resolution characteristics, is a natural ground based complement to the next generation of space telescopes. Galaxy formation in the early Universe is certainly a main science driver. We describe here how FALCON shall allow to answer puzzling

  7. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria--as revealed by different combinations

    Energy Technology Data Exchange (ETDEWEB)

    Jaderlund, Lotta; Arthurson, Veronica; Granhall, Ulf; Jansson, Janet K.

    2008-05-15

    The interactions between two plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177, two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and G. intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; e.g. the two AM fungi react differently when interacting with the same bacteria on plants. G. intraradices (single inoculation or together with SBW25) increased plant dry weight on M. nivale infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth promoting microorganisms it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to get satisfactory plant growth benefits.

  8. Safety margin evaluation concepts for plant Up rates and life extension. Results of the OECD/NEA/CSNI working group on Safety Margin Action Plan (SMAP)

    International Nuclear Information System (INIS)

    Belac, J

    2006-01-01

    This presentation summarizes results of the OECD/NEA/CSNI working group on Safety Margin Action Plan (SMAP) aimed to develop generalized safety margin concept and means of its quantification for the process of evaluating plant safety in the frame of plant life extension and power up rating activities to be used by OECD member countries. (author)

  9. Compact magnetic fusin reactor concepts

    International Nuclear Information System (INIS)

    Chung, K.M.

    1984-01-01

    Compact, high-power-density approaches to fusion power represent alternatives to main-line fusion concepts, Tokamaks and mirrors. If technological issues are resolved, theses approaches would yield small, low-cost fusion power plants. This survey reviews the principal physics and technology employed by leading compact magnetic fusion plants. (Author)

  10. CONCEPT computer code

    International Nuclear Information System (INIS)

    Delene, J.

    1984-01-01

    CONCEPT is a computer code that will provide conceptual capital investment cost estimates for nuclear and coal-fired power plants. The code can develop an estimate for construction at any point in time. Any unit size within the range of about 400 to 1300 MW electric may be selected. Any of 23 reference site locations across the United States and Canada may be selected. PWR, BWR, and coal-fired plants burning high-sulfur and low-sulfur coal can be estimated. Multiple-unit plants can be estimated. Costs due to escalation/inflation and interest during construction are calculated

  11. NRC nuclear-plant-analyzer concept and status at INEL

    International Nuclear Information System (INIS)

    Aguilar, F.; Wagner, R.J.

    1982-01-01

    The Office of Research of the US NRC has proposed development of a software-hardware system called the Nuclear Plant Analyzer (NPA). This paper describes how we of the INEL envision the nuclear-plant analyzer. The paper also describes a pilot RELAP5 plant-analyzer project completed during the past year and current work. A great deal of analysis is underway to determine nuclear-steam-system response. System transient analysis being so complex, there is the need to present analytical results in a way that interconnections among phenomena and all the nuances of the transient are apparent. There is the need for the analyst to dynamically control system calculations to simulate plant operation in order to perform what if studies as well as the need to perform system analysis within hours of a plant emergency to diagnose the state of the stricken plant and formulate recovery actions. The NRC-proposed nuclear-plant analyzer can meet these needs

  12. Suggestion of Design Evaluation Plan based on Star Life Cycle to introduce the Information Minimalism Concept of KOREA Nuclear Plant

    Science.gov (United States)

    Jang, Gwi-sook; Lee, Seung-min; Park, Gee-yong

    2018-01-01

    The design of Korea Nuclear Power Plant (NPP) main control rooms (MCR) has been changed to be fully digitalized. Five or six display devices are assigned to each operator in NPP MCR to provide the information of safety parameter and plant status, and various control functions by connecting computerized control devices. Under this circumstance, the distributed displays can induce a dispersion of the operators' attention and increase the workload while conducting monitoring and control tasks efficiently. In addition, to support human operators to reduce their workload and increase the performance, the concepts of the ecological interface design (EID) and the operator-centered design were applied to the design HMI display. However these designs are applied to a limited set of screens and did not differ largely from the traditional HMI design in that the layout of the information is somewhere similar to P&IDs. In this paper, we propose a design evaluation plan based on star life cycle to introduce the information minimalism concept for designing an HMI display.

  13. Studying the effects of combining internal and external heat recovery on techno-economic performances of gas–steam power plants

    International Nuclear Information System (INIS)

    Carapellucci, Roberto; Giordano, Lorena

    2016-01-01

    Highlights: • Effects of gas-cycle regeneration on steam–gas power plants are investigated. • Power plant performances are evaluated varying gas turbine operative parameters. • The power plant operational flexibility is assessed through an off-design analysis. • Gas-cycle regeneration improves energy and economic performance parameters. • Power increase due to regenerator by-pass depends on steam section design. - Abstract: Thermodynamic regeneration is regarded as a conventional technique to enhance the efficiency of gas turbines, by means of an internal recovery of waste heat from exhaust gases. In combined cycle power plants (CCGTs), only external heat recovery is usually applied, in order to achieve the highest steam cycle power. Combining internal and external recovery, while decreasing the power plant rated capacity, has the potential to boost the efficiency of CCGTs. This paper aims to examine the effects of thermodynamic regeneration on steam–gas power plants from the energy and economic point of view. First, a dual pressure combined cycle based on a regenerative gas turbine is designed using GateCycle software and effects on energy and economic performances are evaluated varying gas turbine operating parameters. Then, an off-design simulation of different CCGT configurations is carried out, in order to evaluate the power increase achieved by-passing the regenerator and its effects on efficiency and cost of electricity. The study has shown that the improvement of energy and economic performances of regenerative CCGTs is more and more pronounced with the increase of turbine inlet temperature (TIT). Additionally, regeneration enhances the power plant operational flexibility, allowing to obtain a 30% power increase with respect to the design value, if the regenerator is fully by-passed and the bottoming steam cycle is designed to manage the increased flue gas temperature.

  14. Computer modelling of the combined effects of plant conditions and coal quality on burnout in utility furnaces

    Energy Technology Data Exchange (ETDEWEB)

    P. Stephenson [RWE npower Engineering, Swindon (United Kingdom)

    2007-09-15

    The aim of this paper is to describe the latest steps in the development of a computer model to predict the combined effects of plant conditions and coal quality on burnout. The work was conducted as part of RWE's contribution to the recent ECSC project 'Development of a carbon-in-ash notification system (CARNO)'. A burnout predictor code has been developed and validated; it includes both coal and plant effects and includes a burnout model based closely on CBK8. The agreement between predicted C-in-ash and plant data is encouraging, but further improvements are still desirable. The predictions obtained from the burnout predictor show that the calculated sensitivities to changes in plant condition can be very dependent on state of plant. 7 refs., 7 figs., 1 tab.

  15. On the combined effect of visible light and ionizing radiation on the development of plants

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Vagabova, M.Eh.

    1978-01-01

    The development processes, like germination of resting lettuce seeds and anthocyan synthesis, activated in plants by red light quanta are also very sensitive to γ-quanta. The combined effect of both factors plays an essential part in stimulation of the development of seeds preirradiated with γ-rays

  16. Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules.

    Science.gov (United States)

    Higashi, Taishi; Iohara, Daisuke; Motoyama, Keiichi; Arima, Hidetoshi

    2018-01-01

    Supramolecular chemistry is an extremely useful and important domain for understanding pharmaceutical sciences because various physiological reactions and drug activities are based on supramolecular chemistry. However, it is not a major domain in the pharmaceutical field. In this review, we propose a new concept in pharmaceutical sciences termed "supramolecular pharmaceutical sciences," which combines pharmaceutical sciences and supramolecular chemistry. This concept could be useful for developing new ideas, methods, hypotheses, strategies, materials, and mechanisms in pharmaceutical sciences. Herein, we focus on cyclodextrin (CyD)-based supermolecules, because CyDs have been used not only as pharmaceutical excipients or active pharmaceutical ingredients but also as components of supermolecules.

  17. Septic tank combined with anaerobic filter and conventional UASB: results from full scale plants

    Directory of Open Access Journals (Sweden)

    F. J. A. da Silva

    2013-03-01

    Full Text Available Anaerobic digestion is an important alternative for domestic wastewater treatment, especially in warm climate regions. Two full-scale anaerobic schemes were investigated: septic tank combined with anaerobic filter (S T A NF and conventional UASB reactors. Treated effluents from these systems were subjected to disinfection by chlorination. The operational performance of 56 full-scale plants (36 S T A NF and 20 UASB provided a realistic view. Findings showed that the plants operated with low OLR (< 2.0 kg COD/m³.day. Despite this, the removal of organic material was below values suggested by the literature (around 60% for COD. A removal of 4.0 Log10 units of total coliform and E. coli can be reached with residual chlorine (R CL of at least 2.0 Cl-Cl2/l. Although UASB plants have performed better, improvement of maintenance is needed in both treatment configurations.

  18. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S., E-mail: suman.mech09@gmail.com [Department of Mechanical Engineering, NIT, Agarpara, Kolkata – 700109, West Bengal (India); Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com [Department of Mechanical Engineering, IIEST, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (r{sub p}) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio

  19. Systemizing the Pedagogic Concepts

    Directory of Open Access Journals (Sweden)

    G. N. Serikov

    2013-01-01

    Full Text Available The paper emphasizes the necessity of systemizing the pedagogic concepts to complement the pluralism principle dominating in pedagogy over the recent years. The author recommends the person oriented systematic synergetic methodology combining various research data into a holistic scientific approach. The paper regards education as the core pedagogic concept - including training, upbringing, self-education, their respective subcomponents, and generated personal resource. The elements of personal resource combine the acquired knowledge, skills and values, developed subjective attitudes and individual health data. The key pedagogic terms describing the educational process are represented by a three-level system; the first level involves the educational form concepts, the second – generated personal resource, the third – summarized notion system combining the previous levels and reflecting their binary relations. The given construct systemizes the pedagogic conceptual apparatus and clarifies the theoretical notion of personal education. 

  20. Integrated control centre concepts for CANDU power plants

    International Nuclear Information System (INIS)

    Lupton, L.R.; Davey, E.C.; Lapointe, P.A.; Shah, R.R.

    1990-01-01

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is general agreement that plant safety and power production can be enhanced if more operational support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and related technologies will play a major role in the development of innovative methods for information processing and presentation. These technologies must be integrated into the overall management and control philosophy of the plant and not be treated as vehicles to implement point solutions. The underlying philosophy behind our approach is discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. Four support systems are described; each is a prototype of a system being considered for the CANDU 3 control centre

  1. Integrated control centre concepts for CANDU power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lupton, L. R.; Davey, E. C.; Lapointe, P. A.; Shah, R. R.

    1990-01-15

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is general agreement that plant safety and power production can be enhanced if more operational support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and related technologies will play a major role in the development of innovative methods for information processing and presentation. These technologies must be integrated into the overall management and control philosophy of the plant and not be treated as vehicles to implement point solutions. The underlying philosophy behind our approach is discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. Four support systems are described; each is a prototype of a system being considered for the CANDU 3 control centre.

  2. Waste heat recovery options in a large gas-turbine combined power plant

    Science.gov (United States)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  3. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    International Nuclear Information System (INIS)

    Wildi, Walter; Dermange, Francois; Appel, Detlef; Buser, Marcos; Eckhardt, Anne; Hufschmied, Peter; Keusen, Hans-Rudolf; Aebersold, Michael

    2000-01-01

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA

  4. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    Energy Technology Data Exchange (ETDEWEB)

    Wildi, Walter; Dermange, Francois [Univ. of Geneva, CH-1211 Geneva (Switzerland); Appel, Detlef [PanGeo, Hannover (Germany); Buser, Marcos [Buser and Finger, Zurich (Switzerland); Eckhardt, Anne [Basler and Hofmann, Zurich (Switzerland); Hufschmied, Peter [Emch and Berger, Bern (Switzerland); Keusen, Hans-Rudolf [Geotest, Zollikofen (Switzerland); Aebersold, Michael [Swiss Federal Office of Energy (BFE), CH-3003 Bern (Switzerland)

    2000-01-15

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA.

  5. The effects of Brassica green manures on plant parasitic and free living nematodes used in combination with reduced rates of synthetic nematicides.

    Science.gov (United States)

    Riga, Ekaterini

    2011-06-01

    Brassica plants once incorporated into soil as green manures have recently been shown to have biofumigant properties and have the potential of controlling plant-parasitic nematodes. In Washington State, plant-parasitic nematodes are successfully managed with synthetic nematicides. However, some of the synthetic nematicides became unavailable recently or their supply is limited leaving growers with few choices to control plant-parasitic nematodes. The objective of this project was to evaluate the effects of Brassica green manures on their own and in combination with reduced rates of synthetic nematicides on plant-parasitic nematodes and free living nematodes. In a greenhouse experiment and field trials in three seasons, Brassica green manures in combination with half the recommended rate of 1,3-dichloropropene (1,3-D, Telone) reduced root knot nematode, Meloidogyne chitwoodi to below detection levels, and reduced lesion nematodes, Pratylenchus penetrans and stubby root nematodes, Paratrichodorus allius, to below economic thresholds. The combination treatments did not affect the beneficial free-living nematode populations and the non-pathogenic Pseudomonas. The total cost of growing and soil-incorporating Brassica crops as green manures in combination with reduced rates of 1,3-D was approximately 35% lower than the present commercial costs for application for the full rate of this fumigant. Integrating conventional management practices with novel techniques fosters sustainability of production systems and can increase economic benefit to producers while reducing chemical input.

  6. Modular Stellarator Fusion Reactor concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR

  7. Modeling and assessment of future IGCC plant concepts with CO{sub 2} capture; Simulation und Bewertung zukuenftiger IGCC-Kraftwerkskonzepte mit CO{sub 2}-Abtrennung

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, Christian A.

    2012-07-13

    The thesis focuses on the assessment of efficiency potential of future IGCC plants with CO{sub 2} capture. Starting point is a comprehensive analysis (thermodynamic, economic and exergy) of a state of the art IGCC. Additionally, five future IGCC concepts are proposed and evaluated for their efficiency potential in the mid- and long-term. The concepts showed significantly higher efficiencies up to approximately 60% and enable an almost CO{sub 2}-free operation.

  8. Exergetic and economic evaluation of the effect of HRSG configurations on the performance of combined cycle power plants

    International Nuclear Information System (INIS)

    Tajik Mansouri, Mohammad; Ahmadi, Pouria; Ganjeh Kaviri, Abdolsaeid; Jaafar, Mohammad Nazri Mohd

    2012-01-01

    Highlights: ►To conduct the comprehensive exergy and economic analysis for advanced combined cycle power plant. ►To study three different HRSG configurations, dual and triple pressure HRSG, based on thermodynamic relations. ►To have a better performance assessment of the system studied using exergy and economic criteria. - Abstract: In the present research study, the effect of HRSG pressure levels on exergy efficiency of combined cycle power plants is investigated. Hence, three types of gas turbine combined cycles, with the same gas turbine as a topping cycle are evaluated. A double pressure, and two triple pressure HRSGs (with and without reheat) are modeled. The results show how an increase in the number of pressure levels of the HRSG affect the exergy losses due to heat transfer in the HRSG and the exhaust of flue gas to the stack. Moreover, the results show that an increase in the number of pressure levels affects the exergy destruction rate in HRSG, and as a result, it causes a tangible increase in exergy efficiency of the whole cycle. The results from thermodynamic analysis show that the losses due to heat transfer in the HRSG and the exhaust of flue gas to the stack in a triple pressure reheat combined cycle are less than the other cases. From the economic analysis, it is found that increasing the number of pressure levels of steam generation leads to an increase for the total and specific investment cost of the plant for about 6% and 4% respectively. The net present value (NPV) of the plant increases for about 7% for triple pressure reheat compared to with the double pressure CCPP. Therefore, the results of economic analysis show that it is economically justifiable to increase the number of pressure levels of steam generation in HRSG.

  9. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase

    Science.gov (United States)

    2012-01-01

    Background Plant-based foods have been used in traditional health systems to treat diabetes mellitus. The successful prevention of the onset of diabetes consists in controlling postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in aggressive delay of carbohydrate digestion to absorbable monosaccharide. In this study, five plant-based foods were investigated for intestinal α-glucosidase and pancreatic α-amylase. The combined inhibitory effects of plant-based foods were also evaluated. Preliminary phytochemical analysis of plant-based foods was performed in order to determine the total phenolic and flavonoid content. Methods The dried plants of Hibiscus sabdariffa (Roselle), Chrysanthemum indicum (chrysanthemum), Morus alba (mulberry), Aegle marmelos (bael), and Clitoria ternatea (butterfly pea) were extracted with distilled water and dried using spray drying process. The dried extracts were determined for the total phenolic and flavonoid content by using Folin-Ciocateu’s reagent and AlCl3 assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively. Results The phytochemical analysis revealed that the total phenolic content of the dried extracts were in the range of 230.3-460.0 mg gallic acid equivalent/g dried extract. The dried extracts contained flavonoid in the range of 50.3-114.8 mg quercetin equivalent/g dried extract. It was noted that the IC50 values of chrysanthemum, mulberry and butterfly pea extracts were 4.24±0.12 mg/ml, 0.59±0.06 mg/ml, and 3.15±0.19 mg/ml, respectively. In addition, the IC50 values of chrysanthemum, mulberry and butterfly pea extracts against intestinal sucrase were 3.85±0.41 mg/ml, 0.94±0.11 mg/ml, and 4.41±0.15 mg/ml, respectively. Furthermore, the IC50 values

  10. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase.

    Science.gov (United States)

    Adisakwattana, Sirichai; Ruengsamran, Thanyachanok; Kampa, Patcharaporn; Sompong, Weerachat

    2012-07-31

    Plant-based foods have been used in traditional health systems to treat diabetes mellitus. The successful prevention of the onset of diabetes consists in controlling postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in aggressive delay of carbohydrate digestion to absorbable monosaccharide. In this study, five plant-based foods were investigated for intestinal α-glucosidase and pancreatic α-amylase. The combined inhibitory effects of plant-based foods were also evaluated. Preliminary phytochemical analysis of plant-based foods was performed in order to determine the total phenolic and flavonoid content. The dried plants of Hibiscus sabdariffa (Roselle), Chrysanthemum indicum (chrysanthemum), Morus alba (mulberry), Aegle marmelos (bael), and Clitoria ternatea (butterfly pea) were extracted with distilled water and dried using spray drying process. The dried extracts were determined for the total phenolic and flavonoid content by using Folin-Ciocateu's reagent and AlCl3 assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively. The phytochemical analysis revealed that the total phenolic content of the dried extracts were in the range of 230.3-460.0 mg gallic acid equivalent/g dried extract. The dried extracts contained flavonoid in the range of 50.3-114.8 mg quercetin equivalent/g dried extract. It was noted that the IC50 values of chrysanthemum, mulberry and butterfly pea extracts were 4.24±0.12 mg/ml, 0.59±0.06 mg/ml, and 3.15±0.19 mg/ml, respectively. In addition, the IC50 values of chrysanthemum, mulberry and butterfly pea extracts against intestinal sucrase were 3.85±0.41 mg/ml, 0.94±0.11 mg/ml, and 4.41±0.15 mg/ml, respectively. Furthermore, the IC50 values of roselle and butterfly pea

  11. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase

    Directory of Open Access Journals (Sweden)

    Adisakwattana Sirichai

    2012-07-01

    Full Text Available Abstract Background Plant-based foods have been used in traditional health systems to treat diabetes mellitus. The successful prevention of the onset of diabetes consists in controlling postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in aggressive delay of carbohydrate digestion to absorbable monosaccharide. In this study, five plant-based foods were investigated for intestinal α-glucosidase and pancreatic α-amylase. The combined inhibitory effects of plant-based foods were also evaluated. Preliminary phytochemical analysis of plant-based foods was performed in order to determine the total phenolic and flavonoid content. Methods The dried plants of Hibiscus sabdariffa (Roselle, Chrysanthemum indicum (chrysanthemum, Morus alba (mulberry, Aegle marmelos (bael, and Clitoria ternatea (butterfly pea were extracted with distilled water and dried using spray drying process. The dried extracts were determined for the total phenolic and flavonoid content by using Folin-Ciocateu’s reagent and AlCl3 assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS reagent, respectively. Results The phytochemical analysis revealed that the total phenolic content of the dried extracts were in the range of 230.3-460.0 mg gallic acid equivalent/g dried extract. The dried extracts contained flavonoid in the range of 50.3-114.8 mg quercetin equivalent/g dried extract. It was noted that the IC50 values of chrysanthemum, mulberry and butterfly pea extracts were 4.24±0.12 mg/ml, 0.59±0.06 mg/ml, and 3.15±0.19 mg/ml, respectively. In addition, the IC50 values of chrysanthemum, mulberry and butterfly pea extracts against intestinal sucrase were 3.85±0.41 mg/ml, 0.94±0.11 mg/ml, and 4.41±0.15 mg/ml, respectively

  12. Containment integrity of SEP plants under combined loads

    International Nuclear Information System (INIS)

    Lo, T.; Nelson, T.A.; Chen, P.Y.; Persinko, D.; Grimes, C.

    1984-06-01

    Because the containment structure is the last barrier against the release of radioactivity, an assessment was undertaken to identify the design weaknesses and estimate the margins of safety for the SEP containments under the postulated, combined loading conditions of a safe shutdown earthquake (SSE) and a design basis accident (DBA). The design basis accident is either a loss-of-coolant accident (LOCA) or a main steam line break (MSLB). The containment designs analyzed consisted of three inverted light-bulb shaped drywells used in boiling water reactor (BWR) systems, and three steel-lined concrete containments and a spherical steel shell used in pressurized water reactor (PWR) systems. These designs cover a majority of the containment types used in domestic operating plants. The results indicate that five of the seven designs are adequate even under current design standards. For the remaining two designs, the possible design weaknesses identified were buckling of the spherical steel shell and over-stress in both the radial and tangential directions in one of the concrete containments near its base

  13. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  14. The SAFR liquid metal concept

    International Nuclear Information System (INIS)

    Baumeister, E.B.

    1987-01-01

    The Sodium Advanced Fast Reactor (SAFR) modular reactor concept is being developed by the team of Rockwell International, Combustion Engineering, and Bechtel under the U.S. Department of Energy's (DOE's) Advanced Liquid Metal Reactor (LMR) program. The SAFR plant would provide a viable alternate to light water reactors, especially for applications favoring small incremental capacity additions. SAFR is also a logical step to facilitate the later transition to LMFBRs. The SAFR plant concept employs multiple 350-MWe LMR Power Pak modules. Each Power Pak is a standardized, shop-fabricated unit that can be barge-shipped to the plant site for installation. The 350-MWe size allows SAFR to capitalize on all the inherent safety features provided by small reactors and factory fabrication, while still preserving some economy of scale. Shop fabrication minimizes nuclear-grade field fabrication and minimizes the overall plant construction schedule and capital cost. Each Power Pak consists of one reactor assembly and associated heat transfer equipment coupled to a single turbine generator. The reactor core employs mixed uranium-plutonium zirconium alloy metal fuel. The metal-alloy fuel (which has been used in EBR-II) has cost, safety, and safeguard advantages. The intrinsic properties of the sodium coolant (e.g., high boiling point, low vapor pressure, and strong natural convection), blended together with the pool-type LMR concept and the metal fuel, result in an inherently safe plant. Passive inherent features provide both public safety and plant investment protection. Refueling is carried out annually on each Power Pak, replacing one-fourth of the core over a 6-day refueling outage. A colocated pyroprocessing fuel cycle facility can be accommodated at the site such that no off-site shipments are required. (J.P.N.)

  15. Combined effects of plant extracts in inhibiting the growth of Bacillus cereus in reconstituted infant rice cereal.

    Science.gov (United States)

    Jun, Hyejung; Kim, Jinsol; Bang, Jihyun; Kim, Hoikyung; Beuchat, Larry R; Ryu, Jee-Hoon

    2013-01-01

    A study was done to determine the potential use of plant extracts to inhibit the growth of Bacillus cereus in reconstituted infant rice cereal. A total of 2116 extracts were screened for inhibitory activity against B. cereus using an agar well diffusion assay. The minimal inhibitory concentrations (MIC) and minimal lethal concentrations (MLC) of 14 promising extracts in tryptic soy broth (TSB) were determined. Dryopteris erythrosora (autumn fern) root extract showed the lowest MIC (0.0156 mg/ml), followed by Siegesbeckia glabrescens (Siegesbeckia herb) leaf (0.0313 mg/ml), Morus alba (white mulberry) cortex (0.0313 mg/ml), Carex pumila (sand sedge) root (0.0625 mg/ml), and Citrus paradisi (grapefruit) seed (0.0625 mg/ml) extracts. The order of MLCs of extracts was D. erythrosora root (0.0156 mg/ml)extracts against B. cereus in TSB were determined using a checkerboard assay. A combination of D. erythrosora and C. pumila extracts showed a partial synergistic inhibition, with a fractional inhibitory concentration index (FICI) of 0.75. Single and combined inhibitory activities of selected plant extracts against B. cereus in reconstituted infant rice cereal were investigated. The MICs of S. glabrescens, M. alba, D. erythrosora, and C. pumila extracts against B. cereus were 1.0, 2.0, 2.0, and 8.0mg/ml, respectively. A combination of D. erythrosora (1.00 mg/ml) and C. pumila (1.00 mg/ml) extracts showed a partial synergistic effect (FICI 0.63) in inhibiting the growth of B. cereus. Results indicate that by combining extracts, the amounts of D. erythrosora and C. pumila extracts can be reduced by 50% and 87.5%, respectively, compared with individual extracts, and give similar inhibitory activity in reconstituted infant rice cereal. Sensory evaluation showed that supplementing reconstituted infant rice cereal with plant extracts reduces sensorial quality. These observations will be useful when developing and applying interventions using natural plant extracts to inhibit B

  16. The materials concept in German light water reactors. A contribution to plant safety, economic performance and damage prevention

    International Nuclear Information System (INIS)

    Ilg, Ulf

    2008-01-01

    Major decisions taken as early as in the planning and construction phases of nuclear power plants may influence overall plant life. Component quality at the beginning of plant life is determined very much also by a balanced inclusion of the 'design, choice of materials, manufacturing and inspection' elements. One example of the holistic treatment of design, choice of material, and manufacture of important safety-related components in pressurized water reactors is the reactor pressure vessel (RPV) in which the ferritic compound tubes, with inside claddings, for the control rod drive nozzles are screwed into the vessel top. Also the choice of Incoloy 800 for the steam generator tubes, and the design of the main coolant pipes with inside claddings as seamless pipe bends / straight pipes with integrated nozzles connected to mixed welds with austenitic pipes are other special design features of the Siemens/KWU plants. A demonstrably high quality standard by international comparison to this day has been exhibited by the austenitic RPV internals of boiling water reactors, which were made of a low-carbon Nb-stabilized austenitic steel grade by optimum manufacturing technologies. The same material is used for backfitting austenitic pipes. Reliable and safe operation of German nuclear power plants has been demonstrated for more than 4 decades. One major element in this performance is the materials concept adopted in Germany also in the interest of damage prevention. (orig.)

  17. NPP Krsko Living PSA Concept

    International Nuclear Information System (INIS)

    Vrbanic, I.; Spiler, J.

    2000-01-01

    NPP Krsko developed PSA model of internal and external initiators within the frame of the Individual Plant Examination (IPE) project. Within this project PSA model was used to examine the existing plant design features. In order to continue with use of this PSA model upon the completion of IPE in various risk-informed applications in support of plant operation and evaluations of design changes, an appropriate living PSA concept needed to be defined. The Living PSA concept is in NPP Krsko considered as being a set of activities pursued in order to update existing PSA model in a manner that it appropriately represents the plant design, operation practice and history. Only a PSA model which is being updated in this manner can serve as a platform for plant-specific risk informed applications. The NPP Krsko living PSA concept is based on the following major ponts. First, the baseline PSA model is defined, which is to be maintained and updated and which is to be reference point for any risk-informed application. Second, issues having a potential for impact on baseline PSA model are identified and procedure and responsibilities for their permanent monitoring and evaluation are established. Third, manner is defined in which consequential changes to baseline PSA model are implemented and controlled, together with associated responsibilities. Finally, the process is defined by which the existing version of baseline PSA model is superseded by a new one. Each time a new version of baseline PSA model is released, it would be re-quantified and the results evaluated and interpreted. By documenting these re-quantifications and evaluations of results in a sequence, the track is being kept of changes in long-term averaged risk perspective, represented by long-term averaged frequencies of core damage and pre-defined release categories. These major topics of NPP Krsko living PSA concept are presented and discussed in the paper. (author)

  18. Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants

    International Nuclear Information System (INIS)

    Kunze, Christian; Spliethoff, Hartmut

    2012-01-01

    Highlights: ► Hot gas cleanup is a highly favorable technology for all selected IGCC concepts. ► Proposed high pressure IGCC with membrane reactor enables direct CO 2 condensation. ► IGCC with OTM and carbonate looping enable significant synergy effects. ► Combining IGCC and oxy-fuel is technically challenging but energetically favorable. ► All selected IGCC concepts are able to realize CO 2 capture rates up to 99%. -- Abstract: Environmental damage due to the emission of greenhouse gases from conventional coal-based power plants is a growing concern. Various carbon capture strategies to minimize CO 2 emissions are currently being investigated. Unfortunately, the efficiency drop due to de-carbonization is still significant and the capture rate is limited. Therefore three future hard coal IGCC concepts are assessed here, applying emerging technologies and various carbon capture approaches. The advanced pre-combustion capture concept is based on hot gas clean-up, membrane-enhanced CO conversion and direct CO 2 condensation. The concept reached a net efficiency of 45.1% (LHV), representing an improvement of 6.46% compared to the conventional IGCC base case. The second IGCC concept, based on post-combustion capture via calcination–carbonation loops, hot gas clean-up and oxygen membranes, showed a net efficiency of 45.87% (LHV). The third IGCC concept applies hot gas clean-up and combustion of the unconverted fuel gas using pure oxygen. The oxygen is supplied by an integrated oxygen membrane. The combination of IGCC and oxy-fuel process reached a net efficiency of 45.74% (LHV). In addition to their increased efficiency, all of the concepts showed significantly improved carbon capture rates up to 99%, resulting in virtually carbon-free fossil power plants.

  19. Evaluation on the model of performance predictions for on-line monitoring system for combined-cycle power plant

    International Nuclear Information System (INIS)

    Kim, Si Moon

    2002-01-01

    This paper presents the simulation model developed to predict design and off-design performance of an actual combined cycle power plant(S-Station in Korea), which would be running combined with on-line performance monitoring system in an on-line real-time fashion. The first step in thermal performance analysis is to build an accurate performance model of the power plant, in order to achieve this goal, GateCycle program has been employed in developing the model. This developed models predict design and off-design performance with a precision of one percent over a wide range of operating conditions so that on-line real-time performance monitoring can accurately establish both current performance and expected performance and also help the operator identify problems before they would be noticed

  20. Aspen Plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants

    International Nuclear Information System (INIS)

    Zheng, Huixiao; Kaliyan, Nalladurai; Morey, R. Vance

    2013-01-01

    Biomass integrated gasification combined cycle (BIGCC) systems and natural gas combined cycle (NGCC) systems are employed to provide heat and electricity to a 0.19 hm 3 y −1 (50 million gallon per year) corn ethanol plant using different fuels (syrup and corn stover, corn stover alone, and natural gas). Aspen Plus simulations of BIGCC/NGCC systems are performed to study effects of different fuels, gas turbine compression pressure, dryers (steam tube or superheated steam) for biomass fuels and ethanol co-products, and steam tube dryer exhaust treatment methods. The goal is to maximize electricity generation while meeting process heat needs of the plant. At fuel input rates of 110 MW, BIGCC systems with steam tube dryers provide 20–25 MW of power to the grid with system thermal efficiencies (net power generated plus process heat rate divided by fuel input rate) of 69–74%. NGCC systems with steam tube dryers provide 26–30 MW of power to the grid with system thermal efficiencies of 74–78%. BIGCC systems with superheated steam dryers provide 20–22 MW of power to the grid with system thermal efficiencies of 53–56%. The life-cycle greenhouse gas (GHG) emission reduction for conventional corn ethanol compared to gasoline is 39% for process heat with natural gas (grid electricity), 117% for BIGCC with syrup and corn stover fuel, 124% for BIGCC with corn stover fuel, and 93% for NGCC with natural gas fuel. These GHG emission estimates do not include indirect land use change effects. -- Highlights: •BIGCC and natural gas combined cycle systems at corn ethanol plants are simulated. •The best performance results in 25–30 MW power to grid. •The best performance results in 74–78% system thermal efficiencies. •GHG reduction for corn ethanol with BIGCC systems compared to gasoline is over 100%

  1. Inherent safe design of advanced high temperature reactors - concepts for future nuclear power plants

    International Nuclear Information System (INIS)

    Hodzic, A.; Kugeler, K.

    1997-01-01

    This paper discusses the applicable solutions for a commercial size High Temperature Reactor (HTR) with inherent safety features. It describes the possible realization using an advanced concept which combines newly proposed design characteristics with some well known and proven HTR inherent safety features. The use of the HTR technology offers the conceivably best solution to meet the legal criteria, recently stated in Germany, for the future reactor generation. Both systems, block and pebble bed ,reactor, could be under certain design conditions self regulating in terms of core nuclear heat, mechanical stability and the environmental transfer. 23 refs., 7 figs

  2. A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows

    Science.gov (United States)

    Sun, Xi-wan; Guo, Zhen-yun; Huang, Wei; Li, Shi-bin; Yan, Li

    2017-02-01

    The drag reduction and thermal protection system applied to hypersonic re-entry vehicles have attracted an increasing attention, and several novel concepts have been proposed by researchers. In the current study, the influences of performance parameters on drag and heat reduction efficiency of combinational novel cavity and opposing jet concept has been investigated numerically. The Reynolds-average Navier-Stokes (RANS) equations coupled with the SST k-ω turbulence model have been employed to calculate its surrounding flowfields, and the first-order spatially accurate upwind scheme appears to be more suitable for three-dimensional flowfields after grid independent analysis. Different cases of performance parameters, namely jet operating conditions, freestream angle of attack and physical dimensions, are simulated based on the verification of numerical method, and the effects on shock stand-off distance, drag force coefficient, surface pressure and heat flux distributions have been analyzed. This is the basic study for drag reduction and thermal protection by multi-objective optimization of the combinational novel cavity and opposing jet concept in hypersonic flows in the future.

  3. Mathematical Modeling – The Impact of Cooling Water Temperature Upsurge on Combined Cycle Power Plant Performance and Operation

    Science.gov (United States)

    Indra Siswantara, Ahmad; Pujowidodo, Hariyotejo; Darius, Asyari; Ramdlan Gunadi, Gun Gun

    2018-03-01

    This paper presents the mathematical modeling analysis on cooling system in a combined cycle power plant. The objective of this study is to get the impact of cooling water upsurge on plant performance and operation, using Engineering Equation Solver (EES™) tools. Power plant installed with total power capacity of block#1 is 505.95 MWe and block#2 is 720.8 MWe, where sea water consumed as cooling media at two unit condensers. Basic principle of analysis is heat balance calculation from steam turbine and condenser, concern to vacuum condition and heat rate values. Based on the result shown graphically, there were impact the upsurge of cooling water to increase plant heat rate and vacuum pressure in condenser so ensued decreasing plant efficiency and causing possibility steam turbine trip as back pressure raised from condenser.

  4. New combined plant with integrated solar thermal energy; Neue Kombi-Anlage mit integrierter Solarwaerme

    Energy Technology Data Exchange (ETDEWEB)

    Leithner, R.; Dobrowolski, R.; Gresch, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Waerme- und Brennstofftechnik

    1998-06-01

    In California there are already 350 MW{sub e} worth of solar thermal energy plants in operation on a more or less commercial basis. In these installations thermal oil in parabolic gutters is heated from 300 C to 400 C. The thermal oil passes its thermal energy on to a water vapour circuit via a heat exchanger. The water vapour circuit can also be heated with natural gas, for instance at night when solar energy is not available. However, as yet no existing plant fulfils all three of the following requirements: its construction should entail the lowest possible investment costs and it should be able to run without solar energy and without an expensive storage system; it should have the greatest possible efficiency, especially at times when solar energy is not available (e.g. at night); at the same time, the solar thermal energy should be harvested at the lowest possible temperature so as to make expensive concentrating equipment superfluous. These seemingly contradictory demands are now met by a new concept involving a combined gas and steam plant whose operation is based on the injection of water into the compressed air rather than on a high excess of air. This water is evaporated by solar thermal energy at temperatures below 170 C according to its partial pressure. [Deutsch] Es gibt bereits ueber 350 MWe solarthermische Anlagen in Kalifornien, die mehr oder weniger kommerziell betrieben werden. Bei diesen Anlagen wird Thermaloel von 300 C auf 400 C in Parabolrinnen erhitzt. In einem Waermetauscher gibt das Thermaloel die Waerme an einen Wasserdampfkreislauf ab, der auch mit Erdgas beheizt werden kann, wenn wie z.B. nachts keine Solarwaerme verfuegbar ist. In einem weiteren Schritt wurde vorgeschlagen, das Wasser direkt zu verdampfen. Keine dieser Anlagen genuegt jedoch gleichzeitig den folgenden drei Anforderungen: Die Anlage sollte mit moeglichst niedrigen Investitionskosten gebaut und auch ohne Solarwaerme bzw. ohne aufwendigen Speicher betrieben werden koennen

  5. The Combined Effect of Gamma Irradiation and Plant Extract (Barnoof) on the Nutritional Profile to the Black Cutworm, Agrotis ipsilon (Hufn.)

    International Nuclear Information System (INIS)

    El-Naggar, S. E. M.; Ibrahim, S. M.; Mohamed, H. F.

    2004-01-01

    The combined effect of two sub sterilizing doses 100 and 150 Gray (Gy) of gamma irradiation and plant extract Conyza dioscorides (Barnoof) on Ten day old larvae of F1 generation of Agrotis ipsilon in on their ability to consume, digest and utilize food was studied. Gamma irradiation alone reduced the amount of food consumed and digested by the larvae as compared to unirradiated ones. Also, the utilization efficiency was more significantly decreased at dose level 150 Gy than at the dose level 100 Gy and leading to a reduction in weight gain. The effect of plant extract (Barnoof) alone was not significantly difference at the two tested concentration 1.5 and 3 % by the solvent (Petroleum ether) treatment. The combined effect of gamma radiation and plant extract (on F1 larvae) were significantly decreased the growth rate of the larvae than the treatment of them alone when compared with the untreated larvae. Also, the combined effect of gamma radiation and plant extract were significantly decreased the utilization of food as indicated by determining both efficiency of conversion of ingested food (E.C.I.) and digested food (E.C.D.) to body matter. (authors)

  6. Combined biological treatment of sinter plant waste water, blast furnace gas scrubber water polluted groundwater and coke plant effluent

    Energy Technology Data Exchange (ETDEWEB)

    Antoine van Hoorn [Corus Staal, IJmuiden (Netherlands)

    2006-07-01

    Waste water from the Corus coke plant in IJmuiden had been handled by the activated sludge process since start-up in 1972 but in the eighties it was clear that although this removed most phenols, the rest of the COD and thiocyanate must also be removed before discharge. The paper describes the original water treatment process and the higher pressure gas scrubber system for removal of SO{sub 2}, heavy metals and other harmful components. It goes on to describe development of a combined biological treatment system, the heart of which is the so-called Bio 2000. The performance of this new plant is discussed. COD concentrations are very constant but Total Kjeldahl Nitrogen (TKN) concentrations fluctuate. COD, TKN and heavy metals are in compliance but cyanide and suspended solids are not always so. A method of overcoming this is being sought. This paper was presented at a COMA meeting in March 2005 held in Scunthorpe, UK. 10 figs., 2 tabs.

  7. VAr reserve concept applied to a wind power plant

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    to wind power plants. This paper proposes two different VAr reserve control strategies for a wind power plant. The amount of dynamic VAr available most of the operation time, makes the wind power plant (WPP) a good candidate to include a VAr reserve management system. Two different ways of implementing...... a VAr management system are proposed and analyzed. Such a reactive power reserve may be provided by the wind power plant since the amount of reactive power installed for most active power working points exceeds the demand required by the grid operator. Basically, this overrated reactive power capacity...... is a consequence of sizing wind turbine facilities for maximum active power level. The reactive power losses, due to active power transportation inside the plant (normally two transformers), and P-Q wind turbine characteristics define the P-Q reserve chart. By utilizing the intrinsic overrated reactive power...

  8. Identifying plant cell-surface receptors: combining 'classical' techniques with novel methods.

    Science.gov (United States)

    Uebler, Susanne; Dresselhaus, Thomas

    2014-04-01

    Cell-cell communication during development and reproduction in plants depends largely on a few phytohormones and many diverse classes of polymorphic secreted peptides. The peptide ligands are bound at the cell surface of target cells by their membranous interaction partners representing, in most cases, either receptor-like kinases or ion channels. Although knowledge of both the extracellular ligand and its corresponding receptor(s) is necessary to describe the downstream signalling pathway(s), to date only a few ligand-receptor pairs have been identified. Several methods, such as affinity purification and yeast two-hybrid screens, have been used very successfully to elucidate interactions between soluble proteins, but most of these methods cannot be applied to membranous proteins. Experimental obstacles such as low concentration and poor solubility of membrane receptors, as well as instable transient interactions, often hamper the use of these 'classical' approaches. However, over the last few years, a lot of progress has been made to overcome these problems by combining classical techniques with new methodologies. In the present article, we review the most promising recent methods in identifying cell-surface receptor interactions, with an emphasis on success stories outside the field of plant research.

  9. The Effect of Contextual Teaching and Learning Combined with Peer Tutoring towards Learning Achievement on Human Digestive System Concept

    Directory of Open Access Journals (Sweden)

    Farhah Abadiyah

    2017-11-01

    Full Text Available This research aims to know the influence of contextual teaching and learning (CTL combined with peer tutoring toward learning achievement on human digestive system concept. This research was conducted at one of State Senior High School in South Tangerang in the academic year of 2016/2017. The research method was quasi experiment with nonequivalent pretest-postest control group design. The sample was taken by simple random sampling. The total of the sampels were 86 students which consisted of 44 students as a controlled group and 42 students as an experimental group. The research instrument was objective test which consisted of 25 multiple choice items of each pretest and posttest. The research also used observation sheets for teacher and students activity. The result of data analysis using t-test on the two groups show that the value of tcount was 2.40 and ttable was 1.99 on significant level α = 0,05, so that tcount > ttable.. This result indicated that there was influence of contextual teaching and learning (CTL combined with peer tutoring toward learning achievement on human digestive system concept.

  10. Climate suitability and human influences combined explain the range expansion of an invasive horticultural plant

    Science.gov (United States)

    Carolyn M. Beans; Francis F. Kilkenny; Laura F. Galloway

    2012-01-01

    Ecological niche models are commonly used to identify regions at risk of species invasions. Relying on climate alone may limit a model's success when additional variables contribute to invasion. While a climate-based model may predict the future spread of an invasive plant, we hypothesized that a model that combined climate with human influences would most...

  11. Assessment of defence in depth for nuclear power plants

    International Nuclear Information System (INIS)

    2005-01-01

    Defence in depth is a comprehensive approach to safety that has been developed by nuclear power experts to ensure with high confidence that the public and the environment are protected from any hazards posed by the use of nuclear power for the generation of electricity. The concepts of defence in depth and safety culture have served the nuclear power industry well as a basic philosophy for the safe design and operation of nuclear power plants. Properly applied, defence in depth ensures that no single human error or equipment failure at one level of defence, nor even a combination of failures at more than one level of defence, propagates to jeopardize defence in depth at the subsequent level or leads to harm to the public or the environment. The importance of the concept of defence in depth is underlined in IAEA Safety Standards, in particular in the requirements set forth in the Safety Standards: Safety of Nuclear Power Plants: Design (NS-R-1) and Safety Assessment and Verification for Nuclear Power Plants (NS-G-1.2). A specific report, Defence in Depth in Nuclear Safety (INSAG-10), describes the objectives, strategy, implementation and future development in the area of defence in depth in nuclear and radiation safety. In the report Basic Safety Principles for Nuclear Power Plants (INSAG-12), defence in depth is recognized as one of the fundamental safety principles that underlie the safety of nuclear power plants. In consonance with those high level publications, this Safety Report provides more specific technical information on the implementation of this concept in the siting, design, construction and operation of nuclear power plants. It describes a method for comprehensive and balanced review of the provisions required for implementing defence in depth in existing plants. This publication is intended to provide guidance primarily for the self-assessment by plant operators of the comprehensiveness and quality of defence in depth provisions. It can be used

  12. Energy analysis of a combined solid oxide fuel cell with a steam turbine power plant for marine applications

    Science.gov (United States)

    Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.

    2013-12-01

    Strong restrictions on emissions from marine power plants (particularly SO x , NO x ) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and steam turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. The analyzed variant of the combined cycle includes a SOFC operated with natural gas fuel and a steam turbine with a single-pressure waste heat boiler. The calculations were performed for two types of tubular and planar SOFCs, each with an output power of 18 MW. This paper includes a detailed energy analysis of the combined system. Mass and energy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of the combined cycle. In addition, the effects of using natural gas as a fuel on the fuel cell voltage and performance are investigated. It has been found that a high overall efficiency approaching 60% may be achieved with an optimum configuration using the SOFC system. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  13. Plant Breeding Goes Microbial

    NARCIS (Netherlands)

    Wei, Zhong; Jousset, Alexandre

    Plant breeding has traditionally improved traits encoded in the plant genome. Here we propose an alternative framework reaching novel phenotypes by modifying together genomic information and plant-associated microbiota. This concept is made possible by a novel technology that enables the

  14. Strategy of plant concept development in Hitachi

    International Nuclear Information System (INIS)

    Kumiaki, Moriya

    2007-01-01

    Hitachi contributes to the society in various fields of nuclear power such as the Light Water Reactor field, the Fast Breeder Reactor, the fuel cycle, and the medical treatment. Since the beginning of a first commercial operation of a BWR in Japan, Hitachi has constructed 20 units of BWR. Hitachi continues its efforts in achieving high reliability and large-scale output, and in 1996, it completed Advanced Boiling Water Reactor (ABWR) in cooperation with various BWR utilities, General Electric Company, and Toshiba Corporation. Hitachi has enhanced the ABWR technology further based on the above enough experience. The latest technologies were reflected in Hamaoka unit 5 and Shika unit 2 as the latest ABWR plants. The further upgrade technologies would been reflected in Shimane-3, Ohma-1 and Higashidori-1 as ABWR plants under planning. Hitachi obtains the chance to construct the nuclear power plant continuously. For the next generation, Hitachi is working on developing nuclear power plants that take diversified needs and global characteristics into account. As one of the approaches, the output series formation of BWR is extended as the following. ABWR-II and ESBWR (Economic and Simplified BWR) as a large-scale centralized power supply emphasizing cost efficiency, Medium size ABWR and natural circulation type BWR as medium and small-scale distributed power supply that features flexibility to various market needs, such as minimized capital risks, timely return on a capital investment, etc. As another approach, Hitachi tries to extend the Light Water Reactor technology. RBWR (Resource-Renewable BWR ) that achieves a high conversion ratio over 1.0 based on the BWR technology will make the fuel cycle flexible. Hitachi will continue the challenge for the next ABWR and the future with the enough experience of BWR construction. (author)

  15. Design and simulation of a geothermal–solar combined chimney power plant

    International Nuclear Information System (INIS)

    Cao, Fei; Li, Huashan; Ma, Qiuming; Zhao, Liang

    2014-01-01

    Highlights: • A geothermal–solar chimney power plant (GSCPP) is designed and analyzed. • Three different models, viz. full solar model, full geothermal model and geothermal–solar mode are compared. • Power generation under GSM is larger than the sum of FSM and FGM. • GSCPP can effectively solve the continuous operation problem of the SCPP. - Abstract: The solar chimney power plant (SCPP) is dominated by the solar radiation, and therefore its discontinuous operation is an unavoidable problem. In this paper, low temperature geothermal water is introduced into the SCPP for overcoming this problem. Based on a developed transient model, theoretical analyses are carried out to investigate the performance of the geothermal–solar chimney power plant (GSCPP) with main dimensions the same as the Manzanares prototype in Spain. Three operation models, viz. the full solar model, the full geothermal model and the geothermal–solar combined model are compared in typical summer and winter days and throughout the year. It is found that the GSCPP can attractively run in the GSM to deliver power continuously. Due to the ambient-dependant geothermal water outlet temperature, introducing the geothermal water makes greater contribution in winter days than in summer days, in the night than in the daytime. Power generation under GSM is larger than the sum of FSM and FGM. GSM is not the simple superposition of FSM and FGM, but makes better utilization of solar and geothermal energy. In addition, introducing high temperature and mass flow rate geothermal water can doubled and redoubled improve the GSCPP’s power capacity

  16. Combining Ecosystem Service and Critical Load Concepts for Resource Management and Public Policy

    Directory of Open Access Journals (Sweden)

    Timothy J. Sullivan

    2012-11-01

    Full Text Available Land management and natural resource public policy decision-making in the United States can benefit from two resource damage/recovery concepts: ecosystem service (ES and critical load (CL. The purpose of this paper is to suggest an integrated approach to the application of ES and CL principles for public land management and natural resource policy decision-making. One well known example that is appropriate for ES and CL evaluation is examined here: the acidification of soil and drainage water by atmospheric deposition of acidifying sulfur and nitrogen compounds. A conceptual framework illustrates how the ES and CL approaches can be combined in a way that enhances the strengths of each. This framework will aid in the process of translating ES and CL principles into land management and natural resource policy decision-making by documenting the impacts of pollution on environmental goods and services that benefit humans.

  17. ECONOMIC COMPARATIVE EVALUATION OF COMBINATION OF ACTIVATED CARBON GENERATION AND SPENT ACTIVATED CARBON REGENERATION PLANTS

    Directory of Open Access Journals (Sweden)

    TINNABHOP SANTADKHA

    2017-12-01

    Full Text Available The purpose of this study was to investigate the maximum annual profit of proposed three project plants as follows: (i a generation process of activated carbon (AC prepared from coconut shells; (ii a regeneration process of spent AC obtained from petrochemical industries; and (iii a project combined the AC generation process with the regeneration process. The maximum annual profit obtained from the sole regeneration plant was about 1.2- and 15.4- fold higher than that obtained from the integrated and the generation plants, respectively. The sensitivity of selected variables to net present value (NPV, AC sales price was the most sensitive to NPV while fixed costs of generation and regeneration, and variable cost of regeneration were the least sensitive to NPV. Based on the optimal results of each project plant, the economic indicators namely NPV, return on investment (ROI, internal rate of return (IRR, and simple payback period (SPP were determined. Applying a rule of thumb of 12% IRR and 7-year SPP, the AC sales prices for the generation, regeneration, and integrated plants were 674.31, 514.66 and 536.66 USD/ton of product, respectively. The economic analysis suggested that the sole regeneration project yields more profitable.

  18. Materials technologies for advanced nuclear energy concepts

    International Nuclear Information System (INIS)

    DiStefano, J.; Harms, B.

    1983-01-01

    High-performance, advanced nuclear power plant concepts have emerged with major emphasis on lower capital costs, inherent safety, and increased reliability. The materials problems posed by these concepts are discussed and how the scientists and technologists at ORNL plan to solve them is described

  19. Transport concept of new waste management system (inner packaging system)

    International Nuclear Information System (INIS)

    Hakozaki, K.; Wada, R.

    2004-01-01

    Kobe Steel, Ltd. (KSL) and Transnuclear Tokyo (TNT) have jointly developed a new waste management system concept (called ''Inner packaging system'') for high dose rate wastes generated from nuclear power plants under cooperation with Tokyo Electric Power Company (TEPCO). The inner packaging system is designed as a total management system dedicated to the wastes from nuclear plants in Japan, covering from the wastes conditioning in power plants up to the disposal in final repository. This paper presents the new waste management system concept

  20. Toxic effects of six plant oils alone and in combination with controlled atmosphere on Liposcelis bostrychophila (Psocoptera: Liposcelididae).

    Science.gov (United States)

    Wang, J J; Tsai, J H; Ding, W; Zhao, Z M; Li, L S

    2001-10-01

    Six plant essential oils alone as repellent and fumigant, and in combination with the controlled atmosphere against Liposcelis bostrychophila Badonnel were assessed in the laboratory. These essential oils were extracted from the leaves of six source plants: Citrus tangerina Tanaka, Citrus aurantium L., Citrus bergamia Risso et Poiteau, Pinus sylvestris L., Cupressus funebris End]., and Eucalyptus citriodora Hook. The repellency test indicated that L. bostrychophila adults were repelled by filter paper strips treated with six essential oils. Of these essential oils, the C. funebris oil was most effective followed by that of F. sylvestris, C. tangerina, C. bergamia, and E. citriodora. The average repellency of the C. aurantium oil against L. bostrychophila adults was significantly lower than other five test oils by day 14. These essential oils had a high level of toxicity in the fumigation assay against L. bostrychophila adults at both 10 and 20 ppm. When combined with two controlled atmosphere treatments (12% CO2 + 9% O2, and 10% CO2 + 5% O2, balanced N2), the toxicity of plant oils was enhanced significantly.

  1. Eliminating the “concept” concept

    OpenAIRE

    Harnad, Stevan

    2010-01-01

    Machery suggests that the concept of “concept” is too heterogeneous to serve as a “natural kind” for scientific explanation, so cognitive science should do without concepts. I second the suggestion and propose substituting, in place of concepts, inborn and acquired sensorimotor category-detectors and category-names combined into propositions that define and describe further categories.

  2. Combined method for reducing emission of sulfur dioxide and nitrogen oxides from thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Grachev, S.P.

    1991-11-01

    Discusses the method developed by the Fossil Energy Research Corp. in the USA for combined desulfurization and denitrification of flue gases from coal-fired power plants. The method combines two methods tested on a commercial scale: the dry additive method for suppression of sulfur dioxide and the selective noncatalytic reduction of nitrogen oxides using urea (the NOXOUT process). The following aspects of joint flue gas desulfurization and denitrification are analyzed: flowsheets of the system, chemical reactions and reaction products, laboratory tests of the method and its efficiency, temperature effects on desulfurization and denitrification of flue gases, effects of reagent consumption rates, operating cost, efficiency of the combined method compared to other conventional methods of separate flue gas desulfurization and denitrification, economic aspects of flue gas denitrification and desulfurization. 4 refs.

  3. Numerical Hydraulic Study on Seawater Cooling System of Combined Cycle Power Plant

    Science.gov (United States)

    Kim, J. Y.; Park, S. M.; Kim, J. H.; Kim, S. W.

    2010-06-01

    As the rated flow and pressure increase in pumping facilities, a proper design against surges and severe cavitations in the pipeline system is required. Pressure surge due to start-up, shut-down process and operation failure causes the water hammer in upstream of the closing valve and the cavitational hammer in downstream of the valve. Typical cause of water hammer is the urgent closure of valves by breakdown of power supply and unexpected failure of pumps. The abrupt changes in the flow rate of the liquid results in high pressure surges in upstream of the valves, thus kinetic energy is transformed into potential energy which leads to the sudden increase of the pressure that is called as water hammer. Also, by the inertia, the liquid continues to flow downstream of the valve with initial speed. Accordingly, the pressure decreases and an expanding vapor bubble known as column separation are formed near the valve. In this research, the hydraulic study on the closed cooling water heat exchanger line, which is the one part of the power plant, is introduced. The whole power plant consists of 1,200 MW combined power plant and 220,000 m3/day desalination facility. Cooling water for the plant is supplied by sea water circulating system with a capacity of 29 m3/s. The primary focus is to verify the steady state hydraulic capacity of the system. The secondary is to quantify transient issues and solutions in the system. The circuit was modeled using a commercial software. The stable piping network was designed through the hydraulic studies using the simulation for the various scenarios.

  4. USE OF FRESH PARTS OF MEDICINAL PLANTS FOR HEALTH AND PRODUCTION IN LIVESTOCK – A NEW CONCEPT OF FARMING

    Directory of Open Access Journals (Sweden)

    Shibabrata Pattanayak

    2013-06-01

    Full Text Available Farm animals are reared for production to meet up the demand for animal protein in human. Various modern medicines are extensively used for production as well as treatment and prevention of diseases of animals, which can ultimately reach us through food chain. Herbs are now considered as an important source of alternative medicines. The Ayurvedic medicines prepared by manufacturers contain processed plant parts and added with preservative and other chemicals in many cases. The present way of research on herbal medicine follows the path of identification of active principles from the extracts of preserved parts of medicinal plants after testing of their efficacy in laboratory. This concept of research have the limitation of loss of many aromatic and other phytochemicals present in the living plant, which may have very important role when used together. Animals maintained in modern farm may be given relief from modern medicines in minor and moderate ailments, cure of problems related with their production with the validated fresh plant medicine available from the plants cultivated adjacent to the farm area. Consulting the reports of ethno-botanical study, a preliminary list of medicinal plant is prepared which are having antipyretic, analgesic, wound healing, immunostimulant, hepato-protective, fertility enhancing, pregnancy assisting, lactation assisting, anthelmintic, astringent, expectorant, purgative and anti-flatulent, nutriceutical, antiseptic, anti-dermatitis, anti-dysenteric and anti-enteric, hematenic, stomachic, diuretic and kidney stone removing effects and insecticidal or insect repelling effects. This list may be enriched further and plants may be selected for a farm from these groups according to the agro-climatic condition of the area, disease prevalence, problems encountered during farming practice and other requirements of the farm. Validation of reported effects of the plants is to be performed in fresh condition, so that parts

  5. Calculation of Efficiencies of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić

    2015-05-01

    Full Text Available The aim of this research was to investigate the possibility of a combined heat & power (CHP plant, using the waste heat from a Suezmax-size oil tanker’s main engine, to meet all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency, combined with a supercritical Organic Rankine cycle (ORC system, was selected to supply the auxiliary power, using R245fa or R123 as the working fluid. The system analysis showed that such a plant can meet all heat and electrical power requirements at full load, with the need to burn only a small amount of supplementary fuel in a heat recovery steam generator (HRSG when the main engine operates at part load. Therefore, it is possible to increase the overall thermal efficiency of the ship’s power plant by more than 5% when the main engine operates at 65% or more of its specified maximum continuous rating (SMCR.

  6. Value impact analysis utilizing PRA techniques combined with a hybrid plant model

    International Nuclear Information System (INIS)

    Edson, J.L.; Stillwell, D.W.

    1989-01-01

    A value impact analysis (VIA) has been performed by the INEL to support a NRC Regulatory Analysis for resolution of Generic Issue (GI) 29, Bolting Degradation or Failure in Nuclear Power Plants. A VIA for replacing the reactor coolant pressure boundary (RCPB) bolts of BWRs and PWRs was previously prepared by Pacific Northwest Laboratories in 1985 under instructions limiting the VIA to the potential for failure of primary pressure boundary bolting. Subsequently the INEL was requested to perform a VIA that included non primary systems and component support bolts to be compatible with the resolution of the broader issue. Because the initial list of systems and bolting applications that could be included in the VIA was very large, including them all in the VIA would likely result in analyzing some that have little if any effect on public risk. This paper discusses how PRA techniques combined with a hybrid plant model were used to determine which bolts have the potential to be significant contributors to public risk if they were to fail, and therefore were included in the VIA

  7. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    2014-01-01

    production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible...... district heating production in the ethanol facility. The results suggest that the efficiency of integrating lignocellulosic ethanol production in CHP plants is highly dependent on operation, and it is therefore suggested that the expected operation pattern of such polygeneration system is taken......Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol...

  8. Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment

    International Nuclear Information System (INIS)

    Facci, Andrea L.; Sánchez, David; Jannelli, Elio; Ubertini, Stefano

    2015-01-01

    Highlights: • The trigenerative-CAES concept is introduced. • The thermodynamic feasibility of the trigenerative-CAES is assessed. • The effects of the relevant parameter on the system performances are dissected. • Technological issues on the trigenerative-CAES are highlighted. - Abstract: Energy storage is a cutting edge front for renewable and sustainable energy research. In fact, a massive exploitation of intermittent renewable sources, such as wind and sun, requires the introduction of effective mechanical energy storage systems. In this paper we introduce the concept of a trigenerative energy storage based on a compressed air system. The plant in study is a simplified design of the adiabatic compressed air energy storage and accumulates mechanical and thermal (both hot and cold) energy at the same time. We envisage the possibility to realize a relatively small size trigenerative compressed air energy storage to be placed close to the energy demand, according to the distributed generation paradigm. Here, we describe the plant concept and we identify all the relevant parameters influencing its thermodynamic behavior. Their effects are dissected through an accurate thermodynamic model. The most relevant technological issues, such as the guidelines for a proper choice of the compressor, expander and heat exchangers are also addressed. Our results show that T-CAES may have an interesting potential as a distributed system that combines electricity storage with heat and cooling energy production. We also show that the performances are significantly influenced by some operating and design parameters, whose feasibility in real applications must be considered.

  9. Small and medium-sized nuclear power plants

    International Nuclear Information System (INIS)

    Schmidt, R.

    1986-01-01

    Small and medium-sized nuclear power plants have long been under discussion as possible applications of nuclear power in countries with small transmission grid systems, in threshold countries and developing countries, and under special local supply conditions. IAEA has condensed and promoted this interest and tried to establish the demand, and possibilities of meeting it, in special events and campaigns. In recent years, considerable interest was registered even in industrialized countries, but here specially for heating and process heat generation applications and for special purposes and, in medium-sized units, also for combined supplies of electricity and heat. This corresponds to special reactor and plant concepts, some of which have already been developed to a stage at which construction work could begin. The analysis presented deals with necessary preconditions on the sides of the users and the vendors, with problems of economy, infrastructure and financing and with the market prospects of small nuclear power plants. (orig./HP) [de

  10. The role of NOSA five-star management system for occupational management of nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Qin

    2011-01-01

    The occupational safety management of nuclear power plant is developed towards integrated management, risk management, process management, all-round and full staff participation. Appropriate management method integrated with nuclear power plant safety, health and environmental protection could be organically combined with the nuclear safety operation management system, and could jointly lay a solid foundation for building up good nuclear safety culture. NOSA five-star management system is such a kind of risk management based on safety, health and environmental management system, with an aim to protect the personal safety. The concepts of NOSA management and nuclear safety culture are coincident, with strong workability, and meeting the need of nuclear power plant occupational safety management. Adopting NOSA five-star management system and keeping continuous improvement is one of the effective ways to improve the level of occupational safety management of nuclear power plant. It can be organically combined with nuclear safety operation management system and continuously improved safety culture to play an important role in improving the safety and economics of nuclear power plant. (author)

  11. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    International Nuclear Information System (INIS)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-01-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  12. Performance study of a combined cycle power plant with integral gasification; Estudio del desempeno de una planta de potencia de ciclo combinado con gasificacion integral

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Rocha, Jose Clemente

    2007-04-15

    At world-wide level, in the last decade the interest has been increased in the use of petroleum coke as fuel in the clean generation of energy applying the gasification technology. This interest is mainly due to the increment the production of petroleum coke as a result of processing larger volumes of crude processed in the refineries and to the increment in the yield of products with high added value, such as turbo-fuel or diesel, among others. With the new reconfiguration of the Mexican refinery of Cd. Madero and Cadereyta and soon with the completion of the reconfiguration of the Minatitlan, Veracruz refinery, larger amounts of coke will be produced, with the possibility of using it, by means of the appropriate gasification technology, to produce a clean synthetic gas (gasl) with the appropriate energy characteristic to be used as fuel in a combined cycle existing in Mexico. In Mexico the possibilities of generation of electrical energy from the utilization of petroleum coke have been considered departing from the use of petroleum coke using the gasification technology or using fluidized bed steam generators as is the case of the power plant TEG in Taquin, San Luis Potosi. Such is the fact, that at the moment PEMEX Refinacion, has completed the project of constructing in Tuxpan, Veracruz a crude processing refinery of Mayan crude with a high sulfur content and next to the Tuxpan Power Plant, being contemplated the possibility of applying the concept of combined cycle with integrated gasification (CCGI); with this infrastructure it will be possible to consume the coke generated by the Mexican refineries. The expected electrical generation is of 500 MW, of which 100 MW will be for own consumption of the refinery and 400 MW free to cover the electrical energy demand within the North East and Center Zone of the country. The petroleum coke derived from the refineries of the country can be used for the clean generation of electricity by means of its gasification and

  13. Cytogenetic effects of weak and combined actions in plants in connection with a problem of ecological rating

    International Nuclear Information System (INIS)

    Geras'kin, S.A.; Dikarev, V.G.; Udalova, A.A.; Dikareva, N.S.; Vasil'ev, D.V.; Evseeva, T.I.

    2002-01-01

    It is compared sanitary-hygienic and ecological approaches to rating of ionizing radiation action. The features of formation of cytogenetic effects in plants in conditions of separate and combined with factors of other nature action of ionizing radiation low doses are considered. (author)

  14. Energy audit: thermal power, combined cycle, and cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Abbi, Yash Pal

    2012-07-01

    The availability of fossil fuels required for power plants is reducing and their costs increasing rapidly. This gives rise to increase in the cost of generation of electricity. But electricity regulators have to control the price of electricity so that consumers are not stressed with high costs. In addition, environmental considerations are forcing power plants to reduce CO2 emissions. Under these circumstances, power plants are constantly under pressure to improve the efficiency of operating plants, and to reduce fuel consumption. In order to progress in this direction, it is important that power plants regularly audit their energy use in terms of the operating plant heat rate and auxiliary power consumption. The author attempts to refresh the fundamentals of the science and engineering of thermal power plants, establish its link with the real power plant performance data through case studies, and further develop techno-economics of the energy efficiency improvement measures. This book will rekindle interest in energy audits and analysis of the data for designing and implementation of energy conservation measures on a continuous basis.

  15. Application of extended statistical combination of uncertainties methodology for digital nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang Ki; Uh, Keun Sun; Chul, Kim Heui [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    A technically more direct statistical combinations of uncertainties methodology, extended SCU (XSCU), was applied to statistically combine the uncertainties associated with the DNBR alarm setpoint and the DNBR trip setpoint of digital nuclear power plants. The modified SCU (MSCU) methodology is currently used as the USNRC approved design methodology to perform the same function. In this report, the MSCU and XSCU methodologies were compared in terms of the total uncertainties and the net margins to the DNBR alarm and trip setpoints. The MSCU methodology resulted in the small total penalties due to a significantly negative bias which are quite large. However the XSCU methodology gave the virtually unbiased total uncertainties. The net margins to the DNBR alarm and trip setpoints by the MSCU methodology agree with those by the XSCU methodology within statistical variations. (Author) 12 refs., 17 figs., 5 tabs.

  16. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept.

    Science.gov (United States)

    Castellano, Michael J; Mueller, Kevin E; Olk, Daniel C; Sawyer, John E; Six, Johan

    2015-09-01

    Labile, 'high-quality', plant litters are hypothesized to promote soil organic matter (SOM) stabilization in mineral soil fractions that are physicochemically protected from rapid mineralization. However, the effect of litter quality on SOM stabilization is inconsistent. High-quality litters, characterized by high N concentrations, low C/N ratios, and low phenol/lignin concentrations, are not consistently stabilized in SOM with greater efficiency than 'low-quality' litters characterized by low N concentrations, high C/N ratios, and high phenol/lignin concentrations. Here, we attempt to resolve these inconsistent results by developing a new conceptual model that links litter quality to the soil C saturation concept. Our model builds on the Microbial Efficiency-Matrix Stabilization framework (Cotrufo et al., 2013) by suggesting the effect of litter quality on SOM stabilization is modulated by the extent of soil C saturation such that high-quality litters are not always stabilized in SOM with greater efficiency than low-quality litters. © 2015 John Wiley & Sons Ltd.

  17. Genetic effects of prolonged combined irradiation of laboratory animals in Chernobyl Atomic Power Plant alienation zone

    International Nuclear Information System (INIS)

    Savtsova, Z.D.; Vojejkova, Yi.M.; Dzhaman, N.Yi.; Yudyina, O.Yu.; Yindik, V.M.; Kovbasyuk, S.A.

    2000-01-01

    Prolonged combined (external and internal) irradiation of mice in the r zone of the Chernobyl Atomic Power Plant caused hereditary disturbances physiological defects in the posterity irrespective of the fact if one or both parents were irradiated. The most favourable indices were observed in F2 posterity of the both exposed parents

  18. Energy management strategies for combined heat and electric power micro-grid

    Directory of Open Access Journals (Sweden)

    Barbarić Marina

    2016-01-01

    Full Text Available The increasing energy production from variable renewable energy sources such as wind and solar has resulted in several challenges related to the system reliability and efficiency. In order to ensure the supply-demand balance under the conditions of higher variability the micro-grid concept of active distribution networks arising as a promising one. However, to achieve all the potential benefits that micro-gird concept offer, it is important to determine optimal operating strategies for micro-grids. The present paper compares three energy management strategies, aimed at ensuring economical micro-grid operation, to find a compromise between the complexity of strategy and its efficiency. The first strategy combines optimization technique and an additional rule while the second strategy is based on the pure optimization approach. The third strategy uses model based predictive control scheme to take into account uncertainties in renewable generation and energy consumption. In order to compare the strategies with respect to cost effectiveness, a residential micro-grid comprising photovoltaic modules, thermal energy storage system, thermal loads, electrical loads as well as combined heat and power plant, is considered.

  19. Sequential decision reliability concept and failure rate assessment

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1990-11-01

    Conventionally, a reliability concept is considered together with both each basic unit and their integration in a complicated large scale system such as a nuclear power plant (NPP). Basically, as the plant's operational status is determined by the information obtained from various sensors, the plant's reliability and the risk assessment is closely related to the reliability of the sensory information and hence the sensor components. However, considering the relevant information-processing systems, e.g. fault detection processors, there exists a further question about the reliability of such systems, specifically the reliability of the systems' decision-based outcomes by means of which the further actions are performed. To this end, a general sequential decision reliability concept and the failure rate assessment methodology is introduced. The implications of the methodology are investigated and the importance of the decision reliability concept in system operation is demonstrated by means of sensory signals in real-time from the Borssele NPP in the Netherlands. (author). 21 refs.; 8 figs

  20. Framatome ANP worldwide experience in ageing and plant life management

    International Nuclear Information System (INIS)

    Daeuwel, W.; Kastner, B.; Nopper, H.

    2004-01-01

    The deregulation of the power generation industry has resulted in increased competitive pressure and is forcing operators to improve plant operating economy while maintaining high levels of plant safety. A key factor to meet this challenge is to apply a comprehensive plant life management (PLIM) approach which addresses all relevant ageing and degradation mechanisms regarding the safety concept, plant components and documentation, plant personnel, consumables, operations management system and administrative controls. For this reason, Framatome ANP has developed an integrated PLIM concept focussing on the safety concept, plant components and documentation. Representative examples for plant wide analyses are described in the following. The results of the analyses support the plant owner for taking the strategic decisions, involved in plant life extension (PLEX). (orig.)

  1. Healthy plants: necessary for a balanced 'One Health' concept.

    Science.gov (United States)

    Fletcher, Jacqueline; Franz, David; Leclerc, J Eugene

    2009-01-01

    All life forms depend ultimately upon sunlight to create the energy 'currency' required for the functions of living. Green plants can make that conversion directly but the rest of us would perish without access to foods derived, directly or indirectly, from plants. We also require their fibre which we use for clothing, building and other purposes. However, plants, just as humans and animals, are attacked by pathogens that cause a myriad of symptoms that can lead to reduced yields, lower quality products and diminished nutritional value. Plant pathogens share many features with their human and animal counterparts. Some pathogens - whether of humans, animals, or plants - have nimble genomes or the ability to pirate genes from other organisms via mobile elements. Some have developed the ability to cross kingdoms in their host ranges. Many others share virulence factors, such as the type III secretion system (T3SS) or mechanisms for sensing population density, that work equally well in all kingdoms. Certain pathogens of hosts in all kingdoms rely upon insect vectors and use similar mechanisms to ensure dispersal (and sometimes survival) in this way. Plant-pathogen interactions have more direct consequence for humans when the microbes are human pathogens such as Escherichia coli 0157:H7 and Salmonella spp., which can contaminate fresh produce or when they produce metabolites, such as mycotoxins, which are harmful when consumed. Finally, national biosecurity concerns and the need for prevention, preparedness and forensic capabilities cross all kingdom barriers. Thus, our communities that focus on one of these kingdoms have much to learn from one another and a complete and balanced 'One Health' initiative must be tripartite, embracing the essential components of healthy plants, healthy animals and healthy people.

  2. Demonstrating concepts of pathogenesis using effectors of Phytophthora infestans

    Science.gov (United States)

    Pathogenesis, or how pathogens cause disease, is an important concept in plant pathology. The study of pathogenesis in plant pathology has rapidly expanded and is now a significant portion of plant pathology research (especially research at the molecular level of host-pathogen interaction). With the...

  3. Combining scenarios in a calculation of the overall probability distribution of cumulative releases of radioactivity from the Waste Isolation Pilot Plant, southeastern New Mexico

    International Nuclear Information System (INIS)

    Tierney, M.S.

    1991-11-01

    The Waste Isolation Pilot Plant (WIPP), in southeastern New Mexico, is a research and development facility to demonstrate safe disposal of defense-generated transuranic waste. The US Department of Energy will designate WIPP as a disposal facility if it meets the US Environmental Protection Agency's standard for disposal of such waste; the standard includes a requirement that estimates of cumulative releases of radioactivity to the accessible environment be incorporated in an overall probability distribution. The WIPP Project has chosen an approach to calculation of an overall probability distribution that employs the concept of scenarios for release and transport of radioactivity to the accessible environment. This report reviews the use of Monte Carlo methods in the calculation of an overall probability distribution and presents a logical and mathematical foundation for use of the scenario concept in such calculations. The report also draws preliminary conclusions regarding the shape of the probability distribution for the WIPP system; preliminary conclusions are based on the possible occurrence of three events and the presence of one feature: namely, the events ''attempted boreholes over rooms and drifts,'' ''mining alters ground-water regime,'' ''water-withdrawal wells provide alternate pathways,'' and the feature ''brine pocket below room or drift.'' Calculation of the WIPP systems's overall probability distributions for only five of sixteen possible scenario classes that can be obtained by combining the four postulated events or features

  4. Decommissioning of the AVR reactor, concept for the total dismantling

    International Nuclear Information System (INIS)

    Marnet, C.; Wimmers, M.; Birkhold, U.

    1998-01-01

    After more than 21 years of operation, the 15 MWe AVR experimental nuclear power plant with pebble bed high temperature gas-cooled reactor was shout down in 1988. Safestore decommissioning began in 1994. In order to completely dismantle the plant, a concept for Continued dismantling was developed according to which the plant could be dismantled in a step-wise procedure. After each step, there is the possibility to transform the plant into a new state of safe enclosure. The continued dismantling comprises three further steps following Safestore decommissioning: 1. Dismantling the reactor vessels with internals; 2. Dismantling the containment and the auxiliary units; 3. Gauging the buildings to radiation limit, release from the validity range of the AtG (Nuclear Act), and demolition of the buildings. For these steps, various technical procedures and concepts were developed, resulting in a reference concept in which the containment will essentially remain intact (in-situ concept). Over the top of the outer reactor vessel a disassembling area for remotely controlled tools will be erected that tightens on that vessel and can move down on the vessel according to the dismantling progress. (author)

  5. Modification of water treatment plant at Heavy Water Plant (Kota)

    International Nuclear Information System (INIS)

    Gajpati, C.R.; Shrivastava, C.S.; Shrivastava, D.C.; Shrivastava, J.; Vithal, G.K.; Bhowmick, A.

    2008-01-01

    Heavy Water Production by GS process viz. H 2 S - H 2 O bi-thermal exchange process requires a huge quantity of demineralized (DM) water as a source of deuterium. Since the deuterium recovery of GS process is only 18-19%, the water treatment plant (WTP) was designed and commissioned at Heavy Water Plant (Kota) to produce demineralized water at the rate of 680 m 3 /hr. The WTP was commissioned in 1980 and till 2005; the plant was producing DM water of required quality. It was having three streams of strong cation resin, atmospheric degasser and strong anion exchange resin with co-current regeneration. In 2001 a new concept of layered bed resin was developed and engineered for water treatment plant. The concept was attractive in terms of saving of chemicals and thus preservation of environment. Being an ISO 9000 and ISO 14000 plant, the modification of WTP was executed in 2005 during major turn around. After modification, a substantial amount of acid and alkali is saved

  6. Phytophagous insects on native and non-native host plants: combining the community approach and the biogeographical approach.

    Directory of Open Access Journals (Sweden)

    Kim Meijer

    Full Text Available During the past centuries, humans have introduced many plant species in areas where they do not naturally occur. Some of these species establish populations and in some cases become invasive, causing economic and ecological damage. Which factors determine the success of non-native plants is still incompletely understood, but the absence of natural enemies in the invaded area (Enemy Release Hypothesis; ERH is one of the most popular explanations. One of the predictions of the ERH, a reduced herbivore load on non-native plants compared with native ones, has been repeatedly tested. However, many studies have either used a community approach (sampling from native and non-native species in the same community or a biogeographical approach (sampling from the same plant species in areas where it is native and where it is non-native. Either method can sometimes lead to inconclusive results. To resolve this, we here add to the small number of studies that combine both approaches. We do so in a single study of insect herbivory on 47 woody plant species (trees, shrubs, and vines in the Netherlands and Japan. We find higher herbivore diversity, higher herbivore load and more herbivory on native plants than on non-native plants, generating support for the enemy release hypothesis.

  7. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz

    2012-01-01

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power signific......In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power...... significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5–3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept...

  8. Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2013-12-01

    Full Text Available Strong restrictions on emissions from marine power plants (particularly SOx, NOx will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  9. Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

    Science.gov (United States)

    Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.

    2013-12-01

    Strong restrictions on emissions from marine power plants (particularly SOx, NOx) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heatrecovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  10. Preliminary analysis of 500 MWt MHD power plant with oxygen enrichment

    Science.gov (United States)

    1980-04-01

    An MHD Engineering Test Facility design concept is analyzed. A 500 MWt oxygen enriched MHD topping cycle integrated for combined cycle operation with a 400 MWe steam plant is evaluated. The MHD cycle uses Montana Rosebud coal and air enriched to 35 mole percent oxygen preheated to 1100 F. The steam plant is a 2535 psia/1000 F/1000 F reheat recycle that was scaled down from the Gilbert/Commonwealth Reference Fossil Plant design series. Integration is accomplished by blending the steam generated in the MHD heat recovery system with steam generated by the partial firing of the steam plant boiler to provide the total flow requirement of the turbine. The major MHD and steam plant auxiliaries are driven by steam turbines. When the MHD cycle is taken out of service, the steam plant is capable of stand-alone operation at turbine design throttle flow. This operation requires the full firing of the steam plant boiler. A preliminary feasibility assessment is given, and results on the system thermodynamics, construction scheduling, and capital costs are presented.

  11. 78 FR 4467 - UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3...

    Science.gov (United States)

    2013-01-22

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC and UniStar Nuclear Operating Services...

  12. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Science.gov (United States)

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear Regulatory Commission (NRC or the Commission ) a...

  13. Concept of the plant for the BN-800 fast reactor fuel recycling with application of pyro-process and vibro-packing technology

    International Nuclear Information System (INIS)

    Bychkov, A.V.; Skiba, O.V.; Mayorshin, A.A.; Demidova, L.S.; Kormilitzyna, L.A.; Ishunin, V.S.

    2000-01-01

    The conception of Plant was developed for MOX-fuel recycle at two BN-800 type fast reactors by pyrochemical reprocessing of irradiated nuclear fuel (INF) and production of vibro-pac fuel pins and SA. INF production process and stages of pyrochemical reprocessing were analyzed. Starting materials were chosen. Characteristics of irradiated SA and requirements for finished products were defined. Volumes of production were estimated. Procedure of waste management was defined. The following description was made: (1) general flow sheet of fuel recycling and partial schemes of single reprocessing; (2) composition of production process equipment; (3) arrangement of production process equipment; (4) lay out of Plant building and engineering communications. Principle economical assessments were made for production under design. (authors)

  14. Production planning of combined heat and power plants with regards to electricity price spikes : A machine learning approach

    OpenAIRE

    Fransson, Nathalie

    2017-01-01

    District heating systems could help manage the expected increase of volatility on the Nordic electricity market by starting a combined heat and power production plant (CHP) instead of a heat only production plant when electricity prices are expected to be high. Fortum Värme is interested in adjusting the production planning of their district heating system more towards high electricity prices and in their system there is a peak load CHP unit that could be utilised for this purpose. The econom...

  15. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power

  16. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and

  17. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S., E-mail: sankha.deepp@gmail.com; Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical model of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.

  18. Information technology in enterprise management through the concept

    OpenAIRE

    Козликина, Ю. А.

    2016-01-01

    Consider the concept of Industry 4.0 in industrial plants. Why is it necessary to the functioning of a modern enterprise? It was identified features of the implementation of the concept 4.0. The influence of a new industrial revolution in the enterprise.

  19. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Isaure, Marie-Pierre [Section d' Application des Traceurs, LITEN, CEA-Grenoble, 17, rue des Martyrs, 38054 Grenoble cedex 9 (France) and Environmental Geochemistry Group, LGIT, UMR 5559, Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France)]. E-mail: mpisaure@ujf-grenoble.fr; Fayard, Barbara [Laboratoire de Physique des Solides, UMR 8502 Universite Paris Sud, 91405 Orsay (France); European Synchrotron Radiation Facility, ID-21, BP220, 38043 Grenoble (France); Sarret, Geraldine [Environmental Geochemistry Group, LGIT, UMR 5559, Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Pairis, Sebastien [Laboratoire de Cristallographie, UPR 5031, 25 Avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Bourguignon, Jacques [Laboratoire de Physiologie Cellulaire Vegetale, UMR 5168 CEA/CNRS/INRA/UJF, DRDC, CEA-Grenoble, 17 Avenue des Martyrs, 38054 Grenoble cedex 9 (France)

    2006-12-15

    Cadmium (Cd) is a metal of high toxicity for plants. Resolving its distribution and speciation in plants is essential for understanding the mechanisms involved in Cd tolerance, trafficking and accumulation. The model plant Arabidopsis thaliana was exposed to cadmium under controlled conditions. Elemental distributions in the roots and in the leaves were determined using scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX), and synchrotron-based micro X-ray fluorescence ({mu}-XRF), which offers a better sensitivity. The chemical form(s) of cadmium was investigated using Cd L{sub III}-edge (3538 eV) micro X-ray absorption near edge structure ({mu}-XANES) spectroscopy. Plant {mu}-XANES spectra were fitted by linear combination of Cd reference spectra. Biological sample preparation and conditioning is a critical point because of possible artifacts. In this work we compared freeze-dried samples analyzed at ambient temperature and frozen hydrated samples analyzed at -170 deg. C. Our results suggest that in the roots Cd is localized in vascular bundles, and coordinated to S ligands. In the leaves, trichomes (epidermal hairs) represent the main compartment of Cd accumulation. In these specialized cells, {mu}-XANES results show that the majority of Cd is bound to O/N ligands likely provided by the cell wall, and a minor fraction could be bound to S-containing ligands. No significant difference in Cd speciation was observed between freeze-dried and frozen hydrated samples. This work illustrates the interest and the sensitivity of Cd L{sub III}-edge XANES spectroscopy, which is applied here for the first time to plant samples. Combining {mu}-XRF and Cd L{sub III}-edge {mu}-XANES spectroscopy offers promising tools to study Cd storage and trafficking mechanisms in plants and other biological samples.

  20. Conceptional design and some application for ISI systems of 'Monju'

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Rindo, Hiroshi; Ara, Kuniaki; Kamimura, Takeo; Tsuzuki, Satoshi; Morimoto, Kazuo; Nagaoka, Etsuo; Ikeda, Naoaki.

    1987-01-01

    In order to fit the Monju system for inspection during use of the (prototype FBR) ''Monju'' plant, a system concept necessary for this plant has been established and part of the machinery has been tested, on the basis of ISI light water reactor and thermal plant technology. Electromagnetic acoustic testing equipment (EMAT), which is drawing attention for the volumetric examination without contact, and also a wall-to-wall four-wheel self-propelled vehicle, as an ISI tool for R/V of FBR, are both being developed. Contents are the following: basic concept and development of ISI system - reactor vessel proper and inlet piping ISI system, and concept of steam generator evaporator heat exchanger tube ISI system; development of ISI systems - experimental self-propelled four-wheel tool, and EMAT signal processing unit. (Mori, K.)

  1. Combined approach based on principal component analysis and canonical discriminant analysis for investigating hyperspectral plant response

    Directory of Open Access Journals (Sweden)

    Anna Maria Stellacci

    2012-07-01

    Full Text Available Hyperspectral (HS data represents an extremely powerful means for rapidly detecting crop stress and then aiding in the rational management of natural resources in agriculture. However, large volume of data poses a challenge for data processing and extracting crucial information. Multivariate statistical techniques can play a key role in the analysis of HS data, as they may allow to both eliminate redundant information and identify synthetic indices which maximize differences among levels of stress. In this paper we propose an integrated approach, based on the combined use of Principal Component Analysis (PCA and Canonical Discriminant Analysis (CDA, to investigate HS plant response and discriminate plant status. The approach was preliminary evaluated on a data set collected on durum wheat plants grown under different nitrogen (N stress levels. Hyperspectral measurements were performed at anthesis through a high resolution field spectroradiometer, ASD FieldSpec HandHeld, covering the 325-1075 nm region. Reflectance data were first restricted to the interval 510-1000 nm and then divided into five bands of the electromagnetic spectrum [green: 510-580 nm; yellow: 581-630 nm; red: 631-690 nm; red-edge: 705-770 nm; near-infrared (NIR: 771-1000 nm]. PCA was applied to each spectral interval. CDA was performed on the extracted components to identify the factors maximizing the differences among plants fertilised with increasing N rates. Within the intervals of green, yellow and red only the first principal component (PC had an eigenvalue greater than 1 and explained more than 95% of total variance; within the ranges of red-edge and NIR, the first two PCs had an eigenvalue higher than 1. Two canonical variables explained cumulatively more than 81% of total variance and the first was able to discriminate wheat plants differently fertilised, as confirmed also by the significant correlation with aboveground biomass and grain yield parameters. The combined

  2. Integrated international safeguards concepts for fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.; Camp, A.L.; Cameron, C.P.; Bleck, M.E.; Ellwein, L.B.

    1981-12-01

    This report is the fourth in a series of efforts by the Los Alamos National Laboratory and Sandia National Laboratories, Albuquerque, to identify problems and propose solutions for international safeguarding of light-water reactor spent-fuel reprocessing plants. Problem areas for international safeguards were identified in a previous Problem Statement (LA-7551-MS/SAND79-0108). Accounting concepts that could be verified internationally were presented in a subsequent study (LA-8042). Concepts for containment/surveillance were presented, conceptual designs were developed, and the effectiveness of these designs was evaluated in a companion study (SAND80-0160). The report discusses the coordination of nuclear materials accounting and containment/surveillance concepts in an effort to define an effective integrated safeguards system. The Allied-General Nuclear Services fuels reprocessing plant at Barnwell, South Carolina, was used as the reference facility

  3. Concept for inland wind power plants and wind parks - an example from North-Rhine Westphalia; Rahmenkonzept fuer Windkraftanlagen und -parks im Binnenland - ein Beipiel aus Nordrhein-Westfalen

    Energy Technology Data Exchange (ETDEWEB)

    Kleinschmidt, V. [UVP-Forschungsstelle, Fachgebiet Landschaftsoekologie und Landschaftsplanung, Fachbereich Raumplanung, Dortmund Univ. (Germany); Schauerte-Lueke, N. [UVP-Forschungsstelle, Fachgebiet Landschaftsoekologie und Landschaftsplanung, Fachbereich Raumplanung, Dortmund Univ. (Germany); Bergmann, R. [PRO TERRA TEAM Dienstleistungs- und Forschungsgesellschaft fuer Umwelttechnologien GmbH und Co. KG, Dortmund (Germany)

    1994-12-31

    Because of the increasing number of wind energy plants, environmental protection gets into a conflict of aims. On the one hand the change of the `Stromeinspeisungsgesetz` (law arranging the insertion of privately produced electricity into the public system) and the improved support for wind energy plants is to appreciate for the reasons of a reduction of CO{sub 2} and other harmful substances. But on the other hand wind energy plants have negative environmental effects onto the sites they are built on, as for example disturbances of the birds their breeding nest and feeding habitat, injury or death following collision with a blade or tower or simply disturbances of the landscape view. To avoid possible conflicts and increase the acceptance of wind energy plants, for the district of Soest a concept on a strategic level was developed, in which sites were determined as optimal, restrictional or excluding the construction of wind energy plants. This concept may not only help to avoid conflicts but may also play an active part in the promotion of wind energy plants by defining the sites suitable for wind energy plants and making them public. All in all the procedure of approval was simplified and therefore accelerated with the invention of this concept. (orig.) [Deutsch] Durch die zunehmende Anzahl von Windkraftanlagen geraet der Umweltschutz in einen Zielkonflikt. Einerseits ist die Aenderung des Stromeinspeisungsgesetzes und die verbesserte Foerderung fuer Windkraftanlagen aus Gruenden der CO{sub 2} und Schadstoffemissionseinsparungen sehr zu begruessen. Andererseits haben die Windkraftanlagen direkt an den Aufstellungsorten negative Auswirkungen auf die Umwelt, wie zum Beispiel Stoerung der Voegel in Nahrungs- und Bruthabitaten, Vogelschlag oder Beeintraechtigung des Landschaftsbildes. Um moegliche Konflikte weitgehend zu vermeiden und die Akzeptanz fuer Windkraftanlagen zu erhoehen, wurde fuer den Kreis Soest ein Rahmenkonzept erarbeitet, in dem Gunst-, Restriktions

  4. Concept of a large-capacity irradiated-fuel-reprocessing plant

    International Nuclear Information System (INIS)

    Buck, C.; Couture, J.; Issel, W.; Mamelle, J.

    The processing of LWR fuels in recent years has run into difficulties due to the adaptation of the Purex process to these fuels with a high irradiation rate. This has led to development of new technological techniques. High-capacity plants should, in the future, limit their discharge of liquid and gaseous effluents to values comparable to those of nuclear electric stations. Investment costs necessary for processing the effluents and for temporary storage of the wastes are part of the total cost of these plants. However, the investments remain within acceptable limits. The 1500-ton/year plant presented is an example of what can be done in the 1980's

  5. Using Service Oriented Architecture in a Generic Virtual Power Plant

    DEFF Research Database (Denmark)

    Andersen, Peter Bach; Poulsen, Bjarne; Træholt, Chresten

    2009-01-01

    The purpose of this paper is to find and describe a suitable software framework that can be used to help implement the concept of a Generic Virtual Power Plant in the future power system. The Generic Virtual Power Plant concept, along with the utilization of distributed energy resources, has many...... the Generic Virtual Power Plant, an array of different software design principles, patterns and architectures must be applied. Especially Service Oriented Architecture (SOA) can aid in implementing the Generic Virtual Power Plant.......The purpose of this paper is to find and describe a suitable software framework that can be used to help implement the concept of a Generic Virtual Power Plant in the future power system. The Generic Virtual Power Plant concept, along with the utilization of distributed energy resources, has many...... interesting properties that can influence the future shape of power markets. The concept holds many promises including cheaper power to the consumer, a more flexible and responsive power production and the support of a more environment-friendly development. In order to realize a software solution supporting...

  6. Optimization of Combine Heat and Power Plants in the Russian Wholesale Power Market Conditions

    Directory of Open Access Journals (Sweden)

    I. A. Chuchueva

    2015-01-01

    Full Text Available The paper concerns the relevant problem to optimize the combine heat and power (CHP plants in the Russian wholesale power market conditions. Since 1975 the CHP plants specialists faced the problem of fuel rate or fuel cost reduction while ensuring the fixed level of heat and power production. The optimality criterion was the fuel rate or fuel cost which has to be minimized. Produced heat and power was paid by known tariff. Since the power market started in 2006 the power payment scheme has essentially changed: produced power is paid by market price. In such condition a new optimality criterion the paper offers is a profit which has to be maximized for the given time horizon. Depending on the optimization horizon the paper suggests four types of the problem urgency, namely: long-term, mid-term, short-term, and operative optimization. It clearly shows that the previous problem of fuel cost minimization is a special case of profit maximization problem. To bring the problem to the mixed-integer linear programming problem a new linear characteristic curves of steam and gas turbine are introduced. Error of linearization is 0.6%. The formal statement of the problem of short-term CHP plants optimization in the market conditions is offered. The problem was solved with IRM software (OpenLinkInternational for seven power plants of JSC “Quadra”: Dyagilevskaya CHP, Kurskaya CHP-1, Lipetskaya CHP-2, Orlovskaya CHP, Kurskaya CHP NWR, Tambovskaya CHP, and Smolenskaya CHP-2.The conducted computational experiment showed that a potential profit is between 1.7% and 4.7% of the fuel cost of different CHP plants and depends on the power plant operation conditions. The potential profit value is 2–3 times higher than analogous estimations, which were obtained solving fuel cost minimization problem. The perspectives of the work are formalization of mid-term and long-term CHP plants optimization problem and development of domestic software for the new problem

  7. Combining Phylogenetic and Occurrence Information for Risk Assessment of Pest and Pathogen Interactions with Host Plants

    Directory of Open Access Journals (Sweden)

    Ángel L. Robles-Fernández

    2017-08-01

    Full Text Available Phytosanitary agencies conduct plant biosecurity activities, including early detection of potential introduction pathways, to improve control and eradication of pest and pathogen incursions. For such actions, analytical tools based on solid scientific knowledge regarding plant-pest or pathogen relationships for pest risk assessment are needed. Recent evidence indicating that closely related species share a higher chance of becoming infected or attacked by pests has allowed the identification of taxa with different degrees of vulnerability. Here, we use information readily available online about pest-host interactions and their geographic distributions, in combination with host phylogenetic reconstructions, to estimate a pest-host interaction (in some cases infection index in geographic space as a more comprehensive, spatially explicit tool for risk assessment. We demonstrate this protocol using phylogenetic relationships for 20 beetle species and 235 host plant genera: first, we estimate the probability of a host sharing pests, and second, we project the index in geographic space. Overall, the predictions allow identification of the pest-host interaction type (e.g., generalist or specialist, which is largely determined by both host range and phylogenetic constraints. Furthermore, the results can be valuable in terms of identifying hotspots where pests and vulnerable hosts interact. This knowledge is useful for anticipating biological invasions or spreading of disease. We suggest that our understanding of biotic interactions will improve after combining information from multiple dimensions of biodiversity at multiple scales (e.g., phylogenetic signal and host-vector-pathogen geographic distribution.

  8. EuroFIR-BASIS - a combined composition and biological activity database for bioactive compounds in plant-based foods

    DEFF Research Database (Denmark)

    Gry, Jørn; Black, Lucinda; Eriksen, Folmer Damsted

    2007-01-01

    Mounting evidence suggests that certain non-nutrient bioactive compounds promote optimal human health and reduce the risk of chronic disease. An Internet-deployed database, EuroFIR-BASIS, which uniquely combines food composition and biological effects data for plant-based bioactive compounds......, is being developed. The database covers multiple compound classes and 330 major food plants and their edible parts with data sourced from quality-assessed, peer-reviewed literature. The database will be a valuable resource for food regulatory and advisory bodies, risk authorities, epidemiologists...... and researchers interested in diet and health relationships, and product developers within the food industry....

  9. Reduced risk HTGR concept for industrial heat application

    International Nuclear Information System (INIS)

    Boardman, C.E.; Lipps, A.J.

    1982-01-01

    The industrial process heat market has been identified as major market for the High Temperature Gas-Cooled Reactor (HTGR), however, this market introduces stringent availability requirements on the reactor system relative to electric plants which feed a large existing grid. The characteristics and requirements of the industrial heat markets are summarized; the risks associated with serving this market with a single large HTGR will be discussed; and the modular concept, which has the potential to reduce both safety and investment risks, will be described. The reference modular concept described consists of several small, relatively benign nuclear heat sources linked together to supply heat energy to a balance-of-plant incorporating a process gas train/thermochemical pipe line system and a normal steam-electric plant

  10. Plant fibre composites - porosity and volumetric interaction

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2007-01-01

    the combination of a high fibre volume fraction, a low porosity and a high composite density is optimal. Experimental data from the literature on volumetric composition and density of four types of plant fibre composites are used to validate the model. It is demonstrated that the model provides a concept......Plant fibre composites contain typically a relative large amount of porosity, which considerably influences properties and performance of the composites. The large porosity must be integrated in the conversion of weight fractions into volume fractions of the fibre and matrix parts. A model...... is presented to predict the porosity as a function of the fibre weight fractions, and to calculate the related fibre and matrix volume fractions, as well as the density of the composite. The model predicts two cases of composite volumetric interaction separated by a transition fibre weight fraction, at which...

  11. Advanced concepts for acceleration

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  12. Development of FBR integrity system code. Basic concept

    International Nuclear Information System (INIS)

    Asayama, Tai

    2001-05-01

    For fast breeder reactors to be commercialized, they must be more reliable, safer, and at the same, economically competitive with future light water reactors. Innovation of elevated temperature structural design standard is necessary to achieve this goal. The most powerful way is to enlarge the scope of structural integrity code to cover items other than design evaluation that has been addressed in existing codes. Items that must be newly covered are prerequisites of design, fabrication, examination, operation and maintenance, etc. This allows designers to choose the most economical combination of design variations to achieve specific reliability that is needed for a particular component. Designing components by this concept, a cost-minimum design of a whole plant can be realized. By determining the reliability that must be achieved for a component by risk technologies, further economical improvement can be expected by avoiding excessive quality. Recognizing the necessity for the codes based on the new concept, the development of 'FBR integrity system code' began in 2000. Research and development will last 10 years. For this development, the basic logistics and system as well as technologies that materialize the concept are necessary. Original logistics and system must be developed, because no existing researches are available in and out of Japan. This reports presents the results of the work done in the first year regarding the basic idea, methodology, and structure of the code. (author)

  13. Increased earthquake safety through optimised mounting concept

    International Nuclear Information System (INIS)

    Kollmann, Dieter; Senechal, Holger

    2013-01-01

    Since Fukushima, there has been intensive work on earthquake safety in all nuclear power plants. A large part of these efforts aim at the earthquake safety of safety-relevant pipeline systems. The problem with earthquake safety here is not the pipeline system itself but rather its mountings and connections to components. This is precisely the topic that the KAE dealt with in years of research and development work. It has developed an algorithm that determines the optimal mounting concept with a few iteration steps depending on arbitrary combinations of loading conditions whilst maintaining compliance with relevant regulations for any pipeline systems. With this tool at hand, we are now in a position to plan and realise remedial measures accurately with minimum time and hardware expenditure, and so distinctly improve the earthquake safety of safety-relevant systems. (orig.)

  14. Safety considerations and countermeasures against fire and explosion at an HTGR-hydrogen production system. Proposal of safety design concept

    International Nuclear Information System (INIS)

    Nishihara, T.; Hada, K.; Shibata, T.; Shiozawa, S.

    1996-01-01

    Establishment of safety design concept and countermeasures against fire and explosion accidents is among key safety-related issues in an HTGR-hydrogen production system. We propose the different safety design concepts depending upon the origin of fire and explosion which may happen in the HTGR-hydrogen production plant. Against fire and explosion originated outside the reactor building (R/B), namely in the area of hydrogen production plant, the safety design concept is primarily to take a safe distance for preventing the damage on safety-related items or a proof wall if necessary. Because the hydrogen production plant is designed in the same safety level as a conventional chemical plant. The safe distance is proposed to limit an incident overpressure to 10 kPa so as not to suffer any damage on the items and to limit a wall-averaged temperature of concrete structures of the R/B to 175degC according to the current regulation. On the other hand, against a potential possibility of explosion originated inside the R/B, the safety design concept is to minimize the possibility of explosion low enough to assume no occurrence inside the R/B. That is, the measure is to exclude a simultaneous failure of a secondary helium piping and an endothermic chemical reactor. Furthermore, in severe accident condition in which the explosion may be postulated a priori, an incidental overpressure of explosion inside the reactor containment vessel (C/V) should be limited so as not to fail the C/V through restricting the amount of combustible gas ingress into the C/V by means of a combination of C/V isolation valve installed in the helium piping and emergency shut off valve in the process feed gas line. (author)

  15. Minimum inhibitory concentration of the plant extracts′ combinations against dental caries and plaque microorganisms: An in vitro study

    Directory of Open Access Journals (Sweden)

    B R Chandra Shekar

    2016-01-01

    Full Text Available Introduction: Oral health status has witnessed marked advances in many industrialized countries. However, dental caries is consistently increasing in developing countries, and periodontal diseases are among most common afflictions to humankind. Approach best suited for developing countries is to focus on the prevention with innovative strategies. Hence, evolution of novel, innovative strategies to prevent dental caries and periodontal diseases is need of hour. Objective: To determine minimum inhibitory concentration (MIC of combinations of Acacia nilotica, Murraya koenigii L. Sprengel, Eucalyptus hybrid, and Psidium guajava against dental caries and plaque microorganisms and to qualitatively identify various phytochemical constituents in individual plant extracts and their quadruple combinations. Materials and Methods: MIC of the combinations of A. nilotica, M. koenigii L. Sprengel, Eucalyptus hybrid, and P. guajava on Streptococcus mutans, Lactobacillus acidophilus (dental caries bacteria, Streptococcus sanguis, Streptococcus salivarius (primary plaque colonizers, Fusobacterium nucleatum (secondary plaque colonizer, and Porphyromonas gingivalis (tertiary plaque colonizer was determined using broth dilution method. Series of dilutions of quadruple combinations ranging from 0.05% to 1.5% were prepared. 100 μL of each serial dilution of quadruple combinations was added to each tube containing bacterial culture. The optical density was noted after incubation in each tube to estimate the MIC for each bacterium. Results: MIC of the polyherbal combinations on S. mutans, S. sanguis, S. salivarius, L. acidophilus, F. nucleatum, and P. gingivalis was found to be 0.25%, 0.05%, 0.05%, 0.1%, 0.25%, and 0.25%, respectively. Conclusion: The quadruple combinations of these four plant extracts could be considered in the evolution of an indigenous polyherbal mouth rinse as the formulation inhibited all the bacteria tested in the present study at low

  16. Ecotoxicological effects of copper and selenium combined pollution on soil enzyme activities in planted and unplanted soils.

    Science.gov (United States)

    Hu, Bin; Liang, Dongli; Liu, Juanjuan; Xie, Junyu

    2013-04-01

    The present study explored the joint effects of Cu and Se pollution mechanisms on soil enzymes to provide references for the phytoremediation of contaminated areas and agricultural environmental protection. Pot experiments and laboratory analyses were carried out to study the individual and combined influences of Cu and Se on soil enzyme activities. The activities of four soil enzymes (urease, catalase, alkaline phosphatase, and nitrate reductase) were chosen. All soil enzyme activities tested were inhibited by Cu and Se pollution, either individually or combined, in varying degrees, following the order nitrate reductase>urease>catalase>alkaline phosphatase. Growing plants stimulated soil enzyme activity in a similar trend compared with treatments without plants. The joint effects of Cu and Se on catalase activity showed synergism at low concentrations and antagonism at high concentrations, whereas the opposite was observed for urease activity. However, nitrate reductase activity showed synergism both with and without plant treatments. The half maximal effective concentration (EC50) of exchangeable fractions had a similar trend with the EC50 of total content and was lower than that of total content. The EC50 values of nitrate reductase and urease activities were significantly lower for both Se and Cu (p<0.05), which indicated that they were more sensitive than the other two enzymes. Copyright © 2013 SETAC.

  17. Reactor concepts for laser fusion

    International Nuclear Information System (INIS)

    Meier, W.R.; Maniscalco, J.A.

    1977-07-01

    Scoping studies were initiated to identify attractive reactor concepts for producing electric power with laser fusion. Several exploratory reactor concepts were developed and are being subjected to our criteria for comparing long-range sources of electrical energy: abundance, social costs, technical feasibility, and economic competitiveness. The exploratory concepts include: a liquid-lithium-cooled stainless steel manifold, a gas-cooled graphite manifold, and fluidized wall concepts, such as a liquid lithium ''waterfall'', and a ceramic-lithium pellet ''waterfall''. Two of the major reactor vessel problems affecting the technical feasibility of a laser fusion power plant are: the effects of high-energy neutrons and cyclical stresses on the blanket structure and the effects of x-rays and debris from the fusion microexplosion on the first-wall. The liquid lithium ''waterfall'' concept is presented here in more detail as an approach which effectively deals with these damaging effects

  18. Stimulation effects of γ-irradiation combined with colchicine on callus formation and green plant regeneration in rice anther culture

    International Nuclear Information System (INIS)

    Jin Wei; Chen Qiufang; Wang Cailian; Lu Yimei

    1999-09-01

    The ability of callus formation and green plant regeneration was very different for various rice types and varieties in rice anther culture. It was quite effective that rice anthers were irradiated with 10-40 Gy of γ-rays after 30 d incubation on induction medium and calli were treated on differentiation medium contained 10-75 mg/L of colchicine for increase of callus formation and green plant regeneration. Among these treatments, 10 Gy of γ-rats was the best for callus formation, and 20 Gy of γ-rays or 30 mg/L of colchicine was the most favourable for green plant regeneration. The simulation effect of 20 Gy of γ-irradiation combined with 30 mg/L of colchicine on green plant regeneration was much better than that of their separate use in rice anther culture

  19. Planning and evaluation of plant under safety aspects

    International Nuclear Information System (INIS)

    Strnad, H.

    1985-01-01

    Plant denotes a technical product characterized as being structured, complex, comprising the use of energy, and that of measuring, automatic control and monitoring systems to keep track of present, control and monitor processes. Particular attention is paid to methods of developing plant concepts, measures to exclude or detect risks, integration of safety engineering into the course of planning, safety concept and ergonomics in plant design. (DG) [de

  20. An MHD energy storage system comprising a heavy-water producing electrolysis plant and a H2/O2/CsOH MHD generator/steam turbine combination to provide a means of transferring nuclear reactor energy from the base-load regime into the intermediate-load and peaking regimes

    International Nuclear Information System (INIS)

    Townsend, S.J.; Koziak, W.W.

    1975-01-01

    The concept is presented of the MHD Energy Storage System, comprising a heavy-water producing electrolysis plant for electricity absorption, hydrogen/oxygen storage and a high-efficiency MHD generator/steam turbine unit for electricity production on demand from the grid. The overall efficiency at 56 to 60 percent is comparable to pumped storage hydro, but at only one-half to two-thirds the capital cost and at considerably greater freedom of location. The MHD Energy Storage System combined with the CANDU nuclear reactor in Canadian use can supply all-nuclear energy to the grid at a unit energy cost lower than when oil or coal fired plants are used in the same grid

  1. Parametric-based thermodynamic analysis of organic Rankine cycle as bottoming cycle for combined-cycle power plant

    International Nuclear Information System (INIS)

    Qureshi, S.; Memon, A.G.; Abbasi, A.F.

    2017-01-01

    In Pakistan, the thermal efficiency of the power plants is low because of a huge share of fuel energy is dumped into the atmosphere as waste heat. The ORC (Organic Rankine Cycle) has been revealed as one of the promising technologies to recover waste heat to enhance the thermal efficiency of the power plant. In current work, ORC is proposed as a second bottoming cycle for existing CCPP (Combined Cycle Power Plant). In order to assess the efficiency of the plant, a thermodynamic model is developed in the ESS (Engineering Equation Solver) software. The developed model is used for parametric analysis to assess the effects of various operating parameters on the system performance. The analysis of results shows that the integration of ORC system with existing CCPP system enhances the overall power output in the range of 150.5-154.58 MW with 0.24-5% enhancement in the efficiency depending on the operating conditions. During the parametric analysis of ORC, it is observed that inlet pressure of the turbine shows a significant effect on the performance of the system as compared to other operating parameters. (author)

  2. Results from tests of a Stirling engine and wood chips gasifier plant

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell; Werling, J.

    2002-01-01

    The combination of thermal gasification and a Stirling engine is an interesting concept for use in small Combined Heat and Power (CHP) plants based on biomass, because the need for gas cleaning is eliminated and problems with fouling of the Stirling engine heater are considerably reduced....... Furthermore, the overall electric efficiency of the system can be improved. At the Technical University of Denmark a small CHP plant based on a Stirling engine and an updraft gasifier has been developed and tested successfully. The advantages of updraft gasifiers are the simplicity and that the amount...... of the Stirling engine reduces the problems with tar to a minor problem in the design of the burner. The Stirling engine, which has an electric power output of 35 kW, is specifically designed for utilisation of fuels with a content of particles. The gas burner for the engine is designed for low specific energy...

  3. The assessment of the existing measuring system for atmospheric precipitation control around Belchatow power plant and a concept of its changing

    International Nuclear Information System (INIS)

    Hryniewicz, R.

    1993-01-01

    The influence of fossil-fuel power plants on environment is also demonstrated by pollution of atmospheric precipitation with combustion products emitted to the atmosphere. Actual methods for the precipitation pollution control have been critically reviewed and their use fullness discussed. A new concept has been proposed for that purpose. The detailed analysis of chemical nature of effluents present in rain waters and their physical parameters will be used for environment state assessment in the future

  4. Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution?

    Science.gov (United States)

    Cheesman, Matthew J.; Ilanko, Aishwarya; Blonk, Baxter; Cock, Ian E.

    2017-01-01

    The discovery of penicillin nearly 90 years ago revolutionized the treatment of bacterial disease. Since that time, numerous other antibiotics have been discovered from bacteria and fungi, or developed by chemical synthesis and have become effective chemotherapeutic options. However, the misuse of antibiotics has lessened the efficacy of many commonly used antibiotics. The emergence of resistant strains of bacteria has seriously limited our ability to treat bacterial illness, and new antibiotics are desperately needed. Since the discovery of penicillin, most antibiotic development has focused on the discovery of new antibiotics derived from microbial sources, or on the synthesis of new compounds using existing antibiotic scaffolds to the detriment of other lines of discovery. Both of these methods have been fruitful. However, for a number of reasons discussed in this review, these strategies are unlikely to provide the same wealth of new antibiotics in the future. Indeed, the number of newly developed antibiotics has decreased dramatically in recent years. Instead, a reexamination of traditional medicines has become more common and has already provided several new antibiotics. Traditional medicine plants are likely to provide further new antibiotics in the future. However, the use of plant extracts or pure natural compounds in combination with conventional antibiotics may hold greater promise for rapidly providing affordable treatment options. Indeed, some combinational antibiotic therapies are already clinically available. This study reviews the recent literature on combinational antibiotic therapies to highlight their potential and to guide future research in this field. PMID:28989242

  5. New reactor concepts; Nieuwe rectorconcepten - nouveaux reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Meskens, G.; Govaerts, P.; Baugnet, J.-M.; Delbrassine, A

    1998-11-01

    The document gives a summary of new nuclear reactor concepts from a technological point of view. Belgium supports the development of the European Pressurized-Water Reactor, which is an evolutionary concept based on the European experience in Pressurized-Water Reactors. A reorientation of the Belgian choice for this evolutionary concept may be required in case that a decision is taken to burn plutonium, when the need for flexible nuclear power plants arises or when new reactor concepts can demonstrate proved benefits in terms of safety and cost.

  6. Design and modelling of an innovative three-stage thermal storage system for direct steam generation CSP plants

    Science.gov (United States)

    Garcia, Pierre; Vuillerme, Valéry; Olcese, Marco; El Mourchid, Nadim

    2016-05-01

    Thermal Energy Storage systems (TES) for a Direct Steam Generation (DSG) solar plant feature preferably three stages in series including a latent heat storage module so that steam can be recovered with a limited temperature loss. The storage system designed within the Alsolen Sup project is characterized by an innovative combination of sensible and latent modules. A dynamic model of this three-stage storage has been developed and applied to size the storage system of the Alsolen Sup® plant demonstrator at CEA Cadarache. Results of this simulation show that this promising concept is an efficient way to store heat in DSG solar plants.

  7. Thermodynamic Analysis of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić

    2014-11-01

    Full Text Available The goal of this research is to study a cogeneration plant for combined heat & power (CHP production that utilises the low-temperature waste energy in the power plant of a Suezmax-size oil tanker for all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency and a CHP Plant with R245fa fluid using a supercritical organic Rankine cycle (ORC is selected. All the ship heat requirements can be covered by energy of organic fluid after expansion in the turbine, except feeder-booster heating. Hence, an additional quantity of working fluid may be heated using an after Heat Recovery Steam Generator (HRSG directed to the feeder-booster module. An analysis of the obtained results shows that the steam turbine plant does not yield significant fuel savings. However, a CHP plant with R245fa fluid using supercritical ORC meets all of the demands for electrical energy and heat while burning only a small amount of additional fuel in HRSG at the main engine off-design operation.

  8. Criteria of diversity evaluation for intelligent diagnosis of nuclear power plants

    International Nuclear Information System (INIS)

    Washio, Takashi; Sakuma, Masatake; Furukawa, Hiroshi; Kitamura, Masaharu.

    1995-01-01

    One of important problems of a current operation support system for a nuclear power plant is that the credibility of its resultant suggestions is not always high sufficiently. The authors have proposed an efficient remedy called 'Diversity Criteria' for this issue in the previous works. It employs a variety of information resources and reasoning mechanisms for the system to enhance its entire credibility. Within this framework, a complementary combination of the resources and mechanisms is desired. The work presented here proposes systematic and quantitative measures determining the appropriate combinations. First, concrete and systematic guidelines are proposed for the detailed criteria of 'Information Diversity' and 'Methodology Diversity'. Next, two concepts of 'Orthogonality of Identified Result' and 'Orthogonality of Utilized Symptom' are presented together with their quantitative measures. These guidelines and measures have been applied to an example of failure diagnosis of a nuclear power plant, and their efficiency has been clearly confirmed. (author)

  9. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  10. Efficiency improvement and exergy destruction reduction by combining a power and a multi-effect boiling desalination plant

    Directory of Open Access Journals (Sweden)

    A. A. Alsairafi

    2013-06-01

    Full Text Available Electric power and desalted seawater demand is increasing in Kuwait mainly due to residential and industrial growth, especially in summer season. In the past six years, Kuwait citizens have been facing the problem of automated power and water disconnection because of the electricity and water production is lower than the consumption. A common idea for resolving such a problem is to build new power plants but this solution is not practical due to environmental issues. Another choice but more engineer challenging approach for resolving this problem is to improve the efficiency and performance of the already existing power plants. Currently, there are six power plants in Kuwait; four of them have both stand-alone gas-turbine and steam-turbine power plants, one is steam power plant and one is gas turbine power plant. Combined power and desalination plant are more attractive in Kuwait since they have higher thermal efficiency than traditional ones and both electric power and process heat (e.g., desalting can be produced simultaneously. The relatively low temperature multi-effect desalination (MED process (around 75oC saturated temperature as the heat source is thermodynamically the most efficient of all thermal distillation processes (source, and consumes about 2 kWh/m3 pumping energy. In this study, factors affecting the performance of a combined power and MED-desalination plant have been studied. This includes the atmospheric humidity, compressor inlet air temperature, top brine temperature, desalination unit capacity, cooling water temperature, and the number of evaporation stages of the MED unit. A first- and second-law analysis of the proposed system was carried out under several operating conditions. As an example, a 125 MW Siemens V94.2 gas turbine of Al-Zour gas turbine power plant in Kuwait has been selected. It is found that the overall thermal efficiency of the proposed system increases significantly as the desalination unit capacity

  11. Power plant conceptual studies in Europe

    International Nuclear Information System (INIS)

    Maisonnier, D.; Campbell, D.; Cook, I.; Pace, L. Di; Giancarli, L.; Hayward, J.; Puma, A. Li; Medrano, M.; Norajitra, P.; Roccella, M.; Sardain, P.; Tran, M.Q.; Ward, D.

    2007-01-01

    The European fusion programme is 'reactor oriented' and it is aimed at the successive demonstration of the scientific, the technological and the economic feasibility of fusion power. The European Power Plant Conceptual Study (PPCS) has been a study of conceptual designs of five commercial fusion power plants and the main emphasis was on system integration. It focused on five power plant models which are illustrative of a wider spectrum of possibilities. They are all based on the tokamak concept and they have approximately the same net electrical power output, 1500 MWe. These span a range from relatively near-term, based on limited technology and plasma physics extrapolations, to an advanced conception. The PPCS allows one to clarify the concept of DEMO, the device that will bridge the gap between ITER and the first-of-a-kind fusion power plant. An assessment of the PPCS models with limited extrapolations highlighted a number of issues that must be addressed to establish the DEMO physics and technological basis

  12. Common tester platform concept.

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, Michael James

    2008-05-01

    This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies and operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.

  13. Antimicrobial activity of southern African medicinal plants with dermatological relevance: From an ethnopharmacological screening approach, to combination studies and the isolation of a bioactive compound.

    Science.gov (United States)

    Mabona, Unathi; Viljoen, Alvaro; Shikanga, Emmanual; Marston, Andrew; Van Vuuren, Sandy

    2013-06-21

    Ethnobotanical reports on more than 100 southern African medicinal plants with dermatological relevance have been highlighted, yet there is still limited scientific data to support claims for their antimicrobial effectiveness against skin pathogens. Guided by ethnobotanical data, this paper explores the antimicrobial efficacies of southern African medicinal plants used to treat skin ailments. To investigate the antimicrobial properties of southern African medicinal plants against dermatologically relevant pathogens. The study also aimed at providing a scientific rationale for the traditional use of plant combinations to treat skin diseases and the isolation of the bio-active compound from the most active species, Aristea ecklonii (Iridaceae). Organic and aqueous extracts (132) were prepared from 47 plant species and screened for antimicrobial properties against dermatologically relevant pathogens using the micro-titre plate dilution method. Four different plant combinations were investigated for interactive properties and the sum of the fractional inhibitory concentration (ƩFIC) calculated. Isobolograms were used to further investigate the antimicrobial interactive properties of Pentanisia prunelloides combined with Elephantorrhiza elephantina at varied ratios. A bioactivity-guided fractionation process was adopted to fractionate the organic leaf extract of Aristea ecklonii. Plants demonstrating notable broad-spectrum activities (MIC values ≤1.00mg/ml) against the tested pathogens included extracts from Aristea ecklonii, Chenopodium ambrosioides, Diospyros mespiliformis, Elephantorrhiza elephantina, Eucalyptus camaldulensis, Gunnera perpensa, Harpephyllum caffrum, Hypericum perforatum, Melianthus comosus, Terminalia sericea and Warburgia salutaris. The organic extract of Elephantorrhiza elephantina, a plant reportedly used to treat acne vulgaris, demonstrated noteworthy antimicrobial activity (MIC value of 0.05mg/ml) against Propionibacterium acnes. Similarly

  14. Measurement and automatic control techniques at sewage treatment plants. Concepts, experience, trends.. Manuscripts and posters; Mess- und Regelungstechnik in abwassertechnischen Anlagen. Konzepte, Erfahrungen, Trends. Manuskripte und Poster-Praesentationen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This conference volume on measurement and automatic control techniques at sewage treatment plants deals with the following subjects: online analytics, measurement techniques and control techniques; use of model-assisted techniques; transparency and acceptance, plant management; process control concepts; optimization of operation. (SR) [Deutsch] Themen dieses Konferenzbandes ueber Mess- und Regelungstechnik in abwassertechnischen Anlagen sind: Online-Analytik, Mess- und Stelltechnik; Einsatz modellgestuetzter Verfahren; Transparenz und Akzeptanz, Betriebsmanagement; Leittechnische Konzepte; Betriebsoptimierung. (SR)

  15. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    GEUTHER J; CONRAD EA; RHOADARMER D

    2009-08-24

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described.

  16. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    International Nuclear Information System (INIS)

    Geuther, J.; Conrad, E.A.; Rhoadarmer, D.

    2009-01-01

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described

  17. The concept of the effective dose

    International Nuclear Information System (INIS)

    Jacobi, W.

    1975-01-01

    Irradiation of the human body by external or internal sources leads mostly to a simultaneous exposure of several organs. However, so far no clear and consistent recommendations for the combination of organ doses and the assessment of an exposure limit under such irradiation conditions are available. Following a proposal described in ICRP-publication 14 one possible concept for the combination of organ doses is discussed in this paper. This concept is based on the assumption that at low doses the total radiation detriment to the exposed person is given by the sum of radiation detriments to the single organs. Taking into account a linear dose-risk relationship, the sum of weighted organ doses leads to the definition of an 'Effective Dose'. The applicability and consequences of this 'Effective Dose Concept' are discussed especially with regard to the assessment of the maximum permissible intake of radionuclides into the human body and the combination of external and internal exposure. (orig.) [de

  18. Combinational Services for NGN based IPTV

    NARCIS (Netherlands)

    Mikóczy, E.; Schumann, S.; Stokking, H.M.; Deventer, M.O. van; Niamut, O.A.

    2009-01-01

    This paper describes the general concept of combinational/blended services for IP-based Television (IPTV) services in next generation networks towards its service oriented architecture concept (SOA). Besides introducing general approaches of service reusability (SOA concepts), the service enables

  19. From Concepts to Predicates within Constructivist Epistemology

    DEFF Research Database (Denmark)

    Badie, Farshad

    2017-01-01

    Constructivism is a philosophical approach that appears in a variety of guises, some of them pedagogical, some epistemological and some in complex combinations. This article is based on constructivist epistemology. More specifically, constructivist epistemology provides a ground for conceptual an...... analysis of humans’ concept constructions, conceptions and concept learning processes. It will focus on conceptual specification and logical description of a flow from concepts to predicates....

  20. Thermoeconomic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, Felipe Raul Ponce; Lora, Electo Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil). Nucleo de Estudos de Sistemas Termicos]. E-mails: aponce@iem.efei.br; electo@iem.efei.br; Perez, Silvia Azucena Nebra de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: sanebra@fem. unicamp.br

    2000-07-01

    Using thermoeconomics as a tool to identify the location and magnitude of the real thermodynamic losses (energy waste, or exergy destruction and exergy losses) it is possible to assess the production costs of each product (electric power and heat) and the exergetic and exergoeconomic cost of each flow in a cogeneration plant to assist in decision-marketing procedures concerning to plant design, investment, operation and allocations of research funds. Thermo economic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant for its applications in sugar cane mills brings the following results: the global exergetic efficiency is low; the highest irreversibilities occur in the following equipment, by order: scrubber (38%), gas turbine (16%), dryer (12%), gasifier and HRSG (6%); due to the adopted cost distribution methodology, the unit exergetic cost of the heat (4,11) is lower than electricity (4,71); the lower market price of biomass is one of the most sensible parameter in the possible implementation of BIG-GT technology in sugar cane industry; the production costs are 31 US$/MWh and 32 US$/MWh for electricity and heat, respectively. The electricity cost is, after all, competitive with the actual market price. The electricity and heat costs are lower or almost equal than other values reported for actual Rankine cycle cogeneration plants. (author)

  1. Technical Integration of SMART Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Park, P. H.; Noh, P. C. (and others)

    2006-12-15

    Preliminary experimental tests were carried out using the thermal-hydraulic integral test facility, VISTA (Experimental Verification by Integral Simulation of Transients and Accidents), which has been constructed to simulate the SMART-P. The VISTA facility is an integral test facility including the primary and secondary systems as well as safety-related Passive Residual heat removal (PRHR) systems. The integrated SMART desalination plant consists of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements.

  2. DEMO and fusion power plant conceptual studies in Europe

    International Nuclear Information System (INIS)

    Maisonnier, David; Cook, Iau; Pierre, Sardain; Lorenzo, Boccaccini; Luigi, Di Pace; Luciano, Giancarli; Prachai, Norajitra; Aldo, Pizzuto

    2006-01-01

    Within the European Power Plant Conceptual Study (PPCS) four fusion power plant 'models' have been developed. Two of these models were developed considering limited extrapolations both in physics and in technology. For the two other models, advanced physics scenarios have been identified and combined with advanced blanket concepts that allow higher thermodynamic efficiencies of the power conversion systems. For all the PPCS models, systems analyses were used to integrate the plasma physics and technology constraints to produce self-consistent plant parameter sets. The broad features of the conclusions of previous studies on safety, environmental impact and economics have been confirmed for the new models and demonstrated with increased confidence. The PPCS also helps in the definition of the objectives and in the identification of the design drivers of DEMO, i.e. the device between the next step (ITER) and a first-of-a-kind reactor. These will constitute the basis of the European DEMO Conceptual Study that has recently started

  3. Optimizing Waste Heat Recovery for Class A Biosolids Production from a Combined Cycle Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Soroushian, Fred

    2003-07-01

    The City of Corona serves a rapidly growing area of Southern California, The City operates three wastewater treatment plants (WWTPs) that produce reclaimed water for unrestricted reuse. The sludge from the three WWTPs is transported to a central sludge treatment facility located at WWTP No. 1. The sludge treatment facility consists of sludge receiving, thickening, anaerobic digestion, and dewatering. In the year 2000, the City was faced with two crises. First, the California power shortage and escalating cost of power severely impacted the industry and businesses. Second, bans on Class B biosolids land application and the shutdown of a local privatized composting facility where the bulk of the City's biosolids were processed or reused forced the City to transport bulk waste a much greater distance. To cost-effectively respond to these crises, the City decided to start generating and supplying power to its constituents by constructing a nominal 30-megawatt (MW) power plant. The feasibility study proved that locating the power plant at the City's largest WWTP produced significant synergies. The reclaimed water from the WWTP could be used for power plant cooling, the waste heat from the power plant could be recovered and used in Class A biosolids processes, the digester gas could be used for supplementing the fuel needs of the sludge dryer, and the combined facilities operation was more efficient than physically separate facilities. This paper presents the results of this analysis as well as the construction and operational aspects of the project. (author)

  4. Fluidic origami cellular structure -- combining the plant nastic movements with paper folding art

    Science.gov (United States)

    Li, Suyi; Wang, K. W.

    2015-04-01

    By combining the physical principles behind the nastic plant movements and the rich designs of paper folding art, we propose a new class of multi-functional adaptive structure called fluidic origami cellular structure. The basic elements of this structure are fluid filled origami "cells", made by connecting two compatible Miura-Ori stripes along their crease lines. These cells are assembled seamlessly into a three dimensional topology, and their internal fluid pressure or volume are strategically controlled just like in plants for nastic movements. Because of the unique geometry of the Miura-Ori, the relationships among origami folding, internal fluid properties, and the crease bending are intricate and highly nonlinear. Fluidic origami can exploit such relationships to provide multiple adaptive functions concurrently and effectively. For example, it can achieve actuation or morphing by actively changing the internal fluid volume, and stillness tuning by constraining the fluid volume. Fluidic origami can also be bistable because of the nonlinear correlation between folding and crease material bending, and such bistable character can be altered significantly by fluid pressurization. These functions are natural and essential companions with respect to each other, so that fluidic origami can holistically exhibit many attractive characteristics of plants and deliver rapid and efficient actuation/morphing while maintaining a high structural stillness. The purpose of this paper is to introduce the design and working principles of the fluidic origami, as well as to explore and demonstrate its performance potential.

  5. Model for optimization of plant investments in combined power and heat production systems

    Energy Technology Data Exchange (ETDEWEB)

    Jantunen, E.; Sinisalo, A.; Koskelainen, L.

    1980-01-01

    A mathematical model is developed for optimal dimensioning and timing the investments of power and heat production system in a community. The required electric power may be purchased by different production systems, such as: thermal power plants, gas turbines, diesel plants, etc. or by delivering all or part of it from a national power company. Also the required heat may be produced in many different ways in single-purpose or combined plants. The model assumes the extent of the heating system fixed, and it is not optimized. It is assumed that the same company is responsible for supplying both the power and heat for the community. It's aim is to allocate the existing capital in an optimal way, and the model may be used for facilitating the decision in such questions as: what kind of production capacity should be purchased in future; how high should the heat and power capacities be; and when should this additional capacity be available. The report also reviews the methods for forecasting the demand of power and heat and their fluctuation during the planning period. The solution of this large-scale non-linear optimization problem is searched via successive linearizations by using the Method of Approximate Programming (MAP). It was found that the solution method is very suitable for this kind of multivariable problems. The computing times with the Functional Mathematical Programmin System (FMPS) in Univac 1108 computer were quite reasonable.

  6. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  7. Customer Experience Marketing : Concepts and Tools

    OpenAIRE

    Kalaoja, Petteri

    2015-01-01

    This work studies what Customer Experience Management (CEM) is and how it can be implemented in modern marketing with an emphasis on B2C. This work takes a look into the concepts which are needed to achieve a versatile CEM approach. The tools and technologies that are needed to operate the CEM concept are also evaluated. This thesis explains that a Customer Experience Management strategy consists of a certain combination of concepts. These concepts usually include customer data, data-driv...

  8. Advanced high performance solid wall blanket concepts

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Malang, S.; Nishio, S.; Raffray, R.; Sagara, A.

    2002-01-01

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  9. Decreasing Ambiguity of the Safety Culture Concept

    International Nuclear Information System (INIS)

    Inoue, Shiichiro; Hosoda, Satoshi; Suganuma, Takashi; Monta, Kazuo; Kameda, Akiyuki

    2001-01-01

    The status of the concept of ''safety culture'' is reviewed. It has not sufficiently taken root. One cause for this is the abstract nature of the concept. Organizations must become aware of the necessity of improving safety and have sufficient power to promote this. The culture of safety must be instilled in each employee, so that each of them will feel responsible for identifying weak points in plant safety. The authors devised a tool for a self-assessment of the safety culture. The tool will bring to light information divides, communication gaps, etc. Recognizing the vulnerabilities of the organization by themselves and discussing these weak points among them is the first step to decrease the ambiguity of the safety culture. The next step is to make these gaps known along with agreed-upon countermeasures. The concept of safety culture will be greatly clarified in this way and lead to safer nuclear power plants

  10. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    International Nuclear Information System (INIS)

    Lythcke-Jørgensen, Christoffer; Haglind, Fredrik; Clausen, Lasse R.

    2014-01-01

    Highlights: • We model a system where lignocellulosic ethanol production is integrated with a combined heat and power (CHP) plant. • We conduct an exergy analysis for the ethanol production in six different system operation points. • Integrated operation, district heating (DH) production and low CHP loads all increase the exergy efficiency. • Separate operation has the largest negative impact on the exergy efficiency. • Operation is found to have a significant impact on the exergy efficiency of the ethanol production. - Abstract: Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible, and a gas boiler is used as back-up when integration is not possible. The system was evaluated according to six operation points that alternate on the following three different operation parameters: Load in the CHP unit, integrated versus separate operation, and inclusion of district heating production in the ethanol facility. The calculated standard exergy efficiency of the ethanol facility varied from 0.564 to 0.855, of which the highest was obtained for integrated operation at reduced CHP load and full district heating production in the ethanol facility, and the lowest for separate operation with zero district heating production in the ethanol facility. The results suggest that the efficiency of integrating lignocellulosic ethanol production in CHP plants is highly dependent on operation, and it is therefore suggested that the

  11. Healthy plants: necessary for a balanced ‘One Health’ concept

    Directory of Open Access Journals (Sweden)

    Jacqueline Fletcher

    2009-03-01

    Full Text Available All life forms depend ultimately upon sunlight to create the energy ‘currency’ required for the functions of living. Green plants can make that conversion directly but the rest of us would perish without access to foods derived, directly or indirectly, from plants. We also require their fibre which we use for clothing, building and other purposes. However, plants, just as humans and animals, are attacked by pathogens that cause a myriad of symptoms that can lead to reduced yields, lower quality products and diminished nutritional value. Plant pathogens share many features with their human and animal counterparts. Some pathogens - whether of humans, animals, or plants - have nimble genomes or the ability to pirate genes from other organisms via mobile elements. Some have developed the ability to cross kingdoms in their host ranges. Many others share virulence factors, such as the type III secretion system (T3SS or mechanisms for sensing population density, that work equally well in all kingdoms. Certain pathogens of hosts in all kingdoms rely upon insect vectors and use similar mechanisms to ensure dispersal (and sometimes survival in this way. Plant-pathogen interactions have more direct consequence for humans when the microbes are human pathogens such as Escherichia coli 0157:H7 and Salmonella spp., which can contaminate fresh produce or when they produce metabolites, such as mycotoxins, which are harmful when consumed. Finally, national biosecurity concerns and the need for prevention, preparedness and forensic capabilities cross all kingdom barriers. Thus, our communities that focus on one of these kingdoms have much to learn from one another and a complete and balanced ‘One Health’ initiative must be tripartite, embracing the essential components of healthy plants, healthy animals and healthy people.

  12. Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants

    International Nuclear Information System (INIS)

    Ahmadi, Pouria; Dincer, Ibrahim; Rosen, Marc A.

    2011-01-01

    A comprehensive exergy, exergoeconomic and environmental impact analysis and optimization is reported of several combined cycle power plants (CCPPs). In the first part, thermodynamic analyses based on energy and exergy of the CCPPs are performed, and the effect of supplementary firing on the natural gas-fired CCPP is investigated. The latter step includes the effect of supplementary firing on the performance of bottoming cycle and CO 2 emissions, and utilizes the first and second laws of thermodynamics. In the second part, a multi-objective optimization is performed to determine the 'best' design parameters, accounting for exergetic, economic and environmental factors. The optimization considers three objective functions: CCPP exergy efficiency, total cost rate of the system products and CO 2 emissions of the overall plant. The environmental impact in terms of CO 2 emissions is integrated with the exergoeconomic objective function as a new objective function. The results of both exergy and exergoeconomic analyses show that the largest exergy destructions occur in the CCPP combustion chamber, and that increasing the gas turbine inlet temperature decreases the CCPP cost of exergy destruction. The optimization results demonstrates that CO 2 emissions are reduced by selecting the best components and using a low fuel injection rate into the combustion chamber. -- Highlights: → Comprehensive thermodynamic modeling of a combined cycle power plant. → Exergy, economic and environmental analyses of the system. → Investigation of the role of multiobjective exergoenvironmental optimization as a tool for more environmentally-benign design.

  13. Planting on the slope of Yangjiang nuclear power plant by spraying combined materials

    International Nuclear Information System (INIS)

    Li Ning

    2010-01-01

    During the development and construction of nuclear power projects, in order to prevent ecological degradation and soil erosion of slope hazards, taking practical measures in the works or plant is particularly important. through the main high slope green field application of Yangjiang nuclear power plant, introducing mixed vegetation spraying techniques and characteristics of the construction process, for similar projects it is also a good guide. (author)

  14. SCWR Concepts in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    Two SCWR concepts are being developed in Japan, one corresponding to the thermal spectrum reactor and the other to the fast spectrum reactor. Yamada et al. described the thermal-spectrum reactor concept referred to as the Japan SCWR (or JSCWR). This concept was developed under the financial support of the Ministry of Economy, Trade and Industry (METI). The basic philosophy of the JSCWR development is to utilize proven light water reactor and supercritical fossil-fired power plant technologies as much as possible to minimize the R&D cost, time and risks. Therefore, the JSCWR is designed as a thermal neutron spectrum reactor using light water as moderator and reactor coolant. The JSCWR plant consists of a pressure-vessel type, once-through reactor and a direct Rankine cycle system. Reactor coolant fed through inlet nozzles is heated up in the core and flows through outlet nozzles with no recirculation in the vessel. Other options to the JSCWR core design are being investigated at the University of Tokyo. The electric output of the JSCWR is assumed to range from 600 MWe to 1700 MWe class to fulfill user’s requirements as much as possible. In this section, the reference value is selected to 1725 MWe, which corresponds to a reactor thermal output of 4039 MWth. Nakatsuka et al. described the core design for the fast-spectrum reactor, which is based on a similar plant system compared to that of the thermal-spectrum reactor. The fast-spectrum reactor, however, would produce higher power rating than the thermal-spectrum one of the same reactor pressure-vessel size. Since the fast-spectrum reactor does not require the moderator, its unit capital cost would be lower than the thermal-spectrum reactor.

  15. Recovery of flue gas energy in heat-integrated gasification combined cycle (IGCC) power plants using the contact economizer system

    CSIR Research Space (South Africa)

    Madzivhandila, VA

    2011-03-01

    Full Text Available (flue gas) stream of a heat-integrated gasification combined cycle (IGCC) design of the Elcogas plant adopted from previous studies. The underlying support for this idea was the direct relationship between efficiency of the IGCC and the boiler feedwater...

  16. Animal and plant stem cells concepts, propagation and engineering

    CERN Document Server

    Pavlović, Mirjana

    2017-01-01

    This book provides a multifaceted look into the world of stem cells and explains the similarities and differences between plant and human stem cells. It explores the intersection between animals and plants and explains their cooperative role in bioengineering studies. The book treats both theoretical and practical aspects of stem cell research. It covers the advantages and limitations of many common applications related to stem cells: their sources, categories, engineering of these cells, reprogramming of their functions, and their role as novel cellular therapeutic approach. Written by experts in the field, the book focuses on aspects of stem cells ranging from expansion-propagation to metabolic reprogramming. It introduces the emergence of cancer stem cells and different modalities in targeted cancer stem cell therapies. It is a valuable source of fresh information for academics and researchers, examining molecular mechanisms of animal and plant stem cell regulation and their usage for therapeutic applicati...

  17. Methods of assessing nuclear power plant risks

    International Nuclear Information System (INIS)

    Skvarka, P.; Kovacz, Z.

    1985-01-01

    The concept of safety evalution is based on safety criteria -standards or set qualitative values of parameters and indices used in designing nuclear power plants, incorporating demands on the quality of equipment and operation of the plant, its siting and technical means for achieving nuclear safety. The concepts are presented of basic and optimal risk values. Factors are summed up indispensable for the evaluation of the nuclear power plant risk and the present world trend of evaluation based on probability is discussed. (J.C.)

  18. Proposal for operator's mental model using the concept of multilevel flow modeling

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi; Takano, Kenichi; Sasou, Kunihide

    1995-01-01

    It is necessary to analyze an operator's thinking process and a operator team's intension forming process for preventing human errors in a highly advanced huge system like a nuclear power plant. Central Research Institute of Electric Power Industry is promoting a research project to establish human error prevention countermeasures by modeling the thinking and intension forming process. The important is the future prediction and the cause identification when abnormal situations occur in a nuclear power plant. The concept of Multilevel Flow Modeling (MFM) seems to be effective as an operator's mental model which performs the future prediction and the cause identification. MFM is a concept which qualitatively describes the plant functions by energy and mass flows and also describes the plant status by breaking down the targets in a hierarchical manner which a plant should achieve. In this paper, an operator's mental model using the concept of MFM was proposed and a nuclear power plant diagnosis support system using MFM was developed. The system evaluation test by personnel who have operational experience in nuclear power plants revealed that MFM was superior in the future prediction and the cause identification to a traditional nuclear power plant status display system which used mimics and trends. MFM proved to be useful as an operator's mental model by the test. (author)

  19. Feasibility study of fusion breeding blanket concept employing graphite reflector

    International Nuclear Information System (INIS)

    Cho, Seungyon; Ahn, Mu-Young; Lee, Cheol Woo; Kim, Eung Seon; Park, Yi-Hyun; Lee, Youngmin; Lee, Dong Won

    2015-01-01

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  20. Feasibility study of fusion breeding blanket concept employing graphite reflector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seungyon, E-mail: sycho@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Woo; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.